Science.gov

Sample records for cell tumor line

  1. Pediatric brain tumor cell lines.

    PubMed

    Xu, Jingying; Margol, Ashley; Asgharzadeh, Shahab; Erdreich-Epstein, Anat

    2015-02-01

    Pediatric brain tumors as a group, including medulloblastomas, gliomas, and atypical teratoid rhabdoid tumors (ATRT) are the most common solid tumors in children and the leading cause of death from childhood cancer. Brain tumor-derived cell lines are critical for studying the biology of pediatric brain tumors and can be useful for initial screening of new therapies. Use of appropriate brain tumor cell lines for experiments is important, as results may differ depending on tumor properties, and can thus affect the conclusions and applicability of the model. Despite reports in the literature of over 60 pediatric brain tumor cell lines, the majority of published papers utilize only a small number of these cell lines. Here we list the approximately 60 currently-published pediatric brain tumor cell lines and summarize some of their central features as a resource for scientists seeking pediatric brain tumor cell lines for their research.

  2. Pancreastatin producing cell line from human pancreatic islet cell tumor.

    PubMed

    Funakoshi, A; Tateishi, K; Tsuru, M; Jimi, A; Wakasugi, H; Ikeda, Y; Kono, A

    1990-04-30

    It has been characterized that cell line QGP-1 derived from human non-functioning pancreatic islet cell tumor produces human pancreastatin. Exponentially growing cultures produced 5.7 fmol of pancreastatin/10(6) cells/hr. Human pancreastatin immunoreactivities in plasma and tumor after xenografting with QGP-1 into nude mouse were 92.7 fmol/ml and 160.2 pmol/g wet weight, respectively. Immunocytochemical study revealed both chromogranin A and pancreastatin immunoreactive cells in the tumor. Gel filtrations of culture medium and tumor extract identified heterogenous molecular forms of PST-LI which eluted as large and smaller molecular species. These results suggest that plasma pancreastatin levels may be useful as a tumor marker of endocrine tumor of the pancreas, and the pancreastatin producing cell line may be useful for studies of the mechanism of secretions and processing of chromogranin A and pancreastatin.

  3. Experimental Adaptation of Rotaviruses to Tumor Cell Lines

    PubMed Central

    Guerrero, Carlos A.; Guerrero, Rafael A.; Silva, Elver; Acosta, Orlando; Barreto, Emiliano

    2016-01-01

    A number of viruses show a naturally extended tropism for tumor cells whereas other viruses have been genetically modified or adapted to infect tumor cells. Oncolytic viruses have become a promising tool for treating some cancers by inducing cell lysis or immune response to tumor cells. In the present work, rotavirus strains TRF-41 (G5) (porcine), RRV (G3) (simian), UK (G6-P5) (bovine), Ym (G11-P9) (porcine), ECwt (murine), Wa (G1-P8), Wi61 (G9) and M69 (G8) (human), and five wild-type human rotavirus isolates were passaged multiple times in different human tumor cell lines and then combined in five different ways before additional multiple passages in tumor cell lines. Cell death caused by the tumor cell-adapted isolates was characterized using Hoechst, propidium iodide, 7-AAD, Annexin V, TUNEL, and anti-poly-(ADP ribose) polymerase (PARP) and -phospho-histone H2A.X antibodies. Multiple passages of the combined rotaviruses in tumor cell lines led to a successful infection of these cells, suggesting a gain-of-function by the acquisition of greater infectious capacity as compared with that of the parental rotaviruses. The electropherotype profiles suggest that unique tumor cell-adapted isolates were derived from reassortment of parental rotaviruses. Infection produced by such rotavirus isolates induced chromatin modifications compatible with apoptotic cell death. PMID:26828934

  4. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  5. Tumor Suppressors Status in Cancer Cell Line Encyclopedia

    PubMed Central

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J.; Tatarinova, Tatiana V.

    2013-01-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss-of-function mutation, copy number (CN) loss, or loss-of-heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional “status”. This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research. PMID:23639312

  6. Tumor suppressors status in cancer cell line Encyclopedia.

    PubMed

    Sonkin, Dmitriy; Hassan, Mehedi; Murphy, Denis J; Tatarinova, Tatiana V

    2013-08-01

    Tumor suppressors play a major role in the etiology of human cancer, and typically achieve a tumor-promoting effect upon complete functional inactivation. Bi-allelic inactivation of tumor suppressors may occur through genetic mechanisms (such as loss of function mutation, copy number (CN) loss, or loss of heterozygosity (LOH)), epigenetic mechanisms (such as promoter methylation or histone modification), or a combination of the two. We report systematically derived status of 69 known or putative tumor suppressors, across 799 samples of the Cancer Cell Line Encyclopedia. In order to generate such resource we constructed a novel comprehensive computational framework for the assessment of tumor suppressor functional "status". This approach utilizes several orthogonal genomic data types, including mutation data, copy number, LOH and expression. Through correlation with additional data types (compound sensitivity and gene set activity) we show that this integrative method provides a more accurate assessment of tumor suppressor status than can be inferred by expression, copy number, or mutation alone. This approach has the potential for a more realistic assessment of tumor suppressor genes for both basic and translational oncology research.

  7. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  8. Effect of glutamate analogues on brain tumor cell lines.

    PubMed

    Campbell, G L; Bartel, R; Freidman, H S; Bigner, D D

    1985-10-01

    Glutamate analogues have been used in many different experimental approaches in neurobiology. A small number of these analogues have been classified as gliotoxic. We have examined the effect of seven glutamate analogues (five gliotoxic and two neurotoxic) on the growth and viability of four human glioma cell lines, one human medulloblastoma cell line, and one human sarcoma cell line. Aminoadipic acid and homocysteic acid predominantly affected the growth of two glioma cell lines in the presence of 4 mM glutamine. Phosphonobutyric acid predominantly affected the other two glioma cell lines and the medulloblastoma cell line in the presence of 4 mM glutamine. In medium containing no glutamine, all three analogues had marked effects on all the cell lines except the sarcoma cell line. These effects were dose dependent. We postulate that these results can in part be explained on the basis of metabolic compartmentalization.

  9. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI).

    PubMed

    Sandberg, Rickard; Ernberg, Ingemar

    2005-02-08

    The gene expression profiles of 60 cell lines, derived from nine different tissues, were compared with their corresponding in vivo tumors and tissues. Cell lines expressed few tissue-specific (2%) or tumor-specific (5%) genes when analyzed group-wise. A tissue similarity index (TSI) was designed based upon singular value decomposition that measured in vivo tumor characteristic gene expression in each cell line independently. Only 34 of the 60 cell lines received the highest TSI toward its tumor of origin. In addition, we identified the most appropriate cell lines to be used as model systems for different in vivo tumors. Seven cell lines were identified as being of another origin than the originally presumed one. The proposed TSI will likely become an important tool for the selection of the most appropriate cell lines in pharmaceutical screening programs and experimental and biomedical research.

  10. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    PubMed Central

    Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685

  11. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines.

    PubMed

    Fernández-Araujo, Andrea; Sánchez, Jon A; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed.

  12. Induction of apoptosis by opium in some tumor cell lines.

    PubMed

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  13. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.

    PubMed

    Chandler, L A; Sosnowski, B A; Greenlees, L; Aukerman, S L; Baird, A; Pierce, G F

    1999-05-05

    Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.

  14. Epigenetic regulation of human hedgehog interacting protein in glioma cell lines and primary tumor samples

    PubMed Central

    Shahi, Mehdi H.; Zazpe, Idoya; Afzal, Mohammad; Sinha, Subrata; Rebhun, Robert B.; Meléndez, Bárbara; Rey, Juan A.

    2016-01-01

    Glioma constitutes one of the most common groups of brain tumors, and its prognosis is influenced by different genetic and epigenetic modulations. In this study, we demonstrated low or no expression of hedgehog interacting protein (HHIP) in most of the cell lines and primary glioma tumor samples. We further proceeded to promoter methylation study of this gene in the same cell lines and primary tumor samples and found 87 % (7/8) HHIP methylation in glioblastoma cell lines and 75 % (33/44) in primary tumor samples. These methylation pattern correlates with low or unexpressed HHIP in both cell lines and primary tumor samples. Our results suggest the possibility of epigenetic regulation of this gene in glioma, similarly to medulloblastoma, gastric, hepatic, and pancreatic cancers. Also, HHIP might be a diagnostic or prognostic marker in glioma and help to the detection of these tumors in early stages of disease. PMID:25416442

  15. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    PubMed Central

    CORRÊA, NATÁSSIA C.R.; KUASNE, HELLEN; FARIA, JERUSA A.Q.A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; NONOGAKI, SUELY; ROCHA, RAFAEL M.; SILVA, GERLUZA APARECIDA BORGES; GOBBI, HELENICE; ROGATTO, SILVIA R.; GOES, ALFREDO M.; GOMES, DAWIDSON A.

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted in immunodeficient mice. We also investigated the ability of the cell lines to form colonies and copy number alterations by array comparative genomic hybridization. Histopathological analysis showed that the invasive primary tumor from which the MACL-1 cell line was derived, was a luminal A subtype carcinoma, while the ductal carcinoma in situ (DCIS) that gave rise to the MGSO-3 cell line was a HER2 subtype tumor, both showing different proliferation levels. The cell lines and the tumor xenografts in mice preserved their high proliferative potential, but did not maintain the expression of the other markers assessed. This shift in expression may be due to the selection of an ‘establishment’ phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines to be potentially used for comparative research. PMID:23404580

  16. Establishment of human tumoral ependymal cell lines and coculture with tubular-like human endothelial cells.

    PubMed

    Brisson, C; Lelong-Rebel, I; Mottolèse, C; Jouvet, A; Fèvre-Montange, M; Saint Pierre, G; Rebel, G; Belin, M F

    2002-10-01

    Ependymomas, rare neoplasms of the central nervous system, occur predominantly in children. They are highly vascularized, and histological findings show many perivascular rosettes of tumoral cells radially organized around capillaries. Treatment of ependymomas relies on surgery combined with radio- or chemotherapy, but the efficiency of chemotherapy is limited, probably because of their multidrug resistance (MDR) phenotype. Progress in the therapy of these neoplasms is dramatically limited by the absence of cell line models. We established conditions for the long-term culture of human tumoral ependymocytes and their 3D coculture in Matrigel with endothelial cells. Histological, immunological, and ultrastructural studies showed that the morphological features (microvilli, cilia, and caveolae) of these cultured cells were similar to those of the tumor in vivo. The cells expressed potential oncological markers related to the immature state of tumoral cells (nestin and Notch-1), their tumorigenicity [caveolae and epidermal growth factor-receptor (EGF-R)], or the MDR phenotype [P-glycoprotein (P-gp)]. The expression of P-gp, EGF-R, and caveolin-1 by these tumoral ependymocytes could be useful in studies on new drugs. This coculture model might represent a new powerful tool to study new therapeutic delivery strategies in tumoral cells.

  17. Cell Death Mechanisms in Tumoral and Non-Tumoral Human Cell Lines Triggered by Photodynamic Treatments: Apoptosis, Necrosis and Parthanatos.

    PubMed

    Soriano, J; Mora-Espí, I; Alea-Reyes, M E; Pérez-García, L; Barrios, L; Ibáñez, E; Nogués, C

    2017-01-23

    Cell death triggered by photodynamic therapy can occur through different mechanisms: apoptosis, necrosis or autophagy. However, recent studies have demonstrated the existence of other mechanisms with characteristics of both necrosis and apoptosis. These new cell death pathways, collectively termed regulated necrosis, include a variety of processes triggered by different stimuli. In this study, we evaluated the cell death mechanism induced by photodynamic treatments with two photosensitizers, meso-tetrakis (4-carboxyphenyl) porphyrin sodium salt (Na-H2TCPP) and its zinc derivative Na-ZnTCPP, in two human breast epithelial cell lines, a non-tumoral (MCF-10A) and a tumoral one (SKBR-3). Viability assays showed that photodynamic treatments with both photosensitizers induced a reduction in cell viability in a concentration-dependent manner and no dark toxicity was observed. The cell death mechanisms triggered were evaluated by several assays and cell line-dependent results were found. Most SKBR-3 cells died by either necrosis or apoptosis. By contrast, in MCF-10A cells, necrotic cells and another cell population with characteristics of both necrosis and apoptosis were predominant. In this latter population, cell death was PARP-dependent and translocation of AIF to the nucleus was observed in some cells. These characteristics are related with parthanatos, being the first evidence of this type of regulated necrosis in the field of photodynamic therapy.

  18. Cell Death Mechanisms in Tumoral and Non-Tumoral Human Cell Lines Triggered by Photodynamic Treatments: Apoptosis, Necrosis and Parthanatos

    PubMed Central

    Soriano, J.; Mora-Espí, I.; Alea-Reyes, M. E.; Pérez-García, L.; Barrios, L.; Ibáñez, E.; Nogués, C.

    2017-01-01

    Cell death triggered by photodynamic therapy can occur through different mechanisms: apoptosis, necrosis or autophagy. However, recent studies have demonstrated the existence of other mechanisms with characteristics of both necrosis and apoptosis. These new cell death pathways, collectively termed regulated necrosis, include a variety of processes triggered by different stimuli. In this study, we evaluated the cell death mechanism induced by photodynamic treatments with two photosensitizers, meso-tetrakis (4-carboxyphenyl) porphyrin sodium salt (Na-H2TCPP) and its zinc derivative Na-ZnTCPP, in two human breast epithelial cell lines, a non-tumoral (MCF-10A) and a tumoral one (SKBR-3). Viability assays showed that photodynamic treatments with both photosensitizers induced a reduction in cell viability in a concentration-dependent manner and no dark toxicity was observed. The cell death mechanisms triggered were evaluated by several assays and cell line-dependent results were found. Most SKBR-3 cells died by either necrosis or apoptosis. By contrast, in MCF-10A cells, necrotic cells and another cell population with characteristics of both necrosis and apoptosis were predominant. In this latter population, cell death was PARP-dependent and translocation of AIF to the nucleus was observed in some cells. These characteristics are related with parthanatos, being the first evidence of this type of regulated necrosis in the field of photodynamic therapy. PMID:28112275

  19. Tumor-Derived Cell Lines as Molecular Models of Cancer Pharmacogenomics.

    PubMed

    Goodspeed, Andrew; Heiser, Laura M; Gray, Joe W; Costello, James C

    2016-01-01

    Compared with normal cells, tumor cells have undergone an array of genetic and epigenetic alterations. Often, these changes underlie cancer development, progression, and drug resistance, so the utility of model systems rests on their ability to recapitulate the genomic aberrations observed in primary tumors. Tumor-derived cell lines have long been used to study the underlying biologic processes in cancer, as well as screening platforms for discovering and evaluating the efficacy of anticancer therapeutics. Multiple -omic measurements across more than a thousand cancer cell lines have been produced following advances in high-throughput technologies and multigroup collaborative projects. These data complement the large, international cancer genomic sequencing efforts to characterize patient tumors, such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC). Given the scope and scale of data that have been generated, researchers are now in a position to evaluate the similarities and differences that exist in genomic features between cell lines and patient samples. As pharmacogenomics models, cell lines offer the advantages of being easily grown, relatively inexpensive, and amenable to high-throughput testing of therapeutic agents. Data generated from cell lines can then be used to link cellular drug response to genomic features, where the ultimate goal is to build predictive signatures of patient outcome. This review highlights the recent work that has compared -omic profiles of cell lines with primary tumors, and discusses the advantages and disadvantages of cancer cell lines as pharmacogenomic models of anticancer therapies.

  20. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    PubMed

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  1. Chemical data mining of the NCI human tumor cell line database.

    PubMed

    Wang, Huijun; Klinginsmith, Jonathan; Dong, Xiao; Lee, Adam C; Guha, Rajarshi; Wu, Yuqing; Crippen, Gordon M; Wild, David J

    2007-01-01

    The NCI Developmental Therapeutics Program Human Tumor cell line data set is a publicly available database that contains cellular assay screening data for over 40 000 compounds tested in 60 human tumor cell lines. The database also contains microarray assay gene expression data for the cell lines, and so it provides an excellent information resource particularly for testing data mining methods that bridge chemical, biological, and genomic information. In this paper we describe a formal knowledge discovery approach to characterizing and data mining this set and report the results of some of our initial experiments in mining the set from a chemoinformatics perspective.

  2. Comparative study of the photodynamic effect in tumor and nontumor animal cell lines

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Alexandrova, R.; Shurulinkov, Stanislav; Sabotinov, O.; Minchev, Georgi

    2004-09-01

    In this study we evaluate the cytotoxicity of two photosensitisers with absorption peaks in the green and red part of the spectrum on animal cell lines. The cytotoxicity assessment was performed for a tumor cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, a tumor line LSR-SF-SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin and for normal mouse and bovine cell lines. Up to now the effect of the photodynamic therapy on virus-induced cancers has not been clarified. The cells were treated with 5,10,15,20 - tetra (4-sulfophenyl) porphyrin with main absorption peak at 519 nm and a dye activated with a red light. The cells were seeded in 96-well plates at 2 x 104 cells/well. The cells were exposed to irradiation from a pulsed CuBr vapor laser at 510.6 nm and 578.2 nm and exposure rate 50 mW/cm2, from an Ar-ion laser at 514 nm and 1 mW/cm2 and to 655 nm-irradiation from a semiconductor laser at 10 mW/cm2. The biological activity of the tested compounds was measured by the neutral red uptake cytotoxicity test. The light dose-response curves and light exposures that ensure 50% drop in the treated cells viability in comparison with the cells grown in non-modified medium were obtained for each cell line. The cytotoxic effect of both photosensitisers is most distinguished for the tumor line LSCC-SF-Mc29. The 2-4 times higher viability of the normal cell lines in comparison with the tumor lines is established. The bovine cell lines are more vulnerable than the mouse lines.

  3. 188Rhenium-induced cell death and apoptosis in a panel of tumor cell lines

    NASA Astrophysics Data System (ADS)

    Antoccia, Antonio; Banzato, Alessandra; Bello, Michele; Bollini, Dante; De Notaristefani, Francesco; Giron, Cecilia; Mazzi, Ulderico; Alafort, Laura Melendez; Moschini, Giuliano; Nadali, Anna; Navarria, Francesco; Perrotta, Andrea; Rosato, Antonio; Tanzarella, Caterina; Uzunov, Nikolay

    2007-02-01

    Assessment of "in vitro" tumor growth inhibition and radiobiological effects, such as apoptosis, have been evaluated in human neoplastic cells of different histotypes (H460 lung cancer cells, U87 glioblastoma, LnCaP prostate tumor cells) treated using solutions of 188Rhenium-perrhenate. The MTT assay, which measures mitochondrial metabolism in the entire cell culture is a recognized test for cytotoxicity and was used in cells exposed 48-72 h to specific activities ranged from 37 to 148 GBq/l. Whereas H460 and LnCaP were particularly sensitive to treatment, U87 glioblastoma cells behaved as radioresistant ones. However, evaluation of 188Re-induced apoptosis indicated that this kind of cell death contributed only marginally to the reduction in cell viability of H460 and LNCaP lines, suggesting the existence of protective mechanisms against apoptosis. In this respect, the membrane receptor, CD44, whose expression is dysregulated in most malignant cell types has proven to alter the response of cancer cells to apoptotic stimuli, including ionizing radiation. Cell samples decorated with a FITC-labelled CD44 antibody indicated, that in H460 and U87 cells the CD44(+) correlated well with an apoptosis-resistant response. Conversely, LnCap cells proven as CD44(-) did not display however sensitivity to radio-induced apoptosis.

  4. Relationship between DNA ploidy level and tumor sociology behavior in 12 nervous cell lines

    SciTech Connect

    Kiss, R.; Camby, I.; Salmon, I.

    1995-06-01

    Cell population sociology was studied in two medulloblastomas and 10 astrocytic human tumor cell lines by means of the characterization of the structure of neoplastic cell colonies growing on histological slides. This was carried out via digital cell image analysis of Feulgen-stained nuclei, to which the Delaunay triangulation and Voronoi paving mathematical techniques were applied. Such assessments were compared to the DNA ploidy level (assessed by means of DNA histogram typing). The results show that the cell colony architecture characteristics differed markedly according to whether the cell lines were euploid (diploid or tetraploid) or aneuploid (hyperdiploid, triploid, hypertriploid, or polymorphic). In fact, the cell colonies from the euploid cell nuclei populations were larger and more dense than those from the aneuploid ones. Furthermore, for an identical period of culture, the cell lines from high-grade malignant astrocytic tumors (glioblastomas) exhibited cell colonies that were larger and more dense than those in cell lines from low-grade astrocytic tumors (astrocytomas). In each of these two groups, the diploid cell nuclei populations exhibited cell colonies larger and more dense than the nondiploid colonies. The present methodology is now being applied in vivo to histological sections of surgically removed human brain tumors in order to distinguish between high-risk clinical subgroups and medium-risk subgroups in clearly circumscribed histopathological groups. 38 refs., 5 figs., 2 tabs.

  5. Chondrocytic differentiation of peripheral neuroectodermal tumor cell line in nude mouse xenograft.

    PubMed

    Goji, J; Sano, K; Nakamura, H; Ito, H

    1992-08-01

    We have established a cell line (KU-SN) from a peripheral neuroectodermal tumor originating in the left scapula of a 4-year-old girl. The original tumor was immunoreactive with antibodies for neurofilament proteins, neuron-specific enolase, vimentin, S100 protein, and beta 2-microglobulin. Dense core granules, 50-150 nm in diameter, were identified by electron microscopy. The cell line was established from tumor cells in metastatic lung fluid. KU-SN cells were immunoreactive with the antibodies for neurofilament proteins, vimentin, neuron-specific enolase, S100 protein, glial fibrillary acidic protein, cytokeratin, and carcinoembryonic antigen. Besides these neuronal features, KU-SN cells express type 2 collagen and insulin-like growth factor 1 receptor. The addition of insulin-like growth factor 1 (100 ng/ml) increased the growth rate of KU-SN cells 2.1-fold over control. Some cells were positive for Alcian blue and alkaline phosphatase staining. Cytogenetic analysis of KU-SN cells disclosed a reciprocal chromosomal translocation [t(11,22)]. Northern blot analysis of KU-SN cells demonstrated amplified expression of the c-myc gene but not the N-myc gene. When tumor cells were transplanted into nude mice, cartilage was formed. The cartilage was immunoreactive with the antibody for HLA-ABC, indicating that it was derived from the tumor cells, not from mouse tissue. Chondrocytic differentiation was not observed in xenografts of Ewing's sarcoma cell lines SK-ES or RD-ES or the peripheral neuroectodermal tumor cell line SK-N-MC. These results indicate that KU-SN cells represent primitive neural crest cells having the potential for chondrocytic differentiation.

  6. Tumor suppression by MEG3 lncRNA in a human pituitary tumor derived cell line.

    PubMed

    Chunharojrith, Paweena; Nakayama, Yuki; Jiang, Xiaobing; Kery, Rachel E; Ma, Jun; De La Hoz Ulloa, Cristine S; Zhang, Xun; Zhou, Yunli; Klibanski, Anne

    2015-11-15

    Human clinically non-functioning pituitary adenomas (NFAs) account for approximately 40% of diagnosed pituitary tumors. Epigenetic mutations in tumor suppressive genes play an important role in NFA development. Maternally expressed gene 3 (MEG3) is a long non-coding RNA (lncRNA) and we hypothesized that it is a candidate tumor suppressor whose epigenetic silencing is specifically linked to NFA development. In this study, we introduced MEG3 expression into PDFS cells, derived from a human NFA, using both inducible and constitutively active expression systems. MEG3 expression significantly suppressed xenograft tumor growth in vivo in nude mice. When induced in culture, MEG3 caused cell cycle arrest at the G1 phase. In addition, inactivation of p53 completely abolished tumor suppression by MEG3, indicating that MEG3 tumor suppression is mediated by p53. In conclusion, our data support the hypothesis that MEG3 is a lncRNA tumor suppressor in the pituitary and its inactivation contributes to NFA development.

  7. Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1.

    PubMed

    Vandamme, Timon; Peeters, Marc; Dogan, Fadime; Pauwels, Patrick; Van Assche, Elvire; Beyens, Matthias; Mortier, Geert; Vandeweyer, Geert; de Herder, Wouter; Van Camp, Guy; Hofland, Leo J; Op de Beeck, Ken

    2015-04-01

    The human BON-1 and QGP-1 cell lines are two frequently used models in pancreatic neuroendocrine tumor (PNET) research. Data on the whole-exome genetic constitution of these cell lines is largely lacking. This study presents, to our knowledge, the first whole-exome profile of the BON-1 and QGP-1 cell lines. Cell line identity was confirmed by short tandem repeat profiling. Using GTG-banding and a CytoSNP-12v2 Beadchip array, cell line ploidy and chromosomal alterations were determined in BON-1 and QGP-1. The exomes of both cell lines were sequenced on Ilumina's HiSeq next-generation sequencing (NGS) platform. Single-nucleotide variants (SNVs) and insertions and deletions (indels) were detected using the Genome Analysis ToolKit. SNVs were validated by Sanger sequencing. Ploidy of BON-1 and QGP-1 was 3 and 4 respectively, with long stretches of loss of heterozygosity across multiple chromosomes, which is associated with aggressive tumor behavior. In BON-1, 57 frameshift indels and 1725 possible protein-altering SNVs were identified in the NGS data. In the QGP-1 cell line, 56 frameshift indels and 1095 SNVs were identified. ATRX, a PNET-associated gene, was mutated in both cell lines, while mutation of TSC2 was detected in BON-1. A mutation in NRAS was detected in BON-1, while KRAS was mutated in QGP-1, implicating aberrations in the RAS pathway in both cell lines. Homozygous mutations in TP53 with possible loss of function were identified in both cell lines. Various MUC genes, implicated in cell signaling, lubrication and chemical barriers, which are frequently expressed in PNET tissue samples, showed homozygous protein-altering SNVs in the BON-1 and QGP-1 cell lines.

  8. Desmoplastic small round cell tumor (DSRCT) xenografts and tissue culture lines: Establishment and initial characterization

    PubMed Central

    MARKIDES, CONSTANTINE S.A.; COIL, DOUGLAS R.; LUONG, LINH H.; MENDOZA, JOHN; KOZIELSKI, TONY; VARDEMAN, DANA; GIOVANELLA, BEPPINO C.

    2013-01-01

    Desmoplastic small round cell tumor (DSRCT) is an extremely rare and aggressive neoplasm, which mainly affects young males and generally presents as a widely disseminated tumor within the peritoneal cavity. Due to the rarity of the tumor, its younger and overall healthier patient population (compared with other tumor types) and the fact that it lacks definitive histological and immunohistological features, the diagnosis of DSRCT may be frequently delayed or the tumor may be entirely misdiagnosed as a different type of abdominal sarcoma. The present study aimed to rectify the lack of models that exist for this rare neoplasm, through the development of several DSRCT tissue cultures and xenograft lines. Samples were received from surgeries and biopsies from patients worldwide and were immediately processed for xenograft development in nude mice. Tumor tissues were minced and fragments were injected into the dorsal flanks of nude mice. Of the 14 samples received, nine were established into xenograft lines and five into tissue culture lines. Xenografts displayed the microscopic histology of their parent tumors and demonstrated two different growth rates among the established xenograft lines. Overall, the establishment of these xenograft and tissue culture lines provides researchers with tools to evaluate DSRCT responses to chemotherapy and to investigate DSRCT-specific signaling pathways or mechanisms. PMID:23759995

  9. Human hedgehog interacting protein expression and promoter methylation in medulloblastoma cell lines and primary tumor samples

    PubMed Central

    Shahi, Mehdi H.; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G.; Rey, Juan A.; Fan, Xing

    2015-01-01

    Medulloblastoma is the most common pediatric brain tumor and its development is affected by genetic and epigenetic factors. In this study we found there is low or no expression of the hedgehog interacting protein (HHIP), a negative regulator of the sonic hedgehog pathway, in most medulloblastoma cell lines and primary samples explored. We proceeded to promoter methylation assays of this gene by MCA-Meth, and found that HHIP was hypermethylated in all medulloblastoma cell lines, but only in 2 out of 14 (14%) primary tumor samples. Methylation correlated with low or unexpressed HHIP in cell lines but not in primary tumor samples. These results suggest the possibility of epigenetic regulation of HHIP in medulloblastoma, similarly to gastric, hepatic and pancreatic cancer. However, HHIP seems to be not only under regulation of promoter methylation, but under other factors involved in the control of its low levels of expression in medulloblastoma. PMID:20853133

  10. In vivo tumor growth of high-grade serous ovarian cancer cell lines

    PubMed Central

    Mitra, Anirban; Davis, David A.; Tomar, Sunil; Roy, Lynn; Gurler, Hilal; Xie, Jia; Lantvit, Daniel D.; Cardenas, Horacio; Fang, Fang; Liu, Yueying; Loughran, Elizabeth; Yang, Jing; Stack, M. Sharon; Emerson, Robert E; Cowden Dahl, Karen D.; Barbolina, Maria; Nephew, Kenneth P.; Matei, Daniela; Burdette, Joanna E.

    2015-01-01

    Objective Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. Methods To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119, UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. Results Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. Conclusions Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community. PMID:26050922

  11. Proteomic analyses of brain tumor cell lines amidst the unfolded protein response

    PubMed Central

    Redzic, Jasmina S.; Gomez, Joe D.; Hellwinkel, Justin E.; Anchordoquy, Thomas J.; Graner, Michael W.

    2016-01-01

    Brain tumors such as high grade gliomas are among the deadliest forms of human cancers. The tumor environment is subject to a number of cellular stressors such as hypoxia and glucose deprivation. The persistence of the stressors activates the unfolded proteins response (UPR) and results in global alterations in transcriptional and translational activity of the cell. Although the UPR is known to effect tumorigenesis in some epithelial cancers, relatively little is known about the role of the UPR in brain tumors. Here, we evaluated the changes at the molecular level under homeostatic and stress conditions in two glioma cell lines of differing tumor grade. Using mass spectrometry analysis, we identified proteins unique to each condition (unstressed/stressed) and within each cell line (U87MG and UPN933). Comparing the two, we find differences between both the conditions and cell lines indicating a unique profile for each. Finally, we used our proteomic data to identify the predominant pathways within these cells under unstressed and stressed conditions. Numerous predominant pathways are the same in both cell lines, but there are differences in biological and molecular classifications of the identified proteins, including signaling mechanisms, following UPR induction; we see that relatively minimal proteomic alterations can lead to signaling changes that ultimately promote cell survival. PMID:27323862

  12. Concentration of endogenous estrogens and estrogen metabolites in the NCI-60 human tumor cell lines

    PubMed Central

    2012-01-01

    Background Endogenous estrogens and estrogen metabolites play an important role in the pathogenesis and development of human breast, endometrial, and ovarian cancers. Increasing evidence also supports their involvement in the development of certain lung, colon and prostate cancers. Methods In this study we systemically surveyed endogenous estrogen and estrogen metabolite levels in each of the NCI-60 human tumor cell lines, which include human breast, central nerve system, colon, ovarian, prostate, kidney and non-small cell lung cancers, as well as melanomas and leukemia. The absolute abundances of these metabolites were measured using a liquid chromatography-tandem mass spectrometry method that has been previously utilized for biological fluids such as serum and urine. Results Endogenous estrogens and estrogen metabolites were found in all NCI-60 human tumor cell lines and some were substantially elevated and exceeded the levels found in well known estrogen-dependent and estrogen receptor-positive tumor cells such as MCF-7 and T-47D. While estrogens were expected to be present at high levels in cell lines representing the female reproductive system (that is, breast and ovarian), other cell lines, such as leukemia and colon, also contained very high levels of these steroid hormones. The leukemia cell line RMPI-8226 contained the highest levels of estrone (182.06 pg/106 cells) and 17β-estradiol (753.45 pg/106 cells). In comparison, the ovarian cancer cell line with the highest levels of these estrogens contained only 19.79 and 139.32 pg/106 cells of estrone and 17β-estradiol, respectively. The highest levels of estrone and 17β-estradiol in breast cancer cell lines were only 8.45 and 87.37 pg/106 cells in BT-549 and T-47D cells, respectively. Conclusions The data provided evidence for the presence of significant amounts of endogenous estrogens and estrogen metabolites in cell lines not commonly associated with these steroid hormones. This broad discovery of

  13. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    SciTech Connect

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G. )

    1989-11-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity.

  14. Connexin expression in epidermal cell lines from SENCAR mouse skin tumors.

    PubMed

    Budunova, I V; Carbajal, S; Viaje, A; Slaga, T J

    1996-03-01

    Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.

  15. Exome-level comparison of primary well-differentiated neuroendocrine tumors and their cell lines.

    PubMed

    Boora, Ganesh K; Kanwar, Rahul; Kulkarni, Amit A; Pleticha, Josef; Ames, Matthew; Schroth, Gary; Beutler, Andreas S; Banck, Michaela S

    2015-01-01

    Neuroendocrine cancer cell lines are used to investigate therapeutic targets in neuroendocrine tumors (NET) and have been instrumental in the design of clinical trials targeting the PI3K/AKT/mTOR pathways, VEGF inhibitors, and somatostatin analogues. It remains unknown, however, whether the genomic makeup of NET cell lines reflect that of primary NET since comprehensive unbiased genome sequencing has not been performed on the cell lines. Four bronchopulmonary NET (BP-NET)-NCI-H720, NCI-H727, NCI-H835, and UMC11-and two pancreatic neuroendocrine tumors (panNET)-BON-1 and QGP1-were cultured. DNA was isolated, and exome sequencing was done. GATK and EXCAVATOR were used for bioinformatic analysis. We detected a total of 1,764 nonsynonymous single nucleotide variants at a rate of 8 per Mb in BP-NET and 4.3 per Mb in panNET cell lines, including 52 mutated COSMIC cancer genes in these cell lines, such as TP53, BRCA1, RB1, TSC2, NOTCH1, EP300, GNAS, KDR, STK11, and APC but not ATRX, DAXX, nor MEN1. Our data suggest that mutation rate, the pattern of copy number variations, and the mutational spectra in the BP-NET cell lines are more similar to the changes observed in small cell lung cancer than those found in primary BP-NET. Likewise, mutation rate and pattern including the absence of mutations in ATRX/DAXX, MEN1, and YY1 in the panNET cell lines BON1 and QGP1 suggest that these cell lines do not have the genetic signatures of a primary panNET. These results suggest that results from experiments with BP-NET and panNET cell lines need to be interpreted with caution.

  16. Tumor-specific delivery of biologics by a novel T-cell line HOZOT.

    PubMed

    Onishi, Teppei; Tazawa, Hiroshi; Hashimoto, Yuuri; Takeuchi, Makoto; Otani, Takeshi; Nakamura, Shuji; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kishimoto, Hiroyuki; Umeda, Yuzo; Shirakawa, Yasuhiro; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2016-11-30

    "Cell-in-cell" denotes an invasive phenotype in which one cell actively internalizes in another. The novel human T-cell line HOZOT, established from human umbilical cord blood, was shown to penetrate a variety of human cancer cells but not normal cells. Oncolytic viruses are emerging as biological therapies for human cancers; however, efficient viral delivery is limited by a lack of tumor-specific homing and presence of pre-existing or therapy-induced neutralizing antibodies. Here, we report a new, intriguing approach using HOZOT cells to transmit biologics such as oncolytic viruses into human cancer cells by cell-in-cell invasion. HOZOT cells were successfully loaded via human CD46 antigen with an attenuated adenovirus containing the fiber protein of adenovirus serotype 35 (OBP-401/F35), in which the telomerase promoter regulates viral replication. OBP-401/F35-loaded HOZOT cells were efficiently internalized into human cancer cells and exhibited tumor-specific killing by release of viruses, even in the presence of anti-viral neutralizing antibodies. Moreover, intraperitoneal administration of HOZOT cells loaded with OBP-401/F35 significantly suppressed peritoneally disseminated tumor growth in mice. This unique cell-in-cell property provides a platform for selective delivery of biologics into human cancer cells, which has important implications for the treatment of human cancers.

  17. Label-free multimodal microspectroscopic differentiation of glioblastoma tumor model cell lines combined with multivariate data analysis

    NASA Astrophysics Data System (ADS)

    Ostertag, Edwin; Boldrini, Barbara; Luckow, Sabrina; Kessler, Rudolf W.

    2012-06-01

    Glioblastoma multiforme represents a highly lethal brain tumor. A tumor model has been developed based on the U-251 MG cell line from a human explant. The tumor model simulates different malignancies by controlled expression of the tumor suppressor proteins PTEN and TP53 within the cell lines derived from the wild type. The cells from each different malignant cell line are grown on slides, followed by a paraformaldehyde fixation. UV / VIS and IR spectra are recorded in the cell nuclei. For the differentiation of the cell lines a principal component analysis (PCA) is performed. The PCA demonstrates a good separation of the tumor model cell lines both with UV / VIS spectroscopy and with IR spectroscopy.

  18. Tumor-specific delivery of biologics by a novel T-cell line HOZOT

    PubMed Central

    Onishi, Teppei; Tazawa, Hiroshi; Hashimoto, Yuuri; Takeuchi, Makoto; Otani, Takeshi; Nakamura, Shuji; Sakurai, Fuminori; Mizuguchi, Hiroyuki; Kishimoto, Hiroyuki; Umeda, Yuzo; Shirakawa, Yasuhiro; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi

    2016-01-01

    Cell-in-cell” denotes an invasive phenotype in which one cell actively internalizes in another. The novel human T-cell line HOZOT, established from human umbilical cord blood, was shown to penetrate a variety of human cancer cells but not normal cells. Oncolytic viruses are emerging as biological therapies for human cancers; however, efficient viral delivery is limited by a lack of tumor-specific homing and presence of pre-existing or therapy-induced neutralizing antibodies. Here, we report a new, intriguing approach using HOZOT cells to transmit biologics such as oncolytic viruses into human cancer cells by cell-in-cell invasion. HOZOT cells were successfully loaded via human CD46 antigen with an attenuated adenovirus containing the fiber protein of adenovirus serotype 35 (OBP-401/F35), in which the telomerase promoter regulates viral replication. OBP-401/F35–loaded HOZOT cells were efficiently internalized into human cancer cells and exhibited tumor-specific killing by release of viruses, even in the presence of anti-viral neutralizing antibodies. Moreover, intraperitoneal administration of HOZOT cells loaded with OBP-401/F35 significantly suppressed peritoneally disseminated tumor growth in mice. This unique cell-in-cell property provides a platform for selective delivery of biologics into human cancer cells, which has important implications for the treatment of human cancers. PMID:27901098

  19. Production of immunoreactive calcitonin and some other tumor markers by established human carcinoma cell lines.

    PubMed

    Ichiki, S; Kuroki, M; Matsunaga, A; Kuroki, M; Matsuoka, Y

    1986-03-01

    Out of seven human carcinoma cell lines (M7609, CCK-81, FCC-1, RPMI#4788, QGP-1, HLC-1, and KNS-62), 4 cell lines were found to produce immunoreactive calcitonin (ICT), a potential tumor marker for various malignancies. During a 7-day culture, 1.4 X 10(5) QGP-1, RPMI#4788, HLC-1, and KNS-62 cells secreted 7,000 pg, 500 pg, 400 pg, and 400 pg of ICT in the medium, respectively. The production of ICT by QGP-1 cells was increased by addition of pentagastrin or calcium gluconate. Three different components of ICT (peak I, molecular weight greater than 40,000; peak II, 14,000-18,000; peak III, 3,400) were detected by gel filtration of the QGP-1 spent medium. In a competitive inhibition-type radioimmunoassay of serial dilutions of each ICT component, peak III component showed very similar immunoreactivity to synthetic calcitonin. However, the other two components gave clearly different immunoreactivities from the peak III component and showed very similar immunoreactivities to each other. All the cell lines were further screened for synthesis of 7 other tumor markers, carcinoembryonic antigen, nonspecific cross-reacting antigen, CA19-9, tissue polypeptide antigen, alpha-fetoprotein, beta 2-microglobulin and ferritin. Every cell line produced 2 to 6 markers concomitantly, and various combinations of positive markers were found among the cell lines.

  20. Comparing the level of bystander effect in a couple of tumor and normal cell lines.

    PubMed

    Soleymanifard, Shokouhozaman; Bahreyni, Mohammad T Toossi

    2012-04-01

    Radiation-induced bystander effect refers to radiation responses which occur in non-irradiated cells. The purpose of this study was to compare the level of bystander effect in a couple of tumor and normal cell lines (QU-DB and MRC5). To induce bystander effect, cells were irradiated with 0.5, 2, and 4 Gy of (60)Co gamma rays and their media were transferred to non-irradiated (bystander) cells of the same type. Cells containing micronuclei were counted in bystander subgroups, non-irradiated, and 0.5 Gy irradiated cells. Frequencies of cells containing micronuclei in QU-DB bystander subgroups were higher than in bystander subgroups of MRC5 cells (P < 0.001). The number of micronucleated cells counted in non-irradiated and 0.5 Gy irradiated QU-DB cells was also higher than the corresponding values for MRC5 cells (P < 0.001). Another difference between the two cell lines was that in QU-DB bystander cells, a dose-dependent increase in the number of micronucleated cells was observed as the dose increased, but at all doses the number of micronucleated cells in MRC5 bystander cells was constant. It is concluded that QU-DB cells are more susceptible than MRC5 cells to be affected by bystander effect, and in the two cell lines there is a positive correlation between DNA damages induced directly and those induced due to bystander effect.

  1. Antiproliferative activity of chloroformic extract of Persian Shallot, Allium hirtifolium, on tumor cell lines.

    PubMed

    Ghodrati Azadi, Hamideh; Ghaffari, Seyed Mahmood; Riazi, Gholam Hossein; Ahmadian, Shahin; Vahedi, Fatemeh

    2008-03-01

    Allium hirtifolim (Persian Shallot) belongs to Allium genus (Alliaceae family). We investigated the in vitro effects of chloroformic extract of A. hirtifolium and its Allicin on the proliferation of HeLa (cervical cancer), MCF7 (human, caucasion, breast, adenocarcinoma) and L929 (mouse, C3H/An, connective) cell lines. Our results showed that components of A. hirtifolium might inhibit proliferation of tumor cell lines. This inhibition in HeLa and MCF-7 cells was dose-dependent. The presence of Allicin was evaluated by TLC method in bulbs and the extract of A. hirtifolium was analyzed by HPLC. MTT test was performed 24, 48 and 72 h after cell culture. A significant decrease in cell lines was observed in HeLa and MCF-7 as compared to L929 cell lines. DNA fragmentation analysis revealed a large number of apoptotic cells in treated HeLa and MCF-7 cell groups, but no effects in L929 cells. Therefore A. hirtifolium might be a candidate for tumor suppression.

  2. Sapodilla plum (Achras sapota) induces apoptosis in cancer cell lines and inhibits tumor progression in mice.

    PubMed

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C

    2014-08-21

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice.

  3. Sapodilla Plum (Achras sapota) Induces Apoptosis in Cancer Cell Lines and Inhibits Tumor Progression in Mice

    PubMed Central

    Srivastava, Mrinal; Hegde, Mahesh; Chiruvella, Kishore K.; Koroth, Jinsha; Bhattacharya, Souvari; Choudhary, Bibha; Raghavan, Sathees C.

    2014-01-01

    Intake of fruits rich in antioxidants in daily diet is suggested to be cancer preventive. Sapota is a tropical fruit grown and consumed extensively in several countries including India and Mexico. Here we show that methanolic extracts of Sapota fruit (MESF) induces cytotoxicity in a dose-dependent manner in cancer cell lines. Cell cycle analysis suggested activation of apoptosis, without arresting cell cycle progression. Annexin V-propidium iodide double-staining demonstrated that Sapota fruit extracts potentiate apoptosis rather than necrosis in cancer cells. Loss of mitochondrial membrane potential, upregulation of proapoptotic proteins, activation of MCL-1, PARP-1, and Caspase 9 suggest that MESF treatment leads to activation of mitochondrial pathway of apoptosis. More importantly, we show that MESF treatment leads to significant inhibition of tumor growth and a 3-fold increase in the life span of tumor bearing animals compared to untreated tumor mice. PMID:25142835

  4. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response

    PubMed Central

    Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D

    2017-01-01

    The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44% and SYNE1–SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study

  5. Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response.

    PubMed

    Nickerson, M L; Witte, N; Im, K M; Turan, S; Owens, C; Misner, K; Tsang, S X; Cai, Z; Wu, S; Dean, M; Costello, J C; Theodorescu, D

    2017-01-05

    The utility of tumor-derived cell lines is dependent on their ability to recapitulate underlying genomic aberrations and primary tumor biology. Here, we sequenced the exomes of 25 bladder cancer (BCa) cell lines and compared mutations, copy number alterations (CNAs), gene expression and drug response to BCa patient profiles in The Cancer Genome Atlas (TCGA). We observed a mutation pattern associated with altered CpGs and APOBEC-family cytosine deaminases similar to mutation signatures derived from somatic alterations in muscle-invasive (MI) primary tumors, highlighting a major mechanism(s) contributing to cancer-associated alterations in the BCa cell line exomes. Non-silent sequence alterations were confirmed in 76 cancer-associated genes, including mutations that likely activate oncogenes TERT and PIK3CA, and alter chromatin-associated proteins (MLL3, ARID1A, CHD6 and KDM6A) and established BCa genes (TP53, RB1, CDKN2A and TSC1). We identified alterations in signaling pathways and proteins with related functions, including the PI3K/mTOR pathway, altered in 60% of lines; BRCA DNA repair, 44%; and SYNE1-SYNE2, 60%. Homozygous deletions of chromosome 9p21 are known to target the cell cycle regulators CDKN2A and CDKN2B. This loci was commonly lost in BCa cell lines and we show the deletions extended to the polyamine enzyme methylthioadenosine (MTA) phosphorylase (MTAP) in 36% of lines, transcription factor DMRTA1 (27%) and antiviral interferon epsilon (IFNE, 19%). Overall, the BCa cell line genomic aberrations were concordant with those found in BCa patient tumors. We used gene expression and copy number data to infer pathway activities for cell lines, then used the inferred pathway activities to build a predictive model of cisplatin response. When applied to platinum-treated patients gathered from TCGA, the model predicted treatment-specific response. Together, these data and analysis represent a valuable community resource to model basic tumor biology and to study

  6. Cytogenetic characterization of three cell lines derived from primary cervical tumors of different histologic grade

    SciTech Connect

    Hann, E.; Beauregard, L.; Mikumo, R.

    1994-09-01

    Braum et al.(1993) established three cell lines from keratinizing and nonkeratinizing cervical carcinomas. These cell lines were subsequently analyzed for growth properties and the physical state of the human papillomavirus type 16 genome. TC140, derived from a keratinizing cervical tumor, contains human papillomavirus type 16 in the episomal state. TC-146A and TC-146B, derived from a nonkeratinizing large-cell cervical carcinoma, contain human papillomavirus type 16 in the integrated state. The goal of the present study was to cytogenetically characterize these cell lines, developed from cervical carcinoma with a defined histopathology, in order to shed additional light on the biological basis of the histological and clinical heterogeneity of cervical cancers. Information on solid tumors has been limited because they are often difficult to culture and the karyotypes on the available metaphases are often complex with unidentifiable markers. The chromosomes of these three cell lines were characterized in the present study using GTG-banding. For cell line 140, the most striking chromosomal abnormalities noted were the presence of an i(5p) or i(12p) marker, an isochromosome 8q marker and multiple copies of chromosome 9. For cell line 146A, the most notable chromosomal abnormalities noted were the presence of a marker chromosome 7 with additional materials present on the long arms, an isochomosome of the long arms of chromosome 8 and a question of chromosome 19 markers. For cell line 146B, the most notable chromosomal abnormalities were found to be a deleted X chromosome, a marker chromosome 7 with additional material on the long arm, an isochromosome 8q marker, and isochromosome 16q marker and one or more copies of an isochromosome 17q marker. Fluorescent in situ hybridization experiments performed using select probes further corroborate the results of the above-mentioned conventional cytogenetic studies.

  7. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines.

    PubMed

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC.

  8. Anti-tumor activity of lipophilic imidazolium salts on select NSCLC cell lines.

    PubMed

    Wright, Brian D; Deblock, Michael C; Wagers, Patrick O; Duah, Ernest; Robishaw, Nikki K; Shelton, Kerri L; Southerland, Marie R; DeBord, Michael A; Kersten, Kortney M; McDonald, Lucas J; Stiel, Jason A; Panzner, Matthew J; Tessier, Claire A; Paruchuri, Sailaja; Youngs, Wiley J

    2015-07-01

    The anti-tumor activity of imidazolium salts is highly dependent upon the substituents on the nitrogen atoms of the imidazolium cation. We have synthesized and characterized a series of naphthalene-substituted imidazolium salts and tested them against a variety of non-smallcell lung cancer cell lines. Several of these complexes displayed anticancer activity comparable to cisplatin. These compounds induced apoptosis in the NCI-H460 cell line as determined by Annexin V staining, caspase-3, and PARP cleavage. These results strongly suggest that this class of compounds can serve as potent chemotherapeutic agents.

  9. Comparison of the photodynamic effect in human and animal tumor cell lines

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena; Alexandrova, Radostina; Nedkova, Kristina; Ivanova, Elena; Sabotinov, Ognian; Zdravkov, Kaloian; Minchev, Georgi

    2005-04-01

    The aim of the present work is to compare the photodynamic effect in vitro for permanent cell lines established from some of the most common and invasive human cancers (breast cancer and brain glioblastoma) as well as for animal cell lines obtained from virus-induced transplantable tumors. The cytotoxicity assessment was performed for human breast adenocarcinoma MCF-7, human glioblastoma 8-MG-BA, and two virus-induced animal tumor cell lines: a cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc20, and a line LSR-SF- SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin. We used in the experiments a PS produced by NIOPIK, Russia) [www.tech-db.ru/istc/db/inst.nsf/wu] with peak absorption around 670 nm. The photodynamic effect was assessed by a neutral red uptake cytotoxicity test. To activate the photosensitizer we used a semiconductor laser that emitted at 672 nm at irradiance of 120 mW/cm2; the latter value had been chosen after comparison of the photodynamic effect at 12, 60 and 120 mW/cm2.

  10. Generation of murine tumor cell lines deficient in MHC molecule surface expression using the CRISPR/Cas9 system

    PubMed Central

    Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram

    2017-01-01

    In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor. PMID:28301575

  11. Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model.

    PubMed

    Rothweiler, Sonja; Dill, Michael T; Terracciano, Luigi; Makowska, Zuzanna; Quagliata, Luca; Hlushchuk, Ruslan; Djonov, Valentin; Heim, Markus H; Semela, David

    2015-03-01

    Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.

  12. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  13. Oncogenic LINE-1 Retroelements Sustain Prostate Tumor Cells and Promote Metastatic Progression

    DTIC Science & Technology

    2015-10-01

    RNA -sequencing data that we are part way through processing, but suggests so far significant activation of non-coding RNA sequences derived from RNA ...metastasis tumor tissues in the UTHSCSA tissue bank, however the RNA was not considered of sufficient quality to submit for RNA sequencing. We did RNA ...sequencing of LNCaP cell line RNA as this is derived from a prostate cancer lymph node metastatic deposit, although the bioinformatics analysis has

  14. Disconnected circadian and cell cycles in a tumor-driven cell line.

    PubMed

    Pendergast, Julie S; Yeom, Mijung; Reyes, Bryan A; Ohmiya, Yoshihiro; Yamazaki, Shin

    2010-11-01

    Cell division occurs at a specific time of day in numerous species, suggesting that the circadian and cell cycles are coupled in vivo. By measuring the cell cycle rhythm in real-time, we recently showed that the circadian and cell cycles are not coupled in immortalized fibroblasts, resulting in a rapid rate of cell division even though the circadian rhythm is normal in these cells. Here we report that tumor-driven Lewis lung carcinoma (LLC) cells have perfectly temperature compensated circadian clocks, but the periods of their cell cycle gene expression rhythms are temperature-dependent, suggesting that their circadian and cell cycles are not connected. These data support our hypothesis that decoupling of the circadian and cell cycles may underlie aberrant cell division in tumor cells.

  15. Proteomic analysis of pancreatic endocrine tumor cell lines treated with the histone deacetylase inhibitor trichostatin A.

    PubMed

    Cecconi, Daniela; Donadelli, Massimo; Rinalducci, Sara; Zolla, Lello; Scupoli, Maria Teresa; Scarpa, Aldo; Palmieri, Marta; Righetti, Pier Giorgio

    2007-05-01

    Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.

  16. Fucosyltransferase activities in human pancreatic tissue: comparative study between cancer tissues and established tumoral cell lines.

    PubMed

    Mas, E; Pasqualini, E; Caillol, N; El Battari, A; Crotte, C; Lombardo, D; Sadoulet, M O

    1998-06-01

    Human pancreatic cancer is characterized by an alteration in fucose-containing surface blood group antigens such as H antigen, Lewis b, Lewis y, and sialyl-Lewis. These carbohydrate determinants can be synthesized by sequential action of alpha(2,3) sialyltransferases or alpha(1,2) fucosyltransferases (Fuc-T) and alpha(1,3/1,4) fucosyltransferases on (poly)N-acetyllactosamine chains. Therefore, the expression and the function of seven fucosyltransferases were investigated in normal and cancer pancreatic tissues and in four pancreatic carcinoma cell lines. Transcripts of FUT1, FUT2, FUT3, FUT4, FUT5, and FUT7 were detected by RT-PCR in carcinoma cell lines as well as in normal and tumoral tissues. Interestingly, the FUT6 message was only detected in tumoral tissues. Analysis of the acceptor substrate specificity for fucosyltransferases indicated that alpha(1,2) Fuc-T, alpha(1,3) Fuc-T, and alpha(1,4) Fuc-T were expressed in microsome preparations of all tissues as demonstrated by fucose incorporation into phenyl beta-d-galactoside, 2'-fucosyllactose, N-acetyllactosamine, 3'-sialyl-N-acetyllactosamine, and lacto-N-biose. However, these fucosyltransferase activities varied between tissues. A substantial decrease of alpha(1,2) Fuc-T activity was observed in tumoral tissues and cell lines compared to normal tissues. Conversely, the activity of alpha(1,4) Fuc-T, which generates Lewis a and sialyl-Lewis a structures, and that of alpha(1,3) Fuc-T, able to generate a lactodifucotetraose structure, were very important in SOJ-6 and BxPC-3 cell lines. These increases correlated with an enhanced expression of Lewis a, sialyl-Lewis a, and Lewis y on the cell surface. The activity of alpha(1,3) Fuc-T, which participates in the synthesis of the sialyl-Lewis x structure, was not significantly modified in cell lines compared to normal tissues. However, the sialyl-Lewis x antigen was expressed preferentially on the surface of SOJ-6 and BxPC-3 cell lines but was not detected on Panc-1

  17. Introduction of a normal human chromosome 11 into a Wilm's tumor cell line controls its tumorigenic expression

    SciTech Connect

    Weissman, B.E.; Saxon, P.J.; Pasquale, S.R.; Jones, G.R.; Geiser, A.G.; Stanbridge, E.J.

    1987-04-10

    The development of Wilm's tumor, a pediatric nephroblastoma, has been associated with a deletion in the p13 region of chromosome 11. The structure and function or functions of this deleted genetic material are unknown. The role of this deletion in the process of malignant transformation was investigated by introducing a normal human chromosome 11 into a Wilms' tumor cell line by means of the microcell transfer technique. These variant cells, derived by microcell hybridization, expressed similar transformed traits in culture as the parental cell line. Furthermore, expression of several proto-oncogenes by the parental cells was unaffected by the introduction of this chromosome. However, the ability of these cells to form tumors in nude mice was completely suppressed. Transfer of other chromosomes, namely X and 13, had no effect on the tumorigenicity of the Wilms' tumor cells. These studies provide support for the existence of genetic information on chromosome 11 which can control the malignant expression of Wilm's tumor cells.

  18. Genomic deletions in cell lines derived from primitive neuroectodermal tumors of the central nervous system.

    PubMed

    Dallas, Peter B; Terry, Philippa A; Kees, Ursula R

    2005-06-01

    Extensive genomic deletions affecting a variety of chromosomes are a common finding in primitive neuroectodermal tumors of the central nervous system (CNS-PNETs), implicating the loss of multiple tumor suppressor genes in the pathogenesis of these tumors. We have used representational difference analysis, microsatellite mapping, and quantitative polymerase chain reaction to identify and verify the presence of genomic deletions on a number of chromosomes in CNS-PNET cell lines. This systematic approach has confirmed the importance of deletions at 10q, 16q, and 17p in PNET pathology and has revealed other regions of deletion not commonly described (e.g., Xq, 1p, 7p, and 13q). These data highlight the prevalence of hemizygous loss in CNS-PNET cells, suggesting that haploinsufficiency affecting multiple tumor suppressor genes may play a fundamental role in CNS-PNET pathogenesis. The identification of specific genes and signaling pathways that are compromised in CNS-PNET cells is crucial for development of more efficacious and less invasive treatments, as are urgently needed.

  19. Human Neuroendocrine Tumor Cell Lines as a Three-Dimensional Model for the Study of Human Neuroendocrine Tumor Therapy

    PubMed Central

    Wong, Chung; Vosburgh, Evan; Levine, Arnold J.; Cong, Lei; Xu, Eugenia Y.

    2012-01-01

    Neuroendocrine tumors (NETs) are rare tumors, with an incidence of two per 100, 000 individuals per year, and they account for 0.5% of all human malignancies.1 Other than surgery for the minority of patients who present with localized disease, there is little or no survival benefit of systemic therapy. Therefore, there is a great need to better understand the biology of NETs, and in particular define new therapeutic targets for patients with nonresectable or metastatic neuroendocrine tumors. 3D cell culture is becoming a popular method for drug screening due to its relevance in modeling the in vivo tumor tissue organization and microenvironment.2,3 The 3D multicellular spheroids could provide valuable information in a more timely and less expensive manner than directly proceeding from 2D cell culture experiments to animal (murine) models. To facilitate the discovery of new therapeutics for NET patients, we have developed an in vitro 3D multicellular spheroids model using the human NET cell lines. The NET cells are plated in a non-adhesive agarose-coated 24-well plate and incubated under physiological conditions (5% CO2, 37 °C) with a very slow agitation for 16-24 hr after plating. The cells form multicellular spheroids starting on the 3rd or 4th day. The spheroids become more spherical by the 6th day, at which point the drug treatments are initiated. The efficacy of the drug treatments on the NET spheroids is monitored based on the morphology, shape and size of the spheroids with a phase-contrast light microscope. The size of the spheroids is estimated automatically using a custom-developed MATLAB program based on an active contour algorithm. Further, we demonstrate a simple method to process the HistoGel embedding on these 3D spheroids, allowing the use of standard histological and immunohistochemical techniques. This is the first report on generating 3D spheroids using NET cell lines to examine the effect of therapeutic drugs. We have also performed histology

  20. GSK-3β signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition

    PubMed Central

    Gavilán, E; Sánchez-Aguayo, I; Daza, P; Ruano, D

    2013-01-01

    The ubiquitin–proteasome system and the autophagy–lysosome pathway are the two main mechanisms for eukaryotic intracellular protein degradation. Proteasome inhibitors are used for the treatment of some types of cancer, whereas autophagy seems to have a dual role in tumor cell survival and death. However, the relationship between both pathways has not been extensively studied in tumor cells. We have investigated both proteolytic systems in the human epithelial breast non-tumor cell line MCF10A and in the human epithelial breast tumor cell line MCF7. In basal condition, tumor cells showed a lower proteasome function but a higher autophagy activity when compared with MCF10A cells. Importantly, proteasome inhibition (PI) leads to different responses in both cell types. Tumor cells showed a dose-dependent glycogen synthase kinase-3 (GSK-3)β inhibition, a huge increase in the expression of the transcription factor CHOP and an active processing of caspase-8. By contrast, MCF10A cells fully activated GSK-3β and showed a lower expression of both CHOP and processed caspase-8. These molecular differences were reflected in a dose-dependent autophagy activation and cell death in tumor cells, while non-tumor cells exhibited the formation of inclusion bodies and a decrease in the cell death rate. Importantly, the behavior of the MCF7 cells can be reproduced in MCF10A cells when GSK-3β and the proteasome were simultaneously inhibited. Under this situation, MCF10A cells strongly activated autophagy, showing minimal inclusion bodies, increased CHOP expression and cell death rate. These findings support GSK-3β signaling as a key mechanism in regulating autophagy activation or inclusion formation in human tumor or non-tumor breast cells, respectively, which may shed new light on breast cancer control. PMID:23559006

  1. Thyrotropin dependent and independent thyroid cell lines selected from FRTL-5 derived tumors grown in nude mice

    SciTech Connect

    Ossendorp, F.A.; Bruning, P.F.; Schuuring, E.M.; Van Den Brink, J.A.; van der Heide, D.; De Vijlder, J.J.; De Bruin, T.W. )

    1990-07-01

    FRTL-5 cells were used to set up a thyroid tumor model system in C3H nu/nu mice. FRTL-5 tumors could be grown in nude mice provided serum TSH levels were elevated. Persistent TSH elevation was obtained by administration of Na131I, rendering the mice hypothyroid. After 4 weeks FRTL-5 cells were injected sc resulting in tumor growth within 2 weeks in eight out of eight mice. Although the tumors showed an apparently undifferentiated histology, lacking normal follicular structures, they were functional since the tumors were capable of concentrating (131)iodine, as demonstrated by nuclear imaging. From one of the tumors a new cell line was isolated (FRTL-5/T) that, like the parental FRTL-5 cell line, was TSH dependent for growth. In a control group of six euthyroid nude mice FRTL-5 tumor growth could not be obtained with one exception. After 3 months one animal developed a small tumor that grew rapidly thereafter. This tumor was easily transplantable in other euthyroid nude mice, showed an undifferentiated histology, and was nonfunctional, as it could not concentrate (131)iodine. From this tumor two cell lines were derived: one cultured in the presence of TSH (FRTL-5/TP) and one in the absence of TSH (FRTL-5/TA). The cell lines were analyzed for TSH responsive functions and TSH receptor expression. Responsiveness to TSH in FRTL-5/T and the parental FRTL-5 cell line were similar for most thyroid specific functions tested. However, FRTL-5/T was less sensitive than FRTL-5 for TSH induced (3H)thymidine incorporation. Both cell lines had two classes of TSH binding sites with high and low affinity respectively. FRTL-5/TP and FRTL-5/TA were both able to grow in TSH free medium and were nonresponsive to TSH in vitro, as tested for (3H)thymidine and (3H)uridine incorporation, iodine uptake, thyroglobulin iodination, and thyroglobulin secretion.

  2. Cytotoxicity of Portuguese Propolis: The Proximity of the In Vitro Doses for Tumor and Normal Cell Lines

    PubMed Central

    Falcão, Soraia; Queiroz, Maria João R. P.; Ferreira, Isabel C. F. R.

    2014-01-01

    With a complex chemical composition rich in phenolic compounds, propolis (resinous substance collected by Apis mellifera from various tree buds) exhibits a broad spectrum of biological activities. Recently, in vitro and in vivo data suggest that propolis has anticancer properties, but is the cytoxicity of propolis specific for tumor cells? To answer this question, the cytotoxicity of phenolic extracts from Portuguese propolis of different origins was evaluated using human tumor cell lines (MCF7—breast adenocarcinoma, NCI-H460—non-small cell lung carcinoma, HCT15—colon carcinoma, HeLa—cervical carcinoma, and HepG2—hepatocellular carcinoma), and non-tumor primary cells (PLP2). The studied propolis presented high cytotoxic potential for human tumor cell lines, mostly for HCT15. Nevertheless, excluding HCT15 cell line, the extracts at the GI50 obtained for tumor cell lines showed, in general, cytotoxicity for normal cells (PLP2). Propolis phenolic extracts comprise phytochemicals that should be further studied for their bioactive properties against human colon carcinoma. In the other cases, the proximity of the in vitro cytotoxic doses for tumor and normal cell lines should be confirmed by in vivo tests and may highlight the need for selection of specific compounds within the propolis extract. PMID:24982911

  3. Mechanisms of cellular uptake, intracellular transportation, and degradation of CIGB-300, a Tat-conjugated peptide, in tumor cell lines.

    PubMed

    Benavent Acero, Fernando R; Perera Negrin, Yasser; Alonso, Daniel F; Perea, Silvio E; Gomez, Daniel E; Farina, Hernán G

    2014-06-02

    CIGB-300 is a cyclic synthetic peptide that induces apoptosis in malignant cells, elicits antitumor activity in cancer animal models, and shows tumor reduction signs when assayed in first-in-human phase I trial in patients with cervical tumors. CIGB-300 impairs phosphorylation by casein kinase 2 through targeting the substrate's phosphoacceptor domain. CIGB-300 was linked to the cell penetrating peptide Tat to facilitate the delivery into cells. Previously, we showed that CIGB-300 had a differential antiproliferative behavior in different tumor cell lines. In this work, we studied differential antiproliferative behavior in terms of cellular uptake, intracellular transportation, and degradation in tumor cell lines with dissimilar sensitivity to CIGB-300. The internalization of CIGB-300 was studied in different malignant cell lines. We found that the cell membrane heparan sulfate proteoglycans act as main receptors for extracellular CIGB-300 uptake. The most sensitive tumor cell lines showed higher intracellular incorporation of CIGB-300 in comparison to less sensitive cell lines. Furthermore, CIGB-300 uptake is time- and concentration-dependent in all studied cell lines. It was shown that CIGB-300 has the ability to penetrate cells mainly by direct membrane translocation. However, a minor proportion of the peptide uses an energy-dependent endocytic pathway mechanism to gain access into cells. CIGB-300 is internalized and transported into cells preferentially by caveolae-mediated endocytosis. Lysosomes are involved in CIGB-300 degradation; highly sensitive cell lines showed degradation at earlier times compared to low sensitive cells. Altogether, our data suggests a mechanism of internalization, vesicular transportation, and degradation for CIGB-300 in tumor cells.

  4. Soy promotes juvenile granulosa cell tumor development in mice and in the human granulosa cell tumor-derived COV434 cell line.

    PubMed

    Mansouri-Attia, Nadéra; James, Rebecca; Ligon, Alysse; Li, Xiaohui; Pangas, Stephanie A

    2014-10-01

    Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development.

  5. Soy Promotes Juvenile Granulosa Cell Tumor Development in Mice and in the Human Granulosa Cell Tumor-Derived COV434 Cell Line1

    PubMed Central

    Mansouri-Attia, Nadéra; James, Rebecca; Ligon, Alysse; Li, Xiaohui; Pangas, Stephanie A.

    2014-01-01

    ABSTRACT Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development. PMID:25165122

  6. Cytokine profile of conditioned medium from human tumor cell lines after acute and fractionated doses of gamma radiation and its effect on survival of bystander tumor cells.

    PubMed

    Desai, Sejal; Kumar, Amit; Laskar, S; Pandey, B N

    2013-01-01

    Cytokines are known to play pivotal roles in cancer initiation, progression and pathogenesis. Accumulating evidences suggest differences in basal and stress-induced cytokine profiles of cancers with diverse origin. However, a comprehensive investigation characterising the cytokine profile of various tumor types after acute and fractionated doses of gamma-irradiation, and its effect on survival of bystander cells is not well known in literature. In the present study, we have evaluated the cytokine secretion profile of human tumor cell lines (HT1080, U373MG, HT29, A549 and MCF-7) either before (basal) or after acute (2, 6 Gy) and fractionated doses (3×2 Gy) of gamma-irradiation in culture medium obtained from these cells by multiplex bead array/ELISA. Moreover, clonogenic assays were performed to evaluate the effect of conditioned medium (CM) on the survival and growth of respective cells. Based on the screening of 28 analytes, our results showed that the basal profiles of these cell lines varied considerably in terms of the number and magnitude of secreted factors, which was minimum in MCF-7. Interestingly, TNF-α, IL-1β, PDGF-AA, TGF-β1, fractalkine, IL-8, VEGF and GCSF were found in CM of all the cell lines. However, secretion of certain cytokines was cell line-specific. Moreover, CM caused increase in clonogenic survival of respective tumor cells (in the order HT1080>U373MG>HT29>A549>MCF-7), which was correlated with the levels of IL-1β, IL-6, IL-8, GMCSF and VEGF in their CM. After irradiation, the levels of most of the cytokines increased markedly in a dose dependent manner. The fold change in cytokine levels was lower in irradiated conditioned medium (ICM) of tumor cells collected after fractionated than respective acute dose, except in MCF-7. Interestingly, amongst these cell lines, the radiation-induced fold increase in cytokine levels was maximum in ICM of A549 cells. Moreover, bystander A549 cells treated with respective ICM showed dose dependent

  7. Dehydroepiandrosterone inhibits events related with the metastatic process in breast tumor cell lines.

    PubMed

    López-Marure, Rebeca; Zapata-Gómez, Estrella; Rocha-Zavaleta, Leticia; Aguilar, María Cecilia; Espinosa Castilla, Magali; Meléndez Zajgla, Jorge; Meraz-Cruz, Noemí; Huesca-Gómez, Claudia; Gamboa-Ávila, Ricardo; Gómez-González, Erika Olivia

    2016-09-01

    Dehydroepiandrosterone (DHEA), an adrenal hormone, has a protective role against cancer. We previously shown that DHEA inhibits the proliferation and migration of cell lines derived from breast cancer; however, the role of DHEA in others events related with these effects are unknown. We hypothesized that DHEA inhibits the expression of proteins and some events related with cell migration and metastasis. We determined the migration in Boyden chambers, the invasion in matrigel, anchorage-independent growth and the formation of spheroids in 3 cell lines (MCF-7, MDA-MB-231, ZR-75-30) derived from breast cancer exposed to DHEA. The secretion of metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and several pro-inflammatory molecules in the secretome of these cells was also evaluated.  DHEA inhibited the migration in transwells and the invasion in matrigel of MCF-7 and MDA-MB-231 cells. Besides, DHEA inhibited the anchorage-independent growth on agar and decreased the size of spheroids, and also reduced the secretion of IL-1α, IL-6, IL-8, and TNF-α in all cell lines. Metalloproteinase-1 (MMP-1) secretion was slightly decreased by DHEA treatment in MDA-MB-231 cells. Our results also showed that inhibition of migration and invasion induced by DHEA in breast cancer cells is correlated with the decrease of cytokine/chemokine secretion and the diminution of tumor cells growth.  MCF-7 cells were the most responsive to the exposure to DHEA, whereas ZR-75-30 cells responded less to this hormone, suggesting that DHEA could be used in the treatment of breast cancer in early stages.

  8. Formation and accumulation of protoporphyrin IX in tumor and nontumor cell lines induced by 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Fernandez, Sandra R.; Milanetto, Marilia; Bagnato, Vanderlei S.; Imasato, Hidetake; Perussi, Janice R.

    2005-04-01

    The endogenous photosensitizer 5-aminolevulinic acid (ALA) is a haem precursor and induces the synthesis of protoporphyrin IX (PpIX) in mitochondria-containing cells. Due to the slow conversion of porphyrins to haem, high levels of PPIX are found in the tissues, sufficient to produce a photodynamic effect following exposure to light. Since PpIX accumulates effectively in tumor cells, the use of ALA leads to a better photoselectivity than Photofrin. However, this selectivity has not been sufficiently studied. As far as we know there is just one study comparing the amount of accumulated PpIX in non-tumor and tumor cell lines. In this work we attempt to compare not just the production but also the accumulation and cytotoxicity of PpIX in non-tumor (VERO) versus tumor (Hep-2) cells induced by the use of ALA. The results have shown that both non-tumor and tumor cell lines produce the same amount of PpIX but just the tumor cells can accumulate PpIX. So, under illumination, only the tumor cells will be killed.

  9. Expression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines

    PubMed Central

    Shafiee, Sayed Mohammad; Seghatoleslam, Atefeh; Nikseresht, Mohsen; Hosseini, Seyed Vahid; Alizadeh-Naeeni, Mahvash; Safaei, Akbar; Owji, Ali Akbar

    2014-01-01

    Background: Activation of the ubiquitin-proteasome pathway in various malignancies, including colorectal cancer, is established. This pathway mediates the degradation of damaged proteins and regulates growth and stress response. The novel human gene, UBE2Q2, with a putative ubiquitin-conjugating enzyme activity, is reported to be overexpressed in some malignancies. We sought to investigate the expression levels of the UBE2Q2 gene in colorectal cell lines as well as in cancerous and normal tissues from patients with colorectal cancer. Methods: Levels of UBE2Q2 mRNA in cell lines were assessed by Real-Time PCR. Western blotting was employed to investigate the levels of the UBE2Q2 protein in 8 colorectal cell lines and 43 colorectal tumor samples. Results: Expression of UBE2Q2 was observed at the level of both mRNA and protein in colorectal cell lines, HT29/219, LS180, SW742, Caco2, HTC116, SW48, SW480, and SW1116. Increased levels of UBE2Q2 immunoreactivity was observed in the 65.11% (28 out of 43) of the colorectal carcinoma tissues when compared with their corresponding normal tissues. Difference between the mean intensities of UBE2Q2 bands from cancerous and normal tissues was statistically significant at P<0.001 (paired t test). Conclusion: We showed the expression pattern of the novel human gene, UBE2Q2, in 8 colorectal cell lines. Overexpression of UBE2Q2 in the majority of the colorectal carcinoma samples denotes that it may have implications for the pathogenesis of colorectal cancer. PMID:24753643

  10. Cystic fibrosis transmembrane conductance regulator modulates neurosecretory function in pulmonary neuroendocrine cell-related tumor cell line models.

    PubMed

    Pan, Jie; Bear, Christine; Farragher, Susan; Cutz, Ernest; Yeger, Herman

    2002-11-01

    The pulmonary neuroendocrine cell (PNEC) system consists of solitary cells and distinctive cell clusters termed neuroepithelial bodies (NEB) localized in the airway epithelium. PNEC/NEB express a variety of bioactive substances, including amine (serotonin, 5HT) and neuropeptides. We have previously shown that NEB cells are O(2) sensors expressing nicotinamide adenine diphosphate oxidase complex and O(2) sensitive K(+) channel. Recently, we demonstrated expression of functional cystic fibrosis transmembrane conductance regulator (CFTR) and Cl(-) conductances in NEB cells of rabbit neonatal lung. Because PNEC/NEB are sparsely distributed and difficult to study in native lung, we investigated small-cell lung carcinoma (SCLC) and carcinoid tumor cell lines (tumor counterparts of normal PNEC/NEB) as models for PNEC/NEB. SCLC (H146, H345) and carcinoid (H727) cell lines express neuroendocrine cell markers, including chromogranin A, neural cell adhesion molecule (N-CAM), 5HT, and tryptophan hydroxylase. We report that H146, H345, and H727 express CFTR messenger RNA (reverse transcription polymerase chain reaction) and protein (immunoblotting) and possess functional CFTR Cl(-) conductance, demonstrated by an iodide efflux assay inhibitable by transfection with antisense CFTR. Using an immunoassay to quantitate 5HT secretion, we also show that downregulation of CFTR abolishes hypoxia-induced 5HT release, and reduces secretory response to high potassium. Our findings suggest that CFTR may modulate neurosecretory activity of PNEC/NEB possessing O(2) sensor function. We propose that these tumor cell lines may be useful models for investigating the role of CFTR in PNEC/NEB functions in health and disease.

  11. Anti-tumor effects of metformin on head and neck carcinoma cell lines: A systematic review

    PubMed Central

    Rêgo, Daniela Fortunato; Elias, Silvia Taveira; Amato, AngéLica Amorim; Canto, Graziela De Luca; Guerra, Eliete Neves Silva

    2017-01-01

    Metformin is commonly used for treating type 2 diabetes, and may also reduce cancer risk. Previous studies have demonstrated the association between metformin use and a decreased risk of head and neck cancer. Therefore, the aim of the present systematic review was to summarize the available literature on the in vitro anti-tumor effects of metformin on head and neck squamous cell carcinoma (HNSCC). Research studies were obtained from Cochrane Library, Embase, LILACS, MEDLINE and PubMed databases, without time or language restrictions. Only in vitro studies analyzing the effects of metformin on HNSCC cell lines were included. The authors methodically appraised all the selected studies according to the Grading of Recommendations Assessment, Development and Evaluation method to make a judgment of the evidence quality. Of the 388 identified reports, 11 studies met the inclusion criteria and were used for qualitative analysis. These studies demonstrated that metformin is important in inhibiting cell proliferation, inducing G0/G1 cell cycle arrest and apoptosis, and in regulating proteins involved in carcinogenesis pathways, which corroborates its potential in vitro anti-tumor effects. The present systematic review highlights the biological mechanisms of metformin used alone or together with traditional therapies for cancer. Though very limited, currently available preclinical evidence shows that metformin exerts a potential effect on head and neck carcinoma. PMID:28356929

  12. myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course.

    PubMed Central

    Johnson, B E; Ihde, D C; Makuch, R W; Gazdar, A F; Carney, D N; Oie, H; Russell, E; Nau, M M; Minna, J D

    1987-01-01

    44 small cell lung cancer cell lines established from 227 patients were studied for myc family DNA amplification (c-myc, N-myc, and L-myc). Two of 19 lines (11%) established from untreated patients' tumors had DNA amplification (one N-myc and one L-myc), compared with 11 of 25 (5 c-myc, 3 N-myc, and 3 L-myc) cell lines (44%) established from relapsed patients' tumors (P = 0.04). The 19 patients who had tumor cell lines established before chemotherapy treatment survived a median of 14 wk compared with 48 wk for the 123 extensive stage patients who did not have cell lines established (P less than 0.001). Relapsed patients whose cell lines had c-myc DNA amplification survived a shorter period (median of 33 wk) than patients whose cell lines did not have c-myc amplification (median of 53 wk; P = 0.04). We conclude that myc family DNA amplification is more common in tumor cell lines established from treated than untreated patients' tumors, and c-myc amplification in treated patients' tumor cell lines is associated with shortened survival. Images PMID:3034978

  13. Differential Expression of OCT4 Pseudogenes in Pluripotent and Tumor Cell Lines

    PubMed Central

    Poursani, Ensieh M.; Mohammad Soltani, Bahram; Mowla, Seyed Javad

    2016-01-01

    Objective The human OCT4 gene, the most important pluripotency marker, can generate at least three different transcripts (OCT4A, OCT4B, and OCT4B1) by alternative splicing. OCT4A is the main isoform responsible for the stemness property of embryonic stem (ES) cells. There also exist eight processed OCT4 pseudogenes in the human genome with high homology to the OCT4A, some of which are transcribed in various cancers. Recent conflicting reports on OCT4 expression in tumor cells and tissues emphasize the need to discriminate the expression of OCT4A from other variants as well as OCT4 pseudogenes. Materials and Methods In this experimental study, DNA sequencing confirmed the authenticity of transcripts of OCT4 pseudogenes and their expression patterns were investigated in a panel of different human cell lines by reverse transcription-polymerase chain reaction (RT-PCR). Results Differential expression of OCT4 pseudogenes in various human cancer and pluripotent cell lines was observed. Moreover, the expression pattern of OCT4-pseudogene 3 (OCT4-pg3) followed that of OCT4A during neural differentiation of the pluripotent cell line of NTERA-2 (NT2). Although OCT4-pg3 was highly expressed in undifferentiated NT2 cells, its expression was rapidly down-regulated upon induction of neural differentiation. Analysis of protein expression of OCT4A, OCT4-pg1, OCT4-pg3, and OCT4-pg4 by Western blotting indicated that OCT4 pseudogenes cannot produce stable proteins. Consistent with a newly proposed competitive role of pseudogene microRNA docking sites, we detected miR-145 binding sites on all transcripts of OCT4 and OCT4 pseudogenes. Conclusion Our study suggests a potential coding-independent function for OCT4 pseudogenes during differentiation or tumorigenesis. PMID:27054116

  14. The antitumor activity of an anti-CD54 antibody in SCID mice xenografted with human breast, prostate, non-small cell lung, and pancreatic tumor cell lines.

    PubMed

    Brooks, Kimberly J; Coleman, Elaine J; Vitetta, Ellen S

    2008-11-15

    We have previously described the development and testing of a monoclonal anti-human CD54 antibody (UV3) in SCID mice xenografted with human multiple myeloma, lymphoma, and melanoma cell lines. In all 3 cases, UV3 was highly effective at slowing the growth of tumors and/or prolonging survival. Since CD54 (ICAM-1) is up-regulated on many different types of cancer cells, we have now investigated the anti-tumor activity of UV3 in several other CD54(+) epithelial tumors. A panel of 16 human breast, prostate, non-small cell (NSC) lung, and pancreatic tumor cell lines was examined for reactivity with UV3, and 13 were positive. A representative CD54(+) cell line from each cancer was grown subcutaneously in SCID mice. Once the tumors were established, UV3 was administered using different dose regimens. UV3 slowed the growth of all 4 tumors, although it was not curative. When UV3 or gemcitabine were administered to SCID mice xenografted with a NSC lung tumor cell line or a pancreatic tumor cell line, UV3 was as effective as the chemotherapy alone. When gemcitabine and UV3 were administered together, the best anti-tumor responses were observed. UV3 has been chimerized (cUV3) and both toxicology studies and clinical trials are planned to assess the safety and activity of cUV3 in patients with one or more of these tumors.

  15. Multiple Breast Cancer Cell-Lines Derived from a Single Tumor Differ in Their Molecular Characteristics and Tumorigenic Potential

    PubMed Central

    Mosoyan, Goar; Nagi, Chandandeep; Marukian, Svetlana; Teixeira, Avelino; Simonian, Anait; Resnick-Silverman, Lois; DiFeo, Analisa; Johnston, Dean; Reynolds, Sandra R.; Roses, Daniel F.; Mosoian, Arevik

    2013-01-01

    Background Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient’s breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT) treatment. Methods Five breast cancer cell lines were derived from a single patient’s primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER), CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC). In addition, a Fuorescent In Situ Hybridization (FISH) assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. Results We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. Conclusions All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to identify mechanisms

  16. Growth Inhibition of Breast Tumor Cells by Hypodense and Normodense Eosinophilic Cell Lines

    DTIC Science & Technology

    2001-07-01

    with a Fluorescent Activated Cell Sorter using CCR3 (Eotaxin Receptor) and CD49d antibodies. 6 Supernatants (24hr, 48hr and 72hr) from FACS sorted...MDA-MB-23 1 cells (fig. 26). The last cell line tested was established from the GRC.014.24S subline (which is CCR3 ), using the FACS Sorter and...Abdelnaby A, Hunter KA, Howland C, Brown R, Awich J, and Oredipe 0. (Manuscript In Preparation) CCR3 +, CD49÷’ and CD 15’ EBV Transformed Sublines Inhibit

  17. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    SciTech Connect

    Gu Yongpeng; Li Hongzhen; Miki, Jun; Kim, Kee-Hong; Furusato, Bungo; Sesterhenn, Isabell A.; Chu, Wei-Sing; McLeod, David G.; Srivastava, Shiv; Ewing, Charles M.; Isaacs, William B.; Rhim, Johng S. . E-mail: jrhim@cpdr.org

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferative capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.

  18. Molecular Profiling of Breast Cancer Cell Lines Defines Relevant Tumor Models and Provides a Resource for Cancer Gene Discovery

    PubMed Central

    Bocanegra, Melanie; Choi, Yoon-La; Girard, Luc; Gandhi, Jeet; Kwei, Kevin A.; Hernandez-Boussard, Tina; Wang, Pei; Gazdar, Adi F.; Minna, John D.; Pollack, Jonathan R.

    2009-01-01

    Background Breast cancer cell lines have been used widely to investigate breast cancer pathobiology and new therapies. Breast cancer is a molecularly heterogeneous disease, and it is important to understand how well and which cell lines best model that diversity. In particular, microarray studies have identified molecular subtypes–luminal A, luminal B, ERBB2-associated, basal-like and normal-like–with characteristic gene-expression patterns and underlying DNA copy number alterations (CNAs). Here, we studied a collection of breast cancer cell lines to catalog molecular profiles and to assess their relation to breast cancer subtypes. Methods Whole-genome DNA microarrays were used to profile gene expression and CNAs in a collection of 52 widely-used breast cancer cell lines, and comparisons were made to existing profiles of primary breast tumors. Hierarchical clustering was used to identify gene-expression subtypes, and Gene Set Enrichment Analysis (GSEA) to discover biological features of those subtypes. Genomic and transcriptional profiles were integrated to discover within high-amplitude CNAs candidate cancer genes with coordinately altered gene copy number and expression. Findings Transcriptional profiling of breast cancer cell lines identified one luminal and two basal-like (A and B) subtypes. Luminal lines displayed an estrogen receptor (ER) signature and resembled luminal-A/B tumors, basal-A lines were associated with ETS-pathway and BRCA1 signatures and resembled basal-like tumors, and basal-B lines displayed mesenchymal and stem/progenitor-cell characteristics. Compared to tumors, cell lines exhibited similar patterns of CNA, but an overall higher complexity of CNA (genetically simple luminal-A tumors were not represented), and only partial conservation of subtype-specific CNAs. We identified 80 high-level DNA amplifications and 13 multi-copy deletions, and the resident genes with concomitantly altered gene-expression, highlighting known and novel

  19. Ligand-Independent Canonical Wnt Activity in Canine Mammary Tumor Cell Lines Associated with Aberrant LEF1 Expression

    PubMed Central

    van Wolferen, Monique E.; Rao, Nagesha A. S.; Grizelj, Juraj; Vince, Silvijo; Hellmen, Eva; Mol, Jan A.

    2014-01-01

    Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms. PMID:24887235

  20. Investigation of Cross-Contamination and Misidentification of 278 Widely Used Tumor Cell Lines

    PubMed Central

    Huang, Yaqing; Liu, Yuehong; Zheng, Congyi; Shen, Chao

    2017-01-01

    In recent years, biological research involving human cell lines has been rapidly developing in China. However, some of the cell lines are not authenticated before use. Therefore, misidentified and/or cross-contaminated cell lines are unfortunately commonplace. In this study, we present a comprehensive investigation of cross-contamination and misidentification for a panel of 278 cell lines from 28 institutes in China by using short tandem repeat profiling method. By comparing the DNA profiles with the cell bank databases of ATCC and DSMZ, a total of 46.0% (128/278) cases with cross-contamination/misidentification were uncovered coming from 22 institutes. Notably, 73.2% (52 out of 71) of the cell lines established by the Chinese researchers were misidentified and accounted for 40.6% of total misidentification (52/128). Further, 67.3% (35/52) of the misidentified cell lines established in laboratories of China were HeLa cells or a possible hybrid of HeLa with another kind of cell line. Furthermore, the bile duct cancer cell line HCCC-9810 and degenerative lung cancer Calu-6 exhibited 88.9% match in the ATCC database (9-loci), indicating that they were from the same origin. However, when we used 21-loci to compare these two cell lines with the same algorithm, the percent match was only 48.2%, indicating that these two cell lines were different. The SNP profiles of HCCC-9810 and Calu-6 also revealed that they were different cell lines. 150 cell lines with unique profiles demonstrated a wide range of in vitro phenotypes. This panel of 150 genomically validated cancer cell lines represents a valuable resource for the cancer research community and will advance our understanding of the disease by providing a standard reference for cell lines that can be used for biological as well as preclinical studies. PMID:28107433

  1. Expression of neuropeptide hormone receptors in human adrenal tumors and cell lines: antiproliferative effects of peptide analogues.

    PubMed

    Ziegler, C G; Brown, J W; Schally, A V; Erler, A; Gebauer, L; Treszl, A; Young, L; Fishman, L M; Engel, J B; Willenberg, H S; Petersenn, S; Eisenhofer, G; Ehrhart-Bornstein, M; Bornstein, S R

    2009-09-15

    Peptide analogues targeting various neuropeptide receptors have been used effectively in cancer therapy. A hallmark of adrenocortical tumor formation is the aberrant expression of peptide receptors relating to uncontrolled cell proliferation and hormone overproduction. Our microarray results have also demonstrated a differential expression of neuropeptide hormone receptors in tumor subtypes of human pheochromocytoma. In light of these findings, we performed a comprehensive analysis of relevant receptors in both human adrenomedullary and adrenocortical tumors and tested the antiproliferative effects of peptide analogues targeting these receptors. Specifically, we examined the receptor expression of somatostatin-type-2 receptor, growth hormone-releasing hormone (GHRH) receptor or GHRH receptor splice variant-1 (SV-1) and luteinizing hormone-releasing hormone (LHRH) receptor at the mRNA and protein levels in normal human adrenal tissues, adrenocortical and adrenomedullary tumors, and cell lines. Cytotoxic derivatives of somatostatin AN-238 and, to a lesser extent, AN-162, reduced cell numbers of uninduced and NGF-induced adrenomedullary pheochromocytoma cells and adrenocortical cancer cells. Both the splice variant of GHRH receptor SV-1 and the LHRH receptor were also expressed in adrenocortical cancer cell lines but not in the pheochromocytoma cell line. The GHRH receptor antagonist MZ-4-71 and LHRH antagonist Cetrorelix both significantly reduced cell growth in the adrenocortical cancer cell line. In conclusion, the expression of receptors for somatostatin, GHRH, and LHRH in the normal human adrenal and in adrenal tumors, combined with the growth-inhibitory effects of the antitumor peptide analogues, may make possible improved treatment approaches to adrenal tumors.

  2. Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells

    PubMed Central

    Pellegrini, Paola; Dyczynski, Matheus; Sbrana, Francesca Vittoria; Karlgren, Maria; Buoncervello, Maria; Hägg-Olofsson, Maria; Ma, Ran; Hartman, Johan; Bajalica-Lagercrantz, Svetlana; Grander, Dan; Kharaziha, Pedram; De Milito, Angelo

    2016-01-01

    Sustained autophagy contributes to the metabolic adaptation of cancer cells to hypoxic and acidic microenvironments. Since cells in such environments are resistant to conventional cytotoxic drugs, inhibition of autophagy represents a promising therapeutic strategy in clinical oncology. We previously reported that the efficacy of hydroxychloroquine (HCQ), an autophagy inhibitor under clinical investigation is strongly impaired in acidic tumor environments, due to poor uptake of the drug, a phenomenon widely associated with drug resistance towards many weak bases. In this study we identified salinomycin (SAL) as a potent inhibitor of autophagy and cytotoxic agent effective on several cancer cell lines under conditions of transient and chronic acidosis. Since SAL has been reported to specifically target cancer-stem cells (CSC), we used an established model of breast CSC and CSC derived from breast cancer patients to examine whether this specificity may be associated with autophagy inhibition. We indeed found that CSC-like cells are more sensitive to autophagy inhibition compared to cells not expressing CSC markers. We also report that the ability of SAL to inhibit mammosphere formation from CSC-like cells was dramatically enhanced in acidic conditions. We propose that the development and use of clinically suitable SAL derivatives may result in improved autophagy inhibition in cancer cells and CSC in the acidic tumor microenvironment and lead to clinical benefits. PMID:27248168

  3. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants From Iran on Tumor Cell Lines

    PubMed Central

    Esmaeilbeig, Maryam; Kouhpayeh, Seyed Amin; Amirghofran, Zahra

    2015-01-01

    Background: Traditional herbal medicine is a valuable resource that provides new drugs for cancer treatment. Objectives: In this study we aim to screen and investigate the in vitro anti-tumor activities of ten species of plants commonly grown in Southern Iran. Materials and Methods: We used the MTT colorimetric assay to evaluate the cytotoxic activities of the methanol extracts of these plants on various tumor cell lines. The IC50 was calculated as a scale for this evaluation. Results: Satureja bachtiarica, Satureja hortensis, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed the inhibitoriest effects on Jurkat cells with > 80% inhibition at 200 µg/mL. Satureja hortensis (IC50: 66.7 µg/mL) was the most effective. These plants also strongly inhibited K562 cell growth; Satureja bachtiarica (IC50: 28.3 µg/mL), Satureja hortensis (IC50: 52 µg/mL) and Thymus vulgaris (IC50: 87 µg/mL) were the most effective extracts. Cichorium intybus, Rheum ribes, Alhagi pseudalhagi and Glycyrrihza glabra also showed notable effects on the leukemia cell lines. The Raji cell line was mostly inhibited by Satureja bachtiarica and Thymus vulgaris with approximately 40% inhibition at 200µg/ml. The influence of these extracts on solid tumor cell lines was not strong. Fen cells were mostly affected by Glycyrrihza glabra (IC50: 182 µg/mL) and HeLa cells by Satureja hortensis (31.6% growth inhibitory effect at 200 µg/mL). Conclusions: Leukemic cell lines were more sensitive to the extracts than the solid tumor cell lines; Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis and Mentha lonigfolia showed remarkable inhibitory potential. PMID:26634114

  4. Nicotine, acetylcholine and bombesin are trophic growth factors in neuroendocrine cell lines derived from experimental hamster lung tumors

    SciTech Connect

    Schueller, H.M.; Nylen, E.; Park, P.; Becker, K.L. George Washington Univ., Washington, DC )

    1990-01-01

    Neuroendocrine hamster lung tumors, induced by exposure to 60% hyperoxia and subcutaneous administration of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) for 12 weeks, were placed in cell culture. By subsequent selective transfer of epithelial cells and maintenance in an atmosphere of 8% CO{sub 2}, cell lines with characteristics of neuroendocrine cells were established. The neuroendocrine markers expressed by these cell lines included electron dense neuroendocrine secretion granules as well as secretion of calcitonin and mammalian bombesin. In keeping with data previously reported for a human neuroendocrine lung tumor cell line, nicotine, acetylcholien, and mammalian bombesin (MB) acted as strongrowth factors in these neuroendocrine hamster tumor lines. The mitogenic effect of nicotine an acetylcholine was abolished by nicotinic receptor inhibition while the effects of mammalian bombesin were inhibited by an antagonist of MB receptors. Our data suggest that a receptor-mediated mitogenic effect of nicotine on neuroendocrine lung cells may be instrumental in the induction of smoking-associated small cell lung cancer.

  5. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines.

    PubMed

    Zomerman, Walderik W; Plasschaert, Sabine L A; Diks, Sander H; Lourens, Harm-Jan; Meeuwsen-de Boer, Tiny; Hoving, Eelco W; den Dunnen, Wilfred F A; de Bont, Eveline S J M

    2015-01-01

    Recent clinical trials investigating receptor tyrosine kinase (RTK) inhibitors showed a limited clinical response in medulloblastoma. The present study investigated the role of micro-environmental growth factors expressed in the brain, such as HGF and EGF, in relation to the effects of hepatocyte growth factor receptor (MET) and epidermal growth factor receptor family (ErbB1-4) inhibition in medulloblastoma cell lines. Medulloblastoma cell lines were treated with tyrosine kinase inhibitors crizotinib or canertinib, targeting MET and ErbB1-4, respectively. Upon treatment, cells were stimulated with VEGF-A, PDGF-AB, HGF, FGF-2 or EGF. Subsequently, we measured cell viability and expression levels of growth factors and downstream signaling proteins. Addition of HGF or EGF phosphorylated MET or EGFR, respectively, and demonstrated phosphorylation of Akt and ERK1/2 as well as increased tumor cell viability. Crizotinib and canertinib both inhibited cell viability and phosphorylation of Akt and ERK1/2. Specifically targeting MET using shRNA's resulted in decreased cell viability. Interestingly, addition of HGF to canertinib significantly enhanced cell viability as well as phosphorylation of Akt and ERK1/2. The HGF-induced bypass of canertinib was reversed by addition of crizotinib. HGF protein was hardly released by medulloblastoma cells itself. Addition of canertinib did not affect RTK cell surface or growth factor expression levels. This manuscript points to the bypassing capacity of exogenous HGF in medulloblastoma cell lines. It might be of great interest to anticipate on these results in developing novel clinical trials with a combination of MET and EGFR inhibitors in medulloblastoma.

  6. Sensitivity of malignant rhabdoid tumor cell lines to PD 0332991 is inversely correlated with p16 expression

    SciTech Connect

    Katsumi, Yoshiki; Iehara, Tomoko; Miyachi, Mitsuru; Yagyu, Shigeki; Tsubai-Shimizu, Satoko; Kikuchi, Ken; Tamura, Shinichi; Kuwahara, Yasumichi; Tsuchiya, Kunihiko; Kuroda, Hiroshi; Sugimoto, Tohru; Houghton, Peter J.; Hosoi, Hajime

    2011-09-16

    Highlights: {yields} PD 0332991 (PD) could suppress four of five malignant rhabdoid tumor (MRT) cell lines. {yields} The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). {yields} p16 expression in MRT could be used to predict its sensitivity to PD. {yields} PD may be an attractive agent for patients with MRT whose tumors express low levels of p16. -- Abstract: Malignant rhabdoid tumor (MRT) is a rare and highly aggressive neoplasm of young children. MRT is characterized by inactivation of integrase interactor 1 (INI1). Cyclin-dependent kinase 4 (CDK4), which acts downstream of INI1, is required for the proliferation of MRT cells. Here we investigated the effects of PD 0332991 (PD), a potent inhibitor of CDK4, against five human MRT cell lines (MP-MRT-AN, KP-MRT-RY, G401, KP-MRT-NS, KP-MRT-YM). In all of the cell lines except KP-MRT-YM, PD inhibited cell proliferation >50%, (IC{sub 50} values 0.01 to 0.6 {mu}M) by WST-8 assay, and induced G1-phase cell cycle arrest, as shown by flow cytometry and BrdU incorporation assay. The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). KP-MRT-YM cells overexpress p16 and were resistant to the growth inhibitory effect of PD. Small interfering RNA against p16 significantly increased the sensitivity of KP-MRT-YM cells to PD (p < 0.05). These results suggest that p16 expression in MRT could be used to predict its sensitivity to PD. PD may be an attractive agent for patients with MRT whose tumors express low levels of p16.

  7. Establishment and partial characterization of a human tumor cell line, GBM-HSF, from a glioblastoma multiforme.

    PubMed

    Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye

    2014-07-01

    This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.

  8. Attenuation of TGF-β signaling supports tumor progression of a mesenchymal-like mammary tumor cell line in a syngeneic murine model

    PubMed Central

    Biswas, Tanuka; Gu, Xiang; Yang, Junhua; Ellies, Lesley G; Sun, Lu-Zhe

    2014-01-01

    Previous studies have suggested that TGF-β functions as a tumor promoter in metastatic, mesenchymal-like breast cancer cells and that TGF-β inhibitors can effectively abrogate tumor progression in several of these models. Here we report a novel observation with the use of genetic and pharmacological approaches, and murine mammary cell injection models in both syngeneic and immune compromised mice. We found that TGF-β receptor II (TβRII) knockdown in the MMTV-PyMT derived Py8119, a mesenchymal-like murine mammary tumor cell line, resulted in increased orthotopic tumor growth potential in a syngeneic background and a similar trend in an immune compromised background. Systemic treatment with a small-molecule TGF-β receptor I kinase inhibitor induced a trend towards increased metastatic colonization of distant organs following intra cardiac inoculation of Py8119 cells, with little effect on the colonization of luminal-like Py230 cells, also derived from MMTV-PyMT tumors. Taken together, our data suggest that the attenuation of TGF-β signaling in mesenchymal-like mammary tumors does not necessarily inhibit their malignant potential, and anti-TGF-β therapeutic intervention requires greater precision in identifying molecular markers in tumors with an indication of functional TGF-β signaling. PMID:24368187

  9. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    PubMed Central

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-01-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  10. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines.

    PubMed

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-12-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  11. Annona squamosa Linn: cytotoxic activity found in leaf extract against human tumor cell lines.

    PubMed

    Wang, De-Shen; Rizwani, Ghazala H; Guo, Huiqin; Ahmed, Mansoor; Ahmed, Maryam; Hassan, Syed Zeeshan; Hassan, Amir; Chen, Zhe-Sheng; Xu, Rui-Hua

    2014-09-01

    Cancer is a common cause of death in human populations. Surgery, chemotherapy and radiotherapy still remain the corner stone of treatment. However, herbal medicines are gaining popularity on account of their lesser harmful side effects on non-targeted human cells and biological environment. Annona squamosa Linn is a common delicious edible fruit and its leaf have been used for the treatment in various types of diseases. The objective of present study is to determine the anticancer potential of the organic and aqueous extracts of leaf of Annona squamosa L. MTT (3-(4, 5-dimethylthiazole-2yl)-2, 5-biphenyl tetrazolium bromide) assay against hepatocellular carcinoma cell line BEL-7404, lung cancer line H460, human epidermoid carcinoma cell line KB-3-1, prostatic cancer cell line DU145, breast carcinoma cell line MDA-MB-435, and colon cancer cell line HCT-116 Human primary embryonic kidney cell line HEK293 as control were used for the study. The crude extract (Zcd) and Ethyl acetate extract (ZE) were found significant anticancer activity only on human epidermoid carcinoma cell line KB-3-1 and colon cancer cell line HCT-116.

  12. Identification and gene expression profiling of tumor-initiating cells isolated from human osteosarcoma cell lines in an orthotopic mouse model

    PubMed Central

    Rainusso, Nino; Man, Tsz-Kwong; Lau, Ching C; Hicks, John; Shen, Jianhe J; Yu, Alexander; Wang, Lisa L

    2011-01-01

    In the cancer stem cell model a cell hierarchy has been suggested as an explanation for intratumoral heterogeneity and tumor formation is thought to be driven by this tumor cell subpopulation. The identification of cancer stem cells in osteosarcoma (OS) and the biological processes dysregulated in this cell subpopulation, also known as tumor-initiating cells (TICs), may provide new therapeutic targets. The goal of this study, therefore, was to identify and characterize the gene expression profiles of TICs isolated from human OS cell lines. We analyzed the self-renewal capacity of OS cell lines and primary OS tumors based upon their ability to form sphere-like structures (sarcospheres) under serum-starving conditions. TICs were identify from OS cell lines using the long-term label retention dye PKH26. OS TICs and the bulk of tumor cells were isolated and used to assess their ability to initiate tumors in NOD/SCID mice. Gene expression profiles of OS TICs were obtained from fresh orthotopic tumor samples. We observed that increased sarcosphere efficiency correlated with an enhanced tumorigenic potential in OS. PKH26Hi cells were shown to constitute OS TICs based upon their capacity to form more sarcospheres, as well as to generate both primary bone tumors and lung metastases efficiently in NOD/SCID mice. Genomic profiling of OS TICs revealed that both bone development and cell migration processes were dysregulated in this tumor cell subpopulation. PKH26 labeling represents a valuable tool to identify OS TICs and gene expression analysis of this tumor cell compartment may identify potential therapeutic targets. PMID:21617384

  13. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines.

    PubMed

    Olmeda, D; Montes, A; Moreno-Bueno, G; Flores, J M; Portillo, F; Cano, A

    2008-08-07

    Snai1 (Snail) and Snai2 (Slug), the two main members of Snail family factors, are important mediators of epithelial-mesenchymal transitions and involved in tumor progression. We recently reported that Snai1 plays a major role in tumor growth, invasion and metastasis, but the contribution of Snai2 to tumorigenesis is not yet well understood. To approach this question we have silenced Snai2 and/or Snai1 by stable RNA interference in two independent mouse skin carcinoma (HaCa4 and CarB) cell lines. We demonstrate that Snai2 knockdown has a milder effect, but collaborates with Snai1 silencing in reduction of tumor growth potential of either carcinoma cell line when injected into nude mice. Importantly, Snai1 or Snai2 silencing dramatically influences the metastatic ability of squamous carcinoma HaCa4 cells, inducing a strong reduction in liver and lung distant metastasis. However, only Snai1 knockdown has an effective action on invasiveness and fully abolishes tumor cell dissemination into the spleen. These results demonstrate that Snai1 and Snai2 collaborate on primary tumor growth and specifically contribute to site-specific metastasis of HaCa4 cells. These data also indicate that Snai1 is the major regulator of local invasion, supporting a hierarchical participation of both factors in the metastatic process.

  14. The Ews/Fli-1 fusion gene changes the status of p53 in neuroblastoma tumor cell lines.

    PubMed

    Rorie, Checo J; Weissman, Bernard E

    2004-10-15

    One hallmark of Ewing's sarcoma/peripheral neuroectodermal tumors is the presence of the Ews/Fli-1 chimeric oncogene. Interestingly, infection of neuroblastoma tumor cell lines with Ews/Fli-1 switches the differentiation program of neuroblastomas to Ewing's sarcoma/peripheral neuroectodermal tumors. Here we examined the status of cytoplasmically sequestered wt-p53 in neuroblastomas after stable expression of Ews/Fli-1. Immunofluorescence revealed that in the neuroblastoma-Ews/Fli-1 infectant cell lines, p53 went from a punctate-pattern of cytoplasmic sequestration to increased nuclear localization. Western blot analysis revealed that PARC was down-regulated in one neuroblastoma cell line but not expressed in the second. Therefore, decreased PARC expression could not fully account for relieving p53 sequestration in the neuroblastoma tumor cells. Neuroblastoma-Ews/Fli-1 infectant cell lines showed marked increases in p53 protein expression without transcriptional up-regulation. Interestingly, p53 was primarily phosphorylated, without activation of its downstream target p21(WAF1). Western blot analysis revealed that whereas MDM2 gene expression does not change, p14(ARF), a negative protein regulator of MDM2, increases. These observations suggest that the downstream p53 pathway may be inactivated as a result of abnormal p53. We also found that p53 has an extended half-life in the neuroblastoma-Ews/Fli-1 infectants despite the retention of a wild-type sequence in neuroblastoma-Ews/Fli-1 infectant cell lines. We then tested the p53 response pathway and observed that the neuroblastoma parent cells responded to genotoxic stress, whereas the neuroblastoma-Ews/Fli-1 infectants did not. These results suggest that Ews/Fli-1 can directly abrogate the p53 pathway to promote tumorigenesis. These studies also provide additional insight into the relationship among the p53 pathway proteins.

  15. Screening of Venezuelan medicinal plant extracts for cytostatic and cytotoxic activity against tumor cell lines.

    PubMed

    Taylor, Peter; Arsenak, Miriam; Abad, María Jesús; Fernández, Angel; Milano, Balentina; Gonto, Reina; Ruiz, Marie-Christine; Fraile, Silvia; Taylor, Sofía; Estrada, Omar; Michelangeli, Fabian

    2013-04-01

    There are estimated to be more than 20,000 species of plants in Venezuela, of which more than 1500 are used for medicinal purposes by indigenous and local communities. Only a relatively small proportion of these have been evaluated in terms of their potential as antitumor agents. In this study, we screened 308 extracts from 102 species for cytostatic and cytotoxic activity against a panel of six tumor cell lines using a 24-h sulphorhodamine B assay. Extracts from Clavija lancifolia, Hamelia patens, Piper san-vicentense, Physalis cordata, Jacaranda copaia, Heliotropium indicum, and Annona squamosa were the most cytotoxic, whereas other extracts from Calotropis gigantea, Hyptis dilatata, Chromolaena odorata, Siparuna guianensis, Jacaranda obtusifolia, Tapirira guianensis, Xylopia aromatica, Protium heptaphyllum, and Piper arboreum showed the greatest cytostatic activity. These results confirm previous reports on the cytotoxic activities of the above-mentioned plants as well as prompting further studies on others such as C. lancifolia and H. dilatata that have not been so extensively studied.

  16. Solid-phase synthesis of 2'-hydroxychalcones. Effects on cell growth inhibition, cell cycle and apoptosis of human tumor cell lines.

    PubMed

    Neves, Marta Perro; Cravo, Sara; Lima, Raquel T; Vasconcelos, M Helena; Nascimento, M São José; Silva, Artur M S; Pinto, Madalena; Cidade, Honorina; Corrêa, Arlene G

    2012-01-01

    Thirty-one 2'-hydroxychalcones were prepared via solid-phase synthesis by base-catalyzed aldol condensation of substituted 2'-hydroxyacetophenones and benzaldehydes. Chalcones were tested for their growth inhibitory activity in three human tumor cell lines (MCF-7, NCI-H460 and A375-C5) using the SRB assay. Results revealed that several of the tested compounds caused a pronounced dose-dependent growth inhibitory effect on the tumor cell lines studied in the low micromolar range. To gain further insight on the cellular mechanism of action of this class of compounds, studies of their effect on cell cycle profile as well as on induction of cellular apoptosis were also carried out. Generally, the tested chalcones interfered with the cell cycle profile and increased the percentage of apoptotic MCF-7 cells. The results here presented may help to identify new chalcone-like structures with optimized cell growth inhibitory activity which may be further tested as potential antitumor agents.

  17. Monoclonal antibodies to an epithelial ovarian adenocarcinoma: distinctive reactivity with xenografts of the original tumor and a cultured cell line.

    PubMed

    Baumal, R; Law, J; Buick, R N; Kahn, H; Yeger, H; Sheldon, K; Colgan, T; Marks, A

    1986-08-01

    Four monoclonal antibodies (mAb) (8C, 10B, M2A, and M2D) were produced against the human epithelial ovarian adenocarcinoma cell line, HEY. The affinity constants of binding of the mAb to cultured HEY cells were 8 X 10(8) M-1 (M2D) and 10(9) M-1 (8C and 10B). mAb 8C reacted with a major glycoprotein of Mr 90,000 on the surface of HEY cells. The four mAb differed from previously reported mAb to epithelial ovarian adenocarcinomas on the basis of their reactivity with cultured ovarian adenocarcinoma cell lines using a cell-binding radioimmunoassay, and their staining of cryostat sections of various human normal and tumor tissues using an immunoperoxidase reaction. All four mAb reacted with s.c. tumors derived by injecting cultured HEY cells into thymectomized CBA/CJ mice. However, only two of the four mAb (8C and 10B) also reacted with s.c. tumors of the original HEY xenograft from which the cultured cell line was derived. In addition, mAb 8C and 10B reacted by immunoperoxidase staining with 2 and 4 different cases, respectively, of 11 epithelial ovarian adenocarcinomas examined. Cultured HEY cells were adapted to grow i.p. in BALB/c-nu/nu mice and the i.p. tumors retained their reactivity with the monoclonal antibodies. These tumor-bearing mice offer a useful model system for studying the potential of mAb, especially 8C and 10B, for the diagnosis and treatment of patients with peritoneal extension of epithelial ovarian adenocarcinomas.

  18. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing hepatitis B virus.

    PubMed Central

    Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.

    1996-01-01

    Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135

  19. Presence of dopamine D-2 receptors in human tumoral cell lines

    SciTech Connect

    Sokoloff, P.; Riou, J.F.; Martres, M.P.; Schwartz, J.C. )

    1989-07-31

    ({sup 125}I) Iodosulpride binding was examined on eight human cell lines derived from lung, breast and digestive tract carcinomas, neuroblastomas and leukemia. Specific binding was detected in five of these cell lines. In the richest cell line N417, derived from small cell lung carcinoma, ({sup 125}I) iodosulpride bound with a high affinity (Kd = 1.3 nM) to an apparently homogeneous population of binding site (Bmax = 1,606 sites per cell). These sites displayed a typical D-2 specificity, established with several dopaminergic agonists and antagonists selective of either D-1 or D-2 receptor subtypes. In addition, dopamine, apomorphine and RU 24926 distinguished high- and low-affinity sites, suggesting that the binding sites are associated with a G-protein. The biological significance and the possible diagnostic implication of the presence of D-2 receptors on these cell lines are discussed.

  20. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  1. Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines.

    PubMed

    Rodríguez-Salvador, J; Armas-Pineda, C; Perezpeña-Diazconti, M; Chico-Ponce de León, F; Sosa-Sáinz, G; Lezama, P; Recillas-Targa, F; Arenas-Huertero, F

    2005-09-01

    Matrix metalloproteinases (MMPs) are enzymes responsible for extracellular matrix degradation and contribute to local and distant cell invasion during cancer progression or metastasis. The effects of chromatin structure on gene expression and the use of histone deacetylase inhibitors such as sodium butyrate (NaBu) may directly influence pro-MMPs secretion. In the present study, we evaluated the effect of NaBu on pro-MMP-9 and pro-MMP-2 secretion in human Jurkat and HT1080 cells, and in 36 pediatric solid tumors. Cell lines and samples were exposed to 8 mM of NaBu and proteinase activity was evaluated in the supernatant by gelatin zymograms. Our results showed, for Jurkat cells treated with NaBu, increases of 2-fold and 1.5-fold in pro-MMP-9 and pro-MMP-2 secretion, respectively. A 50% decrease in pro-MMP-9 secretion due to NaBu was observed in HT1080 cells. NaBu induced a 0.62 reduction in levels of pro-MMP-9 secretion in untreated tumors. For cell lines and some NaBu-treated tumors we found histone H4 hyperacetylation. We conclude that pro-MMPs gene expression and their secretion can be epigenetically mis-regulated in tumoral processes.

  2. HtrA3 Is Downregulated in Cancer Cell Lines and Significantly Reduced in Primary Serous and Granulosa Cell Ovarian Tumors.

    PubMed

    Singh, Harmeet; Li, Ying; Fuller, Peter J; Harrison, Craig; Rao, Jyothsna; Stephens, Andrew N; Nie, Guiying

    2013-01-01

    Objective. The high temperature requirement factor A3 (HtrA3) is a serine protease homologous to bacterial HtrA. Four human HtrAs have been identified. HtrA1 and HtrA3 share a high degree of domain organization and are downregulated in a number of cancers, suggesting a widespread loss of these proteases in cancer. This study examined how extensively the HtrA (HtrA1-3) proteins are downregulated in commonly used cancer cell lines and primary ovarian tumors.Methods. RT-PCR was applied to various cancer cell lines (n=17) derived from the ovary, endometrium, testes, breast, prostate, and colon, and different subtypes of primary ovarian tumors [granulosa cell tumors (n=19), mucinous cystadenocarcinomas (n=6), serous cystadenocarcinomas (n=8)] and normal ovary (n = 9). HtrA3 protein was localized by immunohistochemistry.Results. HtrA3 was extensively downregulated in the cancer cell lines examined including the granulosa cell tumor-derived cell lines. In primary ovarian tumors, the HtrA3 was significantly lower in serous cystadenocarcinoma and granulosa cell tumors. In contrast, HtrA1 and HtrA2 were expressed in all samples with no significant differences between the control and tumors. In normal postmenopausal ovary, HtrA3 protein was localized to lutenizing stromal cells and corpus albicans. In serous cystadenocarcinoma, HtrA3 protein was absent in the papillae but detected in the mesenchymal cyst wall.Conclusion. HtrA3 is more extensively downregulated than HtrA1-2 in cancer cell lines. HtrA3, but not HtrA1 or HtrA2, was decreased in primary ovarian serous cystadenocarcinoma and granulosa cell tumors. This study provides evidence that HtrA3 may be the most relevant HtrA associated with ovarian malignancy.

  3. Promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in human cancer cell lines, multidrug-resistant cell models and tumor, tumor-adjacent and tumor-distant tissues from breast cancer patients

    PubMed Central

    Spitzwieser, Melanie; Pirker, Christine; Koblmüller, Bettina; Pfeiler, Georg; Hacker, Stefan; Berger, Walter; Heffeter, Petra; Cichna-Markl, Margit

    2016-01-01

    Overexpression of ABCB1, ABCC1 and ABCG2 in tumor tissues is considered a major cause of limited efficacy of anticancer drugs. Gene expression of ABC transporters is regulated by multiple mechanisms, including changes in the DNA methylation status. Most of the studies published so far only report promoter methylation levels for either ABCB1 or ABCG2, and data on the methylation status for ABCC1 are scarce. Thus, we determined the promoter methylation patterns of ABCB1, ABCC1 and ABCG2 in 19 human cancer cell lines. In order to contribute to the elucidation of the role of DNA methylation changes in acquisition of a multidrug resistant (MDR) phenotype, we also analyzed the promoter methylation patterns in drug-resistant sublines of the cancer cell lines GLC-4, SW1573, KB-3-1 and HL-60. In addition, we investigated if aberrant promoter methylation levels of ABCB1, ABCC1 and ABCG2 occur in tumor and tumor-surrounding tissues from breast cancer patients. Our data indicates that hypomethylation of the ABCC1 promoter is not cancer type-specific but occurs in cancer cell lines of different origins. Promoter methylation was found to be an important mechanism in gene regulation of ABCB1 in parental cancer cell lines and their drug-resistant sublines. Overexpression of ABCC1 in MDR cell models turned out to be mediated by gene amplification, not by changes in the promoter methylation status of ABCC1. In contrast to the promoters of ABCC1 and ABCG2, the promoter of ABCB1 was significantly higher methylated in tumor tissues than in tumor-adjacent and tumor-distant tissues from breast cancer patients. PMID:27689338

  4. Antiproliferative activity of epi-cercosporin in human solid tumor cell lines.

    PubMed

    Trigos, Angel; Espinoza, César; Martínez, Maricela; Márquez, Olivia; León, Leticia G; Padrón, José M; Norted, Manuel; Fernández, José J

    2013-02-01

    From cultures of Cercospora piaropi, a phytopathogenic fungus isolated from symptomatic leaves of water hyacinth was obtained a red compound, which, according to the spectroscopic data, was epi-cercosporin. It showed in vitro antiproliferative activity against the panel of human solid tumor cells HBL-100, HeLa, SW1573 and WiDr. Cell cycle studies revealed that epi-cercosporin induces accumulation of cells in G2/M phase.

  5. Multiple myeloma cell lines and primary tumors proteoma: protein biosynthesis and immune system as potential therapeutic targets

    PubMed Central

    Mazzotti, Diego Robles; Evangelista, Adriane Feijó; Braga, Walter Moisés Tobias; de Lourdes Chauffaille, Maria; Leme, Adriana Franco Paes; Colleoni, Gisele Wally Braga

    2015-01-01

    Despite great advance in multiple myeloma (MM) treatment since 2000s, it is still an incurable disease and novel therapies are welcome. Therefore, the purpose of this study was to explore MM plasma cells' (MM-PC) proteome, in comparison with their normal counterparts (derived from palatine tonsils of normal donors, ND-PC), in order to find potential therapeutic targets expressed on the surface of these cells. We also aimed to evaluate the proteome of MM cell lines with different genetic alterations, to confirm findings obtained with primary tumor cells. Bone marrow (BM) samples from eight new cases of MM and palatine tonsils from seven unmatched controls were submitted to PC separation and, in addition to two MM cell lines (U266, RPMI-8226), were submitted to protein extraction for mass spectrometry analyses. A total of 81 proteins were differentially expressed between MM-PC and ND-PC - 72 upregulated and nine downregulated; U266 vs. RPMI 8226 cell lines presented 61 differentially expressed proteins - 51 upregulated and 10 downregulated. On primary tumors, bioinformatics analyses highlighted upregulation of protein biosynthesis machinery, as well as downregulation of immune response components, such as MHC class I and II, and complement receptors. We also provided comprehensive information about U266 and RPMI-8226 cell lines' proteome and could confirm some patients' findings. PMID:26807199

  6. Plasma membrane reorganization induced by tumor promoters in an epithelial cell line

    SciTech Connect

    PACKARD, BEVERLY S.; SAXTON, MICHAEL J.; BISSELL, MINA J.; KLEIN, MELVIN P.

    1984-01-01

    The effects of phorbol ester tumor promoters on the lateral diffusion in plasma membrane lipid environments were examined by the technique of fluorescence recovery after photobleaching. To this end, the probe collarein, a fluorescent lipid analog that has the property of exclusive localization in the plasma membrane, was synthesized. Measured decreases in three parameters [percentage of fluorescence bleached (30%), percentage of recovery (52%), and half-time for recovery (52%)] connoted the appearance of an immobile fraction upon exposure to tumor promoters. These data are consistent with lipid reorganization in response to a reorganization of the intra- and perimembranous macromolecular scaffolding upon the interaction of cells with tumor promoters. The idea of induced reorganization is supported by experiments in which cell shape change, brought about by either exposure to cytochalasin B or growth on matrices of collagen, fibronectin, or laminin, resulted in values in the fluorescence recovery after photobleaching technique similar to those with active phorbol esters.

  7. Tumor localization by combinations of monoclonal antibodies in a new human colon carcinoma cell line (LIM1899)

    SciTech Connect

    Andrew, S.M.; Teh, J.G.; Johnstone, R.W.; Russell, S.M.; Whitehead, R.H.; McKenzie, I.F.; Pietersz, G.A. )

    1990-09-01

    One of the problems of in vivo diagnosis and therapy of tumors with monoclonal antibodies is their heterogeneity with respect to antigen expression, with some cells expressing no antigen and others being weakly or strongly positive. Selected mixtures of antibodies to different antigens are therefore likely to react with more cells than single antibodies and be more effective for imaging and therapy. With this in mind, we have examined a new human colon cancer cell line (LIM1899) which has a heterogeneous expression of several cell surface molecules: by flow cytometry 38% were carcinoembryonic antigen positive; 64%, human milk fat globule positive, and 73%, CD46 positive; 87% of tumor cells bound a mixture of all three antibodies in vitro. Some blocking of the binding of anti-human milk fat globule antibody by the anti-CD46 antibody was noted. LIM1899 was established as a xenograft in nude mice and in vivo biodistribution studies performed using antibodies alone or in combination. Mixtures of antibodies clearly showed a higher percentage of injected dose of antibody in the tumor than did single antibodies: one antibody gave 10%; two together, 17 to 21%; and all three together gave 29% of the injected dose in the tumor. Tumor:blood ratios were also superior for combinations of antibodies, provided that low doses of the antibodies were used; at higher doses the effect was lost. The study demonstrates that combinations of antibodies are better than single antibodies for localization, provided that the dose used is carefully selected.

  8. Acyl-coenzyme A: cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines.

    PubMed

    Bemlih, Sana; Poirier, Marie-Denise; El Andaloussi, Abdeljabar

    2010-06-15

    Glioblastoma is the most common primary brain tumor in adults and one of its hallmarks is resistance to apoptosis. Acyl-CoA: cholesterol acyltransferase (ACAT) is an intracellular membrane-bound enzyme that uses cholesterol and long chain fatty acyl-CoA as substrates to produce cholesteryl esters. The presence of cholesteryl esters in glioblastoma may be related to vascular and/or cell neoplastic proliferation in the tumor mass, two prerequisites for tumor cell growth. ACAT activity has been detected in glioblastoma cell homogenates. The present study is the first report on the effect of Avasimibe, a specific inhibitor of ACAT, on glioma cell lines (U87, A172 and GL261). Our results showed that Avasimibe inhibited ACAT-1 expression and cholesterol ester synthesis in glioma cell lines. Moreover, Avasimibe inhibited the growth of the cells by inducing cell cycle arrest and induced apoptosis as a result of caspase-8 and caspase-3 activation. Also, Our findings provide proof of principle that targeting ACAT-1 with the inhibitor Avasimibe could be an efficient therapy in the treatment of glioblastoma.

  9. Establishment of a canine mammary gland tumor cell line and characterization of its miRNA expression

    PubMed Central

    Sunden, Yuji; Sugiyama, Akihiko; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-01-01

    Canine mammary gland tumors (CMGTs), which are the most common neoplasms in sexually intact female dogs, have been suggested as a model for studying human breast cancer because of several similarities, including relative age of onset, risk factors, incidence, histological and molecular features, biological behavior, metastatic pattern, and responses to therapy. In the present study, we established a new cell line, the SNP cell line, from a CMGT. A tumor formed in each NOD.CB17-Prkdcscid/J mouse at the site of subcutaneous SNP cell injection. SNP cells are characterized by proliferation in a tubulopapillary pattern and are vimentin positive. Moreover, we examined miRNA expression in the cultured cells and found that the expression values of miRNA-143 and miRNA-138a showed the greatest increase and decrease, respectively, of all miRNAs observed, indicating that these miRNAs might play a significant role in the malignancy of SNP cells. Overall, the results of this study indicate that SNP cells might serve as a model for future genetic analysis and clinical treatments of human breast tumors. PMID:26726024

  10. Fusion of CCL21 Non-Migratory Active Breast Epithelial and Breast Cancer Cells Give Rise to CCL21 Migratory Active Tumor Hybrid Cell Lines

    PubMed Central

    Reith, Georg; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S.; Dittmar, Thomas

    2013-01-01

    The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid) cells. PMID:23667660

  11. Comparative analysis of BRAF, NRAS and c-KIT mutation status between tumor tissues and autologous tumor cell-lines of stage III/IV melanoma.

    PubMed

    Knol, Anne-Chantal; Pandolfino, Marie-Christine; Vallée, Audrey; Nguyen, Frédérique; Lella, Virginie; Khammari, Amir; Denis, Marc; Puaux, Anne-Laure; Dréno, Brigitte

    2015-01-01

    In the last decade, advances in molecular biology have provided evidence of the genotypic heterogeneity of melanoma. We analysed BRAF, NRAS and c-KIT alterations in tissue samples from 63 stage III/IV melanoma patients and autologous cell-lines, using either allele-specific or quantitative PCR. The expression of BRAF V600E protein was also investigated using an anti-BRAF antibody in the same tissue samples. 81% of FFPE samples and tumor cell-lines harboured a genetic alteration in either BRAF (54%) or NRAS (27%) oncogenes. There was a strong concordance (100%) between tissue samples and tumor cell-lines. The BRAF V600E mutant-specific antibody showed high sensitivity (96%) and specificity (100%) for detecting the presence of a BRAF V600E mutation. The correlation was of 98% between PCR and immunohistochemistry results for BRAF mutation. These results suggest that BRAF and NRAS mutation status of tumor cells is not affected by culture conditions.

  12. Chemoprevention and cytotoxic effect of Bauhinia variegata against N-nitrosodiethylamine induced liver tumors and human cancer cell lines.

    PubMed

    Rajkapoor, B; Jayakar, B; Murugesh, N; Sakthisekaran, D

    2006-04-06

    The chemopreventive and cytotoxic effect of ethanol extract of Bauhinia variegata (EBV) was evaluated in N-nitrosodiethylamine (DEN, 200 mg/kg) induced experimental liver tumor in rats and human cancer cell lines. Oral administration of ethanol extract of Bauhinia variegata (250 mg/kg) effectively suppressed liver tumor induced by DEN as revealed by decrease in DEN induced elevated levels of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), total bilirubin, gamma glutamate transpeptidase (GGTP), lipid peroxidase (LPO), glutathione peroxidase (GPx) and glutathione S-transferase (GST). The extract produced an increase in enzymatic antioxidant (superoxide dismutase and catalase) levels and total proteins when compared to those in liver tumor bearing rats. The histopathological changes of liver samples were compared with respective controls. EBV was found to be cytotoxic against human epithelial larynx cancer (HEp2) and human breast cancer (HBL-100) cells. These results show a significant chemopreventive and cytotoxic effect of ethanol extract of Bauhinia variegata against DEN induced liver tumor and human cancer cell lines.

  13. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines

    DTIC Science & Technology

    2005-06-01

    derived cells, we isolated first branchial arch mesenchymal populations, as well as trigeminal ganglion non- neuronal cells, from mouse embryos and measured...for the source of MPNSTs, peripheral nerve, by pooling tissues (sciatic nerve and trigeminal ganglia ) dissected from several mice of the same genotype...neural crest-derived cell types can be isolated prior to this stage and maintained in culture. Sensory and sympathetic neurons isolated from Nfl

  14. Immunohistochemical evidence for ubiquitous distribution of metalloendoprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cell lines

    PubMed Central

    Weirich, Gregor; Mengele, Karin; Yfanti, Christina; Gkazepis, Apostolos; Hellmann, Daniela; Welk, Anita; Giersig, Cecylia; Kuo, Wen-Liang; Rosner, Marsha Rich; Tang, Wei-Jen; Schmitt, Manfred

    2013-01-01

    Immunohistochemical evidence for ubiquitous distribution of metalloprotease insulin-degrading enzyme (IDE; insulysin) in human non-malignant tissues and tumor cells is presented. Immunohistochemical staining was performed on a multi-organ tissue microarray (pancreas, lung, kidney, central/peripheral nervous system, liver, breast, placenta, myocardium, striated muscle, bone marrow, thymus, spleen) and on a cell microarray encompassing 31 tumor cell lines of different origin plus trophoblast cells, and normal blood lymphocytes and granulocytes. IDE protein is expressed by all of the tissues assessed and in all of the tumor cell lines except Raji and HL-60; trophoblast cells and granulocytes but not normal lymphocytes are also IDE-positive. PMID:18783335

  15. Antiproliferative activities of Garcinia bracteata extract and its active ingredient, isobractatin, against human tumor cell lines.

    PubMed

    Shen, Tao; Li, Wei; Wang, Yan-Yan; Zhong, Qing-Qing; Wang, Shu-Qi; Wang, Xiao-Ning; Ren, Dong-Mei; Lou, Hong-Xiang

    2014-03-01

    In our cell based screening of antitumor ingredients from plants, the EtOH extract of Garcinia bracteata displayed antiproliferative effect against human lung adenocarcinoma A549 cells, human breast cancer MCF-7 cells, and human prostate cancer PC3 cells. Phytochemical investigation of this active extract produced nine ingredients, and their structures were established by analysis of MS and NMR spectra. Antiproliferative evaluation of isolated ingredients on A549, MCF-7 and PC3 cells indicated that a xanthone named isobractatin (1) exhibited potent antiproliferative activity against the above three human cancer cell lines with IC50 values ranging from 2.90 to 4.15 μM. Treatment of PC3 cells with 1 led to an enhancement of the cell apoptosis, and arrested cell cycle in the G0/G1 phase. The G0/G1 phase cycle-related proteins analysis showed that the expressions of cyclins D1 and E were reduced by 1, whereas the protein level of cyclin dependent kinase (CDK) inhibitor P21 was induced. Additionally, 1 enhanced PC3 cell apoptosis by activations of Bax, caspases 3 and 9, and by inhibition of Bcl-2. Our combined data illustrated that isobractatin (1) was the antiproliferative ingredient of G. bracteata against three human cancer cell lines, which exerted its antiproliferatrive effect via cell cycle arrest and induction of apoptosis.

  16. The LKB1 tumor suppressor differentially affects anchorage independent growth of HPV positive cervical cancer cell lines

    SciTech Connect

    Mack, Hildegard I.D.; Munger, Karl

    2013-11-15

    Infection with high-risk human papillomaviruses is causally linked to cervical carcinogenesis. However, most lesions caused by high-risk HPV infections do not progress to cancer. Host cell mutations contribute to malignant progression but the molecular nature of such mutations is unknown. Based on a previous study that reported an association between liver kinase B1 (LKB1) tumor suppressor loss and poor outcome in cervical cancer, we sought to determine the molecular basis for this observation. LKB1-negative cervical and lung cancer cells were reconstituted with wild type or kinase defective LKB1 mutants and we examined the importance of LKB1 catalytic activity in known LKB1-regulated processes including inhibition of cell proliferation and elevated resistance to energy stress. Our studies revealed marked differences in the biological activities of two kinase defective LKB1 mutants in the various cell lines. Thus, our results suggest that LKB1 may be a cell-type specific tumor suppressor. - Highlights: • LKB1 is a tumor suppressor that is linked to Peutz-Jeghers syndrome. • Peutz-Jeghers syndrome patients have a high incidence of cervical cancer. • Cervical cancer is caused by HPV infections. • This study investigates LKB1 tumor suppressor activity in cervical cancer.

  17. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2008-05-01

    Kim, Y., Dubey, P., and Witte , O. N. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital...R. U., Cheng, D., and Witte , O. N. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A, 2006. 34...of Medicine Flow Sorting Facility) for their expert assistance and Jessica Hicks and Yuko Konishi (Johns Hopkins Department of Pathology) for the

  18. Statins potentiate cytostatic/cytotoxic activity of sorafenib but not sunitinib against tumor cell lines in vitro.

    PubMed

    Bil, Jacek; Zapala, Lukasz; Nowis, Dominika; Jakobisiak, Marek; Golab, Jakub

    2010-02-01

    The aim of this study was to investigate the potential cytostatic/cytotoxic effects of HMG-CoA reductase inhibitors and two orphan drugs registered for the treatment of advanced renal cell carcinoma, i.e. sorafenib and sunitinib against several different tumor cell lines. Cytostatic/cytotoxic effects were measured using crystal violet or MTT reduction assays. Cell cycle regulation was investigated using flow cytometry and Western blotting. The combination of lovastatin and sorafenib (but not sunitinib) produced synergistic cytostatic/cytotoxic effects against all tested tumor cell lines. In this study, an impairment of the protein prenylation, especially geranylgeranylation, resulted predominantly in the potentiation of the cytostatic/cytotoxic activity of sorafenib, in cell cycle arrest in G1 phase, and, in poor induction of apoptosis. Moreover, due to the fact that it has been well documented that sorafenib compromises the heart function, we studied the interaction of lovastatin and sorafenib using rat cardiomyoblast line H9c2. The combination showed strong synergistic cardiotoxic effects. Statins and tyrosine kinase inhibitors were used at doses that are achievable clinically, which makes the combination promising for future studies, especially in urooncology, bearing in mind possible cardiotoxic effects.

  19. Anticancer activity of Bombyx batryticatus ethanol extract against the human tumor cell line HeLa.

    PubMed

    Wu, W P; Cao, J; Wu, J Y; Chen, H; Wang, D

    2015-01-15

    Anticancer activity of Bombyx batryticatus ethanol extract (BBE) against HeLa cells was studied using cell viability, DNA fragmentation, real-time polymerase chain reaction, and Western blot analyses. The BBE inhibited the growth and induced apoptosis of HeLa cells. The MTT assay indicated that the BBE induced cytotoxicity in HeLa cells in a time- and concentration-dependent manner. When HeLa cells were treated for 48 h, the 50% inhibitory concentration (IC₅₀) value for the BBE was 1.564 mg/mL. The microscopy results showed that HeLa cells were severely distorted and showed slow growth; some cells became round in shape when treated with 5 mg/mL BBE for 24 h. The DNA ladder results revealed excessive DNA fragmentation in HeLa cells treated with 7 mg/mL BBE for 36 h. The proapoptotic activity of the BBE was attributed to its ability to modulate the expression of Bcl-2 and Bax genes. The mRNA and protein expression levels of Bax were remarkably higher whereas those of Bcl-2 were lower than those in the control cells; this led to an increased Bax/Bcl-2 ratio in cells treated with the BBE for 36 h. The results suggest that the BBE might play an important role in tumor growth suppression by inducing apoptosis in human cervical cancer cells via the regulation of the Bcl-2- and Bax-mediated apoptotic pathways.

  20. 3-Methyl pyruvate enhances radiosensitivity through increasing mitochondria-derived reactive oxygen species in tumor cell lines.

    PubMed

    Nishida, Naoya; Yasui, Hironobu; Nagane, Masaki; Yamamori, Tohru; Inanami, Osamu

    2014-05-01

    Considerable interest has recently been focused on the special characteristics of cancer metabolism, and several drugs designed to modulate cancer metabolism have been tested as potential anticancer agents. To date, however, very few studies have been conducted to investigate the combined effects of anticancer drugs and radiotherapy. In this study, to evaluate the role of mitochondria-derived reactive oxygen species (ROS) in the radiation-induced cell death of tumor cells, we have examined the effect of 3-methyl pyruvate (MP). MP is a membrane-permeable pyruvate derivative that is capable of activating mitochondrial energy metabolism in human lung carcinoma A549 cells and murine squamous carcinoma SCCVII cells. Pretreatment with MP significantly enhanced radiation-induced cell death in both cell lines, and also led to increases in the mitochondrial membrane potential, intracellular adenosine triphosphate content, and mitochondria-derived ROS production following the exposure of the cells to X-rays. In A549 cells, MP-induced radiosensitization was completely abolished by vitamin C. In contrast, it was partially abolished in SCCVII cells. These results therefore suggest that the treatment of the cells with MP induced radiosensitization via the production of excess mitochondria-derived ROS in tumor cells.

  1. Masitinib as a chemosensitizer of canine tumor cell lines: a proof of concept study.

    PubMed

    Thamm, D H; Rose, B; Kow, K; Humbert, M; Mansfield, C D; Moussy, A; Hermine, O; Dubreuil, P

    2012-01-01

    Masitinib, a selective tyrosine kinase inhibitor, has previously been shown to enhance the antiproliferative effects of gemcitabine in human pancreatic cancer, demonstrating potential as a chemosensitizer. This exploratory study investigated the ability of masitinib to sensitize various canine cancer cell lines to doxorubicin, vinblastine, and gemcitabine. Masitinib strongly sensitized histiocytic sarcoma cells to vinblastine (>70-fold reduction in IC(50) at 5 μM masitinib), as well as osteosarcoma and mammary carcinoma cells to gemcitabine (>70-fold reduction at 5-10 μM). In addition, several cell lines were sensitized to doxorubicin (2-10-fold reduction at 10 μM). These data establish proof-of-concept that masitinib in combination with chemotherapeutic agents can generate synergistic growth inhibition in various canine cancers, possibly through chemosensitization. The findings justify further investigation into those combinations that may potentially yield therapeutic benefit.

  2. Evaluation of novel trans-sulfonamide platinum complexes against tumor cell lines.

    PubMed

    Pérez, Carlos; Díaz-García, C Vanesa; Agudo-López, Alba; del Solar, Virginia; Cabrera, Silvia; Agulló-Ortuño, M Teresa; Navarro-Ranninger, Carmen; Alemán, José; López-Martín, José A

    2014-04-09

    Platinum-based drugs, mainly cisplatin, are employed for the treatment of solid malignancies. However, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. Here, the antitumor activity of different trans-sulfonamide platinum complexes in a panel of human cell lines is presented. The cytotoxicity profiles and cell cycle analyses of these platinum sulfonamide complexes were different from those of cisplatin. These studies showed that complex 2b with cyclohexyldiamine and dansyl moieties had the best antitumoral activities.

  3. Human mesenchymal stroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines.

    PubMed

    Yang, Yuanyuan; Otte, Anna; Hass, Ralf

    2015-05-15

    To analyze effects of cellular interaction between human mesenchymal stroma/stem cells (MSC) and different cancer cells, direct co-cultures were performed and revealed significant growth stimulation of the tumor populations and a variety of protein exchanges. More than 90% of MCF-7 and primary human HBCEC699 breast cancer cells as well as NIH:OVCAR-3 ovarian adenocarcinoma cells acquired CD90 proteins during MSC co-culture, respectively. Furthermore, SK-OV-3 ovarian cancer cells progressively elevated CD105 and CD90 proteins in co-culture with MSC. Primary small cell hypercalcemic ovarian carcinoma cells (SCCOHT-1) demonstrated undetectable levels of CD73 and CD105; however, both proteins were significantly increased in the presence of MSC. This co-culture-mediated protein induction was also observed at transcriptional levels and changed functionality of SCCOHT-1 cells by an acquired capability to metabolize 5'cAMP. Moreover, exchange between tumor cells and MSC worked bidirectional, as undetectable expression of epithelial cell adhesion molecule (EpCAM) in MSC significantly increased after co-culture with SK-OV-3 or NIH:OVCAR-3 cells. In addition, a small population of chimeric/hybrid cells appeared in each MSC/tumor cell co-culture by spontaneous cell fusion. Immune fluorescence demonstrated nanotube structures and exosomes between MSC and tumor cells, whereas cytochalasin-D partially abolished the intercellular protein transfer. More detailed functional analysis of FACS-separated MSC and NIH:OVCAR-3 cells after co-culture revealed the acquisition of epithelial cell-specific properties by MSC, including increased gene expression for cytokeratins and epithelial-like differentiation factors. Vice versa, a variety of transcriptional regulatory genes were down-modulated in NIH:OVCAR-3 cells after co-culture with MSC. Together, these mutual cellular interactions contributed to functional alterations in MSC and tumor cells.

  4. Isolation and Growth of Prostate Stem Cells and Establishing Cancer Cell Lines from Human Prostate Tumors

    DTIC Science & Technology

    2009-05-01

    RU, Cheng D, and Witte ON. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 2006; 29. Cunha GR...Hopkins School of Medicine Flow Sorting Facility) for their expert assistance and Jessica Hicks and Yuko Konishi (Johns Hopkins Department of...P. Mouse urogenital development: a practical approach. Differentiation 2003;71:402–13. 29. Xin L, Ide H, Kim Y, Dubey P, Witte ON. In vivo

  5. Role of I-TAC-binding receptors CXCR3 and CXCR7 in proliferation, activation of intracellular signaling pathways and migration of various tumor cell lines.

    PubMed

    Miekus, Katarzyna; Jarocha, Danuta; Trzyna, Elzbieta; Majka, Marcin

    2010-01-01

    Chemokines and its receptors stimulate tumor growth, migration and invasion. In this study we evaluated the expression and function of CXCR3 and CXCR7 receptors in cervical carcinoma, rhabdomyosarcoma and glioblastoma cell lines. We found that both receptors were expressed at different degree by tumor cells. CXCR7 was expressed at both mRNA and protein level by all tumor cell lines. The expression of CXCR7 differed between rhabdomyosarcoma subtypes. The receptor was highly expressed in alveolar rhabdomyosarcoma and the expression was low in embryonal rhabdomyosarcoma. The expression of CXCR3 was low in majority of the tumor cell lines. Upon I-TAC stimulation AKT and MAPK kinases were activated. However, the activation of growth promoting pathways did not increased the proliferation rate of tumor cells. Since chemokines stimulate the migration of various cell types the ability of I-TAC to stimulate migration of tumor cells were studied. We did not observe the migration of tumor cells toward I-TAC gradient alone. However, at the low dose, I-TAC sensitized tumor cells toward SDF-1beta gradient and synergized with SDF-1beta in activation of intracellular pathways. Our data suggest an important role of I-TAC and its receptors in biology of solid tumors and we postulate that I-TAC-binding receptors might be used as the potential targets for antitumor therapy.

  6. Overexpression of Aurora-A kinase promotes tumor cell proliferation and inhibits apoptosis in esophageal squamous cell carcinoma cell line.

    PubMed

    Wang, Xiao Xia; Liu, Rong; Jin, Shun Qian; Fan, Fei Yue; Zhan, Qi Min

    2006-04-01

    Aurora-A kinase, a serine/threonine protein kinase, is a potential oncogene. Amplification and overexpression of Aurora-A have been found in several types of human tumors, including esophageal squamous cell carcinoma (ESCC). It has been demonstrated that cells overexpressing Aurora-A are more resistant to cisplatin-induced apoptosis. However, the molecular mechanisms mediating these effects remain largely unknown. In this report, we showed that overexpression of Aurora-A through stable transfection of pEGFP-Aurora-A in human ESCC KYSE150 cells significantly promoted cell proliferation and inhibited cisplatin- or UV irradiation-induced apoptosis. Cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP) in Aurora-A overexpressing cells were substantially reduced after cisplatin or UV treatment. Furthermore, we found that silencing of endogenous Aurora-A kinase with siRNA substantially enhanced sensitivity to cisplatin- or UV-induced apoptosis in human ESCC EC9706 cells. In parallel, overexpression of Aurora-A potently upregulated the expression of Bcl-2. Moreover, the knockdown of Bcl-2 by siRNA abrogated the Aurora-A's effect on inhibiting apoptosis. Taken together, these data provide evidence that Aurora-A overexpression promoting cell proliferation and inhibiting apoptosis, suggesting a novel mechanism that is closely related to malignant phenotype and anti-cancer drugs resistance of ESCC cells.

  7. Growth inhibition of MCF-7 tumor cell line by phenylacetate linked to functionalized dextran.

    PubMed

    Frank, L; Avramoglou, T; Sainte-Catherine, O; Jozefonvicz, J; Kraemer, M

    2004-01-01

    We investigated the antiproliferative effect of phenylacetate covalently linked to dextran derivatives (DMCBPA conjugates) on human breast cancer MCF-7 cells. We show that free sodium phenylacetate (NaPA) inhibits the cell growth (IC50 = 14 mM), while an important inhibitory effect is observed for DMCBPA conjugates. The IC50 dose of these conjugates is as low as 1.0 mg/ml, corresponding to 1.3 mM of phenylacetate. The precursors, dextran substituted with methylcarboxylate and benzylamide groups, did not affect the growth of MCF-7 tumor cells. We have observed that MCF-7 cell growth inhibition depends on amount of phenylacetate linked to the conjugate. The data indicated that an optimum antiproliferative effect is more significant when the amount of phenylacetate groups present on the dextran backbone is high. Analysis of doubling time by growth kinetics study shows that conjugates have more time-sustained effect than free NaPA. It is noteworthy that the inhibitory effect is observed at non-toxic concentration. Theses conjugates could be considered as acceptable derivatives to prevent tumor progression.

  8. Tanespimycin and tipifarnib exhibit synergism in inducing apoptosis in melanoma cell lines from later stages of tumor progression.

    PubMed

    Bentke, Anna; Małecki, Jędrzej; Ostrowska, Barbara; Krzykowska-Petitjean, Katarzyna; Laidler, Piotr

    2013-10-01

    Many anticancer strategies rely on efficient induction of apoptosis. The need for development of drug combinations with a strong pro-apoptotic activity is of particular interest in melanoma resistant to currently available chemotherapeutic regimes. We studied the pro-apoptotic properties of combination of tanespimycin+tipifarnib in five melanoma cell lines representing various stages of tumor progression. Our results show that in cells derived from vertical- and metastatic-phase the combination of tested drugs is strongly cytotoxic and efficient in inducing apoptosis, as evidenced by activation of caspase-9 and caspase-3 and enhanced fragmentation of DNA.

  9. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines

    PubMed Central

    Döll-Boscardin, Patrícia Mathias; Sartoratto, Adilson; Sales Maia, Beatriz Helena Lameiro de Noronha; Padilha de Paula, Josiane; Nakashima, Tomoe; Farago, Paulo Vitor; Kanunfre, Carla Cristine

    2012-01-01

    Eucalyptus L. is traditionally used for many medicinal purposes. In particular, some Eucalyptus species have currently shown cytotoxic properties. Local Brazilian communities have used leaves of E. benthamii as a herbal remedy for various diseases, including cancer. Considering the lack of available data for supporting this cytotoxic effect, the goal of this paper was to study the in vitro cytotoxic potential of the essential oils from young and adult leaves of E. benthamii and some related terpenes (α-pinene, terpinen-4-ol, and γ-terpinene) on Jurkat, J774A.1 and HeLa cells lines. Regarding the cytotoxic activity based on MTT assay, the essential oils showed improved results than α-pinene and γ-terpinene, particularly for Jurkat and HeLa cell lines. Terpinen-4-ol revealed a cytotoxic effect against Jurkat cells similar to that observed for volatile oils. The results of LDH activity indicated that cytotoxic activity of samples against Jurkat cells probably involved cell death by apoptosis. The decrease of cell DNA content was demonstrated due to inhibition of Jurkat cells proliferation by samples as a result of cytotoxicity. In general, the essential oils from young and adult leaves of E. benthamii presented cytotoxicity against the investigated tumor cell lines which confirms their antitumor potential. PMID:22645627

  10. Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines.

    PubMed

    Zhao, Cui-rong; Wang, Rui-qi; Li, Gang; Xue, Xiao-xia; Sun, Chang-jun; Qu, Xian-jun; Li, Wen-bao

    2013-04-01

    New series of indazole based diarylureas were synthesized and their anticancer activity against cancer cells H460, A549, OS-RC-2, HT-29, Lovo, HepG2, Bel-7402, SGC-7901 and MDA-MB-231 were examined. These derivatives of diarylureas, except azaindazole based diarylureas 5f, 5l and 5m, showed superior or similar activity against most of these selected cancer cell lines to the reference compound sorafenib. The effect of substituents on the indazole ring was also investigated. Derivatives with trifluoromenthy or halogen substituent on the indazole ring showed higher activity against the selected cancer cell lines than sorafenib. The acute toxicity assay showed that compounds 5a, 5b and 5i possessed lower toxicity than sorafenib. Compound 5i with 4-(trifluoromenthy)-1H-indazole and 4-(trifluoromenthy) benzene moieties exhibited the most potent anticancer activity.

  11. The New Immortalized Uroepithelial Cell Line HBLAK Contains Defined Genetic Aberrations Typical of Early Stage Urothelial Tumors

    PubMed Central

    Hoffmann, Michèle J.; Koutsogiannouli, Evangelia; Skowron, Margaretha A.; Pinkerneil, Maria; Niegisch, Günter; Brandt, Artur; Stepanow, Stefanie; Rieder, Harald; Schulz, Wolfgang A.

    2016-01-01

    Background: Cell culture models of normal urothelial cells are important for studying differentiation, disease mechanisms and anticancer drug development. Beyond primary cultures with their limitations in lifespan, interindividual heterogeneity and supply, few conditionally immortalized cell lines with limited applicability due to partial transformation or impaired differentiation capacity are available. We describe characteristics of the new spontaneously immortalized cell line HBLAK derived from a primary culture of uroepithelial cells. Objective: To characterize utility and limitations of HBLAK cells as an urothelial cell culture model. Methods: Differentiation markers were investigated by immunofluorescence and RT-PCR, genetic changes by standard karyotyping, array-CGH, PCR, RT-PCR and exome sequencing; expression of p53 and p21 by Western blotting. Results: HBLAK cells proliferated for >50 passages without senescing. They expressed cytokeratins of basal urothelial cells. Terminal differentiation markers appeared only after induction of differentiation by specific protocols. The karyotype was stable, with few chromosomal changes, especially gains of chromosomes 5 and 20 and a chromosome 9p21 deletion resulting in p16INK4A loss. A C228T TERT promoter mutation was present, but no other mutation typical of urothelial carcinoma. TP53 was wild-type and the cell cycle was arrested in response to genomic stress. Conclusions: HBLAK cells retain some differentiation potential and respond to cytotoxic agents similar to normal urothelial cells, but contain genetic changes contributing to immortalization in urothelial tumors. HBLAK may be valuable for evaluating the tumor specificity of novel cancer drugs, but may also be applied as an urothelial in vitro carcinogenesis model. PMID:28035326

  12. Analysis of protective and cytotoxic immune responses in vivo against metabolically inactivated and untreated cells of a mutagenized tumor line (requirements for tumor immunogenicity)

    SciTech Connect

    Wehrmaker, A.; Lehmann, V.; Droege, W.

    1986-09-01

    The immunogenicity of a mutagenized subline (ESb-D) of the weakly immunogenic T-cell lymphoma L 5178 Y ESb has been characterized. The injection of 10(6) ESb-D cells ip did not establish lethal tumors in untreated DBA/2 mice but established tumors in sublethally irradiated mice. Injection of ESb-D cells into otherwise untreated DBA/2 mice established also a state of protective immunity against the subsequent injection of otherwise lethal doses of ESb tumor cells. Protection was only obtained after injection of intact but not UV-irradiated or mitomycin-C-treated ESb-D cells. A direct T-cell-mediated cytotoxic activity was also demonstrable in the spleen cells of DBA/2 mice after injection of ESb-D cells but not ESb cells. The cytotoxic activity was variant specific for ESb-D target cells, and it was induced only with intact but not UV-irradiated or mitomycin C-treated ESb-D cells. This suggested that the induction of protective and cytotoxic immunity may require the persistence of the antigen or unusually high antigen doses. The in vivo priming for a secondary in vitro cytotoxic response, in contrast, was achieved with intact and also with mitomycin C-treated ESb-D cells but again not with UV-irradiated ESb-D cells. This indicated that the metabolic activity was a minimal requirement for the in vivo immunogenicity of the ESb-D tumor line. The secondary cytotoxic activity was demonstrable on ESb-D and ESb target cells and could be restimulated in vitro about equally well with ESb-D and ESb cells. But the in vivo priming was again only obtained with ESb-D cells and not with ESb cells. These experiments thus demonstrated that the requirements for immunogenicity are more stringent in vivo than in vitro, and more stringent for the induction of direct cytotoxic and protective immunity in vivo than for the in vivo priming for secondary in vitro responses.

  13. Neovibsanin B inhibits human malignant brain tumor cell line proliferation and induces apoptosis.

    PubMed

    Cui, Yi-Fen; Yuan, Xiao-Lin; Fan, Wen-Hai; Li, Sheng-Fan; Deng, Yu-Qin; Zhang, Qing; Zhang, Chun-Lei; Yang, Zhen

    2015-01-01

    The present study was designed to examine the effect of neovibsanin B on glioma cell viability, apoptosis and on the survival time in mice bearing tumor xenografts. The results demonstrated that neovibsanin B significantly reduced the cell viability of GL261-NS and GL261-AC cells in a dose-dependent manner. However the inhibition of proliferation was more significant in GL261-NS cells. The IC50 value of neovibsanin B against GL261-NS and GL261-AC cells is 5 and 25 nM, respectively. The inhibitory effect of neovibsanin B on cell growth was more effective than that of vincristine (VCR) (P < 0.05). We also observed a significant decrease in sphere-forming ability of GL261-NS cells on treatment with neovibsanin B. The number of colonies formed by GL261-NS cells on treatment with neovibsanin B, VCR and DMSO were 3.34 ± 1.02, 12.53 ± 3.46 and 61.34 ± 9.89% respectively after 7 days. The flow cytometry revealed a marked increase in apoptotic cell death of GL261-NS cells on treatment with neovibsanin B. The western blots showed a significant decrease in the level of activated caspase-3 on treatment with neovibsanin B after 24 h. In addition, neovibsanin B increased the median survival time of glioma-bearing mice (P < 0.05). Therefore, neovibsanin B effectively inhibits glioma cell viability by inducing apoptosis, and can be a potent therapeutic agent for the treatment of malignant glioma.

  14. Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines.

    PubMed

    Seeram, Navindra P; Adams, Lynn S; Hardy, Mary L; Heber, David

    2004-05-05

    Cranberries (Vaccinium macrocarpon Ait.) are an excellent dietary source of phytochemicals that include flavonol glycosides, anthocyanins, proanthocyanidins (condensed tannins), and organic and phenolic acids. Using C-18 and Sephadex Lipophilic LH-20 column chromatography, HPLC, and tandem LC-ES/MS, the total cranberry extract (TCE) has been analyzed, quantified, and separated into fractions enriched in sugars, organic acids, total polyphenols, proanthocyanidins, and anthocyanins (39.4, 30.0, 10.6, 5.5, and 1.2% composition, respectively). Using a luminescent ATP cell viability assay, the antiproliferative effects of TCE (200 microg/mL) versus all fractions were evaluated against human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620), and prostate (RWPE-1, RWPE-2, 22Rv1) cancer cell lines. The total polyphenol fraction was the most active fraction against all cell lines with 96.1 and 95% inhibition of KB and CAL27 oral cancer cells, respectively. For the colon cancer cells, the antiproliferative activity of this fraction was greater against HCT116 (92.1%) than against HT-29 (61.1%), SW480 (60%), and SW620 (63%). TCE and all fractions showed >/=50% antiproliferative activity against prostate cancer cells with total polyphenols being the most active fraction (RWPE-1, 95%; RWPE-2, 95%; 22Rv1, 99.6%). Cranberry sugars (78.8 microg/mL) did not inhibit the proliferation of any cancer cell lines. The enhanced antiproliferative activity of total polyphenols compared to TCE and its individual phytochemicals suggests synergistic or additive antiproliferative interactions of the anthocyanins, proanthocyanidins, and flavonol glycosides within the cranberry extract.

  15. PAX8 is transcribed aberrantly in cervical tumors and derived cell lines due to complex gene rearrangements.

    PubMed

    López-Urrutia, Eduardo; Pedroza-Torres, Abraham; Fernández-Retana, Jorge; De Leon, David Cantu; Morales-González, Fermín; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; García-Mendez, Jorge; García-Castillo, Verónica; Bautista-Isidro, Osvaldo; Pérez-Plasencia, Carlos

    2016-07-01

    The transcription factor PAX8, a member of the paired box-containing gene family with an important role in embryogenesis of the kidney, thyroid gland and nervous system, has been described as a biomarker in tumors of the thyroid, parathyroid, kidney and thymus. The PAX8 gene gives rise to four isoforms, through alternative mRNA splicing, but the splicing pattern in tumors is not yet established. Cervical cancer has a positive expression of PAX8; however, there is no available data determining which PAX8 isoform or isoforms are present in cervical cancer tissues as well as in cervical carcinoma-derived cell lines. Instead of a differential pattern of splicing isoforms, we found numerous previously unreported PAX8 aberrant transcripts ranging from 378 to 542 bases and present in both cervical carcinoma-derived cell lines and tumor samples. This is the first report of PAX8 aberrant transcript production in cervical cancer. Reported PAX8 isoforms possess differential transactivation properties; therefore, besides being a helpful marker for detection of cancer, PAX8 isoforms can plausibly exert differential regulation properties during carcinogenesis.

  16. Human C1q Induces Apoptosis in an Ovarian Cancer Cell Line via Tumor Necrosis Factor Pathway

    PubMed Central

    Kaur, Anuvinder; Sultan, Sami H. A.; Murugaiah, Valarmathy; Pathan, Ansar A.; Alhamlan, Fatimah S.; Karteris, Emmanouil; Kishore, Uday

    2016-01-01

    Complement protein C1q is the first recognition subcomponent of the complement classical pathway that plays a vital role in the clearance of immune complexes, pathogens, and apoptotic cells. C1q also has a homeostatic role involving immune and non-immune cells; these functions not necessarily involve complement activation. Recently, C1q has been shown to be expressed locally in the microenvironment of a range of human malignant tumors, where it can promote cancer cell adhesion, migration, and proliferation, without involving complement activation. C1q has been shown to be present in the ascitic fluid formed during ovarian cancers. In this study, we have examined the effects of human C1q and its globular domain on an ovarian cancer cell line, SKOV3. We show that C1q and the recombinant globular head modules induce apoptosis in SKOV3 cells in a time-dependent manner. C1q expression was not detectable in the SKOV3 cells. Exogenous treatment with C1q and globular head modules at the concentration of 10 µg/ml induced apoptosis in approximately 55% cells, as revealed by immunofluorescence microscopy and FACS. The qPCR and caspase analysis suggested that C1q and globular head modules activated tumor necrosis factor (TNF)-α and upregulated Fas. The genes of mammalian target of rapamycin (mTOR), RICTOR, and RAPTOR survival pathways, which are often overexpressed in majority of the cancers, were significantly downregulated within few hours of the treatment of SKOV3 cells with C1q and globular head modules. In conclusion, C1q, via its globular domain, induced apoptosis in an ovarian cancer cell line SKOV3 via TNF-α induced apoptosis pathway involving upregulation of Bax and Fas. This study highlights a potentially protective role of C1q in certain cancers. PMID:28066412

  17. Genetic and epigenetic aberrations of p16 in feline primary neoplastic diseases and tumor cell lines of lymphoid and non-lymphoid origins.

    PubMed

    Mochizuki, H; Fujiwara-Igarashi, A; Sato, M; Goto-Koshino, Y; Ohno, K; Tsujimoto, H

    2017-01-01

    The p16 gene acts as a tumor suppressor by regulating the cell cycle and is frequently inactivated in human and canine cancers. The aim of this study was to characterize genetic and epigenetic alterations of the p16 in feline lymphoid and non-lymphoid malignancies, using 74 primary tumors and 11 tumor cell lines. Cloning of feline p16 and subsequent sequence analysis revealed 11 germline sequence polymorphisms in control cats. Bisulfite sequencing analysis of the p16 promoter region in a feline lymphoma cell line revealed that promoter methylation was associated with decreased mRNA expression. Treatment with a demethylating agent restored mRNA expression of the silenced p16. PCR amplification and sequencing analysis detected homozygous loss (five tumors, 6.7%) and a missense mutation (one tumor, 1.4%) in the 74 primary tumors analyzed. Methylation-specific PCR analysis revealed promoter methylation in 10 primary tumors (14%). Promoter methylation was frequent in B cell lymphoid tumors (7/21 tumors, 33%). These genetic and epigenetic alterations were also observed in lymphoma and mammary gland carcinoma cell lines, but not detected in non-neoplastic control specimens. These data indicate that molecular alterations of the p16 locus may be involved in the development of specific types of feline cancer, and warrant further studies to evaluate the clinical value of this evolutionarily-conserved molecular alteration in feline cancers.

  18. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27

    PubMed Central

    BAKIREL, Tülay; ALKAN, Fulya Üstün; ÜSTÜNER, Oya; ÇINAR, Suzan; YILDIRIM, Funda; ERTEN, Gaye; BAKIREL, Utku

    2016-01-01

    Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor activities on many types of malignant tumors. These anticancer properties make it worthwhile to examine the possible benefit of combining COX inhibitors with other anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells (CMT-U27). DER (50–250 µM) enhanced the antiproliferative activity of DOX by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of the data showed that combinations of DOX at 0.9 µM with DER (100–250 µM) produced synergism in the CMT-U27 cell line, with a ratio index ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed synergistic effect, we found that DER strongly potentiated DOX-caused G0/G1 arrest in cell cycle progression. Also, DER (100–250 µM) augmented apoptosis induction with approximately 1.35- and 1.37- fold increases in apoptotic response caused by DOX in the cells. DER enhanced the antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with DER and DOX combinations require further investigations, the results suggest that the synergistic effect of DOX and DER combinations in CMT therapy may be achieved at relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX may prove beneficial in the clinical treatment of canine mammary cancer. PMID:26822118

  19. Eosinophil Cell Lines in a Tri-Cell Multicellular Tumor Spheroid (MTS)/Endothelium Complex: Down Regulation of Adhesion and Integrin Molecules-Implications of Metastasis Inhibition

    DTIC Science & Technology

    2003-10-01

    Figure 4. Presence of IL-5 in cultured supernatants of eosinophil cell lines II. Cultured supernatants from the allergy /asthma positive, breast cancer...Current tremendous immunoregulatory capacity. The controversy understanding. J Allergy Clin Immunol 85: 422-436,1990. around the prognostic valhe of...attachment and infiltration of ensinophils into the core of the properties of eosinophi! granule major basic protein for tumor cells. tat Arch Allergy

  20. Effects of doxorubicin mediated by gold nanoparticles and resveratrol in two human cervical tumor cell lines.

    PubMed

    Tomoaia, Gheorghe; Horovitz, Ossi; Mocanu, Aurora; Nita, Andreea; Avram, Alexandra; Racz, Csaba Pal; Soritau, Olga; Cenariu, Mihai; Tomoaia-Cotisel, Maria

    2015-11-01

    Green synthesis of gold nanoparticles capped with resveratrol (GNPs) and their physical and chemical characterization by UV-vis spectra, FTIR, DLS, XRD, TEM and AFM are reported. The GNPs are highly stable, with average diameter of about 20 nm. Then, supramolecular nanoassemblies of GNPs and doxorubicin (Dox), Dox-GNPs complexes, were prepared and morphologically characterized. The stability of these Dox nanocomplexes is high in phosphate buffer saline as estimated by UV-vis spectra, TEM and AFM analysis. Effects of resveratrol (Resv), Resv-Dox mixtures, GNPs and Dox-GNPs complexes on HeLa and CaSki cells, after 24h drug incubation, were assessed using MTT cell viability assay. Results showed strong anticancer activity for Resv-Dox mixtures and Dox-GNPs complexes in the two human cervical carcinoma cell lines. Clearly, both Resv and GNPs can mediate the anticancer activity of Dox at its very low concentration of 0.1 μg/mL, reaching the cytotoxicity of Dox alone, at its concentration up to 20 times higher. Cytotoxic effects of Resv-Dox mixtures and Dox-GNPs complexes have been found for the first time in HeLa and CaSki cells. Furthermore, the apoptosis induction in HeLa and CaSki cells was evidenced for Resv-Dox mixtures and Dox-GNPs complexes by flow cytometry using Annexin V-FITC/propidium iodide cellular staining. For CaSki cells, the apoptosis was also demonstrated, mainly for the treatment with Dox-GNPs complexes, by MTT formazan cellular staining visualized in phase contrast microscopy. Our results provide strong evidence that novel drug delivery vehicles developed on Dox-GNPs nanocomplexes and Resv could have wide applications in cancer diagnosis and treatment.

  1. Modulation of Adhesion Molecule Expression on Prostate Tumor Cells after Co-Culture with Eosinophilic Cell Lines

    DTIC Science & Technology

    2001-10-01

    and/or regulate eosinophil activity(8 ). Eosinophils have been traditionally known as anti- helminthic effector cells and inflammatory agents in...the monolayer assay. In order to quantitate the inhibitory activity observed in the monolayer assays, we utilized a Chemi- Imager 4000 (alpha Innotech...experiments, eosinophil:tumor cell clusters were observed. This thus- created high density values which were readily detected by the Chemi- Imager

  2. Hsa-let-7a functions as a tumor suppressor in renal cell carcinoma cell lines by targeting c-myc

    SciTech Connect

    Liu, Yongchao; Yin, Bingde; Zhang, Changcun; Zhou, Libin; Fan, Jie

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer This study is the first to test the let-7a/c-myc loop in renal cell carcinoma cell lines. Black-Right-Pointing-Pointer Let-7a down-regulated c-myc in three renal cell carcinoma cell lines. Black-Right-Pointing-Pointer c-myc target genes were down-regulated because of the let-7a-mediated down-regulation of c-myc. Black-Right-Pointing-Pointer The let-7a/c-myc loop has a significant function in renal cell carcinoma cell lines. -- Abstract: Widespread functions of the c-myc pathway play a crucial role in renal cell carcinoma (RCC) carcinogenesis. Thus, we evaluated the connection between proto-oncogenic c-myc and anti-neoplastic hsa-let-7a (let-7a) in RCC cell lines. The levels of c-myc and let-7a in 3 RCC cell lines (769P, Caki-1 and 786O) were measured after transfecting the cells with let-7a mimics or a negative control. The change in c-myc protein level was confirmed by Western blot. The anti-neoplastic function of let-7a was evaluated using cell counting kit-8 (CCK-8) for proliferation analysis and cell flow cytometry for cell cycle analysis. The changes of downstream targets of c-myc were measured using reverse transcription quantitative real-time PCR (qRT-PCR). Our results suggest for the first time that let-7a acts as a tumor suppressor in RCC cell lines by down-regulating c-myc and c-myc target genes such as proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1) and the miR17-92 cluster, which is accompanied by proliferation inhibition and cell cycle arrest.

  3. Expression of human LINE-1 elements in enhanced by isochromosome 12p; evidence from testicular germ cell tumors and the Pallister-Killian syndrome

    SciTech Connect

    Swergold, D.

    1994-09-01

    Expression of the human LINE-1 (L1Hs) transposable element is restricted to a narrow range of cell types. Specific expression of either endogenous elements or transfected recombinant elements has been reported primarily in tumors and cell lines of germ cell origin, including the NTera2D1, 2102EP, and JEG3 cell lines. These tumors and cell lines often contain one or more copies of isochromosome 12p, or translocations of 12p. Another human condition, the Pallister-Killian syndrome, is also characterized by the mosaic presence of an isochromosome 12p in patient`s cells. M28, a previously described somatic hybrid cell line, contains a human isochromosone 12p derived from fibroblasts of a patient with Pallister-Killian syndrome in a mouse LMTK-background. I asked whether the M28 cell line would exhibit enhanced expression of endogenous or transfected L1Hs elements. Expression of transfected recombinant L1Hs elements was 10-20 fold higher in M28 than in LMTK-cells. Expression of L1Hs elements was not increased in the GM10868A somatic cell hybrid line which contains a complete human chromosome 12 in a Chinese Hamster Ovary background. Somatic cell hybrid lines containing various human chromosomes in a LMTK-background also exhibited no enhanced L1Hs expression. P40, the protein encoded by the L1Hs first open reading frame, was detected in NTera2D1 but not in non-transfected M28 cells. Preliminary promoter deletion experiments indicate that similar, but non-identical regions of the L1Hs 5{prime} UTR, contribute to high level expression in the NTera2D1 and the M28 cell lines. These data suggest that the enhanced expression of human LINE-1 elements in tumors of germ cell origin is due in part to the presence of the isochromosome 12p.

  4. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines. Addendum

    DTIC Science & Technology

    2006-06-01

    first branchial arch mesenchymal populations, as well as trigeminal ganglion non- neuronal cells, from mouse embryos and measured their performance in...responses to PDGF-BB in human MPNST, as compared to normal Schwann cells, and we have used our MPNST lines and cultures of embryonic Schwann cells to...can be isolated prior to this stage and maintained in culture. Sensory and sympathetic neurons isolated from Nf1-deficient mouse embryos survive

  5. Inhibition of Enhancer of Zeste Homolog 2 (EZH2) expression is associated with decreased tumor cell proliferation, migration and invasion in endometrial cancer cell lines

    PubMed Central

    Eskander, Ramez N.; Ji, Tao; Huynh, Be; Wardeh, Rooba; Randall, Leslie M; Hoang, Bang

    2013-01-01

    Objective To investigate the impact of Enhancer of Zeste Homolog 2 (EZH2) expression on endometrial cancer cell line behavior. Methods/materials EZH2 expression levels were compared between the non-malignant endometrial cell line T-HESC, and 3 endometrial cancer cell lines, ECC-1, RL95-2 and HEC1-A. Stable EZH2 knockdown cell lines were created and the impact on cellular proliferation, migration and invasion were determined. Fluorescent activated cell sorting was used to examine effects of EZH2 silencing on cell cycle progression. EZH2 expression in endometrial cancer tissue specimens was examined using immunohistochemistry. Comparison of differences between control and shEZH2 cell lines was performed using student's t test and Fischer's exact test. Results EZH2 protein expression was increased in all 3 cancer cell lines, and human endometrial cancer tissue specimens relative to control. RNA interference of EZH2 expression in ECC-1, RL95-2, and HEC1-A significantly decreased cell proliferation, migration and invasion. Down regulation of EZH2 expression resulted in a significant increase in the proportion of cells arrested in G2/M. RNA interference of EZH2 expression was associated with an increase in the expression of Wnt pathway inhibitors sFRP1 and DKK3, and a concomitant decrease in β-catenin. EZH2 expression in human tissue samples was significantly associated with increased stage, grade, depth of invasion and nodal metastasis. Conclusions EZH2 expression is associated with tumor cell proliferation, migration and invasion in 3 endometrial cancer cell lines, as well as increased stage, grade, depth of invasion and nodal metastasis in human cancer tissue specimens. Further investigation into this potential therapeutic target is warranted. PMID:23792601

  6. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    SciTech Connect

    Gestl, Erin E.; Anne Boettger, S.

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated with p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53

  7. Identification of a small, naked virus in tumor-like aggregates in cell lines derived from a green turtle, Chelonia mydas, with fibropapillomas

    USGS Publications Warehouse

    Lu, Y.; Aguirre, A.A.; Work, T.M.; Balazs, G.H.; Nerurkar, V.R.; Yanagihara, R.

    2000-01-01

    Serial cultivation of cell lines derived from lung, testis, periorbital and tumor tissues of a green turtle (Chelonia mydas) with fibropapillomas resulted in the in vitro formation of tumor-like cell aggregates, ranging in size from 0.5 to 2.0 mm in diameter. Successful induction of tumor-like aggregates was achieved in a cell line derived from lung tissue of healthy green turtles, following inoculation with cell-free media from these tumor-bearing cell lines, suggesting the presence of a transmissible agent. Thin-section electron microscopy of the cell aggregates revealed massive collagen deposits and intranuclear naked viral particles, measuring 50??5 nm in diameter. These findings, together with the morphological similarity between these tumor-like cell aggregates and the naturally occurring tumor, suggest a possible association between this novel virus and the disease. Further characterization of this small naked virus will clarify its role in etiology of green turtle fibropapilloma, a life-threatening disease of this endangered marine species. Copyright (C) 2000 Elsevier Science B.V.

  8. Microencapsulated tumor assay: new short-term assay for in vivo evaluation of the effects of anticancer drugs on human tumor cell lines.

    PubMed

    Gorelik, E; Ovejera, A; Shoemaker, R; Jarvis, A; Alley, M; Duff, R; Mayo, J; Herberman, R; Boyd, M

    1987-11-01

    A new in vivo has been developed for evaluating the antitumor activity of chemotherapeutic drugs. The assay is based on a microencapsulation technology developed by Damon Biotech, Inc., Boston, MA, which makes it possible to encapsulate human tumor cells in small (about 1 mm in diameter) microcapsules with semipermeable membranes. Microcapsules containing human tumor cells were injected i.p. into nude or C57BL/6 mice and drugs were administered i.v. The microcapsules were recovered at various intervals following treatment and determinations of drug effects were made based on the differences in the number of tumor cells recovered from the treated and nontreated animals. Using this assay we found that (a) encapsulated tumor cells grew better in the in vivo system than in vitro under the conditions tested; (b) drugs crossed the capsular membrane and killed or inhibited the proliferation of tumor cells; and (c) the antitumor effect was consistent with the relative therapeutic efficacy of drugs or level of resistance of tumor cells detected by other in vitro or in vivo tests. The tumor microencapsulation assay offers several properties which make it attractive for use in new drug development: (a) the antitumor activity of drugs can be tested against human tumor cells under conditions which provide for three-dimensional growth and in vivo supply of nutrients; (b) the sensitivity of tumor cells can be assessed following exposure to drugs at concentrations which are achievable in vivo; (c) compounds requiring in vivo metabolic activation can be tested; (d) the effect of each drug injection can be quickly evaluated; (e) inhibition of tumor cell proliferation versus cytoreductive effects of drugs can be discriminated; (f) the test is applicable to virtually all histological types of human tumor cells; and (g) the tumor microencapsulation assay is a short-term, simple, and relatively inexpensive assay.

  9. Modulation of transglutaminase activity in mononuclear phagocytes and macrophage-like tumor cell lines by differentiation agents

    SciTech Connect

    Goldman, R.

    1987-01-01

    The effect of glucocorticosteroids, retinoids, 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/) and the tumor promoter phorbol myristate acetate (TPA) on the expression of transglutaminase activity in in vitro differentiating bone marrow-derived mouse and rat mononuclear phagocytes (BMDMP) and mouse and human myeloid leukemia cell lines was assessed. Dexamethasone was found to induce an increase of about 100% in transglutaminase activity in mouse and rat BMDMP. The effect was time- and dose-dependent, and specific for steroids with glucocorticoid activity. Retinoic acid (RA) suppressed transglutaminase activity in mouse BMDMP and enhanced it in rat BMDMP. In murine and human myeloid leukemia cell lines, dexamethasone enhanced transglutaminase activity to a varying degree, RA suppressed it in P388D1 cells and enhanced it in the other cell lines. 1,25(OH)/sub 2/D/sub 3/ induced a rather small augmentation of enzyme expression, whereas TPA suppressed enzyme expression (70-100%). The species-specific differences previously observed by the authors for the effect of RA, dexamethasone and 1,25(OH)/sub 2/D/sub 3/ on the formation of BMDMP from mouse and rat bone marrow progenitor cells are now shown to extend also to effects on expression of transglutaminase activity. From a mechanistic point of view it is of interest that dexamethasone uniformly enhanced transglutaminase activity, whereas TPA suppressed it. The data suggest that modulation of transglutaminase activity by the four agents occurs via disparate mechanisms.

  10. Regulation of Prostate Tumor Cell Line Proliferation and Tumorigenicity by ErbB4

    DTIC Science & Technology

    2005-02-01

    family of tyrosine kinases, which tumors of the thyroid , breast, and gastrointestinal tract (11- includes EGFR/ErbB1, ErbB2/HER2/Neu, and ErbB3/ 14...ErbB2 is observed medulloblastoma (one of the most common solid tumors of in many human malignancies. In contrast, the roles childhood), patients...Prognostic significance of HER2 and HER4 coexpression in resentative of three independent experiments, childhood medulloblastoma . Cancer Res., 57

  11. Defining the sister rat mammary tumor cell lines HH-16 cl.2/1 and HH-16.cl.4 as an in vitro cell model for Erbb2.

    PubMed

    Louzada, Sandra; Adega, Filomena; Chaves, Raquel

    2012-01-01

    Cancer cell lines have been shown to be reliable tools in genetic studies of breast cancer, and the characterization of these lines indicates that they are good models for studying the biological mechanisms underlying this disease. Here, we describe the molecular cytogenetic/genetic characterization of two sister rat mammary tumor cell lines, HH-16 cl.2/1 and HH-16.cl.4, for the first time. Molecular cytogenetic analysis using rat and mouse chromosome paint probes and BAC/PAC clones allowed the characterization of clonal chromosome rearrangements; moreover, this strategy assisted in revealing detected breakpoint regions and complex chromosome rearrangements. This comprehensive cytogenetic analysis revealed an increase in the number of copies of the Mycn and Erbb2 genes in the investigated cell lines. To analyze its possible correlation with expression changes, relative RNA expression was assessed by real-time reverse transcription quantitative PCR and RNA FISH. Erbb2 was found to be overexpressed in HH-16.cl.4, but not in the sister cell line HH-16 cl.2/1, even though these lines share the same initial genetic environment. Moreover, the relative expression of Erbb2 decreased after global genome demethylation in the HH-16.cl.4 cell line. As these cell lines are commercially available and have been used in previous studies, the present detailed characterization improves their value as an in vitro cell model. We believe that the development of appropriate in vitro cell models for breast cancer is of crucial importance for revealing the genetic and cellular pathways underlying this neoplasy and for employing them as experimental tools to assist in the generation of new biotherapies.

  12. Anti-Tumor Activity of Eurycoma longifolia Root Extracts against K-562 Cell Line: In Vitro and In Vivo Study

    PubMed Central

    Majid, Amin Malik Shah Abdul; Kit-Lam, Chan; Abdullah, Wan Zaidah; Zaki, Abdelhamid; Jamal Din, Shah Kamal Khan; Yusoff, Narazah Mohd

    2014-01-01

    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 107 K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management. PMID:24409284

  13. Anti-tumor activity of Eurycoma longifolia root extracts against K-562 cell line: in vitro and in vivo study.

    PubMed

    Al-Salahi, Omar Saeed Ali; Ji, Dan; Majid, Amin Malik Shah Abdul; Kit-Lam, Chan; Abdullah, Wan Zaidah; Zaki, Abdelhamid; Jamal Din, Shah Kamal Khan; Yusoff, Narazah Mohd; Majid, Aman Shah Abdul

    2014-01-01

    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 10(7) K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1 and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management.

  14. The Anti-Aging and Tumor Suppressor Protein Klotho Enhances Differentiation of a Human Oligodendrocytic Hybrid Cell Line

    PubMed Central

    Chen, Ci-Di; Liang, Jennifer; Hixson, Kathryn; Zeldich, Ella; Abraham, Carmela R.

    2016-01-01

    Klotho functions as an aging suppressor, which, in mice, extends lifespan when overexpressed and accelerates development of aging-like phenotypes when disrupted. Klotho is mainly expressed in brain and kidney and is secreted into the serum and CSF. We have previously shown that Klotho is reduced in brains of old monkeys, rats, and mice. We further reported the ability of Klotho to enhance oligodendrocyte differentiation and myelination. Here, we examined the signaling pathways induced by Klotho in MO3.13, a human oligodendrocytic hybrid cell line. We show that exogenous Klotho affects the ERK and Akt signaling pathways, decreases the proliferative abilities and enhances differentiation of MO3.13 cells. Furthermore, microarray analysis of Klotho-treated MO3.13 cells reveals a massive change in gene expression with 80 % of the differentially expressed genes being downregulated. Using gene set enrichment analysis, we predicted potential transcription factors involved in regulating Klotho-treated MO3.13 cells and found that these cells are highly enriched in the gene sets, that are similarly observed in cancer, cardiovascular disease, stress, aging, and hormone-related chemical and genetic perturbations. Since Klotho is downregulated in all brain tumors tested to date, enhancing Klotho has therapeutic potential for treating brain and other malignancies. PMID:24907942

  15. Induction (or stimulatin) of prolactin and growth hormone production in a rat pituitary tumor cell line by bromodeoxyuridine

    SciTech Connect

    Cohen, H.; Andre, J.; Grenot, C.; Guillaumot, P.; Pascal, O.

    1982-02-01

    Under basal conditions, a rat pituitary tumor cell line (C/sub 3/ 11RAP) does not secrete any detectable PRL, FSH, and LH, and secretes only minute amounts of GH (27.1 +/- 0.5 ng/10/sup 6/ cells . 24 h), as evaluated by RIA. Bromodeoxyuridine (BrdUrd) added to the culture medium induced the accumulation of PRL into cells and medium, increased that of GH, but did not induce that of LH or FSH. The amount of radioimmunoassayable PRL and GH accumulated in the medium, increased after a lag period of 15 days and was drug concentration dependent. Maximal accumulation was 232.9 +/- 36.8 and 493.6 +/- 41.5 ng/10/sup 6/ cells . 24 h for PRL and GH, respectively, at 50 ..mu..g/ml BrdUrd. In the presence of BrdUrd (greater than or equal to20 ..mu..g/ml), the cells grew more slowly and were more strongly attached to the flasks. All of the effects induced by BrdUrd were reversible. PRL and GH were characterized by three methods: 1) radiocompetition with increasing dilution of samples; 2) Sephadex chromatography, followed by RIAs; and 3) sodium dodecyl sulfate-polyacrylamide gel electrophoresis done on the immunoprecipitate of the proteins secreted by cells incubated with (/sup 3/H)leucine. Chronic treatment with TRH (3 x 10/sup -6/ M) of cells grown without BrdUrd was unable to increase the production of GH or to induce that of PRL. On the other hand, after the same treatment of cells cultured in the presence of BrdUrd, the amounts of PRL accumulated in the culture medium or cells were increased 2- to 7-fold over unstimulated levels; under the same conditions, GH accumulation in the medium was also increased, but this augmentation was less than that of PRL.

  16. A new method for detection of tumor driver-dependent changes of protein sialylation in a colon cancer cell line reveals nectin-3 as TGFBR2 target.

    PubMed

    Lee, Jennifer; Warnken, Uwe; Schnölzer, Martina; Gebert, Johannes; Kopitz, Jürgen

    2015-10-01

    Protein-linked glycans play key roles in cell differentiation, cell-cell interactions, cell growth, adhesion and immune response. Aberrant glycosylation is a characteristic feature of tumor cells and is involved in tumor growth, escape from apoptosis, metastasis formation, and resistance to therapy. It can serve as cancer biomarker and treatment target. To enable comprehensive screening for the impact of tumor driving mutations in colorectal cancer cells we present a method for specific analysis of tumor driver-induced glycome changes. The strategy is based on a combination of three technologies, that is recombinase-mediated cassette exchange (RMCE), Click-It chemistry and mass spectrometry. The new method is exemplified by the analysis of the impact of inactivating mutations of the TGF-ß-receptor type II (TGFBR2) on sialic acid incorporation into protein-linked glycans of the colon cancer cell line HCT116. Overall, 70 proteins were found to show de novo sialic acid incorporation exclusively upon TGFBR2 expression whereas 7 proteins lost sialylation upon TGFBR2 reconstitution. Validation of detected candidate glycoproteins is demonstrated with the cell surface glycoprotein nectin-3 known to be involved in metastasis, invasion and prognosis of various cancers. Altogether, our new approach can help to systematically puzzle out the influence of tumor-specific mutations in a major signaling pathway, as exemplified by the TGFBR2 tumor suppressor, on the tumor glycome. It facilitates the identification of glycan-based tumor markers that could be used for diagnostic and therapeutic applications. In principle the outlined strategy can be adapted to any cancer cell line, tumor driver mutation and several glycan-building blocks.

  17. Elimination of clonogenic tumor cells from HL-60, Daudi, and U-937 cell lines by laser photoradiation therapy: implications for autologous bone marrow purging

    SciTech Connect

    Gulliya, K.S.; Pervaiz, S.

    1989-03-01

    Laser photoradiation therapy was tested in an in vitro model for its efficacy in the elimination of non-Hodgkin's lymphoma cells. Results show that at 31.2 J/cm2 of laser light in the presence of 20 micrograms/mL of merocyanine 540 (MC540) there was greater than 5 log reduction in Burkitt's lymphoma (Daudi) cells. Similar tumor cell kill was obtained for leukemia (HL-60) cells at a laser light dose of 93.6 J/cm2. However, to obtain the same efficiency of killing for histiocytic lymphoma (U-937) cells, a higher dose of MC540 (25 micrograms/mL) was required. Clonogenic tumor stem cell colony formation was reduced by greater than 5 logs after laser photoradiation therapy. Under identical conditions for each cell line the percent survival for granulocyte-macrophage colony-forming units (CFU-GM, 45.9%, 40%, 17.5%), granulocyte/erythroid/macrophage/megakaryocyte (GEMM, 40.1%, 20.1%, 11.5%), colony-forming units (CFU-C, 16.2%, 9.1%, 1.8%), and erythroid burst-forming units (BFU-E, 33.4%, 17.8%, 3.9%) was significantly higher than the tumor cells. Mixing of gamma ray-irradiated normal marrow cells with tumor cells (1:1 and 10:1 ratio) did not interfere with the elimination of tumor cells. The effect of highly purified recombinant interferon alpha (rIFN) on laser photoradiation therapy of tumor cells was also investigated. In the presence of rIFN (30 to 3,000 U/mL), the viability of leukemic cells was observed to increase from 0% to 1.5% with a concurrent decrease in membrane polarization, suggesting an increase in fluidity of cell membrane in response to rIFN. However, at higher doses of rIFN (6,000 to 12,000 U/mL) this phenomenon was not observed. The viability of lymphoma cells remained unaffected at all doses of rIFN tested.

  18. Patient-Derived Antibody Targets Tumor Cells

    Cancer.gov

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  19. Establishment of an orthotopic transplantation tumor model in nude mice using a drug-resistant human ovarian cancer cell line with a high expression of c-Kit.

    PubMed

    Yi, Cunjian; Zhang, Lei; Li, Li; Liu, Xiangqiong; Ling, Shengrong; Zhang, Fayun; Liang, Wei

    2014-12-01

    The resistance of ovarian cancer to platinum-based chemotherapy is a critical issue in the clinical setting. The present study aimed to establish animal models to replicate this clinical condition, as well as to investigate the resistance mechanisms of ovarian cancer. A cisplatin (DDP)-resistant human ovarian cancer cell line, SKOV3/DDP, was screened, validated and injected subcutaneously into the neck of female nude mice. Following tumor establishment, the tumor was collected and cut into small sections, which were subsequently implanted into the ovaries of other nude mice. The growth of the orthotopic tumors was observed and the tumor-bearing mice were sacrificed and dissected. The orthotopic and metastatic tumor tissues were collected, sectioned, stained with hematoxylin and eosin and analyzed. In the present study, 16 nude mice underwent orthotopic transplantation surgery and a tumor model was successfully established in 14/16 of the mice, with an in situ tumor formation rate of 87.5%. Following euthanasia, a laparotomy demonstrated the tumor formation at the site of transplantation, as well as varying degrees of metastasis to additional organs and tissues. Therefore, the present study successfully established an orthotopic tumor transplantation model in nude mice using a c-Kit-positive DDP-resistant human ovarian cancer cell line. This model may represent a useful tool for investigating the resistance mechanism of ovarian cancer, as well as evaluating the efficacy of therapeutic strategies.

  20. β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis), Is a Selective Apoptosis Inducer for Tumor Cell Lines.

    PubMed

    Amiel, Eitan; Ofir, Rivka; Dudai, Nativ; Soloway, Elaine; Rabinsky, Tatiana; Rachmilevitch, Shimon

    2012-01-01

    The biblical balm of Gilead (Commiphora gileadensis) was investigated in this study for anticancerous activity against tumor cell lines. The results obtained from ethanol-based extracts and from essential oils indicated that β-caryophyllene (trans-(1R,9S)-8-methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene) is a key component in essential oils extracted from the balm of Gilead. β-Caryophyllene can be found in spice blends, citrus flavors, soaps, detergents, creams, and lotions, as well as in a variety of food and beverage products, and it is known for its anti-inflammatory, local anaesthetic, and antifungal properties. It is also a potent cytotoxic compound over a wide range of cell lines. In the current paper, we found that Commiphora gileadensis stem extracts and essential oil have an antiproliferative proapoptotic effect against tumor cells and not against normal cells. β-caryophyllene caused a potent induction of apoptosis accompanied by DNA ladder and caspase-3 catalytic activity in tumor cell lines. In summary, we showed that C. gileadensis stems contain an apoptosis inducer that acts, in a selective manner, against tumor cell lines and not against normal cells.

  1. A new method for detection of tumor driver-dependent changes of protein sialylation in a colon cancer cell line reveals nectin-3 as TGFBR2 target

    PubMed Central

    Lee, Jennifer; Warnken, Uwe; Schnölzer, Martina; Gebert, Johannes; Kopitz, Jürgen

    2015-01-01

    Protein-linked glycans play key roles in cell differentiation, cell–cell interactions, cell growth, adhesion and immune response. Aberrant glycosylation is a characteristic feature of tumor cells and is involved in tumor growth, escape from apoptosis, metastasis formation, and resistance to therapy. It can serve as cancer biomarker and treatment target. To enable comprehensive screening for the impact of tumor driving mutations in colorectal cancer cells we present a method for specific analysis of tumor driver-induced glycome changes. The strategy is based on a combination of three technologies, that is recombinase-mediated cassette exchange (RMCE), Click-It chemistry and mass spectrometry. The new method is exemplified by the analysis of the impact of inactivating mutations of the TGF-ß-receptor type II (TGFBR2) on sialic acid incorporation into protein-linked glycans of the colon cancer cell line HCT116. Overall, 70 proteins were found to show de novo sialic acid incorporation exclusively upon TGFBR2 expression whereas 7 proteins lost sialylation upon TGFBR2 reconstitution. Validation of detected candidate glycoproteins is demonstrated with the cell surface glycoprotein nectin-3 known to be involved in metastasis, invasion and prognosis of various cancers. Altogether, our new approach can help to systematically puzzle out the influence of tumor-specific mutations in a major signaling pathway, as exemplified by the TGFBR2 tumor suppressor, on the tumor glycome. It facilitates the identification of glycan-based tumor markers that could be used for diagnostic and therapeutic applications. In principle the outlined strategy can be adapted to any cancer cell line, tumor driver mutation and several glycan-building blocks. PMID:26177744

  2. Deformability of Tumor Cells versus Blood Cells

    PubMed Central

    Shaw Bagnall, Josephine; Byun, Sangwon; Begum, Shahinoor; Miyamoto, David T.; Hecht, Vivian C.; Maheswaran, Shyamala; Stott, Shannon L.; Toner, Mehmet; Hynes, Richard O.; Manalis, Scott R.

    2015-01-01

    The potential for circulating tumor cells (CTCs) to elucidate the process of cancer metastasis and inform clinical decision-making has made their isolation of great importance. However, CTCs are rare in the blood, and universal properties with which to identify them remain elusive. As technological advancements have made single-cell deformability measurements increasingly routine, the assessment of physical distinctions between tumor cells and blood cells may provide insight into the feasibility of deformability-based methods for identifying CTCs in patient blood. To this end, we present an initial study assessing deformability differences between tumor cells and blood cells, indicated by the length of time required for them to pass through a microfluidic constriction. Here, we demonstrate that deformability changes in tumor cells that have undergone phenotypic shifts are small compared to differences between tumor cell lines and blood cells. Additionally, in a syngeneic mouse tumor model, cells that are able to exit a tumor and enter circulation are not required to be more deformable than the cells that were first injected into the mouse. However, a limited study of metastatic prostate cancer patients provides evidence that some CTCs may be more mechanically similar to blood cells than to typical tumor cell lines. PMID:26679988

  3. Proteomic Analysis of Exosomes and Exosome-Free Conditioned Media From Human Osteosarcoma Cell Lines Reveals Secretion of Proteins Related to Tumor Progression.

    PubMed

    Jerez, Sofía; Araya, Héctor; Thaler, Roman; Charlesworth, M Cristine; López-Solís, Remigio; Kalergis, Alexis M; Céspedes, Pablo F; Dudakovic, Amel; Stein, Gary S; van Wijnen, Andre J; Galindo, Mario

    2017-02-01

    Osteosarcomas are the most prevalent bone tumors in pediatric patients, but can also occur later in life. Bone tumors have the potential to metastasize to lung and occasionally other vital organs. To understand how osteosarcoma cells interact with their micro-environment to support bone tumor progression and metastasis, we analyzed secreted proteins and exosomes from three human osteosarcoma cell lines. Exosome isolation was validated by transmission electron microscopy (TEM) and immuno-blotting for characteristic biomarkers (CD63, CD9, and CD81). Exosomal and soluble proteins (less than 100 kDa) were identified by mass spectrometry analysis using nanoLC-MS/MS and classified by functional gene ontology clustering. We identified a secretome set of >3,000 proteins for both fractions, and detected proteins that are either common or unique among the three osteosarcoma cell lines. Protein ontology comparison of proteomes from exosomes and exosome-free fractions revealed differences in the enrichment of functional categories associated with different biological processes, including those related to tumor progression (i.e., angiogenesis, cell adhesion, and cell migration). The secretome characteristics of osteosarcoma cells are consistent with the pathological properties of tumor cells with metastatic potential. J. Cell. Biochem. 118: 351-360, 2017. © 2016 Wiley Periodicals, Inc.

  4. Phosphorylation of intracellular proteins related to the multihormonal regulation of prolactin: comparison of normal anterior pituitary cells in culture with the tumor-derived GH cell lines

    SciTech Connect

    Beretta, L.; Boutterin, M.C.; Sobel, A.

    1988-01-01

    We have previously identified a group of cytoplasmic phosphoproteins (proteins 1-11) whose phosphorylation could be related, on a pharmacological basis, to the multihormonal regulation of PRL synthesis and release in the anterior pituitary tumor-derived GH cell lines. Phosphoproteins with identical migration properties on two-dimensional electrophoresis gels were also detectable in normal rat anterior pituitary cells in culture. We designed appropriate culture and (/sup 32/P) phosphate-labeling conditions allowing to analyze the regulation of the phosphorylation of these proteins in normal pituitary cells. TRH, 12-O-tetradecanoylphorbol-13-acetate, and vasoactive intestinal peptide induced the same qualitative changes in phosphorylation of proteins 1-11 in normal as in GH cells. Quantitative differences observed are most likely due to the heterogeneity of primary pituitary cultures. Phosphorylation changes affecting proteins 14-16, not previously detected in GH cells, were also observed with normal anterior pituitary cells. GH cell lines have lost the sensitivity of pituitary lactotrophs for dopamine, an important physiological inhibitor of PRL synthesis and release. In normal anterior pituitary cells in culture, dopamine inhibited also the TRH-stimulated phosphorylation of proteins 1-10, thus strengthening the correlation between phosphorylation of these proteins and multihormonal regulation of pituitary cell functions. Our results indicate: 1) that the same phosphoproteins as in GH cells are related to the multihormonal regulation of nontumoral, normal anterior pituitary cells in culture; 2) that dopamine acts by interfering with the phosphorylation of these proteins.

  5. The histone deacetylase inhibitor romidepsin synergizes with lenalidomide and enhances tumor cell death in T-cell lymphoma cell lines

    PubMed Central

    Cosenza, Maria; Civallero, Monica; Fiorcari, Stefania; Pozzi, Samantha; Marcheselli, Luigi; Bari, Alessia; Ferri, Paola; Sacchi, Stefano

    2016-01-01

    ABSTRACT We investigated the cytotoxic interactions of romidepsin, a histone deacetylase inhibitor, and lenalidomide, an immunomodulatory agent, in a T-cell lymphoma preclinical model. Hut-78 and Karpas-299 cells were treated with romidepsin and lenalidomide alone and in combination. The interaction between romidepsin and lenalidomide was evaluated by the Chou–Talalay method, and cell viability and clonogenicity were also evaluated. Apoptosis, reactive oxygen species (ROS) levels, and cell cycle distribution were determined by flow cytometry. ER stress, caspase activation, and the AKT, MAPK/ERK, and STAT-3 pathways were analyzed by Western blot. Combination treatment with romidepsin and lenalidomide had a synergistic effect in Hut-78 cells and an additive effect in Karpas-299 cells at 24 hours and did not decrease the viability of normal peripheral blood mononuclear cells. This drug combination induced apoptosis, increased ROS production, and activated caspase-8, −9, −3 and PARP. Apoptosis was associated with increased hallmarks of ER stress and activation of UPR sensors and was mediated by dephosphorylation of the AKT, MAPK/ERK, and STAT3 pathways.The combination of romidepsin and lenalidomide shows promise as a possible treatment for T-cell lymphoma. This work provides a basis for further studies. PMID:27657380

  6. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line

    PubMed Central

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P.; Parton, Robert G.; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS. PMID:26086601

  7. Canine distemper virus induces apoptosis in cervical tumor derived cell lines.

    PubMed

    Del Puerto, Helen L; Martins, Almir S; Milsted, Amy; Souza-Fagundes, Elaine M; Braz, Gissandra F; Hissa, Barbara; Andrade, Luciana O; Alves, Fabiana; Rajão, Daniela S; Leite, Rômulo C; Vasconcelos, Anilton C

    2011-06-30

    Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV) induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi), by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  8. Morphometric and colorimetric analyses of human tumor cell line growth and drug sensitivity in soft agar culture.

    PubMed

    Alley, M C; Pacula-Cox, C M; Hursey, M L; Rubinstein, L R; Boyd, M R

    1991-02-15

    Previous studies have demonstrated the suitability of image analysis of tetrazolium-stained colonies to assess growth and drug sensitivity of human tumor cells cultivated in soft agar culture. In the present study, the potential utility of colorimetric analysis to expedite experimental drug evaluations using human tumor cell lines was investigated. The same culture dishes were assessed by image analysis and by formazan colorimetry for purposes of comparing multiple methods of measuring growth as well as growth inhibition. Replicate cultures treated with 2-(p-iodonitrophenyl)-3-p-nitrophenyl-5-phenyltetrazolium chloride or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide exhibited nearly identical colony count and volume indices as well as excellent correlation in colorimetric end points. Colony-forming unit volume analysis versus colorimetric assessment of the same cultures following dimethyl sulfoxide extraction of protamine sulfate-rinsed, dried soft agar cultures exhibited excellent linear correlation for both growth (Pearson r ranging from 0.95 to 1.00) and drug sensitivity (Pearson r ranging from 0.90 to 0.99, and Spearman r ranging from 0.82 to 0.97) and similar drug sensitivity profiles. Results of the current investigation indicate that end points of soft agar culture remain stable for a period of at least 2 weeks following assay termination. In addition, a colorimetric detection range of 1.3-2.2 log units permits determinations of survival levels ranging from 100 to 5% of respective control levels. Colorimetric analysis is anticipated to expedite soft agar colony formation assay evaluations (a) by reducing the need to use the more rigorous and time-consuming image analysis procedures to measure activity in preliminary drug sensitivity assays and (b) by permitting the determination of effective concentration ranges of new experimental agents for subsequent, more detailed investigations.

  9. Synthesis, structural characterization, modal membrane interaction and anti-tumor cell line studies of nitrophenyl ferrocenes

    NASA Astrophysics Data System (ADS)

    Altaf, Ataf Ali; Lal, Bhajan; Badshah, Amin; Usman, Muhammad; Chatterjee, Pabitra B.; Huq, Fazlul; Ullah, Shafiq; Crans, Debbie C.

    2016-06-01

    A series of nitrophenyl ferrocens (A1 - A5) were synthesized and fully characterized in solid state (using CHN analysis, FTIR and single crystal XRD) as well as in solution phase (1H &13C NMR and UV-visible spectroscopy). Micelle interface interactions of these compounds were explored and found to have ability across a micelle membrane interface. Interestingly, these compounds exhibited π-electronic push pull systems and oxidation of ferrocene to ferrocenium on crossing the negative interface of the micelle membrane. Selective compounds were screened for antitumor activity against parental and drug resistant human ovarian tumor models i.e. A2780 and A2780cisR, A2780ZD0473R. Screened compounds were found to overcome resistance factor compared to cisplatin.

  10. Molecular characterization of permanent cell lines from primary, metastatic and recurrent malignant peripheral nerve sheath tumors (MPNST) with underlying neurofibromatosis-1.

    PubMed

    Fang, Yuqiang; Elahi, Abul; Denley, Ryan C; Rao, Pulivarthi H; Brennan, Murray F; Jhanwar, Suresh C

    2009-04-01

    Malignant peripheral nerve sheath tumors (MPNSTs) develop in patients with underlying NF1, and usually arise as a result of malignant transformation of a pre-existing plexiform neurofibroma. The clonal cytogenetic abnormalities reported in primary MPNST include complex karyotypes with chromosome numbers in the triploid or tetraploid range with recurrent abnormalities of several chromosomes including losses or imbalances. As a prelude to cell biological, pharmacological, and functional studies to investigate pathways and gene(s) associated with multistep tumorigenesis, which includes progression, metastasis and resistance to therapy in MPNST, detailed molecular cytogenetic and genetic analyses of cell lines from primary, metastatic and recurrent MPNST with underlying NF1 disorder have been performed. The clonal cytogenetic abnormalities detected in the primary tumor cell line were similar to those observed in primary cultures of this tumor. Due to the complexity of the rearrangements seen by G-banded karyotype analysis, further characterization of the clonal abnormalities in these three cell lines was performed by molecular cytogenetic techniques, including CGH and SKY. CGH analysis detected recurrent deletions of 9p, 12q21-q32, complete losses of the X-chromosome, and gains of the chromosomal segment 17q25 in all three cell lines. SKY analysis detected extensive clonal abnormalities in these cell lines. The nature and the alterations of the cell cycle regulators, particularly those associated with G1-S checkpoints and known to be deregulated in MPNST, were studied. These cell cycle regulators included those associated with Rb1-cyclin D1 and the p53 pathways. The findings are consistent with the argument that an imbalance between the cyclin activators of CDKs and inhibitory proteins such as p16 result in uncontrollable proliferation in the cell lines, associated with progression of the disease. LOH and expression of the p53 gene in metastatic and recurrent cell

  11. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines.

    PubMed

    Scudiero, D A; Shoemaker, R H; Paull, K D; Monks, A; Tierney, S; Nofziger, T H; Currens, M J; Seniff, D; Boyd, M R

    1988-09-01

    We have previously described the application of an automated microculture tetrazolium assay (MTA) involving dimethyl sulfoxide solubilization of cellular-generated 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)-formazan to the in vitro assessment of drug effects on cell growth (M.C. Alley et al., Proc. Am. Assoc. Cancer Res., 27:389, 1986; M.C. Alley et al., Cancer Res. 48:589-601, 1988). There are several inherent disadvantages of this assay, including the safety hazard of personnel exposure to large quantities of dimethyl sulfoxide, the deleterious effects of this solvent on laboratory equipment, and the inefficient metabolism of MTT by some human cell lines. Recognition of these limitations prompted development of possible alternative MTAs utilizing a different tetrazolium reagent, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl] -2H- tetrazolium hydroxide (XTT), which is metabolically reduced in viable cells to a water-soluble formazan product. This reagent allows direct absorbance readings, therefore eliminating a solubilization step and shortening the microculture growth assay procedure. Most human tumor cell lines examined metabolized XTT less efficiently than MTT; however, the addition of phenazine methosulfate (PMS) markedly enhanced cellular reduction of XTT. In the presence of PMS, the XTT reagent yielded usable absorbance values for growth and drug sensitivity evaluations with a variety of cell lines. Depending on the metabolic reductive capacity of a given cell line, the optimal conditions for a 4-h XTT incubation assay were 50 micrograms of XTT and 0.15 to 0.4 microgram of PMS per well. Drug profiles obtained with representative human tumor cell lines for several standard compounds utilizing the XTT-PMS methodology were similar to the profiles obtained with MTT. Addition of PMS appeared to have little effect on the metabolism of MTT. The new XTT reagent thus provides for a simplified, in vitro cell growth assay

  12. Production kinetics and immunochemical properties of carcinoembryonic antigen and nonspecific cross-reacting antigen synthesized by various human tumor cell lines.

    PubMed

    Ichiki, S; Kuroki, M; Kuroki, M; Koga, Y; Matsuoka, Y

    1986-05-01

    The production kinetics and immunochemical properties of carcinoembryonic antigen (CEA) and nonspecific cross-reacting antigen (NCA) in various human tumor cell lines were studied. By radioimmunoassay (RIA), five CEA-producing tumor cell lines tested--2 derived from colonic (M7609 and CCK-81), one from pancreatic (QGP-1) and 2 from lung (HLC-1 and KNS-62) carcinomas--were found to produce NCA simultaneously. The cellular contents of CEA and NCA and the amounts of both antigens released into the culture medium were highly variable among the cell lines. It was a distinct contrast that one cell line (CCK-81) released very large amounts of CEA and NCA into the medium while having the smallest amounts of both antigens in the cells, whereas the others contained much larger amounts of the antigens in the cells as compared with the amounts released into the medium. For most of the cell lines, the production of both CEA and NCA increased in the stationary phase of growth as compared with the exponential phase. The production kinetics of both CEA and NCA appeared to be parallel with each other in all the cell lines, though the amount ratio of CEA to NCA produced was variable. By means of a double immunodiffusion test with polyclonal antibodies, antigenic uniformity with no unique organ-specificity was confirmed for all the CEA preparations from spent media of the cell lines, though some differences in the sugar moiety of CEA were detected by RIA using monoclonal antibodies. No antigenic differences among NCA preparations were observed. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), molecular heterogeneity was observed among CEA or NCA preparations isolated from cell lysates.

  13. Alteration of the MT1 melatonin receptor gene and its expression in primary human breast tumors and breast cancer cell lines.

    PubMed

    Lai, Ling; Yuan, Lin; Cheng, Qi; Dong, Chunmin; Mao, Lulu; Hill, Steven Marc

    2009-11-01

    The MT1 melatonin receptor is bound and activated by the pineal hormone melatonin. This G protein-coupled melatonin receptor is expressed in human breast tumor cell lines, and when activated, mediates the growth-suppressive and steroid hormone/nuclear receptor modulatory actions of melatonin on breast tumor cells. In the current studies, we have examined the expression of the MT1 receptor in breast cancer cell lines and primary human breast tumors and correlated MT1 receptor expression with the deletion, rearrangement and amplification of the MT1 gene and established markers of breast cancer such as tumor size, stage, estrogen receptor alpha (ERalpha) and progesterone receptor (PR) expression. Theses studies suggest amplification of the MT1 gene in some breast tumors and an inverse correlation with ERalpha, PR and MT1 protein expression. Furthermore, these approaches employing immunohistochemical and immunofluorescent/confocal microscopic studies demonstrate that the MT1 receptor is localized to the caveoli and that MT1 expression in MCF-7 breast cancer cells can be repressed by estradiol and melatonin.

  14. Targeting tissue factor as a novel therapeutic oncotarget for eradication of cancer stem cells isolated from tumor cell lines, tumor xenografts and patients of breast, lung and ovarian cancer

    PubMed Central

    Hu, Zhiwei; Xu, Jie; Cheng, Jijun; McMichael, Elizabeth; Yu, Lianbo; Carson, William E.

    2017-01-01

    Targeting cancer stem cell (CSC) represents a promising therapeutic approach as it can potentially fight cancer at its root. The challenge is to identify a surface therapeutic oncotarget on CSC. Tissue factor (TF) is known as a common yet specific surface target for cancer cells and tumor neovasculature in several solid cancers. However, it is unknown if TF is expressed by CSCs. Here we demonstrate that TF is constitutively expressed on CD133 positive (CD133+) or CD24-CD44+ CSCs isolated from human cancer cell lines, tumor xenografts from mice and breast tumor tissues from patients. TF-targeted agents, i.e., a factor VII (fVII)-conjugated photosensitizer (fVII-PS for targeted photodynamic therapy) and fVII-IgG1Fc (Immunoconjugate or ICON for immunotherapy), can eradicate CSC via the induction of apoptosis and necrosis and via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, respectively. In conclusion, these results demonstrate that TF is a novel surface therapeutic oncotarget for CSC, in addition to cancer cell TF and tumor angiogenic vascular endothelial TF. Moreover, this research highlights that TF-targeting therapeutics can effectively eradicate CSCs, without drug resistance, isolated from breast, lung and ovarian cancer with potential to translate into other most commonly diagnosed solid cancer, in which TF is also highly expressed. PMID:27903969

  15. Ligand Stimulation of ErbB4 and A Constitutively-Active ErbB4 Mutant Result in Different Biological Responses In Human Pancreatic Tumor Cell Lines

    PubMed Central

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2010-01-01

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin1β. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression. PMID:21110957

  16. Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines

    SciTech Connect

    Mill, Christopher P.; Gettinger, Kathleen L.; Riese, David J.

    2011-02-15

    Pancreatic cancer is the fourth leading cause of cancer death in the United States. Indeed, it has been estimated that 37,000 Americans will die from this disease in 2010. Late diagnosis, chemoresistance, and radioresistance of these tumors are major reasons for poor patient outcome, spurring the search for pancreatic cancer early diagnostic and therapeutic targets. ErbB4 (HER4) is a member of the ErbB family of receptor tyrosine kinases (RTKs), a family that also includes the Epidermal Growth Factor Receptor (EGFR/ErbB1/HER1), Neu/ErbB2/HER2, and ErbB3/HER3. These RTKs play central roles in many human malignancies by regulating cell proliferation, survival, differentiation, invasiveness, motility, and apoptosis. In this report we demonstrate that human pancreatic tumor cell lines exhibit minimal ErbB4 expression; in contrast, these cell lines exhibit varied and in some cases abundant expression and basal tyrosine phosphorylation of EGFR, ErbB2, and ErbB3. Expression of a constitutively-dimerized and -active ErbB4 mutant inhibits clonogenic proliferation of CaPan-1, HPAC, MIA PaCa-2, and PANC-1 pancreatic tumor cell lines. In contrast, expression of wild-type ErbB4 in pancreatic tumor cell lines potentiates stimulation of anchorage-independent colony formation by the ErbB4 ligand Neuregulin 1{beta}. These results illustrate the multiple roles that ErbB4 may be playing in pancreatic tumorigenesis and tumor progression.

  17. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines

    PubMed Central

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528

  18. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines.

    PubMed

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Vaisberg, Abraham; Spodine, Evgenia; Manzur, Jorge; Hennig, Lothar; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC(1-5))2] (6-10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC(1) (1), 4-phenyl-1-(2'-chloro-benzaldehyde)-thiosemicarbazone, HTSC(2) (2), 4-phenyl-1-(3'-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC(3) (3), 4-phenyl-1-(2'-naphthaldehyde)-thiosemicarbazone, HTSC(4) (4), and 4-phenyl-1-(1'-nitro-2'-naphthaldehyde)-thiosemicarbazone, HTSC(5) (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and (1)H- and (13)C-NMR). The molecular structure of HTSC(3), HTSC(4), and [Pd(TSC(1))2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to Pd(II) through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01-9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48-70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC(3))2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.).

  19. Quantification of β-Catenin Signaling Components in Colon Cancer Cell Lines, Tissue Sections, and Microdissected Tumor Cells using Reaction Monitoring Mass Spectrometry

    PubMed Central

    Chen, Yi; Gruidl, Mike; Remily-Wood, Elizabeth; Liu, Richard Z.; Eschrich, Steven; Lloyd, Mark; Nasir, Aejaz; Bui, Marilyn M.; Huang, Emina; Shibata, David; Yeatman, Timothy; Koomen, John M.

    2010-01-01

    Reaction monitoring mass spectrometry has emerged as a powerful tool for targeted detection and quantification of proteins in clinical samples. Here, we report the use of gel electrophoresis for protein fractionation and liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) screening for quantitative analysis of components from the Wnt/β-catenin signaling pathway, which contributes to colon tumor formation and progression. In silico tools are used to design LC-MRM screens for each target protein. Following successful peptide detection, stable isotope labeled peptides are synthesized and developed as internal standards. Then, the assays are implemented in colon cancer cell lines to achieve detection in minimal amounts of cells, compatible with direct translation to clinical specimens. Selected assays are compared with qualitative results from immunoblotting (Westerns) and translated to individual frozen colon tissue sections and laser capture microdissected tumor cells. This LC-MRM platform has been translated from in vitro models to clinical specimens, forming the basis for future experiments in patient assessment. PMID:20590165

  20. Evasion mechanisms to tumor necrosis factor alpha (TNF-alpha) of small cell lung carcinoma and non-small cell lung carcinoma cell lines: comparison with the erythroleukaemia K-562 cell line.

    PubMed

    López-González, J S; Hernández García, A; Noyola, M I; Cázares, D A; Mandoki, J J; Morales, F M; Mendieta, I C; Caloca, J V

    2000-03-01

    The tumour necrosis factor alpha (TNF-alpha) is produced by mononuclear phagocytes as a defence mechanism against malignant cells. However, these cells can evade destruction by TNF-alpha. The present study evaluates in three lung cancer cell lines (small cell carcinoma NCI-H69, adenocarcinoma A-427, squamous carcinoma SK-MES-1) and one erythroleukaemia (K-562) cell line the following evasion mechanisms: (1) inhibition of TNF-alpha production, in indirect and direct co-cultures with monocytes; (2) the expression of type I and type II receptors for TNF-alpha (TNFRI and TNFRII) by tumour cell lines, using indirect immunofluorescence and flow cytometry; (3) the sensitivity of tumour cell lines to the toxic action of recombinant human TNF-alpha (rhTNF-alpha). With the exception of cell line NCI-H69, the other tumour cell lines liberated soluble factors that inhibited TNF-alpha production in monocytes. This effect occurred even after membrane contact with the A-427 and SK-MES-1 cell lines. Erythroleukaemia K-562 cells expressed both types of receptors for TNF-alpha, whereas the NCI-H69 cells expressed only TNFRI, and the A-427 and SK-MES-1 cells expressed no receptors. Lines NCI-H69, A-427 and K-562 were insensitive to the cytotoxic action of rhTNF-alpha. In conclusion, different lung cancer cell lines may evade destruction by TNF-alpha by various mechanisms that range from blocking TNF-alpha production by monocytes to blocking the cytotoxic action of this molecule. For selecting the most effective immunotherapy, knowledge of the evasion mechanisms would be useful.

  1. Fermented wheat germ extract induces apoptosis and downregulation of major histocompatibility complex class I proteins in tumor T and B cell lines.

    PubMed

    Fajka-Boja, Roberta; Hidvégi, Maté; Shoenfeld, Yehuda; Ion, Gabriela; Demydenko, Dmytro; Tömösközi-Farkas, Rita; Vizler, Csaba; Telekes, András; Resetar, Akos; Monostori, Eva

    2002-03-01

    The fermented wheat germ extract (code name: MSC, trade name: Avemar), with standardized benzoquinone content has been shown to inhibit tumor propagation and metastases formation in vivo. The aim of this study was to understand the molecular and cellular mechanisms of the anti-tumor effect of MSC. Therefore, we have designed in vitro model experiments using T and B tumor lymphocytic cell lines. Tyrosine phosphorylation of intracellular proteins and elevation of the intracellular Ca2+ concentration were examined using immunoblotting with anti-phosphotyrosine antibody and cytofluorimetry by means of Ca2+ sensitive fluorescence dyes, Fluo-3AM and FuraRed-AM, respectively. Apoptosis was measured with cytofluorimetry by staining the DNA with propidium iodide and detecting the cell population. The level of the cell surface MHC class I molecules was analysed with indirect immunofluorescence on cytofluorimeter using a monoclonal antibody to the non-polymorphic region of the human MHC class I. MSC stimulated tyrosine phosphorylation of intracellular proteins and the influx of extracellular Ca2+ resulted in elevation of intracellular Ca2+ concentration. Prominent apoptosis of 20-40% was detected upon 24 h of MSC treatment of the cell lines. As a result of the MSC treatment, the amount of the cell surface MHC class I proteins was downregulated by 70-85% compared to the non-stimulated control. MSC did not induce a similar degree of apoptosis in healthy peripheral blood mononuclear cells. Inhibition of the cellular tyrosine phosphatase activity or Ca2+ influx resulted in the opposite effect increasing or diminishing the Avemar induced apoptosis as well as the MHC class I downregulation, respectively. A benzoquinone component (2,6-dimethoxi-p-benzoquinone) in MSC induced similar apoptosis and downregulation of the MHC class I molecules in the tumor T and B cell lines to that of MSC. These results suggest that MSC acts on lymphoid tumor cells by reducing MHC class I expression

  2. Nonfunctioning Juxtaglomerular Cell Tumor

    PubMed Central

    Sakata, Ryoko; Shimoyamada, Hiroaki; Yanagisawa, Masahiro; Murakami, Takayuki; Makiyama, Kazuhide; Nakaigawa, Noboru; Inayama, Yoshiaki; Ohashi, Kenichi; Nagashima, Yoji; Yao, Masahiro; Kubota, Yoshinobu

    2013-01-01

    The juxtaglomerular cell tumor (JGCT) is a rare renal tumor characterized by excessive renin secretion causing intractable hypertension and hypokalemia. However, asymptomatic nonfunctioning JGCT is extremely rare. Here, we report a case of nonfunctioning JGCT in a 31-year-old woman. The patient presented with a left renal tumor without hypertension or hypokalemia. Under a clinical diagnosis of renal cell carcinoma, radical nephrectomy was performed. The tumor was located in the middle portion adjacent to the renal pelvis, measuring 2 cm in size. Pathologically, the tumor was composed of cuboidal cells forming a solid arrangement, immunohistochemically positive for renin. Based on these findings, the tumor was diagnosed as JGCT. In cases with hyperreninism, preoperative diagnosis of JGCT is straightforward but difficult in nonfunctioning case. Generally, JGCT presents a benign biological behavior. Therefore, we should take nonfunctioning JGCT into the differential diagnoses for renal tumors, especially in younger patients to avoid excessive surgery. PMID:23607027

  3. Tumor cell metabolism

    PubMed Central

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  4. Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas

    SciTech Connect

    Glaser, R.; Zhang, Haizhang ); Yao, Kaitai; Zhu, Hecheng; Wang, Fuxi; Li, Guiyuan; Wen, Dongseng; Li, Yingping )

    1989-12-01

    Two epithelia tumor cell lines were established from biopsy specimens of nasopharyngeal carcinomas (NPC). The specimens were taken from poorly differentiated squamous cell carcinomas of the nasopharynx. The tissues were prepared for cell culture and eventually two continuous epithelia cell lines were obtained and designated HONE-1 and HNE-1. Light and electron microscopic examination of these two cell lines demonstrated cells with an epithelial morphology including the presence of desmosomes. It was found that early-passage uncloned HNE-1 cells (passage 23) could be superinfected with B95-8 and NPC-EBV isolates as demonstrated by the induction of Epstein-Barr virus (EBV)-specific early antigen(s) in a small percentage of the cells; HONE-1 cells could also be superinfected with EBV. Southern blot analysis detected EBV DNA in samples from uncloned HNE-1 cells at passages 12, 17, 21, 27, and 35. However, by passage 45, EBV DNA could no longer be detected in HNE-1 cells by Southern blot analysis. The EBV genome was detected in parental HONE-1 cells at subculture 9 and in clone 40 cells up to passage 40 thus far. The data suggest that EBV genome-positive HNE-1 and HONE-1 cells were lost as the cells were cultivated in vitro and that cloning the cells at an early passage level may be critical in maintaining EBV genome-positive epithelial NPC cells. These EBV genome-positive epithelia NPC cell lines will be useful for studying the association of EBV and NPC.

  5. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    PubMed

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO

  6. Antiproliferative activity of extracts prepared from three species of Reishi on cultured human normal and tumor cell lines.

    PubMed

    Katagata, Yohtaro; Sasaki, Fumiyuki

    2010-01-01

    The present study investigated the growth of human fibrosarcoma (HT-1080) and fibroblast (SF-TY) cells in combination with water-soluble (WS) and high molecular component (HMC) fractions prepared from Reishi (R), Rokkaku-Reishi (2R) and Apple Rokkaku-Reishi (A2R). Each WS fraction exhibited dose-and time-dependent inhibition of the growth of the HT-1080 and SF-TY cells. The extracts exhibited marked antiproliferative activity against the HT-1080 cells. The HMC fractions inhibited cell growth dose-and time-dependently in the HT-1080 cells only, and not in the SF-TY cells, suggesting that HMC fractions selectively inhibit HT-1080 cells. Among the HMC fractions, A2R is a strong candidate for anti-tumor targeting since its fraction exhibited better inhibition than the R and 2R fractions. Furthermore, the volume of the A2R fraction was approximately five times greater than that of the others, and included four proteins (molecular mass 9, 13, 22 and 40 kDa) detected by SDS-PAGE. Three of these (13, 22 and 40 kDa) were confirmed to be glycosylated with the Periodic Acid-Schiff Stain kit. These results suggest that A2R may possess anti-tumor activity and, in particular, that the protein components of A2R may act to selectively inhibit the growth of HT-1080 cells.

  7. A retinoid responsive cytokine gene, MK, is preferentially expressed in the proximal tubules of the kidney and human tumor cell lines.

    PubMed Central

    Kitamura, M.; Shirasawa, T.; Mitarai, T.; Muramatsu, T.; Maruyama, N.

    1993-01-01

    The aim of this study was to survey the expression of an embryonic cytokine gene, MK, in the normal organs and neoplastic tissues of adults. Northern analysis showed that MK mRNA was exclusively expressed in the kidney among murine organs including thymus, lung, heart, spleen, liver, and kidney. In situ hybridization analysis revealed that MK expression was localized in the proximal tubules and metaplastic Bowman's epithelium, but not in other nephron segments such as glomeruli, loop of Henle, distal tubules, and collecting ducts. To investigate whether MK expression is a marker of tubular cell lineage, several cell lines originating from renal tubules were tested. No expression of MK was detected in PtK1 and LLC-PK1 cells derived from marsupial and porcine proximal tubules or in MDBK and MDCK cells from bovine and canine distal/collecting tubules. Unexpectedly, the MK gene was expressed in a human renal cell carcinoma line, VMRC-RCW, and the expression was up-regulated in the presence of retinoic acid. To elucidate the involvement of MK in the development of tumors, we further examined its expression in a variety of human neoplastic cell lines: YMB-1-C (breast cancer), EBC-1 (lung squamous cell carcinoma), RERF-LC-OK (lung adenocarcinoma), SBC-3 (lung small cell carcinoma), HSC-2 (mouth squamous cell carcinoma), NUGC-2 (gastric cancer), COLO201 (colon cancer), HepG2 (hepatoma), MIA PaCa-2 (pancreatic cancer), MCAS (ovarian cancer), HeLa (cervical cancer), BeWo (chorionic carcinoma), ITO-II (testicular tumor), T24 (urinary bladder tumor), and G-401 (Wilms' tumor). Strong signals were detected in COLO201, HepG2, ITO-II, T24, G-401, and weaker but distinct signals were detected in YMB-1-C, HSC-2, and MCAS cells. The MK gene was, therefore, widely expressed in neoplastic cells originating from genital organs, intestinal tract, liver, mammary gland, and urinary tract, and the expression was not restricted to adenocarcinomas, but was also observed in other types of

  8. Camptothecin analog (CPT-11)-sensitive human pancreatic tumor cell line QGP-1N shows resistance to SN-38, an active metabolite of CPT-11.

    PubMed

    Takeda, S; Shimazoe, T; Kuga, H; Sato, K; Kono, A

    1992-10-15

    In the course of our study to determine the cross-sensitivity between CPT-11 and its active metabolite, SN-38, we found a SN-38-resistant human pancreatic tumor cell line, QGP-1N, which shows sensitivity to CPT-11. The IC50 of SN-38 was 152 times greater for QGP-1N than for SUIT-2, also a human pancreatic tumor cell line, whose IC50 of CPT-11 was similar to that for QGP-1N. The uptakes of CPT-11 and SN-38 and the intracellular conversion of CPT-11 to SN-38 could not explain the difference in sensitivity. DNA synthesis of QGP-1N cells was inhibited by CPT-11 which did not affect that of SUIT-2, while SN-38 inhibited the DNA synthesis of SUIT-2 at lower concentrations than that of QGP-1N. The inhibition test of topoisomerase I catalytic activity by CPT-11 or SN-38 revealed no difference in the biochemical properties of the topoisomerase I enzymes to the compounds between these two cell lines. These results indicate that CPT-11 should have its own inhibitory effect on DNA synthesis through a yet unknown mechanism in QGP-1N cells, although SN-38 plays an essential role in the antitumor activity of CPT-11 in SUIT-2 cells. In some cases, the antitumor effect of CPT-11 might be consequent not only on SN-38 but also on CPT-11 itself.

  9. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  10. Coproduction of carcinoembryonic antigen and nonspecific cross-reacting antigen by a continuous cell line from a human pancreatic tumor.

    PubMed

    Kuroki, M; Ichiki, S; Kuroki, M; Matsuoka, Y

    1982-08-01

    A simultaneous production of nonspecific cross-reacting antigen (NCA) and carcinoembryonic antigen (CEA) by the same individual cells of an established human pancreatic cell line (QGP-1) was demonstrated by the immunoperoxidase method. Kinetics of cell proliferation and production of CEA and NCA were analyzed, and active synthesis of both antigens was found to be accompanied with the active proliferation of cultured cells. Both antigens in culture medium were purified by immunoadsorption and gel filtration. Immunochemical studies confirmed that CEA and NCA produced by the QGP-1 cells had properties identical to those of authentic CEA derived from metastatic colorectal carcinoma and to those of NCA from normal lungs, respectively.

  11. Leydig cell tumor

    MedlinePlus

    ... the cells in the testicles that release the male hormone, testosterone . ... seem to be linked to undescended testes . Leydig cell tumors make up a very small number of all testicular tumors. They are most often found in men between 30 and 60 years of age. This ...

  12. In vitro selective toxicity of toxin T-514 from Karwinskia humboldtiana (buckthorn) plant on various human tumor cell lines.

    PubMed

    Piñeyro-López, A; Martínez de Villarreal, L; González-Alanís, R

    1994-09-06

    Toxin T-514 is a dimeric anthracenone isolated from the Karwinskia humboldtiana (buckthorn) plant. Its potential anti-neoplastic effect was evaluated in vitro and the results obtained were compared with the effect of other known anti-cancer agents. Normal and malignant continuous cell lines were tested. After a 72-h exposure, neoplastic cells derived from hepatic, pulmonary and colonic tissues were more sensitive to toxin T-514 than normal cells from the corresponding organ. Hepatoma cells and colon adenocarcinoma CT50 values were < 10 micrograms/ml. Lung adenocarcinoma, undifferentiated bronchogenic cancer cells and small cell carcinoma CT50 values were < 20 micrograms/ml. All benign cell CT50 levels tested were > 113 micrograms/ml. This in vitro selective toxicity found with toxin T-514 was also seen with 5-fluororacil and mitomycin for colon adenocarcinoma and with epidoxorubicin for undifferentiated bronchogenic cancer cells.

  13. Prenylated derivatives of baicalein and 3,7-dihydroxyflavone: synthesis and study of their effects on tumor cell lines growth, cell cycle and apoptosis.

    PubMed

    Neves, Marta Perro; Cidade, Honorina; Pinto, Madalena; Silva, Artur M S; Gales, Luís; Damas, Ana Margarida; Lima, Raquel T; Vasconcelos, M Helena; de São José Nascimento, Maria

    2011-06-01

    Fourteen baicalein and 3,7-dihydroxyflavone derivatives were synthesized and evaluated for their inhibitory activity against the in vitro growth of three human tumor cell lines. The synthetic approaches were based on the reaction with prenyl or geranyl bromide in alkaline medium, followed by cyclization of the respective monoprenylated derivative. Dihydropyranoflavonoids were also obtained by one-pot synthesis, using Montmorillonite K10 clay as catalyst combined with microwave irradiation. In vitro screening of the compounds for cell growth inhibitory activity revealed that the presence of one geranyl group was associated with a remarkable increase in the inhibitory activity. Moreover, for the 3,7-dihydroxyflavone derivatives a marked increase in growth inhibitory effect was also observed for compounds with furan and pyran fused rings. The most active compounds were also studied regarding their effect on cell cycle profile and induction of apoptosis. Overall the results point to the relevant role of the prenylation of flavone scaffold in the growth inhibitory activity of cancer cells.

  14. Merkel cell tumor.

    PubMed

    Kitazawa, M; Watanabe, H; Kobayashi, H; Ohnishi, Y; Shitara, A; Nitto, H

    1987-06-01

    A Merkel cell tumor appeared on the left cheek of an 83-year-old female was reported. The tumor was located mainly in the dermis and infiltrated to the subcutaneous adipose tissue with an involvement of the blood vessels and lymphatics at the periphery. Electron-microscopically, few of the dense-cored granules and the single globular aggregates of intermediate filaments at the nuclear indentations were observed. Electron-microscopic uranaffin reaction proved positive reaction on the dense-cored granules. Half of the cytoplasmic border was smooth, while the rest had short projections. Desmosomes or junctional complexes were not detected among the tumor cells. Immunohistochemically, the cytoplasm of tumor cell showed positive reaction to both neuron-specific enolase (NSE) and keratin. The single globular positive spots of the latter were localized in accordance with the aggregates of intermediate filaments. These findings suggested a neurogenic origin with double differentiation, epithelial and neuroendocrine, of the Merkel cell tumor.

  15. Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma

    SciTech Connect

    Whaley, J.M.; Naglich, J.; Gelbert, L.; Laidlaw, J.; Seizinger, B.R.; Kley, N.; Hsia, Y.E.; Lamiell, J.M.; Green, J.S.; Collins, D.

    1994-12-01

    von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome predisposing to multifocal bilateral renal cell carcinomas (RCCs), pheochromocytomas, and pancreatic tumors, as well as angiomas and hemangioblastomas of the CNS. A candidate gene for VHL was recently identified, which led to the isolation of a partial cDNA clone with extended open reading frame, without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and nonhereditary tumors, we performed mutation analyses and studied its expression in normal and tumor tissue. The authors identified germline mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs and all (6/6) sporadic RCC cell lines analyzed showed mutations within the VHL gene. Both germ-line and somatic mutations included deletions, insertions, splice-site mutations, and missense and nonsense mutations, all of which clustered at the 3{prime} end of the corresponding partial VHL cDNA open reading frame, including an alternatively spliced exon 123 nt in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic RCCs, acts as a recessive tumor-suppressor gene, and appears to encode important functional domains within the 3{prime} end of the known open reading frame.

  16. Gamma secretase inhibitor impairs epithelial-to-mesenchymal transition induced by TGF-β in ovarian tumor cell lines.

    PubMed

    Pazos, M C; Abramovich, D; Bechis, A; Accialini, P; Parborell, F; Tesone, M; Irusta, G

    2017-01-15

    Ovarian cancer is characterized by being highly metastatic, a feature that represents the main cause of failure of the treatment. This study investigated the effects of γ-secretase inhibition on the TGF-β-induced epithelial-mesenchymal transition (EMT) process in ovarian cancer cell lines. SKOV3 cells incubated in the presence of TGF-β showed morphological and biochemical changes related to EMT, which were blocked by co-stimulation with TGF-β and the γ-secretase inhibitor DAPT. In SKOV3 and IGROV1 cells, the co-stimulation blocked the cadherin switch and the increase in the transcription factors Snail, Slug, Twist and Zeb1 induced by TGF-β. DAPT impaired the translocation of phospho-β-catenin to the inner cell compartment observed in TGF-β-treated cells, but was not able to block the induction at protein level induced by TGF-β. Moreover, the inhibitor blocked the increased cell migration and invasiveness ability of both cell lines induced by TGF-β. Notch target genes (Hes1 and Hey1) were induced by TGF-β, decreased by DAPT treatment and remained low in the presence of both stimuli. However, DAPT alone caused no effects on most of the parameters analyzed. These results demonstrate that the γ-secretase inhibitor used in this study exerted a blockade on TGF-β-induced EMT in ovarian cancer cells.

  17. Human adrenal tumor cell line SW-13 contains a natriuretic peptide receptor system that responds preferentially to ANP among various natriuretic peptides

    SciTech Connect

    Mizuno, T.; Katafuchi, T.; Hagiwara, H.; Ito, T.; Kangawa, K.; Matsuo, H.; Hirose, S. )

    1990-12-31

    A new type of ANP receptor system which clearly distinguishes natriuretic peptides A and B (ANP and BNP) has been identified in the human adrenal tumor cell line SW-13 and characterized. SW-13 cells responded to nanomolar concentrations of ANP with large increases in cGMP levels but in the case of BNP, much higher concentrations were required to produce the same extent of response. This property is unique since the 140-kDa ANP receptors so far characterized do not discriminate between ANP and BNP. For comparison, various natriuretic peptide receptors were also re-characterized using the recently identified CNP.

  18. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines

    PubMed Central

    Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura

    2013-01-01

    The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer. PMID:24149212

  19. Analysis of esophageal cancer cell lines exposed to X-ray based on radiosensitivity influence by tumor necrosis factor-α.

    PubMed

    Wang, Buhai; Ge, Yizhi; Gu, Xiang

    2016-10-06

    Assess the effects of tumor necrosis factor-α (TNF-α) in enhancing the radiosensitivity of esophageal cancer cell line in vitro. Three esophageal cancer cell line cells were exposed to X-ray with or without TNF-α treatment. MTT assay was used to evaluate the cell growth curve, and flow cytometry was performed to assess the cell apoptosis. The radiosensitizing effects of TNF-α were detected by cell colony formation assay. Western blotting was applied to observe the expression of NF-κB and caspase-3 protein in the exposed cells. Our results indicated that cellular inhibition rate increased over time, the strongest is combined group (P < 0.05). Western blotting showed that the decline expression of NF-κB protein was stated between only rhTNF-α and only X-ray radiation group and the maximum degree was manifested in combined group. Caspase-3 protein content expression just works opposite. Three kinds of cells in the NF-κB protein were similar without rhTNF-α. Then SEG1 NF-κB protein content was reduced more than other two kinds. We concluded that the cells treated with TNF-α showed significantly suppressed cell proliferation, increasing the cell apoptosis, and caspase-3 protein expression after X-ray exposure. TNF-α can enhance the radiosensitivity of esophageal cancer to enhancing the effect of the former.

  20. Anti-tumor Activity of Ferulago angulata Boiss. Extract in Gastric Cancer Cell Line via Induction of Apoptosis

    PubMed Central

    Heidari, Shafagh; Akrami, Hassan; Gharaei, Roghaye; Jalili, Ali; Mahdiuni, Hamid; Golezar, Elham

    2014-01-01

    Ferulago angulata Boiss. known in Iran as Chavir, has some bioactive compounds having antioxidant activity. Because of its antioxidant activities, it sounded Chavir extract can be a good candidate for finding chemopreventive agents having inductive apoptosis properties on cancer cells. In this study, the cytotoxic effects and proapoptotic activities of Chavir’s leaf and flower extracts were investigated on human adenocarcinoma gastric cell line (AGS). The ferric reducing antioxidant power (FRAP) assay was used to determine antioxidant activity of the extract. Cytotoxic effects of the extract were performed by trypan blue and neutral red assays. For apoptosis detection, we used Annexin V staining, flow cytometry and DNA fragmentation assays. The FRAP assay results showed that antioxidant activity of leaf extract was higher than flower extract. Cytotoxicity and apoptosis–inducing activity of flower and leaf extracts changed coordinately, indicating the cytotoxicity of chavir extracts is due probably to induce apoptosis. Our results revealed that the cytotoxic effects of F. angulate Boiss. extracts on AGS cell line is close to some other plant extracts such as Rhus verniciflua Stokes (RVS) and Scutellaria litwinowii. This is the first study on cytotoxic and apoptosis–inducing effects of chavir leaf and flower extracts against AGS cell line. The Further investigation can be identification of the agent(s) by which these effects is observed. PMID:25587323

  1. Anti-tumor Activity of Ferulago angulata Boiss. Extract in Gastric Cancer Cell Line via Induction of Apoptosis.

    PubMed

    Heidari, Shafagh; Akrami, Hassan; Gharaei, Roghaye; Jalili, Ali; Mahdiuni, Hamid; Golezar, Elham

    2014-01-01

    Ferulago angulata Boiss. known in Iran as Chavir, has some bioactive compounds having antioxidant activity. Because of its antioxidant activities, it sounded Chavir extract can be a good candidate for finding chemopreventive agents having inductive apoptosis properties on cancer cells. In this study, the cytotoxic effects and proapoptotic activities of Chavir's leaf and flower extracts were investigated on human adenocarcinoma gastric cell line (AGS). The ferric reducing antioxidant power (FRAP) assay was used to determine antioxidant activity of the extract. Cytotoxic effects of the extract were performed by trypan blue and neutral red assays. For apoptosis detection, we used Annexin V staining, flow cytometry and DNA fragmentation assays. The FRAP assay results showed that antioxidant activity of leaf extract was higher than flower extract. Cytotoxicity and apoptosis-inducing activity of flower and leaf extracts changed coordinately, indicating the cytotoxicity of chavir extracts is due probably to induce apoptosis. Our results revealed that the cytotoxic effects of F. angulate Boiss. extracts on AGS cell line is close to some other plant extracts such as Rhus verniciflua Stokes (RVS) and Scutellaria litwinowii. This is the first study on cytotoxic and apoptosis-inducing effects of chavir leaf and flower extracts against AGS cell line. The Further investigation can be identification of the agent(s) by which these effects is observed.

  2. Identification and partial characterization of the unglycosylated peptide of carcinoembryonic antigen synthesized by human tumor cell lines in the presence of tunicamycin.

    PubMed

    Kuroki, M; Kuroki, M; Ichiki, S; Matsuoka, Y

    1984-08-01

    Unglycosylated peptide backbones of carcinoembryonic antigen (CEA) synthesized by human tumor cell lines in the presence of tunicamycin were identified and analyzed by SDS-polyacrylamide gel electrophoresis. Three tumor cell lines, QGP-1 (pancreas), FCC-1 (colon) and KNS-62 (lung) were found to produce CEA molecules of 180,000-190,000 mol. wts labeled with both [3H]leucine and [14C]glucosamine under conventional culture conditions. In contrast, in the presence of tunicamycin, the native CEA molecules disappeared, and a new component that was precipitated with anti-CEA antibodies and labeled only with [3H]leucine but not with [14C]glucosamine was identified in each cell line. Monoclonal antibodies each directed to different major antigenic determinants on the native CEA molecules also reacted with this unglycosylated peptide. The apparent mol. wts of the naked CEA peptides from QGP-1 and FCC-1 were equally about 78,000, whereas that from KNS-62 was somewhat larger than the other two, suggesting some differences in the peptide structure of the CEA molecules.

  3. Sertoli-Leydig cell tumor

    MedlinePlus

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The Sertoli cells are normally located in the male reproductive glands (the testes). They feed sperm cells. The Leydig cells, also ...

  4. NTRK1 rearrangement in colorectal cancer patients: evidence for actionable target using patient-derived tumor cell line

    PubMed Central

    Hong, Min Eui; Jang, Jiryeon; Yoon, Nara; Ahn, Soo Min; Murphy, Danielle; Christiansen, Jason; Wei, Ge; Hornby, Zachary; Lee, Dong Woo; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Hong, Sung No; Kim, Seok-Hyeong; Kang, Won Ki; Park, Keunchil; Park, Woong Yang; Kim, Kyoung-Mee; Lee, Jeeyun

    2015-01-01

    Background We have investigated the incidence of NTRK1 rearrangements in metastatic gastrointestinal cancer patients and demonstrated the potential for clinical response of these patients to targeted therapy. Methods We prospectively collected tumor tissue specimens for one year and simultaneously generated patient-derived tumor cells (PDCs). Specimens were initially screened for TrkA protein expression using TrkA immunohistochemistry (IHC). In the case of TrkA IHC positive results, samples were further examined by fluorescence in situ hybridization (FISH) and next generation sequencing (NGS) to confirm the presence of NTRK1 rearrangements. Results From January 2014 to December 2014, a total of 74 metastatic colorectal cancer (CRC) patients and 66 gastric cancer (GC) patients were initially screened by TrkA IHC. Two of the 74 CRC patients (2.7%) and one of the 66 GC patients (1.5%) were positive for TrkA expression by IHC. All three IHC positive cases had evidence of NTRK1 rearrangements by FISH. NGS was performed on the 3 IHC positive cases and confirmed TPM3-NTRK1 rearrangements in the two CRC cases. One GC patient with TrkA expression by IHC did not harbor an NTRK1 rearrangement. PDCs established from the NTRK1 positive CRC patients were positive for the NTRK1 rearrangement. Entrectinib, a pan-TRK inhibitor, profoundly inhibited cell proliferation of NTRK1-rearranged PDCs with such inhibition associated with inactivation of TrkA, and down-regulation of downstream signaling pathways. Conclusion TrkA IHC is an effective, initial screening method for NTRK1 rearrangement detection in the clinic. Inhibition of the TrkA kinase is a promising targeted therapy for cancer patients whose tumors harbor a NTRK1 rearrangement. PMID:26472021

  5. [Testicular germ cell tumors].

    PubMed

    Dourthe, L M; Ouachet, M; Fizazi, K; Droz, J P

    1998-09-01

    Testicle germ cells tumors are the most common young men neoplasm. The incidence is maximal in Scandinavian countries. Cryptorchidism is a predisposing factor. Diagnosis is clinic, first treatment is radical orchidectomy by inguinal incision, after study of tumor markers. Histology shows seminoma or non seminomatous tumor. Carcinoma in situ is the precursor of invasive germ cell tumors. Germ cell tumors have no p53 mutation, and have isochrome of the short arm of chromosome 12 as a specific marker. With the results of histological, biochemical and radiographic evaluation, patient are classified as follows: good, intermediate and poor risk prognosis. Standard treatment of stage I seminoma is prophylactic irradiation. Stage II with less than 3 cm lymph node too. Other situations need a cisplatin based chemotherapy. In case of metastatic residuals masses more than 3 cm, surgery need to be discussed. Stage I non seminomatous germ cell tumors are treated by retroperitoneal lymphadenectomy, by surveillance or by two cycles of adjuvant chemotherapy with cisplatin, etoposide and bleomycin (BEP). Standard treatment of good prognosis stage II and III is three cycles of BEP, four for poor prognosis. Residual mass need surgery, adjuvant chemotherapy is necessary in presence of viable germ cell. Standard treatment for relapses is chemotherapy with cisplatin, ifosfamide and vinblastine with a 30% remission rate. The place of high dose chemotherapy with autologous stem cell transplantation is not yet standardised. New drugs, as paclitaxel, are under studies.

  6. Identification of human somatostatin receptor 2 domains involved in internalization and signaling in QGP-1 pancreatic neuroendocrine tumor cell line.

    PubMed

    Cambiaghi, Valeria; Vitali, Eleonora; Morone, Diego; Peverelli, Erika; Spada, Anna; Mantovani, Giovanna; Lania, Andrea Gerardo

    2016-07-12

    Somatostatin exerts inhibitory effects on hormone secretion and cell proliferation via five receptor subtypes (SST1-SST5), whose internalization is regulated by β-arrestins. The receptor domains involved in these effects have been only partially elucidated. The aim of the study is to characterize the molecular mechanism and determinants responsible for somatostatin receptor 2 internalization and signaling in pancreatic neuroendocrine QGP-1 cell line, focusing on the third intracellular loop and carboxyl terminal domains. We demonstrated that in cells transfected with somatostatin receptor 2 third intracellular loop mutant, no differences in β-arrestins recruitment and receptor internalization were observed after somatostatin receptor 2 activation in comparison with cells bearing wild-type somatostatin receptor 2. Conversely, the truncated somatostatin receptor 2 failed to recruit β-arrestins and to internalize after somatostatin receptor 2 agonist (BIM23120) incubation. Moreover, the inhibitory effect of BIM23120 on cell proliferation, cyclin D1 expression, P-ERK1/2 levels, apoptosis and vascular endothelial growth factor secretion was completely lost in cells transfected with either third intracellular loop or carboxyl terminal mutants. In conclusion, we demonstrated that somatostatin receptor 2 internalization requires intact carboxyl terminal while the effects of SS on cell proliferation, angiogenesis and apoptosis mediated by somatostatin receptor 2 need the integrity of both third intracellular loop and carboxyl terminal.

  7. The miR-21/PTEN/Akt signaling pathway is involved in the anti-tumoral effects of zoledronic acid in human breast cancer cell lines.

    PubMed

    Fragni, M; Bonini, S A; Bettinsoli, P; Bodei, S; Generali, D; Bottini, A; Spano, P F; Memo, M; Sigala, S

    2016-05-01

    Preclinical data indicate a direct anti-tumor effect of zoledronic acid (ZA) outside the skeleton, but its molecular mechanism is still not completely clarified. The aim of this study was to investigate the anti-cancer effects of ZA in human breast cancer cell lines, suggesting that they may in part be mediated via the miR-21/PTEN/Akt signaling pathway. The effect of ZA on cell viability was measured by MTT assay, and cell death induction was analyzed using either a double AO/EtBr staining and M30 ELISA assay. A Proteome Profiler Human Apoptosis Array was executed to evaluate the molecular basis of ZA-induced apoptosis. Cell cycle analysis was executed by flow cytometry. The effect of ZA on miR-21 expression was quantified by qRT-PCR, and the amount of PTEN protein and its targets were analyzed by Western blot. ZA inhibited cell growth in a concentration- and time-dependent manner, through the activation of cell death pathways and arrest of cell cycle progression. ZA downregulated the expression of miR-21, resulting in dephosphorilation of Akt and Bad and in a significant increase of p21 and p27 proteins expression. These results were observed also in MDA-MB-231 cells, commonly used as an experimental model of bone metastasis of breast cancer. This study revealed, for the first time, an involvement of the miR-21/PTEN/Akt signaling pathway in the mechanism of ZA anti-cancer actions in breast cancer cells. We would like to underline that this pathway is present both in the hormone responsive BC cell line (MCF-7) as well as in a triple negative cell line (MDA-MB-231). Taken together these results reinforce the use of ZA in clinical practice, suggesting the role of miR-21 as a possible mediator of its therapeutic efficacy.

  8. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines.

    PubMed

    Jian, Yuan; Chen, Yuling; Geng, Chuanying; Liu, Nian; Yang, Guangzhong; Liu, Jinwei; Li, Xin; Deng, Haiteng; Chen, Wenming

    2016-06-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially expressed proteins between the two cell lines were analyzed prior and subsequent to rmhTRAIL administration by a liquid chromatography-tandem mass spectrometry method. The results showed that following TRAIL treatment, 6 apoptosis-related proteins, calpain small subunit 1 (CPNS1), peflin (PEF1), B-cell receptor-associated protein 31 (BAP31), apoptosis-associated speck-like protein containing CARD (ASC), BAG family molecular chaperone regulator 2 (BAG2) and chromobox protein homolog 3 (CBX3), were upregulated in RPMI 8226 cells while no change was identified in the U266 cells. Furthermore, small ubiquitin-related modifier 1 and several other ubiquitin proteasome pathway (UPP)-related proteins expressed higher levels in TRAIL-resistant cells U266 compared to the RPMI-8226 cells prior and subsequent to rmhTRAIL treatment. These results suggested that CPNS1, PEF1, BAP31, ASC, BAG2 and CBX3 were possibly target proteins of rmhTRAIL on RPMI 8226 cells, while UPP may have a vital role in mediating TRAIL-resistance in U266 cells.

  9. Target and resistance-related proteins of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand on myeloma cell lines

    PubMed Central

    JIAN, YUAN; CHEN, YULING; GENG, CHUANYING; LIU, NIAN; YANG, GUANGZHONG; LIU, JINWEI; LI, XIN; DENG, HAITENG; CHEN, WENMING

    2016-01-01

    Recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) has become a potential therapeutic drug for multiple myeloma (MM). However, the exact targets and resistance mechanisms of rmhTRAIL on MM cells remain to be elucidated. The present study aimed to investigate the target and resistance-related proteins of rmhTRAIL on myeloma cell lines. A TRAIL-sensitive myeloma cell line, RPMI 8226, and a TRAIL-resistance one, U266, were chosen and the differentially expressed proteins between the two cell lines were analyzed prior and subsequent to rmhTRAIL administration by a liquid chromatography-tandem mass spectrometry method. The results showed that following TRAIL treatment, 6 apoptosis-related proteins, calpain small subunit 1 (CPNS1), peflin (PEF1), B-cell receptor-associated protein 31 (BAP31), apoptosis-associated speck-like protein containing CARD (ASC), BAG family molecular chaperone regulator 2 (BAG2) and chromobox protein homolog 3 (CBX3), were upregulated in RPMI 8226 cells while no change was identified in the U266 cells. Furthermore, small ubiquitin-related modifier 1 and several other ubiquitin proteasome pathway (UPP)-related proteins expressed higher levels in TRAIL-resistant cells U266 compared to the RPMI-8226 cells prior and subsequent to rmhTRAIL treatment. These results suggested that CPNS1, PEF1, BAP31, ASC, BAG2 and CBX3 were possibly target proteins of rmhTRAIL on RPMI 8226 cells, while UPP may have a vital role in mediating TRAIL-resistance in U266 cells. PMID:27284413

  10. Cloning of a brain-type isoform of human Rab GDI and its expression in human neuroblastoma cell lines and tumor specimens.

    PubMed

    Nishimura, N; Goji, J; Nakamura, H; Orita, S; Takai, Y; Sano, K

    1995-11-15

    Rab proteins, a family of Ras-related small GTP-binding proteins, play a key role in regulating intracellular vesicle trafficking. Rab GDP dissociation inhibitor (GDI3) forms a soluble complex with Rab proteins and thereby prevents the exchange of GDP for GTP. Recently, two isoforms of Rab GDI cDNA were isolated from rats and mice. In this study, we have isolated a brain-type isoform of human Rab GDI cDNA and examined its expression in neuroblastoma. We tentatively designate it as human Rab GDI alpha (hu GDI alpha) and another human Rab GDI, as human Rab GDI beta (hu GDI beta). Hu GDI alpha cDNA encodes a protein of 447 amino acids with a deduced molecular weight of 50,200. Northern blot analysis revealed that hu GDI alpha gene is expressed abundantly in the brain but much less in other tissues, while hu GDI beta gene is ubiquitously expressed. All human neuroblastoma cell lines and tumor specimens examined express hu GDI alpha gene to various extents, while a human T cell leukemia cell line, MOLT3, does not. The levels of both hu GDI alpha and beta mRNA were constant in a human neuroblastoma cell line, NB1, during its neuronal differentiation, while Rab3A and neurofilament-L gene expression and the number of neurosecretory granules were elevated at this condition. These results suggest that hu GDI alpha gene expression is not related to the differentiation state of neuronal cells.

  11. Plk1 Inhibition Causes Post-Mitotic DNA Damage and Senescence in a Range of Human Tumor Cell Lines

    PubMed Central

    Bowman, Doug; Shinde, Vaishali; Lasky, Kerri; Shi, Judy; Vos, Tricia; Stringer, Bradley; Amidon, Ben; D'Amore, Natalie; Hyer, Marc L.

    2014-01-01

    Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens. PMID:25365521

  12. Transcriptome analysis of the cancer/testis genes, DAZ1, AURKC, and TEX101, in breast tumors and six breast cancer cell lines.

    PubMed

    Mobasheri, Maryam Beigom; Shirkoohi, Reza; Zendehdel, Kazem; Jahanzad, Issa; Talebi, Saeid; Afsharpad, Mandana; Modarressi, Mohammad Hossein

    2015-09-01

    Breast cancer is the most frequent cancer with second mortality rate in women worldwide. Lack of validated biomarkers for early detection of breast cancer to warranty the diagnosis and effective treatments in early stages has directed to the new therapeutic approach. Cancer/testis antigens which have restricted normal expression in testis and aberrant expression in different cancers are promising targets for generating cancer vaccines, monoclonal antibodies, or dendritic cell-based immunotherapy. In this context, we investigated the expression of two known cancer testis genes, Aurora kinase C (AURKC) and testis expressed 101 (TEX101), and one new candidate, deleted in azoospermia 1 (DAZ1), in six breast cancer cell lines including two ductal carcinomas, T47D and BT-474, and four adenocarcinomas, MDA-MB-231, MDA-MB-468, MCF7, and SKBR3 as well as 50 breast cancer tumors in comparison to normal mammary epithelial cells using quantitative real-time reverse transcription PCR (RT-PCR). Results showed significant overexpression (p = 0.000) of all three genes in BT474, DAZ1 in MDA-MB-231, and AURKC and DAZ1 in SKBR3 and significant downregulation (p = 0.000) of AURKC in MCF7 cell line relative to normal breast epithelial cells. Breast tumors showed significant overexpression of AURKC in comparison to normal breast tissues (p = 0.016). The results are noticeable especially in the case of AURKC; however, there is a little knowledge about the nature, causes, consequences, and effects of cancer/testis antigens activation in different cancers. It is suggested that AURKC has effects on cell division via its serin/threonin kinases activity and organizing microtubules in relation to centrosome/spindle function during mitosis.

  13. Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes.

    PubMed

    Schmidt, Hannelore; Taubert, Helge; Lange, Heidemarie; Kriese, Karen; Schmitt, Wolfgang Daniel; Hoffmann, Steve; Bartel, Frank; Hauptmann, Steffen

    2009-08-01

    Small polydispersed circular DNA (spcDNA) belongs to the extrachromosomal pool of DNA and is composed of heterogeneous DNA circles. Whether spcDNA has a special function is currently unclear but their occurrence was suggested to be linked to genetic instability. In this study we investigated as to whether human lymphocytes from healthy volunteers also harbour spcDNA and whether spcDNA is present in all permanent cell lines from human normal and malignant tissues. Moreover, we were interested to see whether spcDNA contains sequences of mobile genetic elements. Our results show that spcDNA is present in all samples investigated yet the amount is lower in normal lymphocytes when compared to cancer cell lines (5.4 vs. 17.8%). Alu sequences were present in 12/16 cancer cell lines whereas LINE-1 (L1) sequences were present in 15 of them. Six tumor cell lines also contained telomeric sequences. In contrast to that, spcDNA of normal lymphocytes contains Alu and L1 sequences only in 3/16 cases and no telomeric sequences at all. Our findings suggest a direct dependency of the amount of Alu and L1 sequences on that of spcDNA. Beside these repetitive sequences, sequencing of spcDNA revealed in most cases chromosomal sequences of almost all chromosomes without an increased frequency of single regions. We suggest that the whole spcDNA including retrotranspositional elements and telomeric sequences may play a role for chromosomal rearrangements and genomic instability.

  14. Regulation of hdm2 by stress-induced hdm2alt1 in tumor and nontumorigenic cell lines correlating with p53 stability.

    PubMed

    Dias, Chrisanne S; Liu, Yan; Yau, Amy; Westrick, Lindsay; Evans, Susan C

    2006-10-01

    Alternative and aberrant splicing of hdm2 occurs in tumor and normal tissues. However, the factors that induce these splice variants and whether they are translated to protein products in vivo is unknown, making it difficult to decipher which of these hdm2 transcripts have a normal physiologic function or contribute to carcinogenesis. We investigated the conditions that induce this post-transcriptional modification of hdm2 in tumor and nontumorigenic cell lines. We showed that UV and gamma radiation as well as cisplatin treatment induced alternative splicing of hdm2, which resulted in a single splice variant, hdm2(alt1), irrespective of the cell type. Interestingly, the mechanism of UV-induced splicing is independent of p53 status. Immunoanalysis revealed that, after UV radiation, HDM2(ALT1) protein was expressed and interacted with HDM2 that correlated to increased p53 protein levels and its accumulation in the nucleus, whereas HDM2 localized more to the cytoplasm with a decrease in its RNA and protein level. We propose that stress-induced HDM2(ALT1) regulates HDM2 at two levels, RNA and protein, further modulating the p53-HDM2 interaction or interactions of HDM2 with other cell cycle regulatory proteins. This kind of regulation may possibly restrict oncogenic functions of HDM2 and contribute to the many protective responses triggered by certain stress signals. Our data imply that HDM2(ALT1) possesses a normal physiologic function in damaged cells, perhaps facilitating cellular defense.

  15. Inverse relationship between human papillomavirus (HPV) type 16 early gene expression and cell differentiation in nude mouse epithelial cysts and tumors induced by HPV-positive human cell lines.

    PubMed Central

    Dürst, M; Bosch, F X; Glitz, D; Schneider, A; zur Hausen, H

    1991-01-01

    Two human papillomavirus type 16 (HPV 16)-immortalized human keratinocyte cell lines (HPK) were shown to have retained the ability for differentiation after subcutaneous injection into nude mice. These properties were maintained even at late passage. HPK cells gave rise to transiently growing cysts which exhibited an epitheliumlike architecture. Moreover, differentiation-specific markers such as cytokeratin 10, involucrin, and filaggrin were shown to be expressed in an ordered succession. RNA-RNA in situ hybridization revealed heterogeneous and low levels of HPV 16 E6-E7 RNA in the basal layer of the cysts. In contrast, in progressively growing tumors induced by HPK cells containing an activated ras oncogene (EJ-ras) or in tumors induced by the cervical carcinoma cell line CaSki, high levels of E6-E7-specific RNA could be detected. Irrespective of the growth potential of these cell lines in nude mice, viral transcription was always more evident in the basal layer and in proliferatively active cells rather than in differentiated cells. This contrasts with viral gene expression in HPV 16 positive low-grade cervical dysplasia, in which abundant viral transcriptional activity was mapped to the upper third of the epithelium. It is suggested that the physical state of the viral DNA, i.e., integrated viral DNA in the cell lines as opposed to extrachromosomal DNA in low-grade cervical dysplasia, may influence viral gene regulation. Images PMID:1846200

  16. Expression of a tumor-associated gene, LASS2, in the human bladder carcinoma cell lines BIU-87, T24, EJ and EJ-M3

    PubMed Central

    ZHAO, QINGHUA; WANG, HAIFENG; YANG, MINGYING; YANG, DELIN; ZUO, YIGANG; WANG, JIANSONG

    2013-01-01

    Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), a metastasis suppressor gene of human cancer, is the most abundantly expressed member of the ceramide synthase gene family. Expression of LASS2 has been reported in carcinomas of the prostate, liver and breast. However, there has been no report on the expression of LASS2 in human bladder cancer cell lines. In order to investigate the expression and potential role of this new tumor metastasis supressor gene in human bladder cancer, we compared the proliferation, metastasis and invasion among the BIU-87, T24, EJ and EJ-M3 human bladder cancer cell lines. The mRNA expression levels of the LASS2 gene were examined using real-time quantitative PCR (qPCR). The expression levels of LASS1 and LASS3 mRNA were used as references. The protein expression level of the LASS2 gene was detected using western blotting. The most aggressive of these four human cancer cell lines was observed to be EJ-M3. The expression of LASS2 mRNA was significantly correlated with diverse proliferation, metastasis and invasion. The expression levels of LASS1 and LASS3 mRNA were not correlated with these parameters. At the protein level, we observed that the more aggressive the cancer cell line, the lower the LASS2 protein expression level. Therefore, LASS2 expression may be correlated with the development and progression of human bladder cancer and may be a prognostic indicator for this cancer. PMID:23407876

  17. Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma.

    PubMed

    Codenotti, Silvia; Vezzoli, Marika; Poliani, Pietro Luigi; Cominelli, Manuela; Bono, Federica; Kabbout, Hadi; Faggi, Fiorella; Chiarelli, Nicola; Colombi, Marina; Zanella, Isabella; Biasiotto, Giorgio; Montanelli, Alessandro; Caimi, Luigi; Monti, Eugenio; Fanzani, Alessandro

    2016-08-01

    Caveolins (Cav-1, -2 and -3) and Cavins (Cavin-1, -2, -3 and -4) are two protein families controlling the biogenesis and function of caveolae, plasma membrane omega-like invaginations representing the primary site of important cellular processes like endocytosis, cholesterol homeostasis and signal transduction. Caveolae are especially abundant in fat tissue, playing a consistent role in a number of processes, such as the insulin-dependent glucose uptake and transmembrane transport of lipids underlying differentiation, maintenance and adaptive hypertrophy of adipocytes. Based on this premise, in this work we have investigated the expression of caveolar protein components in liposarcoma (LPS), an adipocytic soft tissue sarcoma affecting adults categorized in well-differentiated, dedifferentiated, myxoid and pleomorphic histotypes. By performing an extensive microarray data analysis followed by immunohistochemistry on human LPS tumors, we demonstrated that Cav-1, Cav-2 and Cavin-1 always cluster in all the histotypes, reaching the highest expression in well-differentiated LPS, the least aggressive of the malignant forms composed by tumor cells with a morphology resembling mature adipocytes. In vitro experiments carried out using two human LPS cell lines showed that the expression levels of Cav-1, Cav-2 and Cavin-1 proteins were faintly detectable during cell growth, becoming consistently increased during the accumulation of intracellular lipid droplets characterizing the adipogenic differentiation. Moreover, in differentiated LPS cells the three proteins were also found to co-localize and form molecular aggregates at the plasma membrane, as shown via immunofluorescence and immunoprecipitation analysis. Overall, these data indicate that Cav-1, Cav-2 and Cavin-1 may be considered as reliable markers for identification of LPS tumors characterized by consistent adipogenic differentiation.

  18. The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo.

    PubMed

    Rusnak, D W; Lackey, K; Affleck, K; Wood, E R; Alligood, K J; Rhodes, N; Keith, B R; Murray, D M; Knight, W B; Mullin, R J; Gilmer, T M

    2001-12-01

    The epidermal growth factor receptor (EGFR) and ErbB-2 transmembrane tyrosine kinases are currently being targeted by various mechanisms in the treatment of cancer. GW2016 is a potent inhibitor of the ErbB-2 and EGFR tyrosine kinase domains with IC50 values against purified EGFR and ErbB-2 of 10.2 and 9.8 nM, respectively. This report describes the efficacy in cell growth assays of GW2016 on human tumor cell lines overexpressing either EGFR or ErbB-2: HN5 (head and neck), A-431 (vulva), BT474 (breast), CaLu-3 (lung), and N87 (gastric). Normal human foreskin fibroblasts, nontumorigenic epithelial cells (HB4a), and nonoverexpressing tumor cells (MCF-7 and T47D) were tested as negative controls. After 3 days of compound exposure, average IC50 values for growth inhibition in the EGFR- and ErbB-2-overexpressing tumor cell lines were < 0.16 microM. The average selectivity for the tumor cells versus the human foreskin fibroblast cell line was 100-fold. Inhibition of EGFR and ErbB-2 receptor autophosphorylation and phosphorylation of the downstream modulator, AKT, was verified by Western blot analysis in the BT474 and HN5 cell lines. As a measure of cytotoxicity versus growth arrest, the HN5 and BT474 cells were assessed in an outgrowth assay after a transient exposure to GW2016. The cells were treated for 3 days in five concentrations of GW2016, and cell growth was monitored for an additional 12 days after removal of the compound. In each of these tumor cell lines, concentrations of GW2016 were reached where outgrowth did not occur. Furthermore, growth arrest and cell death were observed in parallel experiments, as determined by bromodeoxyuridine incorporation and propidium iodide staining. GW2016 treatment inhibited tumor xenograft growth of the HN5 and BT474 cells in a dose-responsive manner at 30 and 100 mg/kg orally, twice daily, with complete inhibition of tumor growth at the higher dose. Together, these results indicate that GW2016 achieves excellent potency on

  19. Ghost Cell Tumors.

    PubMed

    Sheikh, Jason; Cohen, Molly D; Ramer, Naomi; Payami, Ali

    2017-04-01

    Ghost cell tumors are a family of lesions that range in presentation from cyst to solid neoplasm and in behavior from benign to locally aggressive or metastatic. All are characterized by the presence of ameloblastic epithelium, ghost cells, and calcifications. This report presents the cases of a 14-year-old girl with a calcifying cystic odontogenic tumor (CCOT) and a 65-year-old woman with a peripheral dentinogenic ghost cell tumor (DGCT) with dysplastic changes, a rare locally invasive tumor of odontogenic epithelium. The first patient presented with a 1-year history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph displayed a mixed radiolucent and radiopaque lesion. An incisional biopsy yielded a diagnosis of CCOT. Decompression of the mass was completed; after 3 months, it was enucleated and immediately grafted with bone harvested from the anterior iliac crest. The second patient presented with a 3-month history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph depicted a mixed radiolucent and radiopaque lesion with saucerization of the buccal mandibular cortex. An incisional biopsy examination suggested a diagnosis of DGCT because of the presence of ghost cells, dentinoid, and islands of ameloblastic epithelium. Excision of the mass with peripheral ostectomy was completed. At 6 and 12 months of follow-up, no evidence of recurrence was noted.

  20. Circulating tumor cells

    PubMed Central

    Raimondi, Cristina; Nicolazzo, Chiara; Gradilone, Angela; Giannini, Giuseppe; De Falco, Elena; Chimenti, Isotta; Varriale, Elisa; Hauch, Siegfried; Plappert, Linda; Cortesi, Enrico; Gazzaniga, Paola

    2014-01-01

    The hypothesis of the “liquid biopsy” using circulating tumor cells (CTCs) emerged as a minimally invasive alternative to traditional tissue biopsy to determine cancer therapy. Discordance for biomarkers expression between primary tumor tissue and circulating tumor cells (CTCs) has been widely reported, thus rendering the biological characterization of CTCs an attractive tool for biomarkers assessment and treatment selection. Studies performed in metastatic colorectal cancer (mCRC) patients using CellSearch, the only FDA-cleared test for CTCs assessment, demonstrated a much lower yield of CTCs in this tumor type compared with breast and prostate cancer, both at baseline and during the course of treatment. Thus, although attractive, the possibility to use CTCs as therapy-related biomarker for colorectal cancer patients is still limited by a number of technical issues mainly due to the low sensitivity of the CellSearch method. In the present study we found a significant discordance between CellSearch and AdnaTest in the detection of CTCs from mCRC patients. We then investigated KRAS pathway activating mutations in CTCs and determined the degree of heterogeneity for KRAS oncogenic mutations between CTCs and tumor tissues. Whether KRAS gene amplification may represent an alternative pathway responsible for KRAS activation was further explored. KRAS gene amplification emerged as a functionally equivalent and mutually exclusive mechanism of KRAS pathway activation in CTCs, possibly related to transcriptional activation. The serial assessment of CTCs may represent an early biomarker of treatment response, able to overcome the intrinsic limit of current molecular biomarkers represented by intratumor heterogeneity. PMID:24521660

  1. Isolation by Size of Epithelial Tumor Cells

    PubMed Central

    Vona, Giovanna; Sabile, Abdelmajid; Louha, Malek; Sitruk, Veronique; Romana, Serge; Schütze, Karin; Capron, Frédérique; Franco, Dominique; Pazzagli, Mario; Vekemans, Michel; Lacour, Bernard; Bréchot, Christian; Paterlini-Bréchot, Patrizia

    2000-01-01

    We have developed a new assay, ISET (isolation by size of epithelial tumor cells), which allows the counting and the immunomorphological and molecular characterization of circulating tumor cells in patients with carcinoma, using peripheral blood sample volumes as small as 1 ml. Using this assay, epithelial tumor cells can be isolated individually by filtration because of their larger size when compared to peripheral blood leukocytes. ISET parameters were defined using peripheral blood spiked with tumor cell lines (HepG2, Hep3B, MCF-7, HeLa, and LNCaP). ISET can detect a single, micropipetted tumor cell, added to 1 ml of blood. We also demonstrate that fluorescence in situ hybridization can be used to perform chromosomal analyses on tumor cells collected using ISET. Polymerase chain reaction-based genetic analyses can be applied to ISET-isolated cells, and, as an example, we demonstrate homozygous p53 deletion in single Hep3B cells after filtration and laser microdissection. Finally, we provide evidence for the in vivo feasibility of ISET in patients with hepatocellular carcinoma undergoing tumor resection. ISET, but not reverse transcriptase-polymerase chain reaction, allowed analysis of cell morphology, counting of tumor cells, and demonstration of tumor microemboli spread into peripheral blood during surgery. Overall, ISET constitutes a novel approach that should open new perpectives in molecular medicine. PMID:10623654

  2. IGF-I and retinoic acid regulate the distribution pattern of IGFBPs synthesized by the canine mammary tumor cell line CMT-U335.

    PubMed

    Oosterlaken-Dijksterhuis, M A; Kwant, M M; Slob, A; Hellmén, E; Mol, J A

    1999-03-01

    Stromal-epithelial interactions modulate growth and development in normal and neoplastic mammary gland. The release of IGF binding proteins (IGFBPs) by the stromal compartment of the mammary gland may play a modulating role in the IGF-mediated proliferation of mammary epithelium. Therefore, the IGFBP-expression pattern of the canine mammary tumor cell line U335 (CMT-U335), which has a mesenchymal phenotype, was determined. In addition, the effects of IGFs and all trans retinoic acid (RA) on DNA synthesis, and IGFBP secretion and distribution were examined. The IGFBPs secreted by CMT-U335 were characterized as IGFBP-2, -4, -5, and -6. Moreover, CMT-U335 appeared to be a suitable mammary mesenchymal cell line for study of the regulatory factors of IGFBP expression and the mechanism(s) involved. IGFs and RA enhanced IGFBP concentrations in cell-conditioned medium with IGF-I and RA having an additive effect. The IGF-I-stimulated DNA synthesis, however, was inhibited by RA. The difference between IGF-I and RA was an enhanced IGFBP-5 binding to the extracellular matrix (ECM) by RA, whereas IGF-I reduced binding to the ECM. Because high doses of insulin had no significant effects on IGFBP concentrations in the medium, it is concluded that IGF-I-induced changes in IGFBP concentrations are not mediated by type-IIGF receptors and may be the consequence of IGFBP redistribution.

  3. Juxtaglomerular cell tumor: MR findings.

    PubMed

    Agrawal, R; Jafri, S Z; Gibson, D P; Bis, K G; Ali-Reza

    1995-01-01

    Juxtaglomerular (JG) cell tumor is a rare benign neoplasm of the kidney that typically presents with hypertension, secondary hyperaldosteronism, hypocalcemia, and hyperreninism. We describe a case of JG cell tumor diagnosed with MRI.

  4. Imaging Tumor Cell Movement In Vivo

    PubMed Central

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E.

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging them. Additional protocols for labeling macrophages, blood vessel imaging, and image analysis are also included. PMID:23456602

  5. Arctigenin anti-tumor activity in bladder cancer T24 cell line through induction of cell-cycle arrest and apoptosis.

    PubMed

    Yang, Shucai; Ma, Jing; Xiao, Jianbing; Lv, Xiaohong; Li, Xinlei; Yang, Huike; Liu, Ying; Feng, Sijia; Zhang, Yafang

    2012-08-01

    Bladder cancer is the most common neoplasm in the urinary system. This study assesses arctigenin anti-tumor activity in human bladder cancer T24 cells in vitro and the underlying molecular events. The flow cytometry analysis was used to detect cell-cycle distribution and apoptosis. Western blotting was used to detect changes in protein expression. The data showed that arctigenin treatment reduced viability of bladder cancer T24 cells in a dose- and time-dependent manner after treatment with arctigenin (10, 20, 40, 80, and 100 μmol/L) for 24 hr and 48 hr. Arctigenin treatment clearly arrested tumor cells in the G1 phase of the cell cycle. Apoptosis was detected by hoechst stain and flow cytometry after Annexin-V-FITC/PI double staining. Early and late apoptotic cells were accounted for 2.32-7.01% and 3.07-7.35%, respectively. At the molecular level, arctigenin treatment decreased cyclin D1 expression, whereas CDK4 and CDK6 expression levels were unaffected. Moreover, arctigenin selectively altered the phosphorylation of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 and activated phosphorylation of p38 significantly in a dose-dependent manner. These results suggest that arctigenin may inhibit cell viability and induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the anti-tumor effect of arctigenin. The data from the current study demonstrate the usefulness of arctigenin in bladder cancer T24 cells, which should further be evaluated in vivo before translation into clinical trials for the chemoprevention of bladder cancer.

  6. E6 and E7 gene silencing results in decreased methylation of tumor suppressor genes and induces phenotype transformation of human cervical carcinoma cell lines.

    PubMed

    Li, Liming; Xu, Cui; Long, Jia; Shen, Danbei; Zhou, Wuqing; Zhou, Qiyan; Yang, Jia; Jiang, Mingjun

    2015-09-15

    In SiHa and CaSki cells, E6 and E7-targeting shRNA specifically and effectively knocked down human papillomavirus (HPV) 16 E6 and E7 at the transcriptional level, reduced the E6 and E7 mRNA levels by more than 80% compared with control cells that expressed a scrambled-sequence shRNA. E6 and E7 repression resulted in down-regulation of DNA methyltransferase mRNA and protein expression, decreased DNA methylation and increased mRNA expression levels of tumor suppressor genes, induced a certain apoptosis and inhibited proliferation in E6 and E7 shRNA-infected SiHa and CaSki cells compared with the uninfected cells. Repression of E6 and E7 oncogenes resulted in restoration of DNA methyltransferase suppressor pathways and induced apoptosis in HPV16-positive cervical carcinoma cell lines. Our findings suggest that the potential carcinogenic mechanism of HPV16 through influencing DNA methylation pathway to activate the development of cervical cancer exist, and maybe as a candidate therapeutic strategy for cervical and other HPV-associated cancers.

  7. X ray responses of a human colon tumor cell line after exposure to the differentiation-inducing agent N-methylformamide: concentration dependence and reversibility characteristics

    SciTech Connect

    Leith, J.T.; Bliven, S.F.

    1988-06-01

    The combination of differentiation-inducing agents with conventional cytotoxic agents has been suggested as a potential cancer therapeutic strategy. In this regard, we have chronically exposed (3 passages) a human colon tumor line (clone A) to varying concentrations (0-170 mM) of N-methylformamide and examined the change in sensitivity to ionizing radiation in vitro. The linear-quadratic formalism of survival was used to characterize the single graded dose survival curves. This equation yields two constants (alpha and beta) relating to cellular inactivation produced by either single events (alpha) or by the combination of two events (beta). As the N-methylformamide concentration increased, the alpha parameter increased while the beta parameter concomitantly decreased, yielding a concentration dependent radiosensitization which was most marked in the low dose region of the survival curve. Upon removal of NMF, the original radiation resistance was regained within 2-3 cell culture doubling times.

  8. Paclitaxel, Ifosfamide, and Cisplatin Efficacy for First-Line Treatment of Patients With Intermediate- or Poor-Risk Germ Cell Tumors

    PubMed Central

    Hu, James; Dorff, Tanya B.; Lim, Kristina; Patil, Sujata; Woo, Kaitlin M.; Carousso, Maryann; Hughes, Amanda; Sheinfeld, Joel; Bains, Manjit; Daneshmand, Siamak; Ketchens, Charlene; Bajorin, Dean F.; Bosl, George J.; Quinn, David I.; Motzer, Robert J.

    2016-01-01

    Purpose Paclitaxel, ifosfamide, and cisplatin (TIP) achieved complete responses (CRs) in two thirds of patients with advanced germ cell tumors (GCTs) who relapsed after first-line chemotherapy with cisplatin and etoposide with or without bleomycin. We tested the efficacy of first-line TIP in patients with intermediate- or poor-risk disease. Patients and Methods In this prospective, multicenter, single-arm phase II trial, previously untreated patients with International Germ Cell Cancer Collaborative Group poor-risk or modified intermediate-risk GCTs received four cycles of TIP (paclitaxel 240 mg/m2 over 2 days, ifosfamide 6 g/m2 over 5 days with mesna support, and cisplatin 100 mg/m2 over 5 days) once every 3 weeks with granulocyte colony-stimulating factor support. The primary end point was the CR rate. Results Of the first 41 evaluable patients, 28 (68%) achieved a CR, meeting the primary efficacy end point. After additional accrual on an extension phase, total enrollment was 60 patients, including 40 (67%) with poor risk and 20 (33%) with intermediate risk. Thirty-eight (68%) of 56 evaluable patients achieved a CR and seven (13%) achieved partial responses with negative markers (PR-negative) for a favorable response rate of 80%. Five of seven achieving PR-negative status had seminoma and therefore did not undergo postchemotherapy resection of residual masses. Estimated 3-year progression-free survival and overall survival rates were 72% (poor risk, 63%; intermediate risk, 90%) and 91% (poor risk, 87%; intermediate risk, 100%), respectively. Grade 3 to 4 toxicities consisted primarily of reversible hematologic or electrolyte abnormalities, including neutropenic fever in 18%. Conclusion TIP demonstrated efficacy as first-line therapy for intermediate- and poor-risk GCTs with an acceptable safety profile. Given higher rates of favorable response, progression-free survival, and overall survival compared with prior first-line studies, TIP warrants further study in

  9. Cell line provenance.

    PubMed

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  10. Dibutyltin(IV) complexes containing arylazobenzoate ligands: chemistry, in vitro cytotoxic effects on human tumor cell lines and mode of interaction with some enzymes.

    PubMed

    Basu Baul, Tushar S; Paul, Anup; Pellerito, Lorenzo; Scopelliti, Michelangelo; Singh, Palwinder; Verma, Pooja; Duthie, Andrew; de Vos, Dick; Tiekink, Edward R T

    2011-04-01

    Dibutyltin(IV) complexes of composition Bu₂Sn(LH)₂, where LH is a carboxylate residue derived from 2-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoate (L¹H) with water molecule (1), 4-[(E)-(5-tert-butyl-2-hydroxyphenyl)diazenyl]benzoate (L²H) (2) and 4-[(E)-(4-hydroxy-5-methylphenyl)diazenyl]benzoate (L³H) (3), were synthesized and characterized by spectroscopic (¹H, ¹³C and ¹¹⁹Sn NMR, IR, ¹¹⁹Sn Mössbauer) techniques. A full characterization was accomplished from the crystal structure of complex 1. The molecular structures and geometries of the complexes (1a i.e. 1 without water molecule and 3) were fully optimized using the quantum mechanical method (PM6). Complexes 1 and 3 were found to exhibit stronger cytotoxic activity in vitro across a panel of human tumor cell lines viz., A498, EVSA-T, H226, IGROV, M19 MEL, MCF-7 and WIDR. Compound 3 is found to be four times superior for the A498, EVSA-T and MCF-7 cell lines than CCDP (cisplatin), and four, eight and sixteen times superior for the A498, H226 and MCF-7 cell lines, respectively, compared to ETO (etoposide). The mechanistic role of cytotoxic activity of test compounds is discussed in relation to the theoretical results of docking studies with some key enzymes such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II associated with the propagation of cancer.

  11. P53 tumor suppressor gene and protein expression is altered in cell lines derived from spontaneous and alpha-radiation-induced canine lung tumors

    SciTech Connect

    Tierney, L.A.; Johnson, N.F.; Lechner, J.F.

    1994-11-01

    Mutations in the p53 tumor suppressor gene are the most frequently occurring gene alterations in malignant human cancers, including lung cancer. In lung cancer, common point mutations within conserved exons of the p53 gene result in a stabilized form of mutant protein which is detectable in most cases by immunohistochemistry. In addition to point mutations, allelic loss, rearrangements, and deletions of the p53 gene have also been detected in both human and rodent tumors. It has been suggested that for at least some epithelial neoplasms, the loss of expression of wild-type p53 protein may be more important for malignant transformation than the acquisition of activating mutations. Mechanisms responsible for the loss of expression of wild-type protein include gene deletion or rearrangement, nonsense or stop mutations, mutations within introns or upstream regulatory regions of the gene, and accelerated rates of degradation of the protein by DNA viral oncoproteins.

  12. Differential roles of internal and terminal double bonds in docosahexaenoic acid: Comparative study of cytotoxicity of polyunsaturated fatty acids to HT-29 human colorectal tumor cell line.

    PubMed

    Sato, Satoshi B; Sato, Sho; Kawamoto, Jun; Kurihara, Tatsuo

    2011-01-01

    The role of the double bonds in docosahexaenoic acid (22:6(Δ4,7,10,13,16,19); DHA) in cytotoxic lipid peroxidation was studied in a superoxide dismutase-defective human colorectal tumor cell line, HT-29. In a conventional culture, DHA and other polyunsaturated fatty acids (PUFAs) were found to induce acute lipid peroxidation and subsequent cell death. PUFAs that lack one or both the terminal double bonds (Δ19 and Δ4) but share Δ7,10,13,16 such as 22:5(Δ7,10,13,16,19), 22:5(Δ4,7,10,13,16), and 22:4(Δ7,10,13,16) were more effective than DHA. Lipid peroxidation and cell death were completely inhibited, except by 22:4(Δ7,10,13,16) when radical-mediated reactions were suppressed by culturing cells in 2% O(2) in the presence of vitamin E. DHA and C22:5 PUFAs but not 22:4(Δ7,10,13,16) were efficiently incorporated in phosphatidylinositol, regardless of the culturing conditions. These and other results suggested that the internal unsaturations Δ7,10,13,16 were sensitive to lipid peroxidation, whereas the terminal ones Δ19 and Δ4 appeared to be involved in assimilation into phospholipids.

  13. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line.

    PubMed

    Elsherbiny, Nehal M; Younis, Nahla N; Shaheen, Mohamed A; Elseweidy, Mohamed M

    2016-09-01

    Despite the remarkable anti-tumor activity of doxorubicin (DOX), its clinical application is limited due to multiple organ toxicities. Products with less side effects are therefore highly requested. The current study investigated the anti-cancer activities of vanillin against breast cancer and possible synergistic potentiation of DOX chemotherapeutic effects by vanillin. Vanillin (100mg/kg), DOX (2mg/kg) and their combination were administered i.p. to solid Ehrlich tumor-bearing mice for 21days. MCF-7 human breast cancer cell line was treated with vanillin (1 and 2mM), DOX (100μM) or their combination. Protection against DOX-induced nephrotoxicity was studied in rats that received vanillin (100mg/kg, ip) for 10days with a single dose of DOX (15mg/kg) on day 6. Vanillin exerted anticancer effects comparable to DOX and synergesticlly potentiated DOX anticancer effects both in-vivo and in-vitro. The anticancer potency of vanillin in-vivo was mediated via apoptosis and antioxidant capacity. It also offered an in-vitro growth inhibitory effect and cytotoxicity mediated by apoptosis (increased caspase-9 and Bax:Bcl-2 ratio) along with anti-metasasis effect. Vanillin protected against DOX-induced nephrotoxicity in rats. In conclusion, vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX.

  14. Granular cell tumor of trachea.

    PubMed

    Bekteshi, Edgar; Toth, Jennifer W; Benninghoff, Michael G; Kang, Jason; Betancourt, Manuel

    2009-01-01

    Granular cell tumors of the tracheobronchial tree are rare benign lesions of neurogenic origin. These benign tumors mostly involve the skin, oral cavity, or esophagus. There is no consensus regarding treatment of granular cell tumors. Treatment varies from simple observation to different bronchoscopic interventions, such as laser therapy or fulguration to surgical resection.

  15. Effects of carbocisteine on sialyl-Lewis x expression in an airway carcinoma cell line stimulated with tumor necrosis factor-alpha.

    PubMed

    Ishibashi, Yuji; Imai, Shigeru; Inouye, Yoshio; Okano, Teruo; Taniguchi, Akiyoshi

    2006-01-20

    Carbocisteine is a mucoregulatory drug normalizing sialic acid and fucose contents in mucins through the regulation of glycosyltransferase activities. Tumor necrosis factor (TNF)-alpha-induced overexpression of sialyl-Lewis x epitopes, containing sialic acid and fucose, in mucins were previously reported to be regulated by glycosyltransferase mRNAs expression through phosphatidyl inositol-specific phospholipase C (PI-PLC) signaling pathways [Ishibashi, Y., Inouye, Y., Okano, T., Taniguchi, A., 2005. Regulation of sialyl-Lewis x epitope expression by TNF-alpha and EGF in an airway carcinoma cell line. Glycoconj. J. 22, 53-62]. To investigate the mechanism behind the mucoregulatory action of carbocisteine, the present study evaluated the effects of carbocisteine on TNF-alpha-induced overexpression of sialyl-Lewis x epitopes in NCI-H292 cells. 100 mug/ml of carbocisteine was able to inhibit the TNF-alpha-induced expression of hST3GallV mRNA, FUT3 mRNA, C2/4GnT mRNA and sialyl-Lewis x epitopes as well as the TNF-alpha-induced activity of PI-PLC in NCI-H292 cells. These findings suggest that carbocisteine may normalize the sialyl-Lewis x epitopes expression in mucins through the inhibition of cellular PI-PLC activity in vivo.

  16. Functional Characteristics of Tumor Associated Protein Spot14 and Interacting Proteins in Mouse Mammary Epithelial and Breast Cancer Cell Lines

    DTIC Science & Technology

    2012-03-01

    quantification of all fatty acids in the cell, including those in triglycerides, membrane phospholipids, lipid rafts , cholesteryl-esters, and free...enhanced accumulation of total lipids evaluated by Bodipy staining and NMR analysis. A major finding in this report is that glycolytic and lipogenic enzyme...cancer cells known to express PR. Progestin stimulated total lipid accumulation and increased total fatty acids in T47D cells. Importantly, 13C(U

  17. Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling

    PubMed Central

    Loo, Jacky F.C.; Xia, Dajin; Gao, Sizhi P.; Ma, Zhongjun; Chen, Zhe

    2016-01-01

    The signal transducers and activators of transcription 3 (STAT3) signaling pathway plays critical roles in the pathogenesis and progression of various human cancers, including non-small cell lung cancer (NSCLC). In this study, we aimed to evaluate the therapeutic potential of physalin A, a bioactive withanolide derived from Physalis alkekengi var. francheti used in traditional Chinese medicine, was evaluated in human NSCLC cells. Its and determined whether it effect oninhibited both constitutive and induced STAT3 activity, through repressing the phosphorylation levels of JAK2 and JAK3, resulting in anti-proliferation and pro-apoptotic effects on NSCLC cells was also determined, and. theThe antitumor effects of physalin A were also validated usingin an in vivo mouse xenograft models of NSCLC cells. Physalin A had anti-proliferative and pro-apoptotic effects in NSCLC cells with constitutively activated STAT3; it also suppressed both constitutive and induced STAT3 activity by modulating the phosphorylation of JAK2 and JAK3. Furthermore, physalin A abrogated the nuclear translocation and transcriptional activity of STAT3, thereby decreasing the expression levels of STAT3, its target genes, such as Bcl-2 and XIAP. Knockdown of STAT3 expression by small interfering RNA (siRNA) significantly enhanced the pro-apoptotic effects of physalin A in NSCLC cells. Moreover, physalin A significantly suppressed tumor xenograft growth. Thus, as an inhibitor of JAK2/3-STAT3 signaling, physalin A, has potent anti-tumor activities, which may facilitate the development of a therapeutic strategy for treating NSCLC. PMID:26843613

  18. Novel real-time cell analysis platform for the dynamic monitoring of ionizing radiation effects on human tumor cell lines and primary fibroblasts.

    PubMed

    Mán, Imola; Szebeni, Gábor J; Plangár, Imola; Szabó, Emilia R; Tőkés, Tünde; Szabó, Zoltán; Nagy, Zoltán; Fekete, Gábor; Fajka-Boja, Roberta; Puskás, László G; Hideghéty, Katalin; Hackler, László

    2015-09-01

    Translational research in radiation oncology is important for the detection of adverse radiation effects, cellular responses, and radiation modifications, and may help to improve the outcome of radiation therapy in patients with cancer. The present study aimed to optimize and validate a real‑time label‑free assay for the dynamic monitoring of cellular responses to ionizing radiation. The xCELLigence system is an impedance‑based platform that provides continuous information on alterations in cell size, shape, adhesion, proliferation, and survival. In the present study, various malignant human primary fibroblast cells (U251, GBM2, MCF7, A549, HT‑29) were exposed to 0, 5 and 10 Gy of Cobalt60 radiation. As well as the xCELLigence system, cell survival and proliferation was evaluated using the following conventional end‑point cell‑based methods: Clonogenic, MTS, and lactate dehydrogenase assays, and apoptosis was detected by fluorescence‑activated cell sorting. The effects of ionizing radiation were detected for each cell line using impedance monitoring. The real‑time data correlated with the colony forming assay results. At low cell densities (1,000‑2,000 cells/well) the impedance‑based method was more accurate at monitoring dose‑dependent changes in the malignant human primary fibroblast cell lines, as compared with the end‑point assays. The results of the present study demonstrated that the xCELLigence system may be a reliable and rapid diagnostic method for the monitoring of dynamic cell behavior following radiation. In addition, the xCELLigence system may be used to investigate the cellular mechanisms underlying the radiation response, as well as the time‑dependent effects of radiation on cell proliferation and viability.

  19. Activated microglia provide a neuroprotective role by balancing glial cell-line derived neurotrophic factor and tumor necrosis factor-α secretion after subacute cerebral ischemia.

    PubMed

    Wang, Jianping; Yang, Zhitang; Liu, Cong; Zhao, Yuanzheng; Chen, Yibing

    2013-01-01

    Microglia are the major immune cells in the central nervous system and play a key role in brain injury pathology. However, the role of activated microglia after subacute cerebral ischemia (SCI) remains unknown. To address this issue, we established a permanent middle cerebral artery occlusion (pMCAO) rat model and treated pMCAO rats with N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide (PJ34) (an inhibitor of microglial activation), or with vehicle alone. Finally, we determined the differences between the PJ34-and vehicle-treated rats with respect to neurological deficits, infarct volume, neuronal loss and the expression of CD11b (a marker of microglial activation), glial cell line-derived neurotrophic factor (GDNF) and tumor necrosis factor-α (TNF-α) at 1, 3 and 7 days after treatment. We found that the PJ34-treated rats had more severe neurological deficits and a larger infarct volume and exhibited a decreased CD11b expression, more neuronal loss, decreased expression of GDNF mRNA and protein but increased expression of TNF-α mRNA and protein compared with the vehicle-treated rats at 3 and 7 days after treatment. These results indicate that activated microglia provide a neuroprotective role through balancing GDNF and TNF-α expression following SCI.

  20. The isolation and characterization of growth regulatory factors produced by a herpes simplex virus Type 2 transformed mouse tumor cell line, H238

    SciTech Connect

    Stagg, R.B.

    1988-01-01

    This study was performed in an attempt to associate HSV-2-transformation with specific growth factors in order to develop a testable model for HSV-2-transformation. We report here the isolation and characterization of four growth regulatory factors produced by H238, an HSV-2-transformed mouse tumor cell line. These factors were separated from the H238-CM by heparin-sepharose affinity chromatography into three peaks of mitogenic activity and a fourth containing inhibitory activity for splenocytes. The three peaks of mitogenic activity have been identified based on physiochemical characteristics: the first supported the anchorage-independent growth of EGF treated NRK-c-49 cells and resembles transforming growth factor-{beta} (TGF-{beta}); the second bound to lectin-coated sepharose beads and was sensitive to trypsin, neuroaminidase, and the reducing agent dithiothreitol (DTT) and, resembled a platelet-derived growth factor (PDGF)-like factor; and the third displaced ({sup 125}I)-labeled basic fibroblast growth factor (bFGF) in a dose-dependent fashion when tested with a radioimmune assay. The fourth peak was inhibitory for a variety of splenocyte function assays. A model for the interaction of these factors in vivo is presented with an emphasis on testability.

  1. In vitro comparison of O4-benzylfolate modulated, BCNU-induced toxicity in human bone marrow using CFU-GM and tumor cell lines.

    PubMed

    Behrsing, Holger Peter; Furniss, Michael J; Robillard, Kristine A; Tomaszewski, Joseph E; Parchment, Ralph E

    2010-05-01

    2-Amino-O4-benzylpteridine derivatives inactivate the human DNA repair protein O6-alkylguanine-DNA alkyltransferase and have been tested as modulators of alkylating agent chemotherapy. Recently, the therapeutic potential of O4-benzylfolate (O4BF) in modulating bis-chloroethylnitrosourea (BCNU) toxicity was demonstrated in vitro using human HT29 and KB tumor lines. The current studies replicated the previous findings in HT29 and KB cells using ATP as an endpoint. However, the effective treatment conditions were severely toxic to human neutrophil progenitors called CFU-granulocyte/macrophage (CFU-GM), which could not tolerate > or =40 microM BCNU at any O4BF concentration. A lower BCNU concentration (10 microM) in combination with O4BF (2-100 microM) was only moderately tumoricidal. To screen for conditions tolerated by CFU-GM, bone marrow (BM) cells were pre-incubated (5 h) with O4BF, co-treated with O4BF and BCNU (42 h), washed, and plated to quantify CFU-GM survival. O4BF at 2 or 5 microM progressively lowered the inhibitory concentrations (ICs) for BCNU, but further increases in O4BF concentrations did not. Increasing O4BF concentrations with constant BCNU (10 microM) under the same prolonged exposure as in the human marrow study achieved only modest tumoricidal effects. In summary, the unexpected finding that normal BM cells are impacted by an agent developed to target malignant tissue refutes speculation that normal beta-folate receptor expressing hematopoietic cells will be spared. Further, the validated IC90 endpoint from the huCFU-GM assay has provided a reference point for judging the potential therapeutic effectiveness of this investigational combination in man using in vitro assays.

  2. Enhancing Anti-Tumor Efficacy of Doxorubicin by Non-Covalent Conjugation to Gold Nanoparticles – In Vitro Studies on Feline Fibrosarcoma Cell Lines

    PubMed Central

    Wójcik, Michał; Lewandowski, Wiktor; Król, Magdalena; Pawłowski, Karol; Mieczkowski, Józef; Lechowski, Roman; Zabielska, Katarzyna

    2015-01-01

    Background Feline injection-site sarcomas are malignant skin tumors of mesenchymal origin, the treatment of which is a challenge for veterinary practitioners. Methods of treatment include radical surgery, radiotherapy and chemotherapy. The most commonly used cytostatic drugs are cyclophosphamide, doxorubicin and vincristine. However, the use of cytostatics as adjunctive treatment is limited due to their adverse side-effects, low biodistribution after intravenous administration and multidrug resistance. Colloid gold nanoparticles are promising drug delivery systems to overcome multidrug resistance, which is a main cause of ineffective chemotherapy treatment. The use of colloid gold nanoparticles as building blocks for drug delivery systems is preferred due to ease of surface functionalization with various molecules, chemical stability and their low toxicity. Methods Stability and structure of the glutathione-stabilized gold nanoparticles non-covalently modified with doxorubicin (Au-GSH-Dox) was confirmed using XPS, TEM, FT-IR, SAXRD and SAXS analyses. MTT assay, Annexin V and Propidium Iodide Apoptosis assay and Rhodamine 123 and Verapamil assay were performed on 4 feline fibrosarcoma cell lines (FFS1WAW, FFS1, FFS3, FFS5). Statistical analyses were performed using Graph Pad Prism 5.0 (USA). Results A novel approach, glutathione-stabilized gold nanoparticles (4.3 +/- 1.1 nm in diameter) non-covalently modified with doxorubicin (Au-GSH-Dox) was designed and synthesized. A higher cytotoxic effect (p<0.01) of Au-GSH-Dox than that of free doxorubicin has been observed in 3 (FFS1, FFS3, FFS1WAW) out of 4 feline fibrosarcoma cell lines. The effect has been correlated to the activity of glycoprotein P (main efflux pump responsible for multidrug resistance). Conclusions The results indicate that Au-GSH-Dox may be a potent new therapeutic agent to increase the efficacy of the drug by overcoming the resistance to doxorubicin in feline fibrosarcoma cell lines. Moreover, as

  3. Pancreatic islet cell tumor

    MedlinePlus

    ... functions. These include blood sugar level and the production of stomach acid. Tumors that arise from islet ... try and shrink the tumors. If the abnormal production of hormones is causing symptoms, you may receive ...

  4. Detection of Circulating Tumor Cells

    PubMed Central

    Terstappen, Leon W. M. M.

    2014-01-01

    The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the detection of circulating tumor cells and discuss potential future directions for improvements. PMID:25133014

  5. Tumor Endothelial Cells

    PubMed Central

    Dudley, Andrew C.

    2012-01-01

    The vascular endothelium is a dynamic cellular “organ” that controls passage of nutrients into tissues, maintains the flow of blood, and regulates the trafficking of leukocytes. In tumors, factors such as hypoxia and chronic growth factor stimulation result in endothelial dysfunction. For example, tumor blood vessels have irregular diameters; they are fragile, leaky, and blood flow is abnormal. There is now good evidence that these abnormalities in the tumor endothelium contribute to tumor growth and metastasis. Thus, determining the biological basis underlying these abnormalities is critical for understanding the pathophysiology of tumor progression and facilitating the design and delivery of effective antiangiogenic therapies. PMID:22393533

  6. An Experimental Analysis of the Molecular Effects of Trastuzumab (Herceptin) and Fulvestrant (Falsodex), as Single Agents or in Combination, on Human HR+/HER2+ Breast Cancer Cell Lines and Mouse Tumor Xenografts

    PubMed Central

    Lu, Yunshu; Jia, Yijun; Ding, Longlong; Bai, Fang; Ge, Meixin; Lin, Qing; Wu, Kejin

    2017-01-01

    Purpose To investigate the effects of trastuzumab (herceptin) and fulvestrant (falsodex) either in combination or alone, on downstream cell signaling pathways in lab-cultured human HR+/HER2+ breast cancer cell lines ZR-75-1 and BT-474, as well as on protein expression levels in mouse xenograft tissue. Methods Cells were cultivated in the presence of trastuzumab or fulvestrant or both. Molecular events that resulted in an inhibition of cell proliferation and cell cycle progression or in an increased rate of apoptosis were studied. The distribution and abundance of the proteins p-Akt and p-Erk expressed in these cells in response to single agents or combinatorial treatment were also investigated. In addition, the effects of trastuzumab and fulvestrant, either as single agents or in combination on tumor growth as well as on expression of the protein p-MED1 expressed in in vivo mouse xenograft models was also examined. Results Cell proliferation was increasingly inhibited by trastuzumab or fulvestrant or both, with a CI<1 and DRI>1 in both human cell lines. The rate of apoptosis increased only in the BT-474 cell line and not in the ZR-75-1 cell line upon treatment with fulvestrant and not trastuzumab as a single agent (P<0.05). Interestingly, fulvestrant, in combination with trastuzumab, did not significantly alter the rate of apoptosis (in comparison with fulvestrant alone), in the BT-474 cell line (P>0.05). Cell accumulation in the G1 phase of cell cycle was investigated in all treatment groups (P<0.05), and the combination of trastuzumab and fulvestrant reversed the effects of fulvestrant alone on p-Akt and p-Erk protein expression levels. Using ZR-75-1 or BT-474 to generate in vivo tumor xenografts in BALB/c athymic mouse models, we showed that a combination of both drugs resulted in a stronger inhibition of tumor growth (P<0.05) and a greater decrease in the levels of activated MED1 (p-MED1) expressed in tumor issues compared with the use of either drug as a

  7. Effect of calcium antagonists and metabolic inhibitors on the retention of adriamycin, in both free and liposomal form, in a number of tumor cells lines

    SciTech Connect

    Radel, S.

    1987-01-01

    Adriamycin (ADR) encapsulated in liposomes (MLV-ADR) accumulated at a lower rate, with a concomitant reduced cytotoxicity, in comparison to the free drug form (F-ADR) in all murine tumors tested. However, inhibition of (/sup 3/H) thymidine incorporation into DNA appeared nearly equal between F-ADR and MLV-ADR treated tumor cells suggesting that the concentration necessary to inhibit DNA synthesis is only a fraction of the total drug content within the cells. Electrophoretic mobility of tumor cells was unaffected by exposure to either F-ADR or MLV-ADR. The metabolic inhibitor N-ethylmaleimide (NEM) when coincubated with F-ADR in P388 adriamycin-resistant leukemia cells (P388-ADR) resulted in a marked increase in intracellular drug accumulation. Use of the calcium channel blockers verapamil (VRP) and N-3,4-dimethoxyphenethyl)-N-methyl-2-(2-napthyl)-m-dithane-2-propylamine hydrochloride, (DMDP), a derivative of verapamil, in conjunction with adriamycin treatment demonstrated a near reversal of resistance in P388/ADR. Retention of drug increased 4-5 fold in the presence of each of the calcium antagonists in vitro studies with a concomitant drop in viability which surpassed that observed in P388/O. P388/ADR tumor bearing mice treated with the combination of VRP or DMDP and F-ADR exhibited no increase in mean survival times (MST) over F-ADR therapy alone. Scanning electron microscopy (SEM) studies of P388/O tumor cells demonstrated numerous, small villi-like processes, whereas P388/ADR cells possessed many large membraneous folds. Transmission electron microscopy (TEM) demonstrated not only the membrane folding seem by SEM, but also the presence of large numbers of C type viral particles in P388/ADR cells in comparison to the small amounts detected in P388/O cells.

  8. KAI1/CD82 suppresses tumor invasion by MMP9 inactivation via TIMP1 up-regulation in the H1299 human lung carcinoma cell line.

    PubMed

    Jee, Bo Keun; Park, Koung Min; Surendran, Sibin; Lee, Woon Kyu; Han, Chang Whan; Kim, Yong Sik; Lim, Young

    2006-04-07

    We conducted a study on the mechanism of KAI1/CD82-mediated suppression of tumor invasiveness and metastasis, and examined its effect on MMP-9 activity and the TIMP1 levels in H1299 human non-small cell lung carcinoma cells. The H1299 human lung carcinoma cells were transfected with pcDNA3.1-CD82 and stable transfectant clones that had a high KAI1/CD82 expression were obtained. We performed Western blot analysis, cell invasion assay, gelatin zymography, and RT-PCR to assess the KAI1/CD82 expression and tumor invasiveness, the MMP-9 activity, the MMP-9 mRNA and protein levels, and the TIMP1 levels in the H1299/CD82 transfectant cells and compared the results with those of the control groups. The H1299/CD82 transfectants exhibited significant suppression of cell invasion, reduced MMP9 enzyme activity, elevated MMP9 mRNA and MMP-9 protein levels, and elevated TIMP1 levels. It may be postulated that KAI1/CD82 over-expression in the H1299 non-small cell lung carcinoma cells suppresses the tumor invasiveness and metastatic potential by inducing MMP9 inactivation via the up-regulation of TIMP1.

  9. Loss of heterozygosity (LOH) for markers on chromosome 8q in a human chondrosarcoma cell line and in a tumor that developed in a man with Hereditary Multiple Exostoses (HME)

    SciTech Connect

    Raskind, W.H.; Conrad, E.U.; Robbins, J.R.

    1994-09-01

    HME is an autosomal dominant disorder in which multiple benign cartilage-capped lesions develop on otherwise histologically normal bones. The majority of chondrosarcomas are sporadic, but the presence of HME greatly increases the risk to develop this tumor. Sarcoma may also arise in sporadically-occurring exostoses. The study of inherited disorders that predispose to malignant diseases has led to discoveries regarding molecular changes involved in carcinogenesis in general. In an analogous manner, somatic mutations in HME genes may be responsible for sporadic exostoses and/or chondrosarcomas. HME is genetically heterogeneous; EXT genes have been assigned to 8q24, the pericentromeric region of 11 and 19p11-p13. We compared chondrosarcoma cell DNA to DNA from white blood cells for LOH at polymorphic loci in these 3 regions. LOH for 4 of 5 markers in 8q24 was detected in a chondrosarcoma that arose in a man with HME. Heterozygosity was retained for markers and chromosomes 11 and 19. We then evaluated cultured cells from 10 sporadic chondrosarcomas. LOH for multiple markers in 8q24 was detected in a cell line, Ch-1, established from an aggressive tumor, but not in 9 other tumors. Of the 9 tumors studied, only the Ch-1 line exhibited LOH for chromosome 11 markers. LOH for a 19p marker was not detected in any of 6 tumors examined, including Ch-1. The karyotype of Ch-1 contains many structurally rearranged chromosomes. The two chromosome 11s appear normal but both chromosome 8 homologues have been replaced by der(8)t(5;8)(q22;q21.2). LOH at 8q24 was also detected in the uncultured tumor. These results suggest that genes responsible for HME may have tumor suppressor functions whose loss may be related to the development of a subset of chondrosarcomas.

  10. Cross-talk among myeloid-derived suppressor cells, macrophages, and tumor cells impacts the inflammatory milieu of solid tumors

    PubMed Central

    Beury, Daniel W.; Parker, Katherine H.; Nyandjo, Maeva; Sinha, Pratima; Carter, Kayla A.; Ostrand-Rosenberg, Suzanne

    2014-01-01

    MDSC and macrophages are present in most solid tumors and are important drivers of immune suppression and inflammation. It is established that cross-talk between MDSC and macrophages impacts anti-tumor immunity; however, interactions between tumor cells and MDSC or macrophages are less well studied. To examine potential interactions between these cells, we studied the impact of MDSC, macrophages, and four murine tumor cell lines on each other, both in vitro and in vivo. We focused on IL-6, IL-10, IL-12, TNF-α, and NO, as these molecules are produced by macrophages, MDSC, and many tumor cells; are present in most solid tumors; and regulate inflammation. In vitro studies demonstrated that MDSC-produced IL-10 decreased macrophage IL-6 and TNF-α and increased NO. IL-6 indirectly regulated MDSC IL-10. Tumor cells increased MDSC IL-6 and vice versa. Tumor cells also increased macrophage IL-6 and NO and decreased macrophage TNF-α. Tumor cell-driven macrophage IL-6 was reduced by MDSC, and tumor cells and MDSC enhanced macrophage NO. In vivo analysis of solid tumors identified IL-6 and IL-10 as the dominant cytokines and demonstrated that these molecules were produced predominantly by stromal cells. These results suggest that inflammation within solid tumors is regulated by the ratio of tumor cells to MDSC and macrophages and that interactions of these cells have the potential to alter significantly the inflammatory milieu within the tumor microenvironment. PMID:25170116

  11. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  12. Thyroid cancer cell lines: an overview

    PubMed Central

    Saiselet, Manuel; Floor, Sébastien; Tarabichi, Maxime; Dom, Geneviève; Hébrant, Aline; van Staveren, Wilma C. G.; Maenhaut, Carine

    2012-01-01

    Human thyroid cancer cell lines are the most used models for thyroid cancer studies. They must be used with detailed knowledge of their characteristics. These in vitro cell lines originate from differentiated and dedifferentiated in vivo human thyroid tumors. However, it has been shown that mRNA expression profiles of these cell lines were closer to dedifferentiated in vivo thyroid tumors (anaplastic thyroid carcinoma, ATC) than to differentiated ones. Here an overview of the knowledge of these models was made. The mutational status of six human thyroid cancer cell lines (WRO, FTC133, BCPAP, TPC1, K1, and 8505C) was in line with previously reported findings for 10 genes frequently mutated in thyroid cancer. However, the presence of a BRAF mutation (T1799A: V600E) in WRO questions the use of this cell line as a model for follicular thyroid carcinoma (FTC). Next, to investigate the biological meaning of the modulated mRNAs in these cells, a pathway analysis on previously obtained mRNA profiles was performed on five cell lines. In five cell lines, the MHC class II pathway was down-regulated and in four of them, ribosome biosynthesis and translation pathways were up-regulated. mRNA expression profiles of the cell lines were also compared to those of the different types of thyroid cancers. Three datasets originating from different microarray platforms and derived from distinct laboratories were used. This meta-analysis showed a significant higher correlation between the profiles of the thyroid cancer cell lines and ATC, than to differentiated thyroid tumors (i.e., PTC or FTC) specifically for DNA replication. This already observed higher correlation was obtained here with an increased number of in vivo tumors and using different platforms. In summary, this would suggest that some papillary thyroid carcinoma or follicular thyroid carcinoma (PTC or FTC) cell lines (i.e., TPC-1) might have partially lost their original DNA synthesis/replication regulation mechanisms during

  13. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  14. Negative Glucocorticoid Response-Like Element from the First Intron of the Chicken Growth Hormone Gene Represses Gene Expression in the Rat Pituitary Tumor Cell Line

    PubMed Central

    Ma, Jing-E.; Lang, Qian-Qian; Qiu, Feng-Fang; Zhang, Li; Li, Xiang-Guang; Luo, Wen; Wang, Juan; Wang, Xing; Lin, Xi-Ran; Liu, Wen-Sheng; Nie, Qing-Hua; Zhang, Xi-Quan

    2016-01-01

    The effects of introns, especially the first intron, on the regulation of gene expression remains unclear. Therefore, the objective of the present study was to investigate the transcriptional regulatory function of intron 1 on the chicken growth hormone (cGH) gene in the rat pituitary tumor cell line (GH4-C1). Transient transfection using first-intron-inserted cGH complete coding sequences (CDSs) and non-intron-inserted cGH CDS plasmids, quantitative RT-PCR (qRT-PCR) and western blot assays were used to detect the expression of cGH. The reporter gene assay was also used to investigate the effect of a series of fragments in the first intron of cGH on gene expression in GH4-C1. All of the results revealed that a 200-bp fragment located in the +485/+684 region of intron 1 was essential for repressing the expression of cGH. Further informatics analysis showed that there was a cluster of 13 transcriptional factor binding sites (TFBSs) in the +485/+684 region of the cGH intron 1. Disruption of a glucocorticoid response-like element (the 19-nucleotide sequence 5′-AGGCTTGACAGTGACCTCC-3′) containing a T-box motif (TGACCT) located within this DNA fragment increased the expression of the reporter gene in GH4-C1. In addition, an electrophoretic mobility shift assay (EMSA) revealed a glucocorticoid receptor (GR) protein of rat binding to the glucocorticoid response-like element. Together, these results indicate that there is a negative glucocorticoid response-like element (nGRE) located in the +591/+609 region within the first intron of cGH, which is essential for the down-regulation of cGH expression. PMID:27834851

  15. Rare sugar D-allose enhances anti-tumor effect of 5-fluorouracil on the human hepatocellular carcinoma cell line HuH-7.

    PubMed

    Yamaguchi, Fuminori; Kamitori, Kazuyo; Sanada, Keiko; Horii, Mariko; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2008-09-01

    d-Allose is a novel anti-tumor monosaccharide that causes cell growth inhibition, specifically of the cancer cells, by inducing the tumor suppressor gene thioredoxin interacting protein (TXNIP). The commonly used anti-tumor drug, 5-fluorouracil (5-FU), blocks the cell cycle by inhibiting thymidylate synthase, and is also known to induce TXNIP gene expression. In this study, we examined the synergistic effect of d-allose and 5-FU and the role of TXNIP on cancer cell growth. The treatment of HuH-7 cells with d-allose or 5-FU inhibited the cell growth in a dose-dependent manner (75.2+/-2.7% with 50 mM d-allose and 66.1+/-2.7% with 0.5 mug/ml 5-FU) and d-allose enhanced the anti-tumor effect of 5-FU (55.3+/-1.1 %). TUNEL analysis did not show any evidence of apoptosis with either d-allose or 5-FU treatment. 5-FU suppressed the expression of p27(kip1), p53, and cyclin E, whereas d-allose induced p53 and reduced cyclins D, A, and E. The expression of p27(kip1) remained unchanged by d-allose at transcriptional level, but increased at the protein level suggesting an increase in protein stability by TXNIP. d-Allose and to a lesser extent 5-FU induced TXNIP expression significantly (808.4+/-122.9% and 186.8+/-32.9%, respectively) and the combination of both further enhanced TXNIP expression. As d-allose has no known side effects on normal cells, the combination of d-allose and 5-FU might be a potent candidate for cancer therapy.

  16. The number of tumor infiltrating T-cell subsets in lymph nodes from patients with Hodgkin lymphoma is associated with the outcome after first line ABVD therapy().

    PubMed

    Alonso-Álvarez, Sara; Vidriales, Maria Belén; Caballero, Maria Dolores; Blanco, Oscar; Puig, Noemí; Martin, Alejandro; Peñarrubia, Maria Jesús; Zato, Esther; Galende, Josefina; Bárez, Abelardo; Alcoceba, Miguel; Orfão, Alberto; González, Marcos; García-Sanz, Ramón

    2017-05-01

    Prognostic factors in Hodgkin lymphoma (HL) still fail to accurately identify high-risk patients. Tumor microenvironment in HL is a current focus of research for risk definition but few studies have focused on infiltrating lymphocytes. Here, we analyzed the number of tumor infiltrating lymphocytes by flow cytometry in diagnostic biopsies from 96 HL homogeneously treated patients with ABVD with or without radiotherapy. Most lymph node cells were lymphocytes (90 ± 17), with a median T/B/NK distribution of 74%/26%/0.7%, and CD4(+) T-cell predominance. The amount of CD19(+) B cells, and NK cells did not show association with disease features. However, high numbers of CD8(+) and CD4(+) cells were associated with better and poorer outcomes, respectively. Patients with ≥15% cytotoxic CD8(+) cells among the total cell population had a longer 10-year freedom from treatment failure (FFTF) (93% vs. 73%, p=.04). In turn, cases with ≥75% of CD4(+) infiltrating cells showed a significantly decreased FFTF (73% vs. 96%, p=.021). Consequently, CD4/CD8 ratio ≥5 associated with a poorer 10-year FFTF (69.5% vs. 94%, p=.02). This deleterious effect was particularly prominent in advanced disease (n = 58, p=.01). In multivariate analysis, a CD4/CD8 ratio ≥5 was the only independent variable to predict for treatment failure (HR = 4.5, 95% confidence interval, 1.2-16.8). In conclusion, our study shows that high CD4(+) and low CD8(+) T-cells infiltrates of tumor specimens associate with poor prognosis in HL patients, and CD4/CD8 ratio might be potentially useful for tailoring therapy.

  17. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  18. Differential Gene Expression Profiles of Radioresistant Non-Small-Cell Lung Cancer Cell Lines Established by Fractionated Irradiation: Tumor Protein p53-Inducible Protein 3 Confers Sensitivity to Ionizing Radiation

    SciTech Connect

    Lee, Young Sook; Oh, Jung-Hwa; Yoon, Seokjoo; Kwon, Myung-Sang

    2010-07-01

    Purpose: Despite the widespread use of radiotherapy as a local and regional modality for the treatment of cancer, some non-small-cell lung cancers commonly develop resistance to radiation. We thus sought to clarify the molecular mechanisms underlying resistance to radiation. Methods and Materials: We established the radioresistant cell line H460R from radiosensitive parental H460 cells. To identify the radioresistance-related genes, we performed microarray analysis and selected several candidate genes. Results: Clonogenic and MTT assays showed that H460R was 10-fold more resistant to radiation than H460. Microarray analysis indicated that the expression levels of 1,463 genes were altered more than 1.5-fold in H460R compared with parental H460. To evaluate the putative functional role, we selected one interesting gene tumor protein p53-inducible protein 3 (TP53I3), because that this gene was significantly downregulated in radioresistant H460R cells and that it was predicted to link p53-dependent cell death signaling. Interestingly, messenger ribonucleic acid expression of TP53I3 differed in X-ray-irradiated H460 and H460R cells, and overexpression of TP53I3 significantly affected the cellular radiosensitivity of H460R cells. Conclusions: These results show that H460R may be useful in searching for candidate genes that are responsible for radioresistance and elucidating the molecular mechanism of radioresistance.

  19. Cell Motility in Tumor Invasion

    DTIC Science & Technology

    2004-07-01

    lines ( Dondi et al. 1994; Dondi et al. 1998; Limonta et al. 2001). In line with these observations, the LHRH analog Cetrorelix has been shown to have...Stone et al. 1978); it retains the androgen independence of the original tumor and does not express a functional androgen receptor ( Dondi et al. 1998...goserelin ( Dondi et al. 1994; Jungwirth et al. 1997A; Jungwirth et al. 1997B; Limonta et al. 1998; Wells et al. 2002), and one that inhibits DU-145 WT

  20. Clinical Significance of Early Changes in Circulating Tumor Cells from Patients Receiving First-Line Cisplatin-Based Chemotherapy for Metastatic Urothelial Carcinoma1

    PubMed Central

    Fina, Emanuela; Necchi, Andrea; Giannatempo, Patrizia; Colecchia, Maurizio; Raggi, Daniele; Daidone, Maria Grazia; Cappelletti, Vera

    2016-01-01

    Background: The therapeutic paradigm of metastatic urothelial carcinoma (UC) is rapidly shifting and new biomarkers are needed to enhance patient selection. Objective: Early identification of dynamic predictors of outcome may be a key to optimize the sequence of effective therapies in metastatic UC patients. Methods: Blood samples from patients receiving first-line MVAC chemotherapy were collected at baseline (T0) and after 2 cycles (T2). Samples were processed by immunomagnetic beads (AdnaTest ProstateCancerSelect kit) and the expression of EPCAM, MUC1 and ERBB2 was studied using multiplex-PCR. Circulating tumor cell (CTC) positivity and cutoffs, obtained by receiver operator characteristic (ROC) curve analysis in healthy donors, were: ≥1 positive marker among EPCAM (≥0.40 ng/μl), MUC1 (≥0.10 ng/μl) and ERBB2 (≥0.20 ng/μl). CTC variation (T0/T2) was split in favorable (+/–, –/–, –/+) and unfavorable groups (+/+). Cox regression analyses evaluated associations with clinical factors. Results: In this pilot study to assess a new CTC detection method, among 31 evaluable patients, 17 (54.8%) were CTC-positive at T0. No association was found between CTC and objective response to MVAC. CTC dynamic changes better predicted 3-year progression-free (PFS) and overall survival (OS) compared to CTC status assessed at single time points. Unfavorable trend was univariably detrimental on 3-year PFS (10% vs. 49.2%, p = 0.006) and OS (20% vs. 63.5%, p = 0.017). Significance was maintained after controlling for liver metastases (p = 0.031 and p = 0.025 for PFS and OS) and MSKCC score (p = 0.014 and 0.025). Conclusions: Newly described early CTC changes during chemotherapy might be useful to improve our prognostic ability. Pending validation, these results could fulfill the promise to help accelerating therapeutic sequences. PMID:28035320

  1. Simulating Heterogeneous Tumor Cell Populations

    PubMed Central

    Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620

  2. T cells from the tumor microenvironment of patients with progressive myeloma can generate strong, tumor-specific cytolytic responses to autologous, tumor-loaded dendritic cells

    NASA Astrophysics Data System (ADS)

    Dhodapkar, Madhav V.; Krasovsky, Joseph; Olson, Kara

    2002-10-01

    Most untreated cancer patients develop progressive tumors. We tested the capacity of T lymphocytes from patients with clinically progressive, multiple myeloma to develop killer function against fresh autologous tumor. In this malignancy, it is feasible to reproducibly evaluate freshly isolated tumor cells and T cells from the marrow tumor environment. When we did this with seven consecutive patients, with all clinical stages of disease, we did not detect reactivity to autologous cancer cells. However, both cytolytic and IFN--producing responses to autologous myeloma were generated in six of seven patients after stimulation ex vivo with dendritic cells that had processed autologous tumor cells. The antitumor effectors recognized fresh autologous tumor but not nontumor cells in the bone marrow, myeloma cell lines, dendritic cells loaded with tumor-derived Ig, or allogeneic tumor. Importantly, these CD8+ effectors developed with similar efficiency by using T cells from both the blood and the bone marrow tumor environment. Therefore, even in the setting of clinical tumor progression, the tumor bed of myeloma patients contains T cells that can be activated readily by dendritic cells to kill primary autologous tumor.

  3. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo.

    PubMed Central

    Liu, D; Pearlman, E; Diaconu, E; Guo, K; Mori, H; Haqqi, T; Markowitz, S; Willson, J; Sy, M S

    1996-01-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the "molecular saboteurs" to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs. Images Fig. 1 Fig. 2 Fig. 3 PMID:8755562

  4. Expression of Hyaluronidase by Tumor Cells Induces Angiogenesis in vivo

    NASA Astrophysics Data System (ADS)

    Liu, Dacai; Pearlman, Eric; Diaconu, Eugenia; Guo, Kun; Mori, Hiroshi; Haqqi, Tariq; Markowitz, Sanford; Willson, James; Sy, Man-Sun

    1996-07-01

    Hyaluronic acid is a proteoglycan present in the extracellular matrix and is important for the maintenance of tissue architecture. Depolymerization of hyaluronic acid may facilitate tumor invasion. In addition, oligosaccharides of hyaluronic acid have been reported to induce angiogenesis. We report here that a hyaluronidase similar to the one on human sperm is expressed by metastatic human melanoma, colon carcinoma, and glioblastoma cell lines and by tumor biopsies from patients with colorectal carcinomas, but not by tissues from normal colon. Moreover, angiogenesis is induced by hyaluronidase+ tumor cells but not hyaluronidase- tumor cells and can be blocked by an inhibitor of hyaluronidase. Tumor cells thus use hyaluronidase as one of the ``molecular saboteurs'' to depolymerize hyaluronic acid to facilitate invasion. As a consequence, breakdown products of hyaluronic acid can further promote tumor establishment by inducing angiogenesis. Hyaluronidase on tumor cells may provide a target for anti-neoplastic drugs.

  5. BAY 80-6946 is a highly selective intravenous PI3K inhibitor with potent p110α and p110δ activities in tumor cell lines and xenograft models.

    PubMed

    Liu, Ningshu; Rowley, Bruce R; Bull, Cathy O; Schneider, Claudia; Haegebarth, Andrea; Schatz, Christoph A; Fracasso, Paul R; Wilkie, Dean P; Hentemann, Martin; Wilhelm, Scott M; Scott, William J; Mumberg, Dominik; Ziegelbauer, Karl

    2013-11-01

    Because of the complexity derived from the existence of various phosphoinositide 3-kinase (PI3K) isoforms and their differential roles in cancers, development of PI3K inhibitors with differential pharmacologic and pharmacokinetic profiles would allow best exploration in different indications, combinations, and dosing regimens. Here, we report BAY 80-6946, a highly selective and potent pan-class I PI3K inhibitor with sub-nanomolar IC50s against PI3Kα and PI3Kδ. BAY 80-6946 exhibited preferential inhibition (about 10-fold) of AKT phosphorylation by PI3Kα compared with PI3Kβ in cells. BAY 80-6946 showed superior antitumor activity (>40-fold) in PIK3CA mutant and/or HER2 overexpression as compared with HER2-negative and wild-type PIK3CA breast cancer cell lines. In addition, BAY 80-6946 revealed potent activity to induce apoptosis in a subset of tumor cells with aberrant activation of PI3K as a single agent. In vivo, single intravenous administration of BAY 80-6946 exhibited higher exposure and prolonged inhibition of pAKT levels in tumors versus plasma. BAY 80-6946 is efficacious in tumors with activated PI3K when dosed either continuously or intermittently. Thus, BAY 80-6946 induced 100% complete tumor regression when dosed as a single agent every second day in rats bearing HER2-amplified and PIK3CA-mutated KPL4 breast tumors. In combination with paclitaxel, weekly dosing of BAY 80-6946 is sufficient to reach sustained response in all animals bearing patient-derived non-small cell lung cancer xenografts, despite a short plasma elimination half-life (1 hour) in mice. Thus, BAY 80-6946 is a promising agent with differential pharmacologic and pharmacokinetic properties for the treatment of PI3K-dependent human tumors.

  6. Dicer in Mammary Tumor Stem Cell Maintenance

    DTIC Science & Technology

    2008-03-01

    SUPPLEMENTARY NOTES 14. ABSTRACT To date, most cancer research has focused on alterations in the sequence, gene structure, copy number and expression of...To address the role of miR-34in cancer formation and maintenance, we generated cell lines over express miR-34. We have demonstrated that ectopic...mediators of p53 tumor suppressor network, which plays an important role in many cancer types, including breast cancer . 15. SUBJECT TERMS Dicer

  7. Newcastle disease virus selectively kills human tumor cells.

    PubMed

    Reichard, K W; Lorence, R M; Cascino, C J; Peeples, M E; Walter, R J; Fernando, M B; Reyes, H M; Greager, J A

    1992-05-01

    Newcastle disease virus (NDV), strain 73-T, has previously been shown to be cytolytic to mouse tumor cells. In this study, we have evaluated the ability of NDV to replicate in and kill human tumor cells in culture and in athymic mice. Plaque assays were used to determine the cytolytic activity of NDV on six human tumor cell lines, fibrosarcoma (HT1080), osteosarcoma (KHOS), cervical carcinoma (KB8-5-11), bladder carcinoma (HCV29T), neuroblastoma (IMR32), and Wilm's tumor (G104), and on nine different normal human fibroblast lines. NDV formed plaques on all tumor cells tested as well as on chick embryo cells (CEC), the native host for NDV. Plaques did not form on any of the normal fibroblast lines. To detect NDV replication, virus yield assays were performed which measured virus particles in infected cell culture supernatants. Virus yield increased 10,000-fold within 24 hr in tumor and CEC supernatants. Titers remained near zero in normal fibroblast supernatants. In vivo tumoricidal activity was evaluated in athymic nude Balb-c mice by subcutaneous injection of 9 x 10(6) tumor cells followed by intralesional injection of either live or heat-killed NDV (1.0 x 10(6) plaque forming units [PFU]), or medium. After live NDV treatment, tumor regression occurred in 10 out of 11 mice bearing KB8-5-11 tumors, 8 out of 8 with HT-1080 tumors, and 6 out of 7 with IMR-32 tumors. After treatment with heat-killed NDV no regression occurred (P less than 0.01, Fisher's exact test). Nontumor-bearing mice injected with 1.0 x 10(8) PFU of NDV remained healthy. These results indicate that NDV efficiently and selectively replicates in and kills tumor cells, but not normal cells, and that intralesional NDV causes complete tumor regression in athymic mice with a high therapeutic index.

  8. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines.

    PubMed

    Swindall, Amanda F; Londoño-Joshi, Angelina I; Schultz, Matthew J; Fineberg, Naomi; Buchsbaum, Donald J; Bellis, Susan L

    2013-04-01

    The ST6Gal-I sialyltransferase adds an α2-6-linked sialic acid to the N-glycans of certain receptors. ST6Gal-I mRNA has been reported to be upregulated in human cancer, but a prior lack of antibodies has limited immunochemical analysis of the ST6Gal-I protein. Here, we show upregulated ST6Gal-I protein in several epithelial cancers, including many colon carcinomas. In normal colon, ST6Gal-I localized selectively to the base of crypts, where stem/progenitor cells are found, and the tissue staining patterns were similar to the established stem cell marker ALDH1. Similarly, ST6Gal-I expression was restricted to basal epidermal layers in skin, another stem/progenitor cell compartment. ST6Gal-I was highly expressed in induced pluripotent stem (iPS) cells, with no detectable expression in the fibroblasts from which iPS cells were derived. On the basis of these observations, we investigated further an association of ST6Gal-I with cancer stem cells (CSC). Selection of irinotecan resistance in colon carcinoma cells led to a greater proportion of CSCs compared with parental cells, as measured by the CSC markers CD133 and ALDH1 activity (Aldefluor). These chemoresistant cells exhibited a corresponding upregulation of ST6Gal-I expression. Conversely, short hairpin RNA (shRNA)-mediated attenuation of ST6Gal-I in colon carcinoma cells with elevated endogenous expression decreased the number of CD133/ALDH1-positive cells present in the cell population. Collectively, our results suggest that ST6Gal-I promotes tumorigenesis and may serve as a regulator of the stem cell phenotype in both normal and cancer cell populations.

  9. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity

    PubMed Central

    1994-01-01

    A costimulatory signal through B7 to its counter-receptor CD28 on T cells enhances T cell activation. We have generated recombinant retroviruses containing cDNA for murine B7 and transduced a panel of murine tumor lines with varying immunogenicity to study the effect of B7 costimulation on antitumor immunity. In contrast to the progressive outgrowth of all wild-type (B7-) tumors in unimmunized syngeneic mice, four immunogenic tumors, lymphoma RMA, EL4, mastocytoma P815, and melanoma E6B2, regressed completely when transduced with the B7 gene. In contrast, four nonimmunogenic tumors, sarcomas MCA101, MCA102, and Ag104, and melanoma B16, remained tumorigenic after transduction of the B7 gene. Immunization with B7-transduced immunogenic tumors enhanced protective immunity and increased specific cytotoxic T lymphocyte (CTL) activity against the respective wild-type tumors as compared to immunization with nontransduced or mock-transduced tumors. Moreover, cocultivation of CTL with B7-transduced EL4 cells augmented the specificity of tumor-reactive CTL in long-term cultures. Treatment by injection of B7-transduced tumor cells cured 60% of mice with established wild-type EL4 lymphoma. In contrast, immunization with nonimmunogenic tumors transduced with B7 did not provide protective immunity and did not increase specific CTL activity. Our results show that tumor immunogenicity is critical to the outcome of costimulation of T cell-mediated tumor immunity by B7. PMID:7507508

  10. Interferon-Tau has Antiproliferative effects, Represses the Expression of E6 and E7 Oncogenes, Induces Apoptosis in Cell Lines Transformed with HPV16 and Inhibits Tumor Growth In Vivo

    PubMed Central

    Padilla-Quirarte, Herbey Oswaldo; Trejo-Moreno, Cesar; Fierros-Zarate, Geny; Castañeda, Jhoseline Carnalla; Palma-Irizarry, Marie; Hernández-Márquez, Eva; Burguete-Garcia, Ana Isabel; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo

    2016-01-01

    Interferon tau (IFN-τ) is a promising alternative antiviral and immunotherapeutic agent in a wide variety of diseases including infectious, neurodegenerative, autoimmune and cancer due to its low toxicity in comparison with other type I interferon´s. The objective of our study was established the effect of the bovine IFN-τ on human (SiHa) and murine (BMK-16/myc) cells transformed with HPV 16 and evaluates the antitumor effect in a murine tumor model HPV 16 positive. We determine that bovine IFN-τ has antiproliferative effects, pro-apoptotic activity and induces repression of viral E6 and E7 oncogenes (time- and dose-dependent) on human and murine cells transformed with HPV 16 similar to the effects of IFN-β. However, IFN-τ induces greater antiproliferative effect, apoptosis and repression of both oncogenes in BMK-16/myc cells compared to SiHa cells. The differences were explained by the presence and abundance of the type I interferon receptor (IFNAR) in each cell line. On the other hand, we treated groups of tumor-bearing mice (HPV16 positive) with IFN-τ and showed the inhibition tumor growth effect in vivo. Our finding indicates that bovine IFN-τ may be a good candidate for immunotherapy against cervical cancer. PMID:27994659

  11. 6-Aryl and heterocycle quinazoline derivatives as potent EGFR inhibitors with improved activity toward gefitinib-sensitive and -resistant tumor cell lines.

    PubMed

    Hamed, Mostafa M; Abou El Ella, Dalal A; Keeton, Adam B; Piazza, Gary A; Abadi, Ashraf H; Hartmann, Rolf W; Engel, Matthias

    2013-09-01

    A group of novel anilinoquinazoline derivatives with variable aryl and heterocyclic substituents at position 6 were synthesized and tested for their EGFR-inhibitory activity. Aryl and heterocyclic rings were attached to the quinazoline scaffold through different linkages such as imine, amide, and thiourea. Most of the aryl and heterocyclic derivatives showed potent inhibition of wild-type EGFR with IC₅₀ values in the low nanomolar range. Among these, thiourea derivatives 6 a, 6 b and compound 10 b also retained significant activity toward the gefitinib-insensitive EGFR(T790M/L858R) mutant, displaying up to 24-fold greater potency than gefitinib. In addition, cell growth inhibitory activity was tested against cancer cell lines with wild-type (KB cells) and mutant EGFR (H1975 cells). Several compounds including 6 a were found to be more potent than the reference compound gefitinib toward both cell lines, as was the case for compound 10 b against H1975 cells. Therefore, compounds 6 a and 10 b in particular may serve as new leads for the development of inhibitors effective against wild-type EGFR as well as gefitinib-resistant mutants.

  12. Failure of anti tumor-derived endothelial cell immunotherapy depends on augmentation of tumor hypoxia.

    PubMed

    Pezzolo, Annalisa; Marimpietri, Danilo; Raffaghello, Lizzia; Cocco, Claudia; Pistorio, Angela; Gambini, Claudio; Cilli, Michele; Horenstein, Alberto; Malavasi, Fabio; Pistoia, Vito

    2014-11-15

    We have previously demonstrated that Tenascin-C (TNC)(+) human neuroblastoma (NB) cells transdifferentiate into tumor-derived endothelial cells (TDEC), which have been detected both in primary tumors and in tumors formed by human NB cell lines in immunodeficient mice. TDEC are genetically unstable and may favor tumor progression, suggesting that their elimination could reduce tumor growth and dissemination. So far, TDEC have never been targeted by antibody-mediated immunotherapy in any of the tumor models investigated. To address this issue, immunodeficient mice carrying orthotopic NB formed by the HTLA-230 human cell line were treated with TDEC-targeting cytotoxic human (h)CD31, that spares host-derived endothelial cells, or isotype-matched mAbs. hCD31 mAb treatment did not affect survival of NB-bearing mice, but increased significantly hypoxia in tumor microenvironment, where apoptotic and proliferating TDEC coexisted, indicating the occurrence of vascular remodeling. Tumor cells from hCD31 mAb treated mice showed i) up-regulation of epithelial-mesenchymal transition (EMT)-related and vascular mimicry (VM)-related gene expression, ii) expression of endothelial (i.e. CD31 and VE-cadherin) and EMT-associated (i.e. Twist-1, N-cadherin and TNC) immunophenotypic markers, and iii) up-regulation of high mobility group box-1 (HMGB-1) expression. In vitro experiments with two NB cell lines showed that hypoxia was the common driver of all the above phenomena and that human recombinant HMGB-1 amplified EMT and TDEC trans-differentiation. In conclusion, TDEC targeting with hCD31 mAb increases tumor hypoxia, setting the stage for the occurrence of EMT and of new waves of TDEC trans-differentiation. These adaptive responses to the changes induced by immunotherapy in the tumor microenvironment allow tumor cells to escape from the effects of hCD31 mAb.

  13. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models.

    PubMed

    Hiroshima, Yukihiko; Zhang, Yong; Murakami, Takashi; Maawy, Ali; Miwa, Shinji; Yamamoto, Mako; Yano, Shuya; Sato, Sho; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Zhao, Ming; Hoffman, Robert M

    2014-12-15

    The aim of the present study was to examine the efficacy of tumor-targeting Salmonella typhimurium A1-R treatment following anti-vascular endothelial growth factor (VEGF) therapy on VEGF-positive human pancreatic cancer. A pancreatic cancer patient-derived orthotopic xenograft (PDOX) that was VEGF-positive and an orthotopic VEGF-positive human pancreatic cancer cell line (MiaPaCa-2-GFP) as well as a VEGF-negative cell line (Panc-1) were tested. Nude mice with these tumors were treated with gemcitabine (GEM), bevacizumab (BEV), and S. typhimurium A1-R. BEV/GEM followed by S. typhimurium A1-R significantly reduced tumor weight compared to BEV/GEM treatment alone in the PDOX and MiaPaCa-2 models. Neither treatment was as effective in the VEGF-negative model as in the VEGF-positive models. These results demonstrate that S. typhimurium A1-R following anti-angiogenic therapy is effective on pancreatic cancer including the PDOX model, suggesting its clinical potential.

  14. Efficacy of tumor-targeting Salmonella typhimurium A1-R in combination with anti-angiogenesis therapy on a pancreatic cancer patient-derived orthotopic xenograft (PDOX) and cell line mouse models

    PubMed Central

    Hiroshima, Yukihiko; Zhang, Yong; Murakami, Takashi; Maawy, Ali; Miwa, Shinji; Yamamoto, Mako; Yano, Shuya; Sato, Sho; Momiyama, Masashi; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Zhao, Ming; Hoffman, Robert M.

    2014-01-01

    The aim of the present study was to examine the efficacy of tumor-targeting Salmonella typhimurium A1-R treatment following anti-vascular endothelial growth factor (VEGF) therapy on VEGF-positive human pancreatic cancer. A pancreatic cancer patient-derived orthotopic xenograft (PDOX) that was VEGF-positive and an orthotopic VEGF-positive human pancreatic cancer cell line (MiaPaCa-2-GFP) as well as a VEGF-negative cell line (Panc-1) were tested. Nude mice with these tumors were treated with gemcitabine (GEM), bevacizumab (BEV), and S. typhimurium A1-R. BEV/GEM followed by S. typhimurium A1-R significantly reduced tumor weight compared to BEV/GEM treatment alone in the PDOX and MiaPaCa-2 models. Neither treatment was as effective in the VEGF-negative model as in the VEGF-positive models. These results demonstrate that S. typhimurium A1-R following anti-angiogenic therapy is effective on pancreatic cancer including the PDOX model, suggesting its clinical potential. PMID:25402324

  15. Metastasis and Circulating Tumor Cells

    PubMed Central

    van Dalum, Guus; Holland, Linda

    2012-01-01

    Cancer is a prominent cause of death worldwide. In most cases, it is not the primary tumor which causes death, but the metastases. Metastatic tumors are spread over the entire human body and are more difficult to remove or treat than the primary tumor. In a patient with metastatic disease, circulating tumor cells (CTCs) can be found in venous blood. These circulating tumor cells are part of the metastatic cascade. Clinical studies have shown that these cells can be used to predict treatment response and their presence is strongly associated with poor survival prospects. Enumeration and characterization of CTCs is important as this can help clinicians make more informed decisions when choosing or evaluating treatment. CTC counts are being included in an increasing number of studies and thus are becoming a bigger part of disease diagnosis and therapy management. We present an overview of the most prominent CTC enumeration and characterization methods and discuss the assumptions made about the CTC phenotype. Extensive CTC characterization of for example the DNA, RNA and antigen expression may lead to more understanding of the metastatic process. PMID:27683421

  16. Melatonin modulates the cadmium-induced expression of MT-2 and MT-1 metallothioneins in three lines of human tumor cells (MCF-7, MDA-MB-231 and HeLa).

    PubMed

    Alonso-Gonzalez, Carolina; Mediavilla, Dolores; Martinez-Campa, Carlos; Gonzalez, Alicia; Cos, Samuel; Sanchez-Barcelo, Emilio J

    2008-10-01

    Cadmium (Cd) is a human carcinogen present in tobacco smoke and contaminated industrial soils. Metallothioneins (MTs) are intracellular proteins involved in protecting against Cd. The toxic effects of Cd can be modified by compounds able to modulate MTs synthesis. Melatonin has oncostatic properties and has also been shown to counteract the toxic effects of Cd. In this study we examine the possible role of melatonin in Cd-induced expression of several MT isoforms (MT-2A, MT-1X, MT-1F and MT-1E) in three human tumor cell lines (MCF-7, MDA-MB-231 and HeLa). We found that, in all cell types, melatonin increases Cd-induced expression of MT-2A, which is considered to protect against Cd toxicity. As regards MT-1 subtypes, which have been related with cell invasiveness and high histological grade tumors, melatonin caused Cd-induced expression in both breast cancer cell lines to decrease. These effects point towards melatonin's possible role as a preventive agent for carcinogenesis dependent on Cd contamination.

  17. Transcriptional targeting of tumor endothelial cells for gene therapy

    PubMed Central

    Dong, Zhihong; Nör, Jacques E.

    2009-01-01

    It is well known that angiogenesis plays a critical role in the pathobiology of tumors. Recent clinical trials have shown that inhibition of angiogenesis can be an effective therapeutic strategy for patients with cancer. However, one of the outstanding issues in anti-angiogenic treatment for cancer is the development of toxicities related to off-target effects of drugs. Transcriptional targeting of tumor endothelial cells involves the use of specific promoters for selective expression of therapeutic genes in the endothelial cells lining the blood vessels of tumors. Recently, several genes that are expressed specifically in tumor-associated endothelial cells have been identified and characterized. These discoveries have enhanced the prospectus of transcriptionaly targeting tumor endothelial cells for cancer gene therapy. In this manuscript, we review the promoters, vectors, and therapeutic genes that have been used for transcriptional targeting of tumor endothelial cells, and discuss the prospects of such approaches for cancer gene therapy. PMID:19393703

  18. Inhibition of proliferation, VEGF secretion of human neuroendocrine tumor cell line NCI-H727 by an antagonist of growth hormone-releasing hormone (GH-RH) in vitro.

    PubMed

    Sacewicz, Małgorzata; Lawnicka, Hanna; Siejka, Agnieszka; Stepień, Tomasz; Krupiński, Roman; Komorowski, Jan; Stepień, Henryk

    2008-09-08

    Growth hormone-releasing hormone (GH-RH) can stimulate not only growth hormone (GH) secretion by anterior pituitary gland but also proliferation of many cancer cell lines in vitro and in xenografts tumor models in vivo. Several antagonists of GH-RH have been shown to inhibit several cancer growths, but the role of GH-RH antagonists in the regulation of neuroendocrine cancers cell proliferation and tumor progression remains obscure. The aim of the study was to evaluate the influence of JV-1-36 (synthetic GH-RH antagonist) on proliferation and VEGF secretion by human neuroendocrine lung non-small cell carcinoma (NCI-H727) using cell culture model. The in vitro effect of JV-1-36 on the proliferation of NCI-H727 cells was assessed by the measurement of BrdU incorporation by colorimetric immunoassay. The presence of VEGF and membrane GH-RH receptors on the surface of H727 cells were visualized by immunocytochemistry using specific anti-GH-RH receptor antibody directed to the carboxy-terminal region. VEGF secretion to the cell cultures supernatants was assessed by ELISA methods. Immunoreactive cell membrane GH-RH receptors and VEGF-immunopositive cytoplasmatic granules were clearly confined on the surface of nearly all cancer cells. JV-1-36 at the concentration of 10(-6)-10(-10)M significantly inhibited growth of H727 cells, compared with untreated controls. In H727 cells, the antiproliferative JV-1-36 effect was associated with a dose-dependent reduction of VEGF secretion. In conclusion, our findings demonstrate the strong evidence for the antiproliferative action of GH-RH antagonist JV-1-36 for the NCI-H727 cells. In addition the suppression of VEGF secretion by H727 cells might contribute, at least in part, to the antitumor action of GH-RH antagonists.

  19. Interaction of MSC with tumor cells.

    PubMed

    Melzer, Catharina; Yang, Yuanyuan; Hass, Ralf

    2016-09-08

    Tumor development and tumor progression is not only determined by the corresponding tumor cells but also by the tumor microenvironment. This includes an orchestrated network of interacting cell types (e.g. immune cells, endothelial cells, fibroblasts, and mesenchymal stroma/stem cells (MSC)) via the extracellular matrix and soluble factors such as cytokines, chemokines, growth factors and various metabolites. Cell populations of the tumor microenvironment can interact directly and indirectly with cancer cells by mutually altering properties and functions of the involved partners. Particularly, mesenchymal stroma/stem cells (MSC) play an important role during carcinogenesis exhibiting different types of intercellular communication. Accordingly, this work focusses on diverse mechanisms of interaction between MSC and cancer cells. Moreover, some functional changes and consequences for both cell types are summarized which can eventually result in the establishment of a carcinoma stem cell niche (CSCN) or the generation of new tumor cell populations by MSC-tumor cell fusion.

  20. An Active Form of Sphingosine Kinase-1 Is Released in the Extracellular Medium as Component of Membrane Vesicles Shed by Two Human Tumor Cell Lines

    PubMed Central

    Rigogliuso, Salvatrice; Donati, Chiara; Cassarà, Donata; Taverna, Simona; Salamone, Monica; Bruni, Paola; Vittorelli, Maria Letizia

    2010-01-01

    Expression of sphingosine kinase-1 (SphK-1) correlates with a poor survival rate of tumor patients. This effect is probably due to the ability of SphK-1 to be released into the extracellular medium where it catalyzes the biosynthesis of sphingosine-1-phosphate (S1P), a signaling molecule endowed with profound proangiogenic effects. SphK-1 is a leaderless protein which is secreted by an unconventional mechanism. In this paper, we will show that in human hepatocarcinoma Sk-Hep1 cells, extracellular signaling is followed by targeting the enzyme to the cell surface and parallels targeting of FGF-2 to the budding vesicles. We will also show that SphK-1 is present in a catalitycally active form in vesicles shed by SK-Hep1 and human breast carcinoma 8701-BC cells. The enzyme substrate sphingosine is present in shed vesicles where it is produced by neutral ceramidase. Shed vesicles are therefore a site for S1P production in the extracellular medium and conceivably also within host cell following vesicle endocytosis. PMID:20508814

  1. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines.

    PubMed

    Kaushik, Neha; Kim, Min-Jung; Kim, Rae-Kwon; Kumar Kaushik, Nagendra; Seong, Ki Moon; Nam, Seon-Young; Lee, Su-Jae

    2017-02-27

    Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44(+)/CD24(-) population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases.

  2. Low-dose radiation decreases tumor progression via the inhibition of the JAK1/STAT3 signaling axis in breast cancer cell lines

    PubMed Central

    Kaushik, Neha; Kim, Min-Jung; Kim, Rae-Kwon; Kumar Kaushik, Nagendra; Seong, Ki Moon; Nam, Seon-Young; Lee, Su-Jae

    2017-01-01

    Breast cancer is a widely distributed type of cancer in women worldwide, and tumor relapse is the major cause of breast cancer death. In breast cancers, the acquisition of metastatic ability, which is responsible for tumor relapse and poor clinical outcomes, has been linked to the acquisition of the epithelial-mesenchymal transition (EMT) program and self-renewal traits (CSCs) via various signaling pathways. These phenomena confer resistance during current therapies, thus creating a major hurdle in radiotherapy/chemotherapy. The role of very low doses of radiation (LDR) in the context of EMT has not yet to be thoroughly explored. Here, we report that a 0.1 Gy radiation dose reduces cancer progression by deactivating the JAK1/STAT3 pathway. Furthermore, LDR exposure also reduces sphere formation and inhibits the self-renewal ability of breast cancer cells, resulting in an attenuated CD44+/CD24− population. Additionally, in vivo findings support our data, providing evidence that LDR is a promising option for future treatment strategies to prevent cancer metastasis in breast cancer cases. PMID:28240233

  3. Implication of Tumor Microenvironment in Chemoresistance: Tumor-Associated Stromal Cells Protect Tumor Cells from Cell Death

    PubMed Central

    Castells, Magali; Thibault, Benoît; Delord, Jean-Pierre; Couderc, Bettina

    2012-01-01

    Tumor development principally occurs following the accumulation of genetic and epigenetic alterations in tumor cells. These changes pave the way for the transformation of chemosensitive cells to chemoresistant ones by influencing the uptake, metabolism, or export of drugs at the cellular level. Numerous reports have revealed the complexity of tumors and their microenvironment with tumor cells located within a heterogeneous population of stromal cells. These stromal cells (fibroblasts, endothelial or mesothelial cells, adipocytes or adipose tissue-derived stromal cells, immune cells and bone marrow-derived stem cells) could be involved in the chemoresistance that is acquired by tumor cells via several mechanisms: (i) cell–cell and cell–matrix interactions influencing the cancer cell sensitivity to apoptosis; (ii) local release of soluble factors promoting survival and tumor growth (crosstalk between stromal and tumor cells); (iii) direct cell-cell interactions with tumor cells (crosstalk or oncologic trogocytosis); (iv) generation of specific niches within the tumor microenvironment that facilitate the acquisition of drug resistance; or (v) conversion of the cancer cells to cancer-initiating cells or cancer stem cells. This review will focus on the implication of each member of the heterogeneous population of stromal cells in conferring resistance to cytotoxins and physiological mediators of cell death. PMID:22949815

  4. Ionizing radiation induces tumor cell lysyl oxidase secretion

    PubMed Central

    2014-01-01

    Background Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. Methods LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. Results LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. Conclusions These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in

  5. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  6. ME-10TUMOR MICROENVIRONMENT INFILTRATING MYELOID DERIVED SUPPRESSOR CELLS INHIBIT ANTI-TUMOR T CELL RESPONSES

    PubMed Central

    Kamran, Neha; Ayala, Mariela; Li, Youping; Assi, Hikmat; Candolfi, Marianela; Dzaman, Marta; Lowenstein, Pedro; Castro, Maria

    2014-01-01

    MDSCs represent a population of immature myeloid cells at various stages of differentiation that inhibit anti-tumor T cell-mediated responses. We demonstrate the accumulation of MDSCs in GL26 induced glioma and B16 melanoma bearing mice. Absolute numbers of Ly-6G+ (Gr-1high) MDSCs showed a 200 fold increase within the tumor microenvironment (TME) 28 days post-tumor implantation. The numbers of Ly-6C+ (Gr-1low) MDSCs also showed a similar trend within the TME. While this massive influx of MDSCs was noted within intracranial tumors, MDSC levels did not increase in the dLNs, spleen or bone marrow (BM) of intracranial tumor bearing mice. MDSCs numbers were significantly elevated in the blood of GL26 intracranial tumor bearing mice at 28 days. Mice bearing B16 tumors in the flank showed a ∼5 fold increased influx of Ly-6G+ MDSCs while the Ly6C+ MDSCs increased marginally by 1.1 fold within the tumor mass. Levels of circulating MDSCs also increased by ∼10 fold, while the levels of splenic MDSCs did not change. While both Ly-6G+ and Ly6C+ MDSCs isolated from the brain TME of GL26 intracranial tumor bearing mice inhibited antigen-specific T cell proliferation, Ly6C+ MDSC were found to be more efficient. Ly6G+ or Ly6C+ MDSCs from the bone marrow of intracranial tumor bearing mice failed to suppress antigen-specific T cell proliferation. Splenic and bone marrow MDSCs from naïve mice also did not inhibit antigen-specific T cell proliferation suggesting that TME derived factors may activate MDSCs to exert their immune-suppressive properties. Microarray analysis of glioma cell lines showed elevated levels of CXCL1 mRNA and splenic MDSCs from GL26 tumor mice showed upregulation of the CXCR2 mRNA. Preliminary experiments indicate that CXCR2 signaling mediates MDSC chemotaxis. Overall, our data suggests that strategies that inhibit MDSC recruitment to the TME and/or block their activity could enhance the T cell mediated tumor clearance.

  7. Characterization of ligand binding to the σ(1) receptor in a human tumor cell line (RPMI 8226) and establishment of a competitive receptor binding assay.

    PubMed

    Brune, Stefanie; Schepmann, Dirk; Lehmkuhl, Kirstin; Frehland, Bastian; Wünsch, Bernhard

    2012-08-01

    The standard assay for the determination of σ(1) receptor affinities of novel compounds is a competitive binding assay using [(3)H]-(+)-pentazocine as radioligand and membrane preparations from guinea pig brain. Herein, a novel competitive binding assay was developed employing the hematopoietic cell line of human multiple myeloma (RPMI 8226), which expresses a large amount of the human σ(1) receptor. Membrane fragments of RPMI 8226 cells were prepared and characterized. A Western blot analysis confirmed the high density of σ(1) receptors in this cell line. Assay conditions were carefully optimized leading to an incubation period of 120 min, an incubation temperature of 37°C, and receptor material for each well was prepared from 300,000 cells. It was shown that a large excess (10 μM) of (+)-pentazocine, haloperidol, and di-o-tolylguanidine provided the same results during determination of the nonspecific binding. Saturation experiments with the radioligand [(3)H]-(+)-pentazocine led to a K(d)-value of 36±0.3 nM and a B(max)-value of 477±7 fmol/mg protein. These data resulted in approximately 122,000 σ(1) binding sites per cell. The assay was validated by using six known σ(1) ligands and eight σ(1) ligands prepared in our lab. The K(i)-values determined with RPMI 8226-derived receptor material are in good accordance with the K(i)-values obtained with guinea pig brain membrane preparations. Compared with guinea pig brain preparations, the RPMI 8226-derived receptor material represents a better standardized receptor material with a high density of human σ(1) receptors.

  8. Lebecin, a new C-type lectin like protein from Macrovipera lebetina venom with anti-tumor activity against the breast cancer cell line MDA-MB231.

    PubMed

    Jebali, Jed; Fakhfekh, Emna; Morgen, Maram; Srairi-Abid, Najet; Majdoub, Hafedh; Gargouri, Ali; El Ayeb, Mohamed; Luis, José; Marrakchi, Naziha; Sarray, Sameh

    2014-08-01

    C-type lectins like proteins display various biological activities and are known to affect especially platelet aggregation. Few of them have been reported to have anti-tumor effects. In this study, we have identified and characterized a new C-type lectin like protein, named lebecin. Lebecin is a heterodimeric protein of 30 kDa. The N-terminal amino acid sequences of both subunits were determined by Edman degradation and the entire amino acid sequences were deduced from cDNAs. The precursors of both lebecin subunits contain a 23-amino acid residue signal peptide and the mature α and β subunits are composed of 129 and 131 amino acids, respectively. Lebecin is shown to be a potent inhibitor of MDA-MB231 human breast cancer cells proliferation. Furthermore, lebecin dose-dependently inhibited the integrin-mediated attachment of these cells to different adhesion substrata. This novel C-type lectin also completely blocked MDA-MB231 cells migration towards fibronectin and fibrinogen in haptotaxis assays.

  9. Synthesis and photophysical characterization of quasi push-pull dicyanodibenzodioxins and their anti-tumor activity against glioma cell line C6.

    PubMed

    Banerjee, Subhadeep; Chattopadhyay, Anjan; Banerjee, Arnab; Haridas, Meera; Saini, Praveen; Das, Moitreyi; Majik, Mahesh S; Maurya, Yogesh Kr

    2015-02-15

    Dibenzodioxins bearing multiple electron withdrawing groups were synthesized using a simple one-step methodology including examples of molecules possessing electron acceptor groups in both ends. As a consequence internal charge delocalization occurs and the optical spectra are found to be bathochromically shifted compared to similar examples known thus far. A theoretical analysis of the molecular orbitals reveals the origin of the peaks in the dibenzodioxin optical spectra. Select examples exhibit in vitro neuro-cytotoxicity against glioma cell line C6, a finding which enhances existing knowledge about the pharmacologically relevant structural motifs in dibenzodioxins.

  10. Myeloid Cells in the Tumor Microenvironment: Modulation of Tumor Angiogenesis and Tumor Inflammation

    PubMed Central

    Schmid, Michael C.; Varner, Judith A.

    2010-01-01

    Myeloid cells are a heterogeneous population of bone marrow-derived cells that play a critical role during growth and metastasis of malignant tumors. Tumors exhibit significant myeloid cell infiltrates, which are actively recruited to the tumor microenvironment. Myeloid cells promote tumor growth by stimulating tumor angiogenesis, suppressing tumor immunity, and promoting metastasis to distinct sites. In this review, we discuss the role of myeloid cells in promoting tumor angiogenesis. Furthermore, we describe a subset of myeloid cells with immunosuppressive activity (known as myeloid-derived suppressor cells). Finally, we will comment on the mechanisms regulating myeloid cell recruitment to the tumor microenvironment and on the potential of myeloid cells as new targets for cancer therapy. PMID:20490273

  11. Enrichment of circulating tumor cells in tumor-bearing mouse blood by a deterministic lateral displacement microfluidic device.

    PubMed

    Okano, Hiromasa; Konishi, Tomoki; Suzuki, Toshihiro; Suzuki, Takahiro; Ariyasu, Shinya; Aoki, Shin; Abe, Ryo; Hayase, Masanori

    2015-01-01

    Concentration of real tumor cells leaking into blood from cancer was attempted by a deterministic lateral displacement (DLD) microfluidic device. Spiked cultured cell line tumor cells are often used to verify performance of the circulating tumor cells (CTCs) separation methods. Cultured tumor cells are obviously larger than most of hematocytes and considered not to be appropriate as CTC mimics, while there is uncertainty in identifying real CTCs from clinical samples and there is no practical way to examine CTCs leakage into benign cells during the sorting. In this work, blood samples were prepared from tumor-bearing mice whose tumors were induced by implanting cells with GFP expression to living mice. Therefore, CTCs were identified by their fluorescence emission. We succeeded in the enrichment of tumor cells to 0.05% from the blood, in which CTCs were negligibly detected among three million blood cells, and little loss of CTCs was observed.

  12. Hepatic perivascular epithelioid cell tumor

    PubMed Central

    Tang, Da; Wang, Jianmin; Tian, Yuepeng; Li, Qiuguo; Yan, Haixiong; Wang, Biao; Xiong, Li; Li, Qinglong

    2016-01-01

    Abstract Rational: Perivascular epithelioid cell tumor (PEComa) is a rare mesenchymal neoplasm which expresses both myogenic and melanocytic markers. PEComas are found in a variety locations in the body, but up to now only approximately 30 cases about hepatic perivascular epithelioid cell tumor are reported in English language worldwide. Patient concerns: A 32-year-old woman was admitted in our hospital with intermittent right upper quadrant pain for 1 month and recent (1 day) progressive deterioration. Diagnoses: Based on the results of the laboratory examinations and the findings of the computed tomography, the diagnosis of hepatic hamartoma or the hepatocecullar carcinoma with hemorrhage was made. Interventions: The patient underwent a segmentectomy of the liver, and the finally diagnosis of hepatic PEComa was made with immunohistochemical confirmation with HMB-45 and SMA. Outcomes: There is no clinical or radiographic evidence of recurrence 9 months after surgery. Lessons: This kind of tumor is extremely rare and the natural history of PEComa is uncertain, as the treatment protocol for hepatic PEComa has not reached a consensus. But the main treatment of the disease may be surgical resection. Only after long term follow-up can we know whether the tumor is benign or malignant. It appears that longer clinical follow-up is necessary in all patients with hepatic PEComas. PMID:28002331

  13. Cancer stem cells in nervous system tumors.

    PubMed

    Singh, Sheila K; Clarke, Ian D; Hide, Takuichiro; Dirks, Peter B

    2004-09-20

    Most current research on human brain tumors is focused on the molecular and cellular analysis of the bulk tumor mass. However, evidence in leukemia and more recently in solid tumors such as breast cancer suggests that the tumor cell population is heterogeneous with respect to proliferation and differentiation. Recently, several groups have described the existence of a cancer stem cell population in human brain tumors of different phenotypes from both children and adults. The finding of brain tumor stem cells (BTSCs) has been made by applying the principles for cell culture and analysis of normal neural stem cells (NSCs) to brain tumor cell populations and by identification of cell surface markers that allow for isolation of distinct tumor cell populations that can then be studied in vitro and in vivo. A population of brain tumor cells can be enriched for BTSCs by cell sorting of dissociated suspensions of tumor cells for the NSC marker CD133. These CD133+ cells, which also expressed the NSC marker nestin, but not differentiated neural lineage markers, represent a minority fraction of the entire brain tumor cell population, and exclusively generate clonal tumor spheres in suspension culture and exhibit increased self-renewal capacity. BTSCs can be induced to differentiate in vitro into tumor cells that phenotypically resembled the tumor from the patient. Here, we discuss the evidence for and implications of the discovery of a cancer stem cell in human brain tumors. The identification of a BTSC provides a powerful tool to investigate the tumorigenic process in the central nervous system and to develop therapies targeted to the BTSC. Specific genetic and molecular analyses of the BTSC will further our understanding of the mechanisms of brain tumor growth, reinforcing parallels between normal neurogenesis and brain tumorigenesis.

  14. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

    PubMed Central

    Cornil, I; Theodorescu, D; Man, S; Herlyn, M; Jambrosic, J; Kerbel, R S

    1991-01-01

    It is known from a variety of experimental systems that the ability of tumor cells to grow locally and metastasize can be affected by the presence of adjacent normal tissues and cells, particularly mesenchymally derived stromal cells such as fibroblasts. However, the comparative influence of such normal cell-tumor cell interactions on tumor behavior has not been thoroughly investigated from the perspective of different stages of tumor progression. To address this question we assessed the influence of normal dermal fibroblasts on the growth of human melanoma cells obtained from different stages of tumor progression. We found that the in vitro growth of most (4 out of 5) melanoma cell lines derived from early-stage radial growth phase or vertical growth phase metastatically incompetent primary lesions is repressed by coculture with normal dermal fibroblasts, suggesting that negative homeostatic growth controls are still operative on melanoma cells from early stages of disease. On the other hand, 9 out of 11 melanoma cell lines derived from advanced metastatically competent vertical growth phase primary lesions, or from distant metastases, were found to be consistently stimulated to grow in the presence of dermal fibroblasts. Evidence was obtained to show that this discriminatory fibroblastic influence is mediated by soluble inhibitory and stimulatory growth factor(s). Taken together, these results indicate that fibroblast-derived signals can have antithetical growth effects on metastatic versus metastatically incompetent tumor subpopulations. This resultant conversion in responsiveness to host tissue environmental factors may confer upon small numbers of metastatically competent cells a growth advantage, allowing them to escape local growth constraints both in the primary tumor site and at distant ectopic tissue sites. PMID:2068080

  15. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis)

    PubMed Central

    Jager, Martine J.; Magner, J. Antonio Bermudez; Ksander, Bruce R.; Dubovy, Sander R.

    2016-01-01

    Purpose To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Methods Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Results Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. Conclusions All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines. PMID:28018010

  16. Statins impair glucose uptake in tumor cells.

    PubMed

    Malenda, Agata; Skrobanska, Anna; Issat, Tadeusz; Winiarska, Magdalena; Bil, Jacek; Oleszczak, Bozenna; Sinski, Maciej; Firczuk, Małgorzata; Bujnicki, Janusz M; Chlebowska, Justyna; Staruch, Adam D; Glodkowska-Mrowka, Eliza; Kunikowska, Jolanta; Krolicki, Leszek; Szablewski, Leszek; Gaciong, Zbigniew; Koziak, Katarzyna; Jakobisiak, Marek; Golab, Jakub; Nowis, Dominika A

    2012-04-01

    Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at neither transcriptional nor protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered (18)F-fluorodeoxyglucose ((18)F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting (18)F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology.

  17. Pituitary tumors contain a side population with tumor stem cell-associated characteristics.

    PubMed

    Mertens, Freya; Gremeaux, Lies; Chen, Jianghai; Fu, Qiuli; Willems, Christophe; Roose, Heleen; Govaere, Olivier; Roskams, Tania; Cristina, Carolina; Becú-Villalobos, Damasia; Jorissen, Mark; Poorten, Vincent Vander; Bex, Marie; van Loon, Johannes; Vankelecom, Hugo

    2015-08-01

    Pituitary adenomas cause significant endocrine and mass-related morbidity. Little is known about the mechanisms that underlie pituitary tumor pathogenesis. In the present study, we searched for a side population (SP) in pituitary tumors representing cells with high efflux capacity and potentially enriched for tumor stem cells (TSCs). Human pituitary adenomas contain a SP irrespective of hormonal phenotype. This adenoma SP, as well as the purified SP (pSP) that is depleted from endothelial and immune cells, is enriched for cells that express 'tumor stemness' markers and signaling pathways, including epithelial-mesenchymal transition (EMT)-linked factors. Pituitary adenomas were found to contain self-renewing sphere-forming cells, considered to be a property of TSCs. These sphere-initiating cells were recovered in the pSP. Because benign pituitary adenomas do not grow in vitro and have failed to expand in immunodeficient mice, the pituitary tumor cell line AtT20 was further used. We identified a SP in this cell line and found it to be more tumorigenic than the non-SP 'main population'. Of the two EMT regulatory pathways tested, the inhibition of chemokine (C-X-C motif) receptor 4 (CXCR4) signaling reduced EMT-associated cell motility in vitro as well as xenograft tumor growth, whereas the activation of TGFβ had no effect. The human adenoma pSP also showed upregulated expression of the pituitary stem cell marker SOX2. Pituitaries from dopamine receptor D2 knockout (Drd2(-/-)) mice that bear prolactinomas contain more pSP, Sox2(+), and colony-forming cells than WT glands. In conclusion, we detected a SP in pituitary tumors and identified TSC-associated characteristics. The present study adds new elements to the unraveling of pituitary tumor pathogenesis and may lead to the identification of new therapeutic targets.

  18. Proteolytic Activity of Human Lymphoid Tumor Cells. Correlation with Tumor Progression

    PubMed Central

    Ribatti, Domenico; Ria, Roberto; Pellegrino, Antonio; Bruno, Michele; Merchionne, Francesca; Dammacco, Franco

    2000-01-01

    Matrix metalloproteinase (MMP) expression and production are associated with advanced-stage tumor and contribute to tumor progression, invasion and metastases. The current study was designed to determine the expression and production of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) by human lymphoid tumor cells. Changes in expression and production were also investigated during tumor progression of multiple myeloma and mycosis fungoides. In situ hybridization analysis revealed that lymphoblastic leukemia B cells (SB cell line), multiple myeloma (MM) cells (U266 cell line) and lymphoblastic leukemia T cells (CEM and Jurkat cell lines) express constitutively the mRNA for MMP-2 and/or MMP-9. We demonstrated by gelatin-zymography of cell culture medium that both enzymes were secreted in their cleaved (activated) form. In situ hybridization of bone marrow plasma cells and gelatin- zymography of the medium showed that patients with active MM (diagnosis, relapse, leukemic progression) express higher levels of MMP-2 mRNA and protein than patients with non-active MM (complete/objective response, plateau) and with monoclonal gammopathies of undetermined significance (MGUS). MMP-9 expression and secretion was similar in all patient groups. In patients with mycosis fungoides (MF), the expression of MMP-2 and MMP-9 mRNAs was significantly upregulated with advancing stage, in terms of lesions both positive for one of two mRNAs and with the greatest intensity of expression. Besides MF cells, the MMP-2 and/or MMP-9 mRNAs were expressed by some stromal cell populations (microvascular endothelial cells, fibroblasts, macrophages), suggesting that these cells cooperate in the process of tumor invasion. Our studies identify MMPs as an important class of proteinases involved in the extracellular matrix (ECM) degradation by human lymphoid tumors, and suggest that MMPs inhibitors may lead to important new treatment for their control. PMID:11097203

  19. Methylglyoxal suppresses human colon cancer cell lines and tumor growth in a mouse model by impairing glycolytic metabolism of cancer cells associated with down-regulation of c-Myc expression.

    PubMed

    He, Tiantian; Zhou, Huaibin; Li, Chunmei; Chen, Yuan; Chen, Xiaowan; Li, Chenli; Mao, Jiating; Lyu, Jianxin; Meng, Qing H

    2016-09-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound exhibiting anti-tumor activity. The anti-tumor effects of MG have been demonstrated in some types of cancer, but its role in colon cancer and the mechanisms underlying this activity remain largely unknown. We investigated its role in human colon cancer and the underlying mechanism using human colon cancer cells and animal model. Viability, proliferation, and apoptosis were quantified in DLD-1 and SW480 colon cancer cells by using the Cell Counting Kit-8, plate colony formation assay, and flow cytometry, respectively. Cell migration and invasion were assessed by wound healing and transwell assays. Glucose consumption, lactate production, and intracellular ATP production also were assayed. The levels of c-Myc protein and mRNA were quantitated by western blot and qRT-PCR. The anti-tumor role of MG in vivo was investigated in a DLD-1 xenograft tumor model in nude mice. We demonstrated that MG inhibited viability, proliferation, migration, and invasion and induced apoptosis of DLD-1 and SW480 colon cancer cells. Treatment with MG reduced glucose consumption, lactate production, and ATP production and decreased c-Myc protein levels in these cells. Moreover, MG significantly suppressed tumor growth and c-Myc expression in vivo. Our findings suggest that MG plays an anti-tumor role in colon cancer. It inhibits cancer cell growth by altering the glycolytic pathway associated with downregulation of c-Myc protein. MG has therapeutic potential in colon cancer by interrupting cancer metabolism.

  20. Tumor LINE-1 methylation level and colorectal cancer location in relation to patient survival

    PubMed Central

    Cao, Yin; Song, Mingyang; Masugi, Yohei; Shi, Yan; da Silva, Annacarolina; Gu, Mancang; Li, Wanwan; Hamada, Tsuyoshi; Zhang, Xuehong; Wu, Kana; Meyerhardt, Jeffrey A.; Baba, Hideo; Giovannucci, Edward L.

    2016-01-01

    Colorectal tumors arise with genomic and epigenomic alterations through interactions between neoplastic cells, immune cells, and microbiota that vary along the proximal to distal axis of colorectum. Long interspersed nucleotide element-1 (LINE-1) hypomethylation in colorectal cancer has been associated with worse clinical outcome. Utilizing 1,317 colon and rectal carcinoma cases in two U.S.-nationwide prospective cohort studies, we examined patient survival according to LINE-1 methylation level stratified by tumor location. Cox proportional hazards model was used to assess a statistical interaction between LINE-1 methylation level and tumor location in colorectal cancer-specific mortality analysis, controlling for potential confounders including microsatellite instability, CpG island methylator phenotype, and KRAS, BRAF, and PIK3CA mutations. A statistically significant interaction was found between LINE-1 methylation level and tumor location in colorectal cancer-specific mortality analysis (Pinteraction = 0.011). The association of LINE-1 hypomethylation with higher colorectal cancer-specific mortality was stronger in proximal colon cancers (multivariable hazard ratio [HR], 1.66; 95% confidence interval [CI], 1.21 to 2.28) than in distal colon cancers (multivariable HR, 1.18; 95% CI, 0.81 to 1.72) or rectal cancers (multivariable HR, 0.87; 95% CI, 0.57 to 1.34). Our data suggest the interactive effect of LINE-1 methylation level and colorectal cancer location on clinical outcome. PMID:27391152

  1. A novel nonradioactive method for measuring aromatase activity using a human ovarian granulosa-like tumor cell line and an estrone ELISA.

    PubMed

    Ohno, Ken; Araki, Naohiro; Yanase, Toshihiko; Nawata, Hajime; Iida, Mitsuru

    2004-12-01

    Aromatase is a key enzyme in steroidogenesis and plays an important role in sexual differentiation, fertility, and carcinogenesis. Importantly, a variety of chemicals in the environment may influence its activity and thereby disrupt endocrine function. In the current studies, we developed a novel nonradioactive method for measuring aromatase activity that uses a specific ELISA for estrone along with KGN human ovary granulosa-like carcinoma cells. This cell line has relatively high aromatase activity, and because it lacks 17alpha-hydroxylase, it secretes little or no androstenedione, 17beta-estradiol, or estrone. Therefore, aromatase activity can be assayed simply by measuring the production of estrone in the culture medium after addition of the substrate, androstenedione. Furthermore, by making a slight change in the commercial ELISA kit and optimizing the experimental conditions, we developed a sensitive aromatase assay that could measure a wide range of estrone concentrations with very low interference by androgens. We used this assay to investigate the effects of 23 chemicals that have been previously reported to affect aromatase activity in vitro. We confirmed that 17 of 23 test chemicals had inhibitory or inducible effects, although the specific effects of some were different than previously reported. In conclusion, we have developed a simple, sensitive, and nonradioactive assay that can be used for large-scale screening of compounds that can disrupt endocrine function by influencing aromatase activity.

  2. Identification of high independent prognostic value of nanotechnology based circulating tumor cell enumeration in first-line chemotherapy for metastatic breast cancer patients.

    PubMed

    Liu, Xiao-Ran; Shao, Bin; Peng, Jia-Xi; Li, Hui-Ping; Yang, Yan-Lian; Kong, Wei-Yao; Song, Guo-Hong; Jiang, Han-Fang; Liang, Xu; Yan, Ying

    2017-04-01

    Enumeration of circulating tumor cells (CTCs) is a promising tool in the management of metastatic breast cancer (MBC). This study investigated the capturing efficiency and prognostic value of our previously reported peptide-based nanomagnetic CTC isolation system (Pep@MNPs). We counted CTCs in blood samples taken at baseline (n = 102) and later at patients' first clinical evaluation after starting firstline chemotherapy (n = 72) in a cohort of women treated for MBC. Their median follow-up was 16.3 months (range: 9.0-31.0 months). The CTC detection rate was 69.6 % for the baseline samples. Patients with ≤2 CTC/2 ml at baseline had longer median progression-free survival (PFS) than did those with >2 CTC/2 ml (17.0 months vs. 8.0 months; P = 0.002). Patients with ≤2 CTC/2 ml both at baseline and first clinical evaluation had longest PFS (18.2 months) among all patient groups (P = 0.004). Particularly, among patients with stable disease (SD; per imaging evaluation) our assay could identify those with longer PFS (P < 0.001). Patients with >2 CTC/2 ml at baseline were also significantly more likely to suffer liver metastasis (P = 0.010). This study confirmed the prognostic value of Pep@MNPs assays for MBC patients who undergo firstline chemotherapy, and offered extra stratification regarding PFS for patients with SD, and a possible indicator for patients at risk for liver metastasis.

  3. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    SciTech Connect

    Hopwood, L.E.; Moulder, J.E. )

    1989-11-01

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance.

  4. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  5. Synthetic Development of New 3-(4-Arylmethylamino)butyl-5-arylidene-rhodanines under Microwave Irradiation and Their Effects on Tumor Cell Lines and against Protein Kinases.

    PubMed

    Dago, Camille Déliko; Ambeu, Christelle N'ta; Coulibaly, Wacothon-Karime; Békro, Yves-Alain; Mamyrbékova, Janat; Defontaine, Audrey; Baratte, Blandine; Bach, Stéphane; Ruchaud, Sandrine; Guével, Rémy Le; Ravache, Myriam; Corlu, Anne; Bazureau, Jean-Pierre

    2015-07-08

    A new route to 3-(4-arylmethylamino)butyl-5-arylidene-2-thioxo-1,3-thiazolidine-4-one 9 was developed in six steps from commercial 1,4-diaminobutane 1 as starting material. The key step of this multi-step synthesis involved a solution phase "one-pot two-steps" approach assisted by microwave dielectric from N-(arylmethyl)butane-1,4-diamine hydrochloride 6a-f (as source of the first point diversity) and commercial bis-(carboxymethyl)-trithiocarbonate reagent 7 for construction of the rhodanine platform. This platform was immediately functionalized by Knoevenagel condensation under microwave irradiation with a series of aromatic aldehydes 3 as second point of diversity. These new compounds were prepared in moderate to good yields and the fourteen synthetic products 9a-n have been obtained with a Z-geometry about their exocyclic double bond. These new 5-arylidene rhodanines derivatives 9a-n were tested for their kinase inhibitory potencies against four protein kinases: Human cyclin-dependent kinase 5-p25, HsCDK5-p25; porcine Glycogen Synthase Kinase-3, GSK-3α/β; porcine Casein Kinase 1, SsCK1 and human HsHaspin. They have also been evaluated for their in vitro inhibition of cell proliferation (HuH7 D12, Caco 2, MDA-MB 231, HCT 116, PC3, NCI-H727, HaCat and fibroblasts). Among of all these compounds, 9j presented selective micromolar inhibition activity on SsCK1 and 9i exhibited antitumor activities in the HuH7 D12, MDA-MBD231 cell lines.

  6. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells.

    PubMed

    Niwa, Andressa Megumi; D Epiro, Gláucia Fernanda Rocha; Marques, Lilian Areal; Semprebon, Simone Cristine; Sartori, Daniele; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2016-06-01

    The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin.

  7. Ru(II)/clotrimazole/diphenylphosphine/bipyridine complexes: Interaction with DNA, BSA and biological potential against tumor cell lines and Mycobacterium tuberculosis.

    PubMed

    Colina-Vegas, Legna; Dutra, Jocely Lucena; Villarreal, Wilmer; de A Neto, João Honorato; Cominetti, Marcia Regina; Pavan, Fernando; Navarro, Maribel; Batista, Alzir A

    2016-09-01

    Three ruthenium complexes [RuCl(CTZ)(bipy)(P-P)]PF6 [P-P=1,2-bis(diphenylphosphino)ethane (dppe-1), 1,4-bis(diphenylphosphino)butane (dppb-2) and 1,1'-bis(diphenylphosphino)ferrocene (dppf-3), bipy=2,2'-bipiridine and clotrimazole (CTZ) 1-[(2-chlorophenyl)diphenylmethyl]-1H-imidazole] were synthesized. These complexes were characterized by a combination of elemental analysis, molar conductivity, infrared and UV-vis spectroscopy, (1)H, (13)C{(1)H} and (31)P{(1)H} nuclear magnetic resonance techniques, cyclic voltammetry and mass spectroscopy. Bovine serum albumin binding constants, which were in the range of 1.30-36.00×10(4)M(-1), and thermodynamic parameters suggest spontaneous interactions with this protein by electrostatic forces due to the positive charge of the complexes. DNA interactions studied by spectroscopic titration, viscosity measurements, gel electrophoresis, circular dichroism, ethidium bromide displacement and reactions with guanosine and guanosine monophosphate indicated the DNA binding affinity primarily through non-covalent interactions. All complexes 1-3 were tested against the human carcinoma cell lines MCF-7 (breast), A549 (lung) and DU-145 (prostate) presenting promising IC50 values, between 0.50 and 14.00μM, in some cases lower than the IC50 for the reference drug (cisplatin). The antimicrobial activity assays of the complexes provided evidence that they are potential agents against mycobacterial infections, specifically against Mycobacterium tuberculosis H37Rv.

  8. Radiosensitization of Prostate Tumor Cells by Prenyltransferase Inhibitors

    DTIC Science & Technology

    1999-10-01

    and predicts a positive effect on the response to radiotherapy. Reportable Outcomes: 1. Development of new cell lines derived from immortalized human ...548-552. 14 Employment 1993 - 1996 Biologist, Laboratory of Mammalian Genes and Development , National Institute of Child Health and Human ...the use of prenyltransferase inhibitors. We have examined both rodent and human prostate tumor cell lines in vitro and determined that radiation

  9. Radiation sensitivity of Merkel cell carcinoma cell lines

    SciTech Connect

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  10. Re-characterization of established human retinoblastoma cell lines.

    PubMed

    Busch, Maike; Philippeit, Claudia; Weise, Andreas; Dünker, Nicole

    2015-03-01

    Retinoblastoma (RB) is the most common malignant intraocular childhood tumor. Forty years after their first description, in the present study, we re-characterized seven established retinoblastoma cell lines with regard to their RB1 mutation status, morphology, growth pattern, endogenous apoptosis levels, colony formation efficiency in soft agar and invasiveness and dissemination capacity in chick chorioallantoic membrane (CAM) assays. All RB cell lines predominantly resemble small epithelioid cells with little cytoplasm and large nucleus, which mainly grow in cell clusters, but sometimes form chain-like structures with incident loops or three-dimensional aggregates. We observed different growth rates for the different retinoblastoma cells investigated. RBL-30, RBL-13 and RBL 383 cells grew very slowly, whereas Y-79 cells grew fastest under our culture conditions. Apoptosis rates likewise differed with highest cell death levels in RB 383 and RB 355 and lowest in WERI-Rb1 and RBL-15. Contradicting former reports, six of the seven RB cell lines analyzed were able to form colonies in soft agarose after single cell seeding within 3 weeks of incubation. Upon inoculation of four out of seven RB cell lines on the dorsal CAM, GFP-positive cells were detectable in the ventral CAM and two RB cell lines caused tumor development, indicating their intravasation and dissemination potential. All RB cell lines exhibited the potential to extravasate from the capillary system after intravenous CAM injection. Our study provides valuable new details for future therapy-related retinoblastoma basic research in vitro.

  11. Intracranial granular cell tumor in a dog.

    PubMed

    Liu, Chen-Hsuan; Liu, Chen-I; Liang, Sao-Ling; Cheng, Chiung-Hsiang; Huang, Sun-Chau; Lee, Chin-Cheng; Hsu, Wei-Chih; Lin, Yung-Chang

    2004-01-01

    A 12-year-old female miniature poodle showed a 3-month history of neurological signs. Magnetic resonance imaging disclosed a high intensity tumor mass in the right cerebral hemisphere with compression of the lateral ventricle. At necropsy, a 2 x 3 cm white, friable mass was found in the right ventral pyriform lobe. Microscopically, the tumor cells were large, polygonal to round cells supported by a sparse fibrovascular stroma. The tumor cells typically possessed finely granular, pale eosinophilic cytoplasm with strongly positive periodic acid-Schiff (PAS) reaction. The tumor cells were immunopositive for vimentin, NSE and S-100. Ultrastructurally, the tumor cells showed large amounts of granules in the cytoplasm, and absence of basement membrane. Based on the above-mentioned findings, the intracranial granular cell tumor was diagnosed.

  12. Improved Methods to Generate Spheroid Cultures from Tumor Cells, Tumor Cells & Fibroblasts or Tumor-Fragments: Microenvironment, Microvesicles and MiRNA

    PubMed Central

    Lao, Zheng; Kelly, Catherine J.; Yang, Xiang-Yang; Jenkins, W. Timothy; Toorens, Erik; Ganguly, Tapan; Evans, Sydney M.; Koch, Cameron J.

    2015-01-01

    Diagnostic and prognostic indicators are key components to achieve the goal of personalized cancer therapy. Two distinct approaches to this goal include predicting response by genetic analysis and direct testing of possible therapies using cultures derived from biopsy specimens. Optimally, the latter method requires a rapid assessment, but growing xenograft tumors or developing patient-derived cell lines can involve a great deal of time and expense. Furthermore, tumor cells have much different responses when grown in 2D versus 3D tissue environments. Using a modification of existing methods, we show that it is possible to make tumor-fragment (TF) spheroids in only 2–3 days. TF spheroids appear to closely model characteristics of the original tumor and may be used to assess critical therapy-modulating features of the microenvironment such as hypoxia. A similar method allows the reproducible development of spheroids from mixed tumor cells and fibroblasts (mixed-cell spheroids). Prior literature reports have shown highly variable development and properties of mixed-cell spheroids and this has hampered the detailed study of how individual tumor-cell components interact. In this study, we illustrate this approach and describe similarities and differences using two tumor models (U87 glioma and SQ20B squamous-cell carcinoma) with supporting data from additional cell lines. We show that U87 and SQ20B spheroids predict a key microenvironmental factor in tumors (hypoxia) and that SQ20B cells and spheroids generate similar numbers of microvesicles. We also present pilot data for miRNA expression under conditions of cells, tumors, and TF spheroids. PMID:26208323

  13. Human papillomavirus capsids preferentially bind and infect tumor cells

    PubMed Central

    Kines, Rhonda C.; Cerio, Rebecca J.; Roberts, Jeffrey N.; Thompson, Cynthia D.; de Los Pinos, Elisabet; Lowy, Douglas R.; Schiller, John T.

    2015-01-01

    We previously determined that human papillomavirus (HPV) virus-like particles (VLPs) and pseudovirions (PsV) did not, respectively, bind to or infect intact epithelium of the cervicovaginal tract. However, they strongly bound heparin sulfate proteoglycans (HSPG) on the basement membrane of disrupted epithelium and infected the keratinocytes that subsequently entered the disrupted site. We here report that HPV capsids (VLP and PsV) have the same restricted tropism for a wide variety of disrupted epithelial and mesothelial tissues, whereas intact tissues remain resistant to binding. However, the HPV capsids directly bind and infect most tumor-derived cell lines in vitro and have analogous tumor-specific properties in vivo, after local or intravenous injection, using orthotopic models for human ovarian and lung cancer, respectively. The pseudovirions also specifically infected implanted primary human ovarian tumors. Heparin and ι-carrageenan blocked binding and infection of all tumor lines tested, implying that tumor cell binding is HSPG-dependent. A survey using a panel of modified heparins indicate that N-sulfation and, to a lesser degree O-6 sulfation of the surface HSPG on the tumors are important for HPV binding. Therefore, it appears that tumor cells consistently evolve HSPG modification patterns that mimic the pattern normally found on the basement membrane but not on the apical surfaces of normal epithelial or mesothelial cells. Consequently, appropriately modified HPV VLPs and/or PsV could be useful reagents to detect and potentially treat a remarkably broad spectrum of cancers. PMID:26317490

  14. Evolution of cooperation among tumor cells.

    PubMed

    Axelrod, Robert; Axelrod, David E; Pienta, Kenneth J

    2006-09-05

    The evolution of cooperation has a well established theoretical framework based on game theory. This approach has made valuable contributions to a wide variety of disciplines, including political science, economics, and evolutionary biology. Existing cancer theory suggests that individual clones of cancer cells evolve independently from one another, acquiring all of the genetic traits or hallmarks necessary to form a malignant tumor. It is also now recognized that tumors are heterotypic, with cancer cells interacting with normal stromal cells within the tissue microenvironment, including endothelial, stromal, and nerve cells. This tumor cell-stromal cell interaction in itself is a form of commensalism, because it has been demonstrated that these nonmalignant cells support and even enable tumor growth. Here, we add to this theory by regarding tumor cells as game players whose interactions help to determine their Darwinian fitness. We marshal evidence that tumor cells overcome certain host defenses by means of diffusible products. Our original contribution is to raise the possibility that two nearby cells can protect each other from a set of host defenses that neither could survive alone. Cooperation can evolve as by-product mutualism among genetically diverse tumor cells. Our hypothesis supplements, but does not supplant, the traditional view of carcinogenesis in which one clonal population of cells develops all of the necessary genetic traits independently to form a tumor. Cooperation through the sharing of diffusible products raises new questions about tumorigenesis and has implications for understanding observed phenomena, designing new experiments, and developing new therapeutic approaches.

  15. Robo-Enabled Tumor Cell Extrusion.

    PubMed

    Richardson, Helena E; Portela, Marta

    2016-12-19

    How aberrant cells are removed from a tissue to prevent tumor formation is a key question in cancer biology. Reporting in this issue of Developmental Cell, Vaughen and Igaki (2016) show that a pathway with an important role in neural guidance also directs extrusion of tumor cells from epithelial tissues.

  16. Acoustic separation of circulating tumor cells.

    PubMed

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I; Drabick, Joseph J; El-Deiry, Wafik S; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-04-21

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.

  17. Effect of tumor cells and tumor microenvironment on NK-cell function.

    PubMed

    Vitale, Massimo; Cantoni, Claudia; Pietra, Gabriella; Mingari, Maria Cristina; Moretta, Lorenzo

    2014-06-01

    The ability of tumors to manage an immune-mediated attack has been recently included in the "next generation" of cancer hallmarks. In solid tumors, the microenvironment that is generated during the first steps of tumor development has a pivotal role in immune regulation. An intricate net of cross-interactions occurring between tumor components, stromal cells, and resident or recruited immune cells skews the possible acute inflammatory response toward an aberrant ineffective chronic inflammatory status that favors the evasion from the host's defenses. Natural killer (NK) cells have powerful cytotoxic activity, but their activity may be eluded by the tumor microenvironment. Immunosubversion, immunoediting or immunoselection of poorly immunogenic tumor cells and interference with tumor infiltration play a major role in evading NK-cell responses to tumors. Tumor cells, tumor-associated fibroblasts and tumor-induced aberrant immune cells (i.e. tolerogenic or suppressive macrophages, dendritic cells (DCs) and T cells) can interfere with NK-cell activation pathways or the complex receptor array that regulate NK-cell activation and antitumor activity. Thus, the definition of tumor microenvironment-related immunosuppressive factors, along with the identification of new classes of tissue-residing NK-like innate lymphoid cells, represent key issues to design effective NK-cell-based therapies of solid tumors.

  18. Gene expression profiles of circulating tumor cells versus primary tumors in metastatic breast cancer.

    PubMed

    Onstenk, Wendy; Sieuwerts, Anieta M; Weekhout, Marleen; Mostert, Bianca; Reijm, Esther A; van Deurzen, Carolien H M; Bolt-de Vries, Joan B; Peeters, Dieter J; Hamberg, Paul; Seynaeve, Caroline; Jager, Agnes; de Jongh, Felix E; Smid, Marcel; Dirix, Luc Y; Kehrer, Diederik F S; van Galen, Anne; Ramirez-Moreno, Raquel; Kraan, Jaco; Van, Mai; Gratama, Jan W; Martens, John W M; Foekens, John A; Sleijfer, Stefan

    2015-06-28

    Before using circulating tumor cells (CTCs) as liquid biopsy, insight into molecular discrepancies between CTCs and primary tumors is essential. We characterized CellSearch-enriched CTCs from 62 metastatic breast cancer (MBC) patients with ≥5 CTCs starting first-line systemic treatment. Expression levels of 35 tumor-associated, CTC-specific genes, including ESR1, coding for the estrogen receptor (ER), were measured by reverse transcription quantitative polymerase chain reaction and correlated to corresponding primary tumors. In 30 patients (48%), gene expression profiles of 35 genes were discrepant between CTCs and the primary tumor, but this had no prognostic consequences. In 15 patients (24%), the expression of ER was discrepant. Patients with ER-negative primary tumors and ER-positive CTCs had a longer median TTS compared to those with concordantly ER-negative CTCs (8.5 versus 2.1 months, P = 0.05). From seven patients, an axillary lymph node metastasis was available. In two patients, the CTC profiles better resembled the lymph node metastasis than the primary tumor. Our findings suggest that molecular discordances between CTCs and primary tumors frequently occur, but that this bears no prognostic consequences. Alterations in ER-status between primary tumors and CTCs might have prognostic implications.

  19. Therapeutic Trial for Patients With Ewing Sarcoma Family of Tumor and Desmoplastic Small Round Cell Tumors

    ClinicalTrials.gov

    2016-08-25

    Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  20. The dual role of TLR3 in metastatic cell line.

    PubMed

    Matijevic, Tanja; Pavelic, Jasminka

    2011-10-01

    Toll-like receptors (TLRs) are members of transmembrane proteins that recognize conserved molecular motifs of viral and bacterial origin and initiate innate immune response. As the role of TLRs in tumors cells is still not clear, our aim was to investigate the role of TLR3 in primary tumor and metastatic cells (SW480, SW620, FaDu and Detroit 562). We have reported here on the dual role of TLR3 in pharynx metastatic cell line (Detroit 562); on one hand TLR3 activation drove cells to apoptosis while on the other its stimulation contributed to tumor progression by altering the expression of tumor promoting genes (PLAUR, RORB) and enhancing the cell migration potential. In addition, we have shown TLR3 signaling pathway is functional in another metastatic cancer cell line (SW620) suggesting TLR3 might be important in the process of tumor metastasis. Since TLR3 agonists have been used in tumor therapy with the aim to activate immune system, scientific contribution of this work is drawing attention to the importance of further work on this topic, especially pro-tumor effect of TLR3, in order to avoid possible side-effects.

  1. Modulation of expression of 17-Hydroxylase/17,20 lyase (CYP17) and P450 aromatase (CYP19) by inhibition of MEK1 in a human ovarian granulosa-like tumor cell line.

    PubMed

    Huang, Xiao; Jin, Jiewen; Shen, Shanmei; Xia, Yanjie; Xu, Pei; Zou, Xiang; Wang, Hongwei; Yi, Long; Wang, Yong; Gao, Qian

    2016-01-01

    The differential steroid production in the theca and granulosa cells in ovary are resulted from unique enzyme expression profiles. Among them, c-fos, a downstream target of mitogen and extracellular signal-regulated kinases (MEK/ERK) signaling, takes part in this compartment. In this study, we investigated the effect of c-fos on the steady-state levels of CYP17 and CYP19 in human ovarian granulosa-like tumor cell line (KGN) by inhibiting MEK/ERK pathway with PD98059. As a result, our finding demonstrated the distinct distribution patterns of CYP17 and CYP19 in KGN. Moreover, the MEK/ERK pathway functions to inhibit the production of CYP17, while enhance the production of CYP19 in granulosa cells, probably involving a c-fos-dependent mechanism. In conclusion, factors such as c-fos may play a crucial role in the down-regulation of CYP17 and up-regulation of CYP19 in granulosa cells, thereby suppressing androstenedione synthesis.

  2. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity

    PubMed Central

    Ayaz, Muhammad; Junaid, Muhammad; Ullah, Farhat; Sadiq, Abdul; Subhan, Fazal; Khan, Mir Azam; Ahmad, Waqar; Ali, Gowhar; Imran, Muhammad; Ahmad, Sajjad

    2016-01-01

    Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography–Mass Spectrometry (GC–MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC–MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer. PMID:27065865

  3. Tumor cell metabolism: an integral view.

    PubMed

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; Báez-Viveros, José Luis; Aguilar-Cazares, Dolores; Prado-Garcia, Heriberto

    2011-12-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism.

  4. Altered Tumor-Cell Glycosylation Promotes Metastasis

    PubMed Central

    Häuselmann, Irina; Borsig, Lubor

    2014-01-01

    Malignant transformation of cells is associated with aberrant glycosylation presented on the cell-surface. Commonly observed changes in glycan structures during malignancy encompass aberrant expression and glycosylation of mucins; abnormal branching of N-glycans; and increased presence of sialic acid on proteins and glycolipids. Accumulating evidence supports the notion that the presence of certain glycan structures correlates with cancer progression by affecting tumor-cell invasiveness, ability to disseminate through the blood circulation and to metastasize in distant organs. During metastasis tumor-cell-derived glycans enable binding to cells in their microenvironment including endothelium and blood constituents through glycan-binding receptors – lectins. In this review, we will discuss current concepts how tumor-cell-derived glycans contribute to metastasis with the focus on three types of lectins: siglecs, galectins, and selectins. Siglecs are present on virtually all hematopoietic cells and usually negatively regulate immune responses. Galectins are mostly expressed by tumor cells and support tumor-cell survival. Selectins are vascular adhesion receptors that promote tumor-cell dissemination. All lectins facilitate interactions within the tumor microenvironment and thereby promote cancer progression. The identification of mechanisms how tumor glycans contribute to metastasis may help to improve diagnosis, prognosis, and aid to develop clinical strategies to prevent metastasis. PMID:24592356

  5. On the nature of the tumor-initiating cell.

    PubMed

    Lara-Padilla, Eleazar; Caceres-Cortes, Julio Roberto

    2012-01-01

    Certain aspects of tumors that may influence areas of basic biology and medicine are reviewed. The hypothesis that malignant stem cells evolve from normal stem cells, is considered. Information is being accumulated on the possibility that certain cell populations that can be propagated as cell lines in vitro can produce cells with features of differentiated cells in addition to others that maintain the line and, in some cases may also initiate tumor formation in vivo. Up to the present time, there is evidence to show that cancer stem cells persist in many cell lines. Tyrosine kinase inhibition produces combinations of autophagy and apoptosis in the human erythroleukemia cell line TF-1 hinting at a heterotypic aggregation of cells containing cancer stem cells. Finally, the mechanisms of cancer development, invasion and metastasis are operatively defined. The purpose of this paper is to review some of the salient features of cancer stem cells in support of the proposal that research in neoplasia be increased. Rather than presenting details of various studies, we have attempted to indicate general areas in which work has been done or is in progress. It is hoped that this survey of the subject will demonstrate a variety of opportunities for additional research in human neoplasia.

  6. Boldine: a potential new antiproliferative drug against glioma cell lines.

    PubMed

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent.

  7. Adoptive transfer of natural killer cells promotes the anti-tumor efficacy of T cells.

    PubMed

    Goding, Stephen R; Yu, Shaohong; Bailey, Lisa M; Lotze, Michael T; Basse, Per H

    2016-07-01

    The density of NK cells in tumors correlates positively with prognosis in many types of cancers. The average number of infiltrating NK cells is, however, quite modest (approximately 30 NK cells/sq.mm), even in tumors deemed to have a "high" density of infiltrating NK cells. It is unclear how such low numbers of tumor-infiltrating NK cells can influence outcome. Here, we used ovalbumin-expressing tumor cell lines and TCR transgenic, OVA-specific cytotoxic T lymphocytes (OT-I-CTLs) to determine whether the simultaneous attack by anti-tumor CTLs and IL-2-activated NK (A-NK) cells synergistically increases the overall tumor cell kill and whether upregulation of tumor MHC class-I by NK cell-derived interferon-gamma (IFNγ) improves tumor-recognition and kill by anti-tumor CTLs. At equal E:T ratios, A-NK cells killed OVA-expressing tumor cells better than OT-I-CTLs. The cytotoxicity against OVA-expressing tumor cells increased by combining OT-I-CTLs and A-NK cells, but the increase was additive rather than synergistic. A-NK cells adenovirally-transduced to produce IL-12 (A-NK(IL-12)) produced high amounts of IFNγ. The addition of a low number of A-NK(IL-12) cells to OT-I-CTLs resulted in a synergistic, albeit modest, increase in overall cytotoxicity. Pre-treatment of tumor cells with NK cell-conditioned medium increased tumor MHC expression and sensitivity to CTL-mediated killing. Pre-treatment of CTLs with NK cell-conditioned medium had no effect on CTL cytotoxicity. In vivo, MHC class-I expression by OVA-expressing B16 melanoma lung metastases increased significantly within 24-48h after adoptive transfer of A-NK(IL-12) cells. OT-I-CTLs and A-NK(IL-12) cells localized selectively and equally well into OVA-expressing B16 lung metastases and treatment of mice bearing 7-days-old OVA-B16 lung metastases with both A-NK(IL-12) cells and OT-I-CTLs lead to a significant prolongation of survival. Thus, an important function of tumor-infiltrating NK cells may be to increase

  8. SYNOVIAL GIANT CELL TUMOR OF THE KNEE.

    PubMed

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2009-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection.

  9. SYNOVIAL GIANT CELL TUMOR OF THE KNEE

    PubMed Central

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2015-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection. PMID:27004193

  10. [Granular cell tumor of the larynx].

    PubMed

    Modrzyński, M; Wróbel, B; Zawisza, E; Drozd, K

    1999-09-01

    Granular cell tumor is an unusual growth of probably neuroectodermal histogenesis, first reported by Abrikossoff in 1926 with the name of myoblastenmyoma. Authors described a case of a 54 year man with laryngeal seat of granular-cell myoblastoma. In this case Abrikossoff tumor was located in the right vocal chord. The tumor was treated successfully surgically by microlaryngoscopy. The etiology, clinical features and diagnostic difficulties are discussed.

  11. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor.

    PubMed Central

    Gooding, L R; Ranheim, T S; Tollefson, A E; Aquino, L; Duerksen-Hughes, P; Horton, T M; Wold, W S

    1991-01-01

    We have reported that the E3 14,700-dalton protein (E3 14.7K protein) protects adenovirus-infected mouse C3HA fibroblasts against lysis by tumor necrosis factor (TNF) (L. R. Gooding, L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. M. Wold, Cell 53:341-346, 1988). We have also observed that the E1B 19K protein protects adenovirus-infected human but not mouse cells against TNF lysis (L. R. Gooding, L. Aquino, P. J. Duerksen-Hughes, D. Day, T. M. Horton, S. Yei, and W. S. M. Wold, J. Virol. 65:3083-3094, 1991). We now report that, in the absence of E3 14.7K, the E3 10.4K and E3 14.5K proteins are both required to protect C127 as well as several other mouse cell lines against TNF lysis. The 14.7K protein can also protect these cells from TNF in the absence of the 10.4K and 14.5K proteins. This protection by the 10.4K and 14.5K proteins was not observed in the C3HA cell line. These conclusions are based on 51Cr release assays of cells infected with virus E3 mutants that express the 14.7K protein alone, that express both the 10.4K and 14.5K proteins, and that delete the 14.7K in combination with either the 10.4K or 14.5K protein. The 10.4K protein was efficiently coimmunoprecipitated together with the 14.5K protein by using an antiserum to the 14.5K protein, suggesting that the 10.4K and 14.5K proteins exist as a complex in the infected mouse cells and consistent with the notion that they function in concert. Considering that three sets of proteins (E3 14.7K, E1B 19K, and E3 10.4K/14.5K proteins) exist in adenovirus to prevent TNF cytolysis of different cell types, it would appear that TNF is a major antiadenovirus defense of the host. Images PMID:1830111

  12. Biological characteristics of side population cells in a self-established human ovarian cancer cell line

    PubMed Central

    WEI, ZHENTONG; LV, SHUANG; WANG, YISHU; SUN, MEIYU; CHI, GUANGFAN; GUO, JUN; SONG, PEIYE; FU, XIAOYU; ZHANG, SONGLING; LI, YULIN

    2016-01-01

    The aim of the present study was to establish an ovarian cancer (OC) cell line from ascites of an ovarian serous cystadenocarcinoma patient and investigate the biological characteristics of its side population (SP) cells. The OC cell line was established by isolating, purifying and subculturing primary cells from ascites of an ovarian serous cystadenocarcinoma patient (stage IIIc; grade 3). SP and non-SP (NSP) cells were isolated by fluorescence-activated cell sorting and cultured in serum-free medium and soft agar to compare the tumorsphere and colony formation capacities. Furthermore, SP and NSP cell tumorigenesis was examined by subcutaneous and intraperitoneal injection of the cells to non-obese diabetic/severe combined immune deficiency (NOD/SCID) mice. Drug resistance to cisplatin was examined by cell counting kit-8. The OC cell line was successfully established from ascites of an ovarian serous cystadenocarcinoma patient, which exhibited properties similar to primary tumors subsequent to >50 passages and >2 years of culture. The SP cell ratio was 0.38% in the OC cell line, and a similar SP cell ratio (0.39%) was observed when sorted SP cells were cultured for 3 weeks. Compared with NSP cells, SP cells exhibited increased abilities in differentiation and tumorsphere and colony formation, in addition to the formation of xenografted tumors and ascites and metastasis of the tumors in NOD/SCID mice, even at low cell numbers (3.0×103 cells). The xenografted tumors demonstrated histological features similar to primary tumors and expressed the ovarian serous cystadenocarcinoma marker CA125. In addition, SP cells demonstrated a significantly stronger drug resistance to cisplatin compared with NSP and unsorted cells, while treatment with verapamil, an inhibitor of ATP-binding cassette transporters, potently abrogated SP cell drug resistance. In conclusion, the present study verified SP cells from an established OC cell line and characterized the cells with self

  13. Immune Cells in Blood Recognize Tumors

    Cancer.gov

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  14. Tenosynovial Giant Cell Tumor Arising on the Scapular Region

    PubMed Central

    Fukuda, Asako; Ueno, Takashi; Takayama, Ryoko; Ansai, Shin-ichi; Futagami, Ayako; Kawana, Seiji

    2013-01-01

    Tenosynovial giant cell tumor (TSGCT) is a benign soft tissue tumor arising from the synovial membrane that composes the lining of joints, tendons and bursae. TSGCT is a common tumor occurring in the hands and fingers, and also consecutively in the knees, ankles, feet and hips. It is rarely found in the scapular region. To the best of our knowledge, only 2 cases arising on the upper back have been reported. This report presents the case of a 44-year-old Japanese female with a TSGCT arising on her right scapular region. PMID:24403889

  15. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors.

    PubMed

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M

    2013-04-01

    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically

  16. Chapter 6. available lepidopteran insect cell lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter lists the known cell lines from Lepidoptera, largely based on previous compilations of insect cell lines published by W. Fred Hink. More than 320 lines from 65 species are listed. The official designation is given for each cell line as well as the species, tissue source, and, when kno...

  17. Cell cycle-arrested tumor cells exhibit increased sensitivity towards TRAIL-induced apoptosis

    PubMed Central

    Ehrhardt, H; Wachter, F; Grunert, M; Jeremias, I

    2013-01-01

    Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease. PMID:23744361

  18. Circulating tumor cells in germ cell tumors: are those biomarkers of real prognostic value? A review

    PubMed Central

    CEBOTARU, CRISTINA LIGIA; OLTEANU, ELENA DIANA; ANTONE, NICOLETA ZENOVIA; BUIGA, RARES; NAGY, VIORICA

    2016-01-01

    Analysis of circulating tumor cells from patients with different types of cancer is nowadays a fascinating new tool of research and their number is proven to be useful as a prognostic factor in metastatic breast, colon and prostate cancer patients. Studies are going beyond enumeration, exploring the circulating tumor cells to better understand the mechanisms of tumorigenesis, invasion and metastasis and their value for characterization, prognosis and tailoring of treatment. Few studies investigated the prognostic significance of circulating tumor cells in germ cell tumors. In this review, we examine the possible significance of the detection of circulating tumor cells in this setting. PMID:27152069

  19. Cell surface profiling with peptide libraries yields ligand arrays that classify breast tumor subtypes.

    PubMed

    Dane, Karen Y; Gottstein, Claudia; Daugherty, Patrick S

    2009-05-01

    Cancer heterogeneity renders risk stratification and therapy decisions challenging. Thus, genomic and proteomic methodologies have been used in an effort to identify biomarkers that can differentiate tumor subtypes to improve therapeutic outcome. Here, we report a generally applicable strategy to generate tumor type-specific peptide ligand arrays. Peptides that specifically recognize breast tumor-derived cell lines (MDA-MB-231, MCF-7, and T47-D) were identified using cell-displayed peptide libraries carrying an intrinsic fluorescent marker allowing for sorting and characterization with quantitative flow cytometry. Tumor cell specificity was achieved by depleting libraries of ligands binding to normal mammary epithelial cells (HMEC and MCF-10A). Although integrin binding RGD motifs were favored by some cell lines, screening with RGD competitors yielded several novel consensus motifs exhibiting improved tumor specificity. The resultant peptide array contained multiple consensus motifs exhibiting strong similarity to breast tumor-associated proteins. Profiling a panel of breast cancer cell lines with the peptide array revealed receptor expression patterns distinctive for luminal or basal tumor subtypes. In addition, peptide displaying bacteria and peptide functionalized microparticles enabled fluorescent labeling of tumor cells and frozen tumor tissue sections. Our results indicate that cell surface profiling using highly specific breast tumor cell binding ligands may provide an efficient route for tumor subtype classification, biomarker identification, and for the development of targeted diagnostics and therapeutics.

  20. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    PubMed

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  1. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    SciTech Connect

    Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S.

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  2. [Circulating tumor cells: liquid biopsy].

    PubMed

    Alix-Panabières, Catherine; Pierga, Jean-Yves

    2014-01-01

    The detection and molecular characterization of circulating tumor cells (CTCs) are one of the most active areas of translational cancer research, with more than 400 clinical studies having included CTCs as a biomarker. The aims of research on CTCs include: a) estimation of the risk for metastatic relapse or metastatic progression (prognostic information); b) stratification and real-time monitoring of therapies; c) identification of therapeutic targets and resistance mechanisms; and d) understanding metastasis development in cancer patients. This review focuses on the technologies used for the enrichment and detection of CTCs. We outline and discuss the current technologies that are based on exploiting the physical and biological properties of CTCs. A number of innovative technologies to improve methods for CTC detection have recently been developed, including CTC microchips, filtration devices, quantitative reverse-transcription PCR assays, and automated microscopy systems. Molecular characterization studies have indicated, however, that CTCs are very heterogeneous, a finding that underscores the need for multiplex approaches to capture all of the relevant CTC subsets. We therefore emphasize the current challenges of increasing the yield and detection of CTCs that have undergone an epithelial-mesenchymal transition. Increasing assay analytical sensitivity may lead, however, to a decrease in analytical specificity (e.g., through the detection of circulating normal epithelial cells). A considerable number of promising CTC detection techniques have been developed in recent years. The analytical specificity and clinical utility of these methods must be demonstrated in large prospective multicenter studies to reach the high level of evidence required for their introduction into clinical practice.

  3. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.

    PubMed

    Sreeja, Sreekumar; Santhosh Kumar, Thankayyan R; Lakshmi, Baddireddi S; Sreeja, Sreeharshan

    2012-07-01

    Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands exhibiting tissue-specific agonistic or antagonistic biocharacter and are used in the hormonal therapy for estrogen-dependent breast cancers. Pomegranate fruit has been shown to exert antiproliferative effects on human breast cancer cells in vitro. In this study, we investigated the tissue-specific estrogenic/antiestrogenic activity of methanol extract of pericarp of pomegranate (PME). PME was evaluated for antiproliferative activity at 20-320 μg/ml on human breast (MCF-7, MDA MB-231) endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) carcinoma and normal breast fibroblast (MCF-10A) cells. Competitive radioactive binding studies were carried out to ascertain whether PME interacts with ER. The reporter gene assay measured the estrogenic/antiestrogenic activity of PME in MCF-7 and MDA MB-231 cells transiently transfected with plasmids coding estrogen response elements with a reporter gene (pG5-ERE-luc) and wild-type ERα (hEG0-ER). PME inhibited the binding of [³H] estradiol to ER and suppressed the growth and proliferation of ER-positive breast cancer cells. PME binds ER and down-regulated the transcription of estrogen-responsive reporter gene transfected into breast cancer cells. The expressions of selected estrogen-responsive genes were down-regulated by PME. Unlike 17β-estradiol [1 mg/kg body weight (BW)] and tamoxifen (10 mg/kg BW), PME (50 and 100 mg/kg BW) did not increase the uterine weight and proliferation in ovariectomized mice and its cardioprotective effects were comparable to that of 17β-estradiol. In conclusion, our findings suggest that PME displays a SERM profile and may have the potential for prevention of estrogen-dependent breast cancers with beneficial effects in other hormone-dependent tissues.

  4. Tumor-associated macrophages (not tumor cells) are the determinants of photosensitizer tumor localization

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Krosl, Gorazd

    1995-03-01

    The distribution of Photofrin and several other photosensitizers among major cellular populations contained in solid mouse tumors was examined using flow cytometry. Seven tumor models were included in the analysis: sarcomas EMT6, KHT, RIF, FsaR and FsaN, Lewis lung carcinoma and squamous cell carcinoma SCCVII. In all these tumors, the highest photosensitizer levels were found in a subpopulation of tumor associated macrophages consisting of activated cells (as suggested by their increased size, granularity, and the number of interleukin 2 receptors). There was no evidence of selective photosensitizer accumulation in malignant tumor cells. Results consistent with these observations were also obtained with the carcinogen induced squamous cell carcinoma growing in hamster cheek pouch.

  5. Giant cell tumor in adipose package Hoffa

    PubMed Central

    Etcheto, H. Rivarola; Escobar, G.; Blanchod, C. Collazo; Palanconi, M.; Zordan, J.; Salinas, E. Alvarez; Autorino₁, Carlos

    2017-01-01

    Tumors of adipose Hoffa package are very uncommon, with isolated cases reported in the literature. His presentation in pediatric patients knee is exceptional. The most frequently described tumors are benign including vellonodular synovitis. The extra-articular localized variant there of is known as giant cell tumor of the tendon sheath. It is characterized by locally aggressive nature, and has been described in reports of isolated cases. Objective: A case of giant cell tumor of the tendon sheath in adipose presentation package Hoffa in pediatric patients is presented in this paper. Methods: male patient eleven years with right knee pain after sports practice was evaluated. Physical examination, showed limited extension -30º, joint effusion, stable negative Lachman maneuver without peripheral knee laxity. MRI hyperintense on tumor is observed in T2 and hypointense on T1 homogeneous and defined edges content displayed prior to LCA related to adipose Hoffa package. Results: The tumor specimen was obtained and histopathology is defined as densely cellular tissue accumulation of xantomisados fibrocollagenous with histiocytes and multinucleated giant cells, compatible with giant cell tumor of tendon sheath. Conclusion: The presentation of giant cell tumors of the tendon sheath in Hoffa fat pad is exceptional. However, his suspicion allows adequate preoperative surgical planning, as a whole resection is the only procedure that has been shown to decrease the rate of recurrence of this disease.

  6. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2.

    PubMed

    Stremmel, Wolfgang; Staffer, Simone; Gan-Schreier, Hongying; Wannhoff, Andreas; Bach, Margund; Gauss, Annika

    2016-09-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in intestinal mucus, indicative of a specific transport system across the mucosal epithelium to the intestinal lumen. To elucidate this transport mechanism, we employed a transwell tissue culture system with polarized CaCo2 cells. It was shown that PC could not substantially be internalized by the cells. However, after basal application of increasing PC concentrations, an apical transport of 47.1±6.3nmolh(-1)mMPC(-1) was observed. Equilibrium distribution studies with PC applied in equal concentrations to the basal and apical compartments showed a 1.5-fold accumulation on the expense of basal PC. Disruption of tight junctions (TJ) by acetaldehyde or PPARγ inhibitors or by treatment with siRNA to TJ proteins suppressed paracellular transport by at least 50%. Transport was specific for the choline containing the phospholipids PC, lysoPC and sphingomyelin. We showed that translocation is driven by an electrochemical gradient generated by apical accumulation of Cl(-) and HCO3(-) through CFTR. Pretreatment with siRNA to mucin 3 which anchors in the apical plasma membrane of mucosal cells inhibited the final step of luminal PC secretion. PC accumulates in intestinal mucus using a paracellular, apically directed transport route across TJs.

  7. Microfluidic Device for Studying Tumor Cell Extravasation in Cancer Metastasis

    SciTech Connect

    Lin, Henry K; Thundat, Thomas George; Evans III, Boyd Mccutchen; Datar, Ram H; Reese, Benjamin E; Zheng, Siyang

    2010-01-01

    Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer s progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body. Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.

  8. Tumor senescence and radioresistant tumor-initiating cells (TICs): let sleeping dogs lie!

    PubMed

    Zafarana, Gaetano; Bristow, Robert G

    2010-01-01

    Preclinical data from cell lines and experimental tumors support the concept that breast cancer-derived tumor-initiating cells (TICs) are relatively resistant to ionizing radiation and chemotherapy. This could be a major determinant of tumor recurrence following treatment. Increased clonogenic survival is observed in CD24-/low/CD44+ TICs derived from mammosphere cultures and is associated with (a) reduced production of reactive oxygen species, (b) attenuated activation of γH2AX and CHK2-p53 DNA damage signaling pathways, (c) reduced propensity for ionizing radiation-induced apoptosis, and (d) altered DNA double-strand or DNA single-strand break repair. However, recent data have shed further light on TIC radioresistance as irradiated TICs are resistant to tumor cell senescence following DNA damage. Taken together, the cumulative data support a model in which DNA damage signaling and repair pathways are altered in TICs and lead to an altered mode of cell death with unique consequences for long-term clonogen survival. The study of TIC senescence lays the foundation for future experiments in isogenic models designed to directly test the capacity for senescence and local control (that is, not solely local regression) and spontaneous metastases following treatment in vivo. The study also supports the targeting of tumor cell senescence pathways to increase TIC clonogen kill if the targeting also maintains the therapeutic ratio.

  9. A mouse model of luciferase-transfected stromal cells of giant cell tumor of bone.

    PubMed

    Lau, Carol P Y; Wong, Kwok Chuen; Huang, Lin; Li, Gang; Tsui, Stephen K W; Kumta, Shekhar Madhukar

    2015-11-01

    A major barrier towards the study of the effects of drugs on Giant Cell Tumor of Bone (GCT) has been the lack of an animal model. In this study, we created an animal model in which GCT stromal cells survived and functioned as proliferating neoplastic cells. A proliferative cell line of GCT stromal cells was used to create a stable and luciferase-transduced cell line, Luc-G33. The cell line was characterized and was found that there were no significant differences on cell proliferation rate and recruitment of monocytes when compared with the wild type GCT stromal cells. We delivered the Luc-G33 cells either subcutaneously on the back or to the tibiae of the nude mice. The presence of viable Luc-G33 cells was assessed using real-time live imaging by the IVIS 200 bioluminescent imaging (BLI) system. The tumor cells initially propagated and remained viable on site for 7 weeks in the subcutaneous tumor model. We also tested in vivo antitumor effects of Zoledronate (ZOL) and Geranylgeranyl transferase-I inhibitor (GGTI-298) alone or their combinations in Luc-G33-transplanted nude mice. ZOL alone at 400 µg/kg and the co-treatment of ZOL at 400 µg/kg and GGTI-298 at 1.16 mg/kg reduced tumor cell viability in the model. Furthermore, the anti-tumor effects by ZOL, GGTI-298 and the co-treatment in subcutaneous tumor model were also confirmed by immunohistochemical (IHC) staining. In conclusion, we established a nude mice model of GCT stromal cells which allows non-invasive, real-time assessments of tumor development and testing the in vivo effects of different adjuvants for treating GCT.

  10. Perioperative circulating tumor cell detection: Current perspectives

    PubMed Central

    Kaifi, Jussuf T.; Li, Guangfu; Clawson, Gary; Kimchi, Eric T.; Staveley-O'Carroll, Kevin F.

    2016-01-01

    ABSTRACT Primary cancer resections and in selected cases surgical metastasectomies significantly improve survival, however many patients develop recurrences. Circulating tumor cells (CTCs) function as an independent marker that could be used in the prognostication of different cancers. Sampling of blood and bone marrow compartments during cancer resections is a unique opportunity to increase individual tumor cell capture efficiency. This review will address the diagnostic and therapeutic potentials of perioperative tumor isolation and highlight the focus of future studies on characterization of single disseminated cancer cells to identify targets for molecular therapy and immune escape mechanisms. PMID:27045201

  11. Destruction of solid tumors by immune cells

    NASA Astrophysics Data System (ADS)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  12. Augmenting antitumor T-cell responses to mimotope vaccination by boosting with native tumor antigens.

    PubMed

    Buhrman, Jonathan D; Jordan, Kimberly R; U'ren, Lance; Sprague, Jonathan; Kemmler, Charles B; Slansky, Jill E

    2013-01-01

    Vaccination with antigens expressed by tumors is one strategy for stimulating enhanced T-cell responses against tumors. However, these peptide vaccines rarely result in efficient expansion of tumor-specific T cells or responses that protect against tumor growth. Mimotopes, or peptide mimics of tumor antigens, elicit increased numbers of T cells that crossreact with the native tumor antigen, resulting in potent antitumor responses. Unfortunately, mimotopes may also elicit cells that do not crossreact or have low affinity for tumor antigen. We previously showed that one such mimotope of the dominant MHC class I tumor antigen of a mouse colon carcinoma cell line stimulates a tumor-specific T-cell clone and elicits antigen-specific cells in vivo, yet protects poorly against tumor growth. We hypothesized that boosting the mimotope vaccine with the native tumor antigen would focus the T-cell response elicited by the mimotope toward high affinity, tumor-specific T cells. We show that priming T cells with the mimotope, followed by a native tumor-antigen boost, improves tumor immunity compared with T cells elicited by the same prime with a mimotope boost. Our data suggest that the improved tumor immunity results from the expansion of mimotope-elicited tumor-specific T cells that have increased avidity for the tumor antigen. The enhanced T cells are phenotypically distinct and enriched for T-cell receptors previously correlated with improved antitumor immunity. These results suggest that incorporation of native antigen into clinical mimotope vaccine regimens may improve the efficacy of antitumor T-cell responses.

  13. Radiopotentiation of human brain tumor cells by sodium phenylacetate.

    PubMed

    Ozawa, T; Lu, R M; Hu, L J; Lamborn, K R; Prados, M D; Deen, D F

    1999-08-03

    Phenylacetate (PA) inhibits the growth of tumor cells in vitro and in vivo and shows promise as a relatively nontoxic agent for cancer treatment. A recent report shows that prolonged exposure of cells to low concentrations of PA can enhance the radiation response of brain tumor cells in vitro, opening up the possibility of using this drug to improve the radiation therapy of brain tumor patients. We investigated the cytotoxicity produced by sodium phenylacetate (NaPA) alone and in combination with X-rays in SF-767 human glioblastoma cells and in two medulloblastoma cell lines, Masden and Daoy. Exposure of all three cell lines to relatively low concentrations of NaPA for up to 5 days did not enhance the subsequent cell killing produced by X-irradiation. However, enhanced cell killing was achieved by exposing either oxic or hypoxic cells to relatively high drug concentrations ( > 50-70 mM) for 1 h immediately before X-irradiation. Because central nervous system toxicity can occur in humans at serum concentrations of approximately 6 mM PA, translation of these results into clinical trials will likely require local drug-delivery strategies to achieve drug concentrations that can enhance the radiation response. The safety of such an approach with this drug has not been demonstrated.

  14. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    SciTech Connect

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W. )

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma.

  15. Mesenchymal stem cells in tumor development

    PubMed Central

    Cuiffo, Benjamin G.; Karnoub, Antoine E.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma. PMID:22863739

  16. Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity.

    PubMed

    Rasper, Michael; Schäfer, Andrea; Piontek, Guido; Teufel, Julian; Brockhoff, Gero; Ringel, Florian; Heindl, Stefan; Zimmer, Claus; Schlegel, Jürgen

    2010-10-01

    Glioblastoma (GBM) is the most aggressive primary brain tumor and is resistant to all therapeutic regimens. Relapse occurs regularly and might be caused by a poorly characterized tumor stem cell (TSC) subpopulation escaping therapy. We suggest aldehyde dehydrogenase 1 (ALDH1) as a novel stem cell marker in human GBM. Using the neurosphere formation assay as a functional method to identify brain TSCs, we show that high protein levels of ALDH1 facilitate neurosphere formation in established GBM cell lines. Even single ALDH1 positive cells give rise to colonies and neurospheres. Consequently, the inhibition of ALDH1 in vitro decreases both the number of neurospheres and their size. Cell lines without expression of ALDH1 do not form tumor spheroids under the same culturing conditions. High levels of ALDH1 seem to keep tumor cells in an undifferentiated, stem cell-like state indicated by the low expression of beta-III-tubulin. In contrast, ALDH1 inhibition induces premature cellular differentiation and reduces clonogenic capacity. Primary cell cultures obtained from fresh tumor samples approve the established GBM cell line results.

  17. Cell trafficking of endothelial progenitor cells in tumor progression.

    PubMed

    de la Puente, Pilar; Muz, Barbara; Azab, Feda; Azab, Abdel Kareem

    2013-07-01

    Blood vessel formation plays an essential role in many physiologic and pathologic processes, including normal tissue growth and healing, as well as tumor progression. Endothelial progenitor cells (EPC) are a subtype of stem cells with high proliferative potential that are capable of differentiating into mature endothelial cells, thus contributing to neovascularization in tumors. In response to tumor-secreted cytokines, EPCs mobilize from the bone marrow to the peripheral blood, home to the tumor site, and differentiate to mature endothelial cells and secrete proangiogenic factors to facilitate vascularization of tumors. In this review, we summarize the expression of surface markers, cytokines, receptors, adhesion molecules, proteases, and cell signaling mechanisms involved in the different steps (mobilization, homing, and differentiation) of EPC trafficking from the bone marrow to the tumor site. Understanding the biologic mechanisms of EPC cell trafficking opens a window for new therapeutic targets in cancer.

  18. Passive Entrapment of Tumor Cells Determines Metastatic Dissemination to Spinal Bone and Other Osseous Tissues

    PubMed Central

    Piffko, Andras; Hoffmann, Christian J.; Harms, Christoph; Vajkoczy, Peter; Czabanka, Marcus

    2016-01-01

    During the metastatic process tumor cells circulate in the blood stream and are carried to various organs. In order to spread to different organs tumor cell—endothelial cell interactions are crucial for extravasation mechanisms. It remains unclear if tumor cell dissemination to the spinal bone occurs by passive entrapment of circulating tumor cells or by active cellular mechanisms mediated by cell surface molecules or secreted factors. We investigated the seeding of three different tumor cell lines (melanoma, lung and prostate carcinoma) to the microvasculature of different organs. Their dissemination was compared to biologically passive microbeads. The spine and other organs were resected three hours after intraarterial injection of tumor cells or microbeads. Ex vivo homogenization and fluorescence analysis allowed quantification of tumor cells or microbeads in different organs. Interestingly, tumor cell distribution to the spinal bone was comparable to dissemination of microbeads independent of the tumor cell type (melanoma: 5.646% ± 7.614%, lung: 6.007% ± 1.785%, prostate: 3.469% ± 0.602%, 7 μm beads: 9.884% ± 7.379%, 16 μm beads: 7.23% ± 1.488%). Tumor cell seeding differed significantly between tumor cells and microbeads in all soft tissue organs. Moreover, there were significant differences between the different tumor cell lines in their dissemination behaviour to soft tissue organs only. These findings demonstrate that metastatic dissemination of tumor cells to spinal bone and other osseous organs is mediated by passive entrapment of tumor cells similar to passive plugging of microvasculature observed after intraarterial microbeads injection. PMID:27603673

  19. Heterogeneity of isozyme expression in tumor cells does not correlate with metastatic potential.

    PubMed

    Aukerman, S L; Siciliano, M J; Fidler, I J

    1986-01-01

    The major purpose of these studies was to determine whether the expression of isozymes by tumor cells was heterogeneous among tumor cell subpopulations within a neoplasm and whether expression of one or another isozyme correlated with metastatic potential of tumor cells. The expression levels of 40 isozymes were determined in 56 cell lines, many of them clonal, from nine different murine and human tumors. The enzymes chosen for study are involved in nucleotide, carbohydrate and pentose phosphate metabolism, and as such are indicators of the general metabolic and differentiational status of the cell. The tumors studied included two murine and two human malignant melanomas, four murine fibrosarcomas, and one human prostatic adenocarcinoma. The lines isolated from these tumors consisted of cells that are tumorigenic non-metastatic, tumorigenic low metastatic and tumorigenic highly metastatic. Clonally derived cell lines from a given tumor differed in their expression of a number of different isozymes, including adenosine deaminase, creatine phosphokinase-B and lactate dehydrogenase. Different patterns of isozyme expression were observed among different tumor types as well as between tumors of the same type; however, there were no differences in isozyme expression for any enzyme tested that correlated with metastatic ability of tumor cells.

  20. Characterization of cell suspensions from solid tumors

    SciTech Connect

    Pallavicini, M.

    1985-07-10

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs.

  1. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  2. Filter characteristics influencing circulating tumor cell enrichment from whole blood.

    PubMed

    Coumans, Frank A W; van Dalum, Guus; Beck, Markus; Terstappen, Leon W M M

    2013-01-01

    A variety of filters assays have been described to enrich circulating tumor cells (CTC) based on differences in physical characteristics of blood cells and CTC. In this study we evaluate different filter types to derive the properties of the ideal filter for CTC enrichment. Between 0.1 and 10 mL of whole blood spiked with cells from tumor cell lines were passed through silicon nitride microsieves, polymer track-etched filters and metal TEM grids with various pore sizes. The recovery and size of 9 different culture cell lines was determined and compared to the size of EpCAM+CK+CD45-DNA+ CTC from patients with metastatic breast, colorectal and prostate cancer. The 8 µm track-etched filter and the 5 µm microsieve had the best performance on MDA-231, PC3-9 and SKBR-3 cells, enriching >80% of cells from whole blood. TEM grids had poor recovery of ∼25%. Median diameter of cell lines ranged from 10.9-19.0 µm, compared to 13.1, 10.7, and 11.0 µm for breast, prostate and colorectal CTC, respectively. The 11.4 µm COLO-320 cell line had the lowest recovery of 17%. The ideal filter for CTC enrichment is constructed of a stiff, flat material, is inert to blood cells, has at least 100,000 regularly spaced 5 µm pores for 1 ml of blood with a ≤10% porosity. While cell size is an important factor in determining recovery, other factors must be involved as well. To evaluate a filtration procedure, cell lines with a median size of 11-13 µm should be used to challenge the system.

  3. Detection of vital germ cell tumor cells in short-term cell cultures of primary tumors and of retroperitoneal metastasis--clinical implications.

    PubMed

    Otto, T; Virchow, S; Fuhrmann, C; Steinberg, F; Streffer, C; Goepel, M; Rübben, H

    1997-01-01

    By establishing short-term cell cultures derived from retroperitoneal metastasis after neoadjuvant chemotherapy, our aim was to improve the diagnosis and prognosis in patients with advanced testicular germ cell tumors. The histological evaluation of surgically removed metastatic tissue by retroperitoneal lymphadenectomy (RLA) is extremely complicated after previous chemotherapy, but knowledge of persistence of vital tumor cells in residual lesions is of great prognostic value and therapeutic consequence in patients with testicular germ cell tumors. We therefore investigated whether vital tumor tissue could be detected in short-term cell cultures derived from such metastatic lesions by measuring the concentration of the tumor markers beta human chorionic gonadotropin (beta HCG) and alpha-1 fetoprotein (AFP) in cell culture supernatants. We initially demonstrated the specificity of the determination in cell cultures of human transitional-cell carcinoma cell lines, human foreskin fibroblasts and normal testicular tissue. In a group of 20 patients with untreated primary testicular germ cell tumors, detection of beta HCG and AFP was increased about threefold in cell culture supernatants in comparison to the serum concentration. Finally, we prepared primary cell cultures from surgically removed retroperitoneal metastasis of 12 patients with testicular germ cell tumors after chemotherapy. The serum concentrations of beta HCG and AFP of all patients were at normal values when RLA was performed. However, pathologically increased concentrations of beta HCG (3/3) and AFP (2/3) in cell culture supernatants were found in 3 of 12 cell cultures. Interestingly, these three patients with a pathological increase in beta HCG and AFP as determined in the supernatant of the short-term cell cultures had tumor progression within a mean follow-up of 3 +/- 1 months (P < 0.01), whereas 9 of 12 patients who had no pathological increase in beta HCG and AFP as determined in the supernatant of

  4. Amplified centrosomes and mitotic index display poor concordance between patient tumors and cultured cancer cells

    PubMed Central

    Mittal, Karuna; Choi, Da Hoon; Ogden, Angela; Donthamsetty, Shashi; Melton, Brian D.; Gupta, Meenakshi. V.; Pannu, Vaishali; Cantuaria, Guilherme; Varambally, Sooryanarayana; Reid, Michelle D.; Jonsdottir, Kristin; Janssen, Emiel A. M.; Aleskandarany, Mohammad A.; Ellis, Ian O.; Rakha, Emad A.; Rida, Padmashree C. G.; Aneja, Ritu

    2017-01-01

    Centrosome aberrations (CA) and abnormal mitoses are considered beacons of malignancy. Cancer cell doubling times in patient tumors are longer than in cultures, but differences in CA between tumors and cultured cells are uncharacterized. We compare mitoses and CA in patient tumors, xenografts, and tumor cell lines. We find that mitoses are rare in patient tumors compared with xenografts and cell lines. Contrastingly, CA is more extensive in patient tumors and xenografts (~35–50% cells) than cell lines (~5–15%), although CA declines in patient-derived tumor cells over time. Intratumoral hypoxia may explain elevated CA in vivo because exposure of cultured cells to hypoxia or mimicking hypoxia pharmacologically or genetically increases CA, and HIF-1α and hypoxic gene signature expression correlate with CA and centrosomal gene signature expression in breast tumors. These results highlight the importance of utilizing low-passage-number patient-derived cell lines in studying CA to more faithfully recapitulate in vivo cellular phenotypes. PMID:28272508

  5. Histopathology of pineal germ cell tumors.

    PubMed

    Vasiljevic, A; Szathmari, A; Champier, J; Fèvre-Montange, M; Jouvet, A

    2015-01-01

    Germ cell tumors (GCTs) classically occur in gonads. However, they are the most frequent neoplasms in the pineal region. The pineal location of GCTs may be caused by the neoplastic transformation of a primordial germ cell that has mismigrated. The World Health Organization (WHO) recognizes 5 histological types of intracranial GCTs: germinoma and non-germinomatous tumors including embryonal carcinoma, yolk sac tumor, choriocarcinoma and mature or immature teratoma. Germinomas and teratomas are frequently encountered as pure tumors whereas the other types are mostly part of mixed GCTs. In this situation, the neuropathologist has to be able to identify each component of a GCT. When diagnosis is difficult, use of recent immunohistochemical markers such as OCT(octamer-binding transcription factor)3/4, Glypican 3, SALL(sal-like protein)4 may be required. OCT3/4 is helpful in the diagnosis of germinomas, Glypican 3 in the diagnosis of yolk sac tumors and SALL4 in the diagnosis of the germ cell nature of an intracranial tumor. When the germ cell nature of a pineal tumor is doubtful, the finding of an isochromosome 12p suggests the diagnosis of GCT. The final pathological report should always be confronted with the clinical data, especially the serum or cerebrospinal fluid levels of β-human chorionic gonadotropin (HCG) and alpha-fetoprotein.

  6. Different muscarinc receptors are involved in the proliferation of murine mammary adenocarcinoma cell lines.

    PubMed

    Español, Alejandro J; Sales, María E

    2004-02-01

    We described that two different murine mammary adenocarcinoma cell lines, LM3 and LM2 constitutively expressed muscarinic acetylcholine receptors (mAchR). We here demonstrate, by competitive binding experiments with the tritiated muscarinic antagonist quinuclidinyl benzilate that M2 subtype predominates in both tumor cell lines. Concordantly immunoblotting assays indicate that mAchR exhibit the following order of expression: M2 > M4 > M3 > M1 > M5 in both tumor cell lines. Activation of mAchR with carbachol (CARB) increased proliferation in both tumor cell lines in a concentration dependent manner. In LM3 cells CARB promoted proliferation via M3 receptor activation via inositol 1,4,5-triphosphate and nitric oxide production. CARB-induced LM2 cells proliferation needed both M2 and M1 receptor activation, promoting prostaglandin E2 liberation and arginase catabolism respectively, both of them involved in tumor cell growth.

  7. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    SciTech Connect

    Schuuring, Janneke; Bussink, Johan . E-mail: J.Bussink@rther.umcn.nl; Bernsen, Hans; Peeters, Wenny; Kogel, Albert J. van der

    2005-02-01

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, when combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.

  8. Energy and Redox Homeostasis in Tumor Cells

    PubMed Central

    de Oliveira, Marcus Fernandes; Amoêdo, Nívea Dias; Rumjanek, Franklin David

    2012-01-01

    Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1). The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg's original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers. PMID:22693511

  9. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast

    PubMed Central

    Ortega, Francisco G; Fernández-Baldo, Martín A; Fernández, Jorge G; Serrano, María J; Sanz, María I; Diaz-Mochón, Juan J; Lorente, José A; Raba, Julio

    2015-01-01

    In the present article, we describe a study of antitumor activity in breast cell lines using silver nanoparticles (Ag NPs) synthesized by a microbiological method. These Ag NPs were tested for their antitumor activity against MCF7 and T47D cancer cells and MCF10-A normal breast cell line. We analyzed cell viability, apoptosis induction, and endocytosis activity of those cell lines and we observed that the effects of the biosynthesized Ag NPs were directly related with the endocytosis activity. Moreover, Ag NPs had higher inhibition efficacy in tumor lines than in normal lines of breast cells, which is due to the higher endocytic activity of tumor cells compared to normal cells. In this way, we demonstrate that biosynthesized Ag NPs can be an alternative for the treatment of tumors. PMID:25844035

  10. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast.

    PubMed

    Ortega, Francisco G; Fernández-Baldo, Martín A; Fernández, Jorge G; Serrano, María J; Sanz, María I; Diaz-Mochón, Juan J; Lorente, José A; Raba, Julio

    2015-01-01

    In the present article, we describe a study of antitumor activity in breast cell lines using silver nanoparticles (Ag NPs) synthesized by a microbiological method. These Ag NPs were tested for their antitumor activity against MCF7 and T47D cancer cells and MCF10-A normal breast cell line. We analyzed cell viability, apoptosis induction, and endocytosis activity of those cell lines and we observed that the effects of the biosynthesized Ag NPs were directly related with the endocytosis activity. Moreover, Ag NPs had higher inhibition efficacy in tumor lines than in normal lines of breast cells, which is due to the higher endocytic activity of tumor cells compared to normal cells. In this way, we demonstrate that biosynthesized Ag NPs can be an alternative for the treatment of tumors.

  11. [Radiation-induces increased tumor cell aggressiveness of tumors of the glioblastomas?].

    PubMed

    Falk, Alexander T; Moncharmont, Coralie; Guilbert, Matthieu; Guy, Jean-Baptiste; Alphonse, Gersende; Trone, Jane-Chloé; Rivoirard, Romain; Gilormini, Marion; Toillon, Robert-Alain; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2014-09-01

    Glioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy.

  12. [Sertoli cell tumor of the testis].

    PubMed

    Hita Rosino, E; López Hidalgo, J; Mellado Mesa, P; Olivar Buera, M

    2001-01-01

    Sertoli cell tumors (TCS) derivated from sex-cord estroma cells, are an uncommon variety of testicles neoplasms. A 66 year-old patient that came to the consultation for an increased scrotum of size present. Ultrasound viewed a hipoecoic nodule capable with testicular tumor, more secondary hidrocele. After undergoing the standard treatment, by means of groin radical orchiectomy, its pathologic analysis identified the lesion as Sertoli cell tumor conventional. The pathologic features that best correlate with a clinically benign course are as follows: a lower size tumor to 5 cm, mild nuclear atypia, a mitotic rate of less than 5 mitosis per 10 high power fields, and absent necrosis. Our case presented with these features. Follow-up of these neoplasms should be prolonged by the unusual of its presentation and a small percentage of cases are clinically malignant.

  13. Nuclisome--targeting the tumor cell nucleus.

    PubMed

    Gedda, Lars; Edwards, Katarina

    2012-06-01

    The Nuclisome concept builds on a novel two-step targeting strategy with the aim to deliver short-range Auger-electron-emitting radionuclides to nuclear DNA of tumor cells. The concept is based on the use of Nuclisome-particles, i.e., tumor-targeted PEG-stabilized liposomes loaded with a unique DNA-intercalating compound that enables specific and effective delivery of radionuclides to DNA. The specific and potent two-step targeting leads to eradication of tumor cells while toxicity to normal organs is reduced to a minimum. Results of in vitro and in vivo studies point towards the Nuclisome concept as a promising strategy for the treatment of small tumor masses and, in particular, for the elimination of spread single cells and micrometastases.

  14. Tumor cell differentiation by label-free microscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Weber, Petra; Wagner, Michael

    2013-05-01

    Autofluorescence and Raman measurements of U251-MG glioblastoma cells prior and subsequent to activation of tumor suppressor genes are compared. While phase contrast images and fluorescence intensity patterns of the tumor (control) cells and the less malignant cells are similar, differences can be deduced from fluorescence spectra and nanosecond decay times. In particular, upon excitation around 375nm, the fluorescence ratio of the protein bound and the free coenzyme NADH depends on the state of malignancy and reflects different cytoplasmic (including lysosomal) and mitochondrial contributions. Slight differences are also observed in the Raman spectra of these cell lines, mainly originating from small granules (lysosomes) surrounding the cell nucleus. While larger numbers of fluorescence and Raman spectra are evaluated by multivariate statistical methods, additional information is obtained from spectral images and fluorescence lifetime images (FLIM).

  15. Treatment Option Overview (Pancreatic Neuroendocrine Tumors / Islet Cell Tumors)

    MedlinePlus

    ... the tumor and a special camera that detects radioactivity is used to show where the tumors are ... the tumor and a special camera that detects radioactivity is used to show where the tumors are ...

  16. Epigenetic states of cells of origin and tumor evolution drive tumor-initiating cell phenotype and tumor heterogeneity.

    PubMed

    Chow, Kin-Hoe; Shin, Dong-Mi; Jenkins, Molly H; Miller, Emily E; Shih, David J; Choi, Seungbum; Low, Benjamin E; Philip, Vivek; Rybinski, Brad; Bronson, Roderick T; Taylor, Michael D; Yun, Kyuson

    2014-09-01

    A central confounding factor in the development of targeted therapies is tumor cell heterogeneity, particularly in tumor-initiating cells (TIC), within clinically identical tumors. Here, we show how activation of the Sonic Hedgehog (SHH) pathway in neural stem and progenitor cells creates a foundation for tumor cell evolution to heterogeneous states that are histologically indistinguishable but molecularly distinct. In spontaneous medulloblastomas that arise in Patched (Ptch)(+/-) mice, we identified three distinct tumor subtypes. Through cell type-specific activation of the SHH pathway in vivo, we determined that different cells of origin evolved in unique ways to generate these subtypes. Moreover, TICs in each subtype had distinct molecular and cellular phenotypes. At the bulk tumor level, the three tumor subtypes could be distinguished by a 465-gene signature and by differential activation levels of the ERK and AKT pathways. Notably, TICs from different subtypes were differentially sensitive to SHH or AKT pathway inhibitors, highlighting new mechanisms of resistance to targeted therapies. In summary, our results show how evolutionary processes act on distinct cells of origin to contribute to tumoral heterogeneity, at both bulk tumor and TIC levels.

  17. Disrupting Hypoxia-Induced Bicarbonate Transport Acidifies Tumor Cells and Suppresses Tumor Growth.

    PubMed

    McIntyre, Alan; Hulikova, Alzbeta; Ledaki, Ioanna; Snell, Cameron; Singleton, Dean; Steers, Graham; Seden, Peter; Jones, Dylan; Bridges, Esther; Wigfield, Simon; Li, Ji-Liang; Russell, Angela; Swietach, Pawel; Harris, Adrian L

    2016-07-01

    Tumor hypoxia is associated clinically with therapeutic resistance and poor patient outcomes. One feature of tumor hypoxia is activated expression of carbonic anhydrase IX (CA9), a regulator of pH and tumor growth. In this study, we investigated the hypothesis that impeding the reuptake of bicarbonate produced extracellularly by CA9 could exacerbate the intracellular acidity produced by hypoxic conditions, perhaps compromising cell growth and viability as a result. In 8 of 10 cancer cell lines, we found that hypoxia induced the expression of at least one bicarbonate transporter. The most robust and frequent inductions were of the sodium-driven bicarbonate transporters SLC4A4 and SLC4A9, which rely upon both HIF1α and HIF2α activity for their expression. In cancer cell spheroids, SLC4A4 or SLC4A9 disruption by either genetic or pharmaceutical approaches acidified intracellular pH and reduced cell growth. Furthermore, treatment of spheroids with S0859, a small-molecule inhibitor of sodium-driven bicarbonate transporters, increased apoptosis in the cell lines tested. Finally, RNAi-mediated attenuation of SLC4A9 increased apoptosis in MDA-MB-231 breast cancer spheroids and dramatically reduced growth of MDA-MB-231 breast tumors or U87 gliomas in murine xenografts. Our findings suggest that disrupting pH homeostasis by blocking bicarbonate import might broadly relieve the common resistance of hypoxic tumors to anticancer therapy. Cancer Res; 76(13); 3744-55. ©2016 AACR.

  18. Salinomycin inhibits osteosarcoma by targeting its tumor stem cells.

    PubMed

    Tang, Qing-Lian; Zhao, Zhi-Qiang; Li, Jin-Chun; Liang, Yi; Yin, Jun-Qiang; Zou, Chang-Ye; Xie, Xian-Biao; Zeng, Yi-Xin; Shen, Jing-Nan; Kang, Tiebang; Wang, Jin

    2011-12-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents and is typically associated with a poor prognosis. Tumor stem cells (TSCs) are presumed to drive tumor initiation and tumor relapse or metastasis. Hence, the poor prognosis of osteosarcoma likely results from a failure to target the osteosarcoma stem cells. Here, we have utilized three different methods to enrich TSCs in osteosarcoma and further evaluated whether salinomycin could selectively target TSCs in osteosarcoma. Our results indicated that sarcosphere selection, chemotherapy selection and stem cell marker OCT4 or SOX2 over-expression are all effective in the enrichment of TSCs from osteosarcoma cell lines. Further investigation found that salinomycin inhibited osteosarcoma by selectively targeting its stem cells both in vitro and in vivo without severe side effects, and the Wnt/β-catenin signaling pathway may be involved in this inhibition of salinomycin. Taken together, we have identified that salinomycin is an effective inhibitor of osteosarcoma stem cells, supporting the use of salinomycin for elimination of osteosarcoma stem cells and implying a need for further clinical evaluation.

  19. LINE-1 Cultured Cell Retrotransposition Assay.

    PubMed

    Kopera, Huira C; Larson, Peter A; Moldovan, John B; Richardson, Sandra R; Liu, Ying; Moran, John V

    2016-01-01

    The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells.

  20. One cell, multiple roles: contribution of mesenchymal stem cells to tumor development in tumor microenvironment.

    PubMed

    Yang, Xue; Hou, Jing; Han, Zhipeng; Wang, Ying; Hao, Chong; Wei, Lixin; Shi, Yufang

    2013-01-21

    The discovery of tissue reparative and immunosuppressive abilities of mesenchymal stem cells (MSCs) has drawn more attention to tumor microenvironment and its role in providing the soil for the tumor cell growth. MSCs are recruited to tumor which is referred as the never healing wound and altered by the inflammation environment, thereby helping to construct the tumor microenvironment. The environment orchestrated by MSCs and other factors can be associated with angiogenesis, immunosuppression, inhibition of apoptosis, epithelial-mesenchymal transition (EMT), survival of cancer stem cells, which all contribute to tumor growth and progression. In this review, we will discuss how MSCs are recruited to the tumor microenvironment and what effects they have on tumor progression.

  1. Targeting extracellular ROS signaling of tumor cells.

    PubMed

    Bauer, Georg

    2014-04-01

    Expression of membrane-associated NADPH oxidase (NOX1) represents a characteristic feature of malignant cells. NOX1-derived extracellular superoxide anions are the basis for autocrine stimulation of proliferation, but also drive the HOCl and the NO/peroxynitrite signaling pathways. This may cause the elimination of transformed cells. Tumor cells express membrane-associated catalase that efficiently protects the cells against apoptosis-inducing reactive oxygen species (ROS) signaling. Membrane-associated superoxide dismutase (SOD) plays a co-modulatory protective role that is functionally interrelated with the protective effect mediated by catalase. Due to the co-localization of NOX1, catalase and SOD on the outer membrane of tumor cells, specific inhibition of membrane-associated SOD causes superoxide anion-dependent inhibition of catalase. This establishes a strong apoptotic signaling through the NO/peroxynitrite pathway. In parallel, it causes a drastic decrease in the concentration of proliferation-stimulating H2O2. Knowledge of the biochemical network on the surface of tumor cells should, therefore, allow development of specific novel strategies for tumor therapy, based on the specific features of tumor cell-specific extracellular ROS interactions.

  2. TRAIL-induced programmed necrosis as a novel approach to eliminate tumor cells

    PubMed Central

    2014-01-01

    Background The cytokine TRAIL represents one of the most promising candidates for the apoptotic elimination of tumor cells, either alone or in combination therapies. However, its efficacy is often limited by intrinsic or acquired resistance of tumor cells to apoptosis. Programmed necrosis is an alternative, molecularly distinct mode of programmed cell death that is elicited by TRAIL under conditions when the classical apoptosis machinery fails or is actively inhibited. The potential of TRAIL-induced programmed necrosis in tumor therapy is, however, almost completely uncharacterized. We therefore investigated its impact on a panel of tumor cell lines of wide-ranging origin. Methods Cell death/viability was measured by flow cytometry/determination of intracellular ATP levels/crystal violet staining. Cell surface expression of TRAIL receptors was detected by flow cytometry, expression of proteins by Western blot. Ceramide levels were quantified by high-performance thin layer chromatography and densitometric analysis, clonogenic survival of cells was determined by crystal violet staining or by soft agarose cloning. Results TRAIL-induced programmed necrosis killed eight out of 14 tumor cell lines. Clonogenic survival was reduced in all sensitive and even one resistant cell lines tested. TRAIL synergized with chemotherapeutics in killing tumor cell lines by programmed necrosis, enhancing their effect in eight out of 10 tested tumor cell lines and in 41 out of 80 chemotherapeutic/TRAIL combinations. Susceptibility/resistance of the investigated tumor cell lines to programmed necrosis seems to primarily depend on expression of the pro-necrotic kinase RIPK3 rather than the related kinase RIPK1 or cell surface expression of TRAIL receptors. Furthermore, interference with production of the lipid ceramide protected all tested tumor cell lines. Conclusions Our study provides evidence that TRAIL-induced programmed necrosis represents a feasible approach for the elimination of

  3. NK Cells Preferentially Target Tumor Cells with a Cancer Stem Cell Phenotype.

    PubMed

    Ames, Erik; Canter, Robert J; Grossenbacher, Steven K; Mac, Stephanie; Chen, Mingyi; Smith, Rachel C; Hagino, Takeshi; Perez-Cunningham, Jessica; Sckisel, Gail D; Urayama, Shiro; Monjazeb, Arta M; Fragoso, Ruben C; Sayers, Thomas J; Murphy, William J

    2015-10-15

    Increasing evidence supports the hypothesis that cancer stem cells (CSCs) are resistant to antiproliferative therapies, able to repopulate tumor bulk, and seed metastasis. NK cells are able to target stem cells as shown by their ability to reject allogeneic hematopoietic stem cells but not solid tissue grafts. Using multiple preclinical models, including NK coculture (autologous and allogeneic) with multiple human cancer cell lines and dissociated primary cancer specimens and NK transfer in NSG mice harboring orthotopic pancreatic cancer xenografts, we assessed CSC viability, CSC frequency, expression of death receptor ligands, and tumor burden. We demonstrate that activated NK cells are capable of preferentially killing CSCs identified by multiple CSC markers (CD24(+)/CD44(+), CD133(+), and aldehyde dehydrogenase(bright)) from a wide variety of human cancer cell lines in vitro and dissociated primary cancer specimens ex vivo. We observed comparable effector function of allogeneic and autologous NK cells. We also observed preferential upregulation of NK activation ligands MICA/B, Fas, and DR5 on CSCs. Blocking studies further implicated an NKG2D-dependent mechanism for NK killing of CSCs. Treatment of orthotopic human pancreatic cancer tumor-bearing NSG mice with activated NK cells led to significant reductions in both intratumoral CSCs and tumor burden. Taken together, these data from multiple preclinical models, including a strong reliance on primary human cancer specimens, provide compelling preclinical evidence that activated NK cells preferentially target cancer cells with a CSC phenotype, highlighting the translational potential of NK immunotherapy as part of a combined modality approach for refractory solid malignancies.

  4. Whole tumor antigen vaccination using dendritic cells: Comparison of RNA electroporation and pulsing with UV-irradiated tumor cells

    PubMed Central

    Benencia, Fabian; Courrèges, Maria C; Coukos, George

    2008-01-01

    Because of the lack of full characterization of tumor associated antigens for solid tumors, whole antigen use is a convenient approach to tumor vaccination. Tumor RNA and apoptotic tumor cells have been used as a source of whole tumor antigen to prepare dendritic cell (DC) based tumor vaccines, but their efficacy has not been directly compared. Here we compare directly RNA electroporation and pulsing of DCs with whole tumor cells killed by ultraviolet (UV) B radiation using a convenient tumor model expressing human papilloma virus (HPV) E6 and E7 oncogenes. Although both approaches led to DCs presenting tumor antigen, electroporation with tumor cell total RNA induced a significantly higher frequency of tumor-reactive IFN-gamma secreting T cells, and E7-specific CD8+ lymphocytes compared to pulsing with UV-irradiated tumor cells. DCs electroporated with tumor cell RNA induced a larger tumor infiltration by T cells and produced a significantly stronger delay in tumor growth compared to DCs pulsed with UV-irradiated tumor cells. We conclude that electroporation with whole tumor cell RNA and pulsing with UV-irradiated tumor cells are both effective in eliciting antitumor immune response, but RNA electroporation results in more potent tumor vaccination under the examined experimental conditions. PMID:18445282

  5. Generating Rho-0 Cells Using Mesenchymal Stem Cell Lines

    PubMed Central

    Fernández-Moreno, Mercedes; Hermida-Gómez, Tamara; Gallardo, M. Esther; Dalmao-Fernández, Andrea; Rego-Pérez, Ignacio; Garesse, Rafael

    2016-01-01

    Introduction The generation of Rho-0 cells requires the use of an immortalization process, or tumor cell selection, followed by culture in the presence of ethidium bromide (EtBr), incurring the drawbacks its use entails. The purpose of this work was to generate Rho-0 cells using human mesenchymal stem cells (hMSCs) with reagents having the ability to remove mitochondrial DNA (mtDNA) more safely than by using EtBr. Methodology Two immortalized hMSC lines (3a6 and KP) were used; 143B.TK-Rho-0 cells were used as reference control. For generation of Rho-0 hMSCs, cells were cultured in medium supplemented with each tested reagent. Total DNA was isolated and mtDNA content was measured by real-time polymerase chain reaction (PCR). Phenotypic characterization and gene expression assays were performed to determine whether 3a6 Rho-0 hMSCs maintain the same stem properties as untreated 3a6 hMSCs. To evaluate whether 3a6 Rho-0 hMSCs had a phenotype similar to that of 143B.TK-Rho-0 cells, in terms of reactive oxygen species (ROS) production, apoptotic levels and mitochondrial membrane potential (Δψm) were measured by flow cytometry and mitochondrial respiration was evaluated using a SeaHorse XFp Extracellular Flux Analyzer. The differentiation capacity of 3a6 and 3a6 Rho-0 hMSCs was evaluated using real-time PCR, comparing the relative expression of genes involved in osteogenesis, adipogenesis and chondrogenesis. Results The results showed the capacity of the 3a6 cell line to deplete its mtDNA and to survive in culture with uridine. Of all tested drugs, Stavudine (dt4) was the most effective in producing 3a6-Rho cells. The data indicate that hMSC Rho-0 cells continue to express the characteristic MSC cell surface receptor pattern. Phenotypic characterization showed that 3a6 Rho-0 cells resembled 143B.TK-Rho-0 cells, indicating that hMSC Rho-0 cells are Rho-0 cells. While the adipogenic capability was higher in 3a6 Rho-0 cells than in 3a6 cells, the osteogenic and chondrogenic

  6. Molecular biology of testicular germ cell tumors.

    PubMed

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  7. Retrotransposon Targeting of Tumor Cells

    DTIC Science & Technology

    2005-10-01

    with 10% fetal bovine serum (Hyclone, Logan, UT), 2 mM L-glutamine, 1 mM sodium pyruvate, at 370 C, 5% CO 2 in air. -7- Transfection of vector into tumor...The reaction was terminated by adding 100 ul of 0.1M EDTA (pH 8.0) and extracting the RNA twice with phenol chloroform. RNA was ethano l-precipitated

  8. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    PubMed

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  9. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression.

    PubMed

    Fröhlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar; Kronqvist, Pauliina; Kveiborg, Marie; Sehara-Fujisawa, Atsuko; Mercurio, Arthur M; Wewer, Ulla M

    2011-11-01

    Expression of ADAM12 is low in most normal tissues but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In this study, we found that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 seems to be dispensable for its tumor-promoting effect. Interestingly, we show that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence tumor progression, but that ADAM12 expression by tumor cells is necessary for tumor progression in these mice. This finding is consistent with our observation that in human breast carcinoma, ADAM12 is almost exclusively located in tumor cells and, only rarely, seen in the tumor-associated stroma. We hypothesized, however, that the tumor-associated stroma may stimulate ADAM12 expression in tumor cells, on the basis of the fact that TGF-β1 stimulates ADAM12 expression and is a well-known growth factor released from tumor-associated stroma. TGF-β1 stimulation of ADAM12-negative Lewis lung tumor cells induced ADAM12 synthesis, and growth of these cells in vivo induced more than 200-fold increase in ADAM12 expression. Our observation that ADAM12 expression is significantly higher in the terminal duct lobular units (TDLU) adjacent to human breast carcinoma compared with TDLUs found in normal breast tissue supports our hypothesis that tumor-associated stroma triggers ADAM12 expression.

  10. Highly tumorigenic hepatocellular carcinoma cell line with cancer stem cell-like properties

    PubMed Central

    Cassim, Shamir; Lapierre, Pascal; Bilodeau, Marc

    2017-01-01

    There are limited numbers of models to study hepatocellular carcinoma (HCC) in vivo in immunocompetent hosts. In an effort to develop a cell line with improved tumorigenicity, we derived a new cell line from Hepa1-6 cells through an in vivo passage in C57BL/6 mice. The resulting Dt81Hepa1-6 cell line showed enhanced tumorigenicity compared to Hepa1-6 with more frequent (28±12 vs. 0±0 lesions at 21 days) and more rapid tumor development (21 (100%) vs. 70 days (10%)) in C57BL/6 mice. The minimal Dt81Hepa1-6 cell number required to obtain visible tumors was 100,000 cells. The Dt81Hepa1-6 cell line showed high hepatotropism with subcutaneous injection leading to liver tumors without development of tumors in lungs or spleen. In vitro, Dt81Hepa1-6 cells showed increased anchorage-independent growth (34.7±6.8 vs. 12.3±3.3 colonies; P<0.05) and increased EpCAM (8.7±1.1 folds; P<0.01) and β-catenin (5.4±1.0 folds; P<0.01) expression. A significant proportion of Dt81Hepa1-6 cells expressed EpCAM compared to Hepa1-6 (34.8±1.1% vs 0.9±0.13%; P<0.001). Enriched EpCAM+ Dt81Hepa1-6 cells led to higher tumor load than EpCAM- Dt81Hepa1-6 cells (1093±74 vs 473±100 tumors; P<0.01). The in vivo selected Dt81Hepa1-6 cell line shows high liver specificity and increased tumorigenicity compared to Hepa1-6 cells. These properties are associated with increased expression of EpCAM and β-catenin confirming that EpCAM+ HCC cells comprise a subset with characteristics of tumor-initiating cells with stem/progenitor cell features. The Dt81Hepa1-6 cell line with its cancer stem cell-like properties will be a useful tool for the study of hepatocellular carcinoma in vivo. PMID:28152020

  11. 9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    SciTech Connect

    Heaton, D.; Mustafi, R.; Schwartz, J.L. |

    1992-06-01

    The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

  12. Tumor cell programmed death ligand 1-mediated T cell suppression is overcome by coexpression of CD80.

    PubMed

    Haile, Samuel T; Bosch, Jacobus J; Agu, Nnenna I; Zeender, Annette M; Somasundaram, Preethi; Srivastava, Minu K; Britting, Sabine; Wolf, Julie B; Ksander, Bruce R; Ostrand-Rosenberg, Suzanne

    2011-06-15

    Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.

  13. Cell-ECM Interactions in Tumor Invasion.

    PubMed

    He, Xiuxiu; Lee, Byoungkoo; Jiang, Yi

    2016-01-01

    The cancer cells obtain their invasion potential not only by genetic mutations, but also by changing their cellular biophysical and biomechanical features and adapting to the surrounding microenvironments. The extracellular matrix, as a crucial component of the tumor microenvironment, provides the mechanical support for the tissue, mediates the cell-microenvironment interactions, and plays a key role in cancer cell invasion. The biomechanics of the extracellular matrix, particularly collagen, have been extensively studied in the biomechanics community. Cell migration has also enjoyed much attention from both the experimental and modeling efforts. However, the detailed mechanistic understanding of tumor cell-ECM interactions, especially during cancer invasion, has been unclear. This chapter reviews the recent advances in the studies of ECM biomechanics, cell migration, and cell-ECM interactions in the context of cancer invasion.

  14. Tumor cell differentiation by marker free fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Weber, Petra; Wagner, Michael; Brantsch, Marco; Biller, Philipp; Kioschis, Petra; Kessler, Waltraud

    2011-02-01

    Autofluorescence and Raman spectra, images and decay kinetics of U251-MG glioblastoma cells prior and after activation of tumor suppressor genes are compared. While phase contrast images and fluorescence patterns of the tumor (control) cells and the less malignant cells are similar, differences can be deduced from autofluorescence spectra and decay times. In particular, upon excitation around 375nm, the fluorescence ratio of the protein bound and the free coenzyme NADH depends on the state of malignancy. Slight differences are also observed in Raman spectra of these cell lines, in particular at wave numbers around 970 cm-1. While larger numbers of fluorescence and Raman spectra are evaluated by the method of multivariate data analysis, additional information is obtained from spectral images and fluorescence lifetime images (FLIM).

  15. Using X-ray in-line phase-contrast imaging for the investigation of nude mouse hepatic tumors.

    PubMed

    Tao, Qiang; Li, Dongyue; Zhang, Lu; Luo, Shuqian

    2012-01-01

    The purpose of this paper is to report the noninvasive imaging of hepatic tumors without contrast agents. Both normal tissues and tumor tissues can be detected, and tumor tissues in different stages can be classified quantitatively. We implanted BEL-7402 human hepatocellular carcinoma cells into the livers of nude mice and then imaged the livers using X-ray in-line phase-contrast imaging (ILPCI). The projection images' texture feature based on gray level co-occurrence matrix (GLCM) and dual-tree complex wavelet transforms (DTCWT) were extracted to discriminate normal tissues and tumor tissues. Different stages of hepatic tumors were classified using support vector machines (SVM). Images of livers from nude mice sacrificed 6 days after inoculation with cancer cells show diffuse distribution of the tumor tissue, but images of livers from nude mice sacrificed 9, 12, or 15 days after inoculation with cancer cells show necrotic lumps in the tumor tissue. The results of the principal component analysis (PCA) of the texture features based on GLCM of normal regions were positive, but those of tumor regions were negative. The results of PCA of the texture features based on DTCWT of normal regions were greater than those of tumor regions. The values of the texture features in low-frequency coefficient images increased monotonically with the growth of the tumors. Different stages of liver tumors can be classified using SVM, and the accuracy is 83.33%. Noninvasive and micron-scale imaging can be achieved by X-ray ILPCI. We can observe hepatic tumors and small vessels from the phase-contrast images. This new imaging approach for hepatic cancer is effective and has potential use in the early detection and classification of hepatic tumors.

  16. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    ClinicalTrials.gov

    2016-05-06

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  17. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  18. Natural Killer Cells for Immunotherapy - Advantages of the NK-92 Cell Line over Blood NK Cells.

    PubMed

    Klingemann, Hans; Boissel, Laurent; Toneguzzo, Frances

    2016-01-01

    Natural killer (NK) cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells from a patient's blood since they represent only 10% of the lymphocytes and are often dysfunctional. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T cells to prevent graft-versus-host reactions. Cytotoxic cell lines have been established from patients with clonal NK-cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. Except for the NK-92 cell line, though, none of the other six known NK cell lines has consistently and reproducibly shown high antitumor cytotoxicity. Only NK-92 cells can easily be genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through antibody-dependent cellular cytotoxicity. NK-92 is also the only cell line product that has been infused into patients with advanced cancer with clinical benefit and minimal side effects.

  19. Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma.

    PubMed

    Kaku, M; Nishiyama, T; Yagawa, K; Abe, M

    1980-10-01

    A human pancreatic carcinoma cell line of islet cell origin (QGP-1) has been established and maintained for over two years. The parent tumor and the cultured cell line produce carcinoembryonic antigen (CEA), and there is no evidence of hormone secretion from the tumor cells. The epithelioid cells, which had migrated from rounded, irregular cell aggregates, grow as a confluent monolayer with piling up of cells in some areas, and have a population doubling time of 3.5 days. The modal chromosome number was 50. Exponentially growing cultures produce 76.3 ng of CEA/10(6) cells after 7 days. CEA production was confirmed by immuno-peroxidase staining.

  20. Giant cell tumor of bone: Multimodal approach

    PubMed Central

    Gupta, AK; Nath, R; Mishra, MP

    2007-01-01

    Background: The clinical behavior and treatment of giant cell tumor of bone is still perplexing. The aim of this study is to clarify the clinico-pathological correlation of tumor and its relevance in treatment and prognosis. Materials and Methods: Ninety -three cases of giant cell tumor were treated during 1980-1990 by different methods. The age of the patients varied from 18-58 yrs with male and female ratio as 5:4. The upper end of the tibia was most commonly involved (n=31), followed by the lower end of the femur(n=21), distal end of radius(n=14), upper end of fibula (n=9), proximal end of femur(n=5), upper end of the humerus(n=3), iliac bone(n=2), phalanx (n=2) and spine(n=1). The tumors were also encountered on uncommon sites like metacarpals (n=4) and metatarsal(n=1). Fifty four cases were treated by curettage and bone grafting. Wide excision and reconstruction was performed in twenty two cases. Nine cases were treated by wide excision while primary amputation was performed in four cases. One case required only curettage. Three inaccessible lesions of ilium and spine were treated by radiotherapy. Results: 19 of 54 treated by curettage and bone grafting showed a recurrence. The repeat curettage and bone grafting was performed in 18 cases while amputation was done in one. One each out of the cases treated by wide excision and reconstruction and wide excision alone recurred. In this study we observed that though curettage and bone grafting is still the most commonly adopted treatment, wide excision of tumor with reconstruction has shown lesser recurrence. Conclusion: For radiologically well-contained and histologically typical tumor, curettage and autogenous bone grafting is the treatment of choice. The typical tumors with radiologically deficient cortex, clinically aggressive tumors and tumors with histological Grade III should be treated by wide excision and reconstruction. PMID:21139762

  1. Quantitative analyses of CD133 expression facilitate researches on tumor stem cells.

    PubMed

    Liao, Yongqiang; Hu, Xiaotong; Huang, Xuefeng; He, Chao

    2010-01-01

    CD133 is regarded as a marker of tumor initiating cells in many tumors, including colorectal cancer. O'Brien and Ricci et al. have proved that in primary colorectal tumors there are colorectal tumor stem cells (initiating cells) which are marked by CD133 antigen. Using a genetic knockin lacZ reporter mouse model, Shmelkov et al. challenged this increasingly influential viewpoint and drew two important conclusions that challenge former opinions. First, CD133 is widely distributed throughout the full range of tumor epithelial cells in the colon as opposed to being limited to a few cells. Second, CD133 negative cells of colon tumors are also tumorigenic, and are more inclined to metastasize. Based on these two opinions, we hypothesize that the expression of CD133 is different among tumor cells, and that quantitative but not qualitative analyses of CD133 abundance are necessary to determine the relationship between CD133 expression and tumor stem cell characteristics. To verify this hypothesis, colorectal cancer cell line SW620 was cultured and sorted into CD133(Hi), CD133(Mid) and CD133(Low) subgroups using magnetic microbeads to compare their xenograft biological characteristics. The results showed that the CD133(Hi) subgroup of SW620 is more close to the tumor initiating cells in terms of biological characteristics than CD133(Mid) and CD133(low) subgroups, but the CD133(low) subgroup still maintains the ability of tumorigenicity. It supported that tumor initiating cells are more correlated to the abundance of CD133.

  2. Histone deacetylase inhibitors upregulate Rap1GAP and inhibit Rap activity in thyroid tumor cells.

    PubMed

    Dong, Xiaoyun; Korch, Christopher; Meinkoth, Judy L

    2011-06-01

    Increases in Rap activity have been associated with tumor progression. Although activating mutations in Rap have not been described, downregulation of Rap1GAP is frequent in human tumors including thyroid carcinomas. In this study, we explored whether endogenous Rap1GAP expression could be restored to thyroid tumor cells. The effects of deacetylase inhibitors and a demethylating agent, individually and in combination, were examined in four differentiated and six anaplastic thyroid carcinoma (ATC) cell lines. Treatment with the structurally distinct histone deacetylase (HDAC) inhibitors, sodium butyrate and trichostatin A, increased Rap1GAP expression in all the differentiated thyroid carcinoma cell lines and in four of the six ATC cell lines. The demethylating agent, 5-aza-deoxycytidine, restored Rap1GAP expression in one anaplastic cell line and enhanced the effects of HDAC inhibitors in a second anaplastic cell line. Western blotting indicated that Rap2 was highly expressed in human thyroid cancer cells. Importantly, treatment with HDAC inhibitors impaired Rap2 activity in both differentiated and anaplastic tumor cell lines. The mechanism through which Rap activity is repressed appears to entail effects on the expression of multiple Rap regulators, including RapGEFs and RapGAPs. These results suggest that HDAC inhibitors may provide a tractable approach to impair Rap activity in human tumor cells.

  3. High-Dose Thiotepa Plus Peripheral Stem Cell Transplantation in Treating Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2013-03-06

    Brain and Central Nervous System Tumors; Childhood Germ Cell Tumor; Extragonadal Germ Cell Tumor; Ovarian Cancer; Retinoblastoma; Testicular Germ Cell Tumor; Unspecified Adult Solid Tumor, Protocol Specific; Unspecified Childhood Solid Tumor, Protocol Specific

  4. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions.

    PubMed

    Skinner, Cassandra C; McMichael, Elizabeth L; Jaime-Ramirez, Alena C; Abrams, Zachary B; Lee, Robert J; Carson, William E

    2016-08-01

    The folate receptor (FR) is overexpressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is overexpressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis using KB (human oral epithelial) and F01 (human melanoma) as a positive and a negative control, respectively. FR-positive and FR-negative cell lines were treated with F-IgG or control immunoglobulin G in the presence or absence of cytokines to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells increased following treatment with F-IgG compared with control immunoglobulin G at all effector : target (E : T) ratios (P<0.01). This trend further increased by NK cell stimulation with the activating cytokine interleukin-12. NK cell production of cytokines such as interferon-gamma, macrophage inflammatory protein 1α, and regulated on activation normal T-cell expressed and secreted (RANTES) was also significantly increased in response to costimulation with interleukin-12 stimulation and F-IgG-coated Mel 39 target cells compared with controls (P<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells, which can be further increased by the addition of cytokines.

  5. Human Xenografts Are Not Rejected in a Naturally Occurring Immunodeficient Porcine Line: A Human Tumor Model in Pigs

    PubMed Central

    Basel, Matthew T.; Balivada, Sivasai; Beck, Amanda P.; Kerrigan, Maureen A.; Pyle, Marla M.; Dekkers, Jack C.M.; Wyatt, Carol R.; Rowland, Robert R.R.; Anderson, David E.; Bossmann, Stefan H.

    2012-01-01

    Abstract Animal models for cancer therapy are invaluable for preclinical testing of potential cancer treatments; however, therapies tested in such models often fail to translate into clinical settings. Therefore, a better preclinical model for cancer treatment testing is needed. Here we demonstrate that an immunodeficient line of pigs can host and support the growth of xenografted human tumors and has the potential to be an effective animal model for cancer therapy. Wild-type and immunodeficient pigs were injected subcutaneously in the left ear with human melanoma cells (A375SM cells) and in the right ear with human pancreatic carcinoma cells (PANC-1). All immunodeficient pigs developed tumors that were verified by histology and immunohistochemistry. Nonaffected littermates did not develop tumors. Immunodeficient pigs, which do not reject xenografted human tumors, have the potential to become an extremely useful animal model for cancer therapy because of their similarity in size, anatomy, and physiology to humans. PMID:23514746

  6. Giant Cell Tumor of Bone - An Overview

    PubMed Central

    Sobti, Anshul; Agrawal, Pranshu; Agarwala, Sanjay; Agarwal, Manish

    2016-01-01

    Giant Cell tumors (GCT) are benign tumors with potential for aggressive behavior and capacity to metastasize. Although rarely lethal, benign bone tumors may be associated with a substantial disturbance of the local bony architecture that can be particularly troublesome in peri-articular locations. Its histogenesis remains unclear. It is characterized by a proliferation of mononuclear stromal cells and the presence of many multi- nucleated giant cells with homogenous distribution. There is no widely held consensus regarding the ideal treatment method selection. There are advocates of varying surgical techniques ranging from intra-lesional curettage to wide resection. As most giant cell tumors are benign and are located near a joint in young adults, several authors favor an intralesional approach that preserves anatomy of bone in lieu of resection. Although GCT is classified as a benign lesion, few patients develop progressive lung metastases with poor outcomes. Treatment is mainly surgical. Options of chemotherapy and radiotherapy are reserved for selected cases. Recent advances in the understanding of pathogenesis are essential to develop new treatments for this locally destructive primary bone tumor. PMID:26894211

  7. Activity levels of cathepsins B and L in tumor cells are a biomarker for efficacy of reovirus-mediated tumor cell killing.

    PubMed

    Terasawa, Y; Hotani, T; Katayama, Y; Tachibana, M; Mizuguchi, H; Sakurai, F

    2015-03-01

    Reovirus has gained much attention as an anticancer agent; however, the mechanism of the tumor cell-specific replication of reovirus is not fully understood. Although Ras activation is known to be crucial for tumor cell-specific replication of reovirus, it remains controversial which cellular factors are required for the reovirus-mediated tumor cell killing. In this study, we systematically investigated which cellular factors determined the efficiencies of reovirus-mediated tumor cell killing in various human cultured cell lines. The efficiency of reovirus-mediated cell killing varied widely among the cell lines. Junction adhesion molecule-A, a reovirus receptor, was highly expressed in almost all cell lines examined. Ras activation levels were largely different between the cell lines; however, there were no apparent correlations among the reovirus-mediated cell killing efficiencies and Ras activation status. On the other hand, activity levels of the cysteine proteases cathepsins B and L, which are crucial for proteolytic disassembly of the outer capsid proteins of reovirus, showed a tendency to be correlated with the efficiency of reovirus-mediated cell killing. These results indicate that the activity of cathepsins B and L is the most suitable as a biomarker for the efficacy of reovirus-mediated oncolysis among the factors examined in this study.

  8. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    PubMed

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-03-31

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  9. Tumor invasion as dysregulated cell motility.

    PubMed

    Kassis, J; Lauffenburger, D A; Turner, T; Wells, A

    2001-04-01

    Investigations across a range of disciplines over the past decade have brought the study of cell motility and its role in invasion to an exciting threshold. The biophysical forces proximally involved in generating cell locomotion, as well as the underlying signaling and genomic regulatory processes, are gradually becoming elucidated. We now appreciate the intricacies of the many cellular and extracellular events that modulate cell migration. This has enabled the demonstration of a causal role of cell motility in tumor progression, with various points of 'dysregulation' of motility being responsible for promoting invasion. In this paper, we describe key fundamental principles governing cell motility and branch out to describe the essence of the data that d