Sample records for cell type developmental

  1. Myxococcus xanthus Developmental Cell Fate Production: Heterogeneous Accumulation of Developmental Regulatory Proteins and Reexamination of the Role of MazF in Developmental Lysis

    PubMed Central

    Lee, Bongsoo; Holkenbrink, Carina; Treuner-Lange, Anke

    2012-01-01

    Myxococcus xanthus undergoes a starvation-induced multicellular developmental program during which cells partition into three known fates: (i) aggregation into fruiting bodies followed by differentiation into spores, (ii) lysis, or (iii) differentiation into nonaggregating persister-like cells, termed peripheral rods. As a first step to characterize cell fate segregation, we enumerated total, aggregating, and nonaggregating cells throughout the developmental program. We demonstrate that both cell lysis and cell aggregation begin with similar timing at approximately 24 h after induction of development. Examination of several known regulatory proteins in the separated aggregated and nonaggregated cell fractions revealed previously unknown heterogeneity in the accumulation patterns of proteins involved in type IV pilus (T4P)-mediated motility (PilC and PilA) and regulation of development (MrpC, FruA, and C-signal). As part of our characterization of the cell lysis fate, we set out to investigate the unorthodox MazF-MrpC toxin-antitoxin system which was previously proposed to induce programmed cell death (PCD). We demonstrate that deletion of mazF in two different wild-type M. xanthus laboratory strains does not significantly reduce developmental cell lysis, suggesting that MazF's role in promoting PCD is an adaption to the mutant background strain used previously. PMID:22493014

  2. DNA methylation in schizophrenia in different patient-derived cell types.

    PubMed

    Vitale, Alejandra M; Matigian, Nicholas A; Cristino, Alexandre S; Nones, Katia; Ravishankar, Sugandha; Bellette, Bernadette; Fan, Yongjun; Wood, Stephen A; Wolvetang, Ernst; Mackay-Sim, Alan

    2017-01-01

    DNA methylation of gene promoter regions represses transcription and is a mechanism via which environmental risk factors could affect cells during development in individuals at risk for schizophrenia. We investigated DNA methylation in patient-derived cells that might shed light on early development in schizophrenia. Induced pluripotent stem cells may reflect a "ground state" upon which developmental and environmental influences would be minimal. Olfactory neurosphere-derived cells are an adult-derived neuro-ectodermal stem cell modified by developmental and environmental influences. Fibroblasts provide a non-neural control for life-long developmental and environmental influences. Genome-wide profiling of DNA methylation and gene expression was done in these three cell types from the same individuals. All cell types had distinct, statistically significant schizophrenia-associated differences in DNA methylation and linked gene expression, with Gene Ontology analysis showing that the differentially affected genes clustered in networks associated with cell growth, proliferation, and movement, functions known to be affected in schizophrenia patient-derived cells. Only five gene loci were differentially methylated in all three cell types. Understanding the role of epigenetics in cell function in the brain in schizophrenia is likely to be complicated by similar cell type differences in intrinsic and environmentally induced epigenetic regulation.

  3. Understanding development and stem cells using single cell-based analyses of gene expression

    PubMed Central

    Kumar, Pavithra; Tan, Yuqi

    2017-01-01

    In recent years, genome-wide profiling approaches have begun to uncover the molecular programs that drive developmental processes. In particular, technical advances that enable genome-wide profiling of thousands of individual cells have provided the tantalizing prospect of cataloging cell type diversity and developmental dynamics in a quantitative and comprehensive manner. Here, we review how single-cell RNA sequencing has provided key insights into mammalian developmental and stem cell biology, emphasizing the analytical approaches that are specific to studying gene expression in single cells. PMID:28049689

  4. GHF-1-promoter-targeted immortalization of a somatotropic progenitor cell results in dwarfism in transgenic mice.

    PubMed

    Lew, D; Brady, H; Klausing, K; Yaginuma, K; Theill, L E; Stauber, C; Karin, M; Mellon, P L

    1993-04-01

    During pituitary development, the homeo domain protein GHF-1 is required for generation of somatotropes and lactotropes and for growth hormone (GH) and prolactin (PRL) gene expression. GHF-1 mRNA is detectable several days before the emergence of GH- or PRL-expressing cells, suggesting the existence of a somatotropic progenitor cell in which GHF-1 transcription is first activated. We have immortalized this cell type by using the GHF-1 regulatory region to target SV40 T-antigen (Tag) tumorigenesis in transgenic mice. The GHF-Tag transgene caused developmental entrapment of somatotropic progenitor cells that express GHF-1 but not GH or PRL, resulting in dwarfism. Immortalized cell lines derived from a transgenic pituitary tumor maintain the characteristics of the somato/lactotropic progenitor in that they express GHF-1 mRNA and protein yet fail to activate GH or PRL transcription. Using these cells, we identified an enhancer that activates GHF-1 transcription at this early stage of development yet is inactive in cells representing later developmental stages of the somatotropic lineage or in other cell types. These experiments not only demonstrate the potential for immortalization of developmental progenitor cells using the regulatory regions from cell type-specific transcription factor genes but illustrate the power of such model systems in the study of developmental control.

  5. Differential gene expression in notochord and nerve cord fate segregation in the Ciona intestinalis embryo.

    PubMed

    Kobayashi, Kenji; Yamada, Lixy; Satou, Yutaka; Satoh, Nori

    2013-09-01

    During early embryogenesis, embryonic cells gradually restrict their developmental potential and are eventually destined to give rise to one type of cells. Molecular mechanisms underlying developmental fate restriction are one of the major research subjects within developmental biology. In this article, this subject was addressed by combining blastomere isolation with microarray analysis. During the 6th cleavage of the Ciona intestinalis embryo, from the 32-cell to the 64-cell stage, four mother cells divide into daughter cells with two distinct fates, one giving rise to notochord precursor cells and the other to nerve cord precursors. Approximately 2,200 each of notochord and nerve cord precursor cells were isolated, and their mRNA expression profiles were compared by microarray. This analysis identified 106 and 68 genes, respectively, that are differentially expressed in notochord and nerve cord precursor cells. These included not only genes for transcription factors and signaling molecules but also those with generalized functions observed in many types of cells. In addition, whole-mount in situ hybridization showed dynamic spatial expression profiles of these genes during segregation of the two fates: partitioning of transcripts present in the mother cells into either type of daughter cells, and initiation of preferential gene expression in either type of cells. Copyright © 2013 Wiley Periodicals, Inc.

  6. Understanding development and stem cells using single cell-based analyses of gene expression.

    PubMed

    Kumar, Pavithra; Tan, Yuqi; Cahan, Patrick

    2017-01-01

    In recent years, genome-wide profiling approaches have begun to uncover the molecular programs that drive developmental processes. In particular, technical advances that enable genome-wide profiling of thousands of individual cells have provided the tantalizing prospect of cataloging cell type diversity and developmental dynamics in a quantitative and comprehensive manner. Here, we review how single-cell RNA sequencing has provided key insights into mammalian developmental and stem cell biology, emphasizing the analytical approaches that are specific to studying gene expression in single cells. © 2017. Published by The Company of Biologists Ltd.

  7. Somatic stem cell heterogeneity: diversity in the blood, skin and intestinal stem cell compartments

    PubMed Central

    Goodell, Margaret A.; Nguyen, Hoang; Shroyer, Noah

    2017-01-01

    Somatic stem cells replenish many tissues throughout life to repair damage and to maintain tissue homeostasis. Stem cell function is frequently described as following a hierarchical model in which a single master cell undergoes self-renewal and differentiation into multiple cell types and is responsible for most regenerative activity. However, recent data from studies on blood, skin and intestinal epithelium all point to the concomitant action of multiple types of stem cells with distinct everyday roles. Under stress conditions such as acute injury, the surprising developmental flexibility of these stem cells enables them to adapt to diverse roles and to acquire different regeneration capabilities. This paradigm shift raises many new questions about the developmental origins, inter-relationships and molecular regulation of these multiple stem cell types. PMID:25907613

  8. Definition of Drosophila hemocyte subsets by cell-type specific antigens.

    PubMed

    Kurucz, Eva; Váczi, B; Márkus, R; Laurinyecz, Barbara; Vilmos, P; Zsámboki, J; Csorba, Kinga; Gateff, Elisabeth; Hultmark, D; Andó, I

    2007-01-01

    We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. On the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmatocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged in four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocytes.

  9. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    PubMed Central

    Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.

    2016-01-01

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793

  10. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research.

    PubMed

    Kockel, Lutz; Huq, Lutfi M; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E S; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E; Chisholm, Townley W; Kim, Seung K

    2016-10-13

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. Copyright © 2016 Kockel et al.

  11. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation.

    PubMed

    Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing

    2018-03-01

    Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.

  12. Discovering sparse transcription factor codes for cell states and state transitions during development

    PubMed Central

    Furchtgott, Leon A; Melton, Samuel; Menon, Vilas; Ramanathan, Sharad

    2017-01-01

    Computational analysis of gene expression to determine both the sequence of lineage choices made by multipotent cells and to identify the genes influencing these decisions is challenging. Here we discover a pattern in the expression levels of a sparse subset of genes among cell types in B- and T-cell developmental lineages that correlates with developmental topologies. We develop a statistical framework using this pattern to simultaneously infer lineage transitions and the genes that determine these relationships. We use this technique to reconstruct the early hematopoietic and intestinal developmental trees. We extend this framework to analyze single-cell RNA-seq data from early human cortical development, inferring a neocortical-hindbrain split in early progenitor cells and the key genes that could control this lineage decision. Our work allows us to simultaneously infer both the identity and lineage of cell types as well as a small set of key genes whose expression patterns reflect these relationships. DOI: http://dx.doi.org/10.7554/eLife.20488.001 PMID:28296636

  13. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors.

    PubMed

    Janssens, Derek H; Komori, Hideyuki; Grbac, Daniel; Chen, Keng; Koe, Chwee Tat; Wang, Hongyan; Lee, Cheng-Yu

    2014-03-01

    Despite expressing stem cell self-renewal factors, intermediate progenitor cells possess restricted developmental potential, which allows them to give rise exclusively to differentiated progeny rather than stem cell progeny. Failure to restrict the developmental potential can allow intermediate progenitor cells to revert into aberrant stem cells that might contribute to tumorigenesis. Insight into stable restriction of the developmental potential in intermediate progenitor cells could improve our understanding of the development and growth of tumors, but the mechanisms involved remain largely unknown. Intermediate neural progenitors (INPs), generated by type II neural stem cells (neuroblasts) in fly larval brains, provide an in vivo model for investigating the mechanisms that stably restrict the developmental potential of intermediate progenitor cells. Here, we report that the transcriptional repressor protein Earmuff (Erm) functions temporally after Brain tumor (Brat) and Numb to restrict the developmental potential of uncommitted (immature) INPs. Consistently, endogenous Erm is detected in immature INPs but undetectable in INPs. Erm-dependent restriction of the developmental potential in immature INPs leads to attenuated competence to respond to all known neuroblast self-renewal factors in INPs. We also identified that the BAP chromatin-remodeling complex probably functions cooperatively with Erm to restrict the developmental potential of immature INPs. Together, these data led us to conclude that the Erm-BAP-dependent mechanism stably restricts the developmental potential of immature INPs by attenuating their genomic responses to stem cell self-renewal factors. We propose that restriction of developmental potential by the Erm-BAP-dependent mechanism functionally distinguishes intermediate progenitor cells from stem cells, ensuring the generation of differentiated cells and preventing the formation of progenitor cell-derived tumor-initiating stem cells.

  14. Mas-allatotropin in the developing antennal lobe of the sphinx moth Manduca sexta: distribution, time course, developmental regulation, and colocalization with other neuropeptides.

    PubMed

    Utz, Sandra; Huetteroth, Wolf; Vömel, Matthias; Schachtner, Joachim

    2008-01-01

    The paired antennal lobes (ALs) of the sphinx moth Manduca sexta serve as a well-established model for studying development of the primary integration centers for odor information in the brain. To further reveal the role of neuropeptides during AL development, we have analyzed cellular distribution, developmental time course, and regulation of the neuropeptide M. sexta allatotropin (Mas-AT). On the basis of morphology and appearance during AL formation, seven major types of Mas-AT-immunoreactive (ir) cells could be distinguished. Mas-AT-ir cells are identified as local, projection, and centrifugal neurons, which are either persisting larval or newly added adult-specific neurons. Complementary immunostaining with antisera against two other neuropeptide families (A-type allatostatins, RFamides) revealed colocalization within three of the Mas-AT-ir cell types. On the basis of this neurochemistry, the most prominent type of Mas-AT-ir neurons, the local AT neurons (LATn), could be divided in three subpopulations. The appearance of the Mas-AT-ir cell types occurring during metamorphosis parallels the rising titer of the developmental hormone 20-hydroxyecdysone (20E). Artificially shifting the 20E titer to an earlier developmental time point resulted in the precocious occurrence of Mas-AT immunostaining. This result supports the hypothesis that the pupal rise of 20E is causative for Mas-AT expression during AL development. Comparing localization and developmental time course of Mas-AT and other neuropeptides with the time course of AL formation suggests various functions for these neuropeptides during development, including an involvement in the formation of the olfactory glomeruli.

  15. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition

    NASA Astrophysics Data System (ADS)

    Pfeuty, B.; Kaneko, K.

    2016-04-01

    The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.

  16. Clonal type I interferon-producing and dendritic cell precursors are contained in both human lymphoid and myeloid progenitor populations.

    PubMed

    Chicha, Laurie; Jarrossay, David; Manz, Markus G

    2004-12-06

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.

  17. Robust and irreversible development in cell society as a general consequence of intra-inter dynamics

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Furusawa, Chikara

    2000-05-01

    A dynamical systems scenario for developmental cell biology is proposed, based on numerical studies of a system with interacting units with internal dynamics and reproduction. Diversification, formation of discrete and recursive types, and rules for differentiation are found as a natural consequence of such a system. “Stem cells” that either proliferate or differentiate to different types stochastically are found to appear when intra-cellular dynamics are chaotic. Robustness of the developmental process against microscopic and macroscopic perturbations is shown to be a natural consequence of such intra-inter dynamics, while irreversibility in developmental process is discussed in terms of the gain of stability, loss of diversity and chaotic instability.

  18. Do rational numbers play a role in selection for stochasticity?

    PubMed

    Sinclair, Robert

    2014-01-01

    When a given tissue must, to be able to perform its various functions, consist of different cell types, each fairly evenly distributed and with specific probabilities, then there are at least two quite different developmental mechanisms which might achieve the desired result. Let us begin with the case of two cell types, and first imagine that the proportion of numbers of cells of these types should be 1:3. Clearly, a regular structure composed of repeating units of four cells, three of which are of the dominant type, will easily satisfy the requirements, and a deterministic mechanism may lend itself to the task. What if, however, the proportion should be 10:33? The same simple, deterministic approach would now require a structure of repeating units of 43 cells, and this certainly seems to require a far more complex and potentially prohibitive deterministic developmental program. Stochastic development, replacing regular units with random distributions of given densities, might not be evolutionarily competitive in comparison with the deterministic program when the proportions should be 1:3, but it has the property that, whatever developmental mechanism underlies it, its complexity does not need to depend very much upon target cell densities at all. We are immediately led to speculate that proportions which correspond to fractions with large denominators (such as the 33 of 10/33) may be more easily achieved by stochastic developmental programs than by deterministic ones, and this is the core of our thesis: that stochastic development may tend to occur more often in cases involving rational numbers with large denominators. To be imprecise: that simple rationality and determinism belong together, as do irrationality and randomness.

  19. Heterogeneity and Developmental Connections between Cell Types Inhabiting Teeth

    PubMed Central

    Krivanek, Jan; Adameyko, Igor; Fried, Kaj

    2017-01-01

    Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix–producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration. PMID:28638345

  20. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases

    PubMed Central

    Xu, Joella; Huang, Guannan; Guo, Tai L.

    2016-01-01

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427

  1. Developmental Bisphenol A Exposure Modulates Immune-Related Diseases.

    PubMed

    Xu, Joella; Huang, Guannan; Guo, Tai L

    2016-09-26

    Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.

  2. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye

    PubMed Central

    Morrison, Carolyn A.; Chen, Hao; Cook, Tiffany; Brown, Stuart

    2018-01-01

    Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye. PMID:29324767

  3. Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin

    PubMed Central

    McDonell, Laura M.; Kernohan, Kristin D.; Boycott, Kym M.; Sawyer, Sarah L.

    2015-01-01

    Receptor tyrosine kinases (RTKs) are a family of ligand-binding cell surface receptors that regulate a wide range of essential cellular activities, including proliferation, differentiation, cell-cycle progression, survival and apoptosis. As such, these proteins play an important role during development and throughout life; germline mutations in genes encoding RTKs cause several developmental syndromes, while somatic alterations contribute to the pathogenesis of many aggressive cancers. This creates an interesting paradigm in which mutation timing, type and location in a gene leads to different cell signaling and biological responses, and ultimately phenotypic outcomes. In this review, we highlight the roles of RTKs in developmental disorders and cancer. The multifaceted roles of these receptors, their genetic signatures and their signaling during developmental morphogenesis and oncogenesis are discussed. Additionally, we propose that comparative analysis of RTK mutations responsible for developmental syndromes may shed light on those driving tumorigenesis. PMID:26152202

  4. Clonal Type I Interferon–producing and Dendritic Cell Precursors Are Contained in Both Human Lymphoid and Myeloid Progenitor Populations

    PubMed Central

    Chicha, Laurie; Jarrossay, David; Manz, Markus G.

    2004-01-01

    Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c− natural type I interferon–producing cells (IPCs) and CD11c+ dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I–producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system. PMID:15557348

  5. Developmentally Programmed 3′ CpG Island Methylation Confers Tissue- and Cell-Type-Specific Transcriptional Activation

    PubMed Central

    Yu, Da-Hai; Ware, Carol; Waterland, Robert A.; Zhang, Jiexin; Chen, Miao-Hsueh; Gadkari, Manasi; Kunde-Ramamoorthy, Govindarajan; Nosavanh, Lagina M.

    2013-01-01

    During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3′ CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3′ CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3′ CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3′ CGI methylation in developmental gene regulation. PMID:23459939

  6. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing.

    PubMed

    Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas

    2010-03-01

    Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.

  7. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish.

    PubMed

    McCauley, Heather A; Wells, James M

    2017-03-15

    Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro , and how organoids are now being used as a primary research tool to investigate human developmental biology. © 2017. Published by The Company of Biologists Ltd.

  8. Developmental control of transcriptional and proliferative potency during the evolutionary emergence of animals

    PubMed Central

    Arenas-Mena, Cesar; Coffman, James A.

    2016-01-01

    Summary It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency. PMID:26173445

  9. Computational Modeling and Simulation of Developmental ...

    EPA Pesticide Factsheets

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of models are necessary, however, for mechanism-specific analysis because embryogenesis requires precise timing and control. Agent-based modeling and simulation (ABMS) is an approach to virtually reconstruct these dynamics, cell-by-cell and interaction-by-interaction. Using ABMS, HTS lesions from ToxCast can be integrated with patterning systems heuristically to propagate key events This presentation to FDA-CFSAN will update progress on the applications of in silico modeling tools and approaches for assessing developmental toxicity.

  10. Developmental stage related patterns of codon usage and genomic GC content: searching for evolutionary fingerprints with models of stem cell differentiation

    PubMed Central

    2007-01-01

    Background The usage of synonymous codons shows considerable variation among mammalian genes. How and why this usage is non-random are fundamental biological questions and remain controversial. It is also important to explore whether mammalian genes that are selectively expressed at different developmental stages bear different molecular features. Results In two models of mouse stem cell differentiation, we established correlations between codon usage and the patterns of gene expression. We found that the optimal codons exhibited variation (AT- or GC-ending codons) in different cell types within the developmental hierarchy. We also found that genes that were enriched (developmental-pivotal genes) or specifically expressed (developmental-specific genes) at different developmental stages had different patterns of codon usage and local genomic GC (GCg) content. Moreover, at the same developmental stage, developmental-specific genes generally used more GC-ending codons and had higher GCg content compared with developmental-pivotal genes. Further analyses suggest that the model of translational selection might be consistent with the developmental stage-related patterns of codon usage, especially for the AT-ending optimal codons. In addition, our data show that after human-mouse divergence, the influence of selective constraints is still detectable. Conclusion Our findings suggest that developmental stage-related patterns of gene expression are correlated with codon usage (GC3) and GCg content in stem cell hierarchies. Moreover, this paper provides evidence for the influence of natural selection at synonymous sites in the mouse genome and novel clues for linking the molecular features of genes to their patterns of expression during mammalian ontogenesis. PMID:17349061

  11. A study in motion sickness - Saccular hair cells in the adult bullfrog

    NASA Technical Reports Server (NTRS)

    Cohen, G. M.; Reschke, M.; Homick, J.

    1982-01-01

    The bullfrog's saccule were examined using light and scanning electron microscopy. No evidence of a striola was found. Type A hair cells were not only distributed peripherally, but also throughout the central macula, though far less frequently than the dominant type D. Two primary hair cell types were distinguished, which corresponded to the ciliary patterns: type A cilia are associated with short, conical hair cells, and type D cilia are associated with long, cylindrical hair cells. Each displays at least one subtype, which may represent developmental precursors. The otolithic membrane is crisscrossed with tunnels and topped with statoconia.

  12. TOO MANY MOUTHS promotes cell fate progression in stomatal development of Arabidopsis stems.

    PubMed

    Bhave, Neela S; Veley, Kira M; Nadeau, Jeanette A; Lucas, Jessica R; Bhave, Sanjay L; Sack, Fred D

    2009-01-01

    Mutations in TOO MANY MOUTHS (TMM), which encodes a receptor-like protein, cause stomatal patterning defects in Arabidopsis leaves but eliminate stomatal formation in stems. Stomatal development in wild-type and tmm stems was analyzed to define TMM function. Epidermal cells in young tmm stems underwent many asymmetric divisions characteristic of entry into the stomatal pathway. The resulting precursor cells, meristemoids, appropriately expressed cell fate markers such as pTMM:GFP. However, instead of progressing developmentally by forming a guard mother cell, the meristemoids arrested, dedifferentiated, and enlarged. Thus asymmetric divisions are necessary but not sufficient for stomatal formation in stems, and TMM promotes the fate and developmental progression of early precursor cells. Comparable developmental and mature stomatal phenotypes were also found in tmm hypocotyls and in the proximal flower stalk. TMM is also a positive regulator of meristemoid division in leaves suggesting that TMM generally promotes meristemoid activity. Our results are consistent with a model in which TMM interacts with other proteins to modulate precursor cell fate and progression in an organ and domain-specific manner. Finally, the consistent presence of a small number of dedifferentiated meristemoids in mature wild-type stems suggests that precursor cell arrest is a normal feature of Arabidopsis stem development.

  13. Mutational Analysis of Cell Types in TSC

    DTIC Science & Technology

    2008-01-01

    disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC patients. Loss of...that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure...2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder, attention deficit disorder (ADD

  14. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency.

    PubMed

    Yang, Yang; Liu, Bei; Xu, Jun; Wang, Jinlin; Wu, Jun; Shi, Cheng; Xu, Yaxing; Dong, Jiebin; Wang, Chengyan; Lai, Weifeng; Zhu, Jialiang; Xiong, Liang; Zhu, Dicong; Li, Xiang; Yang, Weifeng; Yamauchi, Takayoshi; Sugawara, Atsushi; Li, Zhongwei; Sun, Fangyuan; Li, Xiangyun; Li, Chen; He, Aibin; Du, Yaqin; Wang, Ting; Zhao, Chaoran; Li, Haibo; Chi, Xiaochun; Zhang, Hongquan; Liu, Yifang; Li, Cheng; Duo, Shuguang; Yin, Ming; Shen, Huan; Belmonte, Juan Carlos Izpisua; Deng, Hongkui

    2017-04-06

    Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?

    PubMed

    Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin

    2010-02-01

    The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.

  16. Distribution and developmental changes of ghrelin-immunopositive cells in the pancreas of African ostrich chicks (Struthio camelus).

    PubMed

    Wang, J X; Li, P; Zhang, X T; Ye, L X

    2017-09-01

    Ghrelin, the endogenous ligand for the growth hormone secretagogue receptor (GHS-R), is produced by multiple cell types and affects feeding behavior, metabolic regulation, and energy balance. In the mammalian pancreas, the types of endocrine cells that are immunoreactive to ghrelin vary. However, little was known about its distribution and developmental changes in the pancreas of African ostrich chicks (Struthio camelus). In the present study, the distribution, morphological characteristics, and developmental changes of ghrelin-immunopositive (ghrelin-ip) cells in the pancreas of African ostrich chicks were investigated using immunohistochemistry. Ghrelin-ip cells were found in both the pancreatic islets and acinar cell regions. The greatest number of ghrelin-ip cells were found in the pancreatic islets, and were primarily observed at the periphery of the islets; some ghrelin-ip cells were also located in the central portion of the pancreatic islets. Interestingly, from postnatal d 1 to d 90, there was a steady decrease in the number of ghrelin-ip cells in the pancreatic islets and acinar cell regions. These results clearly demonstrated that ghrelin-ip cells exist and decreased with age in the African ostrich pancreas from postnatal d 1 to d90. Thus, these findings indicated that ghrelin may be involved in the development of the pancreas in the African ostrich. © 2017 Poultry Science Association Inc.

  17. DNA Replication Control During Drosophila Development: Insights into the Onset of S Phase, Replication Initiation, and Fork Progression

    PubMed Central

    Hua, Brian L.; Orr-Weaver, Terry L.

    2017-01-01

    Proper control of DNA replication is critical to ensure genomic integrity during cell proliferation. In addition, differential regulation of the DNA replication program during development can change gene copy number to influence cell size and gene expression. Drosophila melanogaster serves as a powerful organism to study the developmental control of DNA replication in various cell cycle contexts in a variety of differentiated cell and tissue types. Additionally, Drosophila has provided several developmentally regulated replication models to dissect the molecular mechanisms that underlie replication-based copy number changes in the genome, which include differential underreplication and gene amplification. Here, we review key findings and our current understanding of the developmental control of DNA replication in the contexts of the archetypal replication program as well as of underreplication and differential gene amplification. We focus on the use of these latter two replication systems to delineate many of the molecular mechanisms that underlie the developmental control of replication initiation and fork elongation. PMID:28874453

  18. Computational Modeling and Simulation of Developmental Toxicity. What can we learn from a virtual embryo? (FDA-CFSAN workshop)

    EPA Science Inventory

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of ...

  19. Insights into Host Cell Modulation and Induction of New Cells by the Corn Smut Ustilago maydis.

    PubMed

    Redkar, Amey; Matei, Alexandra; Doehlemann, Gunther

    2017-01-01

    Many filamentous fungal pathogens induce drastic modulation of host cells causing abnormal infectious structures such as galls, or tumors that arise as a result of re-programming in the original developmental cell fate of a colonized host cell. Developmental consequences occur predominantly with biotrophic phytopathogens. This suggests that these host structures result as an outcome of efficient defense suppression and intimate fungal-host interaction to suit the pathogen's needs for completion of its infection cycle. This mini-review mainly summarizes host cell re-programming that occurs in the Ustilago maydis - maize interaction, in which the pathogen deploys cell-type specific effector proteins with varying activities. The fungus senses the physiological status and identity of colonized host cells and re-directs the endogenous developmental program of its host. The disturbance of host cell physiology and cell fate leads to novel cell shapes, increased cell size, and/or the number of host cells. We particularly highlight the strategies of U. maydis to induce physiologically varied host organs to form the characteristic tumors in both vegetative and floral parts of maize.

  20. HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans.

    PubMed

    Kinet, Maxime J; Malin, Jennifer A; Abraham, Mary C; Blum, Elyse S; Silverman, Melanie R; Lu, Yun; Shaham, Shai

    2016-03-08

    Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.

  1. Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis

    PubMed Central

    Vanneste, Steffen; Coppens, Frederik; Lee, EunKyoung; Donner, Tyler J; Xie, Zidian; Van Isterdael, Gert; Dhondt, Stijn; De Winter, Freya; De Rybel, Bert; Vuylsteke, Marnik; De Veylder, Lieven; Friml, Jiří; Inzé, Dirk; Grotewold, Erich; Scarpella, Enrico; Sack, Fred; Beemster, Gerrit T S; Beeckman, Tom

    2011-01-01

    In multicellular organisms, morphogenesis relies on a strict coordination in time and space of cell proliferation and differentiation. In contrast to animals, plant development displays continuous organ formation and adaptive growth responses during their lifespan relying on a tight coordination of cell proliferation. How developmental signals interact with the plant cell-cycle machinery is largely unknown. Here, we characterize plant A2-type cyclins, a small gene family of mitotic cyclins, and show how they contribute to the fine-tuning of local proliferation during plant development. Moreover, the timely repression of CYCA2;3 expression in newly formed guard cells is shown to require the stomatal transcription factors FOUR LIPS/MYB124 and MYB88, providing a direct link between developmental programming and cell-cycle exit in plants. Thus, transcriptional downregulation of CYCA2s represents a critical mechanism to coordinate proliferation during plant development. PMID:21772250

  2. Further studies on cortical tangential migration in wild type and Pax-6 mutant mice.

    PubMed

    Jiménez, D; López-Mascaraque, L; de Carlos, J A; Valverde, F

    2002-01-01

    In this study we present new data concerning the tangential migration from the medial and lateral ganglionic eminences (MGE and LGE) to the cerebral cortex during development. We have used Calbindin as a useful marker to follow the itinerary of tangential migratory cells during early developmental stages in wild-type and Pax-6 homozygous mutant mice. In the wild-type mice, at early developmental stages, migrating cells advance through the intermediate zone (IZ) and preplate (PP). At more advanced stages, migrating cells were present in the subplate (SP) and cortical plate (CP) to reach the entire developing cerebral cortex. We found that, in the homozygous mutant mice (Pax-6(Sey-Neu)/Pax-6(Sey-Neu)), this tangential migration is severely affected at early developmental stages: migrating cells were absent in the IZ, which were only found some days later, suggesting that in the mutant mice, there is a temporal delay in tangential migration. We have also defined some possible mechanisms to explain certain migratory routes from the basal telencephalon to the cerebral cortex. We describe the existence of two factors, which we consider to be essential for the normal migration; the first one is the cell adhesion molecule PSA-NCAM, whose role in other migratory systems is well known. The second factor is Robo-2, whose expression delimits a channel for the passage of migratory cells from the basal telencephalon to the cerebral cortex.

  3. Origins and implications of pluripotent stem cell variability and heterogeneity

    PubMed Central

    Cahan, Patrick; Daley, George Q.

    2014-01-01

    Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could ‘lock’ the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field. PMID:23673969

  4. Systems Approaches to Predict the Functions of Glycoside Hydrolases during the Life Cycle of Aspergillus niger Using Developmental Mutants ∆brlA and ∆flbA

    PubMed Central

    van Munster, Jolanda M.; Nitsche, Benjamin M.; Akeroyd, Michiel; Dijkhuizen, Lubbert; van der Maarel, Marc J. E. C.; Ram, Arthur F. J.

    2015-01-01

    Background The filamentous fungus Aspergillus niger encounters carbon starvation in nature as well as during industrial fermentations. In response, regulatory networks initiate and control autolysis and sporulation. Carbohydrate-active enzymes play an important role in these processes, for example by modifying cell walls during spore cell wall biogenesis or in cell wall degradation connected to autolysis. Results In this study, we used developmental mutants (ΔflbA and ΔbrlA) which are characterized by an aconidial phenotype when grown on a plate, but also in bioreactor-controlled submerged cultivations during carbon starvation. By comparing the transcriptomes, proteomes, enzyme activities and the fungal cell wall compositions of a wild type A. niger strain and these developmental mutants during carbon starvation, a global overview of the function of carbohydrate-active enzymes is provided. Seven genes encoding carbohydrate-active enzymes, including cfcA, were expressed during starvation in all strains; they may encode enzymes involved in cell wall recycling. Genes expressed in the wild-type during starvation, but not in the developmental mutants are likely involved in conidiogenesis. Eighteen of such genes were identified, including characterized sporulation-specific chitinases and An15g02350, member of the recently identified carbohydrate-active enzyme family AA11. Eight of the eighteen genes were also expressed, independent of FlbA or BrlA, in vegetative mycelium, indicating that they also have a role during vegetative growth. The ΔflbA strain had a reduced specific growth rate, an increased chitin content of the cell wall and specific expression of genes that are induced in response to cell wall stress, indicating that integrity of the cell wall of strain ΔflbA is reduced. Conclusion The combination of the developmental mutants ΔflbA and ΔbrlA resulted in the identification of enzymes involved in cell wall recycling and sporulation-specific cell wall modification, which contributes to understanding cell wall remodeling mechanisms during development. PMID:25629352

  5. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy.

    PubMed

    do Amaral, Ronaldo J F C; Almeida, Henrique V; Kelly, Daniel J; O'Brien, Fergal J; Kearney, Cathal J

    2017-01-01

    The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells.

  6. Infrapatellar Fat Pad Stem Cells: From Developmental Biology to Cell Therapy

    PubMed Central

    Almeida, Henrique V.; Kelly, Daniel J.; O'Brien, Fergal J.; Kearney, Cathal J.

    2017-01-01

    The ideal cell type to be used for cartilage therapy should possess a proven chondrogenic capacity, not cause donor-site morbidity, and should be readily expandable in culture without losing their phenotype. There are several cell sources being investigated to promote cartilage regeneration: mature articular chondrocytes, chondrocyte progenitors, and various stem cells. Most recently, stem cells isolated from joint tissue, such as chondrogenic stem/progenitors from cartilage itself, synovial fluid, synovial membrane, and infrapatellar fat pad (IFP) have gained great attention due to their increased chondrogenic capacity over the bone marrow and subcutaneous adipose-derived stem cells. In this review, we first describe the IFP anatomy and compare and contrast it with other adipose tissues, with a particular focus on the embryological and developmental aspects of the tissue. We then discuss the recent advances in IFP stem cells for regenerative medicine. We compare their properties with other stem cell types and discuss an ontogeny relationship with other joint cells and their role on in vivo cartilage repair. We conclude with a perspective for future clinical trials using IFP stem cells. PMID:29018484

  7. A DNA damage checkpoint pathway coordinates the division of dikaryotic cells in the ink cap mushroom Coprinopsis cinerea.

    PubMed

    de Sena-Tomás, Carmen; Navarro-González, Mónica; Kües, Ursula; Pérez-Martín, José

    2013-09-01

    The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.

  8. Effect of the timing of first cleavage on in vitro developmental potential of nuclear-transferred bovine oocytes receiving cumulus and fibroblast cells.

    PubMed

    Amarnath, Dasari; Kato, Yoko; Tsunoda, Yukio

    2007-06-01

    The aim of the present study was to examine whether cumulus and fibroblast cell nuclear-transferred oocytes, which have high and low potential to develop into normal calves, respectively, are different in terms of in their patterns of timing of first cleavage and in their relationships between timing of first cleavage and in vitro developmental potential. The timing of first cleavage was similar in both types of nuclear-transferred and in vitro fertilized oocytes. More than 86% of the oocytes cleaved within 24 h after activation or in vitro fertilization; these oocytes contributed to more than 98% of the total number of blastocysts in all three groups. The potential of oocytes that cleaved at different intervals to develop into blastocysts differed among the groups. The developmental potential of the cumulus cell nuclear-transferred oocytes and in vitro fertilized oocytes decreased with the increase in time required for cleavage. Fibroblast cell nuclear-transferred oocytes that cleaved at 20 h, an intermediate cleaving time, had higher potential to develop into blastocysts. The results of the present study suggest that the type of donor nucleus used for nuclear transfer affects the timing of first cleavage.

  9. Developmental expression of Toll‑like receptors in the guinea pig lung.

    PubMed

    Ma, Lingjie; Yang, Jiali; Yang, Li; Shi, Juan; Xue, Jing; Li, Yong; Liu, Xiaoming

    2017-03-01

    The guinea pig is a useful model for investigating infectious and non‑infectious lung diseases due to the sensitivity of its respiratory system and susceptibility to infectious agents. Toll‑like receptors (TLRs) are important components of the innate immune response and are critical for lung immune function. In the present study, the differentiation of epithelial cells in the guinea pig lung was examined during gestation by studying anatomic morphology and the major epithelial cell types using cell type‑specific markers. The developmental expression of all 9 TLRs and the TLR signaling adaptors myeloid differentiation factor 88 (MyD88) and tumor necrosis factor receptor associated factor 6 (TRAF‑6) were investigated by reverse transcription‑quantitative polymerase chain reaction and western blotting analysis. The formation of lung lobes in guinea pigs was observed at 45 days of gestation (dGA), along with the expression of the basal cell marker keratin 14 and the alveolar type II cell marker pro‑surfactant protein. However, the cube cell marker secretoglobin family1A member 1 and ciliated cell marker b‑tubulin IV were only detected in the lungs from 52 dGA onward. The expression levels of all TLRs, MyD88 and TRAF‑6 were determined in lung tissues harvested from embryos, newborn, postnatal and adult animals. The expression levels of all TLR signaling components displayed similar dynamic expression patterns with gestation age and postnatal maturation time, except for TLR‑4 and TLR‑7. mRNA expression levels of TLR components were significantly increased in the lungs at 45 and 52 dGA, compared with later developmental stages. These results suggest that TLR expression in the guinea pig lung is developmentally regulated, enhancing the understanding of lung biology in guinea pig models.

  10. Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning.

    PubMed

    Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Yamamoto, Yoshie; Takano, Kaoru; Kohda, Takashi; Ishino, Fumitoshi; Ogura, Atsuo

    2003-10-01

    Although it is widely assumed that the cell type and genotype of the donor cell affect the efficiency of somatic cell cloning, little systematic analysis has been done to verify this assumption. The present study was undertaken to examine whether donor cell type, donor genotype, or a combination thereof increased the efficiency of mouse cloning. Initially we assessed the developmental ability of embryos that were cloned from cumulus or immature Sertoli cells with six different genotypes (i.e., 2 x 6 factorial). Significantly better cleavage rates were obtained with cumulus cells than with Sertoli cells (P < 0.005, two-way ANOVA), which probably was due to the superior cell-cycle synchrony of cumulus cells at G0/G1. After embryo transfer, there was a significant effect of cell type on the birth rate, with Sertoli cells giving the better result (P < 0.005). Furthermore, there was a significant interaction (P < 0.05) between the cell type and genotype, which indicates that cloning efficiency is determined by a combination of these two factors. The highest mean birth rate (10.8 +/- 2.1%) was obtained with (B6 x 129)F1 Sertoli cells. In the second series of experiments, we examined whether the developmental ability of clones with the wild-type genotype (JF1) was improved when combined with the 129 genotype. Normal pups were cloned from cumulus and immature Sertoli cells of the (129 x JF1)F1 and (JF1 x 129)F1 genotypes, whereas no pups were born from cells with the (B6 x JF1)F1 genotype. The present study clearly demonstrates that the efficiency of somatic cell cloning, and in particular fetal survival after embryo transfer, may be improved significantly by choosing the appropriate combinations of cell type and genotype.

  11. Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes.

    PubMed

    Hanley, Patrick; Sutter, Jennifer A; Goodman, Noah G; Du, Yangzhu; Sekiguchi, Debora R; Meng, Wenzhao; Rickels, Michael R; Naji, Ali; Luning Prak, Eline T

    2017-10-01

    Although autoantibodies have been used for decades as diagnostic and prognostic markers in type 1 diabetes (T1D), further analysis of developmental abnormalities in B cells could reveal tolerance checkpoint defects that could improve individualized therapy. To evaluate B cell developmental progression in T1D, immunophenotyping was used to classify circulating B cells into transitional, mature naïve, mature activated, and resting memory subsets. Then each subset was analyzed for the expression of additional maturation-associated markers. While the frequencies of B cell subsets did not differ significantly between patients and controls, some T1D subjects exhibited reduced proportions of B cells that expressed transmembrane activator and CAML interactor (TACI) and Fas receptor (FasR). Furthermore, some T1D subjects had B cell subsets with lower frequencies of class switching. These results suggest circulating B cells exhibit variable maturation phenotypes in T1D. These phenotypic variations may correlate with differences in B cell selection in individual T1D patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Peptide Signaling in Plant Development

    PubMed Central

    Katsir, Leron; Davies, Kelli A.; Bergmann, Dominique C.; Laux, Thomas

    2011-01-01

    Cell-to-cell communication is integral to the evolution of multicellularity. In plant development, peptide signals relay information coordinating cell proliferation and differentiation. These peptides are often encoded by gene families and bind to corresponding families of receptors. The precise spatiotemporal expression of signals and their cognate receptors underlies developmental patterning, and expressional and biochemical changes over evolutionary time have likely contributed to the refinement and complexity of developmental programs. Here, we discuss two major plant peptide families which have central roles in plant development: the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide family and the EPIDERMAL PATTERNING FACTOR (EPF) family. We discuss how specialization has enabled the CLE peptides to modulate stem cell differentiation in various tissue types, and how differing activities of EPF peptides precisely regulate the stomatal developmental program, and we examine the contributions of these peptide families to plant development from an evolutionary perspective. PMID:21549958

  13. Reporter-Based Isolation of Developmental Myogenic Progenitors

    PubMed Central

    Kheir, Eyemen; Cusella, Gabriella; Messina, Graziella; Cossu, Giulio; Biressi, Stefano

    2018-01-01

    The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS). The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors. PMID:29674978

  14. Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer.

    PubMed

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua; Liu, Dewu; Wu, Zhenfang

    2013-10-01

    The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro-cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT.

  15. Disruption of Canonical TGFβ-signaling in Murine Coronary Progenitor Cells by Low Level Arsenic

    PubMed Central

    Allison, Patrick; Huang, Tianfang; Broka, Derrick; Parker, Patti; Barnett, Joey V.; Camenisch, Todd D.

    2013-01-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors are essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitrostudy, 18 hour exposure to 1.34 μMarsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μMarsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease invimentinpositive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. PMID:23732083

  16. Genome Wide DNA Methylation Profiles Provide Clues to the Origin and Pathogenesis of Germ Cell Tumors

    PubMed Central

    Rijlaarsdam, Martin A.; Tax, David M. J.; Gillis, Ad J. M.; Dorssers, Lambert C. J.; Koestler, Devin C.; de Ridder, Jeroen; Looijenga, Leendert H. J.

    2015-01-01

    The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809). PMID:25859847

  17. Establishment of spatial pattern.

    PubMed

    Slack, Jonathan

    2014-01-01

    An overview and perspective are presented of mechanisms for the development of spatial pattern in animal embryos. It is intended both for new entrants to developmental biology and for specialists in other fields, with only a basic knowledge of animal life cycles being required. The first event of pattern formation is normally the localization of a cytoplasmic determinant in the egg, either during oogenesis or post-fertilization. Following cleavage to a multicellular stage, some cells contain the determinant and others do not. The determinant confers a specific developmental pathway on the cells that contain it, often making them the source of the first extracellular signal, or inducing factor. Inducing factors often form concentration gradients to which cells respond by up or downregulating genes at various concentration thresholds. This enables an initial situation consisting of two cell states (with or without the determinant) to generate a multistate pattern. Multiple rounds of gradient signaling, interspersed with phases of morphogenetic movements, can generate a complex pattern using a small number of signals and responding genes. Development proceeds in a hierarchical manner, with broad body subdivisions being specified initially, and becoming successively subdivided to give individual organs and tissues composed of multiple cell types in a characteristic arrangement. Double gradient models can account for embryonic regulation, whereby a similarly proportioned body pattern is formed following removal of material. Processes that are involved at the later stages include the formation of repeating structures by the combination of an oscillator with a gradient, and the formation of tissues with one cell type scattered in a background of another through a process called lateral inhibition. This set of processes make up a 'developmental toolkit' which can be deployed in various sequences and combinations to generate a very wide variety of structures and cell types. © 2014 Wiley Periodicals, Inc.

  18. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1.

    PubMed

    Edamakanti, Chandrakanth Reddy; Do, Jeehaeh; Didonna, Alessandro; Martina, Marco; Opal, Puneet

    2018-06-01

    Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the protein ATXN1, which is involved in transcriptional regulation. Although symptoms appear relatively late in life, primarily from cerebellar dysfunction, pathogenesis begins early, with transcriptional changes detectable as early as a week after birth in SCA1-knockin mice. Given the importance of this postnatal period for cerebellar development, we asked whether this region might be developmentally altered by mutant ATXN1. We found that expanded ATXN1 stimulates the proliferation of postnatal cerebellar stem cells in SCA1 mice. These hyperproliferating stem cells tended to differentiate into GABAergic inhibitory interneurons rather than astrocytes; this significantly increased the GABAergic inhibitory interneuron synaptic connections, disrupting cerebellar Purkinje cell function in a non-cell autonomous manner. We confirmed the increased basket cell-Purkinje cell connectivity in human SCA1 patients. Mutant ATXN1 thus alters the neural circuitry of the developing cerebellum, setting the stage for the later vulnerability of Purkinje cells to SCA1. We propose that other late-onset degenerative diseases may also be rooted in subtle developmental derailments.

  19. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation.

    PubMed

    Bhat, Swapna; Boynton, Tye O; Pham, Dan; Shimkets, Lawrence J

    2014-01-01

    Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes.

  20. IT-25DEVELOPMENTALLY REGULATED ANTIGENS FOR IMMUNOLOGIC TARGETING OF MEDULLOBLASTOMA SUBTYPES

    PubMed Central

    Pham, Christina; Flores, Catherine; Pei, Yanxin; Wechsler-Reya, Robert; Mitchell, Duane

    2014-01-01

    INTRODUCTION: Medulloblastoma (MB) remains incurable in one third of patients despite aggressive multi-modality standard therapies. Immunotherapy presents a promising alternative by specifically targeting cancer cells. To date, there have been no successful immunologic applications targeting MB. Emerging evidence from integrated genomic studies has suggested MB variants arise from deregulation of pathways affecting proliferation of progenitor cell populations within the developing cerebellum. Using total embryonic RNA as a source of tumor rejection antigens is attractive because it can be delivered as a single vaccine, target both known and unknown fetal proteins, and can be refined to preferentially treat distinct MB subtypes. METHODS: We have created two transplantable, syngeneic animal MB models recapitulating human SHH and Group 3 variants to investigate the immunologic targeting of different MB subtypes. We generated T cells specific to the developing mouse cerebellum (P5) and tested their reactivity to target cells pulsed with total RNA from two MB subtypes and the normal brain. Immune responses were evaluated by measuring cytokine secretion following re-stimulation of activated T cells with both normal and tumor cell targets. In vivo antitumor efficacy was also tested in survival studies of intracranial tumor-bearing animals. RESULTS: We generated T cells specific to the developing cerebellum in vitro, confirming the immunogenicity of developmentally regulated antigens. Additionally, we have shown that developmental antigen-specific T cells produce high levels of Th1-type cytokines in response to tumor cells of two immunologically distinct subtypes of MB. Interestingly, developmental antigen specific T cells do not show cross reactivity with the normal brain or subsequent stages of the developing brain after P5. Targeting developmental antigens also conferred a significant survival benefit in a treatment model of Group 3 tumor bearing animals. CONCLUSIONS: Developmental antigens can safely target multiple MB subtypes with equal effectiveness compared to previously established total tumor strategies.

  1. Role of the immune modulator programmed cell death-1 during development and apoptosis of mouse retinal ganglion cells

    PubMed Central

    Chen, Ling; Sham, Caroline W.; Chan, Ann M.; Francisco, Loise M.; Wu, Yin; Mareninov, Sergey; Sharpe, Arlene H.; Freeman, Gordon J.; Yang, Xian-Jie; Braun, Jonathan; Gordon, Lynn K.

    2011-01-01

    PURPOSE Mammalian programmed cell death-1 (PD-1) is a membrane-associated receptor regulating the balance between T cell activation, tolerance and immunopathology, however its role in neurons has not yet been defined. We investigate the hypothesis that PD-1 signaling actively promotes retinal ganglion cell (RGC) death within the developing mouse retina. METHODS Mature retinal cell types expressing PD-1 were identified by immunofluorescence staining of vertical retina sections; developmental expression was localized by immunostaining and quantified by Western analysis. PD-1 involvement in developmental RGC survival was assessed in vitro using retina explants and in vivo using PD-1 knockout mice. PD-1 ligand gene expression was detected by RT-PCR. RESULTS PD-1 is expressed in most adult RGCs, and undergoes dynamic upregulation during the early postnatal window of retinal cell maturation and physiological programmed cell death (PCD). In vitro blockade of PD-1 signaling during this time selectively increases survival of RGCs. Furthermore, PD-1 deficient mice show a selective increase in RGC number in the neonatal retina at the peak of developmental RGC death. Lastly, throughout postnatal retina maturation, we find gene expression of both immune PD-1 ligand genes, PD-L1 and PD-L2. CONCLUSIONS These findings collectively support a novel role for a PD-1-mediated signaling pathway in developmental PCD during postnatal RGC maturation. PMID:19420345

  2. Regulation of DNA replication during development

    PubMed Central

    Nordman, Jared; Orr-Weaver, Terry L.

    2012-01-01

    As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication. PMID:22223677

  3. An immunohistochemical study of the endocrine pancreas in raptors.

    PubMed

    Palmieri, C; Shivaprasad, H L

    2014-12-01

    The cytoarchitecture of the endocrine pancreas of 10 raptors (golden eagles, peregrine falcons, Saker falcon, turkey vultures, red-tailed hawk and unspecified falcon) was examined by immunohistochemistry. Three islet types were identified: type A mixed islets composed mainly by glucagon (A)-secreting cells, type B mixed islets with predominantly insulin (B)-secreting cell component and type M mixed islets (type M) consisting of variable number of glucagon-, insulin- and somatostatin (D)-secreting cells. The latter were further characterized into Type I, II or III according to the cell distribution of the three cell types. A and D cells were also randomly scattered within the exocrine pancreas. The results of this study suggest that the classical concept in birds of a segregation of A and B cells in well-defined and distinct islets is not applicable in raptors, reflecting an evolutionary adaptation to different dietary habits and variation in developmental mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Chronic stress from adolescence to aging in the prefrontal cortex: A neuroimmune perspective.

    PubMed

    Macht, Victoria A; Reagan, Lawrence P

    2018-04-01

    The development of the organism is a critical variable which influences the magnitude, duration, and reversibility of the effects of chronic stress. Such factors are relevant to the prefrontal cortex (PFC), as this brain region is the last to mature, the first to decline, and is highly stress-sensitive. Therefore, this review will examine the intersection between the nervous system and immune system at glutamatergic synapses in the PFC across three developmental periods: adolescence, adulthood, and aging. Glutamatergic synapses are tightly juxtaposed with microglia and astrocytes, and each of these cell types exhibits their own developmental trajectory. Not only does chronic stress differentially impact each of these cell types across development, but chronic stress also alters intercellular communication within this quad-partite synapse. These observations suggest that developmental shifts in both neural and immune function across neurons, microglia, and astrocytes mediate shifting effects of chronic stress on glutamatergic transmission. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Developmental Changes is Expression of Beta-Adrenergic Receptors in Cultures of C2C12 Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K. Y.; Vaughn, J. R.

    2000-01-01

    beta-Adrenergic receptor (bAR) agonists have been reported to modulate growth in several mammalian and avian species, and bAR agonists presumably exert their physiological action on skeletal muscle cells through this receptor. Because of the importance of bAR regulation on muscle protein metabolism in muscle cells, the objectives of this study were to determine the developmental expression pattern of the bAR population in C2C12 skeletal muscle cells, and to analyze changes in both the quantity and isoform expression of the major muscle protein, myosin. The number of bAR in mononucleated C2C12 cells was approximately 8,000 bAR per cell, which is comparable with the population reported in several other nonmuscle cell types. However, the bar population increased after myoblast fusion to greater than 50,000 bAR per muscle cell equivalent. The reasons for this apparent over-expression of bAR in C2C12 cells is not known. The quantity of myosin also increased after C2C12 myoblast fusion, but the quantity of myosin was less than that reported in primary muscle cell cultures. Finally, at least five different isoforms of myosin heavy chain could be resolved in C2C12 cells, and three of these exhibited either increased or decreased developmental regulation relative to the others. Thus, C2C12 myoblasts undergo developmental regulation of bAR population and myosin heavy chain isoform expression.

  6. All Tumor Cells Are Not Created Equal | Center for Cancer Research

    Cancer.gov

    Cell division is commonly thought of as a process whereby one cell gives rise to two identical daughter cells. However, rare cell divisions are asymmetric, generating daughter cells that may differ in size, developmental potential, or even DNA content. The ability of stem cells to undergo asymmetric division allows them to self-renew while simultaneously generate daughter cells committed to differentiating into specialized cell types.

  7. Neural crest cells: from developmental biology to clinical interventions.

    PubMed

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes. © 2014 Wiley Periodicals, Inc.

  8. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants.

    PubMed

    Olvera-Carrillo, Yadira; Van Bel, Michiel; Van Hautegem, Tom; Fendrych, Matyáš; Huysmans, Marlies; Simaskova, Maria; van Durme, Matthias; Buscaill, Pierre; Rivas, Susana; Coll, Nuria S.; Coppens, Frederik; Maere, Steven; Nowack, Moritz K.

    2015-12-01

    A plethora of diverse programmed cell death (PCD) processes has been described in living organisms. In animals and plants, different forms of PCD play crucial roles in development, immunity, and responses to the environment. While the molecular control of some animal PCD forms such as apoptosis is known in great detail, we still know comparatively little about the regulation of the diverse types of plant PCD. In part, this deficiency in molecular understanding is caused by the lack of reliable reporters to detect PCD processes. Here, we addressed this issue by using a combination of bioinformatics approaches to identify commonly regulated genes during diverse plant PCD processes in Arabidopsis (Arabidopsis thaliana). Our results indicate that the transcriptional signatures of developmentally controlled cell death are largely distinct from the ones associated with environmentally induced cell death. Moreover, different cases of developmental PCD share a set of cell death-associated genes. Most of these genes are evolutionary conserved within the green plant lineage, arguing for an evolutionary conserved core machinery of developmental PCD. Based on this information, we established an array of specific promoter-reporter lines for developmental PCD in Arabidopsis. These PCD indicators represent a powerful resource that can be used in addition to established morphological and biochemical methods to detect and analyze PCD processes in vivo and in planta. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. DNA methylation restricts lineage-specific functions of transcription factor Gata4 during embryonic stem cell differentiation.

    PubMed

    Oda, Masaaki; Kumaki, Yuichi; Shigeta, Masaki; Jakt, Lars Martin; Matsuoka, Chisa; Yamagiwa, Akiko; Niwa, Hitoshi; Okano, Masaki

    2013-06-01

    DNA methylation changes dynamically during development and is essential for embryogenesis in mammals. However, how DNA methylation affects developmental gene expression and cell differentiation remains elusive. During embryogenesis, many key transcription factors are used repeatedly, triggering different outcomes depending on the cell type and developmental stage. Here, we report that DNA methylation modulates transcription-factor output in the context of cell differentiation. Using a drug-inducible Gata4 system and a mouse embryonic stem (ES) cell model of mesoderm differentiation, we examined the cellular response to Gata4 in ES and mesoderm cells. The activation of Gata4 in ES cells is known to drive their differentiation to endoderm. We show that the differentiation of wild-type ES cells into mesoderm blocks their Gata4-induced endoderm differentiation, while mesoderm cells derived from ES cells that are deficient in the DNA methyltransferases Dnmt3a and Dnmt3b can retain their response to Gata4, allowing lineage conversion from mesoderm cells to endoderm. Transcriptome analysis of the cells' response to Gata4 over time revealed groups of endoderm and mesoderm developmental genes whose expression was induced by Gata4 only when DNA methylation was lost, suggesting that DNA methylation restricts the ability of these genes to respond to Gata4, rather than controlling their transcription per se. Gata4-binding-site profiles and DNA methylation analyses suggested that DNA methylation modulates the Gata4 response through diverse mechanisms. Our data indicate that epigenetic regulation by DNA methylation functions as a heritable safeguard to prevent transcription factors from activating inappropriate downstream genes, thereby contributing to the restriction of the differentiation potential of somatic cells.

  10. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria.

    PubMed

    Jung, Yong-Gyun; Choi, Jungil; Kim, Soo-Kyoung; Lee, Joon-Hee; Kwon, Sunghoon

    2015-01-01

    A variety of systems have been developed to study biofilm formation. However, most systems are based on the surface-attached growth of microbes under shear stress. In this study, we designed a microfluidic channel device, called a microfluidic agarose channel (MAC), and found that microbial cells in the MAC system formed an embedded cell aggregative structure (ECAS). ECASs were generated from the embedded growth of bacterial cells in an agarose matrix and better mimicked the clinical environment of biofilms formed within mucus or host tissue under shear-free conditions. ECASs were developed with the production of extracellular polymeric substances (EPS), the most important feature of biofilms, and eventually burst to release planktonic cells, which resembles the full developmental cycle of biofilms. Chemical and genetic effects have also confirmed that ECASs are a type of biofilm. Unlike the conventional biofilms formed in the flow cell model system, this embedded-type biofilm completes the developmental cycle in only 9 to 12 h and can easily be observed with ordinary microscopes. We suggest that ECASs are a type of biofilm and that the MAC is a system for observing biofilm formation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Bone Marrow Mesenchymal Stem Cells Are an Attractive Donor Cell Type for Production of Cloned Pigs As Well As Genetically Modified Cloned Pigs by Somatic Cell Nuclear Transfer

    PubMed Central

    Li, Zicong; He, Xiaoyan; Chen, Liwen; Shi, Junsong; Zhou, Rong; Xu, Weihua

    2013-01-01

    Abstract The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro–cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT. PMID:24033142

  12. Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes

    PubMed Central

    Matias Rodrigues, João F.; Rankin, Daniel J.; Rossetti, Valentina; Wagner, Andreas; Bagheri, Homayoun C.

    2012-01-01

    Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria. PMID:22511858

  13. Patterns of expression of position-dependent integrated transgenes in mouse embryo.

    PubMed Central

    Bonnerot, C; Grimber, G; Briand, P; Nicolas, J F

    1990-01-01

    The abilities to introduce foreign DNA into the genome of mice and to visualize gene expression at the single-cell level underlie a method for defining individual elements of a genetic program. We describe the use of an Escherichia coli lacZ reporter gene fused to the promoter of the gene for hypoxanthine phosphoribosyl transferase that is expressed in all tissues. Most transgenic mice (six of seven) obtained with this construct express the lacZ gene from the hypoxanthine phosphoribosyltransferase promoter. Unexpectedly, however, the expression is temporally and spatially regulated. Each transgenic line is characterized by a specific, highly reproducible pattern of lacZ expression. These results show that, for expression, the integrated construct must be complemented by elements of the genome. These elements exert dominant developmental control on the hypoxanthine phosphoribosyltransferase promoter. The expression patterns in some transgenic mice conform to a typological marker and in others to a subtle combination of typology and topography. These observations define discrete heterogeneities of cell types and of certain structures, particularly in the nervous system and in the mesoderm. This system opens opportunities for developmental studies by providing cellular, molecular, and genetic markers of cell types, cell states, and cells from developmental compartments. Finally this method illustrates that genes transduced or transposed to a different position in the genome acquire different spatiotemporal specificities, a result that has implications for evolution. Images PMID:1696727

  14. From Embryo to Adult: Hematopoiesis along the Drosophila Life Cycle.

    PubMed

    Ramond, Elodie; Meister, Marie; Lemaitre, Bruno

    2015-05-26

    Studies on Drosophila hematopoiesis have thus far focused on the embryonic and larval origin of hemocytes, the fly blood cells. In this issue of Developmental Cell, Ghosh et al. (2015) identify adult hematopoietic hubs containing progenitors that can differentiate into different blood cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Developmental insights from early mammalian embryos and core signaling pathways that influence human pluripotent cell growth and differentiation.

    PubMed

    Chen, Kevin G; Mallon, Barbara S; Johnson, Kory R; Hamilton, Rebecca S; McKay, Ronald D G; Robey, Pamela G

    2014-05-01

    Human pluripotent stem cells (hPSCs) have two potentially attractive applications: cell replacement-based therapies and drug discovery. Both require the efficient generation of large quantities of clinical-grade stem cells that are free from harmful genomic alterations. The currently employed colony-type culture methods often result in low cell yields, unavoidably heterogeneous cell populations, and substantial chromosomal abnormalities. Here, we shed light on the structural relationship between hPSC colonies/embryoid bodies and early-stage embryos in order to optimize current culture methods based on the insights from developmental biology. We further highlight core signaling pathways that underlie multiple epithelial-to-mesenchymal transitions (EMTs), cellular heterogeneity, and chromosomal instability in hPSCs. We also analyze emerging methods such as non-colony type monolayer (NCM) and suspension culture, which provide alternative growth models for hPSC expansion and differentiation. Furthermore, based on the influence of cell-cell interactions and signaling pathways, we propose concepts, strategies, and solutions for production of clinical-grade hPSCs, stem cell precursors, and miniorganoids, which are pivotal steps needed for future clinical applications. Published by Elsevier B.V.

  16. Multipotent versus differentiated cell fate selection in the developing Drosophila airways

    PubMed Central

    Matsuda, Ryo; Hosono, Chie; Samakovlis, Christos; Saigo, Kaoru

    2015-01-01

    Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway. DOI: http://dx.doi.org/10.7554/eLife.09646.001 PMID:26633813

  17. Cell type-specific translational repression of Cyclin B during meiosis in males.

    PubMed

    Baker, Catherine Craig; Gim, Byung Soo; Fuller, Margaret T

    2015-10-01

    The unique cell cycle dynamics of meiosis are controlled by layers of regulation imposed on core mitotic cell cycle machinery components by the program of germ cell development. Although the mechanisms that regulate Cdk1/Cyclin B activity in meiosis in oocytes have been well studied, little is known about the trans-acting factors responsible for developmental control of these factors in male gametogenesis. During meiotic prophase in Drosophila males, transcript for the core cell cycle protein Cyclin B1 (CycB) is expressed in spermatocytes, but the protein does not accumulate in spermatocytes until just before the meiotic divisions. Here, we show that two interacting proteins, Rbp4 and Fest, expressed at the onset of spermatocyte differentiation under control of the developmental program of male gametogenesis, function to direct cell type- and stage-specific repression of translation of the core G2/M cell cycle component cycB during the specialized cell cycle of male meiosis. Binding of Fest to Rbp4 requires a 31-amino acid region within Rbp4. Rbp4 and Fest are required for translational repression of cycB in immature spermatocytes, with Rbp4 binding sequences in a cell type-specific shortened form of the cycB 3' UTR. Finally, we show that Fest is required for proper execution of meiosis I. © 2015. Published by The Company of Biologists Ltd.

  18. Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells.

    PubMed

    Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui

    2014-10-01

    The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.

  19. Developmentally regulated expression of APG-1, a member of heat shock protein 110 family in murine male germ cells.

    PubMed

    Kaneko, Y; Kimura, T; Nishiyama, H; Noda, Y; Fujita, J

    1997-04-07

    Apg-1 encodes a heat shock protein belonging to the heat shock protein 110 family, and is inducible by a 32 degrees C to 39 degrees C heat shock. Northern blot analysis of the testis from immature and adult mice, and of the purified germ cells revealed the quantitative change of the apg-1 transcripts during germ cell development. By in situ hybridization histochemistry the expressions of the apg-1 transcripts were detected in germ cells at specific stages of development including spermatocytes and spermatids. Although heat-induction of the apg-1 transcripts was observed in W/Wv mutant testis lacking germ cells, it was not detected in wild-type testis nor in the purified germ cells. Thus, the apg-1 expression is not heat-regulated but developmentally regulated in germ cells, suggesting that APG-1 plays a role in normal development of germ cells.

  20. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective

    PubMed Central

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M.; Bezbradica, Jelena S.; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective. PMID:29312339

  1. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective.

    PubMed

    Kumar, Amrendra; Suryadevara, Naveenchandra; Hill, Timothy M; Bezbradica, Jelena S; Van Kaer, Luc; Joyce, Sebastian

    2017-01-01

    Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.

  2. Regulation of nucleosome positioning by a CHD Type III chromatin remodeler and its relationship to developmental gene expression in Dictyostelium.

    PubMed

    Platt, James L; Kent, Nicholas A; Kimmel, Alan R; Harwood, Adrian J

    2017-04-01

    Nucleosome placement and repositioning can direct transcription of individual genes; however, the precise interactions of these events are complex and largely unresolved at the whole-genome level. The Chromodomain-Helicase-DNA binding (CHD) Type III proteins are a subfamily of SWI2/SNF2 proteins that control nucleosome positioning and are associated with several complex human disorders, including CHARGE syndrome and autism. Type III CHDs are required for multicellular development of animals and Dictyostelium but are absent in plants and yeast. These CHDs can mediate nucleosome translocation in vitro, but their in vivo mechanism is unknown. Here, we use genome-wide analysis of nucleosome positioning and transcription profiling to investigate the in vivo relationship between nucleosome positioning and gene expression during development of wild-type (WT) Dictyostelium and mutant cells lacking ChdC, a Type III CHD protein ortholog. We demonstrate major nucleosome positional changes associated with developmental gene regulation in WT. Loss of chdC caused an increase of intragenic nucleosome spacing and misregulation of gene expression, affecting ∼50% of the genes that are repositioned during WT development. These analyses demonstrate active nucleosome repositioning during Dictyostelium multicellular development, establish an in vivo function of CHD Type III chromatin remodeling proteins in this process, and reveal the detailed relationship between nucleosome positioning and gene regulation, as cells transition between developmental states. © 2017 Platt et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity.

    PubMed

    Ojeda, Isidro; Francisco-Ortega, Javier; Cronk, Quentin C B

    2009-11-01

    The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established.

  4. Identifying Developmental Zones in Maize Lateral Root Cell Length Profiles using Multiple Change-Point Models

    PubMed Central

    Moreno-Ortega, Beatriz; Fort, Guillaume; Muller, Bertrand; Guédon, Yann

    2017-01-01

    The identification of the limits between the cell division, elongation and mature zones in the root apex is still a matter of controversy when methods based on cellular features, molecular markers or kinematics are compared while methods based on cell length profiles have been comparatively underexplored. Segmentation models were developed to identify developmental zones within a root apex on the basis of epidermal cell length profiles. Heteroscedastic piecewise linear models were estimated for maize lateral roots of various lengths of both wild type and two mutants affected in auxin signaling (rtcs and rum-1). The outputs of these individual root analyses combined with morphological features (first root hair position and root diameter) were then globally analyzed using principal component analysis. Three zones corresponding to the division zone, the elongation zone and the mature zone were identified in most lateral roots while division zone and sometimes elongation zone were missing in arrested roots. Our results are consistent with an auxin-dependent coordination between cell flux, cell elongation and cell differentiation. The proposed segmentation models could extend our knowledge of developmental regulations in longitudinally organized plant organs such as roots, monocot leaves or internodes. PMID:29123533

  5. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells.

    PubMed

    Law, Robert; Levin, Michael

    2015-10-15

    Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts.

  6. Genome-wide identification and characterisation of HOT regions in the human genome.

    PubMed

    Li, Hao; Liu, Feng; Ren, Chao; Bo, Xiaochen; Shu, Wenjie

    2016-09-15

    HOT (high-occupancy target) regions, which are bound by a surprisingly large number of transcription factors, are considered to be among the most intriguing findings of recent years. An improved understanding of the roles that HOT regions play in biology would be afforded by knowing the constellation of factors that constitute these domains and by identifying HOT regions across the spectrum of human cell types. We characterised and validated HOT regions in embryonic stem cells (ESCs) and produced a catalogue of HOT regions in a broad range of human cell types. We found that HOT regions are associated with genes that control and define the developmental processes of the respective cell and tissue types. We also showed evidence of the developmental persistence of HOT regions at primitive enhancers and demonstrate unique signatures of HOT regions that distinguish them from typical enhancers and super-enhancers. Finally, we performed a dynamic analysis to reveal the dynamical regulation of HOT regions upon H1 differentiation. Taken together, our results provide a resource for the functional exploration of HOT regions and extend our understanding of the key roles of HOT regions in development and differentiation.

  7. Developmental Decline in the MicroRNA 199a (miR-199a)/miR-214 Cluster in Human Fetal Lung Promotes Type II Cell Differentiation by Upregulating Key Transcription Factors.

    PubMed

    Mishra, Ritu; Benlhabib, Houda; Guo, Wei; Lerma Cervantes, Connie B; Mendelson, Carole R

    2018-06-01

    The major surfactant protein, SP-A (a product of the SFTPA gene), serves as a marker of type II pneumocyte differentiation and surfactant synthesis. SFTPA expression in cultured human fetal lung (HFL) epithelial cells is upregulated by hormones that increase cyclic AMP (cAMP) and activate TTF-1/NKX2.1 and NF-κB. To further define mechanisms for type II cell differentiation and induction of SP-A, we investigated roles of microRNAs (miRNAs). Using microarray to identify differentially expressed miRNAs in HFL epithelial cells during type II cell differentiation in culture, we observed that members of the miRNA 199a (miR-199a)/miR-214 cluster were significantly downregulated during differentiation. Validated and predicted targets of miR-199a-3p/miR-199a-5p and miR-214, which serve roles in type II cell differentiation (COX-2, NF-κB p50/p65, and CREB1), and the CREB1 target, C/EBPβ, were coordinately upregulated. Accordingly, overexpression of miR-199a-5p, miR-199a-3p, or miR-214 mimics in cultured HFL epithelial cells decreased COX-2, NF-κB p50/p65, CREB1, and C/EBPβ proteins, with an associated inhibition of SP-A expression. Interestingly, overexpression of the EMT factor, ZEB1, which declines during cAMP-induced type II cell differentiation, increased pri-miR-199a and reduced the expression of the targets NF-κB/p50 and COX-2. Collectively, these findings suggest that the developmental decline in miR-199a/miR-214 in HFL causes increased expression of critical targets that enhance type II cell differentiation and SP-A expression. Copyright © 2018 American Society for Microbiology.

  8. UPR transducer BBF2H7 allows export of type II collagen in a cargo- and developmental stage–specific manner

    PubMed Central

    Toyama, Takuya; Nakamura, Yuki; Tamada, Kentaro; Shimizu, Hitomi; Ninagawa, Satoshi; Okada, Tetsuya; Ishikawa-Fujiwara, Tomoko; Aoyama, Eriko; Takigawa, Masaharu

    2017-01-01

    The unfolded protein response (UPR) handles unfolded/misfolded proteins accumulated in the endoplasmic reticulum (ER). However, it is unclear how vertebrates correctly use the total of ten UPR transducers. We have found that ER stress occurs physiologically during early embryonic development in medaka fish and that the smooth alignment of notochord cells requires ATF6 as a UPR transducer, which induces ER chaperones for folding of type VIII (short-chain) collagen. After secretion of hedgehog for tissue patterning, notochord cells differentiate into sheath cells, which synthesize type II collagen. In this study, we show that this vacuolization step requires both ATF6 and BBF2H7 as UPR transducers and that BBF2H7 regulates a complete set of genes (Sec23/24/13/31, Tango1, Sedlin, and KLHL12) essential for the enlargement of COPII vesicles to accommodate long-chain collagen for export, leading to the formation of the perinotochordal basement membrane. Thus, the most appropriate UPR transducer is activated to cope with the differing physiological ER stresses of different content types depending on developmental stage. PMID:28500182

  9. Targeting Developmental Pathways: The Achilles Heel of Cancer?

    PubMed

    Dempke, Wolfram C M; Fenchel, Klaus; Uciechowski, Peter; Chevassut, Timothy

    2017-01-01

    Developmental pathways (e.g., Notch, Hippo, Hedgehog, Wnt, and TGF-β/BMP/FGF) are networks of genes that act co-ordinately to establish the body plan, and disruptions of genes in one pathway can have effects in related pathways and may result in serious dysmorphogenesis or cancer. Interestingly, all developmental pathways are highly conserved cell signalling systems present in almost all multicellular organisms. In addition, they have a crucial role in cell proliferation, apoptosis, differentiation, and finally in organ development. Of note, almost all of these pathways promote oncogenesis through synergistic associations with the Hippo signalling pathway, and several lines of evidence have also indicated that these pathways (e.g., Wnt/β-catenin) may be implicated in checkpoint inhibitor resistance (e.g., CTLA-4, PD-1, and PD-L1). Since Notch inhibition in vivo results in partial loss of its stemness features such as self-renewal, chemoresistance, invasive and migratory potential, and tumorigenesis, these highly conserved developmental pathways are regarded as being critical for regulation of self-renewal in both embryonic and adult stem cells and hence are likely to be implicated in the maintenance of cancer stem cells. Many small molecules are currently in preclinical and early clinical development, and only two compounds are approved for treatment of advanced or metastatic basal cell carcinoma (vismodegib and sonidegib). Furthermore, therapeutic targeting of cancer stem cells using drugs that disrupt activated developmental pathways may also represent an attractive strategy that is potentially relevant to many types of malignancy, notably blood cancers, where the evidence for leukaemia stem cells is well established. Future work will hopefully pave the way for the development of new strategies for targeting these pervasive oncogenic pathways. © 2017 S. Karger AG, Basel.

  10. Epigenomic Landscape of Human Fetal Brain, Heart, and Liver.

    PubMed

    Yan, Liying; Guo, Hongshan; Hu, Boqiang; Li, Rong; Yong, Jun; Zhao, Yangyu; Zhi, Xu; Fan, Xiaoying; Guo, Fan; Wang, Xiaoye; Wang, Wei; Wei, Yuan; Wang, Yan; Wen, Lu; Qiao, Jie; Tang, Fuchou

    2016-02-26

    The epigenetic regulation of spatiotemporal gene expression is crucial for human development. Here, we present whole-genome chromatin immunoprecipitation followed by high throughput DNA sequencing (ChIP-seq) analyses of a wide variety of histone markers in the brain, heart, and liver of early human embryos shortly after their formation. We identified 40,181 active enhancers, with a large portion showing tissue-specific and developmental stage-specific patterns, pointing to their roles in controlling the ordered spatiotemporal expression of the developmental genes in early human embryos. Moreover, using sequential ChIP-seq, we showed that all three organs have hundreds to thousands of bivalent domains that are marked by both H3K4me3 and H3K27me3, probably to keep the progenitor cells in these organs ready for immediate differentiation into diverse cell types during subsequent developmental processes. Our work illustrates the potentially critical roles of tissue-specific and developmental stage-specific epigenomes in regulating the spatiotemporal expression of developmental genes during early human embryonic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The developmental potential of parthenogenetic and somatic cell nuclear-transferred rat oocytes in vitro.

    PubMed

    Mizumoto, Shigetoshi; Kato, Yoko; Tsunoda, Yukio

    2008-12-01

    We examined the optimal conditions for somatic cell nuclear transfer (SCNT) in rat oocytes. First, we compared the effects of two types of inhibitors of spontaneous activation, MG132 and demecolcine, on the developmental potential of parthenogenetic oocytes. The potential of activated oocytes to develop into blastocysts significantly decreased 2 h after oocyte recovery (77% vs. 7%). The developmental potential of oocytes preserved in MG132-supplemented medium for 1 to 4 h was high (62% to 77%), but the potential of those preserved in demecolcine-supplemented medium for 3 and 4 h was low (77% vs. 41% and 37%, respectively). Second, the effect of the duration of parthenogenetic activation on the developmental potential was examined. When oocytes preserved in MG132 for 4 h were treated with 10 mM strontium for 5 or 6 h, the potential of activated oocytes to develop into blastocysts was high (78% and 70%, respectively). Using the optimal conditions for parthenogenetic activation, we examined the potential of rat enucleated oocytes receiving cumulus cells to develop into blastocysts. In contrast to parthenogenotes, the potential of SCNT rat oocytes to develop into blastocysts was low (2%) even if then oocytes were treated with the histone deacetylation inhibitor trichostatin A. The reason for the low developmental potential of rat SCNT oocytes is discussed.

  12. Mutational Analysis of Cell Types in Tuberous Sclerosis Complex (TSC)

    DTIC Science & Technology

    2007-01-01

    disorder resulting from mutations in the TSC1 or TSC2 genes that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations...cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC...TSC (Sparagana and Roach, 2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder

  13. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1.

    PubMed

    Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan

    2014-12-23

    Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities.

  14. In Vitro Experimental Model for the Long-Term Analysis of Cellular Dynamics During Bronchial Tree Development from Lung Epithelial Cells

    PubMed Central

    Maruta, Naomichi; Marumoto, Moegi

    2017-01-01

    Lung branching morphogenesis has been studied for decades, but the underlying developmental mechanisms are still not fully understood. Cellular movements dynamically change during the branching process, but it is difficult to observe long-term cellular dynamics by in vivo or tissue culture experiments. Therefore, developing an in vitro experimental model of bronchial tree would provide an essential tool for developmental biology, pathology, and systems biology. In this study, we succeeded in reconstructing a bronchial tree in vitro by using primary human bronchial epithelial cells. A high concentration gradient of bronchial epithelial cells was required for branching initiation, whereas homogeneously distributed endothelial cells induced the formation of successive branches. Subsequently, the branches grew in size to the order of millimeter. The developed model contains only two types of cells and it facilitates the analysis of lung branching morphogenesis. By taking advantage of our experimental model, we carried out long-term time-lapse observations, which revealed self-assembly, collective migration with leader cells, rotational motion, and spiral motion of epithelial cells in each developmental event. Mathematical simulation was also carried out to analyze the self-assembly process and it revealed simple rules that govern cellular dynamics. Our experimental model has provided many new insights into lung development and it has the potential to accelerate the study of developmental mechanisms, pattern formation, left–right asymmetry, and disease pathogenesis of the human lung. PMID:28471293

  15. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.

    PubMed

    Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y

    2017-01-01

    The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.

  16. Rabbit somatic cell cloning: effects of donor cell type, histone acetylation status and chimeric embryo complementation.

    PubMed

    Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri

    2007-01-01

    The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.

  17. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology.

    PubMed

    Beer, Nicola L; Gloyn, Anna L

    2016-01-01

    Type 2 diabetes (T2D) is a disease of pandemic proportions, one defined by a complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk factors. Whilst the last decade of T2D genetic research has identified more than 100 loci showing strong statistical association with disease susceptibility, our inability to capitalise upon these signals reflects, in part, a lack of appropriate human cell models for study. This review discusses the impact of two complementary, state-of-the-art technologies on T2D genetic research: the generation of stem cell-derived, endocrine pancreas-lineage cells and the editing of their genomes. Such models facilitate investigation of diabetes-associated genomic perturbations in a physiologically representative cell context and allow the role of both developmental and adult islet dysfunction in T2D pathogenesis to be investigated. Accordingly, we interrogate the role that patient-derived induced pluripotent stem cell models are playing in understanding cellular dysfunction in monogenic diabetes, and how site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system are helping to confirm genes crucial to human endocrine pancreas development. We also highlight the novel biology gleaned in the absence of patient lines, including an ability to model the whole phenotypic spectrum of diabetes phenotypes occurring both in utero and in adult cells, interrogating the non-coding 'islet regulome' for disease-causing perturbations, and understanding the role of other islet cell types in aberrant glycaemia. This article aims to reinforce the importance of investigating T2D signals in cell models reflecting appropriate species, genomic context, developmental time point, and tissue type.

  18. Roles of mTOR Signaling in Brain Development.

    PubMed

    Lee, Da Yong

    2015-09-01

    mTOR is a serine/threonine kinase composed of multiple protein components. Intracellular signaling of mTOR complexes is involved in many of physiological functions including cell survival, proliferation and differentiation through the regulation of protein synthesis in multiple cell types. During brain development, mTOR-mediated signaling pathway plays a crucial role in the process of neuronal and glial differentiation and the maintenance of the stemness of neural stem cells. The abnormalities in the activity of mTOR and its downstream signaling molecules in neural stem cells result in severe defects of brain developmental processes causing a significant number of brain disorders, such as pediatric brain tumors, autism, seizure, learning disability and mental retardation. Understanding the implication of mTOR activity in neural stem cells would be able to provide an important clue in the development of future brain developmental disorder therapies.

  19. Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma

    PubMed Central

    Gilmore, Sarah A.; Voorhies, Mark; Gebhart, Dana; Sil, Anita

    2015-01-01

    Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5’ leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature. PMID:26177267

  20. Genome-Wide Reprogramming of Transcript Architecture by Temperature Specifies the Developmental States of the Human Pathogen Histoplasma.

    PubMed

    Gilmore, Sarah A; Voorhies, Mark; Gebhart, Dana; Sil, Anita

    2015-07-01

    Eukaryotic cells integrate layers of gene regulation to coordinate complex cellular processes; however, mechanisms of post-transcriptional gene regulation remain poorly studied. The human fungal pathogen Histoplasma capsulatum (Hc) responds to environmental or host temperature by initiating unique transcriptional programs to specify multicellular (hyphae) or unicellular (yeast) developmental states that function in infectivity or pathogenesis, respectively. Here we used recent advances in next-generation sequencing to uncover a novel re-programming of transcript length between Hc developmental cell types. We found that ~2% percent of Hc transcripts exhibit 5' leader sequences that differ markedly in length between morphogenetic states. Ribosome density and mRNA abundance measurements of differential leader transcripts revealed nuanced transcriptional and translational regulation. One such class of regulated longer leader transcripts exhibited tight transcriptional and translational repression. Further examination of these dually repressed genes revealed that some control Hc morphology and that their strict regulation is necessary for the pathogen to make appropriate developmental decisions in response to temperature.

  1. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis

    PubMed Central

    Lindström, Nils O.; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J. Martin

    2012-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms’ tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue–tissue interactions guiding multiple developmental processes. PMID:21167960

  2. Plasticity and Maintenance of Hematopoietic Stem Cells During Development

    PubMed Central

    Kanji, Suman; Pompili, Vincent J.; Das, Hiranmoy

    2012-01-01

    Maintenance of hematopoietic stem cells (HSCs) pool depends on fine balance between self-renewal and differentiation of HSCs. HSCs normally reside within the bone marrow niche of an adult mammal. The embryonic development of HSCs is a complex process that involves the migration of developing HSCs in multiple anatomical sites. Throughout the process, developing HSCs receive internal (transcriptional program) and external (HSC niche) signals, which direct them to maintain balance between self-renewal and differentiation, also to generate a pool of HSCs. In physiological condition HSCs differentiate into all mature cell types present in the blood. However, in pathological condition they may differentiate into non-hematological cells according to the need of the body. It was shown that HSCs can transdifferentiate into cell types that do not belong to the hematopoietic system suggests a complete paradigm shift of the hierarchical hematopoietic tree. This review describes the developmental origins and regulation of HSCs focusing on developmental signals that induce the adult hematopoietic stem cell program, as these informations are very critical for manipulating conditions for expansion of HSCs in ex vivo condition. This review also states clinical application and related patents using HSC. PMID:21517745

  3. Embryonic stem cells and prospects for their use in regenerative medicine approaches to motor neurone disease.

    PubMed

    Christou, Y A; Moore, H D; Shaw, P J; Monk, P N

    2007-10-01

    Human embryonic stem cells are pluripotent cells with the potential to differentiate into any cell type in the presence of appropriate stimulatory factors and environmental cues. Their broad developmental potential has led to valuable insights into the principles of developmental and cell biology and to the proposed use of human embryonic stem cells or their differentiated progeny in regenerative medicine. This review focuses on the prospects for the use of embryonic stem cells in cell-based therapy for motor neurone disease or amyotrophic lateral sclerosis, a progressive neurodegenerative disease that specifically affects upper and lower motor neurones and leads ultimately to death from respiratory failure. Stem cell-derived motor neurones could conceivably be used to replace the degenerated cells, to provide authentic substrates for drug development and screening and for furthering our understanding of disease mechanisms. However, to reliably and accurately culture motor neurones, the complex pathways by which differentiation occurs in vivo must be understood and reiterated in vitro by embryonic stem cells. Here we discuss the need for new therapeutic strategies in the treatment of motor neurone disease, the developmental processes that result in motor neurone formation in vivo, a number of experimental approaches to motor neurone production in vitro and recent progress in the application of stem cells to the treatment and understanding of motor neurone disease.

  4. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Patrick; Huang, Tianfang; Broka, Derrick

    2013-10-01

    Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronarymore » smooth muscle cells. In this in vitro study, 18 hour exposure to 1.34 μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34 μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity. - Highlights: • Arsenic blocks TGFβ2 induced expression of EMT genes. • Arsenic blocks TGFβ2 triggered Smad2/3 phosphorylation and nuclear translocation. • Arsenic blocks epicardial cell differentiation into cardiac mesenchyme. • Arsenic does not block TGFβ2 induced smooth muscle cell differentiation.« less

  5. Neuromodulation, development and synaptic plasticity.

    PubMed

    Foehring, R C; Lorenzon, N M

    1999-03-01

    We discuss parallels in the mechanisms underlying use-dependent synaptic plasticity during development and long-term potentiation (LTP) and long-term depression (LTD) in neocortical synapses. Neuromodulators, such as norepinephrine, serotonin, and acetylcholine have also been implicated in regulating both developmental plasticity and LTP/LTD. There are many potential levels of interaction between neuromodulators and plasticity. Ion channels are substrates for modulation in many cell types. We discuss examples of modulation of voltage-gated Ca2+ channels and Ca(2+)-dependent K+ channels and the consequences for neocortical pyramidal cell firing behaviour. At the time when developmental plasticity is most evident in rat cortex, the substrate for modulation is changing as the densities and relative proportions of various ion channels types are altered during ontogeny. We discuss examples of changes in K+ and Ca2+ channels and the consequence for modulation of neuronal activity.

  6. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The migrational patterns and developmental fates of glial precursors in the rat subventricular zone are temporally regulated.

    PubMed

    Levison, S W; Chuang, C; Abramson, B J; Goldman, J E

    1993-11-01

    Postnatal gliogenesis in the rodent forebrain was studied by infecting subventricular zone cells of either neonates or juvenile rats with replication-deficient retroviruses that encode reporter enzymes, enabling the migration and fate of these germinal zone cells to be traced over the ensuing several weeks. Neither neonatal nor juvenile subventricular zone cells migrated substantially along the rostral-caudal axis. Neonatal subventricular zone cells migrated dorsally and laterally into hemispheric gray and white matter and became both astrocytes and oligodendrocytes. Juvenile subventricular zone cells migrated into more medial areas of the subcortical white matter and on occasion appeared in the white matter of the contralateral hemisphere, but rarely migrated into the neocortex. Juvenile subventricular zone cells almost exclusively differentiated into oligodendrocytes. Thus, the migratory patterns and the developmental fates of subventricular zone cells change during the first 2 weeks of life. When either neonatal or juvenile subventricular zone cells were labeled in vivo and then removed and cultured, some generated homogeneous clones that contained either astrocytes with a 'type 1' phenotype or oligodendrocytes, but some generated heterogeneous clones that contained both glial types. These results provide additional evidence for a common progenitor for astrocytes and oligodendrocytes and strongly suggest that temporally and spatially regulated environmental signals control the destiny of glial progenitors during postnatal development.

  8. Action potential broadening in a presynaptic channelopathy

    NASA Astrophysics Data System (ADS)

    Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.

    2016-07-01

    Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.

  9. Cerebellar Development and Disease

    PubMed Central

    Gleeson, Joseph G.

    2008-01-01

    Recent Advances The molecular control of cell type specification within the developing cerebellum as well as the genetic causes of the most common human developmental cerebellar disorders have long remained mysterious. Recent genetic lineage and loss-of-function data from mice have revealed unique and non-overlapping anatomical origins for GABAergic neurons from ventricular zone precursors and glutamatergic cell from rhombic lip precursors, mirroring distinct origins for these neurotransmitter-specific cell types in the cerebral cortex. Mouse studies elucidating the role of Ptf1a as a cerebellar ventricular zone GABerigic fate switch were actually preceded by the recognition that PTF1A mutations in humans cause cerebellar agenesis, a birth defect of the human cerebellum. Indeed, several genes for congenital human cerebellar malformations have recently been identified, including genes causing Joubert syndrome, Dandy-Walker malformation and Ponto-cerebellar hypoplasia. These studies have pointed to surprisingly complex roles for transcriptional regulation, mitochondrial function and neuronal cilia in patterning, homeostasis and cell proliferation during cerebellar development. Together mouse and human studies are synergistically advancing our understanding of the developmental mechanisms that generate the uniquely complex mature cerebellum. PMID:18513948

  10. Insights into electrosensory organ development, physiology and evolution from a lateral line-enriched transcriptome

    PubMed Central

    Modrell, Melinda S; Lyne, Mike; Carr, Adrian R; Zakon, Harold H; Buckley, David; Campbell, Alexander S; Davis, Marcus C; Micklem, Gos; Baker, Clare VH

    2017-01-01

    The anamniote lateral line system, comprising mechanosensory neuromasts and electrosensory ampullary organs, is a useful model for investigating the developmental and evolutionary diversification of different organs and cell types. Zebrafish neuromast development is increasingly well understood, but neither zebrafish nor Xenopus is electroreceptive and our molecular understanding of ampullary organ development is rudimentary. We have used RNA-seq to generate a lateral line-enriched gene-set from late-larval paddlefish (Polyodon spathula). Validation of a subset reveals expression in developing ampullary organs of transcription factor genes critical for hair cell development, and genes essential for glutamate release at hair cell ribbon synapses, suggesting close developmental, physiological and evolutionary links between non-teleost electroreceptors and hair cells. We identify an ampullary organ-specific proneural transcription factor, and candidates for the voltage-sensing L-type Cav channel and rectifying Kv channel predicted from skate (cartilaginous fish) ampullary organ electrophysiology. Overall, our results illuminate ampullary organ development, physiology and evolution. DOI: http://dx.doi.org/10.7554/eLife.24197.001 PMID:28346141

  11. Organization and function of the actin cytoskeleton in developing root cells.

    PubMed

    Blancaflor, Elison B; Wang, Yuh-Shuh; Motes, Christy M

    2006-01-01

    The actin cytoskeleton is a highly dynamic structure, which mediates various cellular functions in large part through accessory proteins that tilt the balance between monomeric G-actin and filamentous actin (F-actin) or by facilitating interactions between actin and the plasma membrane, microtubules, and other organelles. Roots have become an attractive model to study actin in plant development because of their simple anatomy and accessibility of some root cell types such as root hairs for microscopic analyses. Roots also exhibit a remarkable developmental plasticity and possess a delicate sensory system that is easily manipulated, so that one can design experiments addressing a range of important biological questions. Many facets of root development can be regulated by the diverse actin network found in the various root developmental regions. Various molecules impinge on this actin scaffold to define how a particular root cell type grows or responds to a specific environmental signal. Although advances in genomics are leading the way toward elucidating actin function in roots, more significant strides will be realized when such tools are combined with improved methodologies for accurately depicting how actin is organized in plant cells.

  12. Developmental Origin Governs CD8+ T Cell Fate Decisions during Infection.

    PubMed

    Smith, Norah L; Patel, Ravi K; Reynaldi, Arnold; Grenier, Jennifer K; Wang, Jocelyn; Watson, Neva B; Nzingha, Kito; Yee Mon, Kristel J; Peng, Seth A; Grimson, Andrew; Davenport, Miles P; Rudd, Brian D

    2018-06-06

    Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8 + T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8 + T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A discrete model of Drosophila eggshell patterning reveals cell-autonomous and juxtacrine effects.

    PubMed

    Fauré, Adrien; Vreede, Barbara M I; Sucena, Elio; Chaouiya, Claudine

    2014-03-01

    The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.

  14. ETOILE Regulates Developmental Patterning in the Filamentous Brown Alga Ectocarpus siliculosus[W

    PubMed Central

    Le Bail, Aude; Billoud, Bernard; Le Panse, Sophie; Chenivesse, Sabine; Charrier, Bénédicte

    2011-01-01

    Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell–cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell–cell communication during the establishment of the developmental pattern in this brown alga. PMID:21478443

  15. Emergence and patterning of the five cell types of the Zea mays anther locule

    PubMed Central

    Kelliher, Timothy; Walbot, Virginia

    2011-01-01

    One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis, however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium the somatic tissues consist of four concentric cell layers which surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over thirty days of wild type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2′-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain. PMID:21070762

  16. The impairment of HCCS leads to MLS syndrome by activating a non-canonical cell death pathway in the brain and eyes

    PubMed Central

    Indrieri, Alessia; Conte, Ivan; Chesi, Giancarlo; Romano, Alessia; Quartararo, Jade; Tatè, Rosarita; Ghezzi, Daniele; Zeviani, Massimo; Goffrini, Paola; Ferrero, Ileana; Bovolenta, Paola; Franco, Brunella

    2013-01-01

    Mitochondrial-dependent (intrinsic) programmed cell death (PCD) is an essential homoeostatic mechanism that selects bioenergetically proficient cells suitable for tissue/organ development. However, the link between mitochondrial dysfunction, intrinsic apoptosis and developmental anomalies has not been demonstrated to date. Now we provide the evidence that non-canonical mitochondrial-dependent apoptosis explains the phenotype of microphthalmia with linear skin lesions (MLS), an X-linked developmental disorder caused by mutations in the holo-cytochrome c-type synthase (HCCS) gene. By taking advantage of a medaka model that recapitulates the MLS phenotype we demonstrate that downregulation of hccs, an essential player of the mitochondrial respiratory chain (MRC), causes increased cell death via an apoptosome-independent caspase-9 activation in brain and eyes. We also show that the unconventional activation of caspase-9 occurs in the mitochondria and is triggered by MRC impairment and overproduction of reactive oxygen species (ROS). We thus propose that HCCS plays a key role in central nervous system (CNS) development by modulating a novel non-canonical start-up of cell death and provide the first experimental evidence for a mechanistic link between mitochondrial dysfunction, intrinsic apoptosis and developmental disorders. PMID:23239471

  17. Cardiac Development in Zebrafish and Human Embryonic Stem Cells Is Inhibited by Exposure to Tobacco Cigarettes and E-Cigarettes

    PubMed Central

    Palpant, Nathan J.; Hofsteen, Peter; Pabon, Lil; Reinecke, Hans; Murry, Charles E.

    2015-01-01

    Background Maternal smoking is a risk factor for low birth weight and other adverse developmental outcomes. Objective We sought to determine the impact of standard tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Methods Zebrafish (Danio rerio) were used to assess developmental effects in vivo and cardiac differentiation of human embryonic stem cells (hESCs) was used as a model for in vitro cardiac development. Results In zebrafish, exposure to both types of cigarettes results in broad, dose-dependent developmental defects coupled with severe heart malformation, pericardial edema and reduced heart function. Tobacco cigarettes are more toxic than e-cigarettes at comparable nicotine concentrations. During cardiac differentiation of hESCs, tobacco smoke exposure results in a delayed transition through mesoderm. Both types of cigarettes decrease expression of cardiac transcription factors in cardiac progenitor cells, suggesting a persistent delay in differentiation. In definitive human cardiomyocytes, both e-cigarette- and tobacco cigarette-treated samples showed reduced expression of sarcomeric genes such as MLC2v and MYL6. Furthermore, tobacco cigarette-treated samples had delayed onset of beating and showed low levels and aberrant localization of N-cadherin, reduced myofilament content with significantly reduced sarcomere length, and increased expression of the immature cardiac marker smooth muscle alpha-actin. Conclusion These data indicate a negative effect of both tobacco cigarettes and e-cigarettes on heart development in vitro and in vivo. Tobacco cigarettes are more toxic than E-cigarettes and exhibit a broader spectrum of cardiac developmental defects. PMID:25978043

  18. Comprehensive List of Cancer-Related Genetic Variations of the NCI-60 Panel | Center for Cancer Research

    Cancer.gov

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. The panel of cell lines represents nine different types of cancer: breast, ovary, prostate, colon, lung, kidney, brain, leukemia, and melanoma. Originally developed to screen anticancer compounds by the NCI Developmental Therapeutics Program (DTP), the NCI-60 panel has generated

  19. Conditional deletion of SLP-76 in mature T cells abrogates peripheral immune responses1

    PubMed Central

    Wu, Gregory F.; Corbo, Evann; Schmidt, Michelle; Smith-Garvin, Jennifer E.; Riese, Matthew J.; Jordan, Martha S.; Laufer, Terri M.; Brown, Eric J.; Maltzman, Jonathan S.

    2011-01-01

    SUMMARY The adaptor protein Src homology 2 domain-containing leukocyte-specific protein of 76 kDa (SLP-76) is central to the organization of intracellular signaling downstream of the T cell receptor (TCR). Evaluation of its role in mature, primary T cells has been hampered by developmental defects that occur in the absence of wild-type SLP-76 protein in thymocytes. Following tamoxifen-regulated conditional deletion of SLP-76, mature, antigen-inexperienced T cells maintain normal TCR surface expression but fail to transduce TCR generated signals. Conditionally deficient T cells fail to proliferate in response to antigenic stimulation or a lymphopenic environment. Mice with induced deletion of SLP-76 are resistant to induction of the CD4+ T cell mediated autoimmune disease experimental autoimmune encephalomyelitis. Our findings demonstrate the critical role of SLP-76-mediated signaling in initiating T cell-directed immune responses both in vitro and in vivo and highlight the ability to analyze signaling processes in mature T cells in the absence of developmental defects. PMID:21469089

  20. Interordinal chimera formation between medaka and zebrafish for analyzing stem cell differentiation.

    PubMed

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing; Yi, Meisheng; Hong, Yunhan

    2012-08-10

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos.

  1. Interordinal Chimera Formation Between Medaka and Zebrafish for Analyzing Stem Cell Differentiation

    PubMed Central

    Hong, Ni; Chen, Songlin; Ge, Ruowen; Song, Jianxing

    2012-01-01

    Chimera formation is a standard test for pluripotency of stem cells in vivo. Interspecific chimera formation between distantly related organisms offers also an attractive approach for propagating endangered species. Parameters influencing interspecies chimera formation have remained poorly elucidated. Here, we report interordinal chimera formation between medaka and zebrafish, which separated ∼320 million years ago and exhibit a more than 2-fold difference in developmental speed. We show that, on transplantation into zebrafish blastulae, both noncultivated blastomeres and long-term cultivated embryonic stem (ES) cells of medaka adopted the zebrafish developmental program and differentiated into physiologically functional cell types including pigment cells, blood cells, and cardiomyocytes. We also show that medaka ES cells express differentiation gene markers during chimeric embryogenesis. Therefore, the evolutionary distance and different embryogenesis speeds do not produce donor-host incompatibility to compromise chimera formation between medaka and zebrafish, and molecular markers are valuable for analyzing lineage commitment and cell differentiation in interspecific chimeric embryos. PMID:22204449

  2. Transcription factor-mediated reprogramming toward hematopoietic stem cells

    PubMed Central

    Ebina, Wataru; Rossi, Derrick J

    2015-01-01

    De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs. PMID:25712209

  3. Validation of a Candida albicans delayed-type hypersensitivity (DTH) model in female juvenile rats for use in immunotoxicity assessments.

    PubMed

    Collinge, Mark; Thorn, Mitchell; Peachee, Vanessa; White, Kimber

    2013-01-01

    Establishing an in vivo cell-mediated immunity (CMI) assay, such as the delayed-type hypersensitivity (DTH) assay, has been identified as an important gap and recommended to receive highest priority for new model development in several workshops on developmental immunotoxicity. A Candida albicans DTH model has recently been developed that has the advantage over other DTH models, which use alternative sensitizing antigens, in that antigen-specific antibodies, which may interfere with the assay, are not produced. In addition, the in vivo C. albicans DTH model was demonstrated to be more sensitive in detecting immunosuppression than DTH models using keyhole limpet hemocyanin (KLH) or sheep red blood cells as antigens, as well as some ex vivo CMI assays. While KLH and sheep red blood cells are non-physiological immunogens, C. albicans is an important human pathogen. The present studies were conducted in order to optimize and validate the C. albicans DTH model for use in developmental immunotoxicity studies using juvenile rats. Three known immunosuppressive compounds with different mechanisms of action were tested in this model, cyclosprorin A (CsA), cyclophosphamide (CPS), and dexamethasone (DEX). Animals were sensitized with formalin-fixed C. albicans on postnatal day (PND) 28 and challenged with chitosan on PND 38. Drug was administered beginning on PND 23 and continued until PND 37. Exposure to each of the three immunotoxicants resulted in statistically significant decreases in the DTH response to C. albicans-derived chitosan. Decreases in footpad swelling were observed at ≥10 mg CsA/kg/day, ≥5 mg CPS/kg/day, and ≥0.03 mg DEX/kg/day. These results demonstrate that the C. albicans DTH model, optimized for use in juvenile rats, can be used to identify immunotoxic compounds, and fills the need for a sensitive in vivo CMI model for assessments of developmental immunotoxicity. Abbreviations Ab, antibody APC, antigen presenting cell BSA, bovine serum albumin C. albicans, Candida albicans CI, challenge interval CMI, cell-mediated immunity CO, challenge only CPS, cyclophosphamide CsA, cyclosporin A CTL, cytotoxic T lymphocyte DEX, dexamethasone DIT, developmental immunotoxicity DTH, delayed-type hypersensitivity ip, intraperitoneal KLH, keyhole limpet hemocyanin MLR, mixed lymphocyte reaction OVA, ovalbumin PBS, phosphate-buffered saline PND, postnatal day sc, subcutaneous SEM, standard error of the mean SRBC, sheep red blood cells.

  4. Oscillatory Protein Expression Dynamics Endows Stem Cells with Robust Differentiation Potential

    PubMed Central

    Kaneko, Kunihiko

    2011-01-01

    The lack of understanding of stem cell differentiation and proliferation is a fundamental problem in developmental biology. Although gene regulatory networks (GRNs) for stem cell differentiation have been partially identified, the nature of differentiation dynamics and their regulation leading to robust development remain unclear. Herein, using a dynamical system modeling cell approach, we performed simulations of the developmental process using all possible GRNs with a few genes, and screened GRNs that could generate cell type diversity through cell-cell interactions. We found that model stem cells that both proliferated and differentiated always exhibited oscillatory expression dynamics, and the differentiation frequency of such stem cells was regulated, resulting in a robust number distribution. Moreover, we uncovered the common regulatory motifs for stem cell differentiation, in which a combination of regulatory motifs that generated oscillatory expression dynamics and stabilized distinct cellular states played an essential role. These findings may explain the recently observed heterogeneity and dynamic equilibrium in cellular states of stem cells, and can be used to predict regulatory networks responsible for differentiation in stem cell systems. PMID:22073296

  5. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1

    PubMed Central

    Kim, Edward; Wang, Yuan; Kim, Sun-Jung; Bornhorst, Miriam; Jecrois, Emmanuelle S; Anthony, Todd E; Wang, Chenran; Li, Yi E; Guan, Jun-Lin; Murphy, Geoffrey G; Zhu, Yuan

    2014-01-01

    Individuals with neurofibromatosis type 1 (NF1) frequently exhibit cognitive and motor impairments and characteristics of autism. The cerebellum plays a critical role in motor control, cognition, and social interaction, suggesting that cerebellar defects likely contribute to NF1-associated neurodevelopmental disorders. Here we show that Nf1 inactivation during early, but not late stages of cerebellar development, disrupts neuronal lamination, which is partially caused by overproduction of glia and subsequent disruption of the Bergmann glia (BG) scaffold. Specific Nf1 inactivation in glutamatergic neuronal precursors causes premature differentiation of granule cell (GC) precursors and ectopic production of unipolar brush cells (UBCs), indirectly disrupting neuronal migration. Transient MEK inhibition during a neonatal window prevents cerebellar developmental defects and improves long-term motor performance of Nf1-deficient mice. This study reveals essential roles of Nf1 in GC/UBC migration by generating correct numbers of glia and controlling GC/UBC fate-specification/differentiation, identifying a therapeutic prevention strategy for multiple NF1-associcated developmental abnormalities. DOI: http://dx.doi.org/10.7554/eLife.05151.001 PMID:25535838

  6. Evolution of petal epidermal micromorphology in Leguminosae and its use as a marker of petal identity

    PubMed Central

    Ojeda, Isidro; Francisco-Ortega, Javier; Cronk, Quentin C. B.

    2009-01-01

    Background and Aims The legume flower is highly variable in symmetry and differentiation of petal types. Most papilionoid flowers are zygomorphic with three types of petals: one dorsal, two lateral and two ventral petals. Mimosoids have radial flowers with reduced petals while caesalpinioids display a range from strongly zygomorphic to nearly radial symmetry. The aims are to characterize the petal micromorphology relative to flower morphology and evolution within the family and assess its use as a marker of petal identity (whether dorsal, lateral or ventral) as determined by the expression of developmental genes. Methods Petals were analysed using the scanning electron microscope and light microscope. A total of 175 species were studied representing 26 tribes and 89 genera in all three subfamilies of the Leguminosae. Key Results The papilionoids have the highest degree of variation of epidermal types along the dorsiventral axis within the flower. In Loteae and genistoids, in particular, it is common for each petal type to have a different major epidermal micromorphology. Papillose conical cells are mainly found on dorsal and lateral petals. Tabular rugose cells are mainly found on lateral petals and tabular flat cells are found only in ventral petals. Caesalpinioids lack strong micromorphological variation along this axis and usually have only a single major epidermal type within a flower, although the type maybe either tabular rugose cells, papillose conical cells or papillose knobby rugose cells, depending on the species. Conclusions Strong micromorphological variation between different petals in the flower is exclusive to the subfamily Papilionoideae. Both major and minor epidermal types can be used as micromorphological markers of petal identity, at least in papilionoids, and they are important characters of flower evolution in the whole family. The molecular developmental pathway between specific epidermal micromorphology and the expression of petal identity genes has yet to be established. PMID:19789174

  7. Parsing Stem Cell Lineage Development Using High Content Image Analysis of Epigenetic Spatial Markers.

    PubMed

    Kim, Joseph J; Moghe, Prabhas V

    2018-06-14

    This unit describes a protocol for acquiring and analyzing high-content super-resolution images of human stem cell nuclei for the characterization and classification of the cell differentiation paths based on distinct patterns of epigenetic mark organization. Here, we describe the cell culture, immunocytochemical labeling, super-resolution imaging parameters, and MATLAB-based quantitative image analysis approaches for monitoring human mesenchymal stem cells (hMSCs) and human induced pluripotent stem cells (hiPSCs) as the cells differentiate towards various lineages. Although this protocol uses specific cell types as examples, this approach could be easily extended to a variety of cell types and nuclear epigenetic and mechanosensitive biomarkers that are relevant to specific cell developmental scenarios. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.

  8. Ontogeny of tick hemocytes: a comparative analysis of Ixodes ricinus and Ornithodoros moubata.

    PubMed

    Borovicková, Barbara; Hypsa, Václav

    2005-01-01

    Hemocytes of two tick species, Ixodes ricinus and Ornithodoros moubata, were investigated with the aim to determine their ultrastructural characteristics and developmental relationships. Only a limited number of ultrastructural features was shown to be unequivocally homological across all hemocyte types. The two species, representing distant groups of ticks, differ in the composition of their circular cell populations. In I. ricinus, three groups of distinct morphological types of hemocytes could be determined according to well-defined ultrastructural features: a typical non-phagocytic granular cell with electron-dense granula and homogeneous cytoplasm (Gr II), and two different types of phagocytic hemocytes, namely plasmatocytes with a low number of granula and phagocytic granolocytes, designated as Gr I. In contrast, an additional cell type resembling insect spherulocytes was determined in O. moubata. This cell type does not seem to be homologous to any I. ricinus hemocyte and may represent a cell type typical of soft ticks only. Possible ontogenetic lineages of the hemocytes of both tick-species were inferred.

  9. Cerebellum: links between development, developmental disorders and motor learning

    PubMed Central

    Manto, Mario U.; Jissendi, Patrice

    2012-01-01

    The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remodeling are being unraveled. Advances in genetics have led to major improvements in our appraisal of the genes involved in cerebellar development, especially studies in mutant mice. Cerebellar neurogenesis is compartmentalized in relationship with neurotransmitter fate. The Engrailed-2 gene is a major actor of the specification of cerebellar cell types and late embryogenic morphogenesis. Math1, expressed by the rhombic lip, is required for the genesis of glutamatergic neurons. Mutants deficient for the transcription factor Ptf1a display a lack of Purkinje cells and gabaergic interneurons. Rora gene contributes to the developmental signaling between granule cells and Purkinje neurons. The expression profile of sonic hedgehog in postnatal stages determines the final size/shape of the cerebellum. Genes affecting the development impact upon the physiological properties of the cerebellar circuits. For instance, receptors are developmentally regulated and their action interferes directly with developmental processes. Another field of research which is expanding relates to very preterm neonates. They are at risk for cerebellar lesions, which may themselves impair the developmental events. Very preterm neonates often show sensori-motor deficits, highlighting another major link between impaired developments and learning deficiencies. Pathways playing a critical role in cerebellar development are likely to become therapeutical targets for several neurodevelopmental disorders. PMID:22291620

  10. Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm.

    PubMed

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L

    2015-07-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. The mammalian ear also develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Development of the OC from a uniform sheet of ectoderm requires unparalleled precision in the topological developmental engineering of four different general cell types, namely sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. Moreover, the OC receives unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents and requires neural-crest-derived Schwann cells to form myelin and neural-crest-derived cells to induce the stria vascularis. This transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGNs), while simultaneously transforming the flat epithelium into a tube, the cochlear duct, housing the OC. In addition to the cellular and conformational changes forming the cochlear duct with the OC, changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. We review molecular developmental data, generated predominantly in mice, in order to integrate the well-described expression changes of transcription factors and their actions, as revealed in mutants, in the formation of SGNs and OC in the correct position and orientation with suitable innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge might guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body for the reconstitution of hearing in a rapidly growing population of aging people suffering from hearing loss.

  11. Potential Role for ADAM15 in Pathological Neovascularization in Mice

    PubMed Central

    Horiuchi, Keisuke; Weskamp, Gisela; Lum, Lawrence; Hammes, Hans-Peter; Cai, Hui; Brodie, Thomas A.; Ludwig, Thomas; Chiusaroli, Riccardo; Baron, Roland; Preissner, Klaus T.; Manova, Katia; Blobel, Carl P.

    2003-01-01

    ADAM15 (named for a disintegrin and metalloprotease 15, metargidin) is a membrane-anchored glycoprotein that has been implicated in cell-cell or cell-matrix interactions and in the proteolysis of molecules on the cell surface or extracellular matrix. To characterize the potential roles of ADAM15 during development and in adult mice, we analyzed its expression pattern by mRNA in situ hybridization and generated mice carrying a targeted deletion of ADAM15 (adam15−/− mice). A high level of expression of ADAM15 was found in vascular cells, the endocardium, hypertrophic cells in developing bone, and specific areas of the hippocampus and cerebellum. However, despite the pronounced expression of ADAM15 in these tissues, no major developmental defects or pathological phenotypes were evident in adam15−/− mice. The elevated levels of ADAM15 in endothelial cells prompted an evaluation of its role in neovascularization. In a mouse model for retinopathy of prematurity, adam15−/− mice had a major reduction in neovascularization compared to wild-type controls. Furthermore, the size of tumors resulting from implanted B16F0 mouse melanoma cells was significantly smaller in adam15−/− mice than in wild-type controls. Since ADAM15 does not appear to be required for developmental angiogenesis or for adult homeostasis, it may represent a novel target for the design of inhibitors of pathological neovascularization. PMID:12897135

  12. Cannabinoid receptor signaling in progenitor/stem cell proliferation and differentiation.

    PubMed

    Galve-Roperh, Ismael; Chiurchiù, Valerio; Díaz-Alonso, Javier; Bari, Monica; Guzmán, Manuel; Maccarrone, Mauro

    2013-10-01

    Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Control of the proportion of inner cells by asymmetric divisions and the ensuing resilience of cloned rabbit embryos

    PubMed Central

    Duranthon, Véronique

    2018-01-01

    ABSTRACT Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. PMID:29567671

  14. Cell fate control in the developing central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatmentsmore » of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.« less

  15. Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex

    PubMed Central

    Hrvatin, Sinisa; Hochbaum, Daniel R.; Nagy, M. Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M.; Sabatini, Bernardo L.; Greenberg, Michael E.

    2017-01-01

    Activity-dependent transcriptional responses shape cortical function. However, we lack a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease. Here we applied high-throughput single-cell RNA-sequencing to investigate the breadth of transcriptional changes that occur across cell types in mouse visual cortex following exposure to light. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibit inter- and intra-laminar heterogeneity in the induction of stimulus responsive genes. Non-neuronal cells demonstrated clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of stimulus-dependent transcriptional changes that occur across cell types in visual cortex, which are likely critical for cortical function and may be sites of de-regulation in developmental brain disorders. PMID:29230054

  16. Development and spindle formation in rat somatic cell nuclear transfer (SCNT) embryos in vitro using porcine recipient oocytes.

    PubMed

    Sugawara, Atsushi; Sugimura, Satoshi; Hoshino, Yumi; Sato, Eimei

    2009-08-01

    Cloning that uses somatic cell nuclear transfer (SCNT) technology with gene targeting could be a potential alternative approach to obtain valuable rat models. In the present study, we determined the developmental competence of rat SCNT embryos constructed using murine and porcine oocytes at metaphase II (MII). Further, we assessed the effects of certain factors, such as: (i) the donor cell type (fetal fibroblasts or cumulus cells); and (ii) premature chromosome condensation (PCC) with normal spindle formation, on the developmental competence of rat interspecies SCNT (iSCNT) embryos. iSCNT embryos that had been constructed using porcine oocytes developed to the blastocyst stage, while those embryos made using murine MII oocytes did not. Rat iSCNT embryos constructed with green fluorescent protein (GFP)-expressing fetal fibroblasts injected into porcine oocytes showed considerable PCC with a normal bipolar spindle formation. The total cell number of iSCNT blastocyst derived from GFP-expressing fetal fibroblasts was higher than the number derived from cumulus cells. In addition, these embryos expressed GFP at the blastocyst stage. This paper is the first report to show that rat SCNT embryos constructed using porcine MII oocytes have the potential to develop to the blastocyst stage in vitro. Thus the iSCNT technique, when performed using porcine MII oocytes, could provide a new bioassay system for the evaluatation of the developmental competence of rat somatic cells.

  17. Development of A-type allatostatin immunoreactivity in antennal lobe neurons of the sphinx moth Manduca sexta.

    PubMed

    Utz, Sandra; Schachtner, Joachim

    2005-04-01

    The antennal lobe (AL) of the sphinx moth Manduca sexta is a well-established model system for studying mechanisms of neuronal development. To understand whether neuropeptides are suited to playing a role during AL development, we have studied the cellular localization and temporal expression pattern of neuropeptides of the A-type allatostatin family. Based on morphology and developmental appearance, we distinguished four types of AST-A-immunoreactive cell types. The majority of the cells were local interneurons of the AL (type Ia) which acquired AST-A immunostaining in a complex pattern consisting of three rising (RI-RIII) and two declining phases (DI, DII). Type Ib neurons consisted of two local neurons with large cell bodies not appearing before 7/8 days after pupal ecdysis (P7/P8). Types II and III neurons accounted for single centrifugal neurons, with type II neurons present in the larva and disappearing in the early pupa. The type III neuron did not appear before P7/P8. RI and RII coincided with the rises of the ecdysteroid hemolymph titer. Artificially shifting the pupal 20-hydroxyecdysone (20E) peak to an earlier developmental time point resulted in the precocious appearance of AST-A immunostaining in types Ia, Ib, and III neurons. This result supports the hypothesis that the pupal rise in 20E plays a role in AST-A expression during AL development. Because of their early appearance in newly forming glomeruli, AST-A-immunoreactive fibers could be involved in glomerulus formation. Diffuse AST-A labeling during early AL development is discussed as a possible signal providing information for ingrowing olfactory receptor neurons.

  18. Cells in human milk: state of the science.

    PubMed

    Hassiotou, Foteini; Geddes, Donna T; Hartmann, Peter E

    2013-05-01

    Reflecting millions of years of adaptation and optimization, milk is unique to the species that produces it and for the young of which it is intended, with large variations in both lactation strategies and milk composition existing among different mammalian species. Despite this, milk has the consistent function of providing nourishment, protection, and developmental programming to the young, with short- and long-term effects. Among its components that confer these functions, breast milk contains maternal cells, from leukocytes to epithelial cells of various developmental stages that include stem cells, progenitor cells, lactocytes, and myoepithelial cells. Although in the first 150 years since their discovery, breast milk cells were mostly studied for their morphological traits, technological advances in the last decade have allowed characterization of breast milk cell types at the protein and messenger RNA levels. This is now paving the way for investigation of the functions of these cells in the breastfed infant and the use of breast milk as a tool to understand the normal biology of the breast and its pathologies. This review summarizes the current knowledge of breast milk cellular heterogeneity and discusses future prospects and potential applications.

  19. Congenital hypoplasia of the cerebellum: developmental causes and behavioral consequences

    PubMed Central

    Basson, M. Albert; Wingate, Richard J.

    2013-01-01

    Over the last 60 years, the spotlight of research has periodically returned to the cerebellum as new techniques and insights have emerged. Because of its simple homogeneous structure, limited diversity of cell types and characteristic behavioral pathologies, the cerebellum is a natural home for studies of cell specification, patterning, and neuronal migration. However, recent evidence has extended the traditional range of perceived cerebellar function to include modulation of cognitive processes and implicated cerebellar hypoplasia and Purkinje neuron hypo-cellularity with autistic spectrum disorder. In the light of this emerging frontier, we review the key stages and genetic mechanisms behind cerebellum development. In particular, we discuss the role of the midbrain hindbrain isthmic organizer in the development of the cerebellar vermis and the specification and differentiation of Purkinje cells and granule neurons. These developmental processes are then considered in relation to recent insights into selected human developmental cerebellar defects: Joubert syndrome, Dandy–Walker malformation, and pontocerebellar hypoplasia. Finally, we review current research that opens up the possibility of using the mouse as a genetic model to study the role of the cerebellum in cognitive function. PMID:24027500

  20. Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion.

    PubMed

    Gage, P J; Roller, M L; Saunders, T L; Scarlett, L M; Camper, S A

    1996-01-01

    The Ames dwarf mouse transmits a recessive mutation (df) resulting in a profound anterior pituitary hypocellularity due to a general lack of thyrotropes, somatotropes and lactotropes. These cell types are also dependent on the pituitary-specific transcription factor, Pit-1. We present evidence that expression of Pit-1 and limited commitment to these cells lineages occurs in df/df pituitaries. Thus, the crucial role of df may be in lineage-specific proliferation, rather than cytodifferentiation. The presence of all three Pit-1-dependent cell types in clonally derived clusters provides compelling evidence that these three lineages share a common, pluripotent precursor cell. Clusters containing different combinations of Pit-1-dependent cell types suggests that the Pit-1+ precursor cells choose from multiple developmental options during ontogeny. Characterization of df/df<-->+/+ chimeric mice demonstrated that df functions by a cell-autonomous mechanism. Therefore, df and Pit-1 are both cell-autonomous factors required for thyrotrope, somatotrope and lactotrope ontogeny, but their relative roles are different.

  1. The Adaptor Protein SAP Regulates Type II NKT Cell Development, Cytokine Production and Cytotoxicity Against Lymphoma1

    PubMed Central

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L.; Stein, Paul L.; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule-associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT cell TCR transgenic mouse model (24αβTg), we demonstrated that CD1d-expressing hematopoietic cells but not thymic epithelial cells meditate efficient selection of type II NKT cells. Further, we showed that SAP regulates type II NKT cell development by controlling Egr2 and PLZF expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IRF4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. PMID:25236978

  2. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    PubMed

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering.

    PubMed

    Pascalie, Jonathan; Potier, Martin; Kowaliw, Taras; Giavitto, Jean-Louis; Michel, Olivier; Spicher, Antoine; Doursat, René

    2016-08-19

    Synthetic biology is an emerging scientific field that promotes the standardized manufacturing of biological components without natural equivalents. Its goal is to create artificial living systems that can meet various needs in health care or energy domains. While most works are focused on the individual bacterium as a chemical reactor, our project, SynBioTIC, addresses a novel and more complex challenge: shape engineering; that is, the redesign of natural morphogenesis toward a new kind of developmental 3D printing. Potential applications include organ growth, natural computing in biocircuits, or future vegetal houses. To create in silico multicellular organisms that exhibit specific shapes, we construe their development as an iterative process combining fundamental collective phenomena such as homeostasis, patterning, segmentation, and limb growth. Our numerical experiments rely on the existing Escherichia coli simulator Gro, a physicochemical computation platform offering reaction-diffusion and collision dynamics solvers. The synthetic bioware of our model executes a set of rules, or genome, in each cell. Cells can differentiate into several predefined types associated with specific actions (divide, emit signal, detect signal, die). Transitions between types are triggered by conditions involving internal and external sensors that detect various protein levels inside and around the cell. Indirect communication between bacteria is relayed by morphogen diffusion and the mechanical constraints of 2D packing. Starting from a single bacterium, the overall architecture emerges in a purely endogenous fashion through a series of developmental stages, inlcuding proliferation, differentiation, morphogen diffusion, and synchronization. The genome can be parametrized to control the growth and features of appendages individually. As exemplified by the L and T shapes that we obtain, certain precursor cells can be inhibited while others can create limbs of varying size (divergence of the homology). Such morphogenetic phenotypes open the way to more complex shapes made of a recursive array of core bodies and limbs and, most importantly, to an evolutionary developmental exploration of unplanned functional forms.

  4. Ontogeny and function of murine epidermal Langerhans cells.

    PubMed

    Kaplan, Daniel H

    2017-09-19

    Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.

  5. Studies of teratomas in mice: possibilities for the future production of animal models.

    PubMed Central

    Lehman, J. M.

    1980-01-01

    The murine teratoma-teratocarcinoma has become an interesting model for the study of neoplastic transformation, developmental biology, and possibly a useful system for genetic studies. These tumors arise spontaneously in 129 strain mice and can be induced in other strains by transplanting early embryos or portions of embryos into extrauterine sites. The majority of these tumors are benign, but some are capable of transplantation due to the presence of the stem cell, embryonal carcinoma, which is a multipotential cell able to proliferate and also differentiate into tissues and cell types representative of all the embryonic germ layers. It has been elegantly shown by transplantation of embryonal carcinoma cells into blastocysts which are then placed into a pseudopregnant mouse that a normal mouse is obtained composed of cells from the host blastocyst and also cells from the malignant embryonal carcinoma. Therefore, under this set of circumstances, embryonal carcinoma cells are induced to functionally differentiate into multiple cell and tissue types which are benign and able to contribute to the development of a mouse. The adaptation of the embryonal carcinoma cell to tissue culture has allowed the manipulation of these cells with subsequent selection of mutant cells which can be further transplanted into blastocysts to obtain a mouse which contains these mutant cells. If the mutant cells have populated the germ line, it may be possible to obtain a stock of mice with the lesion present in all cells. This system may be exploitable for studies in neoplasia, developmental biology, and with proper selection procedures, allow the development of new genetic strains of mice. PMID:7457573

  6. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing.

    PubMed

    Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J

    2015-05-01

    Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.

  7. Cytokinin-auxin crosstalk in cell type specification.

    PubMed

    Chandler, John William; Werr, Wolfgang

    2015-05-01

    Auxin and cytokinin affect cell fate specification transcriptionally and non-transcriptionally, and their roles have been characterised in several founder cell specification and activation contexts. Similarly to auxin, local cytokinin synthesis and response gradients are instructive, and the roles of ARABIDOPSIS RESPONSE REGULATOR 7/15 (ARR7/15) and the negative cytokinin response regulator ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6, as well as auxin signalling via MONOPTEROS/BODENLOS, are functionally conserved across different developmental processes. Auxin and cytokinin crosstalk is tissue- and context-specific, and may be synergistic in the shoot apical meristem (SAM) but antagonistic in the root. We review recent advances in understanding the interactions between auxin and cytokinin in pivotal developmental processes, and show that feedback complexity and the multistep nature of specification processes argue against a single morphogenetic signal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs

    PubMed Central

    Bard, Jonathan B. L.

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/. PMID:22347883

  9. The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs.

    PubMed

    Bard, Jonathan B L

    2012-01-01

    This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/.

  10. A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.

    PubMed

    Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad

    2017-01-05

    During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/β-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Developmental palaeobiology of trilobite eyes and its evolutionary significance

    NASA Astrophysics Data System (ADS)

    Thomas, A. T.

    2005-06-01

    Understanding of the calcified composite eyes of trilobites, the oldest preserved visual system, has advanced greatly in recent decades. Three types of trilobite eye occur, the more derived abathochroal and schizochroal types having evolved neotenically from holochroal eyes. Comparative morphology and phylogenetic considerations suggest that all three eye-types were underlain by common developmental systems. So far, understanding of these systems has been based entirely on morphological data from fossils, particularly the way the visual surface grew and the patterning of lens emplacement. Lenses characteristically form a hexagonal array comprising horizontal rows and, conspicuously in schizochroal eyes, dorso-ventral files. Because individual trilobites sometimes have eyes with different numbers of files, file number must reflect the operation of a developmental programme rather than being under immediate genetic control. An empirical developmental model has been devised to describe trilobite eye development, with separate rules dealing with the initiation of lens emplacement, growth and differentiation of the visual surface, and the termination of lens emplacement. Rarely, trilobites may have visual surfaces of normal size, but which lack lenses. This confirms that visual surface growth must have been regulated separately from lens emplacement, and is a feature that cannot be accounted for by the existing developmental model. Such a developmental separation is one of a number of similarities shared with Drosophila, the modern arthropod in which eye development is best understood. Many aspects of eye development are conserved in the Euarthropoda, and in bilaterian metazoans in general. A revised model for trilobite eye development is proposed using extant phylogenetic bracketing, interpreting morphological data from the fossils in the context of the hierarchy of developmental controls now becoming known from living animals. This new model suggests that overall eye shape and size did not require differential growth of the generative zone, as previously thought, and that no separate instruction was needed to specify the termination of lens emplacement. Instead, these features were regulated directly, by controlling the proliferation of cells making up the nascent visual surface. A process documented from Drosophila, which involves the selective inhibition of cells in front of a wave-like front of differentiation, and that is regulated by widely conserved genes, can be used to explain how the trilobite visual surface became differentiated. The model implies also that changes in hormonally regulated developmental pathways known from recent arthropods may have been responsible for the development of abathochroal and schizochroal eyes, and for heterochronic secondary eye reduction and blindness in trilobites.

  12. The Yin and Yang of YY1 in the nervous system

    PubMed Central

    He, Ye; Casaccia-Bonnefil, Patrizia

    2008-01-01

    The transcription factor Yin Yang 1 (YY1) is a multifunctional protein that can activate or repress gene expression depending on the cellular context. YY1 is ubiquitously expressed and highly conserved between species. However its role varies in diverse cell types and includes proliferation, differentiation and apoptosis. This review will focus on the function of YY1 in the nervous system including its role in neural development, neuronal function, developmental myelination and neurological disease. The multiple functions of YY1 in distinct cell types are reviewed and the possible mechanisms underlying the cell specificity for these functions are discussed. PMID:18485096

  13. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    PubMed Central

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  14. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    PubMed Central

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  15. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review.

    PubMed

    Taatjes, Douglas J; Roth, Jürgen

    2016-03-01

    We provide here our annual review/synopsis of all of the articles published in Histochemistry and Cell Biology (HCB) for the preceding year. In 2015, HCB published 102 articles, representing a wide variety of topics and methodologies. For ease of access to these differing topics, we have created categories, as determined by the types of articles presented to provide a quick index representing the general areas covered. This year, these categories include: (1) advances in methodologies; (2) molecules in health and disease; (3) organelles, subcellular structures, and compartments; (4) the nucleus; (5) stem cells and tissue engineering; (6) cell cultures: properties and capabilities; (7) connective tissues and extracellular matrix; (8) developmental biology; (9) nervous system; (10) musculoskeletal system; (11) respiratory and cardiovascular system; (12) liver and gastrointestinal tract; and (13) male and female reproductive systems. Of note, the categories proceed from methods development, to molecules, intracellular compartments, stem cells and cell culture, extracellular matrix, developmental biology, and finishing with various organ systems, hopefully presenting a logical journey from methods to organismal molecules, cells, and whole tissue systems.

  16. IL-21: an executor of B cell fate.

    PubMed

    Konforte, Danijela; Simard, Nathalie; Paige, Christopher J

    2009-02-15

    IL-21 is a type I cytokine that shares the common receptor gamma-chain with IL-2, IL-4, IL-7, IL-9, and IL-15. B cells are one of the lymphoid cell types whose development and function are regulated by IL-21. Depending on the interplay with costimulatory signals and on the developmental stage of a B cell, IL-21 can induce proliferation, differentiation into Ig-producing plasma cells, or apoptosis in both mice and humans. Alone and in combination with Th cell-derived cytokines IL-21 can regulate class switch recombination to IgG, IgA, or IgE isotypes, indicating its important role in shaping the effector function of B cells. This review highlights the role of IL-21 in B cell development, function, and disease and provides some perspectives on the future studies in this area.

  17. Alternative splicing and the evolution of phenotypic novelty.

    PubMed

    Bush, Stephen J; Chen, Lu; Tovar-Corona, Jaime M; Urrutia, Araxi O

    2017-02-05

    Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'. © 2016 The Author(s).

  18. Alternative splicing and the evolution of phenotypic novelty

    PubMed Central

    Bush, Stephen J.; Chen, Lu; Tovar-Corona, Jaime M.

    2017-01-01

    Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’. PMID:27994117

  19. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine.

    PubMed

    Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei

    2015-11-01

    Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine. © 2015 AlphaMed Press.

  20. TGFbeta type II receptor signaling controls Schwann cell death and proliferation in developing nerves.

    PubMed

    D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R

    2006-08-16

    During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.

  1. Ultrastructural evidence of the ehrlichial developmental cycle in naturally infected Ixodes persulcatus ticks in the course of coinfection with Rickettsia, Borrelia, and a flavivirus.

    PubMed

    Popov, Vsevolod L; Korenberg, Edward I; Nefedova, Valentina V; Han, Violet C; Wen, Julie W; Kovalevskii, Yurii V; Gorelova, Natalia B; Walker, David H

    2007-01-01

    Ehrlichiae are small gram-negative obligately intracellular bacteria that multiply within vacuoles of their host cells and are associated for a part of their life cycle with ticks, which serve as vectors for vertebrate hosts. Two morphologically and physiologically different ehrlichial cell types, reticulate cells (RC) and dense-cored cells (DC), are observed during experimental infection of cell cultures, mice, and ticks. Dense-cored cells and reticulate cells in vertebrate cell lines alternate in a developmental cycle. We observed ultrastructure of RC and DC of Ehrlichia muris in morulae in salivary gland cells and coinfection with Borrelia burgdorferi sensu lato (sl), "Candidatus Rickettsia tarasevichiae," and a flavivirus (presumably, tick-borne encephalitis virus [TBEV]) of Ixodes persulcatusticks collected in the Cis-Ural region of Russia. Polymerase chain reaction revealed 326 (81.5%) of 400 ticks carrying at least one infectious agent, and 41.5% (166 ticks) were coinfected with two to four agents. Ehrlichiae and rickettsiae were identified by sequencing of 359 bp of the 16S rRNA gene of E. muris and of 440 bp of the 16S rRNA gene and 385 bp of the gltA gene of "R. tarasevichiae." Different organs of the same tick harbored different microorganisms: TBEV in salivary gland and borreliae in midgut; E. muris in salivary gland; and "R. tarasevichiae" in midgut epithelium. Salivary gland cells contained both RC and DC, a finding that confirmed the developmental cycle in naturally infected ticks. Dense-cored cells in tick salivary glands were denser and of more irregular shape than DC in cell cultures. Ehrlichia-infected salivary gland cells had lysed cytoplasm, suggesting pathogenicity of E. muris for the tick host at the cellular level, as well as potential transmission during feeding. Rickettsiae in the midgut epithelial cells multiplied to significant numbers without altering the host cell ultrastructure. This is the first demonstration of E. muris, "R. tarasevichiae," and the ehrlichial developmental cycle in naturally infected I. persulcatus sticks.

  2. A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates

    PubMed Central

    Joly, Jean-Stéphane; Recher, Gaelle; Brombin, Alessandro; Ngo, Kathy; Hartenstein, Volker

    2016-01-01

    The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar ‘conveyor belt neurogenesis’ could play an essential role in generating the topographically ordered circuitry of the visual system. PMID:27780043

  3. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism

    PubMed Central

    Willsey, A. Jeremy; Sanders, Stephan J.; Li, Mingfeng; Dong, Shan; Tebbenkamp, Andrew T.; Muhle, Rebecca A.; Reilly, Steven K.; Lin, Leon; Fertuzinhos, Sofia; Miller, Jeremy A.; Murtha, Michael T.; Bichsel, Candace; Niu, Wei; Cotney, Justin; Ercan-Sencicek, A. Gulhan; Gockley, Jake; Gupta, Abha; Han, Wenqi; He, Xin; Hoffman, Ellen; Klei, Lambertus; Lei, Jing; Liu, Wenzhong; Liu, Li; Lu, Cong; Xu, Xuming; Zhu, Ying; Mane, Shrikant M.; Lein, Edward S.; Wei, Liping; Noonan, James P.; Roeder, Kathryn; Devlin, Bernie; Šestan, Nenad; State, Matthew W.

    2013-01-01

    SUMMARY Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD “seed” genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology. PMID:24267886

  4. Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus

    PubMed Central

    Dodson, Paul D.; Larvin, Joseph T.; Duffell, James M.; Garas, Farid N.; Doig, Natalie M.; Kessaris, Nicoletta; Duguid, Ian C.; Bogacz, Rafal; Butt, Simon J.B.; Magill, Peter J.

    2015-01-01

    Summary Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets. PMID:25843402

  5. Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation

    PubMed Central

    Lanza, Denise G.; Dawson, Emily P.; Rao, Priya; Heaney, Jason D.

    2016-01-01

    ABSTRACT Testicular teratomas result from anomalies in embryonic germ cell development. In the 129 family of inbred mouse strains, teratomas arise during the same developmental period that male germ cells normally enter G1/G0 mitotic arrest and female germ cells initiate meiosis (the mitotic:meiotic switch). Dysregulation of this switch associates with teratoma susceptibility and involves three germ cell developmental abnormalities seemingly critical for tumor initiation: delayed G1/G0 mitotic arrest, retention of pluripotency, and misexpression of genes normally restricted to embryonic female and adult male germ cells. One misexpressed gene, cyclin D1 (Ccnd1), is a known regulator of cell cycle progression and an oncogene in many tissues. Here, we investigated whether Ccnd1 misexpression in embryonic germ cells is a determinant of teratoma susceptibility in mice. We found that CCND1 localizes to teratoma-susceptible germ cells that fail to enter G1/G0 arrest during the mitotic:meiotic switch and is the only D-type cyclin misexpressed during this critical developmental time frame. We discovered that Ccnd1 deficiency in teratoma-susceptible mice significantly reduced teratoma incidence and suppressed the germ cell proliferation and pluripotency abnormalities associated with tumor initiation. Importantly, Ccnd1 expression was dispensable for somatic cell development and male germ cell specification and maturation in tumor-susceptible mice, implying that the mechanisms by which Ccnd1 deficiency reduced teratoma incidence were germ cell autonomous and specific to tumorigenesis. We conclude that misexpression of Ccnd1 in male germ cells is a key component of a larger pro-proliferative program that disrupts the mitotic:meiotic switch and predisposes 129 inbred mice to testicular teratocarcinogenesis. PMID:26901436

  6. Chronology of endocrine differentiation and beta-cell neogenesis.

    PubMed

    Miyatsuka, Takeshi

    2016-01-01

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.

  7. Klf4 reverts developmentally programmed restriction of ground state pluripotency

    PubMed Central

    Guo, Ge; Yang, Jian; Nichols, Jennifer; Hall, John Simon; Eyres, Isobel; Mansfield, William; Smith, Austin

    2009-01-01

    Summary Mouse embryonic stem (ES) cells derived from pluripotent early epiblast contribute functionally differentiated progeny to all foetal lineages of chimaeras. By contrast, epistem cell (EpiSC) lines from post-implantation epithelialised epiblast are unable to colonise the embryo even though they express the core pluripotency genes Oct4, Sox2 and Nanog. We examined interconversion between these two cell types. ES cells can readily become EpiSCs in response to growth factor cues. By contrast, EpiSCs do not change into ES cells. We exploited PiggyBac transposition to introduce a single reprogramming factor, Klf4, into EpiSCs. No effect was apparent in EpiSC culture conditions, but in ground state ES cell conditions a fraction of cells formed undifferentiated colonies. These EpiSC-derived induced pluripotent stem (Epi-iPS) cells activated expression of ES cell-specific transcripts including endogenous Klf4, and downregulated markers of lineage specification. X chromosome silencing in female cells, a feature of the EpiSC state, was erased in Epi-iPS cells. They produced high-contribution chimaeras that yielded germline transmission. These properties were maintained after Cre-mediated deletion of the Klf4 transgene, formally demonstrating complete and stable reprogramming of developmental phenotype. Thus, re-expression of Klf4 in an appropriate environment can regenerate the naïve ground state from EpiSCs. Reprogramming is dependent on suppression of extrinsic growth factor stimuli and proceeds to completion in less than 1% of cells. This substantiates the argument that EpiSCs are developmentally, epigenetically and functionally differentiated from ES cells. However, because a single transgene is the minimum requirement to attain the ground state, EpiSCs offer an attractive opportunity for screening for unknown components of the reprogramming process. PMID:19224983

  8. Molecular markers for X-ray-insensitive differentiated cells in the Inner and outer regions of the mesenchymal space in planarian Dugesia japonica.

    PubMed

    Teramoto, Machiko; Kudome-Takamatsu, Tomomi; Nishimura, Osamu; An, Yang; Kashima, Makoto; Shibata, Norito; Agata, Kiyokazu

    2016-09-01

    Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X-ray-sensitive and proliferative stem cells. In addition to neoblasts, another type of X-ray-sensitive cells was newly identified by recent research. Thus, planarian's X-ray-sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined "neoblasts". Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X-ray-sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments. © 2016 Japanese Society of Developmental Biologists.

  9. Independent replication of mitochondrial genes supports the transcriptional program in developing fiber cells of cotton (Gossypium hirsutum L.).

    PubMed

    Thyssen, Gregory N; Song, Xianliang; Naoumkina, Marina; Kim, Hee-Jin; Fang, David D

    2014-07-01

    The mitochondrial genomes of flowering plants exist both as a "master circle" chromosome and as numerous subgenomic sublimons that are generated by intramolecular recombination. Differential stability or replication of these sublimons allows individual mitochondrial gene copy numbers to vary independently between different cell types and developmental stages. Our objective was to determine the relationship between mitochondrial gene copy number and transcript abundance in the elongating fiber cells of Upland cotton (Gossypium hirsutum L.). We compared RNA and DNA from cotton fiber cells at five developmental time points from early elongation through secondary cell wall thickening from the Ligon-lintless 2 (Li2) short fiber mutant and its wild type near isogenic line (NIL) DP5690. Mitochondrial gene copy number decreased from 3 to 8-DPA in the developing cotton fiber cells while transcript levels remained low. As secondary cell wall biosynthesis began in developing fibers, the expression levels and copy numbers of mitochondrial genes involved in energy production and respiration were up-regulated in wild type cotton DP5690. However, the short fiber mutant Li2, failed to increase expression of these genes, which include three subunits of ATP synthase, atp1, atp8 and atp9 and two cytochrome genes cox1 and cob. At the same time, Li2 failed to increase the copy numbers of these highly expressed genes. Surprisingly, we found that when mitochondrial genes were highly transcribed, they also had very high copy numbers. This observation suggests that in developing cotton fibers, increased mitochondrial sublimon replication may support increases in gene transcription. Published by Elsevier B.V.

  10. Development and steroid regulation of RFamide immunoreactivity in antennal-lobe neurons of the sphinx moth Manduca sexta.

    PubMed

    Schachtner, Joachim; Trosowski, Björn; D'Hanis, Wolfgang; Stubner, Stephan; Homberg, Uwe

    2004-06-01

    During metamorphosis, the insect nervous system undergoes considerable remodeling: new neurons are integrated while larval neurons are remodeled or eliminated. To understand further the mechanisms involved in transforming larval to adult tissue we have mapped the metamorphic changes in a particularly well established brain area, the antennal lobe of the sphinx moth Manduca sexta, using an antiserum recognizing RFamide-related neuropeptides. Five types of RFamide-immunoreactive (ir) neurons could be distinguished in the antennal lobe, based on morphology and developmental appearance. Four cell types (types II-V, each consisting of one or two cells) showed RFamide immunostaining in the larva that persisted into metamorphosis. By contrast, the most prominent group (type I), a mixed population of local and projection neurons consisting of about 60 neurons in the adult antennal lobe, acquired immunostaining in a two-step process during metamorphosis. In a first step, from 5 to 7 days after pupal ecdysis, the number of labeled neurons reached about 25. In a second step, starting about 4 days later, the number of RFamide-ir neurons increased within 6 days to about 60. This two-step process parallels the rise and fall of the developmental hormone 20-hydroxyecdysone (20E) in the hemolymph. Artificially shifting the 20E peak to an earlier developmental time point resulted in the precocious appearance of RFamide immunostaining and led to premature formation of glomeruli. Prolonging high 20E concentrations to stages when the hormone titer starts to decline had no effect on the second increase of immunostained cell numbers. These results support the idea that the rise in 20E, which occurs after pupal ecdysis, plays a role in the first phase of RFamide expression and in glomeruli formation in the developing antennal lobes. The role of 20E in the second phase of RFamide expression is less clear, but increased cell numbers showing RFamide-ir do not appear to be a consequence of the declining levels in 20E that occur during adult development.

  11. An interim report on the NTS-2 solar cell experiment

    NASA Technical Reports Server (NTRS)

    Statler, R. L.; Walker, D. H.

    1979-01-01

    Data obtained from the fourteen solar cell modules on the NTS-2 satellite are presented together with a record of panel temperature and sun inclination. The following flight data are discussed: (1) state of the art solar cell configurations which embody improvements in solar cell efficiency through new silicon surface and bulk technology, (2) improved coverslip materials and coverslip bonding techniques, (3) short and long term effects of ultraviolet rejection filters vs. no filters on the cells, (4) degradation on a developmental type of liquid epitaxy gallium-aluminum-arsenide solar cell, and (5) space radiation effects.

  12. Cell Alignment Required in Differentiation of Myxococcus xanthus

    NASA Astrophysics Data System (ADS)

    Kim, Seung K.; Kaiser, Dale

    1990-08-01

    During fruiting body morphogenesis of Myxococcus xanthus, cell movement is required for transmission of C-factor, a short range intercellular signaling protein necessary for sporulation and developmental gene expression. Nonmotile cells fail to sporulate and to express C-factor-dependent genes, but both defects were rescued by a simple manipulation of cell position that oriented the cells in aligned, parallel groups. A similar pattern of aligned cells normally results from coordinated recruitment of wild-type cells into multicellular aggregates, which later form mature fruiting bodies. It is proposed that directed cell movement establishes critical contacts between adjacent cells, which are required for efficient intercellular C-factor transmission.

  13. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    PubMed

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  14. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells.

    PubMed

    Nagarkar-Jaiswal, Sonal; Manivannan, Sathiya N; Zuo, Zhongyuan; Bellen, Hugo J

    2017-05-31

    Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila . Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase -dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ , encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail.

  15. Staying Tight: Plasmodesmal Membrane Contact Sites and the Control of Cell-to-Cell Connectivity in Plants.

    PubMed

    Tilsner, Jens; Nicolas, William; Rosado, Abel; Bayer, Emmanuelle M

    2016-04-29

    Multicellularity differs in plants and animals in that the cytoplasm, plasma membrane, and endomembrane of plants are connected between cells through plasmodesmal pores. Plasmodesmata (PDs) are essential for plant life and serve as conduits for the transport of proteins, small RNAs, hormones, and metabolites during developmental and defense signaling. They are also the only pathways available for viruses to spread within plant hosts. The membrane organization of PDs is unique, characterized by the close apposition of the endoplasmic reticulum and the plasma membrane and spoke-like filamentous structures linking the two membranes, which define PDs as membrane contact sites (MCSs). This specialized membrane arrangement is likely critical for PD function. Here, we review how PDs govern developmental and defensive signaling in plants, compare them with other types of MCSs, and discuss in detail the potential functional significance of the MCS nature of PDs.

  16. Surface Position, Not Signaling from Surrounding Maternal Tissues, Specifies Aleurone Epidermal Cell Fate in Maize[OA

    PubMed Central

    Gruis, Darren (Fred); Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne

    2006-01-01

    Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions. PMID:16698897

  17. Hematopoietic stem cells: can old cells learn new tricks?

    PubMed

    Ho, Anthony D; Punzel, Michael

    2003-05-01

    Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine.

  18. Adult human neural stem cell therapeutics: Current developmental status and prospect.

    PubMed

    Nam, Hyun; Lee, Kee-Hang; Nam, Do-Hyun; Joo, Kyeung Min

    2015-01-26

    Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.

  19. Effects of medicinal compounds on the differentiation of the eukaryotic microorganism dictyostelium discoideum: can this model be used as a screening test for reproductive toxicity in humans?

    PubMed

    Dannat, K; Tillner, J; Winckler, T; Weiss, M; Eger, K; Dingermann, T

    2003-03-01

    Dictyostelium discoideum is a single-cell, eukaryotic microorganism that can undergo multicellular development in order to produce dormant spores. We investigated the capacity of D. discoideum to be used as a rapid screening system for potential developmental toxicity of compounds under development as pharmaceuticals. We used a set of four transgenic D. discoideum strains that expressed a reporter gene under the control of promoters that are active at certain time periods and in distinct cell types during D. discoideum development. We found that teratogens such as valproic acid, tretinoin, or thalidomide interfered to various extents with D. discoideum development, and had different effects on prestalk and prespore cell-specific reporter gene expression. Phenytoin was inactive in this assay, which may point to limitations in metabolization of the compound in Dictyostelium required to exert developmental toxicity. D. discoideum cell culture is cheap and easy to handle compared to mammalian cell cultures or animal teratogenicity models. Although the Dictyostelium-based assay described in this report may not securely predict the teratogenic potential of these drugs in humans, this organism may be qualified for rapid large-scale screenings of synthetic compounds under development as new pharmaceuticals for their potential to interfere with developmental processes and thus help to reduce the amount of teratogenicity tests in animal models.

  20. Developmental biology, the stem cell of biological disciplines.

    PubMed

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  1. Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells

    PubMed Central

    Hibaoui, Youssef; Feki, Anis

    2015-01-01

    Down syndrome (DS, trisomy 21), is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming. PMID:26239351

  2. Getting to the root of plant biology: impact of the Arabidopsis genome sequence on root research

    PubMed Central

    Benfey, Philip N.; Bennett, Malcolm; Schiefelbein, John

    2010-01-01

    Summary Prior to the availability of the genome sequence, the root of Arabidopsis had attracted a small but ardent group of researchers drawn to its accessibility and developmental simplicity. Roots are easily observed when grown on the surface of nutrient agar media, facilitating analysis of responses to stimuli such as gravity and touch. Developmental biologists were attracted to the simple radial organization of primary root tissues, which form a series of concentric cylinders around the central vascular tissue. Equally attractive was the mode of propagation, with stem cells at the tip giving rise to progeny that were confined to cell files. These properties of root development reduced the normal four-dimensional problem of development (three spatial dimensions and time) to a two-dimensional problem, with cell type on the radial axis and developmental time along the longitudinal axis. The availability of the complete Arabidopsis genome sequence has dramatically accelerated traditional genetic research on root biology, and has also enabled entirely new experimental strategies to be applied. Here we review examples of the ways in which availability of the Arabidopsis genome sequence has enhanced progress in understanding root biology. PMID:20409273

  3. Sordaria macrospora, a model organism to study fungal cellular development.

    PubMed

    Engh, Ines; Nowrousian, Minou; Kück, Ulrich

    2010-12-01

    During the development of multicellular eukaryotes, the processes of cellular growth and organogenesis are tightly coordinated. Since the 1940s, filamentous fungi have served as genetic model organisms to decipher basic mechanisms underlying eukaryotic cell differentiation. Here, we focus on Sordaria macrospora, a homothallic ascomycete and important model organism for developmental biology. During its sexual life cycle, S. macrospora forms three-dimensional fruiting bodies, a complex process involving the formation of different cell types. S. macrospora can be used for genetic, biochemical and cellular experimental approaches since diverse tools, including fluorescence microscopy, a marker recycling system and gene libraries, are available. Moreover, the genome of S. macrospora has been sequenced and allows functional genomics analyses. Over the past years, our group has generated and analysed a number of developmental mutants which has greatly enhanced our fundamental understanding about fungal morphogenesis. In addition, our recent research activities have established a link between developmental proteins and conserved signalling cascades, ultimately leading to a regulatory network controlling differentiation processes in a eukaryotic model organism. This review summarizes the results of our recent findings, thus advancing current knowledge of the general principles and paradigms underpinning eukaryotic cell differentiation and development. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Genes and networks regulating root anatomy and architecture.

    PubMed

    Wachsman, Guy; Sparks, Erin E; Benfey, Philip N

    2015-10-01

    The root is an excellent model for studying developmental processes that underlie plant anatomy and architecture. Its modular structure, the lack of cell movement and relative accessibility to microscopic visualization facilitate research in a number of areas of plant biology. In this review, we describe several examples that demonstrate how cell type-specific developmental mechanisms determine cell fate and the formation of defined tissues with unique characteristics. In the last 10 yr, advances in genome-wide technologies have led to the sequencing of thousands of plant genomes, transcriptomes and proteomes. In parallel with the development of these high-throughput technologies, biologists have had to establish computational, statistical and bioinformatic tools that can deal with the wealth of data generated by them. These resources provide a foundation for posing more complex questions about molecular interactions, and have led to the discovery of new mechanisms that control phenotypic differences. Here we review several recent studies that shed new light on developmental processes, which are involved in establishing root anatomy and architecture. We highlight the power of combining large-scale experiments with classical techniques to uncover new pathways in root development. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation

    PubMed Central

    Ding, Xavier C.; Slack, Frank J.; Großhans, Helge

    2010-01-01

    MicroRNAs (miRNAs) are noncoding RNAs that regulate numerous target genes through a posttranscriptional mechanism and thus control major developmental pathways. The phylogenetically conserved let-7 miRNA regulates cell proliferation and differentiation, thus functioning as a key regulator of developmental timing in C. elegans and a tumor suppressor gene in humans. Using a reverse genetic screen, we have identified genetic interaction partners of C. elegans let-7, including known and novel potential target genes. Initial identification of several translation initiation factors as suppressors of a let-7 mutation led us to systematically examine genetic interaction between let-7 and the translational machinery, which we found to be widespread. In the presence of wild-type let-7, depletion of the translation initiation factor eIF3 resulted in precocious cell differentiation, suggesting that developmental timing is translationally regulated, possibly by let-7. As overexpression of eIF3 in humans promotes translation of mRNAs that are also targets of let-7-mediated repression, we suggest that eIF3 may directly or indirectly oppose let-7 activity. This might provide an explanation for the opposite functions of let-7 and eIF3 in regulating tumorigenesis. PMID:18818519

  6. Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus

    PubMed Central

    Hsu, Mike S.; Seldin, Marcus; Lee, Darrin J.; Seifert, Gerald; Steinhäuser, Christian; Binder, Devin K.

    2011-01-01

    Mice deficient in the water channel AQP4 demonstrate increased seizure duration in response to hippocampal stimulation as well as impaired extracellular K+ clearance. However, the expression of AQP4 in the hippocampus is not well described. In this study, we investigated i) the developmental, laminar and cell-type specificity of AQP4 expression in the hippocampus; ii) the effect of Kir4.1 deletion on AQP4 expression; and iii) performed Western blot and RT-PCR analyses. AQP4 immunohistochemistry on coronal sections from WT or Kir4.1-/- mice revealed a developmentally-regulated and laminar-specific pattern, with highest expression in the CA1 stratum lacunosummoleculare (SLM) and the molecular layer (ML) of the dentate gyrus (DG). AQP4 was colocalized with the glial markers GFAP and S100ß in the hippocampus, and was also ubiquitously expressed on astrocytic endfeet around blood vessels. No difference in AQP4 immunoreactivity was observed in Kir4.1-/- mice. Electrophysiological and postrecording RT-PCR analyses of individual cells revealed that AQP4 and Kir4.1 were co-expressed in nearly all CA1 astrocytes. In NG2 cells, AQP4 was also expressed at the transcript level. This study is the first to examine subregional AQP4 expression during development of the hippocampus. The strikingly high expression of AQP4 in the CA1 SLM and DG ML identifies these regions as potential sites of astrocytic K+ and H2O regulation. These results begin to delineate the functional capabilities of hippocampal subregions and cell types for K+ and H2O homeostasis, which is critical to excitability and serves as a potential target for modulation in diverse diseases. PMID:21256195

  7. DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states.

    PubMed

    White, Eric J; Emanuelsson, Olof; Scalzo, David; Royce, Thomas; Kosak, Steven; Oakeley, Edward J; Weissman, Sherman; Gerstein, Mark; Groudine, Mark; Snyder, Michael; Schübeler, Dirk

    2004-12-21

    Duplication of the genome during the S phase of the cell cycle does not occur simultaneously; rather, different sequences are replicated at different times. The replication timing of specific sequences can change during development; however, the determinants of this dynamic process are poorly understood. To gain insights into the contribution of developmental state, genomic sequence, and transcriptional activity to replication timing, we investigated the timing of DNA replication at high resolution along an entire human chromosome (chromosome 22) in two different cell types. The pattern of replication timing was correlated with respect to annotated genes, gene expression, novel transcribed regions of unknown function, sequence composition, and cytological features. We observed that chromosome 22 contains regions of early- and late-replicating domains of 100 kb to 2 Mb, many (but not all) of which are associated with previously described chromosomal bands. In both cell types, expressed sequences are replicated earlier than nontranscribed regions. However, several highly transcribed regions replicate late. Overall, the DNA replication-timing profiles of the two different cell types are remarkably similar, with only nine regions of difference observed. In one case, this difference reflects the differential expression of an annotated gene that resides in this region. Novel transcribed regions with low coding potential exhibit a strong propensity for early DNA replication. Although the cellular function of such transcripts is poorly understood, our results suggest that their activity is linked to the replication-timing program.

  8. Cell identity regulators link development and stress responses in the Arabidopsis root.

    PubMed

    Iyer-Pascuzzi, Anjali S; Jackson, Terry; Cui, Hongchang; Petricka, Jalean J; Busch, Wolfgang; Tsukagoshi, Hironaka; Benfey, Philip N

    2011-10-18

    Stress responses in plants are tightly coordinated with developmental processes, but interaction of these pathways is poorly understood. We used genome-wide assays at high spatiotemporal resolution to understand the processes that link development and stress in the Arabidopsis root. Our meta-analysis finds little evidence for a universal stress response. However, common stress responses appear to exist with many showing cell type specificity. Common stress responses may be mediated by cell identity regulators because mutations in these genes resulted in altered responses to stress. Evidence for a direct role for cell identity regulators came from genome-wide binding profiling of the key regulator SCARECROW, which showed binding to regulatory regions of stress-responsive genes. Coexpression in response to stress was used to identify genes involved in specific developmental processes. These results reveal surprising linkages between stress and development at cellular resolution, and show the power of multiple genome-wide data sets to elucidate biological processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Inner ear development: Building a spiral ganglion and an organ of Corti out of unspecified ectoderm

    PubMed Central

    Fritzsch, Bernd; Pan, Ning; Jahan, Israt; Elliott, Karen L.

    2014-01-01

    The mammalian inner ear develops from a placodal thickening into a complex labyrinth of ducts with five sensory organs specialized to detect position and movement in space. In addition, the mammalian ear develops a spiraled cochlear duct containing the auditory organ, the organ of Corti (OC), specialized to translate sound into hearing. Developing the OC out of a uniform sheet of ectoderm requires an unparalleled precision in topological developmental engineering of four different general cell types, sensory neurons, hair cells, supporting cells, and general otic epithelium, into a mosaic of ten distinctly recognizable cell types in and around the OC, each with a unique distribution. In addition, the OC receives a unique innervation by ear-derived spiral ganglion afferents and brainstem-derived motor neurons as efferents, and requires neural crest-derived Schwann cells to form myelin and neural crest-derived cells to induce the stria vascularis. To achieve this transformation of a sheet of cells into a complicated interdigitating set of cells necessitates the orchestrated expression of multiple transcription factors that enable the cellular transformation from ectoderm into neurosensory cells forming the spiral ganglion neurons (SGN) while simultaneously transforming the flat epithelium into a tube, the cochlear duct housing the OC. In addition to the cellular and conformational changes to make the cochlear duct with the OC, additional changes in the surrounding periotic mesenchyme form passageways for sound to stimulate the OC. This article reviews molecular developmental data generated predominantly in mice. The available data are ordered into a plausible scenario that integrates the well described expression changes of transcription factors and their actions revealed in mouse mutants for formation of SGNs and OC in the right position and orientation with the right kind of innervation. Understanding the molecular basis of these developmental changes leading to the formation of the mammalian OC and highlighting the gaps in our knowledge may guide in vivo attempts to regenerate this most complicated cellular mosaic of the mammalian body to reconstitute hearing in a rapidly growing population of aging people suffering from hearing loss. PMID:25381571

  10. Characterization of developmental immature fiber (im) mutant and Texas Marker-1 (TM-1) cotton fibers by Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy

    USDA-ARS?s Scientific Manuscript database

    The immature fiber (im) mutant is one type of cotton fiber mutants with unique characteristics of non-fluffy cotton bolls. Compared to its near-isogenic wild type Texas Marker-1 (TM-1), im fiber has thin secondary cell wall and is less mature. In this work, we applied the previously proposed princip...

  11. Recruitment of bone marrow-derived cells to the periodontal ligament via the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 axis.

    PubMed

    Kaku, M; Kitami, M; Rosales Rocabado, J M; Ida, T; Akiba, Y; Uoshima, K

    2017-08-01

    The periodontal ligament (PDL) is a non-mineralized connective tissue that exists between the alveolar bone and root surface cementum and plays important roles in tooth function. The PDL harbors a remarkable reserve of multipotent stem cells, which maintain various types of cells. However, the sources of these stem cells, other than their developmental origin, are not well understood. To elucidate the recruitment of bone marrow (BM)-derived stem cells in the PDL, green fluorescent protein (GFP)-expressing BM-derived cells were transplanted into the femoral BM of immunodeficient rats, and the distribution and expression of stem cell markers in the PDL were analyzed in vivo. To evaluate the functional significance of BM-derived cells to the PDL, tooth replantation was performed and the expression of stromal cell-derived factor (SDF)-1, a critical chemotactic signal for mesenchymal stem cell recruitment, was analyzed. To confirm the SDF-1-dependency of BM-derived cell migration to the PDL, PDL-conditioned medium (CM) was prepared, and BM-derived cell migration was analyzed using a transwell culture system. Four weeks after cell transplantation, GFP-positive cells were detected in the PDL, and some of them were also positive for stem cell markers (i.e., CD29, SSEA4, and αSMA). Seven days after tooth replantation, the number of GFP- and SDF-1-positive cells significantly increased in PDL. Concurrently, the concentration of SDF-1 and the number of colony-forming units of fibroblasts in peripheral blood were increased. BM-derived cell migration increased in PDL-CM and was inhibited by an inhibitor of C-X-C chemokine receptor type 4 (CXCR4), an SDF-1 receptor. These results indicate that stem cells and their progeny in PDL are not only derived from their developmental origin but are also supplied from the BM via the blood as the need arises. Moreover, this BM-derived cell recruitment appears to be regulated, at least partially, by the SDF-1/CXCR4 axis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. The Human Cell Atlas.

    PubMed

    Regev, Aviv; Teichmann, Sarah A; Lander, Eric S; Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-12-05

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.

  13. The Human Cell Atlas

    PubMed Central

    Amit, Ido; Benoist, Christophe; Birney, Ewan; Bodenmiller, Bernd; Campbell, Peter; Carninci, Piero; Clatworthy, Menna; Clevers, Hans; Deplancke, Bart; Dunham, Ian; Eberwine, James; Eils, Roland; Enard, Wolfgang; Farmer, Andrew; Fugger, Lars; Göttgens, Berthold; Hacohen, Nir; Haniffa, Muzlifah; Hemberg, Martin; Kim, Seung; Klenerman, Paul; Kriegstein, Arnold; Lein, Ed; Linnarsson, Sten; Lundberg, Emma; Lundeberg, Joakim; Majumder, Partha; Marioni, John C; Merad, Miriam; Mhlanga, Musa; Nawijn, Martijn; Netea, Mihai; Nolan, Garry; Pe'er, Dana; Phillipakis, Anthony; Ponting, Chris P; Quake, Stephen; Reik, Wolf; Rozenblatt-Rosen, Orit; Sanes, Joshua; Satija, Rahul; Schumacher, Ton N; Shalek, Alex; Shapiro, Ehud; Sharma, Padmanee; Shin, Jay W; Stegle, Oliver; Stratton, Michael; Stubbington, Michael J T; Theis, Fabian J; Uhlen, Matthias; van Oudenaarden, Alexander; Wagner, Allon; Watt, Fiona; Weissman, Jonathan; Wold, Barbara; Xavier, Ramnik; Yosef, Nir

    2017-01-01

    The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community. PMID:29206104

  14. Adipose-derived mesenchymal stem cells and regenerative medicine.

    PubMed

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  15. Spontaneous Symmetry Breaking Turing-Type Pattern Formation in a Confined Dictyostelium Cell Mass

    NASA Astrophysics Data System (ADS)

    Sawai, Satoshi; Maeda, Yasuo; Sawada, Yasuji

    2000-09-01

    We have discovered a new type of patterning which occurs in a two-dimensionally confined cell mass of the cellular slime mold Dictyostelium discoideum. Besides the longitudinal structure reported earlier, we observed a spontaneous symmetry breaking spot pattern whose wavelength shows similar strain dependency to that of the longitudinal pattern. We propose that these structures are due to a reaction-diffusion Turing instability similar to the one which has been exemplified by CIMA (chlorite-iodide-malonic acid) reaction. The present finding may exhibit the first biochemical Turing structure in a developmental system with a controllable boundary condition.

  16. Pancreas and gallbladder agenesis in a newborn with semilobar holoprosencephaly, a case report.

    PubMed

    Hilbrands, Robert; Keymolen, Kathelijn; Michotte, Alex; Marichal, Miriam; Cools, Filip; Goossens, Anieta; Veld, Peter In't; De Schepper, Jean; Hattersley, Andrew; Heimberg, Harry

    2017-05-19

    Pancreatic agenesis is an extremely rare cause of neonatal diabetes mellitus and has enabled the discovery of several key transcription factors essential for normal pancreas and beta cell development. We report a case of a Caucasian female with complete pancreatic agenesis occurring together with semilobar holoprosencephaly (HPE), a more common brain developmental disorder. Clinical findings were later confirmed by autopsy, which also identified agenesis of the gallbladder. Although the sequences of a selected set of genes related to pancreas agenesis or HPE were wild-type, the patient's phenotype suggests a genetic defect that emerges early in embryonic development of brain, gallbladder and pancreas. Developmental defects of the pancreas and brain can occur together. Identifying the genetic defect may identify a novel key regulator in beta cell development.

  17. Two Forkhead transcription factors regulate the division of cardiac progenitor cells by a Polo-dependent pathway

    PubMed Central

    Ahmad, Shaad M.; Tansey, Terese R.; Busser, Brian W.; Nolte, Michael T.; Jeffries, Neal; Gisselbrecht, Stephen S.; Rusan, Nasser M.; Michelson, Alan M.

    2012-01-01

    SUMMARY The development of a complex organ requires the specification of appropriate numbers of each of its constituent cell types, as well as their proper differentiation and correct positioning relative to each other. During Drosophila cardiogenesis, all three of these processes are controlled by jumeau (jumu) and Checkpoint suppressor homologue (CHES-1-like), two genes encoding forkhead transcription factors that we discovered utilizing an integrated genetic, genomic and computational strategy for identifying genes expressed in the developing Drosophila heart. Both jumu and CHES-1-like are required during asymmetric cell division for the derivation of two distinct cardiac cell types from their mutual precursor, and in symmetric cell divisions that produce yet a third type of heart cell. jumu and CHES-1-like control the division of cardiac progenitors by regulating the activity of Polo, a kinase involved in multiple steps of mitosis. This pathway demonstrates how transcription factors integrate diverse developmental processes during organogenesis. PMID:22814603

  18. Spatial constraints underlying the retinal mosaics of two types of horizontal cells in cat and macaque.

    PubMed

    Eglen, Stephen J; Wong, James C T

    2008-01-01

    Most types of retinal neurons are spatially positioned in non-random patterns, termed retinal mosaics. Several developmental mechanisms are thought to be important in the formation of these mosaics. Most evidence to date suggests that homotypic constraints within a type of neuron are dominant, and that heterotypic interactions between different types of neuron are rare. In an analysis of macaque H1 and H2 horizontal cell mosaics, Wässle et al. (2000) suggested that the high regularity index of the combined H1 and H2 mosaic might be caused by heterotypic interactions during development. Here we use computer modeling to suggest that the high regularity index of the combined H1 and H2 mosaic is a by-product of the basic constraint that two neurons cannot occupy the same space. The spatial arrangement of type A and type B horizontal cells in cat retina also follow this same principle.

  19. Multimap formation in visual cortex

    PubMed Central

    Jain, Rishabh; Millin, Rachel; Mel, Bartlett W.

    2015-01-01

    An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps—hereafter a “multimap”—is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated “learning eligibility regions” (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with “salt-and-pepper” structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space. PMID:26641946

  20. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro.

    PubMed

    Harrison, Sarah Ellys; Sozen, Berna; Christodoulou, Neophytos; Kyprianou, Christos; Zernicka-Goetz, Magdalena

    2017-04-14

    Mammalian embryogenesis requires intricate interactions between embryonic and extraembryonic tissues to orchestrate and coordinate morphogenesis with changes in developmental potential. Here, we combined mouse embryonic stem cells (ESCs) and extraembryonic trophoblast stem cells (TSCs) in a three-dimensional scaffold to generate structures whose morphogenesis is markedly similar to that of natural embryos. By using genetically modified stem cells and specific inhibitors, we show that embryogenesis of ESC- and TSC-derived embryos-ETS-embryos-depends on cross-talk involving Nodal signaling. When ETS-embryos develop, they spontaneously initiate expression of mesoderm and primordial germ cell markers asymmetrically on the embryonic and extraembryonic border, in response to Wnt and BMP signaling. Our study demonstrates the ability of distinct stem cell types to self-assemble in vitro to generate embryos whose morphogenesis, architecture, and constituent cell types resemble those of natural embryos. Copyright © 2017, American Association for the Advancement of Science.

  1. Control of cell fate by the formation of an architecturally complex bacterial community.

    PubMed

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-04-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells.

  2. Control of cell fate by the formation of an architecturally complex bacterial community

    PubMed Central

    Vlamakis, Hera; Aguilar, Claudio; Losick, Richard; Kolter, Roberto

    2008-01-01

    Bacteria form architecturally complex communities known as biofilms in which cells are held together by an extracellular matrix. Biofilms harbor multiple cell types, and it has been proposed that within biofilms individual cells follow different developmental pathways, resulting in heterogeneous populations. Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells. PMID:18381896

  3. Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood–derived hematopoietic progenitor cells

    PubMed Central

    Martin, Colin H.; Woll, Petter S.; Ni, Zhenya; Zúñiga-Pflücker, Juan Carlos

    2008-01-01

    Hematopoietic progenitor cells derived from human embryonic stem cells (hESCs) develop into diverse mature hematopoietic lineages, including lymphocytes. Whereas functional natural killer (NK) cells can be efficiently generated in vitro from hESC-derived CD34+ cells, studies of T- and B-cell development from hESCs have been much more limited. Here, we demonstrate that despite expressing functional Notch-1, CD34+ cells from hESCs did not derive T cells when cocultured with OP9 cells expressing Delta-like 1, or in fetal thymus organ culture. hESC-derived CD34+ cells also did not produce B cells in vitro. In contrast, CD34+ cells isolated from UCB routinely generated T and B cells when cultured in the same conditions. Notably, both undifferentiated hESCs, and sorted hESC-derived populations with hematopoietic developmental potential exhibited constitutive expression of ID family genes and of transcriptional targets of stem cell factor–induced signaling. These pathways both inhibit T-cell development and promote NK-cell development. Together, these results demonstrate fundamental differences between hESC-derived hematopoietic progenitors and analogous primary human cells. Therefore, hESCs can be more readily supported to differentiate into certain cell types than others, findings that have important implications for derivation of defined lineage-committed populations from hESCs. PMID:18621931

  4. Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells.

    PubMed

    Martin, Colin H; Woll, Petter S; Ni, Zhenya; Zúñiga-Pflücker, Juan Carlos; Kaufman, Dan S

    2008-10-01

    Hematopoietic progenitor cells derived from human embryonic stem cells (hESCs) develop into diverse mature hematopoietic lineages, including lymphocytes. Whereas functional natural killer (NK) cells can be efficiently generated in vitro from hESC-derived CD34(+) cells, studies of T- and B-cell development from hESCs have been much more limited. Here, we demonstrate that despite expressing functional Notch-1, CD34(+) cells from hESCs did not derive T cells when cocultured with OP9 cells expressing Delta-like 1, or in fetal thymus organ culture. hESC-derived CD34(+) cells also did not produce B cells in vitro. In contrast, CD34(+) cells isolated from UCB routinely generated T and B cells when cultured in the same conditions. Notably, both undifferentiated hESCs, and sorted hESC-derived populations with hematopoietic developmental potential exhibited constitutive expression of ID family genes and of transcriptional targets of stem cell factor-induced signaling. These pathways both inhibit T-cell development and promote NK-cell development. Together, these results demonstrate fundamental differences between hESC-derived hematopoietic progenitors and analogous primary human cells. Therefore, hESCs can be more readily supported to differentiate into certain cell types than others, findings that have important implications for derivation of defined lineage-committed populations from hESCs.

  5. Intestinal development and differentiation

    PubMed Central

    Noah, Taeko K.; Donahue, Bridgitte; Shroyer, Noah F.

    2011-01-01

    In this review, we present an overview of intestinal development and cellular differentiation of the intestinal epithelium. The review is separated into two sections: Section one summarizes organogenesis of the small and large intestines, including endoderm and gut tube formation in early embryogenesis, villus morphogenesis, and crypt formation. Section two reviews cell fate specification and differentiation of each cell type within the intestinal epithelium. Growth factor and transcriptional networks that regulate these developmental processes are summarized. PMID:21978911

  6. Competent for commitment: you've got to have heart!

    PubMed

    Jain, Rajan; Epstein, Jonathan A

    2018-01-01

    The mature heart is composed primarily of four different cell types: cardiac myocytes, endothelium, smooth muscle, and fibroblasts. These cell types derive from pluripotent progenitors that become progressively restricted with regard to lineage potential, giving rise to multipotent cardiac progenitor cells and, ultimately, the differentiated cell types of the heart. Recent studies have begun to shed light on the defining characteristics of the intermediary cell types that exist transiently during this developmental process and the extrinsic and cell-autonomous factors that influence cardiac lineage decisions and cellular competence. This information will shape our understanding of congenital and adult cardiac disease and guide regenerative therapeutic approaches. In addition, cardiac progenitor specification can serve as a model for understanding basic mechanisms regulating the acquisition of cellular identity. In this review, we present the concept of "chromatin competence" that describes the potential for three-dimensional chromatin organization to function as the molecular underpinning of the ability of a progenitor cell to respond to inductive lineage cues and summarize recent studies advancing our understanding of cardiac cell specification, gene regulation, and chromatin organization and how they impact cardiac development. © 2018 Jain and Epstein; Published by Cold Spring Harbor Laboratory Press.

  7. Effects of Developmental Activation of the Aryl Hydrocarbon Receptor by 2,3,7,8-Tetrachlorodibenzo-p-dioxin on Long-term Self-renewal of Murine Hematopoietic Stem Cells.

    PubMed

    Laiosa, Michael D; Tate, Everett R; Ahrenhoerster, Lori S; Chen, Yuhong; Wang, Demin

    2016-07-01

    Human epidemiological and animal studies suggest that developmental exposure to contaminants that activate the aryl hydrocarbon receptor (AHR) lead to suppression of immune system function throughout life. The persistence of immune deficiency throughout life suggests that the cellular target of AHR activation is a fetal hematopoietic progenitor or stem cell. The aim of this study was to identify the effects of transplacental exposure to an AHR agonist on long-term self-renewal of fetal hematopoietic stem cells. Pregnant C57BL/6 or AHR+/- mice were exposed to the AHR agonist, 2,3,7,8-tetra-​chlorodibenzo-p-dioxin (TCDD). On day 14 of gestation, hematopoietic progenitors from wild-type or AHR-deficient fetuses were placed into in vitro T-lymphocyte differentiation cultures to identify the effects of transplacental TCDD on AHR activation in the fetus. We next analyzed the fetal hematopoietic progenitor cells for changes in reactive oxygen species (ROS). Finally, hematopoietic progenitors from fetuses exposed transplacentally to TCDD were mixed 1:1 with cells from congenic controls and used to reconstitute lethally irradiated recipients for analysis of long-term self-renewal potential. Our findings suggested that the effects of TCDD on the developing hematopoietic system were mediated by direct AHR activation in the fetus. Furthermore, developmental AHR activation by TCDD increased ROS in the fetal hematopoietic stem cells, and the elevated ROS was associated with a reduced capacity of the TCDD-exposed fetal cells to compete with control cells in a mixed competitive irradiation/reconstitution assay. Our findings indicate that AHR activation by TCDD in the fetus during pregnancy leads to impairment of long-term self-renewal of hematopoietic stem cells. Laiosa MD, Tate ER, Ahrenhoerster LS, Chen Y, Wang D. 2016. Effects of developmental activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin on long-term self-renewal of murine hematopoietic stem cells. Environ Health Perspect 124:957-965; http://dx.doi.org/10.1289/ehp.1509820.

  8. Developmental Competence of Buffalo (Bubalus bubalis) Pluripotent Embryonic Stem Cells Over Different Homologous Feeder Layers and the Comparative Evaluation with Various Extracellular Matrices.

    PubMed

    Sharma, Manjinder; Dubey, Pawan K; Kumar, Rajesh; Nath, Amar; Kumar, G Sai; Sharma, G Taru

    2013-05-01

    Use of somatic cells as a feeder layer to maintain the embryonic stem cells (ESCs) in undifferentiated state limits the stem cell research design, since experimental data may result from a combined ESCs and feeder cell response to various stimuli. Therefore, present study was designed to evaluate the developmental competence of the buffalo ESCs over different homogenous feeders and compare with various extracellular matrices using different concentrations of LIF. Inner cell masses (ICMs) of in vitro hatched blastocysts were cultured onto homologous feeders viz. fetal fibroblast, granulosa and oviductal cell feeder layers and synthetic matrices viz. fibronectin, collagen type I and matrigel in culture medium. Developmental efficiency was found higher for ESCs cultured on fetal fibroblast and granulosa layers (83.33%) followed by fibronectin (77.78%) at 30 ng LIF. Oviductal feeder was found to be the least efficient feeder showing only 11.11% undifferentiated primary ESC colonies at 30 ng LIF. However, neither feeder layer nor synthetic matrix could support the development of primary colonies at 10 ng LIF. Expression of SSEA- 4, TRA-1-60 and Oct-4 were found positive in ESC colonies from all the feeders and synthetic matrices with 20 ng and 30 ng LIF. Fetal fibroblast and granulosa cell while, amongst synthetic matrices, fibronectin were found to be equally efficient to support the growth and maintenance of ESCs pluripotency with 30 ng LIF. This well-defined culture conditions may provide an animal model for culturing human embryonic stem cells in the xeno-free or feeder-free conditions for future clinical applications.

  9. Reciprocal expression of integration host factor and HU in the developmental cycle and infectivity of Legionella pneumophila.

    PubMed

    Morash, Michael G; Brassinga, Ann Karen C; Warthan, Michelle; Gourabathini, Poornima; Garduño, Rafael A; Goodman, Steven D; Hoffman, Paul S

    2009-04-01

    Legionella pneumophila is an intracellular parasite of protozoa that differentiates late in infection into metabolically dormant cysts that are highly infectious. Regulation of this process is poorly understood. Here we report that the small DNA binding regulatory proteins integration host factor (IHF) and HU are reciprocally expressed over the developmental cycle, with HU expressed during exponential phase and IHF expressed postexponentially. To assess the role of these regulatory proteins in development, chromosomal deletions were constructed. Single (ihfA or ihfB) and double deletion (Deltaihf) IHF mutants failed to grow in Acanthamoeba castellanii unless complemented in trans when expressed temporally from the ihfA promoter but not under P(tac) (isopropyl-beta-d-thiogalactopyranoside). In contrast, IHF mutants were infectious for HeLa cells, though electron microscopic examination revealed defects in late-stage cyst morphogenesis (thickened cell wall, intracytoplasmic membranes, and inclusions of poly-beta-hydroxybutyrate), and were depressed for the developmental marker MagA. Green fluorescent protein promoter fusion assays indicated that IHF and the stationary-phase sigma factor RpoS were required for full postexponential expression of magA. Finally, defects in cyst morphogenesis noted for Deltaihf mutants in HeLa cells correlated with a loss of both detergent resistance and hyperinfectivity compared with results for wild-type cysts. These studies establish IHF and HU as markers of developmental stages and show that IHF function is required for both differentiation and full virulence of L. pneumophila in natural amoebic hosts.

  10. Stochastic gene expression in Arabidopsis thaliana.

    PubMed

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  11. Developmental biology of the pancreas: a comprehensive review.

    PubMed

    Gittes, George K

    2009-02-01

    Pancreatic development represents a fascinating process in which two morphologically distinct tissue types must derive from one simple epithelium. These two tissue types, exocrine (including acinar cells, centro-acinar cells, and ducts) and endocrine cells serve disparate functions, and have entirely different morphology. In addition, the endocrine tissue must become disconnected from the epithelial lining during its development. The pancreatic development field has exploded in recent years, and numerous published reviews have dealt specifically with only recent findings, or specifically with certain aspects of pancreatic development. Here I wish to present a more comprehensive review of all aspects of pancreatic development, though still there is not a room for discussion of stem cell differentiation to pancreas, nor for discussion of post-natal regeneration phenomena, two important fields closely related to pancreatic development.

  12. Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis.

    PubMed

    Čáp, Michal; Váchová, Libuše; Palková, Zdena

    2015-01-01

    Colonies of Saccharomyces cerevisiae laboratory strains pass through specific developmental phases when growing on solid respiratory medium. During entry into the so-called alkali phase, in which ammonia signaling is initiated, 2 prominent cell types are formed within the colonies: U cells in upper colony regions, which have a longevity phenotype and activate the expression of a large number of metabolic genes, and L cells in lower regions, which die more quickly and exhibit a starvation phenotype. Here, we performed a detailed analysis of the activities of enzymes of central carbon metabolism in lysates of both cell types and determined several fermentation end products, showing that previously reported expression differences are reflected in the different enzymatic capabilities of each cell type. Hence, U cells, despite being grown on respiratory medium, behave as fermenting cells, whereas L cells rely on respiratory metabolism and possess active gluconeogenesis. Using a spectrum of different inhibitors, we showed that glycolysis is essential for the formation, and particularly, the survival of U cells. We also showed that β-1,3-glucans that are released from the cell walls of L cells are the most likely source of carbohydrates for U cells.

  13. Stem cells in drug discovery, tissue engineering, and regenerative medicine: emerging opportunities and challenges.

    PubMed

    Nirmalanandhan, Victor Sanjit; Sittampalam, G Sitta

    2009-08-01

    Stem cells, irrespective of their origin, have emerged as valuable reagents or tools in human health in the past 2 decades. Initially, a research tool to study fundamental aspects of developmental biology is now the central focus of generating transgenic animals, drug discovery, and regenerative medicine to address degenerative diseases of multiple organ systems. This is because stem cells are pluripotent or multipotent cells that can recapitulate developmental paths to repair damaged tissues. However, it is becoming clear that stem cell therapy alone may not be adequate to reverse tissue and organ damage in degenerative diseases. Existing small-molecule drugs and biologicals may be needed as "molecular adjuvants" or enhancers of stem cells administered in therapy or adult stem cells in the diseased tissues. Hence, a combination of stem cell-based, high-throughput screening and 3D tissue engineering approaches is necessary to advance the next wave of tools in preclinical drug discovery. In this review, the authors have attempted to provide a basic account of various stem cells types, as well as their biology and signaling, in the context of research in regenerative medicine. An attempt is made to link stem cells as reagents, pharmacology, and tissue engineering as converging fields of research for the next decade.

  14. Cell Migration Analysis: A Low-Cost Laboratory Experiment for Cell and Developmental Biology Courses Using Keratocytes from Fish Scales

    ERIC Educational Resources Information Center

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R.

    2017-01-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level…

  15. From embryonic stem cells to functioning germ cells: science, clinical and ethical perspectives.

    PubMed

    Kiatpongsan, Sorapop

    2007-10-01

    Embryonic stem cells have been well recognized as cells having a versatile potential to differentiate into all types of cells in the body including germ cells. There are many research studies focusing on the differentiation processes and protocols to derive various types of somatic cells from embryonic stem cells. However, germ cells have unique differentiation process and developmental pathway compared with somatic cells. Consequently, they will require different differentiation protocols and special culture techniques. More understanding and established in vitro systems for gametogenesis will greatly contribute to further progression of knowledge and technology in germ cell biology, reproductive biology and reproductive medicine. Moreover if oocytes can be efficiently produced in vitro, this will play an important role on progression in nuclear transfer and nuclear reprogramming technology. The present article will provide concise review on past important discoveries, current ongoing studies and future views of this challenging research area. An ethical perspective has also been proposed to give comprehensive summary and viewpoint for future clinical application.

  16. Developmental transitions in C. elegans larval stages.

    PubMed

    Rougvie, Ann E; Moss, Eric G

    2013-01-01

    Molecular mechanisms control the timing, sequence, and synchrony of developmental events in multicellular organisms. In Caenorhabditis elegans, these mechanisms are revealed through the analysis of mutants with "heterochronic" defects: cell division or differentiation patterns that occur in the correct lineage, but simply at the wrong time. Subsets of cells in these mutants thus express temporal identities normally restricted to a different life stage. A seminal finding arising from studies of the heterochronic genes was the discovery of miRNAs; these tiny miRNAs are now a defining feature of the pathway. A series of sequentially expressed miRNAs guide larval transitions through stage-specific repression of key effector molecules. The wild-type lineage patterns are executed as discrete modules programmed between temporal borders imposed by the molting cycles. How these successive events are synchronized with the oscillatory molting cycle is just beginning to come to light. Progression through larval stages can be specifically, yet reversibly, halted in response to environmental cues, including nutrient availability. Here too, heterochronic genes and miRNAs play key roles. Remarkably, developmental arrest can, in some cases, either mask or reveal timing defects associated with mutations. In this chapter, we provide an overview of how the C. elegans heterochronic gene pathway guides developmental transitions during continuous and interrupted larval development. © 2013 Elsevier Inc. All rights reserved.

  17. Allelic exchange of pheromones and their receptors reprograms sexual identity in Cryptococcus neoformans.

    PubMed

    Stanton, Brynne C; Giles, Steven S; Staudt, Mark W; Kruzel, Emilia K; Hull, Christina M

    2010-02-26

    Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.

  18. Inference of developmental gene regulatory networks beyond classical model systems: new approaches in the post-genomic era.

    PubMed

    Fernandez-Valverde, Selene L; Aguilera, Felipe; Ramos-Díaz, René Alexander

    2018-06-18

    The advent of high-throughput sequencing technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules and differentiation genes, which generate spatially and temporally refined patterns of gene expression. Over the last 20 years, great advances have been made in determining these gene interactions mainly in classical model systems, including human, mouse, sea urchin, fruit fly, and worm. This has brought about a radical transformation in the fields of developmental biology and evolutionary biology, allowing the generation of high-resolution gene regulatory maps to analyse cell differentiation during animal development. Such maps have enabled the identification of gene regulatory circuits and have led to the development of network inference methods that can recapitulate the differentiation of specific cell-types or developmental stages. In contrast, dGRN research in non-classical model systems has been limited to the identification of developmental control genes via the candidate gene approach and the characterization of their spatiotemporal expression patterns, as well as to the discovery of cis-regulatory modules via patterns of sequence conservation and/or predicted transcription-factor binding sites. However, thanks to the continuous advances in high-throughput sequencing technologies, this scenario is rapidly changing. Here, we give a historical overview on the architecture and elucidation of the dGRNs. Subsequently, we summarize the approaches available to unravel these regulatory networks, highlighting the vast range of possibilities of integrating multiple technical advances and theoretical approaches to expand our understanding on the global of gene regulation during animal development in non-classical model systems. Such new knowledge will not only lead to greater insights into the evolution of molecular mechanisms underlying cell identity and animal body plans, but also into the evolution of morphological key innovations in animals.

  19. Enrichment and single-cell analysis of circulating tumor cells

    PubMed Central

    Song, Yanling; Tian, Tian; Shi, Yuanzhi; Liu, Wenli; Zou, Yuan; Khajvand, Tahereh; Wang, Sili; Zhu, Zhi

    2017-01-01

    Up to 90% of cancer-related deaths are caused by metastatic cancer. Circulating tumor cells (CTCs), a type of cancer cell that spreads through the blood after detaching from a solid tumor, are essential for the establishment of distant metastasis for a given cancer. As a new type of liquid biopsy, analysis of CTCs offers the possibility to avoid invasive tissue biopsy procedures with practical implications for diagnostics. The fundamental challenges of analyzing and profiling CTCs are the extremely low abundances of CTCs in the blood and the intrinsic heterogeneity of CTCs. Various technologies have been proposed for the enrichment and single-cell analysis of CTCs. This review aims to provide in-depth insights into CTC analysis, including various techniques for isolation of CTCs with capture methods based on physical and biochemical principles, and single-cell analysis of CTCs at the genomic, proteomic and phenotypic level, as well as current developmental trends and promising research directions. PMID:28451298

  20. Of mice and women: a comparative tissue biology perspective of breast stem cells and differentiation.

    PubMed

    Dontu, Gabriela; Ince, Tan A

    2015-06-01

    Tissue based research requires a background in human and veterinary pathology, developmental biology, anatomy, as well as molecular and cellular biology. This type of comparative tissue biology (CTB) expertise is necessary to tackle some of the conceptual challenges in human breast stem cell research. It is our opinion that the scarcity of CTB expertise contributed to some erroneous interpretations in tissue based research, some of which are reviewed here in the context of breast stem cells. In this article we examine the dissimilarities between mouse and human mammary tissue and suggest how these may impact stem cell studies. In addition, we consider the differences between breast ducts vs. lobules and clarify how these affect the interpretation of results in stem cell research. Lastly, we introduce a new elaboration of normal epithelial cell types in human breast and discuss how this provides a clinically useful basis for breast cancer classification.

  1. Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina.

    PubMed

    Hilgen, Gerrit; Pirmoradian, Sahar; Pamplona, Daniela; Kornprobst, Pierre; Cessac, Bruno; Hennig, Matthias H; Sernagor, Evelyne

    2017-02-10

    We have investigated the ontogeny of light-driven responses in mouse retinal ganglion cells (RGCs). Using a large-scale, high-density multielectrode array, we recorded from hundreds to thousands of RGCs simultaneously at pan-retinal level, including dorsal and ventral locations. Responses to different contrasts not only revealed a complex developmental profile for ON, OFF and ON-OFF responses, but also unveiled differences between dorsal and ventral RGC responses. At eye-opening, dorsal RGCs of all types were more responsive to light, perhaps indicating an environmental priority to nest viewing for pre-weaning pups. The developmental profile of ON and OFF responses exhibited antagonistic behaviour, with the strongest ON responses shortly after eye-opening, followed by an increase in the strength of OFF responses later on. Further, we found that with maturation receptive field (RF) center sizes decrease, spike-triggered averaged responses to white noise become stronger, and centers become more circular while maintaining differences between RGC types. We conclude that the maturation of retinal functionality is not spatially homogeneous, likely reflecting ecological requirements that favour earlier maturation of the dorsal retina.

  2. Pan-retinal characterisation of Light Responses from Ganglion Cells in the Developing Mouse Retina

    PubMed Central

    Hilgen, Gerrit; Pirmoradian, Sahar; Pamplona, Daniela; Kornprobst, Pierre; Cessac, Bruno; Hennig, Matthias H.; Sernagor, Evelyne

    2017-01-01

    We have investigated the ontogeny of light-driven responses in mouse retinal ganglion cells (RGCs). Using a large-scale, high-density multielectrode array, we recorded from hundreds to thousands of RGCs simultaneously at pan-retinal level, including dorsal and ventral locations. Responses to different contrasts not only revealed a complex developmental profile for ON, OFF and ON-OFF responses, but also unveiled differences between dorsal and ventral RGC responses. At eye-opening, dorsal RGCs of all types were more responsive to light, perhaps indicating an environmental priority to nest viewing for pre-weaning pups. The developmental profile of ON and OFF responses exhibited antagonistic behaviour, with the strongest ON responses shortly after eye-opening, followed by an increase in the strength of OFF responses later on. Further, we found that with maturation receptive field (RF) center sizes decrease, spike-triggered averaged responses to white noise become stronger, and centers become more circular while maintaining differences between RGC types. We conclude that the maturation of retinal functionality is not spatially homogeneous, likely reflecting ecological requirements that favour earlier maturation of the dorsal retina. PMID:28186129

  3. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    PubMed

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  4. Analysis of fiber-type differences in reporter gene expression of β-gal transgenic muscle.

    PubMed

    Tai, Phillip W L; Smith, Catherine L; Angello, John C; Hauschka, Stephen D

    2012-01-01

    β-galactosidase (β-gal) is among the most frequently used markers for studying a wide variety of biological mechanisms, e.g., gene expression, cell migration, stem cell conversion to different cell types, and gene silencing. Many of these studies require the histochemical detection of relative β-gal levels in tissue cross-sections mounted onto glass slides and visualized by microscopy. This is particularly useful for the analysis of promoter activity in skeletal muscle tissue since the β-gal levels can vary dramatically between different anatomical muscles and myofiber types. The differences in promoter activity can be due to a myofiber's developmental history, innervation, response to normal or experimental physiological signals, and its disease state. It is thus important to identify the individual fiber types within muscle cross-sections and to correlate these with transgene expression signals. Here, we provide a detailed description of how to process and analyze muscle tissues to determine the fiber-type composition and β-gal transgene expression within cryosections.

  5. Toward a 3D model of human brain development for studying gene/environment interactions

    PubMed Central

    2013-01-01

    This project aims to establish and characterize an in vitro model of the developing human brain for the purpose of testing drugs and chemicals. To accurately assess risk, a model needs to recapitulate the complex interactions between different types of glial cells and neurons in a three-dimensional platform. Moreover, human cells are preferred over cells from rodents to eliminate cross-species differences in sensitivity to chemicals. Previously, we established conditions to culture rat primary cells as three-dimensional aggregates, which will be humanized and evaluated here with induced pluripotent stem cells (iPSCs). The use of iPSCs allows us to address gene/environment interactions as well as the potential of chemicals to interfere with epigenetic mechanisms. Additionally, iPSCs afford us the opportunity to study the effect of chemicals during very early stages of brain development. It is well recognized that assays for testing toxicity in the developing brain must consider differences in sensitivity and susceptibility that arise depending on the time of exposure. This model will reflect critical developmental processes such as proliferation, differentiation, lineage specification, migration, axonal growth, dendritic arborization and synaptogenesis, which will probably display differences in sensitivity to different types of chemicals. Functional endpoints will evaluate the complex cell-to-cell interactions that are affected in neurodevelopment through chemical perturbation, and the efficacy of drug intervention to prevent or reverse phenotypes. The model described is designed to assess developmental neurotoxicity effects on unique processes occurring during human brain development by leveraging human iPSCs from diverse genetic backgrounds, which can be differentiated into different cell types of the central nervous system. Our goal is to demonstrate the feasibility of the personalized model using iPSCs derived from individuals with neurodevelopmental disorders caused by known mutations and chromosomal aberrations. Notably, such a human brain model will be a versatile tool for more complex testing platforms and strategies as well as research into central nervous system physiology and pathology. PMID:24564953

  6. Effect of cytoplasmic volume on developmental competence of buffalo (Bubalus bubalis) embryos produced through hand-made cloning.

    PubMed

    Panda, Sudeepta K; George, Aman; Saha, Ambika P; Sharma, Ruchi; Manik, Radhey S; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K

    2011-06-01

    This study examined the effects of cytoplasmic volume on the developmental competence of hand-made cloned buffalo embryos. Two different cell types, that is, buffalo fetal fibroblast (BFF) and buffalo embryonic stem (ES) cell-like cells were taken as donor cell and fused with one, two, or three demicytoplasts to generate embryos with decreased, normal (control), and increased cytoplasmic volume. Using BFF as a nuclear donor, the cleavage rate was similar in all the groups (p > 0.05), but the blastocysts rate was significantly lower (p < 0.05) for embryos generated with decreased cytoplasmic volume. Using ES cell-like cells, the cleavage and blastocyst rate with increased cytoplasmic volume was significantly higher (p < 0.05) compared that with reduced cytoplasmic volume. Blastocysts produced from embryos having increased cytoplasmic volume had significantly higher (p < 0.05) cell number than normal (control) embryos in both BFF and ES cell-like cells groups. Pregnancies were established in all the groups except for the embryos reconstructed with decreased cytoplasmic volume. The pregnancy rate was almost double for embryos reconstructed using increased cytoplasmic volume compared to that with the controls. Most of the pregnancies aborted in the first trimester and one live calf was delivered through Caesarean, which died 4 h after birth.

  7. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    NASA Technical Reports Server (NTRS)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no proliferating lineages "reserved" to make particular laminae or cell types. Copyright 2002 Wiley-Liss, Inc.

  8. MOLECULAR AND MORPHOLOGICAL CHANGES IN ZEBRAFISH FOLLOWING TRANSIENT ETHANOL EXPOSURE DURING DEFINED DEVELOPMENTAL STAGES

    PubMed Central

    Zhang, Chengjin; Frazier, Jared M.; Chen, Hao; Liu, Yao; Lee, Ju-Ahng; Cole, Gregory J.

    2014-01-01

    Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5–5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure. PMID:24929233

  9. Convergence of the Insulin and Serotonin Programs in the Pancreatic β-Cell

    PubMed Central

    Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B.; Honig, Gerard; Kim, Hail; Gasa, Rosa M.; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H.; Deneris, Evan S.; German, Michael S.

    2011-01-01

    OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes. PMID:22013016

  10. Convergence of the insulin and serotonin programs in the pancreatic β-cell.

    PubMed

    Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B; Honig, Gerard; Kim, Hail; Gasa, Rosa M; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H; Deneris, Evan S; German, Michael S

    2011-12-01

    Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.

  11. Whole-Genome Analysis of the SHORT-ROOT Developmental Pathway in Arabidopsis

    PubMed Central

    Busch, Wolfgang; Cui, Hongchang; Wang, Jean Y; Blilou, Ikram; Hassan, Hala; Nakajima, Keiji; Matsumoto, Noritaka; Lohmann, Jan U; Scheres, Ben

    2006-01-01

    Stem cell function during organogenesis is a key issue in developmental biology. The transcription factor SHORT-ROOT (SHR) is a critical component in a developmental pathway regulating both the specification of the root stem cell niche and the differentiation potential of a subset of stem cells in the Arabidopsis root. To obtain a comprehensive view of the SHR pathway, we used a statistical method called meta-analysis to combine the results of several microarray experiments measuring the changes in global expression profiles after modulating SHR activity. Meta-analysis was first used to identify the direct targets of SHR by combining results from an inducible form of SHR driven by its endogenous promoter, ectopic expression, followed by cell sorting and comparisons of mutant to wild-type roots. Eight putative direct targets of SHR were identified, all with expression patterns encompassing subsets of the native SHR expression domain. Further evidence for direct regulation by SHR came from binding of SHR in vivo to the promoter regions of four of the eight putative targets. A new role for SHR in the vascular cylinder was predicted from the expression pattern of several direct targets and confirmed with independent markers. The meta-analysis approach was then used to perform a global survey of the SHR indirect targets. Our analysis suggests that the SHR pathway regulates root development not only through a large transcription regulatory network but also through hormonal pathways and signaling pathways using receptor-like kinases. Taken together, our results not only identify the first nodes in the SHR pathway and a new function for SHR in the development of the vascular tissue but also reveal the global architecture of this developmental pathway. PMID:16640459

  12. Pedunculopontine Gamma Band Activity and Development.

    PubMed

    Garcia-Rill, Edgar; Luster, Brennon; Mahaffey, Susan; MacNicol, Melanie; Hyde, James R; D'Onofrio, Stasia M; Phillips, Cristy

    2015-12-03

    This review highlights the most important discovery in the reticular activating system in the last 10 years, the manifestation of gamma band activity in cells of the reticular activating system (RAS), especially in the pedunculopontine nucleus, which is in charge of waking and rapid eye movement (REM) sleep. The identification of different cell groups manifesting P/Q-type Ca(2+) channels that control waking vs. those that manifest N-type channels that control REM sleep provides novel avenues for the differential control of waking vs. REM sleep. Recent discoveries on the development of this system can help explain the developmental decrease in REM sleep and the basic rest-activity cycle.

  13. Labeling single cell for in-vivo study of cell fate mapping and lineage tracing

    NASA Astrophysics Data System (ADS)

    He, Sicong; Xu, Jin; Wu, Yi; Tian, Ye; Sun, Qiqi; Wen, Zilong; Qu, Jianan Y.

    2018-02-01

    Cell fate mapping and lineage tracing are significant ways to understanding the developmental origins of biological tissues. It requires labeling individual cells and tracing the development of their progeny. We develop an infrared laser-evoked gene operator heat-shock microscope system to achieve single-cell labeling in zebrafish. With a fluorescent thermometry technique, we measure the temperature increase in zebrafish tissues induced by infrared laser and identify the optimal heat shock conditions for single-cell gene induction in different types of zebrafish cells. We use this technique to study the fate mapping of T lymphocytes and discover the distinct waves of lymphopoiesis during the zebrafish development.

  14. Germ layers, the neural crest and emergent organization in development and evolution.

    PubMed

    Hall, Brian K

    2018-04-10

    Discovered in chick embryos by Wilhelm His in 1868 and named the neural crest by Arthur Milnes Marshall in 1879, the neural crest cells that arise from the neural folds have since been shown to differentiate into almost two dozen vertebrate cell types and to have played major roles in the evolution of such vertebrate features as bone, jaws, teeth, visceral (pharyngeal) arches, and sense organs. I discuss the discovery that ectodermal neural crest gave rise to mesenchyme and the controversy generated by that finding; the germ layer theory maintained that only mesoderm could give rise to mesenchyme. A second topic of discussion is germ layers (including the neural crest) as emergent levels of organization in animal development and evolution that facilitated major developmental and evolutionary change. The third topic is gene networks, gene co-option, and the evolution of gene-signaling pathways as key to developmental and evolutionary transitions associated with the origin and evolution of the neural crest and neural crest cells. © 2018 Wiley Periodicals, Inc.

  15. A PAIR OF TRANSMEMBRANE RECEPTORS ESSENTIAL FOR THE RETENTION AND PIGMENTATION OF HAIR

    PubMed Central

    Han, Rong; Beppu, Hideyuki; Lee, Yun-Kyoung; Georgopoulos, Katia; Larue, Lionel; Li, En; Weiner, Lorin; Brissette, Janice L.

    2012-01-01

    Hair follicles are simple, accessible models for many developmental processes. Here, using mutant mice, we show that Bmpr2, a known receptor for bone morphogenetic proteins (Bmps), and Acvr2a, a known receptor for Bmps and activins, are individually redundant but together essential for multiple follicular traits. When Bmpr2/Acvr2a function is reduced in cutaneous epithelium, hair follicles undergo rapid cycles of hair generation and loss. Alopecia results from a failure to terminate hair development properly, as hair clubs never form, and follicular retraction is slowed. Hair regeneration is rapid due to premature activation of new hair-production programs. Hair shafts differentiate aberrantly due to impaired arrest of medullary-cell proliferation. When Bmpr2/Acvr2a function is reduced in melanocytes, gray hair develops, as melanosomes differentiate but fail to grow, resulting in organelle miniaturization. We conclude that Bmpr2 and Acvr2a normally play cell-type-specific, necessary roles in organelle biogenesis and the shutdown of developmental programs and cell division. PMID:22611050

  16. Endothelial cells are not required for specification of respiratory progenitors

    PubMed Central

    Havrilak, Jamie A.; Melton, Kristin R.; Shannon, John M.

    2017-01-01

    Crosstalk between mesenchymal and epithelial cells influences organogenesis in multiple tissues, such as lung, pancreas, liver, and the nervous system. Lung mesenchyme comprises multiple cell types, however, and precise identification of the mesenchymal cell type(s) that drives early events in lung development remains unknown. Endothelial cells have been shown to be required for some aspects of lung epithelial patterning, lung stem cell differentiation, and regeneration after injury. Furthermore, endothelial cells are involved in early liver and pancreas development. From these observations we hypothesized that endothelial cells might also be required for early specification of the respiratory field and subsequent lung bud initiation. We first blocked VEGF signaling in E8.5 cultured foreguts with small molecule VEGFR inhibitors and found that lung specification and bud formation were unaltered. However, when we examined E9.5 mouse embryos carrying a mutation in the VEGFR Flk-1, which do not develop endothelial cells, we found that respiratory progenitor specification was impeded. Because the E9.5 embryos were substantially smaller than control littermates, suggesting the possibility of developmental delay, we isolated and cultured foreguts from mutant and control embryos on E8.5, when no size differences were apparent. We found that both specification of the respiratory field and lung bud formation occurred in mutant and control explants. These observations were unaffected by the presence or absence of serum. We also observed that hepatic specification and initiation occurred in the absence of endothelial cells, and that expansion of the liver epithelium in culture did not differ between mutant and control explants. Consistent with previously published results, we also found that pancreatic buds were not maintained in cultured foreguts when endothelial cells were absent. Our observations support the conclusion that endothelial cells are not required for early specification of lung progenitors and bud initiation, and that the diminished lung specification seen in E9.5 Flk−/− embryos is likely due to developmental delay resulting from the insufficient delivery of oxygen, nutrients, and other factors in the absence of a vasculature. PMID:28501476

  17. Stem cells for brain repair in neonatal hypoxia-ischemia.

    PubMed

    Chicha, L; Smith, T; Guzman, R

    2014-01-01

    Neonatal hypoxic-ischemic insults are a significant cause of pediatric encephalopathy, developmental delays, and spastic cerebral palsy. Although the developing brain's plasticity allows for remarkable self-repair, severe disruption of normal myelination and cortical development upon neonatal brain injury are likely to generate life-persisting sensory-motor and cognitive deficits in the growing child. Currently, no treatments are available that can address the long-term consequences. Thus, regenerative medicine appears as a promising avenue to help restore normal developmental processes in affected infants. Stem cell therapy has proven effective in promoting functional recovery in animal models of neonatal hypoxic-ischemic injury and therefore represents a hopeful therapy for this unmet medical condition. Neural stem cells derived from pluripotent stem cells or fetal tissues as well as umbilical cord blood and mesenchymal stem cells have all shown initial success in improving functional outcomes. However, much still remains to be understood about how those stem cells can safely be administered to infants and what their repair mechanisms in the brain are. In this review, we discuss updated research into pathophysiological mechanisms of neonatal brain injury, the types of stem cell therapies currently being tested in this context, and the potential mechanisms through which exogenous stem cells might interact with and influence the developing brain.

  18. Molecular aspects of eye evolution and development: from the origin of retinal cells to the future of regenerative medicine.

    PubMed

    Ohuchi, Hideyo

    2013-01-01

    A central issue of evolutionary developmental biology is how the eye is diverged morphologically and functionally. However, the unifying mechanisms or schemes that govern eye diversification remain unsolved. In this review, I first introduce the concept of evolutionary developmental biology of the eye with a focus on photoreception, the fundamental property of retinal cells. Second, I summarize the early development of vertebrate eyes and the role of a homeobox gene, Lhx1, in subdivision of the retina into 2 domains, the neural retina and retinal pigmented epithelium of the optic primordium. The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as the extant planarian eye. Finally, I propose the presence of novel retinal cell subtypes with photosensory functions based on our recent work on atypical photopigments (opsins) in vertebrates. Since human diseases are attributable to the aberration of various types of cells due to alterations in gene expression, understanding the precise mechanisms of cellular diversification and unraveling the molecular profiles of cellular subtypes are essential to future regenerative medicine.

  19. Nuclear migration events throughout development

    PubMed Central

    Bone, Courtney R.

    2016-01-01

    ABSTRACT Moving the nucleus to a specific position within the cell is an important event during many cell and developmental processes. Several different molecular mechanisms exist to position nuclei in various cell types. In this Commentary, we review the recent progress made in elucidating mechanisms of nuclear migration in a variety of important developmental models. Genetic approaches to identify mutations that disrupt nuclear migration in yeast, filamentous fungi, Caenorhabditis elegans, Drosophila melanogaster and plants led to the identification of microtubule motors, as well as Sad1p, UNC-84 (SUN) domain and Klarsicht, ANC-1, Syne homology (KASH) domain proteins (LINC complex) that function to connect nuclei to the cytoskeleton. We focus on how these proteins and various mechanisms move nuclei during vertebrate development, including processes related to wound healing of fibroblasts, fertilization, developing myotubes and the developing central nervous system. We also describe how nuclear migration is involved in cells that migrate through constricted spaces. On the basis of these findings, it is becoming increasingly clear that defects in nuclear positioning are associated with human diseases, syndromes and disorders. PMID:27182060

  20. Perithecium morphogenesis in Sordaria macrospora.

    PubMed

    Lord, Kathryn M; Read, Nick D

    2011-04-01

    The perithecium of the self-fertile ascomycete Sordaria macrospora provides an excellent model in which to analyse fungal multicellular development. This study provides a detailed analysis of perithecium morphogenesis in the wild type and eight developmental mutants of S. macrospora, using a range of correlative microscopical techniques. Fundamentally, perithecia and other complex multicellular structures produced by fungi arise by hyphal aggregation and adhesion, and these processes are followed by specialization and septation of hyphal compartments within the aggregates. Perithecial morphogenesis can be divided into the ascogonial, protoperithecial, and perithecial stages of development. At least 13 specialized, morphologically distinct cell-types are involved in perithecium morphogenesis, and these fall into three basic classes: hyphae, conglutinate cells and spores. Conglutinate cells arise from hyphal adhesion and certain perithecial hyphae develop from conglutinate cells. Various hypha-conglutinate cell transitions play important roles during the development of the perithecial wall and neck. Copyright © 2010. Published by Elsevier Inc.

  1. Investigation of welded interconnection of large area wraparound contacted silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1984-01-01

    An investigation was conducted to evaluate the welding and temperature cycle testing of large area 5.9 x 5.9 wraparound silicon solar cells utilizing printed circuit substrates with SSC-155 interconnect copper metals and the LMSC Infrared Controlled weld station. An initial group of 5 welded modules containing Phase 2 developmental 5.9 x 5.9 cm cells were subjected to cyclical temperatures of + or 80 C at a rate of 120 cycles per day. Anomalies were noted in the adhesion of the cell contact metallization; therefore, 5 additional modules were fabricated and tested using available Phase I cells with demonstrated contact integrity. Cycling of the later module type through 12,000 cycles indicated the viability of this type of lightweight flexible array concept. This project demonstrated acceptable use of an alternate interconnect copper in combination with large area wraparound cells and emphasized the necessity to implement weld pull as opposed to solder pull procedures at the cell vendors for cells that will be interconnected by welding.

  2. Ketamine-induced apoptosis in the mouse cerebral cortex follows similar characteristic of physiological apoptosis and can be regulated by neuronal activity.

    PubMed

    Wang, Qi; Shen, Feng-Yan; Zou, Rong; Zheng, Jing-Jing; Yu, Xiang; Wang, Ying-Wei

    2017-06-17

    The effects of general anesthetics on inducing neuronal apoptosis during early brain development are well-documented. However, since physiological apoptosis also occurs during this developmental window, it is important to determine whether anesthesia-induced apoptosis targets the same cell population as physiological apoptosis or different cell types altogether. To provide an adequate plane of surgery, ketamine was co-administered with dexmedetomidine. The apoptotic neurons in the mouse primary somatosensory cortex (S1) were quantitated by immunohistochemistry. To explore the effect of neural activity on ketamine-induced apoptosis, the approaches of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and an environmental enrichment (EE) were performed. Ketamine-induced apoptosis in S1 is most prominent at postnatal days 5 and 7 (P5 - P7), and becomes insignificant by P12. Physiological and ketamine-induced apoptosis follow similar developmental patterns, mostly comprised of layer V pyramidal neurons at P5 and shifting to mostly layer II to IV GABAergic neurons by P9. Changes in neuronal activity induced by the DREADD system bidirectionally regulated the pattern of ketamine-induced apoptosis, with reduced activity inducing increased apoptosis and shifting the lamination pattern to a more immature form. Importantly, rearing mice in an EE significantly reduced the magnitude of ketamine-induced apoptosis and shifted its developmental pattern to a more mature form. Together, these results demonstrate that lamination pattern and cell-type dependent vulnerability to ketamine-induced apoptosis follow the physiological apoptosis pattern and are age- and activity-dependent. Naturally elevating neuronal activity is a possible method for reducing the adverse effects of general anesthesia.

  3. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae.

    PubMed

    Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.

  4. Application of Stem Cell Technology in Dental Regenerative Medicine.

    PubMed

    Feng, Ruoxue; Lengner, Chistopher

    2013-07-01

    In this review, we summarize the current literature regarding the isolation and characterization of dental tissue-derived stem cells and address the potential of these cell types for use in regenerative cell transplantation therapy. Looking forward, platforms for the delivery of stem cells via scaffolds and the use of growth factors and cytokines for enhancing dental stem cell self-renewal and differentiation are discussed. We aim to understand the developmental origins of dental tissues in an effort to elucidate the molecular pathways governing the genesis of somatic dental stem cells. The advantages and disadvantages of several dental stem cells are discussed, including the developmental stage and specific locations from which these cells can be purified. In particular, stem cells from human exfoliated deciduous teeth may act as a very practical and easily accessibly reservoir for autologous stem cells and hold the most value in stem cell therapy. Dental pulp stem cells and periodontal ligament stem cells should also be considered for their triple lineage differentiation ability and relative ease of isolation. Further, we address the potentials and limitations of induced pluripotent stem cells as a cell source in dental regenerative. From an economical and a practical standpoint, dental stem cell therapy would be most easily applied in the prevention of periodontal ligament detachment and bone atrophy, as well as in the regeneration of dentin-pulp complex. In contrast, cell-based tooth replacement due to decay or other oral pathology seems, at the current time, an untenable approach.

  5. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    PubMed

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.

    PubMed

    Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H

    2016-03-01

    Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.

  7. Molecular logic behind the three-way stochastic choices that expand butterfly colour vision.

    PubMed

    Perry, Michael; Kinoshita, Michiyo; Saldi, Giuseppe; Huo, Lucy; Arikawa, Kentaro; Desplan, Claude

    2016-07-14

    Butterflies rely extensively on colour vision to adapt to the natural world. Most species express a broad range of colour-sensitive Rhodopsin proteins in three types of ommatidia (unit eyes), which are distributed stochastically across the retina. The retinas of Drosophila melanogaster use just two main types, in which fate is controlled by the binary stochastic decision to express the transcription factor Spineless in R7 photoreceptors. We investigated how butterflies instead generate three stochastically distributed ommatidial types, resulting in a more diverse retinal mosaic that provides the basis for additional colour comparisons and an expanded range of colour vision. We show that the Japanese yellow swallowtail (Papilio xuthus, Papilionidae) and the painted lady (Vanessa cardui, Nymphalidae) butterflies have a second R7-like photoreceptor in each ommatidium. Independent stochastic expression of Spineless in each R7-like cell results in expression of a blue-sensitive (Spineless(ON)) or an ultraviolet (UV)-sensitive (Spineless(OFF)) Rhodopsin. In P. xuthus these choices of blue/blue, blue/UV or UV/UV sensitivity in the two R7 cells are coordinated with expression of additional Rhodopsin proteins in the remaining photoreceptors, and together define the three types of ommatidia. Knocking out spineless using CRISPR/Cas9 (refs 5, 6) leads to the loss of the blue-sensitive fate in R7-like cells and transforms retinas into homogeneous fields of UV/UV-type ommatidia, with corresponding changes in other coordinated features of ommatidial type. Hence, the three possible outcomes of Spineless expression define the three ommatidial types in butterflies. This developmental strategy allowed the deployment of an additional red-sensitive Rhodopsin in P. xuthus, allowing for the evolution of expanded colour vision with a greater variety of receptors. This surprisingly simple mechanism that makes use of two binary stochastic decisions coupled with local coordination may prove to be a general means of generating an increased diversity of developmental outcomes.

  8. Developmental regulation of DNA replication timing at the human beta globin locus.

    PubMed

    Simon, I; Tenzen, T; Mostoslavsky, R; Fibach, E; Lande, L; Milot, E; Gribnau, J; Grosveld, F; Fraser, P; Cedar, H

    2001-11-01

    The human beta globin locus replicates late in most cell types, but becomes early replicating in erythroid cells. Using FISH to map DNA replication timing around the endogenous beta globin locus and by applying a genetic approach in transgenic mice, we have demonstrated that both the late and early replication states are controlled by regulatory elements within the locus control region. These results also show that the pattern of replication timing is set up by mechanisms that work independently of gene transcription.

  9. Profiling of Sugar Nucleotides.

    PubMed

    Rejzek, Martin; Hill, Lionel; Hems, Edward S; Kuhaudomlarp, Sakonwan; Wagstaff, Ben A; Field, Robert A

    2017-01-01

    Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed. © 2017 Elsevier Inc. All rights reserved.

  10. Loss of Nucleotide Excision Repair as a Source of Genomic Instability in Breast Cancer

    DTIC Science & Technology

    2005-06-01

    prone syndrome xeroderma pigmentosum (XP), and reminiscent of p48 deficiency in XP-E cells, and we have in result in the developmental and...photoproduct; UV-DDB, UV-damaged DNA binding factor; wt, wild-type; well as damaged DNA itself, thus suggesting that it may act as XP, xeroderma pigmentosum . a...the potential for mutagenesis. If UV-DDB is a chromatin the classification of five cell strains of xeroderma pigmentosum group E remodeling factor

  11. Immune cell identity: perspective from a palimpsest

    PubMed Central

    Rothenberg, Ellen V.

    2016-01-01

    The immune system in mammals is composed of multiple different immune cell types that migrate through the body and are made continuously throughout life. Lymphocytes and myeloid cells interact with each other and depend upon each other, but are each highly diverse and specialized for different roles. Lymphocytes uniquely require developmentally programmed mutational changes in the genome itself for their maturation. Despite profound differences between their mechanisms of threat recognition and threat response, however, the developmental origins of lymphocytes and myeloid cells are interlinked, and important aspects of their response mechanisms remain shared. As the immune defense system has been elucidated in the past 50 years, it is notable that the chain of logic toward our current understanding was driven by strongly posited models that led to crucial discoveries even though these models ended up being partly wrong. It has been the predictive strength of these models and their success as guides to incisive experimental research that has also illuminated the limits of each model’s explanatory scope, beyond which another model needed to assume the lead. This brief review describes how a succession of distinct paradigms has helped to clarify a sophisticated picture of immune cell generation and control. PMID:26750603

  12. Soft X-Ray Tomography Reveals Gradual Chromatin Compaction and Reorganization during Neurogenesis In Vivo

    DOE PAGES

    Le Gros, Mark A.; Clowney, E. Josephine; Magklara, Angeliki; ...

    2016-11-15

    The realization that nuclear distribution of DNA, RNA, and proteins differs between cell types and developmental stages suggests that nuclear organization serves regulatory functions. Understanding the logic of nuclear architecture and how it contributes to differentiation and cell fate commitment remains challenging. Here, we use soft X-ray tomography (SXT) to image chromatin organization, distribution, and biophysical properties during neurogenesis in vivo. Our analyses reveal that chromatin with similar biophysical properties forms an elaborate connected network throughout the entire nucleus. Although this interconnectivity is present in every developmental stage, differentiation proceeds with concomitant increase in chromatin compaction and re-distribution of condensed chromatinmore » toward the nuclear core. HP1β, but not nucleosome spacing or phasing, regulates chromatin rearrangements because it governs both the compaction of chromatin and its interactions with the nuclear envelope. Our experiments introduce SXT as a powerful imaging technology for nuclear architecture.« less

  13. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  14. Methanol exposure interferes with morphological cell movements in the Drosophila embryo and causes increased apoptosis in the CNS.

    PubMed

    Mellerick, Dervla M; Liu, Heather

    2004-09-05

    Despite the significant contributions of tissue culture and bacterial models to toxicology, whole animal models for developmental neurotoxins are limited in availability and ease of experimentation. Because Drosophila is a well understood model for embryonic development that is highly accessible, we asked whether it could be used to study methanol developmental neurotoxicity. In the presence of 4% methanol, approximately 35% of embryos die and methanol exposure leads to severe CNS defects in about half those embryos, where the longitudinal connectives are dorsally displaced and commissure formation is severely reduced. In addition, a range of morphological defects in other germ layers is seen, and cell movement is adversely affected by methanol exposure. Although we did not find any evidence to suggest that methanol exposure affects the capacity of neuroblasts to divide or induces inappropriate apoptosis in these cells, in the CNS of germ band retracted embryos, the number of apoptotic nuclei is significantly increased in methanol-exposed embryos in comparison to controls, particularly in and adjacent to the ventral midline. Apoptosis contributes significantly to methanol neurotoxicity because embryos lacking the cell death genes grim, hid, and reaper have milder CNS defects resulting from methanol exposure than wild-type embryos. Our data suggest that when neurons and glia are severely adversely affected by methanol exposure, the damaged cells are cleared by apoptosis, leading to embryonic death. Thus, the Drosophila embryo may prove useful in identifying and unraveling mechanistic aspects of developmental neurotoxicity, specifically in relation to methanol toxicity.

  15. Mutation of the XIST gene upregulates expression of X-linked genes but decreases the developmental rates of cloned male porcine embryos.

    PubMed

    Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong

    2017-06-01

    XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.

  16. Genetics on the Fly: A Primer on the Drosophila Model System

    PubMed Central

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  17. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex

    PubMed Central

    Chen, Kenian; Sloan, Steven A.; Bennett, Mariko L.; Scholze, Anja R.; O'Keeffe, Sean; Phatnani, Hemali P.; Guarnieri, Paolo; Caneda, Christine; Ruderisch, Nadine; Deng, Shuyun; Liddelow, Shane A.; Zhang, Chaolin; Daneman, Richard; Maniatis, Tom; Barres, Ben A.

    2014-01-01

    The major cell classes of the brain differ in their developmental processes, metabolism, signaling, and function. To better understand the functions and interactions of the cell types that comprise these classes, we acutely purified representative populations of neurons, astrocytes, oligodendrocyte precursor cells, newly formed oligodendrocytes, myelinating oligodendrocytes, microglia, endothelial cells, and pericytes from mouse cerebral cortex. We generated a transcriptome database for these eight cell types by RNA sequencing and used a sensitive algorithm to detect alternative splicing events in each cell type. Bioinformatic analyses identified thousands of new cell type-enriched genes and splicing isoforms that will provide novel markers for cell identification, tools for genetic manipulation, and insights into the biology of the brain. For example, our data provide clues as to how neurons and astrocytes differ in their ability to dynamically regulate glycolytic flux and lactate generation attributable to unique splicing of PKM2, the gene encoding the glycolytic enzyme pyruvate kinase. This dataset will provide a powerful new resource for understanding the development and function of the brain. To ensure the widespread distribution of these datasets, we have created a user-friendly website (http://web.stanford.edu/group/barres_lab/brain_rnaseq.html) that provides a platform for analyzing and comparing transciption and alternative splicing profiles for various cell classes in the brain. PMID:25186741

  18. 3-D components of a biological neural network visualized in computer generated imagery. I - Macular receptive field organization

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Cutler, Lynn; Meyer, Glenn; Lam, Tony; Vaziri, Parshaw

    1990-01-01

    Computer-assisted, 3-dimensional reconstructions of macular receptive fields and of their linkages into a neural network have revealed new information about macular functional organization. Both type I and type II hair cells are included in the receptive fields. The fields are rounded, oblong, or elongated, but gradations between categories are common. Cell polarizations are divergent. Morphologically, each calyx of oblong and elongated fields appears to be an information processing site. Intrinsic modulation of information processing is extensive and varies with the kind of field. Each reconstructed field differs in detail from every other, suggesting that an element of randomness is introduced developmentally and contributes to endorgan adaptability.

  19. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw

    PubMed Central

    Kuratani, Shigeru

    2005-01-01

    The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes. PMID:16313390

  20. PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis.

    PubMed

    Liu, Yan; Lin, Jingjing; Zhang, Minjie; Chen, Kai; Yang, Shengxi; Wang, Qun; Yang, Hongqin; Xie, Shusen; Zhou, Yongjian; Zhang, Xi; Chen, Fei; Yang, Yufeng

    2016-11-15

    Mitophagy is the selective degradation of mitochondria by autophagy, which is an important mitochondrial quality and quantity control process. During Drosophila metamorphosis, the degradation of midgut involves a large change in length and organization, which is mediated by autophagy. Here we noticed a cell-type specific mitochondrial clearance process that occurs in enterocytes (ECs), while most mitochondria remain in intestinal stem cells (ISCs) during metamorphosis. Although PINK1/PARKIN represent the canonical pathway for the elimination of impaired mitochondria in varied pathological conditions, their roles in developmental processes or normal physiological conditions have been less studied. To examine the potential contribution of PINK1 in developmental processes, we monitored the dynamic expression pattern of PINK1 in the midgut development by taking advantage of a newly CRISPR/Cas9 generated knock-in fly strain expressing PINK1-mCherry fusion protein that presumably recapitulates the endogenous expression pattern of PINK1. We disclosed a spatiotemporal correlation between the expression pattern of PINK1 and the mitochondrial clearance or persistence in ECs or ISCs respectively. By mosaic genetic analysis, we then demonstrated that PINK1 and PARKIN function epistatically to mediate the specific timely removal of mitochondria, and are involved in global autophagy in ECs during Drosophila midgut metamorphosis, with kinase-dead PINK1 exerting dominant negative effects. Taken together, our studies concluded that the PINK1/PARKIN is crucial for timely cell-type specific mitophagy under physiological conditions and demonstrated again that Drosophila midgut metamorphosis might serve as an elegant in vivo model to study autophagy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner.

    PubMed

    Zheng, Hong; Yu, Wen-Mei; Waclaw, Ronald R; Kontaridis, Maria I; Neel, Benjamin G; Qu, Cheng-Kui

    2018-03-20

    Catalytically activating mutations in Ptpn11 , which encodes the protein tyrosine phosphatase SHP2, cause 50% of Noonan syndrome (NS) cases, whereas inactivating mutations in Ptpn11 are responsible for nearly all cases of the similar, but distinct, developmental disorder Noonan syndrome with multiple lentigines (NSML; formerly called LEOPARD syndrome). However, both types of disease mutations are gain-of-function mutations because they cause SHP2 to constitutively adopt an open conformation. We found that the catalytic activity of SHP2 was required for the pathogenic effects of gain-of-function, disease-associated mutations on the development of hydrocephalus in the mouse. Targeted pan-neuronal knockin of a Ptpn11 allele encoding the active SHP2 E76K mutant resulted in hydrocephalus due to aberrant development of ependymal cells and their cilia. These pathogenic effects of the E76K mutation were suppressed by the additional mutation C459S, which abolished the catalytic activity of SHP2. Moreover, ependymal cells in NSML mice bearing the inactive SHP2 mutant Y279C were also unaffected. Mechanistically, the SHP2 E76K mutant induced developmental defects in ependymal cells by enhancing dephosphorylation and inhibition of the transcription activator STAT3. Whereas STAT3 activity was reduced in Ptpn11 E76K/+ cells, the activities of the kinases ERK and AKT were enhanced, and neural cell-specific Stat3 knockout mice also manifested developmental defects in ependymal cells and cilia. These genetic and biochemical data demonstrate a catalytic-dependent role of SHP2 gain-of-function disease mutants in the pathogenesis of hydrocephalus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. An invertebrate model of the developmental neurotoxicity of insecticides: effects of chlorpyrifos and dieldrin in sea urchin embryos and larvae.

    PubMed Central

    Buznikov, G A; Nikitina, L A; Bezuglov, V V; Lauder, J M; Padilla, S; Slotkin, T A

    2001-01-01

    Chlorpyrifos targets mammalian brain development through a combination of effects directed at cholinergic receptors and intracellular signaling cascades that are involved in cell differentiation. We used sea urchin embryos as an invertebrate model system to explore the cellular mechanisms underlying the actions of chlorpyrifos and to delineate the critical period of developmental vulnerability. Sea urchin embryos and larvae were exposed to chlorpyrifos at different stages of development ranging from early cell cleavages through the prism stage. Although early cleavages were unaffected even at high chlorpyrifos concentrations, micromolar concentrations added at the mid-blastula stage evoked a prominent change in cell phenotype and overall larval structure, with appearance of pigmented cells followed by their accumulation in an extralarval cap that was extruded from the animal pole. At higher concentrations (20-40 microM), these abnormal cells constituted over 90% of the total cell number. Studies with cholinergic receptor blocking agents and protein kinase C inhibitors indicated two distinct types of effects, one mediated through stimulation of nicotinic cholinergic receptors and the other targeting intracellular signaling. The effects of chlorpyrifos were not mimicked by chlorpyrifos oxon, the active metabolite that inhibits cholinesterase, nor by nonorganophosphate cholinesterase inhibitors. Dieldrin, an organochlorine that targets GABA(A )receptors, was similarly ineffective. The effects of chlorpyrifos and its underlying cholinergic and signaling-related mechanisms parallel prior findings in mammalian embryonic central nervous system. Invertebrate test systems may thus provide both a screening procedure for potential neuroteratogenesis by organophosphate-related compounds, as well as a system with which to uncover novel mechanisms underlying developmental vulnerability. PMID:11485862

  3. Developmental origins of epigenetic transgenerational inheritance

    PubMed Central

    Hanson, Mark A.; Skinner, Michael K.

    2016-01-01

    Abstract Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenerationally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to include epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective. PMID:27390622

  4. Cell migration during heart regeneration in zebrafish.

    PubMed

    Tahara, Naoyuki; Brush, Michael; Kawakami, Yasuhiko

    2016-07-01

    Zebrafish possess the remarkable ability to regenerate injured hearts as adults, which contrasts the very limited ability in mammals. Although very limited, mammalian hearts do in fact have measurable levels of cardiomyocyte regeneration. Therefore, elucidating mechanisms of zebrafish heart regeneration would provide information of naturally occurring regeneration to potentially apply to mammalian studies, in addition to addressing this biologically interesting phenomenon in itself. Studies over the past 13 years have identified processes and mechanisms of heart regeneration in zebrafish. After heart injury, pre-existing cardiomyocytes dedifferentiate, enter the cell cycle, and repair the injured myocardium. This process requires interaction with epicardial cells, endocardial cells, and vascular endothelial cells. Epicardial cells envelope the heart, while endocardial cells make up the inner lining of the heart. They provide paracrine signals to cardiomyocytes to regenerate the injured myocardium, which is vascularized during heart regeneration. In addition, accumulating results suggest that local migration of these major cardiac cell types have roles in heart regeneration. In this review, we summarize the characteristics of various heart injury methods used in the research community and regeneration of the major cardiac cell types. Then, we discuss local migration of these cardiac cell types and immune cells during heart regeneration. Developmental Dynamics 245:774-787, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana.

    PubMed

    Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert

    2010-08-10

    Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)-cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK-cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants.

  6. Comparison of a teratogenic transcriptome-based predictive test based on human embryonic versus inducible pluripotent stem cells.

    PubMed

    Shinde, Vaibhav; Perumal Srinivasan, Sureshkumar; Henry, Margit; Rotshteyn, Tamara; Hescheler, Jürgen; Rahnenführer, Jörg; Grinberg, Marianna; Meisig, Johannes; Blüthgen, Nils; Waldmann, Tanja; Leist, Marcel; Hengstler, Jan Georg; Sachinidis, Agapios

    2016-12-30

    Human embryonic stem cells (hESCs) partially recapitulate early embryonic three germ layer development, allowing testing of potential teratogenic hazards. Because use of hESCs is ethically debated, we investigated the potential for human induced pluripotent stem cells (hiPSCs) to replace hESCs in such tests. Three cell lines, comprising hiPSCs (foreskin and IMR90) and hESCs (H9) were differentiated for 14 days. Their transcriptome profiles were obtained on day 0 and day 14 and analyzed by comprehensive bioinformatics tools. The transcriptomes on day 14 showed that more than 70% of the "developmental genes" (regulated genes with > 2-fold change on day 14 compared to day 0) exhibited variability among cell lines. The developmental genes belonging to all three cell lines captured biological processes and KEGG pathways related to all three germ layer embryonic development. In addition, transcriptome profiles were obtained after 14 days of exposure to teratogenic valproic acid (VPA) during differentiation. Although the differentially regulated genes between treated and untreated samples showed more than 90% variability among cell lines, VPA clearly antagonized the expression of developmental genes in all cell lines: suppressing upregulated developmental genes, while inducing downregulated ones. To quantify VPA-disturbed development based on developmental genes, we estimated the "developmental potency" (D p ) and "developmental index" (D i ). Despite differences in genes deregulated by VPA, uniform D i values were obtained for all three cell lines. Given that the D i values for VPA were similar for hESCs and hiPSCs, D i can be used for robust hazard identification, irrespective of whether hESCs or hiPSCs are used in the test systems.

  7. Dual Innervation of Neonatal Merkel Cells in Mouse Touch Domes

    PubMed Central

    Luo, Wenqin

    2014-01-01

    Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI) mechanoreceptors, which express neural filament heavy chain (NFH), innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK), Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons. PMID:24637732

  8. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus.

    PubMed

    Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María

    2017-01-01

    The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased.

  9. GSK-3β Overexpression Alters the Dendritic Spines of Developmentally Generated Granule Neurons in the Mouse Hippocampal Dentate Gyrus

    PubMed Central

    Pallas-Bazarra, Noemí; Kastanauskaite, Asta; Avila, Jesús; DeFelipe, Javier; Llorens-Martín, María

    2017-01-01

    The dentate gyrus (DG) plays a crucial role in hippocampal-related memory. The most abundant cellular type in the DG, namely granule neurons, are developmentally generated around postnatal day P6 in mice. Moreover, a unique feature of the DG is the occurrence of adult hippocampal neurogenesis, a process that gives rise to newborn granule neurons throughout life. Adult-born and developmentally generated granule neurons share some maturational aspects but differ in others, such as in their positioning within the granule cell layer. Adult hippocampal neurogenesis encompasses a series of plastic changes that modify the function of the hippocampal trisynaptic network. In this regard, it is known that glycogen synthase kinase 3β (GSK-3β) regulates both synaptic plasticity and memory. By using a transgenic mouse overexpressing GSK-3β in hippocampal neurons, we previously demonstrated that the overexpression of this kinase has deleterious effects on the maturation of newborn granule neurons. In the present study, we addressed the effects of GSK-3β overexpression on the morphology and number of dendritic spines of developmentally generated granule neurons. To this end, we performed intracellular injections of Lucifer Yellow in developmentally generated granule neurons of wild-type and GSK-3β-overexpressing mice and analyzed the number and morphologies of dendritic spines (namely, stubby, thin and mushroom). GSK-3β overexpression led to a general reduction in the number of dendritic spines. In addition, it caused a slight reduction in the percentage, head diameter and length of thin spines, whereas the head diameter of mushroom spines was increased. PMID:28344548

  10. Developmental Outcome in Five Children with Hurler Syndrome after Stem Cell Transplantation: A Pilot Study

    ERIC Educational Resources Information Center

    Lucke, Thomas; Das, Anibh M.; Hartmann, Hans; Sykora, Karl-Walter; Donnerstag, Frank; Schmid-Ott, Gerhard; Grigull, Lorenz

    2007-01-01

    Hurler syndrome (mucopolysaccharidosis type 1H; MPS1H) is a lysosomal storage disease caused by a deficiency of [alpha]-L-iduronidase activity. The natural course of this neurodegenerative disease inevitably leads to premature death within the first 10 years of life. Enzyme replacement therapy is effective in correcting the enzymatic deficiency of…

  11. Mammalian transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes and are predicted to act as transcriptional activator hubs.

    PubMed

    Joshi, Anagha

    2014-12-30

    Transcriptional hotspots are defined as genomic regions bound by multiple factors. They have been identified recently as cell type specific enhancers regulating developmentally essential genes in many species such as worm, fly and humans. The in-depth analysis of hotspots across multiple cell types in same species still remains to be explored and can bring new biological insights. We therefore collected 108 transcription-related factor (TF) ChIP sequencing data sets in ten murine cell types and classified the peaks in each cell type in three groups according to binding occupancy as singletons (low-occupancy), combinatorials (mid-occupancy) and hotspots (high-occupancy). The peaks in the three groups clustered largely according to the occupancy, suggesting priming of genomic loci for mid occupancy irrespective of cell type. We then characterized hotspots for diverse structural functional properties. The genes neighbouring hotspots had a small overlap with hotspot genes in other cell types and were highly enriched for cell type specific function. Hotspots were enriched for sequence motifs of key TFs in that cell type and more than 90% of hotspots were occupied by pioneering factors. Though we did not find any sequence signature in the three groups, the H3K4me1 binding profile had bimodal peaks at hotspots, distinguishing hotspots from mono-modal H3K4me1 singletons. In ES cells, differentially expressed genes after perturbation of activators were enriched for hotspot genes suggesting hotspots primarily act as transcriptional activator hubs. Finally, we proposed that ES hotspots might be under control of SetDB1 and not DNMT for silencing. Transcriptional hotspots are enriched for tissue specific enhancers near cell type specific highly expressed genes. In ES cells, they are predicted to act as transcriptional activator hubs and might be under SetDB1 control for silencing.

  12. Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes

    PubMed Central

    Vitalis, Tania; Ansorge, Mark S.; Dayer, Alexandre G.

    2013-01-01

    Cortical circuits control higher-order cognitive processes and their function is highly dependent on their structure that emerges during development. The construction of cortical circuits involves the coordinated interplay between different types of cellular processes such as proliferation, migration, and differentiation of neural and glial cell subtypes. Among the multiple factors that regulate the assembly of cortical circuits, 5-HT is an important developmental signal that impacts on a broad diversity of cellular processes. 5-HT is detected at the onset of embryonic telencephalic formation and a variety of serotonergic receptors are dynamically expressed in the embryonic developing cortex in a region and cell-type specific manner. Among these receptors, the ionotropic 5-HT3A receptor and the metabotropic 5-HT6 receptor have recently been identified as novel serotonergic targets regulating different aspects of cortical construction including neuronal migration and dendritic differentiation. In this review, we focus on the developmental impact of serotonergic systems on the construction of cortical circuits and discuss their potential role in programming risk for human psychiatric disorders. PMID:23801939

  13. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation.

    PubMed

    Obier, Nadine; Bonifer, Constanze

    2016-11-01

    Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development. © 2016 Federation of European Biochemical Societies.

  14. Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach.

    PubMed

    Hellingman, Catharine A; Koevoet, Wendy; van Osch, Gerjo J V M

    2012-11-01

    Chondrogenically differentiating bone marrow-derived mesenchymal stem cells (BMSCs) display signs of chondrocyte hypertrophy, such as production of collagen type X, MMP13 and alkaline phosphatase (ALPL). For cartilage reconstructions this is undesirable, as terminally differentiated cartilage produced by BMSCs mineralizes when implanted in vivo. Terminal differentiation is not restricted to BMSCs but is also encountered in chondrogenic differentiation of adipose-derived mesenchymal stem cells (MSCs) as well as embryonic stem cells, which by definition should be able to generate all types of tissues, including stable cartilage. Therefore, we propose that the currently used culture conditions may drive the cells towards terminal differentiation. In this manuscript we aim to review the literature, supplemented by our own data to answer the question, is it possible to generate stable hyaline cartilage from adult MSCs? We demonstrate that recently published methods for inhibiting terminal differentiation (through PTHrP, MMP13 or blocking phosphorylation of Smad1/5/8) result in cartilage formation with reduction of hypertrophic markers, although this does not reach the low level of stable chondrocytes. A set of hypertrophy markers should be included in future studies to characterize the phenotype more precisely. Finally, we used what is currently known in developmental biology about the differential development of hyaline and terminally differentiated cartilage to provide thought and insights to change current culture models for creating hyaline cartilage. Inhibiting terminal differentiation may not result in stable hyaline cartilage if the right balance of signals has not been created from the start of culture onwards. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Tumorigenic Properties of Drosophila Epithelial Cells Mutant for lethal giant larvae.

    PubMed

    Calleja, Manuel; Morata, Ginés; Casanova, Jordi

    2016-08-01

    Mutations in Drosophila tumor suppressor genes (TSGs) lead to the formation of invasive tumors in the brain and imaginal discs. Here we studied the tumorigenic properties of imaginal discs mutant for the TSG gene lethal giant larvae (lgl). lgl mutant cells display the characteristic features of mammalian tumor cells: they can proliferate indefinitely, induce additional tracheogenesis (an insect counterpart of vasculogenesis) and invade neighboring tissues. Lgl mutant tissues exhibit high apoptotic levels, which lead to the activation of the Jun-N-Terminal Kinase (JNK) pathway. We propose that JNK is a key factor in the acquisition of these tumorigenic properties; it promotes cell proliferation and induces high levels of Mmp1 and confers tumor cells capacity to invade wild-type tissue. Noteworthy, lgl RNAi-mediated down-regulation does not produce similar transformations in the central nervous system (CNS), thereby indicating a fundamental difference between the cells of developing imaginal discs and those of differentiated organs. We discuss these results in the light of the "single big-hit origin" of some human pediatric or developmental cancers. Down-regulation of lgl in imaginal discs is sufficient to enhance tracheogenesis and to promote invasion and colonization of other larval structures including the CNS. Developmental Dynamics 245:834-843, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana

    PubMed Central

    Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.

    2017-01-01

    The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422

  17. Non-apoptotic cell death in animal development.

    PubMed

    Kutscher, Lena M; Shaham, Shai

    2017-08-01

    Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.

  18. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth1[W][OA

    PubMed Central

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A.M.; Fry, Stephen C.; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species. PMID:19493972

  19. Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System.

    PubMed

    Koo, Ok Jae; Park, Sol Ji; Lee, Choongil; Kang, Jung Taek; Kim, Sujin; Moon, Joon Ho; Choi, Ji Yei; Kim, Hyojin; Jang, Goo; Kim, Jin-Soo; Kim, Seokjoong; Lee, Byeong-Chun

    2014-03-01

    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP(+)/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

  20. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis.

    PubMed

    López, Daniel; Kolter, Roberto

    2010-03-01

    The soil-dwelling bacterium Bacillus subtilis differentiates into distinct subpopulations of specialized cells that coexist within highly structured communities. The coordination and interplay between these cell types requires extensive extracellular communication driven mostly by sensing self-generated secreted signals. These extracellular signals activate a set of sensor kinases, which respond by phosphorylating three major regulatory proteins, Spo0A, DegU and ComA. Each phosphorylated regulator triggers a specific differentiation program while at the same time repressing other differentiation programs. This allows a cell to differentiate in response to a specific cue, even in the presence of other, possibly conflicting, signals. The sensor kinases involved respond to an eclectic group of extracellular signals, such as quorum-sensing molecules, natural products, temperature, pH or scarcity of nutrients. This article reviews the cascades of cell differentiation pathways that are triggered by sensing extracellular signals. We also present a tentative developmental model in which the diverse cell types sequentially differentiate to achieve the proper development of the bacterial community.

  1. Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome.

    PubMed

    Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E; Oltz, Eugene M; Jarvis, James N; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F; Wang, Ting

    2016-04-07

    DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. Copyright © 2016 Gu et al.

  2. [Establishment of human embryonic stem cell lines and their therapeutic application].

    PubMed

    Suemori, Hirofumi

    2004-03-01

    Embryonic stem (ES) cell lines are pluripotent stem cell lines that can be propagated indefinitely in culture, retaining their potency to differentiate into every type of cell and tissue in the body. ES cell lines were first established from mouse blastocysts, and have been used for research in developmental biology. ES cells have been proven to be very valuable in the genetic modification of the mouse, especially in producing knockout mice. Since establishment of human ES cell lines was reported, their use in cell replacement therapies has been enthusiastically expected. There have been reports of the differentiation of several useful cell types from human ES cell lines, and clinical use of functional tissues and cells from human ES cells is anticipated. In Japan, there have also been many demands for the use of human ES cells in basic and pre-clinical research. We obtained governmental permission to establish human ES cell lines in April 2002 and started research using donated frozen embryos in January 2003. We successfully established three ES cell line from three blastocysts. These cell lines will be distributed at cost to researchers who have governmental permission to use human ES cells.

  3. Interplay between the Localization and Kinetics of Phosphorylation in Flagellar Pole Development of the Bacterium Caulobacter crescentus

    PubMed Central

    Tropini, Carolina; Huang, Kerwyn Casey

    2012-01-01

    Bacterial cells maintain sophisticated levels of intracellular organization that allow for signal amplification, response to stimuli, cell division, and many other critical processes. The mechanisms underlying localization and their contribution to fitness have been difficult to uncover, due to the often challenging task of creating mutants with systematically perturbed localization but normal enzymatic activity, and the lack of quantitative models through which to interpret subtle phenotypic changes. Focusing on the model bacterium Caulobacter crescentus, which generates two different types of daughter cells from an underlying asymmetric distribution of protein phosphorylation, we use mathematical modeling to investigate the contribution of the localization of histidine kinases to the establishment of cellular asymmetry and subsequent developmental outcomes. We use existing mutant phenotypes and fluorescence data to parameterize a reaction-diffusion model of the kinases PleC and DivJ and their cognate response regulator DivK. We then present a systematic computational analysis of the effects of changes in protein localization and abundance to determine whether PleC localization is required for correct developmental timing in Caulobacter. Our model predicts the developmental phenotypes of several localization mutants, and suggests that a novel strain with co-localization of PleC and DivJ could provide quantitative insight into the signaling threshold required for flagellar pole development. Our analysis indicates that normal development can be maintained through a wide range of localization phenotypes, and that developmental defects due to changes in PleC localization can be rescued by increased PleC expression. We also show that the system is remarkably robust to perturbation of the kinetic parameters, and while the localization of either PleC or DivJ is required for asymmetric development, the delocalization of one of these two components does not prevent flagellar pole development. We further find that allosteric regulation of PleC observed in vitro does not affect the predicted in vivo developmental phenotypes. Taken together, our model suggests that cells can tolerate perturbations to localization phenotypes, whose evolutionary origins may be connected with reducing protein expression or with decoupling pre- and post-division phenotypes. PMID:22876167

  4. Whole-Body Single-Cell Sequencing Reveals Transcriptional Domains in the Annelid Larval Body

    PubMed Central

    Achim, Kaia; Eling, Nils; Vergara, Hernando Martinez; Bertucci, Paola Yanina; Musser, Jacob; Vopalensky, Pavel; Brunet, Thibaut; Collier, Paul; Benes, Vladimir; Marioni, John C; Arendt, Detlev

    2018-01-01

    Abstract Animal bodies comprise diverse arrays of cells. To characterize cellular identities across an entire body, we have compared the transcriptomes of single cells randomly picked from dissociated whole larvae of the marine annelid Platynereis dumerilii. We identify five transcriptionally distinct groups of differentiated cells, each expressing a unique set of transcription factors and effector genes that implement cellular phenotypes. Spatial mapping of cells into a cellular expression atlas, and wholemount in situ hybridization of group-specific genes reveals spatially coherent transcriptional domains in the larval body, comprising, for example, apical sensory-neurosecretory cells versus neural/epidermal surface cells. These domains represent new, basic subdivisions of the annelid body based entirely on differential gene expression, and are composed of multiple, transcriptionally similar cell types. They do not represent clonal domains, as revealed by developmental lineage analysis. We propose that the transcriptional domains that subdivide the annelid larval body represent families of related cell types that have arisen by evolutionary diversification. Their possible evolutionary conservation makes them a promising tool for evo–devo research. PMID:29373712

  5. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    DOE PAGES

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; ...

    2016-04-06

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

  6. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less

  7. Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    PubMed Central

    Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology. PMID:24006397

  8. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-Like Bodies by Changing Incipient Cell Fate.

    PubMed

    Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A; Zhao, Liangjun

    2016-01-01

    Thidiazuron (N-phenyl-N'-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa.

  9. Selection of stable reference genes for quantitative rt-PCR comparisons of mouse embryonic and extra-embryonic stem cells.

    PubMed

    Veazey, Kylee J; Golding, Michael C

    2011-01-01

    Isolation and culture of both embryonic and tissue specific stem cells provide an enormous opportunity to study the molecular processes driving development. To gain insight into the initial events underpinning mammalian embryogenesis, pluripotent stem cells from each of the three distinct lineages present within the preimplantation blastocyst have been derived. Embryonic (ES), trophectoderm (TS) and extraembryonic endoderm (XEN) stem cells possess the developmental potential of their founding lineages and seemingly utilize distinct epigenetic modalities to program gene expression. However, the basis for these differing cellular identities and epigenetic properties remain poorly defined.Quantitative reverse transcription-polymerase chain reaction (qPCR) is a powerful and efficient means of rapidly comparing patterns of gene expression between different developmental stages and experimental conditions. However, careful, empirical selection of appropriate reference genes is essential to accurately measuring transcriptional differences. Here we report the quantitation and evaluation of fourteen commonly used references genes between ES, TS and XEN stem cells. These included: Actb, B2m, Hsp70, Gapdh, Gusb, H2afz, Hk2, Hprt, Pgk1, Ppia, Rn7sk, Sdha, Tbp and Ywhaz. Utilizing three independent statistical analysis, we identify Pgk1, Sdha and Tbp as the most stable reference genes between each of these stem cell types. Furthermore, we identify Sdha, Tbp and Ywhaz as well as Ywhaz, Pgk1 and Hk2 as the three most stable reference genes through the in vitro differentiation of embryonic and trophectoderm stem cells respectively.Understanding the transcriptional and epigenetic regulatory mechanisms controlling cellular identity within these distinct stem cell types provides essential insight into cellular processes controlling both embryogenesis and stem cell biology. Normalizing quantitative RT-PCR measurements using the geometric mean CT values obtained for the identified mRNAs, offers a reliable method to assess differing patterns of gene expression between the three founding stem cell lineages present within the mammalian preimplantation embryo.

  10. Differential Sox10 Genomic Occupancy in Myelinating Glia

    PubMed Central

    Lopez-Anido, Camila; Sun, Guannan; Koenning, Matthias; Srinivasan, Rajini; Hung, Holly A.; Emery, Ben; Keles, Sunduz; Svaren, John

    2015-01-01

    Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells, and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. PMID:25974668

  11. Characterization of cell types during rat liver development.

    PubMed

    Fiegel, Henning C; Park, Jonas J h; Lioznov, Michael V; Martin, Andreas; Jaeschke-Melli, Stefan; Kaufmann, Peter M; Fehse, Boris; Zander, Axel R; Kluth, Dietrich

    2003-01-01

    Hepatic stem cells have been identified in adult liver. Recently, the origin of hepatic progenitors and hepatocytes from bone marrow was demonstrated. Hematopoietic and hepatic stem cells share the markers CD 34, c-kit, and Thy1. Little is known about liver stem cells during liver development. In this study, we investigated the potential stem cell marker Thy1 and hepatocytic marker CK-18 during liver development to identify putative fetal liver stem cell candidates. Livers were harvested from embryonic and fetal day (ED) 16, ED 18, ED 20, and neonatal ED 22 stage rat fetuses from Sprague-Dawley rats. Fetal livers were digested by collagenase-DNAse solution and purified by percoll centrifugation. Magnetic cell sorting (MACS) depletion of fetal liver cells was performed using OX43 and OX44 antibodies. Cells were characterized by immunocytochemistry for Thy1, CK-18, and proliferating cell antigen Ki-67 and double labeling for Thy1 and CK-18. Thy1 expression was found at all stages of liver development before and after MACS in immunocytochemistry. Thy1 positive cells were enriched after MACS only in early developmental stages. An enrichment of CK-18 positive cells was found after MACS at all developmental stages. Cells coexpressing Thy1 and CK-18 were identified by double labeling of fetal liver cell isolates. In conclusion, hepatic progenitor cells (CK-18 positive) in fetal rat liver express Thy1. Other progenitors express only CK-18. This indicates the coexistence of different hepatic cell compartments. Isolation and further characterization of such cells is needed to demonstrate their biologic properties.

  12. Pancreatic differentiation of Pdx1-GFP reporter mouse induced pluripotent stem cells.

    PubMed

    Porciuncula, Angelo; Kumar, Anujith; Rodriguez, Saray; Atari, Maher; Araña, Miriam; Martin, Franz; Soria, Bernat; Prosper, Felipe; Verfaillie, Catherine; Barajas, Miguel

    2016-12-01

    Efficient induction of defined lineages in pluripotent stem cells constitutes the determinant step for the generation of therapeutically relevant replacement cells to potentially treat a wide range of diseases, including diabetes. Pancreatic differentiation has remained an important challenge in large part because of the need to differentiate uncommitted pluripotent stem cells into highly specialized hormone-secreting cells, which has been shown to require a developmentally informed step-by-step induction procedure. Here, in the framework of using induced pluripotent stem cells (iPSCs) to generate pancreatic cells for pancreatic diseases, we have generated and characterized iPSCs from Pdx1-GFP transgenic mice. The use of a GFP reporter knocked into the endogenous Pdx1 promoter allowed us to monitor pancreatic induction based on the expression of Pdx1, a pancreatic master transcription factor, and to isolate a pure Pdx1-GFP + population for downstream applications. Differentiated cultures timely expressed markers specific to each stage and end-stage progenies acquired a rather immature beta-cell phenotype, characterized by polyhormonal expression even among cells highly expressing the Pdx1-GFP reporter. Our findings highlight the utility of employing a fluorescent protein reporter under the control of a master developmental gene in order to devise novel differentiation protocols for relevant cell types for degenerative diseases such as pancreatic beta cells for diabetes. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  13. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo.

    PubMed

    Murray, John Isaac

    2018-05-01

    The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics. © 2018 Wiley Periodicals, Inc.

  14. Utilization of different anti-viral mechanisms by mammalian embryonic stem cells and differentiated cells.

    PubMed

    Guo, Yan-Lin

    2017-01-01

    Embryonic stem cells (ESCs) have received tremendous attention because of their potential applications in regenerative medicine. Over the past two decades, intensive research has not only led to the generation of various types of cells from ESCs that can be potentially used for the treatment of human diseases but also led to the formation of new concepts and breakthroughs that have significantly impacted our understanding of basic cell biology and developmental biology. Recent studies have revealed that ESCs and other types of pluripotent cells do not have a functional interferon (IFN)-based anti-viral mechanism, challenging the idea that the IFN system is developed as the central component of anti-viral innate immunity in all types of cells in vertebrates. This finding also provided important insight into a question that has been uncertain for a long time: whether or not the RNA interference (RNAi) anti-viral mechanism operates in mammalian cells. An emerging paradigm is that mammals may have adapted distinct anti-viral mechanisms at different stages of organismal development; the IFN-based system is mainly used by differentiated somatic cells, while the RNAi anti-viral mechanism may be used in ESCs. This paper discusses the molecular basis and biological implications for mammals to have different anti-viral mechanisms during development.

  15. Developing Laryngeal Muscle of Xenopus laevis as a Model System: Androgen-Driven Myogenesis Controls Fiber Type Transformation

    PubMed Central

    Nasipak, Brian; Kelley, Darcy B.

    2014-01-01

    The developmental programs that contribute to myogenic stem cell proliferation and muscle fiber differentiation control fiber numbers and twitch type. In this study, we describe the use of an experimental model system—androgen-regulated laryngeal muscle of juvenile clawed frogs, Xenopus laevis—to examine the contribution of proliferation by specific populations of myogenic stem cells to expression of the larynx-specific myosin heavy chain isoform, LM. Androgen treatment of juveniles (Stage PM0) resulted in up-regulation of an early (Myf-5) and a late (myogenin) myogenic regulatory factor; the time course of LM up-regulation tracked that of myogenin. Myogenic stem cells stimulated to proliferate by androgen include a population that expresses Pax-7, a marker for the satellite cell myogenic stem cell population. Since androgen can switch muscle fiber types from fast to slow even in denervated larynges, we developed an ex vivo culture system to explore the relation between proliferation and LM expression. Cultured whole larynges maintain sensitivity to androgen, increasing in size and LM expression. Blockade of cell proliferation with cis-platin prevents the switch from slow to fast twitch muscle fibers as assayed by ATPase activity. Blockade of cell proliferation in vivo also resulted in inhibition of LM expression. Thus, both in vivo and ex vivo, inhibition of myogenic stem cell proliferation blocks androgen-induced LM expression and fiber type switching in juveniles. PMID:21954146

  16. Primary sex determination of placental mammals: a modelling study uncovers dynamical developmental constraints in the formation of Sertoli and granulosa cells.

    PubMed

    Sánchez, Lucas; Chaouiya, Claudine

    2016-05-26

    Primary sex determination in placental mammals is a very well studied developmental process. Here, we aim to investigate the currently established scenario and to assess its adequacy to fully recover the observed phenotypes, in the wild type and perturbed situations. Computational modelling allows clarifying network dynamics, elucidating crucial temporal constrains as well as interplay between core regulatory modules. Relying on a comprehensive revision of the literature, we define a logical model that integrates the current knowledge of the regulatory network controlling this developmental process. Our analysis indicates the necessity for some genes to operate at distinct functional thresholds and for specific developmental conditions to ensure the reproducibility of the sexual pathways followed by bi-potential gonads developing into either testes or ovaries. Our model thus allows studying the dynamics of wild type and mutant XX and XY gonads. Furthermore, the model analysis reveals that the gonad sexual fate results from the operation of two sub-networks associated respectively with an initiation and a maintenance phases. At the core of the process is the resolution of two connected feedback loops: the mutual inhibition of Sox9 and ß-catenin at the initiation phase, which in turn affects the mutual inhibition between Dmrt1 and Foxl2, at the maintenance phase. Three developmental signals related to the temporal activity of those sub-networks are required: a signal that determines Sry activation, marking the beginning of the initiation phase, and two further signals that define the transition from the initiation to the maintenance phases, by inhibiting the Wnt4 signalling pathway on the one hand, and by activating Foxl2 on the other hand. Our model reproduces a wide range of experimental data reported for the development of wild type and mutant gonads. It also provides a formal support to crucial aspects of the gonad sexual development and predicts gonadal phenotypes for mutations not tested yet.

  17. CellFinder: a cell data repository

    PubMed Central

    Stachelscheid, Harald; Seltmann, Stefanie; Lekschas, Fritz; Fontaine, Jean-Fred; Mah, Nancy; Neves, Mariana; Andrade-Navarro, Miguel A.; Leser, Ulf; Kurtz, Andreas

    2014-01-01

    CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder’s data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder’s web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians. PMID:24304896

  18. Differential expression of syndecan isoforms during mouse incisor amelogenesis.

    PubMed

    Muto, Taro; Miyoshi, Keiko; Munesue, Seiichi; Nakada, Hiroshi; Okayama, Minoru; Matsuo, Takashi; Noma, Takafumi

    2007-08-01

    Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, growth factors, and matrix components, through their heparan-sulfate chains, to regulate developmental processes.Here, as a first step to assess the possible roles of syndecan proteins in amelogenesis, we examined the expression patterns of all syndecan isoforms in continuously growing mouse incisors, in which we can overview major differentiation stages of amelogenesis at a glance. Understanding the expression domain of each syndecan isoform during specific developmental stages seems useful for investigating their physiological roles in amelogenesis. Immunohistochemical analysis of syndecan core proteins in the lower incisors from postnatal day 1 mice revealed spatially and temporally specific expression patterns, with syndecan-1 expressed in undifferentiated epithelial and mesenchymal cells, and syndecan-2, -3, and -4 in more differentiated cells. These findings suggest that each syndecan isoform functions distinctly during the amelogenesis of the incisors of mice.

  19. A lower content of de-methylesterified homogalacturonan improves enzymatic cell separation and isolation of mesophyll protoplasts in Arabidopsis.

    PubMed

    Lionetti, Vincenzo; Cervone, Felice; De Lorenzo, Giulia

    2015-04-01

    Cell adhesion occurs primarily at the level of middle lamella which is mainly composed by pectin polysaccharides. These can be degraded by cell wall degrading enzymes (CWDEs) during developmental processes to allow a controlled separation of plant cells. Extensive cell wall degradation by CWDEs with consequent cell separation is performed when protoplasts are isolated from plant tissues by using mixtures of CWDEs. We have evaluated whether modification of pectin affects cell separation and protoplast isolation. Arabidopsis plants overexpressing the pectin methylesterase inhibitors AtPMEI-1 or AtPMEI-2, and Arabidopsis pme3 plants, mutated in the gene encoding pectin methylesterase 3, showed an increased efficiency of isolation of viable mesophyll protoplasts as compared with Wild Type Columbia-0 plants. The release of protoplasts was correlated with the reduced level of long stretches of de-methylesterified homogalacturonan (HGA) present in these plants. Response to elicitation, cell wall regeneration and efficiency of transfection in protoplasts from transgenic plants was comparable to those of wild type protoplasts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Modeling to Optimize Terminal Stem Cell Differentiation

    PubMed Central

    Gallicano, G. Ian

    2013-01-01

    Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy. PMID:24278782

  1. CRISPR/Cas9 genome editing in human pluripotent stem cells: Harnessing human genetics in a dish.

    PubMed

    González, Federico

    2016-07-01

    Because of their extraordinary differentiation potential, human pluripotent stem cells (hPSCs) can differentiate into virtually any cell type of the human body, providing a powerful platform not only for generating relevant cell types useful for cell replacement therapies, but also for modeling human development and disease. Expanding this potential, structures resembling human organs, termed organoids, have been recently obtained from hPSCs through tissue engineering. Organoids exhibit multiple cell types self-organizing into structures recapitulating in part the physiology and the cellular interactions observed in the organ in vivo, offering unprecedented opportunities for human disease modeling. To fulfill this promise, tissue engineering in hPSCs needs to be supported by robust and scalable genome editing technologies. With the advent of the CRISPR/Cas9 technology, manipulating the genome of hPSCs has now become an easy task, allowing modifying their genome with superior precision, speed, and throughput. Here we review current and potential applications of the CRISPR/Cas9 technology in hPSCs and how they contribute to establish hPSCs as a model of choice for studying human genetics. Developmental Dynamics 245:788-806, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions.

    PubMed

    Islam, Rafique; Kristiansen, Lars V; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-04-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.

  3. The Hedgehog Signal Induced Modulation of Bone Morphogenetic Protein Signaling: An Essential Signaling Relay for Urinary Tract Morphogenesis

    PubMed Central

    Nakagata, Naomi; Miyagawa, Shinichi; Suzuki, Kentaro; Kitazawa, Sohei; Yamada, Gen

    2012-01-01

    Background Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. Methodology/Principal Findings To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh−/− displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. Conclusions/Significance This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract. PMID:22860096

  4. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation.

    PubMed

    Salerno, Paola; Persson, Jessica; Bucca, Giselda; Laing, Emma; Ausmees, Nora; Smith, Colin P; Flärdh, Klas

    2013-12-05

    The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously unknown genes with important roles in sporulation. The transcriptomic data reported here should also serve as a basis for identification of further developmentally important genes in future functional studies.

  5. Quantitative analysis of random ameboid motion

    NASA Astrophysics Data System (ADS)

    Bödeker, H. U.; Beta, C.; Frank, T. D.; Bodenschatz, E.

    2010-04-01

    We quantify random migration of the social ameba Dictyostelium discoideum. We demonstrate that the statistics of cell motion can be described by an underlying Langevin-type stochastic differential equation. An analytic expression for the velocity distribution function is derived. The separation into deterministic and stochastic parts of the movement shows that the cells undergo a damped motion with multiplicative noise. Both contributions to the dynamics display a distinct response to external physiological stimuli. The deterministic component depends on the developmental state and ambient levels of signaling substances, while the stochastic part does not.

  6. Genome-Wide Analysis Reveals the Unique Stem Cell Identity of Human Amniocytes

    PubMed Central

    Maguire, Colin T.; Demarest, Bradley L.; Hill, Jonathon T.; Palmer, James D.; Brothman, Arthur R.; Yost, H. Joseph; Condic, Maureen L.

    2013-01-01

    Human amniotic fluid contains cells that potentially have important stem cell characteristics, yet the programs controlling their developmental potency are unclear. Here, we provide evidence that amniocytes derived from multiple patients are marked by heterogeneity and variability in expression levels of pluripotency markers. Clonal analysis from multiple patients indicates that amniocytes have large pools of self-renewing cells that have an inherent property to give rise to a distinct amniocyte phenotype with a heterogeneity of pluripotent markers. Significant to their therapeutic potential, genome-wide profiles are distinct at different gestational ages and times in culture, but do not differ between genders. Based on hierarchical clustering and differential expression analyses of the entire transcriptome, amniocytes express canonical regulators associated with pluripotency and stem cell repression. Their profiles are distinct from human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), and newborn foreskin fibroblasts. Amniocytes have a complex molecular signature, coexpressing trophoblastic, ectodermal, mesodermal, and endodermal cell-type-specific regulators. In contrast to the current view of the ground state of stem cells, ESCs and iPSCs also express high levels of a wide range of cell-type-specific regulators. The coexpression of multilineage differentiation markers combined with the strong expression of a subset of ES cell repressors in amniocytes suggests that these cells have a distinct phenotype that is unlike any other known cell-type or lineage. PMID:23326421

  7. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination

    PubMed Central

    Zhu, Qiang; Tan, Zhou; Zhao, Shufang; Huang, Hao; Zhao, Xiaofeng; Hu, Xuemei; Zhang, Yiping; Shields, Christopher B; Uetani, Noriko; Qiu, Mengsheng

    2015-01-01

    Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocyte undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals. PMID:26341907

  8. The coordination of ploidy and cell size differs between cell layers in leaves

    PubMed Central

    Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu

    2016-01-01

    Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity. PMID:26903507

  9. An organizing activity is required for head patterning and cell fate specification in the polychaete annelid Capitella teleta: new insights into cell-cell signaling in Lophotrochozoa.

    PubMed

    Amiel, Aldine R; Henry, Jonathan Q; Seaver, Elaine C

    2013-07-01

    Many lophotrochozoans (i.e., molluscs, annelids, nemerteans, and polyclad flatworms) display a well-conserved early developmental program called spiral cleavage that contrasts with the high diversity of adult body forms present in this group. Due to this stereotypical development, each cell can be uniquely identified and its lineage history known following intracellular injection of lineage tracers. Cell deletion experiments performed mainly in molluscs have demonstrated that one or two cells associated with the endomesodermal lineage represent an embryonic organizer of subsequent development and are causally involved in cell fate and body patterning. Utilizing the published fate map of the spiral-cleaving annelid Capitella teleta, we used infrared laser cell deletions to dissect the role of individual cells on the patterning of the larval body. Thirteen uniquely identifiable individual blastomeres and two double cell combination deletions were studied to assess larval phenotypes by scoring multiple morphological structures and cell type-specific molecular markers differentially expressed along the antero-posterior and dorso-ventral axes. Surprisingly, our results show that in C. teleta, the cellular identity of the "organizing cell" and the timing of the organizing activity are different from that of other spiralians. retain-->In C. teleta, the ectodermal primary somatoblast, 2d, is the key cell responsible for organizing activity during early embryonic development, and is necessary for bilateral symmetry and dorso-ventral axis organization of the head as well as neural, foregut and mesoderm tissue formation. Furthermore, we show that the ERK/MAPK signaling pathway does not appear to be involved in organizing activity in retain-->C. teleta. This contrasts with data from molluscs and the molecular mechanism suggested for another polychaete, Hydroides elegans, highlighting likely molecular level variation among spiralian embryos. These results reinforce the idea that an embryonic organizing activity is present across spiralians. Our data also emphasize the developmental variation within lophotrochozoans, and may ultimately provide insight into the role of developmental processes in the evolution of diverse body forms in metazoans. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. The Genetics and Epigenetics of Kidney Development

    PubMed Central

    Patel, Sanjeevkumar R.; Dressler, Gregory R.

    2013-01-01

    The development of the mammalian kidney has been studied at the genetic, biochemical, and cell biological level for more than 40 years. As such, detailed mechanisms governing early patterning, cell lineages, and inductive interactions are well described. How genes interact to specify the renal epithelial cells of the nephrons and how this specification is relevant to maintaining normal renal function is discussed. Implicit in the development of the kidney are epigenetic mechanisms that mark renal cell types and connect certain developmental regulatory factors to chromatin modifications that control gene expression patterns and cellular physiology. In adults, such regulatory factors and their epigenetic pathways may function in regeneration and may be disturbed in disease processes. PMID:24011574

  11. Comprehensive List of Cancer-Related Genetic Variations of the NCI-60 Panel | Center for Cancer Research

    Cancer.gov

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. The panel of cell lines represents nine different types of cancer: breast, ovary, prostate, colon, lung, kidney, brain, leukemia, and melanoma. Originally developed to screen anticancer compounds by the NCI Developmental Therapeutics Program (DTP), the NCI-60 panel has generated the most extensive cancer pharmacology database worldwide. The 60 cell lines have also been extensively analyzed for their gene and microRNA expression levels, DNA mutation status, and DNA copy number variations. These findings have provided the groundwork for research centered on increasing our understanding of tumor biology and drug activity.

  12. Comparative floral development in Lithospermum (Boraginaceae) and implications for the evolution and development of heterostyly.

    PubMed

    Cohen, James I; Litt, Amy; Davis, Jerrold I

    2012-05-01

    The evolution and development of floral developmental patterns were investigated in three heterostylous and three homostylous species of Lithospermum to determine whether species that independently acquired the same floral form follow the same pattern of development or different patterns. Using light and scanning electron microscopy, we observed developmental patterns in flowers at different stages of maturity. These patterns were compared within individual species, between heterostylous morphs, and among heterostylous and homostylous species. Although heterostyly has been determined by phylogenetic analysis to have originated independently in each of the heterostylous species, flowers of the long-style morph of each species follow similar patterns of gross development, as do those of the short-style morph. In addition, the flowers of each morph develop in a manner similar to those of their respective homostylous, herkogamous relatives. However, the developmental patterns of the stylar epidermal cells differ among these species and between heterostylous and homostylous species. Floral developmental patterns in homostylous species provide evidence that modification of specific traits, such as patterns of stylar growth, can lead to the evolution of heterostyly. The developmental changes that affect the positions of the stigmas and anthers in each morph likely involve either temporal or spatial modifications of gene function. The floral developmental patterns described here and the occurrence of multiple types of herkogamy within some species of Lithospermum provide evidence that heterostylous species in the genus have originated via distinct evolutionary developmental pathways.

  13. Developmental immunotoxicity of chemicals in rodents and its possible regulatory impact.

    PubMed

    Hessel, Ellen V S; Tonk, Elisa C M; Bos, Peter M J; van Loveren, Henk; Piersma, Aldert H

    2015-01-01

    Around 25% of the children in developed countries are affected with immune-based diseases. Juvenile onset diseases such as allergic, inflammatory and autoimmune diseases have shown increasing prevalences in the last decades. The role of chemical exposures in these phenomena is unclear. It is thought that the developmental immune system is more susceptible to toxicants than the mature situation. Developmental immunotoxicity (DIT) testing is nowadays not or minimally included in regulatory toxicology requirements. We reviewed whether developmental immune parameters in rodents would provide relatively sensitive endpoints of toxicity, whose inclusion in regulatory toxicity testing might improve hazard identification and risk assessment of chemicals. For each of the nine reviewed toxicants, the developing immune system was found to be at least as sensitive or more sensitive than the general (developmental) toxicity parameters. Functional immune (antigen-challenged) parameters appear more affected than structural (non-challenged) immune parameters. Especially, antibody responses to immune challenges with keyhole limpet hemocyanine or sheep red blood cells and delayed-type hypersensitivity responses appear to provide sensitive parameters of developmental immune toxicity. Comparison with current tolerable daily intakes (TDI) and their underlying overall no observed adverse effect levels showed that for some of the compounds reviewed, the TDI may need reconsideration based on developmental immune parameters. From these data, it can be concluded that the developing immune system is very sensitive to the disruption of toxicants independent of study design. Consideration of including functional DIT parameters in current hazard identification guidelines and wider application of relevant study protocols is warranted.

  14. Biological and mechanical interplay at the Macro- and Microscales Modulates the Cell-Niche Fate.

    PubMed

    Sarig, Udi; Sarig, Hadar; Gora, Aleksander; Krishnamoorthi, Muthu Kumar; Au-Yeung, Gigi Chi Ting; de-Berardinis, Elio; Chaw, Su Yin; Mhaisalkar, Priyadarshini; Bogireddi, Hanumakumar; Ramakrishna, Seeram; Boey, Freddy Yin Chiang; Venkatraman, Subbu S; Machluf, Marcelle

    2018-03-02

    Tissue development, regeneration, or de-novo tissue engineering in-vitro, are based on reciprocal cell-niche interactions. Early tissue formation mechanisms, however, remain largely unknown given complex in-vivo multifactoriality, and limited tools to effectively characterize and correlate specific micro-scaled bio-mechanical interplay. We developed a unique model system, based on decellularized porcine cardiac extracellular matrices (pcECMs)-as representative natural soft-tissue biomaterial-to study a spectrum of common cell-niche interactions. Model monocultures and 1:1 co-cultures on the pcECM of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) were mechano-biologically characterized using macro- (Instron), and micro- (AFM) mechanical testing, histology, SEM and molecular biology aspects using RT-PCR arrays. The obtained data was analyzed using developed statistics, principal component and gene-set analyses tools. Our results indicated biomechanical cell-type dependency, bi-modal elasticity distributions at the micron cell-ECM interaction level, and corresponding differing gene expression profiles. We further show that hMSCs remodel the ECM, HUVECs enable ECM tissue-specific recognition, and their co-cultures synergistically contribute to tissue integration-mimicking conserved developmental pathways. We also suggest novel quantifiable measures as indicators of tissue assembly and integration. This work may benefit basic and translational research in materials science, developmental biology, tissue engineering, regenerative medicine and cancer biomechanics.

  15. The Modern Primitives: Applying New Technological Approaches to Explore the Biology of the Earliest Red Blood Cells

    PubMed Central

    Fraser, Stuart T.

    2013-01-01

    One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells. PMID:24222861

  16. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    PubMed

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Expression of Tlx in both stem cells and transit amplifying progenitors regulates stem cell activation and differentiation in the neonatal lateral subependymal zone.

    PubMed

    Obernier, Kirsten; Simeonova, Ina; Fila, Tatiana; Mandl, Claudia; Hölzl-Wenig, Gabriele; Monaghan-Nichols, Paula; Ciccolini, Francesca

    2011-09-01

    Niche homeostasis in the postnatal subependymal zone of the lateral ventricle (lSEZ) requires coordinated proliferation and differentiation of neural progenitor cells. The mechanisms regulating this balance are scarcely known. Recent observations indicate that the orphan nuclear receptor Tlx is an intrinsic factor essential in maintaining this balance. However, the effect of Tlx on gene expression depends on age and cell-type cues. Therefore, it is essential to establish its expression pattern at different developmental ages. Here, we show for the first time that in the neonatal lSEZ activated neural stem cells (NSCs) and especially transit-amplifying progenitors (TAPs) express Tlx and that its expression may be regulated at the posttranscriptional level. We also provide evidence that in both cell types Tlx affects gene expression in a positive and negative manner. In activated NSCs, but not in TAPs, absence of Tlx leads to overexpression of negative cell cycle regulators and impairment of proliferation. Moreover, in both cell types, the homeobox transcription factor Dlx2 is downregulated in the absence of Tlx. This is paralleled by increased expression of Olig2 in activated NSCs and glial fibrillary acidic protein in TAPs, indicating that in both populations Tlx decreases gliogenesis. Consistent with this, we found a higher proportion of cells expressing glial makers in the neonatal lSEZ of mutant mice than in the wild type counterpart. Thus, Tlx playing a dual role affects the expression of distinct genes in these two lSEZ cell types. Copyright © 2011 AlphaMed Press.

  18. Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus. Analysis by two-dimensional gel electrophoresis.

    PubMed

    Horiuchi, Takayuki; Taoka, Masato; Isobe, Toshiaki; Komano, Teruya; Inouye, Sumiko

    2002-07-26

    Two genes, fruA and csgA, encoding a putative transcription factor and C-factor, respectively, are essential for fruiting body formation of Myxococcus xanthus. To investigate the role of fruA and csgA genes in developmental gene expression, developing cells as well as vegetative cells of M. xanthus wild-type, fruA::Tc, and csgA731 strains were pulse-labeled with [(35)S]methionine, and the whole cell proteins were analyzed using two-dimensional immobilized pH gradient/SDS-PAGE. Differences in protein synthesis patterns among more than 700 protein spots were detected during development of the three strains. Fourteen proteins showing distinctly different expression patterns in mutant cells were analyzed in more detail. Five of the 14 proteins were identified as elongation factor Tu (EF-Tu), Dru, DofA, FruA, and protein S by immunoblot analysis and mass spectroscopy. A gene encoding DofA was cloned and sequenced. Although both fruA and csgA genes regulate early development of M. xanthus, they were found to differently regulate expression of several developmental genes. The production of six proteins, including DofA and protein S, was dependent on fruA, whereas the production of two proteins was dependent on csgA, and one protein was dependent on both fruA and csgA. To explain the present findings, a new model was presented in which different levels of FruA phosphorylation may distinctively regulate the expression of two groups of developmental genes.

  19. Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea.

    PubMed

    Huang, Lin-Chien; Thorne, Peter R; Housley, Gary D; Montgomery, Johanna M

    2007-08-01

    The adult mammalian cochlea receives dual afferent innervation: the inner sensory hair cells are innervated exclusively by type I spiral ganglion neurons (SGN), whereas the sensory outer hair cells are innervated by type II SGN. We have characterized the spatiotemporal reorganization of the dual afferent innervation pattern as it is established in the developing mouse cochlea. This reorganization occurs during the first postnatal week just before the onset of hearing. Our data reveal three distinct phases in the development of the afferent innervation of the organ of Corti: (1) neurite growth and extension of both classes of afferents to all hair cells (E18-P0); (2) neurite refinement, with formation of the outer spiral bundles innervating outer hair cells (P0-P3); (3) neurite retraction and synaptic pruning to eliminate type I SGN innervation of outer hair cells, while retaining their innervation of inner hair cells (P3-P6). The characterization of this developmental innervation pattern was made possible by the finding that tetramethylrhodamine-conjugated dextran (TMRD) specifically labeled type I SGN. Peripherin and choline-acetyltransferase immunofluorescence confirmed the type II and efferent innervation patterns, respectively, and verified the specificity of the type I SGN neurites labeled by TMRD. These findings define the precise spatiotemporal neurite reorganization of the two afferent nerve fiber populations in the cochlea, which is crucial for auditory neurotransmission. This reorganization also establishes the cochlea as a model system for studying CNS synapse development, plasticity and elimination.

  20. Genetic changes associated with testicular cancer susceptibility.

    PubMed

    Pyle, Louise C; Nathanson, Katherine L

    2016-10-01

    Testicular germ cell tumor (TGCT) is a highly heritable cancer primarily affecting young white men. Genome-wide association studies (GWAS) have been particularly effective in identifying multiple common variants with strong contribution to TGCT risk. These loci identified through association studies have implicated multiple genes as associated with TGCT predisposition, many of which are unique among cancer types, and regulate processes such as pluripotency, sex specification, and microtubule assembly. Together these biologically plausible genes converge on pathways involved in male germ cell development and maturation, and suggest that perturbation of them confers susceptibility to TGCT, as a developmental defect of germ cell differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Sox11 Expression Promotes Regeneration of Some Retinal Ganglion Cell Types but Kills Others.

    PubMed

    Norsworthy, Michael W; Bei, Fengfeng; Kawaguchi, Riki; Wang, Qing; Tran, Nicholas M; Li, Yi; Brommer, Benedikt; Zhang, Yiming; Wang, Chen; Sanes, Joshua R; Coppola, Giovanni; He, Zhigang

    2017-06-21

    At least 30 types of retinal ganglion cells (RGCs) send distinct messages through the optic nerve to the brain. Available strategies of promoting axon regeneration act on only some of these types. Here we tested the hypothesis that overexpressing developmentally important transcription factors in adult RGCs could reprogram them to a "youthful" growth-competent state and promote regeneration of other types. From a screen of transcription factors, we identified Sox11 as one that could induce substantial axon regeneration. Transcriptome profiling indicated that Sox11 activates genes involved in cytoskeletal remodeling and axon growth. Remarkably, α-RGCs, which preferentially regenerate following treatments such as Pten deletion, were killed by Sox11 overexpression. Thus, Sox11 promotes regeneration of non-α-RGCs, which are refractory to Pten deletion-induced regeneration. We conclude that Sox11 can reprogram adult RGCs to a growth-competent state, suggesting that different growth-promoting interventions promote regeneration in distinct neuronal types. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. CELDA – an ontology for the comprehensive representation of cells in complex systems

    PubMed Central

    2013-01-01

    Background The need for detailed description and modeling of cells drives the continuous generation of large and diverse datasets. Unfortunately, there exists no systematic and comprehensive way to organize these datasets and their information. CELDA (Cell: Expression, Localization, Development, Anatomy) is a novel ontology for the association of primary experimental data and derived knowledge to various types of cells of organisms. Results CELDA is a structure that can help to categorize cell types based on species, anatomical localization, subcellular structures, developmental stages and origin. It targets cells in vitro as well as in vivo. Instead of developing a novel ontology from scratch, we carefully designed CELDA in such a way that existing ontologies were integrated as much as possible, and only minimal extensions were performed to cover those classes and areas not present in any existing model. Currently, ten existing ontologies and models are linked to CELDA through the top-level ontology BioTop. Together with 15.439 newly created classes, CELDA contains more than 196.000 classes and 233.670 relationship axioms. CELDA is primarily used as a representational framework for modeling, analyzing and comparing cells within and across species in CellFinder, a web based data repository on cells (http://cellfinder.org). Conclusions CELDA can semantically link diverse types of information about cell types. It has been integrated within the research platform CellFinder, where it exemplarily relates cell types from liver and kidney during development on the one hand and anatomical locations in humans on the other, integrating information on all spatial and temporal stages. CELDA is available from the CellFinder website: http://cellfinder.org/about/ontology. PMID:23865855

  3. The EphA2 Receptor and EphrinA1 Ligand in Solid Tumors: Function and Therapeutic Targeting

    PubMed Central

    Wykosky, Jill; Debinski, Waldemar

    2013-01-01

    The Eph receptor tyrosine kinases and ephrin ligands have been studied extensively for their roles in developmental processes. In recent years, Eph receptors and ephrins have been found to be integral players in cancer formation and progression. Among these are EphA2 and ephrinA1, which are involved in the development and maintenance of many different types of solid tumors. The function of EphA2 and ephrinA1 in tumorigenesis and tumor progression is complex and seems to be dependent on cell type and microenvironment. These variables affect the expression of the EphA2 and ephrinA1 proteins, the pathways through which they induce signaling, and the functional consequences of that signaling on the behavior of tumor cells and tumor-associated cells. This review will specifically focus on the roles that EphA2 and ephrinA1 play in the different cell types that contribute to the malignancy of solid tumors, with emphasis on the opportunities for therapeutic targeting. PMID:19074825

  4. Bioelectric patterning during oogenesis: stage-specific distribution of membrane potentials, intracellular pH and ion-transport mechanisms in Drosophila ovarian follicles.

    PubMed

    Krüger, Julia; Bohrmann, Johannes

    2015-01-16

    Bioelectric phenomena have been found to exert influence on various developmental and regenerative processes. Little is known about their possible functions and the cellular mechanisms by which they might act during Drosophila oogenesis. In developing follicles, characteristic extracellular current patterns and membrane-potential changes in oocyte and nurse cells have been observed that partly depend on the exchange of protons, potassium ions and sodium ions. These bioelectric properties have been supposed to be related to various processes during oogenesis, e. g. pH-regulation, osmoregulation, cell communication, cell migration, cell proliferation, cell death, vitellogenesis and follicle growth. Analysing in detail the spatial distribution and activity of the relevant ion-transport mechanisms is expected to elucidate the roles that bioelectric phenomena play during oogenesis. To obtain an overview of bioelectric patterning along the longitudinal and transversal axes of the developing follicle, the spatial distributions of membrane potentials (Vmem), intracellular pH (pHi) and various membrane-channel proteins were studied systematically using fluorescent indicators, fluorescent inhibitors and antisera. During mid-vitellogenic stages 9 to 10B, characteristic, stage-specific Vmem-patterns in the follicle-cell epithelium as well as anteroposterior pHi-gradients in follicle cells and nurse cells were observed. Corresponding distribution patterns of proton pumps (V-ATPases), voltage-dependent L-type Ca(2+)-channels, amiloride-sensitive Na(+)-channels and Na(+),H(+)-exchangers (NHE) and gap-junction proteins (innexin 3) were detected. In particular, six morphologically distinguishable follicle-cell types are characterized on the bioelectric level by differences concerning Vmem and pHi as well as specific compositions of ion channels and carriers. Striking similarities between Vmem-patterns and activity patterns of voltage-dependent Ca(2+)-channels were found, suggesting a mechanism for transducing bioelectric signals into cellular responses. Moreover, gradients of electrical potential and pH were observed within single cells. Our data suggest that spatial patterning of Vmem, pHi and specific membrane-channel proteins results in bioelectric signals that are supposed to play important roles during oogenesis, e. g. by influencing spatial coordinates, regulating migration processes or modifying the cytoskeletal organization. Characteristic stage-specific changes of bioelectric activity in specialized cell types are correlated with various developmental processes.

  5. From iPSC towards cardiac tissue-a road under construction.

    PubMed

    Peischard, Stefan; Piccini, Ilaria; Strutz-Seebohm, Nathalie; Greber, Boris; Seebohm, Guiscard

    2017-10-01

    The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.

  6. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana

    PubMed Central

    Van Leene, Jelle; Hollunder, Jens; Eeckhout, Dominique; Persiau, Geert; Van De Slijke, Eveline; Stals, Hilde; Van Isterdael, Gert; Verkest, Aurine; Neirynck, Sandy; Buffel, Yelle; De Bodt, Stefanie; Maere, Steven; Laukens, Kris; Pharazyn, Anne; Ferreira, Paulo C G; Eloy, Nubia; Renne, Charlotte; Meyer, Christian; Faure, Jean-Denis; Steinbrenner, Jens; Beynon, Jim; Larkin, John C; Van de Peer, Yves; Hilson, Pierre; Kuiper, Martin; De Veylder, Lieven; Van Onckelen, Harry; Inzé, Dirk; Witters, Erwin; De Jaeger, Geert

    2010-01-01

    Cell proliferation is the main driving force for plant growth. Although genome sequence analysis revealed a high number of cell cycle genes in plants, little is known about the molecular complexes steering cell division. In a targeted proteomics approach, we mapped the core complex machinery at the heart of the Arabidopsis thaliana cell cycle control. Besides a central regulatory network of core complexes, we distinguished a peripheral network that links the core machinery to up- and downstream pathways. Over 100 new candidate cell cycle proteins were predicted and an in-depth biological interpretation demonstrated the hypothesis-generating power of the interaction data. The data set provided a comprehensive view on heterodimeric cyclin-dependent kinase (CDK)–cyclin complexes in plants. For the first time, inhibitory proteins of plant-specific B-type CDKs were discovered and the anaphase-promoting complex was characterized and extended. Important conclusions were that mitotic A- and B-type cyclins form complexes with the plant-specific B-type CDKs and not with CDKA;1, and that D-type cyclins and S-phase-specific A-type cyclins seem to be associated exclusively with CDKA;1. Furthermore, we could show that plants have evolved a combinatorial toolkit consisting of at least 92 different CDK–cyclin complex variants, which strongly underscores the functional diversification among the large family of cyclins and reflects the pivotal role of cell cycle regulation in the developmental plasticity of plants. PMID:20706207

  7. Extended evaluation on the ES-D3 cell differentiation assay combined with the BeWo transport model, to predict relative developmental toxicity of triazole compounds.

    PubMed

    Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard

    2016-05-01

    The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.

  8. Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.

    PubMed

    Smith, Rebecca A; Schuetz, Mathias; Karlen, Steven D; Bird, David; Tokunaga, Naohito; Sato, Yasushi; Mansfield, Shawn D; Ralph, John; Samuels, A Lacey

    2017-06-01

    Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidopsis ( Arabidopsis thaliana ) inflorescence stem. Previous work demonstrated that, when lignin biosynthesis is suppressed in fiber and tracheary element cells with thickened walls, fibers become lignin-depleted while vascular bundles still lignify, suggesting that nonlignifying neighboring xylem cells are contributing to lignification. In this work, we dissect the contributions of different cell types, specifically xylary parenchyma and fiber cells, to lignification of the stem using cell-type-specific promoters to either knock down an essential monolignol biosynthetic gene or to introduce novel monolignol conjugates. Analysis of either reductions in lignin in knockdown lines, or the addition of novel monolignol conjugates, directly identifies the xylary parenchyma and fiber cell populations that contribute to the stem lignification and the developmental timing at which each contribution is most important. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis

    PubMed Central

    Revilla-i-Domingo, Roger; Bilic, Ivan; Vilagos, Bojan; Tagoh, Hiromi; Ebert, Anja; Tamir, Ido M; Smeenk, Leonie; Trupke, Johanna; Sommer, Andreas; Jaritz, Markus; Busslinger, Meinrad

    2012-01-01

    Pax5 controls the identity and development of B cells by repressing lineage-inappropriate genes and activating B-cell-specific genes. Here, we used genome-wide approaches to identify Pax5 target genes in pro-B and mature B cells. In these cell types, Pax5 bound to 40% of the cis-regulatory elements defined by mapping DNase I hypersensitive (DHS) sites, transcription start sites and histone modifications. Although Pax5 bound to 8000 target genes, it regulated only 4% of them in pro-B and mature B cells by inducing enhancers at activated genes and eliminating DHS sites at repressed genes. Pax5-regulated genes in pro-B cells account for 23% of all expression changes occurring between common lymphoid progenitors and committed pro-B cells, which identifies Pax5 as an important regulator of this developmental transition. Regulated Pax5 target genes minimally overlap in pro-B and mature B cells, which reflects massive expression changes between these cell types. Hence, Pax5 controls B-cell identity and function by regulating distinct target genes in early and late B lymphopoiesis. PMID:22669466

  10. Developmental imaging: the avian embryo hatches to the challenge.

    PubMed

    Kulesa, Paul M; McKinney, Mary C; McLennan, Rebecca

    2013-06-01

    The avian embryo provides a multifaceted model to study developmental mechanisms because of its accessibility to microsurgery, fluorescence cell labeling, in vivo imaging, and molecular manipulation. Early two-dimensional planar growth of the avian embryo mimics human development and provides unique access to complex cell migration patterns using light microscopy. Later developmental events continue to permit access to both light and other imaging modalities, making the avian embryo an excellent model for developmental imaging. For example, significant insights into cell and tissue behaviors within the primitive streak, craniofacial region, and cardiovascular and peripheral nervous systems have come from avian embryo studies. In this review, we provide an update to recent advances in embryo and tissue slice culture and imaging, fluorescence cell labeling, and gene profiling. We focus on how technical advances in the chick and quail provide a clearer understanding of how embryonic cell dynamics are beautifully choreographed in space and time to sculpt cells into functioning structures. We summarize how these technical advances help us to better understand basic developmental mechanisms that may lead to clinical research into human birth defects and tissue repair. Copyright © 2013 Wiley Periodicals, Inc.

  11. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction.

    PubMed

    Singh, Upinder; Brewer, Jeremy L; Boothroyd, John C

    2002-05-01

    Developmental switching in Toxoplasma gondii, from the virulent tachyzoite to the relatively quiescent bradyzoite stage, is responsible for disease propagation and reactivation. We have generated tachyzoite to bradyzoite differentiation (Tbd-) mutants in T. gondii and used these in combination with a cDNA microarray to identify developmental pathways in bradyzoite formation. Four independently generated Tbd- mutants were analysed and had defects in bradyzoite development in response to multiple bradyzoite-inducing conditions, a stable phenotype after in vivo passages and a markedly reduced brain cyst burden in a murine model of chronic infection. Transcriptional profiles of mutant and wild-type parasites, growing under bradyzoite conditions, revealed a hierarchy of developmentally regulated genes, including many bradyzoite-induced genes whose transcripts were reduced in all mutants. A set of non-developmentally regulated genes whose transcripts were less abundant in Tbd- mutants were also identified. These may represent genes that mediate downstream effects and/or whose expression is dependent on the same transcription factors as the bradyzoite-induced set. Using these data, we have generated a model of transcription regulation during bradyzoite development in T. gondii. Our approach shows the utility of this system as a model to study developmental biology in single-celled eukaryotes including protozoa and fungi.

  12. Complexes of D-type cyclins with CDKs during maize germination

    PubMed Central

    Vázquez-Ramos, Jorge M.

    2013-01-01

    The importance of cell proliferation in plant growth and development has been well documented. The majority of studies on basic cell cycle mechanisms in plants have been at the level of gene expression and much less knowledge has accumulated in terms of protein interactions and activation. Two key proteins, cyclins and cyclin-dependent kinases (CDKs) are fundamental for cell cycle regulation and advancement. Our aim has been to understand the role of D-type cyclins and type A and B CDKs in the cell cycle taking place during a developmental process such as maize seed germination. Results indicate that three maize D-type cyclins—D2;2, D4;2, and D5;3—(G1-S cyclins by definition) bind and activate two different types of CDK—A and B1;1—in a differential way during germination. Whereas CDKA–D-type cyclin complexes are more active at early germination times than at later times, it was surprising to observe that CDKB1;1, a supposedly G2-M kinase, bound in a differential way to all D-type cyclins tested during germination. Binding to cyclin D2;2 was detectable at all germination times, forming a complex with kinase activity, whereas binding to D4;2 and D5;3 was more variable; in particular, D5;3 was only detected at late germination times. Results are discussed in terms of cell cycle advancement and its importance for seed germination. PMID:24127516

  13. Computational Tools for Stem Cell Biology

    PubMed Central

    Bian, Qin; Cahan, Patrick

    2016-01-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the last several years, a new sub-discipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single-cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. PMID:27318512

  14. Computational Tools for Stem Cell Biology.

    PubMed

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Differential Immunotoxicity Induced by Two Different Windows of Developmental Trichloroethylene Exposure

    PubMed Central

    Gilbert, Kathleen M.; Woodruff, William; Blossom, Sarah J.

    2014-01-01

    Developmental exposure to environmental toxicants may induce immune system alterations that contribute to adult stage autoimmune disease. We have shown that continuous exposure of MRL+/+ mice to trichloroethylene (TCE) from gestational day (GD) 0 to postnatal day (PND) 49 alters several aspects of CD4+ T cell function. This window of exposure corresponds to conception-adolescence/young adulthood in humans. More narrowly defining the window of TCE developmental exposure causes immunotoxicity that would establish the stage at which avoidance and/or intervention would be most effective. The current study divided continuous TCE exposure into two separate windows, namely, gestation only (GD0 to birth (PND0)) and early-life only (PND0-PND49). The mice were examined for specific alterations in CD4+ T cell function at PND49. One potentially long-lasting effect of developmental exposure, alterations in retrotransposon expression indicative of epigenetic alterations, was found in peripheral CD4+ T cells from both sets of developmentally exposed mice. Interestingly, certain other effects, such as alterations in thymus cellularity, were only found in mice exposed to TCE during gestation. In contrast, expansion of memory/activation cell subset of peripheral CD4+ T cells were only found in mice exposed to TCE during early life. Different windows of developmental TCE exposure can have different functional consequences. PMID:24696780

  16. Polarised Organisation of the Cytoskeleton: Regulation by Cell Polarity Proteins.

    PubMed

    Raman, Renuka; Savio, Clyde; Sonawane, Mahendra

    2018-06-24

    Polarity is one of the fundamental properties displayed by living organisms. In metazoans, cell polarity governs developmental processes and plays an essential role during maintenance of forms of tissues as well as their functions. The mechanisms of establishment and maintenance of cell polarity have been investigated extensively in the last two decades. This has resulted in identification of "core cell polarity modules" that control anterior-posterior, front-rear and apical-basal polarity across various cell types. Here, we review how these polarity modules interact closely with the cytoskeleton during establishment and maintenance of cytoskeletal polarity. We further suggest that reciprocal interactions between cell polarity modules and the cytoskeleton consolidate the initial weaker polarity, arising from an external cue, into a committed polarised system. Copyright © 2018. Published by Elsevier Ltd.

  17. Directed differentiation of embryonic stem cells using a bead-based combinatorial screening method.

    PubMed

    Tarunina, Marina; Hernandez, Diana; Johnson, Christopher J; Rybtsov, Stanislav; Ramathas, Vidya; Jeyakumar, Mylvaganam; Watson, Thomas; Hook, Lilian; Medvinsky, Alexander; Mason, Chris; Choo, Yen

    2014-01-01

    We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported.

  18. Scorched earth strategy

    PubMed Central

    Wrzaczek, Michael; Brosché, Mikael

    2009-01-01

    Programmed cell death is a common feature of developmental processes and responses to environmental cues in many multicellular organisms. Examples of programmed cell death in plants are leaf abscission in autumn and the hypersensitive response during pathogen attack. Reactive oxygen species (ROS) have been implicated in the regulation of various types of cell death.1,2 However, the precise mechanics of the involvement of ROS in the processes leading to initiation of cell death and subsequent containment are currently unknown. We recently showed the involvement of an Arabidopsis protein GRIM REAPER in the regulation of ROS-induced cell death under stress conditions.3 Our results indicated that the presence of a truncated protein primes plants for cell death in the presence of ROS leading to ozone sensitivity and increased resistance to hemibiotrophic pathogens. PMID:19820355

  19. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals.

    PubMed

    Schwörer, Simon; Becker, Friedrich; Feller, Christian; Baig, Ali H; Köber, Ute; Henze, Henriette; Kraus, Johann M; Xin, Beibei; Lechel, André; Lipka, Daniel B; Varghese, Christy S; Schmidt, Manuel; Rohs, Remo; Aebersold, Ruedi; Medina, Kay L; Kestler, Hans A; Neri, Francesco; von Maltzahn, Julia; Tümpel, Stefan; Rudolph, K Lenhard

    2016-12-15

    The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFβ, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.

  20. Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy.

    PubMed

    Lüer, Karin; Technau, Gerhard M

    2009-08-03

    The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once specified in the neuroectoderm, exhibit a higher degree of autonomy regarding generation of their lineages compared to mesectodermal midline progenitors.

  1. Activation of the Cph1-Dependent MAP Kinase Signaling Pathway Induces White-Opaque Switching in Candida albicans

    PubMed Central

    Ramírez-Zavala, Bernardo; Weyler, Michael; Gildor, Tsvia; Schmauch, Christian; Kornitzer, Daniel; Arkowitz, Robert; Morschhäuser, Joachim

    2013-01-01

    Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white) to an elongated cell type (opaque), which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11ΔN467) efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase. PMID:24130492

  2. Spatial fluctuations in expression of the heterocyst differentiation regulatory gene hetR in Anabaena filaments.

    PubMed

    Corrales-Guerrero, Laura; Tal, Asaf; Arbel-Goren, Rinat; Mariscal, Vicente; Flores, Enrique; Herrero, Antonia; Stavans, Joel

    2015-04-01

    Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these basic ingredients combine together in the presence of inevitable stochasticity in gene expression, to control the coupled fluctuations of gene expression that give rise to a one-dimensional developmental pattern in this organism.

  3. Effect of endocannabinoid signalling on cell fate: life, death, differentiation and proliferation of brain cells.

    PubMed

    Garcia-Arencibia, Moises; Molina-Holgado, Eduardo; Molina-Holgado, Francisco

    2018-05-24

    Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. © 2018 The British Pharmacological Society.

  4. Mechanisms of collective cell movement lacking a leading or free front edge in vivo.

    PubMed

    Uechi, Hiroyuki; Kuranaga, Erina

    2017-08-01

    Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.

  5. The Potential of Human Stem Cells for the Study and Treatment of Glaucoma

    PubMed Central

    Chamling, Xitiz; Sluch, Valentin M.; Zack, Donald J.

    2016-01-01

    Purpose Currently, the only available and approved treatments for glaucoma are various pharmacologic, laser-based, and surgical procedures that lower IOP. Although these treatments can be effective, they are not always sufficient, and they cannot restore vision that has already been lost. The goal of this review is to briefly assess current developments in the application of stem cell biology to the study and treatment of glaucoma and other forms of optic neuropathy. Methods A combined literature review and summary of the glaucoma-related discussion at the 2015 “Sight Restoration Through Stem Cell Therapy” meeting that was sponsored by the Ocular Research Symposia Foundation (ORSF). Results Ongoing advancements in basic and eye-related developmental biology have enabled researchers to direct murine and human stem cells along specific developmental paths and to differentiate them into a variety of ocular cell types of interest. The most advanced of these efforts involve the differentiation of stem cells into retinal pigment epithelial cells, work that has led to the initiation of several human trials. More related to the glaucoma field, there have been recent advances in developing protocols for differentiation of stem cells into trabecular meshwork and retinal ganglion cells. Additionally, efforts are being made to generate stem cell–derived cells that can be used to secrete neuroprotective factors. Conclusions Advancing stem cell technology provides opportunities to improve our understanding of glaucoma-related biology and develop models for drug development, and offers the possibility of cell-based therapies to restore sight to patients who have already lost vision. PMID:27116666

  6. Modeling activity and target-dependent developmental cell death of mouse retinal ganglion cells ex vivo.

    PubMed

    Voyatzis, Sylvie; Muzerelle, Aude; Gaspar, Patricia; Nicol, Xavier

    2012-01-01

    Programmed cell death is widespread during the development of the central nervous system and serves multiple purposes including the establishment of neural connections. In the mouse retina a substantial reduction of retinal ganglion cells (RGCs) occurs during the first postnatal week, coinciding with the formation of retinotopic maps in the superior colliculus (SC). We previously established a retino-collicular culture preparation which recapitulates the progressive topographic ordering of RGC projections during early post-natal life. Here, we questioned whether this model could also be suitable to examine the mechanisms underlying developmental cell death of RGCs. Brn3a was used as a marker of the RGCs. A developmental decline in the number of Brn3a-immunolabelled neurons was found in the retinal explant with a timing that paralleled that observed in vivo. In contrast, the density of photoreceptors or of starburst amacrine cells increased, mimicking the evolution of these cell populations in vivo. Blockade of neural activity with tetrodotoxin increased the number of surviving Brn3a-labelled neurons in the retinal explant, as did the increase in target availability when one retinal explant was confronted with 2 or 4 collicular slices. Thus, this ex vivo model reproduces the developmental reduction of RGCs and recapitulates its regulation by neural activity and target availability. It therefore offers a simple way to analyze developmental cell death in this classic system. Using this model, we show that ephrin-A signaling does not participate to the regulation of the Brn3a population size in the retina, indicating that eprhin-A-mediated elimination of exuberant projections does not involve developmental cell death.

  7. Insulin during in vitro oocyte maturation has an impact on development, mitochondria, and cytoskeleton in bovine day 8 blastocysts.

    PubMed

    Laskowski, Denise; Båge, Renée; Humblot, Patrice; Andersson, Göran; Sirard, Marc-André; Sjunnesson, Ylva

    2017-10-01

    Insulin is a key metabolic hormone that controls energy homeostasis in the body, including playing a specific role in regulating reproductive functions. Conditions associated with hyperinsulinemia can lower developmental rates in bovine in vitro embryo production and are linked to decreased fertility in humans, as in cases of obesity or type 2 diabetes. Embryo quality is important for fertility outcome and it can be assessed by choosing scoring standards for various characteristics, such as developmental stage, quality grade, cell number, mitochondrial pattern or actin cytoskeleton structure. Changes in the embryo's gene expression can reflect environmental impacts during maturation and may explain morphological differences. Together with morphological evaluation, this could enable better assessment and possibly prediction of the developmental potential of the embryo. The aim of this study was to use a bovine model to identify potential gene signatures of insulin-induced changes in the embryo by combining gene expression data and confocal microscopy evaluation. Bovine embryos were derived from oocytes matured in two different insulin concentrations (10 µg mL - 1 and 0.1 µg mL - 1 ), then stained to distinguish f-Actin, DNA and active mitochondria. The total cell number of the embryo, quality of the actin cytoskeleton and mitochondrial distribution were assessed and compared to an insulin-free control group. A microarray-based transcriptome analysis was used to investigate key genes involved in cell structure, mitochondrial function and cell division. Our results indicate that insulin supplementation during oocyte maturation leads to lower blastocyst rates and a different phenotype, characterised by an increased cell number and different actin and mitochondrial distribution patterns. These changes were reflected by an up-regulation of genes involved in cell division (MAP2K2; DHCR7), cell structure (LMNA; VIM; TUBB2B; TUBB3; TUBB4B) and mitochondrial activation (ATP5D; CYP11A1; NDUFB7; NDUFB10; NDUFS8). Taken together, we hypothesise that the increased proliferation in the insulin-treated groups might impair the developmental potential of the embryos by inducing metabolic stress on the molecular level, which could be detrimental for the survival of the embryo. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Long-term Reductions in the Population of GABAergic Interneurons in the Mouse Hippocampus following Developmental Ethanol Exposure.

    PubMed

    Bird, Clark W; Taylor, Devin H; Pinkowski, Natalie J; Chavez, G Jill; Valenzuela, C Fernando

    2018-07-15

    Developmental exposure to ethanol leads to a constellation of cognitive and behavioral abnormalities known as Fetal Alcohol Spectrum Disorders (FASDs). Many cell types throughout the central nervous system are negatively impacted by gestational alcohol exposure, including inhibitory, GABAergic interneurons. Little evidence exists, however, describing the long-term impact of fetal alcohol exposure on survival of interneurons within the hippocampal formation, which is critical for learning and memory processes that are impaired in individuals with FASDs. Mice expressing Venus yellow fluorescent protein in inhibitory interneurons were exposed to vaporized ethanol during the third trimester equivalent of human gestation (postnatal days 2-9), and the long-term effects on interneuron numbers were measured using unbiased stereology at P90. In adulthood, interneuron populations were reduced in every hippocampal region examined. Moreover, we found that a single exposure to ethanol at P7 caused robust activation of apoptotic neurodegeneration of interneurons in the hilus, granule cell layer, CA1 and CA3 regions of the hippocampus. These studies demonstrate that developmental ethanol exposure has a long-term impact on hippocampal interneuron survivability, and may provide a mechanism partially explaining deficits in hippocampal function and hippocampus-dependent behaviors in those afflicted with FASDs. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Genetic recombination pathways and their application for genome modification of human embryonic stem cells.

    PubMed

    Nieminen, Mikko; Tuuri, Timo; Savilahti, Harri

    2010-10-01

    Human embryonic stem cells are pluripotent cells derived from early human embryo and retain a potential to differentiate into all adult cell types. They provide vast opportunities in cell replacement therapies and are expected to become significant tools in drug discovery as well as in the studies of cellular and developmental functions of human genes. The progress in applying different types of DNA recombination reactions for genome modification in a variety of eukaryotic cell types has provided means to utilize recombination-based strategies also in human embryonic stem cells. Homologous recombination-based methods, particularly those utilizing extended homologous regions and those employing zinc finger nucleases to boost genomic integration, have shown their usefulness in efficient genome modification. Site-specific recombination systems are potent genome modifiers, and they can be used to integrate DNA into loci that contain an appropriate recombination signal sequence, either naturally occurring or suitably pre-engineered. Non-homologous recombination can be used to generate random integrations in genomes relatively effortlessly, albeit with a moderate efficiency and precision. DNA transposition-based strategies offer substantially more efficient random strategies and provide means to generate single-copy insertions, thus potentiating the generation of genome-wide insertion libraries applicable in genetic screens. 2010 Elsevier Inc. All rights reserved.

  10. Developmental neurotoxicity elicited by prenatal or postnatal chlorpyrifos exposure: effects on neurospecific proteins indicate changing vulnerabilities.

    PubMed

    Garcia, Stephanie J; Seidler, Frederic J; Slotkin, Theodore A

    2003-03-01

    The developmental neurotoxicity of the organophosphate pesticide chlorpyrifos (CPF) is thought to involve both neurons and glia, thus producing a prolonged window of vulnerability. To characterize the cell types and brain regions involved in these effects, we administered CPF to developing rats and examined neuroprotein markers for oligodendrocytes (myelin basic protein, MBP), for neuronal cell bodies (neurofilament 68 kDa, NF68), and for developing axons (neurofilament 200 kDa, NF200). Prenatal CPF administration on gestational days (GDs) 17-20 elicited an immediate (GD21) enhancement of MBP and NF68; by postnatal day (PN) 30, however, there were deficits in all three biomarkers, with the effect restricted to females. Exposure in the early postnatal period, PN1-4, did not evoke significant short-term or long-term changes in the neuroproteins. However, with treatment on PN11-14, we found reductions in MBP in the immediate posttreatment period (PN15, PN20) throughout the brain, and deficiencies across all three proteins emerged by PN30. With this regimen, males were targeted preferentially. The sex-selective effects seen here for the GD17-20 and PN11-14 regimens match those reported earlier for subsequent behavioral performance. These results indicate a shift in the populations of neural cells targeted by CPF, dependent upon the period of exposure. Similarly, developmental differences in the sex selectivity of the biochemical mechanisms underlying neurotoxicant actions are likely to contribute to discrete behavioral outcomes.

  11. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Differential expression and molecular characterisation of Lmo7, Myo1e, Sash1, and Mcoln2 genes in Btk-defective B-cells.

    PubMed

    Lindvall, Jessica M; Blomberg, K Emelie M; Wennborg, Anders; Smith, C I Edvard

    2005-05-01

    Bruton's tyrosine kinase is crucial for B-lymphocyte development. By the use of gene expression profiling, we have identified four expressed sequence tags among 38 potential Btk target genes, which have now been characterised. Bioinformatics tools including data mining of additional unpublished gene expression profiles, sequence verification of PCR products and qualitative RT-PCR were used. Stimulations targeting the B-cell receptor and the protein kinase C were used to activate whole B-cell splenocytes. Target genes were characterised as Lim domain only 7 (Lmo7); Myosin1e (Myo1e); SAM and SH3 domain containing 1 (Sash1); and Mucolipin2 (Mcoln2). Expression was found in cell lines of different origin and developmental stages as well as in whole B-cell splenocytes and Transitional type 1 (T1) splenic B-cells from wild type and Btk-defective mice, respectively. By the use of semi-quantitative RT-PCR we found Sash1 not to be expressed in the investigated haematopoietic cell lines, while transcripts were found in whole splenic B-cells from both wild type and Btk-defective mice, whereas Lmo7, Myo1e, and Mcoln2 were expressed in both B-cell lines and primary B-lymphocytes. Except for Lmo7, the transcript level was similarly affected by stimulation in control and Btk-defective cells.

  13. Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland

    PubMed Central

    Scully, Kathleen M.; Skowronska-Krawczyk, Dorota; Krawczyk, Michal; Merkurjev, Daria; Taylor, Havilah; Livolsi, Antonia; Tollkuhn, Jessica; Stan, Radu V.; Rosenfeld, Michael G.

    2016-01-01

    As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin β1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin β1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin β1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin β1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non–cell-autonomous effects on angiogenesis. We conclude that epithelial integrin β1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development. PMID:27810956

  14. Effect of recombinant bovine somatotropin (rbST) on cytoplasmic maturation of bovine oocytes and their developmental competence in vitro.

    PubMed

    Kuzmina, Tatjana I; Alm, Hannelore; Denisenko, Vitaly; Tuchscherer, Armin; Kanitz, Wilhelm; Torner, Helmut

    2007-04-01

    The objectives of this study were to evaluate the effects of recombinant bovine somatotropin (rbST) on the nuclear and cytoplasmic maturation of bovine oocytes and their further developmental competence to blastocysts in vitro. We analyzed the mitochondrial activity and concentration of intracellular stored calcium ([Ca(2+)](is)) in matured oocytes and the morphology and chromatin status of produced embryos after in vitro fertilization. Cumulus-oocyte complexes were incubated in TCM 199 containing 10% fetal calf serum (control medium 1: CM 1) or 10% estrus cow serum (control medium 2: CM 2). The culture medium of the treatment groups was modified by supplementation of the control medium with 10 ng/ml rbST (CM 1A and CM 2A), 10(6)/ml granulosa cells (CM 1B and CM 2B), or 10 ng/ml rbST plus 10(6)/ml granulosa cells (CM 1C and CM 2C). No differences were observed in the percentages of oocytes reaching metaphase II between the groups. However, the proportion of blastocysts was highest in treatment groups CM 1C and CM 2C (P<0.05). The type of serum did not alter the positive effect of rbST on the developmental competence of embryos. The fluorescence intensity of metabolically active mitochondria measured by intensity per oocyte (Em 570) after MitoTracker CMTM Ros Orange labeling was significantly increased in oocytes matured in the presence of 10 ng/ml rbST and granulosa cells (309.21 vs. 119.97 microA; P<0.01). In parallel, the concentration of [Ca(2+)](is) in oocytes, determined using fluorophore chlortetracycline, was significantly decreased (0.85 +/- 0.02 vs. 0.97 +/- 0.03 AU; P<0.05). Based on these results, we concluded that rbST, in interaction with granulosa cells stimulates the oxidative activity of ooplasmic mitochondria and decreases the content of [Ca(2+)](is) in oocytes. These facts support the hypothesis that somatotropin influences the developmental competence of bovine oocytes during maturation in vitro, and this effect can be modulated by granulosa cells.

  15. Identification and Characterization of Genes Required for Early Myxococcus xanthus Developmental Gene Expression

    PubMed Central

    Guo, Dongchuan; Wu, Yun; Kaplan, Heidi B.

    2000-01-01

    Starvation and cell density regulate the developmental expression of Myxococcus xanthus gene 4521. Three classes of mutants allow expression of this developmental gene during growth on nutrient agar, such that colonies of strains containing a Tn5 lac Ω4521 fusion are Lac+. One class of these mutants inactivates SasN, a negative regulator of 4521 expression; another class activates SasS, a sensor kinase-positive regulator of 4521 expression; and a third class blocks lipopolysaccharide (LPS) O-antigen biosynthesis. To identify additional positive regulators of 4521 expression, 11 Lac− TnV.AS transposon insertion mutants were isolated from a screen of 18,000 Lac+ LPS O-antigen mutants containing Tn5 lac Ω4521 (Tcr). Ten mutations identified genes that could encode positive regulators of 4521 developmental expression based on their ability to abolish 4521 expression during development in the absence of LPS O antigen and in an otherwise wild-type background. Eight of these mutations mapped to the sasB locus, which encodes the known 4521 regulators SasS and SasN. One mapped to sasS, whereas seven identified new genes. Three mutations mapped to a gene encoding an NtrC-like response regulator homologue, designated sasR, and four others mapped to a gene designated sasP. One mutation, designated ssp10, specifically suppressed the LPS O-antigen defect; the ssp10 mutation had no effect on 4521 expression in an otherwise wild-type background but reduced 4521 developmental expression in the absence of LPS O antigen to a level close to that of the parent strain. All of the mutations except those in sasP conferred defects during growth and development. These data indicate that a number of elements are required for 4521 developmental expression and that most of these are necessary for normal growth and fruiting body development. PMID:10913090

  16. Life cycles, fitness decoupling and the evolution of multicellularity.

    PubMed

    Hammerschmidt, Katrin; Rose, Caroline J; Kerr, Benjamin; Rainey, Paul B

    2014-11-06

    Cooperation is central to the emergence of multicellular life; however, the means by which the earliest collectives (groups of cells) maintained integrity in the face of destructive cheating types is unclear. One idea posits cheats as a primitive germ line in a life cycle that facilitates collective reproduction. Here we describe an experiment in which simple cooperating lineages of bacteria were propagated under a selective regime that rewarded collective-level persistence. Collectives reproduced via life cycles that either embraced, or purged, cheating types. When embraced, the life cycle alternated between phenotypic states. Selection fostered inception of a developmental switch that underpinned the emergence of collectives whose fitness, during the course of evolution, became decoupled from the fitness of constituent cells. Such development and decoupling did not occur when groups reproduced via a cheat-purging regime. Our findings capture key events in the evolution of Darwinian individuality during the transition from single cells to multicellularity.

  17. Analysis of gene expression and Ig transcription in PU.1/Spi-B-deficient progenitor B cell lines.

    PubMed

    Schweitzer, Brock L; DeKoter, Rodney P

    2004-01-01

    A number of presumptive target genes for the Ets-family transcription factor PU.1 have been identified in the B cell lineage. However, the precise function of PU.1 in B cells has not been studied because targeted null mutation of the PU.1 gene results in a block to lymphomyeloid development at an early developmental stage. In this study, we take advantage of recently developed PU.1(-/-)Spi-B(-/-) IL-7 and stromal cell-dependent progenitor B (pro-B) cell lines to analyze the function of PU.1 and Spi-B in B cell development. We show that contrary to previously published expectations, PU.1 and/or Spi-B are not required for Ig H chain (IgH) gene transcription in pro-B cells. In fact, PU.1(-/-)Spi-B(-/-) pro-B cells have increased levels of IgH transcription compared with wild-type pro-B cells. In addition, high levels of Igkappa transcription are induced after IL-7 withdrawal of wild-type or PU.1(-/-)Spi-B(-/-) pro-B cells. In contrast, we found that Iglambda transcription is reduced in PU.1(-/-)Spi-B(-/-) pro-B cells relative to wild-type pro-B cells after IL-7 withdrawal. These results suggest that Iglambda, but not IgH or Igkappa, transcription, is dependent on PU.1 and/or Spi-B. The PU.1(-/-)Spi-B(-/-) pro-B cells have other phenotypic changes relative to wild-type pro-B cells including increased proliferation, increased CD25 expression, decreased c-Kit expression, and decreased RAG-1 expression. Taken together, our observations suggest that reduction of PU.1 and/or Spi-B activity in pro-B cells promotes their differentiation to a stage intermediate between late pro-B cells and large pre-B cells.

  18. Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate

    PubMed Central

    Wang, Yanjie; Tang, Zan; Huang, Huanwei; Li, Jiao; Wang, Zheng; Yu, Yuanyuan; Zhang, Chengwei; Li, Juan; Dai, Huaping; Wang, Fengchao; Cai, Tao

    2018-01-01

    Pulmonary alveolar type I (AT1) cells cover more than 95% of alveolar surface and are essential for the air–blood barrier function of lungs. AT1 cells have been shown to retain developmental plasticity during alveolar regeneration. However, the development and heterogeneity of AT1 cells remain largely unknown. Here, we conducted a single-cell RNA-seq analysis to characterize postnatal AT1 cell development and identified insulin-like growth factor-binding protein 2 (Igfbp2) as a genetic marker specifically expressed in postnatal AT1 cells. The portion of AT1 cells expressing Igfbp2 increases during alveologenesis and in post pneumonectomy (PNX) newly formed alveoli. We found that the adult AT1 cell population contains both Hopx+Igfbp2+ and Hopx+Igfbp2− AT1 cells, which have distinct cell fates during alveolar regeneration. Using an Igfbp2-CreER mouse model, we demonstrate that Hopx+Igfbp2+ AT1 cells represent terminally differentiated AT1 cells that are not able to transdifferentiate into AT2 cells during post-PNX alveolar regeneration. Our study provides tools and insights that will guide future investigations into the molecular and cellular mechanism or mechanisms underlying AT1 cell fate during lung development and regeneration. PMID:29463737

  19. Fibroblast growth factor receptors, developmental corruption and malignant disease.

    PubMed

    Kelleher, Fergal C; O'Sullivan, Hazel; Smyth, Elizabeth; McDermott, Ray; Viterbo, Antonella

    2013-10-01

    Fibroblast growth factors (FGF) are a family of ligands that bind to four different types of cell surface receptor entitled, FGFR1, FGFR2, FGFR3 and FGFR4. These receptors differ in their ligand binding affinity and tissue distribution. The prototypical receptor structure is that of an extracellular region comprising three immunoglobulin (Ig)-like domains, a hydrophobic transmembrane segment and a split intracellular tyrosine kinase domain. Alternative gene splicing affecting the extracellular third Ig loop also creates different receptor isoforms entitled FGFRIIIb and FGFRIIIc. Somatic fibroblast growth factor receptor (FGFR) mutations are implicated in different types of cancer and germline FGFR mutations occur in developmental syndromes particularly those in which craniosynostosis is a feature. The mutations found in both conditions are often identical. Many somatic FGFR mutations in cancer are gain-of-function mutations of established preclinical oncogenic potential. Gene amplification can also occur with 19-22% of squamous cell lung cancers for example having amplification of FGFR1. Ontologic comparators can be informative such as aberrant spermatogenesis being implicated in both spermatocytic seminomas and Apert syndrome. The former arises from somatic FGFR3 mutations and Apert syndrome arises from germline FGFR2 mutations. Finally, therapeutics directed at inhibiting the FGF/FGFR interaction are a promising subject for clinical trials.

  20. Developmental emergence of different forms of neuromodulation in Aplysia sensory neurons.

    PubMed

    Marcus, E A; Carew, T J

    1998-04-14

    The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a "retrograde" manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.

  1. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors

    PubMed Central

    Villani, Alexandra-Chloé; Satija, Rahul; Reynolds, Gary; Sarkizova, Siranush; Shekhar, Karthik; Fletcher, James; Griesbeck, Morgane; Butler, Andrew; Zheng, Shiwei; Lazo, Suzan; Jardine, Laura; Dixon, David; Stephenson, Emily; Nilsson, Emil; Grundberg, Ida; McDonald, David; Filby, Andrew; Li, Weibo; De Jager, Philip L.; Rozenblatt-Rosen, Orit; Lane, Andrew A.; Haniffa, Muzlifah; Regev, Aviv; Hacohen, Nir

    2017-01-01

    Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. PMID:28428369

  2. A unique epigenetic signature is associated with active DNA replication loci in human embryonic stem cells.

    PubMed

    Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K

    2014-02-01

    The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.

  3. Logic programming to infer complex RNA expression patterns from RNA-seq data.

    PubMed

    Weirick, Tyler; Militello, Giuseppe; Ponomareva, Yuliya; John, David; Döring, Claudia; Dimmeler, Stefanie; Uchida, Shizuka

    2018-03-01

    To meet the increasing demand in the field, numerous long noncoding RNA (lncRNA) databases are available. Given many lncRNAs are specifically expressed in certain cell types and/or time-dependent manners, most lncRNA databases fall short of providing such profiles. We developed a strategy using logic programming to handle the complex organization of organs, their tissues and cell types as well as gender and developmental time points. To showcase this strategy, we introduce 'RenalDB' (http://renaldb.uni-frankfurt.de), a database providing expression profiles of RNAs in major organs focusing on kidney tissues and cells. RenalDB uses logic programming to describe complex anatomy, sample metadata and logical relationships defining expression, enrichment or specificity. We validated the content of RenalDB with biological experiments and functionally characterized two long intergenic noncoding RNAs: LOC440173 is important for cell growth or cell survival, whereas PAXIP1-AS1 is a regulator of cell death. We anticipate RenalDB will be used as a first step toward functional studies of lncRNAs in the kidney.

  4. The chromaffin cell: paradigm in cell, developmental and growth factor biology.

    PubMed Central

    Unsicker, K

    1993-01-01

    This article reviews the chromaffin cell in relation to studies that have elucidated fundamental phenomena in cell biology (the molecular anatomy of exocytosis) and developmental neuroscience (the principle of neuropoiesis in the development of the sympathoadrenal cell lineage). A final section addresses growth factor synthesis and storage in chromaffin cells and their implications for the treatment of neurological disorders, such as Parkinson's disease. Images Fig. 3 PMID:8300412

  5. NBCe1 (SLC4A4) a potential pH Regulator in Enamel Organ Cells during Enamel Development in the Mouse

    PubMed Central

    Jalali, R; Guo, J; Zandieh-Doulabi, B; Bervoets, TJM; Paine, ML; Boron, W; Parker, M; Bijvelds, MJC; Medina, JF; DenBesten, PK; Bronckers, ALJJ

    2016-01-01

    During formation of dental enamel maturation-stage ameloblasts express ion-transporting transmembrane proteins. The SLC4 family of ion-transporters regulates intra- and extracellular pH in eukaryotic cells by co-transporting HCO3− with Na+. Mutation in SLC4A4 (coding for the Na+ bicarbonate co-transporter NBCe1) induces developmental defects in human and murine enamel. We hypothesized that NBCe1 in dental epithelium is engaged in neutralizing protons released during crystal formation in the enamel space. We immunolocalized NBCe1 protein in mouse wild-type dental epithelium and examined the effect of NBCe1-null mutation on enamel formation in mice. Ameloblasts expressed gene transcripts for NBCe1 isoforms B/D/C/E. In wild-type mice weak to moderate immunostaining for NBCe1 with antibodies that recognize isoforms A/B/D/E and isoform C was seen in ameloblasts in secretory stage, no or very low staining in early maturation-stage but moderately to high staining in late maturation-stage. The papillary layer showed the opposite pattern and immunostained prominently at early maturation-stage but gradually showed less staining at mid- and late maturation-stage. In NBCe1−/− mice ameloblasts were disorganized, the enamel thin and severely hypomineralized. Enamel organs of CFTR−/− and AE2a,b−/− mice (believed to be pH regulators in ameloblasts) contained higher levels of NBCe1 protein than wild-type mice. Our data show that expression of NBCe1 in ameloblast and papillary layer cell depends on developmental stage and possibly responds to pH changes. PMID:25012520

  6. EVALUATION OF HUMAN NEURAL PROGENITOR CELLS FOR DEVELOPMENTAL NEUROTOXICITY SCREENING: TIME COURSE OF EFFECTS ON CELL PROLIFERATION AND VIABILITY.

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating human neural progenitor cells (NPCs) as a screen for DNT. ReNcell CX (ReN CX) cells are a...

  7. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    PubMed

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  8. Cellular and Molecular Dynamics of Th17 Differentiation and its Developmental Plasticity in the Intestinal Immune Response

    PubMed Central

    Bhaumik, Suniti; Basu, Rajatava

    2017-01-01

    After emerging from the thymus, naive CD4 T cells circulate through secondary lymphoid tissues, including gut-associated lymphoid tissue of the intestine. The activation of naïve CD4 T cells by antigen-presenting cells offering cognate antigen initiate differentiation programs that lead to the development of highly specialized T helper (Th) cell lineages. Although initially believed that developmental programing of effector T cells such as T helper 1 (Th1) or T helper 2 (Th2) resulted in irreversible commitment to a fixed fate, subsequent studies have demonstrated greater flexibility, or plasticity, in effector T cell stability than originally conceived. This is particularly so for the Th17 subset, differentiation of which is a highly dynamic process with overlapping developmental axes with inducible regulatory T (iTreg), T helper 22 (Th22), and Th1 cells. Accordingly, intermediary stages of Th17 cells are found in various tissues, which co-express lineage-specific transcription factor(s) or cytokine(s) of developmentally related CD4 T cell subsets. A highly specialized tissue like that of the intestine, which harbors the largest immune compartment of the body, adds several layers of complexity to the intricate process of Th differentiation. Due to constant exposure to millions of commensal microbes and periodic exposure to pathogens, the intestinal mucosa maintains a delicate balance between regulatory and effector T cells. It is becoming increasingly clear that equilibrium between tolerogenic and inflammatory axes is maintained in the intestine by shuttling the flexible genetic programming of a developing CD4 T cell along the developmental axis of iTreg, Th17, Th22, and Th1 subsets. Currently, Th17 plasticity remains an unresolved concern in the field of clinical research as targeting Th17 cells to cure immune-mediated disease might also target its related subsets. In this review, we discuss the expanding sphere of Th17 plasticity through its shared developmental axes with related cellular subsets such as Th22, Th1, and iTreg in the context of intestinal inflammation and also examine the molecular and epigenetic features of Th17 cells that mediate these overlapping developmental programs. PMID:28408906

  9. Zscan4 restores the developmental potency of embryonic stem cells

    PubMed Central

    Amano, Tomokazu; Hirata, Tetsuya; Falco, Geppino; Monti, Manuela; Sharova, Lioudmila V.; Amano, Misa; Sheer, Sarah; Hoang, Hien G.; Piao, Yulan; Stagg, Carole A.; Yamamizu, Kohei; Akiyama, Tomohiko; Ko, Minoru S.H.

    2013-01-01

    The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo is known to deteriorate during long-term cell culture. Previously we have shown that ES cells oscillate between Zscan4- and Zscan4+ states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency. PMID:23739662

  10. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae).

    PubMed

    Carneiro, Renê G S; Oliveira, Denis C; Isaias, Rosy M S

    2014-12-01

    The temporal balance between hyperplasia and hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient that determines the gall globoid shape. Plant galls develop by the redifferentiation of new cell types originated from those of the host plants, with new functional and structural designs related to the composition of cell walls and cell contents. Variations in cell wall composition have just started to be explored with the perspective of gall development, and are herein related to the histochemical gradients previously detected on Psidium myrtoides galls. Young and mature leaves of P. myrtoides and galls of Nothotrioza myrtoidis at different developmental stages were analysed using anatomical, cytometrical and immunocytochemical approaches. The gall parenchyma presents transformations in the size and shape of the cells in distinct tissue layers, and variations of pectin and protein domains in cell walls. The temporal balance between tissue hyperplasia and cell hypertrophy, and the new functions of different cell lineages led to cell transformations in a centrifugal gradient, which determines the globoid shape of the gall. The distribution of cell wall epitopes affected cell wall flexibility and rigidity, towards gall maturation. By senescence, it provided functional stability for the outer cortical parenchyma. The detection of the demethylesterified homogalacturonans (HGAs) denoted the activity of the pectin methylesterases (PMEs) during the senescent phase, and was a novel time-based detection linked to the increased rigidity of the cell walls, and to the gall opening. Current investigation firstly reports the influence of immunocytochemistry of plant cell walls over the development of leaf tissues, determining their neo-ontogenesis towards a new phenotype, i.e., the globoid gall morphotype.

  11. Perspectives on avian stem cells for poultry breeding.

    PubMed

    Kagami, Hiroshi

    2016-09-01

    Stem cells have prulipotency to differentiate into many types of cell lineages. Recent progress of avian biotechnology enabled us to analyze the developmental fate of the stem cells: embryonic stem cells / primordial germ cells (PGCs). The stem cells were identified in the central area of the area pellucida of the stage X blastoderms. These cells could be applied for production of germline chimeras and organ regeneration. Generation of medical substrate in transgenic chickens has considerable interests in pharmaceuticals. Sex alteration of the offspring should be enormously beneficial to the poultry industry. Fertilization of the sex-reversed sperm could lead to sexual alteration of the offspring. These strategies using stem cells / PGCs should be one of the most powerful tools for future poultry breeding. © 2016 The Authors. Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  12. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    PubMed Central

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low- and highly-methyl-esterified HG epitopes are developmentally regulated in diverse embryogenic stages during somatic embryogenesis. This study provides new information about pectin composition, HG methyl-esterification and developmental localization of pectin epitopes during somatic embryogenesis of banana. PMID:21826225

  13. Subtype-specific differentiation of cardiac pacemaker cell clusters from human induced pluripotent stem cells.

    PubMed

    Schweizer, Patrick A; Darche, Fabrice F; Ullrich, Nina D; Geschwill, Pascal; Greber, Boris; Rivinius, Rasmus; Seyler, Claudia; Müller-Decker, Karin; Draguhn, Andreas; Utikal, Jochen; Koenen, Michael; Katus, Hugo A; Thomas, Dierk

    2017-10-16

    Human induced pluripotent stem cells (hiPSC) harbor the potential to differentiate into diverse cardiac cell types. Previous experimental efforts were primarily directed at the generation of hiPSC-derived cells with ventricular cardiomyocyte characteristics. Aiming at a straightforward approach for pacemaker cell modeling and replacement, we sought to selectively differentiate cells with nodal-type properties. hiPSC were differentiated into spontaneously beating clusters by co-culturing with visceral endoderm-like cells in a serum-free medium. Subsequent culturing in a specified fetal bovine serum (FBS)-enriched cell medium produced a pacemaker-type phenotype that was studied in detail using quantitative real-time polymerase chain reaction (qRT-PCR), immunocytochemistry, and patch-clamp electrophysiology. Further investigations comprised pharmacological stimulations and co-culturing with neonatal cardiomyocytes. hiPSC co-cultured in a serum-free medium with the visceral endoderm-like cell line END-2 produced spontaneously beating clusters after 10-12 days of culture. The pacemaker-specific genes HCN4, TBX3, and TBX18 were abundantly expressed at this early developmental stage, while levels of sarcomeric gene products remained low. We observed that working-type cardiomyogenic differentiation can be suppressed by transfer of early clusters into a FBS-enriched cell medium immediately after beating onset. After 6 weeks under these conditions, sinoatrial node (SAN) hallmark genes remained at high levels, while working-type myocardial transcripts (NKX2.5, TBX5) were low. Clusters were characterized by regular activity and robust beating rates (70-90 beats/min) and were triggered by spontaneous Ca 2+ transients recapitulating calcium clock properties of genuine pacemaker cells. They were responsive to adrenergic/cholinergic stimulation and able to pace neonatal rat ventricular myocytes in co-culture experiments. Action potential (AP) measurements of cells individualized from clusters exhibited nodal-type (63.4%) and atrial-type (36.6%) AP morphologies, while ventricular AP configurations were not observed. We provide a novel culture media-based, transgene-free approach for targeted generation of hiPSC-derived pacemaker-type cells that grow in clusters and offer the potential for disease modeling, drug testing, and individualized cell-based replacement therapy of the SAN.

  14. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis

    PubMed Central

    Audebert, Stéphane; Helmbacher, Françoise; Dono, Rosanna; Maina, Flavio

    2015-01-01

    The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF) receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26 stopMet knock-in context (Del-R26 Met) reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an RTK when occurring in its endogenous domain of activity. PMID:26393505

  16. Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis.

    PubMed

    Yalvac, M E; Ramazanoglu, M; Rizvanov, A A; Sahin, F; Bayrak, O F; Salli, U; Palotás, A; Kose, G T

    2010-04-01

    A number of studies have reported in the last decade that human tooth germs contain multipotent cells that give rise to dental and peri-odontal structures. The dental pulp, third molars in particular, have been shown to be a significant stem cell source. In this study, we isolated and characterized human tooth germ stem cells (hTGSCs) from third molars and assessed the expression of developmentally important transcription factors, such as oct4, sox2, klf4, nanog and c-myc, to determine their pluri-potency. Flow-cytometry analysis revealed that hTGSCs were positive for CD73, CD90, CD105 and CD166, but negative for CD34, CD45 and CD133, suggesting that these cells are mesenchymal-like stem cells. Under specific culture conditions, hTGSCs differentiated into osteogenic, adipogenic and neurogenic cells, as well as formed tube-like structures in Matrigel assay. hTGSCs showed significant levels of expression of sox2 and c-myc messenger RNA (mRNA), and a very high level of expression of klf4 mRNA when compared with human embryonic stem cells. This study reports for the first time that hTGSCs express developmentally important transcription factors that could render hTGSCs an attractive candidate for future somatic cell re-programming studies to differentiate germs into various tissue types, such as neurons and vascular structures. In addition, these multipotential hTGSCs could be important stem cell sources for autologous transplantation.

  17. Developmentally arrested structures preceding cerebellar tumors in von Hippel–Lindau disease

    PubMed Central

    Shively, Sharon B; Falke, Eric A; Li, Jie; Tran, Maxine G B; Thompson, Eli R; Maxwell, Patrick H; Roessler, Erich; Oldfield, Edward H; Lonser, Russell R; Vortmeyer, Alexander O

    2011-01-01

    There is increasing evidence that suggests that knockout of tumor-suppressor gene function causes developmental arrest and protraction of cellular differentiation. In the peripheral nervous system of patients with the tumor-suppressor gene disorder, von Hippel–Lindau disease, we have demonstrated developmentally arrested structural elements composed of hemangioblast progenitor cells. Some developmentally arrested structural elements progress to a frank tumor, hemangioblastoma. However, in von Hippel–Lindau disease, hemangioblastomas are frequently observed in the cerebellum, suggesting an origin in the central nervous system. We performed a structural and topographic analysis of cerebellar tissues obtained from von Hippel–Lindau disease patients to identify and characterize developmentally arrested structural elements in the central nervous system. We examined the entire cerebella of five tumor-free von Hippel–Lindau disease patients and of three non-von Hippel–Lindau disease controls. In all, 9 cerebellar developmentally arrested structural elements were detected and topographically mapped in 385 blocks of von Hippel–Lindau disease cerebella. No developmentally arrested structural elements were seen in 214 blocks from control cerebella. Developmentally arrested structural elements are composed of poorly differentiated cells that express hypoxia-inducible factor (HIF)2α, but not HIF1α or brachyury, and preferentially involve the molecular layer of the dorsum cerebelli. For the first time, we identify and characterize developmentally arrested structural elements in the central nervous system of von Hippel–Lindau patients. We provide evidence that developmentally arrested structural elements in the cerebellum are composed of developmentally arrested hemangioblast progenitor cells in the molecular layer of the dorsum cerebelli. PMID:21499240

  18. Analysis of Cell Division and Elongation Underlying the Developmental Acceleration of Root Growth in Arabidopsis thaliana1

    PubMed Central

    Beemster, Gerrit T.S.; Baskin, Tobias I.

    1998-01-01

    To investigate the relation between cell division and expansion in the regulation of organ growth rate, we used Arabidopsis thaliana primary roots grown vertically at 20°C with an elongation rate that increased steadily during the first 14 d after germination. We measured spatial profiles of longitudinal velocity and cell length and calculated parameters of cell expansion and division, including rates of local cell production (cells mm−1 h−1) and cell division (cells cell−1 h−1). Data were obtained for the root cortex and also for the two types of epidermal cell, trichoblasts and atrichoblasts. Accelerating root elongation was caused by an increasingly longer growth zone, while maximal strain rates remained unchanged. The enlargement of the growth zone and, hence, the accelerating root elongation rate, were accompanied by a nearly proportionally increased cell production. This increased production was caused by increasingly numerous dividing cells, whereas their rates of division remained approximately constant. Additionally, the spatial profile of cell division rate was essentially constant. The meristem was longer than generally assumed, extending well into the region where cells elongated rapidly. In the two epidermal cell types, meristem length and cell division rate were both very similar to that of cortical cells, and differences in cell length between the two epidermal cell types originated at the apex of the meristem. These results highlight the importance of controlling the number of dividing cells, both to generate tissues with different cell lengths and to regulate the rate of organ enlargement. PMID:9536070

  19. Building strong bones: molecular regulation of the osteoblast lineage.

    PubMed

    Long, Fanxin

    2011-12-22

    The past 15 years have witnessed tremendous progress in the molecular understanding of osteoblasts, the main bone-forming cells in the vertebrate skeleton. In particular, all of the major developmental signals (including WNT and Notch signalling), along with an increasing number of transcription factors (such as RUNX2 and osterix), have been shown to regulate the differentiation and/or function of osteoblasts. As evidence indicates that osteoblasts may also regulate the behaviour of other cell types, a clear understanding of the molecular identity and regulation of osteoblasts is important beyond the field of bone biology.

  20. Cardiac muscle regeneration: lessons from development

    PubMed Central

    Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.

    2011-01-01

    The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131

  1. The lipodystrophic hotspot lamin A p.R482W mutation deregulates the mesodermal inducer T/Brachyury and early vascular differentiation gene networks.

    PubMed

    Briand, Nolwenn; Guénantin, Anne-Claire; Jeziorowska, Dorota; Shah, Akshay; Mantecon, Matthieu; Capel, Emilie; Garcia, Marie; Oldenburg, Anja; Paulsen, Jonas; Hulot, Jean-Sebastien; Vigouroux, Corinne; Collas, Philippe

    2018-04-15

    The p.R482W hotspot mutation in A-type nuclear lamins causes familial partial lipodystrophy of Dunnigan-type (FPLD2), a lipodystrophic syndrome complicated by early onset atherosclerosis. Molecular mechanisms underlying endothelial cell dysfunction conferred by the lamin A mutation remain elusive. However, lamin A regulates epigenetic developmental pathways and mutations could perturb these functions. Here, we demonstrate that lamin A R482W elicits endothelial differentiation defects in a developmental model of FPLD2. Genome modeling in fibroblasts from patients with FPLD2 caused by the lamin A R482W mutation reveals repositioning of the mesodermal regulator T/Brachyury locus towards the nuclear center relative to normal fibroblasts, suggesting enhanced activation propensity of the locus in a developmental model of FPLD2. Addressing this issue, we report phenotypic and transcriptional alterations in mesodermal and endothelial differentiation of induced pluripotent stem cells we generated from a patient with R482W-associated FPLD2. Correction of the LMNA mutation ameliorates R482W-associated phenotypes and gene expression. Transcriptomics links endothelial differentiation defects to decreased Polycomb-mediated repression of the T/Brachyury locus and over-activation of T target genes. Binding of the Polycomb repressor complex 2 to T/Brachyury is impaired by the mutated lamin A network, which is unable to properly associate with the locus. This leads to a deregulation of vascular gene expression over time. By connecting a lipodystrophic hotspot lamin A mutation to a disruption of early mesodermal gene expression and defective endothelial differentiation, we propose that the mutation rewires the fate of several lineages, resulting in multi-tissue pathogenic phenotypes.

  2. The developmental basis of an evolutionary diversification of female gametophyte structure in Piper and Piperaceae

    PubMed Central

    Madrid, Eric N.; Friedman, William E.

    2009-01-01

    Background and Aims Fritillaria-type female gametophyte development is a complex, yet homoplasious developmental pattern that is interesting from both evolutionary and developmental perspectives. Piper (Piperaceae) was chosen for this study of Fritillaria-type female gametophyte development because Piperales represent a ‘hotspot’ of female gametophyte developmental evolution and have been the subject of several recent molecular phylogenetic analyses. This wealth of phylogenetic and descriptive data make Piper an excellent candidate for inferring the evolutionary developmental basis for the origin of Fritillaria-type female gametophytes. Methods Developing ovules of Piper peltatum were taken from greenhouse collections, embedded in glycol methacrylate, and serially sectioned. Light microscopy and laser scanning confocal microscopy were combined to produce three-dimensional computer reconstructions of developing female gametophytes. The ploidies of the developing embryos and endosperms were calculated using microspectrofluorometry. Key Results The data describe female gametophyte development in Piper with highly detailed three-dimensional models, and document two previously unknown arrangements of megaspore nuclei during early development. Also collected were microspectrofluorometric data that indicate that Fritillaria-type female gametophyte development in Piper results in pentaploid endosperm. Conclusions The three-dimensional models resolve previous ambiguities in developmental interpretations of Fritillaria-type female gametophytes in Piper. The newly discovered arrangements of megaspore nuclei that are described allow for the construction of explicit hypotheses of female gametophyte developmental evolution within Piperaceae, and more broadly throughout Piperales. These detailed hypotheses indicate that the common ancestor of Piperaceae minus Verhuellia had a Drusa-type female gametophyte, and that evolutionary transitions to derived tetrasporic female gametophyte ontogenies in Piperaceae, including Fritillaria-type female gametophyte development, are the consequence of key nuclear migration and patterning events at the end of megasporogenesis. PMID:19202137

  3. The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program.

    PubMed

    Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J; Makabe, Kazuhiro W; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick

    2010-10-01

    Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.

  4. The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program

    PubMed Central

    Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J.; Makabe, Kazuhiro W.; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick

    2010-01-01

    Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions. PMID:20647237

  5. viking: identification and characterization of a second type IV collagen in Drosophila.

    PubMed

    Yasothornsrikul, S; Davis, W J; Cramer, G; Kimbrell, D A; Dearolf, C R

    1997-10-01

    We have taken an enhancer trap approach to identify genes that are expressed in hematopoietic cells and tissues of Drosophila. We conducted a molecular analysis of two P-element insertion strains that have reporter gene expression in embryonic hemocytes, strain 197 and vikingICO. This analysis has determined that viking encodes a collagen type IV gene, alpha2(IV). The viking locus is located adjacent to the previously described DCg1, which encodes collagen alpha1(IV), and in the opposite orientation. The alpha2(IV) and alpha1(IV) collagens are structurally very similar to one another, and to vertebrate type IV collagens. In early development, viking and DCg1 are transcribed in the same tissue-specific pattern, primarily in the hemocytes and fat body cells. Our results suggest that both the alpha1 and alpha2 collagen IV chains may contribute to basement membranes in Drosophila. This work also provides the foundation for a more complete genetic dissection of collagen type IV molecules and their developmental function in Drosophila.

  6. Activation of EGF Receptor Kinase by L1-mediated Homophilic Cell Interactions

    PubMed Central

    Islam, Rafique; Kristiansen, Lars V.; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-01-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo. PMID:14718570

  7. Truncated tyrosine kinase B brain-derived neurotrophic factor receptor directs cortical neural stem cells to a glial cell fate by a novel signaling mechanism.

    PubMed

    Cheng, Aiwu; Coksaygan, Turhan; Tang, Hongyan; Khatri, Rina; Balice-Gordon, Rita J; Rao, Mahendra S; Mattson, Mark P

    2007-03-01

    During development of the mammalian cerebral cortex neural stem cells (NSC) first generate neurons and subsequently produce glial cells. The mechanism(s) responsible for this developmental shift from neurogenesis to gliogenesis is unknown. Brain-derived neurotrophic factor (BDNF) is believed to play important roles in the development of the mammalian cerebral cortex; it enhances neurogenesis and promotes the differentiation and survival of newly generated neurons. Here, we provide evidence that a truncated form of the BDNF receptor tyrosine kinase B (trkB-t) plays a pivotal role in directing embryonic mouse cortical NSC to a glial cell fate. Expression of trkB-t promotes differentiation of NSC toward astrocytes while inhibiting neurogenesis both in cell culture and in vivo. The mechanism by which trkB-t induces astrocyte genesis is not simply the result of inhibition of full-length receptor with intrinsic tyrosine kinase activity signaling. Instead, binding of BDNF to trkB-t activates a signaling pathway (involving a G-protein and protein kinase C) that induced NSC to become glial progenitors and astrocytes. Thus, the increased expression of trkB-t in the embryonic cerebral cortex that occurs coincident with astrocyte production plays a pivotal role in the developmental transition from neurogenesis to gliogenesis. Our findings suggest a mechanism by which a single factor (BDNF) regulates the production of the two major cell types in the mammalian cerebral cortex.

  8. 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces apoptotic cell death and cytochrome P4501A expression in developing Fundulus heteroclitus embryos

    USGS Publications Warehouse

    Toomey, B.H.; Bello, S.; Hahn, M.E.; Cantrell, S.; Wright, P.; Tillitt, D.E.; Di Giulio, R.T.

    2001-01-01

    Fundulus heteroclitus embryos were exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early development using nanoinjection or water bath exposure. TCDD caused developmental abnormalities that included hemorrhaging, loss of vascular integrity, edema, stunted development and death. The LC50 and LD50 of TCDD for Fundulus embryos were ???19.7??9.5 pg TCDD/??l (water bath) and 0.25??0.09 ng TCDD/g embryo (nanoinjection). To identify a possible cause for these developmental abnormalities we analyzed the effects of TCDD on apoptotic cell death and cytochrome P4501A (CYP1A) expression in the embryos. TCDD exposure increased apoptotic cell death in several tissues including brain, eye, gill, kidney, tail, intestine, heart, and vascular tissue. CYP1A expression was also increased in the TCDD-exposed embryos predominantly in liver, kidney, gill, heart, intestine, and in vascular tissues throughout the embryo. There was co-occurrence of TCDD-induced apoptosis and CYP1A expression in some, but not all, cell types. In addition the dose response relationships for apoptosis and mortality were similar, while CYP1A expression appeared more sensitive to TCDD induction. Copyright ?? 2001 Elsevier Science B.V.

  9. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    PubMed

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.

  10. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation.

    PubMed

    Sarvepalli, Kavitha; Nath, Utpal

    2011-08-01

    Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  11. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  12. Differential Lectin Agglutination of Fetal, Dividing-Postnatal, and Malignant Hepatocytes

    PubMed Central

    Becker, F. F.

    1974-01-01

    Numerous studies have reported the capacity of the lectin, concanavalin A, to agglutinate selected cell-types. The finding that cells transformed in culture, embryonic cells, and malignant cells are all agglutinated by this substance, may contribute to our understanding of the oncogenic process. The present study compared the response to concanavalin A of rat hepatocytes derived from livers of differing developmental and mitotic-status as well as those derived from malignant liver tumors (hepatomas). Fetal hepatocytes and hepatoma cells were highly susceptible to agglutination while hepatocytes from post-natal livers, whether dividing or quiescent, were not. Treatment with protease(s) did not make the interphase hepatocyte agglutinable. These data emphasize the importance of examining a wide variety of cells in attempting to understand the interaction of lectins on cell surfaces, and further, demonstrate the value of obtaining cells directly from tissue(s) during differing physiologic and pathologic states. Images PMID:4373708

  13. Space solar cell technology development - A perspective

    NASA Technical Reports Server (NTRS)

    Scott-Monck, J.

    1982-01-01

    The developmental history of photovoltaics is examined as a basis for predicting further advances to the year 2000. Transistor technology was the precursor of solar cell development. Terrestrial cells were modified for space through changes in geometry and size, as well as the use of Ag-Ti contacts and manufacture of a p-type base. The violet cell was produced for Comsat, and involved shallow junctions, new contacts, and an enhanced antireflection coating for better radiation tolerance. The driving force was the desire by private companies to reduce cost and weight for commercial satellite power supplies. Liquid phase epitaxial (LPE) GaAs cells are the latest advancement, having a 4 sq cm area and increased efficiency. GaAs cells are expected to be flight ready in the 1980s. Testing is still necessary to verify production techniques and the resistance to electron and photon damage. Research will continue in CVD cell technology, new panel technology, and ultrathin Si cells.

  14. MicroRNA-20a is essential for normal embryogenesis by targeting vsx1 mRNA in fish

    PubMed Central

    Sun, Lei; Li, Heng; Xu, Xiaofeng; Xiao, Guanxiu; Luo, Chen

    2015-01-01

    MicroRNAs are major post-transcriptional regulators of gene expression and have essential roles in diverse developmental processes. In vertebrates, some regulatory genes play different roles at different developmental stages. These genes are initially transcribed in a wide embryonic region but restricted within distinct cell types at subsequent stages during development. Therefore, post-transcriptional regulation is required for the transition from one developmental stage to the next and the establishment of different cell identities. However, the regulation of many multiple functional genes at post-transcription level during development remains unknown. Here we show that miR-20a can target the mRNA of vsx1, a multiple functional gene, at the 3′-UTR and inhibit protein expression in both goldfish and zebrafish. The expression of miR-20a is initiated ubiquitously at late gastrula stage and exhibits a tissue-specific pattern in the developing retina. Inhibition of vsx1 3′-UTR mediated protein expression occurs when and where miR-20a is expressed. Decoying miR-20a resulted in severely impaired head, eye and trunk formation in association with excessive generation of vsx1 marked neurons in the spinal cord and defects of somites in the mesoderm region. These results demonstrate that miR-20a is essential for normal embryogenesis by restricting Vsx1 expression in goldfish and zebrafish, and that post-transcriptional regulation is an essential mechanism for Vsx1 playing different roles in diverse developmental processes. PMID:25833418

  15. Brain mesenchymal stem cells: physiology and pathological implications.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador

    2016-06-01

    Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine. © 2016 Japanese Society of Developmental Biologists.

  16. Apical constriction: themes and variations on a cellular mechanism driving morphogenesis

    PubMed Central

    Martin, Adam C.; Goldstein, Bob

    2014-01-01

    Apical constriction is a cell shape change that promotes tissue remodeling in a variety of homeostatic and developmental contexts, including gastrulation in many organisms and neural tube formation in vertebrates. In recent years, progress has been made towards understanding how the distinct cell biological processes that together drive apical constriction are coordinated. These processes include the contraction of actin-myosin networks, which generates force, and the attachment of actin networks to cell-cell junctions, which allows forces to be transmitted between cells. Different cell types regulate contractility and adhesion in unique ways, resulting in apical constriction with varying dynamics and subcellular organizations, as well as a variety of resulting tissue shape changes. Understanding both the common themes and the variations in apical constriction mechanisms promises to provide insight into the mechanics that underlie tissue morphogenesis. PMID:24803648

  17. Dental and Nondental Stem Cell Based Regeneration of the Craniofacial Region: A Tissue Based Approach

    PubMed Central

    Hughes, Declan; Song, Bing

    2016-01-01

    Craniofacial reconstruction may be a necessary treatment for those who have been affected by trauma, disease, or pathological developmental conditions. The use of stem cell therapy and tissue engineering shows massive potential as a future treatment modality. Currently in the literature, there is a wide variety of published experimental studies utilising the different stem cell types available and the plethora of available scaffold materials. This review investigates different stem cell sources and their unique characteristics to suggest an ideal cell source for regeneration of individual craniofacial tissues. At present, understanding and clinical applications of stem cell therapy remain in their infancy with numerous challenges to overcome. In spite of this, the field displays immense capacity and will no doubt be utilised in future clinical treatments of craniofacial regeneration. PMID:27143979

  18. Directed Differentiation of Embryonic Stem Cells Using a Bead-Based Combinatorial Screening Method

    PubMed Central

    Tarunina, Marina; Hernandez, Diana; Johnson, Christopher J.; Rybtsov, Stanislav; Ramathas, Vidya; Jeyakumar, Mylvaganam; Watson, Thomas; Hook, Lilian; Medvinsky, Alexander; Mason, Chris; Choo, Yen

    2014-01-01

    We have developed a rapid, bead-based combinatorial screening method to determine optimal combinations of variables that direct stem cell differentiation to produce known or novel cell types having pre-determined characteristics. Here we describe three experiments comprising stepwise exposure of mouse or human embryonic cells to 10,000 combinations of serum-free differentiation media, through which we discovered multiple novel, efficient and robust protocols to generate a number of specific hematopoietic and neural lineages. We further demonstrate that the technology can be used to optimize existing protocols in order to substitute costly growth factors with bioactive small molecules and/or increase cell yield, and to identify in vitro conditions for the production of rare developmental intermediates such as an embryonic lymphoid progenitor cell that has not previously been reported. PMID:25251366

  19. Human innate lymphoid cells.

    PubMed

    Montaldo, Elisa; Vacca, Paola; Vitale, Chiara; Moretta, Francesca; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-11-01

    The interest in innate lymphoid cells (ILC) has rapidly grown during the last decade. ILC include distinct cell types that are collectively involved in host protection against pathogens and tumor cells and in the regulation of tissue homeostasis. Studies in mice enabled a broad characterization of ILC function and of their developmental requirements. In humans all mature ILC subsets have been characterized and their role in the pathogenesis of certain disease is emerging. Nonetheless, still limited information is available on human ILC development. Indeed, only the cell precursors committed toward NK cells or ILC3 have been described. Here, we review the most recent finding on human mature ILC, discussing their tissue localization and function. Moreover, we summarize the available data regarding human ILC development. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  20. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.

    PubMed Central

    Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo

    2003-01-01

    CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID:12403647

  1. Genetic Basis for Developmental Homeostasis of Germline Stem Cell Niche Number: A Network of Tramtrack-Group Nuclear BTB Factors

    PubMed Central

    Chalvet, Fabienne; Netter, Sophie; Dos Santos, Nicolas; Poisot, Emilie; Paces-Fessy, Mélanie; Cumenal, Delphine; Peronnet, Frédérique; Pret, Anne-Marie; Théodore, Laurent

    2012-01-01

    The potential to produce new cells during adult life depends on the number of stem cell niches and the capacity of stem cells to divide, and is therefore under the control of programs ensuring developmental homeostasis. However, it remains generally unknown how the number of stem cell niches is controlled. In the insect ovary, each germline stem cell (GSC) niche is embedded in a functional unit called an ovariole. The number of ovarioles, and thus the number of GSC niches, varies widely among species. In Drosophila, morphogenesis of ovarioles starts in larvae with the formation of terminal filaments (TFs), each made of 8–10 cells that pile up and sort in stacks. TFs constitute organizers of individual germline stem cell niches during larval and early pupal development. In the Drosophila melanogaster subgroup, the number of ovarioles varies interspecifically from 8 to 20. Here we show that pipsqueak, Trithorax-like, batman and the bric-à-brac (bab) locus, all encoding nuclear BTB/POZ factors of the Tramtrack Group, are involved in limiting the number of ovarioles in D. melanogaster. At least two different processes are differentially perturbed by reducing the function of these genes. We found that when the bab dose is reduced, sorting of TF cells into TFs was affected such that each TF contains fewer cells and more TFs are formed. In contrast, psq mutants exhibited a greater number of TF cells per ovary, with a normal number of cells per TF, thereby leading to formation of more TFs per ovary than in the wild type. Our results indicate that two parallel genetic pathways under the control of a network of nuclear BTB factors are combined in order to negatively control the number of germline stem cell niches. PMID:23185495

  2. Regulation of DNA Replication Timing on Human Chromosome by a Cell-Type Specific DNA Binding Protein SATB1

    PubMed Central

    Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao

    2012-01-01

    Background Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as “replication domains”, and recent findings indicate that replication timing is under developmental and cell type-specific regulation. Methodology/Principal Findings We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Conclusions Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome. PMID:22879953

  3. Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1.

    PubMed

    Oda, Masako; Kanoh, Yutaka; Watanabe, Yoshihisa; Masai, Hisao

    2012-01-01

    Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as "replication domains", and recent findings indicate that replication timing is under developmental and cell type-specific regulation. We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome.

  4. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells.

    PubMed

    Duan, Yuntao; Wang, Shih-Hsiu; Song, Juan; Mironova, Yevgeniya; Ming, Guo-li; Kolodkin, Alex L; Giger, Roman J

    2014-10-14

    Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.

  5. Intermediate filament protein nestin is expressed in developing meninges.

    PubMed

    Yay, A; Ozdamar, S; Canoz, O; Baran, M; Tucer, B; Sonmez, M F

    2014-01-01

    Nestin is a type VI intermediate filament protein known as a marker for progenitor cells that can be mostly found in tissues during the embryonic and fetal periods. In our study, we aimed to determine the expression of nestin in meninges covering the brain tissue at different developmental stages and in the new born. In this study 10 human fetuses in different development stages between developmental weeks 9-34 and a newborn brain tissue were used. Fetuses in paraffin section were stained with H+E and nestin immunohistochemical staining protocol was performed. In this study, in the human meninges intense nestin expression was detected as early as in the 9th week of development. Intensity of this expression gradually decreased in later stages of development and nestin expression still persisted in a small population of newborn meningeal cells. In the present study, nestin positive cells gradually diminished in the developing and maturing meninges during the fetal period. This probably depends on initiation of a decrease in nestin expression and replacement with other tissue-specific intermediate filaments while the differentiation process continues. These differences can make significant contributions to the investigation and diagnosis of various pathological disorders (Tab. 1, Fig. 3, Ref. 36).

  6. Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    An individual starts off as a single cell, the progeny of which form complex structures that are themselves integrated into progressively larger systems. Developmental biology is concerned with how this cellular complexity and patterning arises through orchestration of cell divi...

  7. FBXL19 recruits CDK-Mediator to CpG islands of developmental genes priming them for activation during lineage commitment

    PubMed Central

    Dimitrova, Emilia; Nakayama, Manabu; Koseki, Yoko; Konietzny, Rebecca; Kessler, Benedikt M; Koseki, Haruhiko

    2018-01-01

    CpG islands are gene regulatory elements associated with the majority of mammalian promoters, yet how they regulate gene expression remains poorly understood. Here, we identify FBXL19 as a CpG island-binding protein in mouse embryonic stem (ES) cells and show that it associates with the CDK-Mediator complex. We discover that FBXL19 recruits CDK-Mediator to CpG island-associated promoters of non-transcribed developmental genes to prime these genes for activation during cell lineage commitment. We further show that recognition of CpG islands by FBXL19 is essential for mouse development. Together this reveals a new CpG island-centric mechanism for CDK-Mediator recruitment to developmental gene promoters in ES cells and a requirement for CDK-Mediator in priming these developmental genes for activation during cell lineage commitment. PMID:29809150

  8. Analysis of gene expression in a developmental context emphasizes distinct biological leitmotifs in human cancers

    PubMed Central

    Naxerova, Kamila; Bult, Carol J; Peaston, Anne; Fancher, Karen; Knowles, Barbara B; Kasif, Simon; Kohane, Isaac S

    2008-01-01

    Background In recent years, the molecular underpinnings of the long-observed resemblance between neoplastic and immature tissue have begun to emerge. Genome-wide transcriptional profiling has revealed similar gene expression signatures in several tumor types and early developmental stages of their tissue of origin. However, it remains unclear whether such a relationship is a universal feature of malignancy, whether heterogeneities exist in the developmental component of different tumor types and to which degree the resemblance between cancer and development is a tissue-specific phenomenon. Results We defined a developmental landscape by summarizing the main features of ten developmental time courses and projected gene expression from a variety of human tumor types onto this landscape. This comparison demonstrates a clear imprint of developmental gene expression in a wide range of tumors and with respect to different, even non-cognate developmental backgrounds. Our analysis reveals three classes of cancers with developmentally distinct transcriptional patterns. We characterize the biological processes dominating these classes and validate the class distinction with respect to a new time series of murine embryonic lung development. Finally, we identify a set of genes that are upregulated in most cancers and we show that this signature is active in early development. Conclusion This systematic and quantitative overview of the relationship between the neoplastic and developmental transcriptome spanning dozens of tissues provides a reliable outline of global trends in cancer gene expression, reveals potentially clinically relevant differences in the gene expression of different cancer types and represents a reference framework for interpretation of smaller-scale functional studies. PMID:18611264

  9. The mTOR signalling cascade: paving new roads to cure neurological disease.

    PubMed

    Crino, Peter B

    2016-07-01

    Defining the multiple roles of the mechanistic (formerly 'mammalian') target of rapamycin (mTOR) signalling pathway in neurological diseases has been an exciting and rapidly evolving story of bench-to-bedside translational research that has spanned gene mutation discovery, functional experimental validation of mutations, pharmacological pathway manipulation, and clinical trials. Alterations in the dual contributions of mTOR - regulation of cell growth and proliferation, as well as autophagy and cell death - have been found in developmental brain malformations, epilepsy, autism and intellectual disability, hypoxic-ischaemic and traumatic brain injuries, brain tumours, and neurodegenerative disorders. mTOR integrates a variety of cues, such as growth factor levels, oxygen levels, and nutrient and energy availability, to regulate protein synthesis and cell growth. In line with the positioning of mTOR as a pivotal cell signalling node, altered mTOR activation has been associated with a group of phenotypically diverse neurological disorders. To understand how altered mTOR signalling leads to such divergent phenotypes, we need insight into the differential effects of enhanced or diminished mTOR activation, the developmental context of these changes, and the cell type affected by altered signalling. A particularly exciting feature of the tale of mTOR discovery is that pharmacological mTOR inhibitors have shown clinical benefits in some neurological disorders, such as tuberous sclerosis complex, and are being considered for clinical trials in epilepsy, autism, dementia, traumatic brain injury, and stroke.

  10. The coordination of ploidy and cell size differs between cell layers in leaves.

    PubMed

    Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu

    2016-04-01

    Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity. © 2016. Published by The Company of Biologists Ltd.

  11. Cancer stem cells and differentiation therapy.

    PubMed

    Jin, Xiong; Jin, Xun; Kim, Hyunggee

    2017-10-01

    Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Elizabeth A.; Tran, Mai L.; Dimos, Christos S.

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into severalmore » different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.« less

  13. Phenoloxidase activity among developmental stages and pupal cell types of the ground beetle Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae).

    PubMed

    Giglio, Anita; Giulianini, Piero Giulio

    2013-04-01

    In ecological immunology is of great importance the study of the immune defense plasticity as response to a variable environment. In holometabolous insects the fitness of each developmental stage depends on the capacity to mount a response (i.e. physiological, behavioral) under environmental pressure. The immune response is a highly dynamic trait closely related to the ecology of organism and the variation in the expression of an immune system component may affect another fitness relevant trait of organism (i.e. growth, reproduction). The present research quantified immune function (total and differential number of hemocytes, phagocytosis in vivo and activity of phenoloxidase) in the pupal stage of Carabus (Chaetocarabus) lefebvrei. Moreover, the cellular and humoral immune function was compared across the larval, pupal and adult stages to evaluate the changes in immunocompetence across the developmental stages. Four types of circulating hemocytes were characterized via transmission electron microscopy in the pupal stage: prohemocytes, plasmatocytes, granulocytes and oenocytoids. The artificial non-self-challenge treatments performed in vivo have shown that plasmatocytes and granulocytes are responsible for phagocytosis. The level of active phenoloxidase increases with the degree of pigmentation of the cuticle in each stage. In C. lefebvrei, there are different strategies in term of immune response to enhance the fitness of each life stage. The results have shown that the variation in speed and specificity of immune function across the developmental stages is correlated with differences in infection risk, life expectancy and biological function of the life cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Developmental Stability in Gender-Typed Preferences between Infancy and Preschool Age

    ERIC Educational Resources Information Center

    Lauer, Jillian E.; Ilksoy, Sibel D.; Lourenco, Stella F.

    2018-01-01

    Infants exhibit visual preferences for gender-typed objects (e.g., dolls, toy vehicles) that parallel the gender-typed play preferences of preschool-aged children, but the developmental stability of individual differences in early emerging gender-typed preferences has not yet been characterized. In the present study, we examined the longitudinal…

  15. Effects of nuclear transfer procedures on ES cell cloning efficiency in the mouse.

    PubMed

    Yabuuchi, Akiko; Yasuda, Yoshiko; Kato, Yoko; Tsunoda, Yukio

    2004-04-01

    Enucleated oocytes receiving mouse embryonic stem (ES) cells develop into fertile young. The developmental potential to young is low, however, and the rate of postnatal death is high. We examined the effect of various nuclear transfer procedures on the in vitro and in vivo developmental potential of nuclear-transferred oocytes. The potential of oocytes receiving ES cells at M phase to develop into blastocysts after fusion by Sendai virus was high compared with that after direct injection (67% vs. 30%). The developmental potential of oocytes receiving ES cells at the M phase is higher than that of oocytes receiving ES cells at the G(1) phase (30-67% vs. 2-5%). Developmental ability to live young was low in all groups (0-4%). Different activation protocols affected the potential to develop into blastocysts to a different extent (27-62%), but did not affect the potential to develop into live young (0-3%). The present study demonstrated that the various conditions examined did not affect the potential of nuclear-transferred oocytes receiving ES cells to develop into live young or the incidence of postnatal death.

  16. Thidiazuron Triggers Morphogenesis in Rosa canina L. Protocorm-Like Bodies by Changing Incipient Cell Fate

    PubMed Central

    Kou, Yaping; Yuan, Cunquan; Zhao, Qingcui; Liu, Guoqin; Nie, Jing; Ma, Zhimin; Cheng, Chenxia; Teixeira da Silva, Jaime A.; Zhao, Liangjun

    2016-01-01

    Thidiazuron (N-phenyl-N′-1,2,3-thiadiazol-5-ylurea; TDZ) is an artificial plant growth regulator that is widely used in plant tissue culture. Protocorm-like bodies (PLBs) induced by TDZ serve as an efficient and rapid in vitro regeneration system in Rosa species. Despite this, the mechanism of PLB induction remains relatively unclear. TDZ, which can affect the level of endogenous auxins and cytokinins, converts the cell fate of rhizoid tips and triggers PLB formation and plantlet regeneration in Rosa canina L. In callus-rhizoids, which are rhizoids that co-develop from callus, auxin and a Z-type cytokinin accumulated after applying TDZ, and transcription of the auxin transporter gene RcPIN1 was repressed. The expression of RcARF4, RcRR1, RcCKX2, RcCKX3, and RcLOG1 increased in callus-rhizoids and rhizoid tips while the transcription of an auxin response factor (RcARF1) and auxin transport proteins (RcPIN2, RcPIN3) decreased in callus-rhizoids but increased in rhizoid tips. In situ hybridization of rhizoids showed that RcWUS and RcSERK1 were highly expressed in columella cells and root stem cells resulting in the conversion of cell fate into shoot apical meristems or embryogenic callus. In addition, transgenic XVE::RcWUS lines showed repressed RcWUS overexpression while RcWUS had no effect on PLB morphogenesis. Furthermore, higher expression of the root stem cell marker RcWOX5 and root stem cell maintenance regulator genes RcPLT1 and RcPLT2 indicated the presence of a dedifferentiation developmental pathway in the stem cell niche of rhizoids. Viewed together, our results indicate that different cells in rhizoid tips acquired regeneration competence after induction by TDZ. A novel developmental pathway containing different cell types during PLB formation was identified by analyzing the endogenous auxin and cytokinin content. This study also provides a deeper understanding of the mechanisms underlying in vitro regeneration in Rosa. PMID:27200031

  17. Non-Small-Cell Lung Cancer Molecular Signatures Recapitulate Lung Developmental Pathways

    PubMed Central

    Borczuk, Alain C.; Gorenstein, Lyall; Walter, Kristin L.; Assaad, Adel A.; Wang, Liqun; Powell, Charles A.

    2003-01-01

    Current paradigms hold that lung carcinomas arise from pleuripotent stem cells capable of differentiation into one or several histological types. These paradigms suggest lung tumor cell ontogeny is determined by consequences of gene expression that recapitulate events important in embryonic lung development. Using oligonucleotide microarrays, we acquired gene profiles from 32 microdissected non-small-cell lung tumors. We determined the 100 top-ranked marker genes for adenocarcinoma, squamous cell, large cell, and carcinoid using nearest neighbor analysis. Results were validated by immunostaining for 11 selected proteins using a tissue microarray representing 80 tumors. Gene expression data of lung development were accessed from a publicly available dataset generated with the murine Mu11k genome microarray. Self-organized mapping identified two temporally distinct clusters of murine orthologues. Supervised clustering of lung development data showed large-cell carcinoma gene orthologues were in a cluster expressed in pseudoglandular and canalicular stages whereas adenocarcinoma homologues were predominantly in a cluster expressed later in the terminal sac and alveolar stages of murine lung development. Representative large-cell genes (E2F3, MYBL2, HDAC2, CDK4, PCNA) are expressed in the nucleus and are associated with cell cycle and proliferation. In contrast, adenocarcinoma genes are associated with lung-specific transcription pathways (SFTPB, TTF-1), cell adhesion, and signal transduction. In sum, non-small-cell lung tumors histology gene profiles suggest mechanisms relevant to ontogeny and clinical course. Adenocarcinoma genes are associated with differentiation and glandular formation whereas large-cell genes are associated with proliferation and differentiation arrest. The identification of developmentally regulated pathways active in tumorigenesis provides insights into lung carcinogenesis and suggests early steps may differ according to the eventual tumor morphology. PMID:14578194

  18. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice.

    PubMed

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) in the pancreas of mice at embryonic day 15.5 (E15.5), E18.5, postnatal day 1 (P1) and P7. Our data showed that at E15.5 the pancreatic and duodenum homeobox-1 (Pdx1) was expressed in the majority of cells in the developing pancreata. Notably, insulin immunoreactivity was identified in a subpopulation of pancreatic cells with a high level of Pdx1 expression. About 80% of the high-level Pdx-1 expressing cells in the pancreas expressed GAD and GABAARα1 at all pancreatic developmental stages. In contrast, only about 30% of the high-level Pdx-1 expressing cells in the E15.5 pancreas expressed insulin; i.e., a large number of GAD/GABAARα1-expressing cells did not express insulin at this early developmental stage. The expression level of GAD and GABAARα1 increased steadily, and progressively more GAD/GABAARα1-expressing cells expressed insulin in the course of pancreatic development. These results suggest that 1) GABA signaling proteins appear in β-cell progenitors prior to insulin expression; and 2) the increased expression of GABA signaling proteins may be involved in β-cell progenitor maturation.

  19. Phenotypic Checkpoints Regulate Neuronal Development

    PubMed Central

    Ben-Ari, Yehezkel; Spitzer, Nicholas C.

    2010-01-01

    Nervous system development proceeds by sequential gene expression mediated by cascades of transcription factors in parallel with sequences of patterned network activity driven by receptors and ion channels. These sequences are cell type- and developmental stage-dependent and modulated by paracrine actions of substances released by neurons and glia. How and to what extent these sequences interact to enable neuronal network development is not understood. Recent evidence demonstrates that CNS development requires intermediate stages of differentiation providing functional feedback that influences gene expression. We suggest that embryonic neuronal functions constitute a series of phenotypic checkpoint signatures; neurons failing to express these functions are delayed or developmentally arrested. Such checkpoints are likely to be a general feature of neuronal development and may constitute presymptomatic signatures of neurological disorders when they go awry. PMID:20864191

  20. Stem cells with potential to generate insulin producing cells in man.

    PubMed

    Zulewski, Henryk

    2006-10-14

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  1. Stem cells with potential to generate insulin-producing cells in man.

    PubMed

    Zulewski, Henryk

    2007-03-02

    Replacement of insulin-producing cells represents an almost ideal treatment for patients with diabetes mellitus type 1. Transplantation of pancreatic islets of Langerhans--although successful in experienced centres--is limited by the lack of donor organs. Generation of insulin-producing cells from stem cells represents an attractive alternative. Stem cells with the potential to differentiate into insulin-producing cells include embryonic stem cells (ESC) as well as adult stem cells from various tissues including the pancreas, liver, central nervous system, bone marrow and adipose tissue. The use of human ESC is hampered by ethical concerns and the inability to create patient specific ESC with therapeutic cloning. Among adult stem cells mesenchymal stem cells appear to have a particular developmental plasticity ex vivo that include their ability to adopt a pancreatic endocrine phenotype. The present review summarises the current knowledge on the development of insulin-producing cells from stem cells with special emphasis on human mesenchymal stem cells isolated from the pancreas and adipose tissue.

  2. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    PubMed

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-03-29

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.

  3. Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis.

    PubMed

    Richards, Gemma Sian; Rentzsch, Fabian

    2014-12-01

    Bilaterian neurogenesis is characterized by the generation of diverse neural cell types from dedicated neural stem/progenitor cells (NPCs). However, the evolutionary origin of NPCs is unclear, as neurogenesis in representatives of the bilaterian sister group, the Cnidaria, occurs via interstitial stem cells that also possess broader, non-neural, developmental potential. We address this question by analysing neurogenesis in an anthozoan cnidarian, Nematostella vectensis. Using a transgenic reporter line, we show that NvSoxB(2) - an orthologue of bilaterian SoxB genes that have conserved roles in neurogenesis - is expressed in a cell population that gives rise to sensory neurons, ganglion neurons and nematocytes: the three primary neural cell types of cnidarians. EdU labelling together with in situ hybridization, and within the NvSoxB(2)::mOrange transgenic line, demonstrates that cells express NvSoxB(2) before mitosis and identifies asymmetric behaviours of sibling cells within NvSoxB(2)(+) lineages. Morpholino-mediated gene knockdown of NvSoxB(2) blocks the formation of all three neural cell types, thereby identifying NvSoxB(2) as an essential positive regulator of nervous system development. Our results demonstrate that diverse neural cell types derive from an NvSoxB(2)-expressing population of mitotic cells in Nematostella and that SoxB genes are ancient components of a neurogenic program. To our knowledge this is the first description of a lineage-restricted, multipotent cell population outside the Bilateria and we propose that neurogenesis via dedicated, SoxB-expressing NPCs predates the split between cnidarians and bilaterians. © 2014. Published by The Company of Biologists Ltd.

  4. Virtual Tissue Models in Developmental Toxicity Research

    EPA Science Inventory

    Prenatal exposure to drugs and chemicals may perturb, directly or indirectly, core developmental processes in the embryo (patterning, morphogenesis, proliferation and apoptosis, and cell differentiation), leading to adverse developmental outcomes. Because embryogenesis entails a...

  5. Evolution and diversity of plant cell walls: from algae to flowering plants.

    PubMed

    Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B

    2011-01-01

    All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.

  6. Modelling collective cell migration of neural crest

    PubMed Central

    Szabó, András; Mayor, Roberto

    2016-01-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. PMID:27085004

  7. Modelling collective cell migration of neural crest.

    PubMed

    Szabó, András; Mayor, Roberto

    2016-10-01

    Collective cell migration has emerged in the recent decade as an important phenomenon in cell and developmental biology and can be defined as the coordinated and cooperative movement of groups of cells. Most studies concentrate on tightly connected epithelial tissues, even though collective migration does not require a constant physical contact. Movement of mesenchymal cells is more independent, making their emergent collective behaviour less intuitive and therefore lending importance to computational modelling. Here we focus on such modelling efforts that aim to understand the collective migration of neural crest cells, a mesenchymal embryonic population that migrates large distances as a group during early vertebrate development. By comparing different models of neural crest migration, we emphasize the similarity and complementary nature of these approaches and suggest a future direction for the field. The principles derived from neural crest modelling could aid understanding the collective migration of other mesenchymal cell types. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Cell type-specific glycoconjugates of collecting duct cells during maturation of the rat kidney.

    PubMed

    Holthöfer, H

    1988-08-01

    The ontogeny of lectin-positive epithelial cell types and the maturation of polarized expression of the glycocalyx of the collecting ducts (CD) of the rat kidney were studied from samples of 18th-day fetal and neonatal kidneys of various ages. Lectins from Dolichos biflorus (DBA) and Vicia villosa (VVA), with preferential affinity to principal cells, stained virtually all CD cells of the fetal kidneys. However, within two days postnatally, the number of cells positive for DBA and VVA decreased to amounts found in the adult kidneys. Moreover, a characteristic change occurred rapidly after birth in the intracellular polarization of the reactive glycoconjugates, from a uniform plasmalemmal to a preferentially apical staining. In contrast, lectins from Arachis hypogaea (PNA), Maclura pomifera (MPA) and Lotus tetragonolobus (LTA), reacting indiscriminatively with principal and intercalated cells of adult kidneys, stained most CD cells in the fetal kidneys, and failed to show any postnatal change in the amount of positive cells or in the intracellular polarization. The immunocytochemical tests for (Na + K)-ATPase and carbonic anhydrase (CA II) revealed the characteristic postnatal decrease in the amount of principal cells and simultaneous increase in the amount of CA II rich intercalated cells. DBA and VVA reactive cells also decreased postnatally, paralleling the changes observed in the (Na + K)-ATPase positive principal cells. The present results suggest that the expression of the cell type-specific glycocalyx of principal and intercalated cells is developmentally regulated, undergoes profound changes during maturation, and is most likely associated with electrolyte transport phenomena.

  9. Developmental change in the contribution of voltage-gated Ca(2+) channels to the pacemaking of deep cerebellar nuclei neurons.

    PubMed

    Alviña, K; Tara, E; Khodakhah, K

    2016-05-13

    The activity of the deep cerebellar nuclei (DCN) neurons conveys the bulk of the output of the cerebellum. To generate these motor signals, DCN neurons integrate synaptic inputs with their own spontaneous activity. We have previously reported that N-type voltage-gated Ca(2+) channels modulate the spontaneous activity of the majority of juvenile DCN neurons in vitro. Specifically, pharmacologically blocking N-type Ca(2+) channels increases their firing rate causing DCN cells to burst. Adult DCN neurons however, behaved differently. To further investigate this change, we have studied here the effect of cadmium on the firing rate of DCN neurons in acute cerebellar slices obtained from adult (>2 months old) or juvenile (12-21 days old) rats and mice. Strikingly, and in contrast to juvenile DCN cells, cadmium did not affect the pacemaking of adult DCN cells. The activity of Purkinje cells (PCs) however was transformed into high-frequency bursting, regardless the age. Further, we questioned whether these findings could be due to an artifact associated with the added difficulty of preparing adult DCN slices. Hence we proceeded to examine the spontaneous activity of DCN neurons in anesthetized juvenile and adult rats and mice in vivo. When cadmium was injected into the DCN in vivo no significant change in firing rate was observed, conversely to most juvenile DCN neurons which showed high-frequency bursts after cadmium injection. In these same animals, PCs pacemaking showed no developmental difference. Thus our results demonstrate a remarkable age-dependent functional modification in the regulation of DCN neurons pacemaking. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Pulsed electric field increases reproduction.

    PubMed

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  11. GATA-3 function in innate and adaptive immunity.

    PubMed

    Tindemans, Irma; Serafini, Nicolas; Di Santo, James P; Hendriks, Rudi W

    2014-08-21

    The zinc-finger transcription factor GATA-3 has received much attention as a master regulator of T helper 2 (Th2) cell differentiation, during which it controls interleukin-4 (IL-4), IL-5, and IL-13 expression. More recently, GATA-3 was shown to contribute to type 2 immunity through regulation of group 2 innate lymphoid cell (ILC2) development and function. Furthermore, during thymopoiesis, GATA-3 represses B cell potential in early T cell precursors, activates TCR signaling in pre-T cells, and promotes the CD4(+) T cell lineage after positive selection. GATA-3 also functions outside the thymus in hematopoietic stem cells, regulatory T cells, CD8(+) T cells, thymic natural killer cells, and ILC precursors. Here we discuss the varied functions of GATA-3 in innate and adaptive immune cells, with emphasis on its activity in T cells and ILCs, and examine the mechanistic basis for the dose-dependent, developmental-stage- and cell-lineage-specific activity of this transcription factor. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Factors Determining the Efficiency of Porcine Somatic Cell Nuclear Transfer: Data Analysis with Over 200,000 Reconstructed Embryos

    PubMed Central

    Liu, Tianbin; Dou, Hongwei; Xiang, Xi; Li, Yong; Pang, Xinzhi; Zhang, Yijie; Chen, Yu; Luan, Jing; Xu, Ying; Yang, Zhenzhen; Yang, Wenxian; Liu, Huan; Li, Feida; Wang, Hui; Yang, Huanming; Bolund, Lars; Vajta, Gabor

    2015-01-01

    Abstract Data analysis in somatic cell nuclear transfer (SCNT) research is usually limited to several hundreds or thousands of reconstructed embryos. Here, we report mass results obtained with an established and consistent porcine SCNT system (handmade cloning [HMC]). During the experimental period, 228,230 reconstructed embryos and 82,969 blastocysts were produced. After being transferred into 656 recipients, 1070 piglets were obtained. First, the effects of different types of donor cells, including fetal fibroblasts (FFs), adult fibroblasts (AFs), adult preadipocytes (APs), and adult blood mesenchymal (BM) cells, were investigated on the further in vitro and in vivo development. Compared to adult donor cells (AFs, APs, BM cells, respectively), FF cells resulted in a lower blastocyst/reconstructed embryo rate (30.38% vs. 37.94%, 34.65%, and 34.87%, respectively), but a higher overall efficiency on the number of piglets born alive per total blastocysts transferred (1.50% vs. 0.86%, 1.03%, and 0.91%, respectively) and a lower rate of developmental abnormalities (10.87% vs. 56.57%, 24.39%, and 51.85%, respectively). Second, recloning was performed with cloned adult fibroblasts (CAFs) and cloned fetal fibroblasts (CFFs). When CAFs were used as the nuclear donor, fewer developmental abnormalities and higher overall efficiency were observed compared to AFs (56.57% vs. 28.13% and 0.86% vs. 1.59%, respectively). However, CFFs had an opposite effect on these parameters when compared with CAFs (94.12% vs. 10.87% and 0.31% vs. 1.50%, respectively). Third, effects of genetic modification on the efficiency of SCNT were investigated with transgenic fetal fibroblasts (TFFs) and gene knockout fetal fibroblasts (KOFFs). Genetic modification of FFs increased developmental abnormalities (38.96% and 25.24% vs. 10.87% for KOFFs, TFFs, and FFs, respectively). KOFFs resulted in lower overall efficiency compared to TFFs and FFs (0.68% vs. 1.62% and 1.50%, respectively). In conclusion, this is the first report of large-scale analysis of porcine cell nuclear transfer that provides important data for potential industrialization of HMC technology. PMID:26655078

  13. Computational Modeling of Tissue Self-Assembly

    NASA Astrophysics Data System (ADS)

    Neagu, Adrian; Kosztin, Ioan; Jakab, Karoly; Barz, Bogdan; Neagu, Monica; Jamison, Richard; Forgacs, Gabor

    As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. Experimental and theoretical efforts of four decades turned the DAH into a fundamental principle of developmental biology that has been validated both in vitro and in vivo. Based on computational models of cell sorting, we have developed a DAH-based lattice model for tissues in interaction with their environment and simulated biological self-assembly using the Monte Carlo method. The present brief review highlights results on specific morphogenetic processes with relevance to tissue engineering applications. Our own work is presented on the background of several decades of theoretical efforts aimed to model morphogenesis in living tissues. Simulations of systems involving about 105 cells have been performed on high-end personal computers with CPU times of the order of days. Studied processes include cell sorting, cell sheet formation, and the development of endothelialized tubes from rings made of spheroids of two randomly intermixed cell types, when the medium in the interior of the tube was different from the external one. We conclude by noting that computer simulations based on mathematical models of living tissues yield useful guidelines for laboratory work and can catalyze the emergence of innovative technologies in tissue engineering.

  14. Influence of Bisphenol A on Type 2 Diabetes Mellitus

    PubMed Central

    Provvisiero, Donatella Paola; Pivonello, Claudia; Muscogiuri, Giovanna; Negri, Mariarosaria; de Angelis, Cristina; Simeoli, Chiara; Pivonello, Rosario; Colao, Annamaria

    2016-01-01

    Bisphenol A (BPA) is an organic synthetic compound employed to produce plastics and epoxy resins. It is used as a structural component in polycarbonate beverage bottles and as coating for metal surface in food containers and packaging. The adverse effects of BPA on human health are widely disputed. BPA has been recently associated with a wide variety of medical disorders and, in particular, it was identified as potential endocrine-disrupting compound with diabetogenic action. Most of the clinical observational studies in humans reveal a positive link between BPA exposure, evaluated by the measurement of urinary BPA levels, and the risk of developing type 2 diabetes mellitus. Clinical studies on humans and preclinical studies on in vivo, ex vivo, and in vitro models indicate that BPA, mostly at low doses, may have a role in increasing type 2 diabetes mellitus developmental risk, directly acting on pancreatic cells, in which BPA induces the impairment of insulin and glucagon secretion, triggers inhibition of cell growth and apoptosis, and acts on muscle, hepatic, and adipose cell function, triggering an insulin-resistant state. The current review summarizes the available evidences regarding the association between BPA and type 2 diabetes mellitus, focusing on both clinical and preclinical studies. PMID:27782064

  15. Human pluripotent stem cells: an emerging model in developmental biology.

    PubMed

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  16. Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes

    PubMed Central

    Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña

    2011-01-01

    Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and satellite lineage initiation combine in several ways. This first systematic, comprehensive natural variation survey for stomatal abundance in A. thaliana reveals cryptic developmental genetic variation, and provides relevant relationships amongst stomatal traits and extreme or uncommon accessions as resources for the genetic dissection of stomatal development. PMID:21447490

  17. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation

    PubMed Central

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J.; Cao, Huojun; Amendt, Brad A.

    2017-01-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1−/− mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. PMID:28746823

  18. Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation.

    PubMed

    Yu, Wenjie; Li, Xiao; Eliason, Steven; Romero-Bustillos, Miguel; Ries, Ryan J; Cao, Huojun; Amendt, Brad A

    2017-09-01

    The Iroquois genes (Irx) appear to regulate fundamental processes that lead to cell proliferation, differentiation, and maturation during development. In this report, the Iroquois homeobox 1 (Irx1) transcription factor was functionally disrupted using a LacZ insert and LacZ expression demonstrated stage-specific expression during embryogenesis. Irx1 is highly expressed in the brain, lung, digits, kidney, testis and developing teeth. Irx1 null mice are neonatal lethal and this lethality it due to pulmonary immaturity. Irx1 -/- mice show delayed lung maturation characterized by defective surfactant protein secretion and Irx1 marks a population of SP-C expressing alveolar type II cells. Irx1 is specifically expressed in the outer enamel epithelium (OEE), stellate reticulum (SR) and stratum intermedium (SI) layers of the developing tooth. Irx1 mediates dental epithelial cell differentiation in the lower incisors resulting in delayed growth of the lower incisors. Irx1 is specifically and temporally expressed during developmental stages and we have focused on lung and dental development in this report. Irx1+ cells are unique to the development of the incisor outer enamel epithelium, patterning of Lef-1+ and Sox2+ cells as well as a new marker for lung alveolar type II cells. Mechanistically, Irx1 regulates Foxj1 and Sox9 to control cell differentiation during development. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Expression of a Rho guanine nucleotide exchange factor, Ect2, in the developing mouse pituitary.

    PubMed

    Islam, M S; Tsuji, T; Higashida, C; Takahashi, M; Higashida, H; Koizumi, K

    2010-05-01

    The pituitary gland is a highly mitotically active tissue after birth. Various cell types are known to undergo proliferation in the anterior pituitary. However, little is known about the mechanisms regulating mitotic activity in this tissue. When searching for genes specifically expressed in the pituitary gland among those that we previously screened in Drosophila, we found epithelial cell-transforming gene 2 (Ect2). Ect2 is a guanine nucleotide exchange factor for Rho GTPases, which is known to play an essential role in cytokinesis. Although there have been many cellular studies regarding the function of Ect2, the temporal and spatial expression patterns of Ect2 in vivo have not been determined. In the present study, we examined the postnatal developmental expression of Ect2 in the mouse pituitary. Enhanced Ect2 expression was detected in the mouse pituitary gland during the first 3 weeks after birth, which coincided well with the period of rapid pituitary expansion associated with increased growth rate. Immunostaining analysis showed that Ect2-expressing cells were distributed in the anterior and intermediate lobes, but not the posterior lobe, of the pituitary. These Ect2-expressing cells frequently incorporated the thymidine analogue, EdU (5-ethynyl-2'-deoxyuridine), indicating that these cells were mitotically active. Taken together, the results demonstrate the functional role of Ect2 in postnatal proliferating cells in the two lobes of the pituitary, thereby suggesting roles in developmental growth of the mammalian pituitary.

  20. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines

    PubMed Central

    Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D.; Ziller, Michael; Croft, Gist F.; Amoroso, Mackenzie W.; Oakley, Derek H.; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander

    2011-01-01

    SUMMARY The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines. PMID:21295703

  1. Roles of CONSTITUTIVE PHOTOMORPHOGENIC 10 in Arabidopsis stomata development

    PubMed Central

    Delgado, Dolores; Ballesteros, Isabel; Mena, Montaña; Fenoll, Carmen

    2012-01-01

    Stomata are epidermal bi-celled structures that differentiate within special cell lineages initiated by a subset of protodermal cells. Recently, we showed that the Arabidopsis photomorphogenic repressor COP10 controls specific cell-lineage and cell-signaling developmental mechanisms in stomatal lineages. Loss-of-function cop10-1 mutant cotyledons and leaves produced (in the light and in the dark) abundant stomatal clusters, but nonlineage epidermal cells were not affected. Here we examine COP10 role in hypocotyls, cylindrical organs displaying a distinct epidermal organization with alternate files of protruding and non-protruding cells, with the latter producing a limited number of stomata. COP10 prevents stomatal clusters and restricts stomata production in hypocotyls; these roles are specific to lineage cells as in cotyledons, since COP10 loss of function does not elicit stomatal fate in nonlineage cells; COP10 also sustains the directional cell expansion of all hypocotyl epidermal cell types, and seems necessary for the differentiation between protruding and non-protruding cell files. PMID:22836493

  2. Programming self-organizing multicellular structures with synthetic cell-cell signaling.

    PubMed

    Toda, Satoshi; Blauch, Lucas R; Tang, Sindy K Y; Morsut, Leonardo; Lim, Wendell A

    2018-05-31

    A common theme in the self-organization of multicellular tissues is the use of cell-cell signaling networks to induce morphological changes. We used the modular synNotch juxtacrine signaling platform to engineer artificial genetic programs in which specific cell-cell contacts induced changes in cadherin cell adhesion. Despite their simplicity, these minimal intercellular programs were sufficient to yield assemblies with hallmarks of natural developmental systems: robust self-organization into multi-domain structures, well-choreographed sequential assembly, cell type divergence, symmetry breaking, and the capacity for regeneration upon injury. The ability of these networks to drive complex structure formation illustrates the power of interlinking cell signaling with cell sorting: signal-induced spatial reorganization alters the local signals received by each cell, resulting in iterative cycles of cell fate branching. These results provide insights into the evolution of multi-cellularity and demonstrate the potential to engineer customized self-organizing tissues or materials. Copyright © 2018, American Association for the Advancement of Science.

  3. Concise Review: Microfluidic Technology Platforms: Poised to Accelerate Development and Translation of Stem Cell-Derived Therapies

    PubMed Central

    Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.

    2014-01-01

    Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699

  4. Tuning of major signaling networks (TGF-β, Wnt, Notch and Hedgehog) by miRNAs in human stem cells commitment to different lineages: Possible clinical application.

    PubMed

    Aval, Sedigheh Fekri; Lotfi, Hajie; Sheervalilou, Roghayeh; Zarghami, Nosratollah

    2017-07-01

    Two distinguishing characteristics of stem cells, their continuous division in the undifferentiated state and growth into any cell types, are orchestrated by a number of cell signaling pathways. These pathways act as a niche factor in controlling variety of stem cells. The core stem cell signaling pathways include Wingless-type (Wnt), Hedgehog (HH), and Notch. Additionally, they critically regulate the self-renewal and survival of cancer stem cells. Conversely, stem cells' main properties, lineage commitment and stemness, are tightly controlled by epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulatory events. MicroRNAs (miRNAs) are cellular switches that modulate stem cells outcomes in response to diverse extracellular signals. Numerous scientific evidences implicating miRNAs in major signal transduction pathways highlight new crosstalks of cellular processes. Aberrant signaling pathways and miRNAs levels result in developmental defects and diverse human pathologies. This review discusses the crosstalk between the components of main signaling networks and the miRNA machinery, which plays a role in the context of stem cells development and provides a set of examples to illustrate the extensive relevance of potential novel therapeutic targets. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Single-Cell Resolution of Temporal Gene Expression during Heart Development.

    PubMed

    DeLaughter, Daniel M; Bick, Alexander G; Wakimoto, Hiroko; McKean, David; Gorham, Joshua M; Kathiriya, Irfan S; Hinson, John T; Homsy, Jason; Gray, Jesse; Pu, William; Bruneau, Benoit G; Seidman, J G; Seidman, Christine E

    2016-11-21

    Activation of complex molecular programs in specific cell lineages governs mammalian heart development, from a primordial linear tube to a four-chamber organ. To characterize lineage-specific, spatiotemporal developmental programs, we performed single-cell RNA sequencing of >1,200 murine cells isolated at seven time points spanning embryonic day 9.5 (primordial heart tube) to postnatal day 21 (mature heart). Using unbiased transcriptional data, we classified cardiomyocytes, endothelial cells, and fibroblast-enriched cells, thus identifying markers for temporal and chamber-specific developmental programs. By harnessing these datasets, we defined developmental ages of human and mouse pluripotent stem-cell-derived cardiomyocytes and characterized lineage-specific maturation defects in hearts of mice with heterozygous mutations in Nkx2.5 that cause human heart malformations. This spatiotemporal transcriptome analysis of heart development reveals lineage-specific gene programs underlying normal cardiac development and congenital heart disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Integration of wings and their eyespots in the speckled wood butterfly Pararge aegeria.

    PubMed

    Breuker, Casper J; Gibbs, Melanie; Van Dyck, Hans; Brakefield, Paul M; Klingenberg, Christian Peter; Van Dongen, Stefan

    2007-07-15

    We investigated both the phenotypic and developmental integration of eyespots on the fore- and hindwings of speckled wood butterflies Pararge aegeria. Eyespots develop within a framework of wing veins, which may not only separate eyespots developmentally, but may at the same time also integrate them by virtue of being both signalling sources and barriers during eyespot development. We therefore specifically investigated the interaction between wing venation patterns and eyespot integration. Phenotypic covariation among eyespots was very high, but only eyespots in neighbouring wing cells and in homologous wing cells on different wing surfaces were developmentally integrated. This can be explained by the fact that the wing cells of these eyespots share one or more wing veins. The wing venation patterns of fore- and hindwings were highly integrated, both phenotypically and developmentally. This did not affect overall developmental integration of the eyespots. The adaptive significance of integration patterns is discussed and more specifically we stress the need to conduct studies on phenotypic plasticity of integration.

  7. Structural Development, Cellular Differentiation and Proliferation of the Respiratory Epithelium in the Bovine Fetal Lung.

    PubMed

    Drozdowska, J; Cousens, C; Finlayson, J; Collie, D; Dagleish, M P

    2016-01-01

    Fetal bovine lung samples of 11 different gestational ages were assigned to a classical developmental stage based on histological morphology. Immunohistochemistry was used to characterize the morphology of forming airways, proliferation rate of airway epithelium and the presence of epithelial cell types (i.e. ciliated cells, club cells, neuroepithelial cells (NECs) and type II pneumocytes). Typical structural organization of pseudoglandular (84-98 days gestational age [DGA]), canalicular (154-168 DGA) and alveolar (224-266 DGA) stages was recognized. In addition, transitional pseudoglandular-canalicular (112-126 DGA) and canalicular-saccular (182 DGA) morphologies were present. The embryonic stage was not observed. A significantly (P <0.05) higher proliferation rate of pulmonary epithelium, on average 5.5% and 4.4% in bronchi and bronchioles, respectively, was present in the transitional pseudoglandular-canalicular phase (112-126 DGA) compared with all other phases, while from 8 weeks before term (224-266 DGA) proliferation had almost ceased. The first epithelial cells identified by specific marker proteins in the earliest samples available for study (84 DGA) were ciliated cells and NECs. Club cells were present initially at 112 DGA and type II pneumocytes at 224 DGA. At the latest time points (224-226 DGA) these latter cell types were still present at a much lower percentage compared with adult cattle. This study characterized bovine fetal lung development by histological morphology and cellular composition of the respiratory epithelium and suggests that the apparent structural anatomical maturity of the bovine lung at term is not matched by functional maturity of the respiratory epithelium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. DNA methylation age of human tissues and cell types

    PubMed Central

    2013-01-01

    Background It is not yet known whether DNA methylation levels can be used to accurately predict age across a broad spectrum of human tissues and cell types, nor whether the resulting age prediction is a biologically meaningful measure. Results I developed a multi-tissue predictor of age that allows one to estimate the DNA methylation age of most tissues and cell types. The predictor, which is freely available, was developed using 8,000 samples from 82 Illumina DNA methylation array datasets, encompassing 51 healthy tissues and cell types. I found that DNA methylation age has the following properties: first, it is close to zero for embryonic and induced pluripotent stem cells; second, it correlates with cell passage number; third, it gives rise to a highly heritable measure of age acceleration; and, fourth, it is applicable to chimpanzee tissues. Analysis of 6,000 cancer samples from 32 datasets showed that all of the considered 20 cancer types exhibit significant age acceleration, with an average of 36 years. Low age-acceleration of cancer tissue is associated with a high number of somatic mutations and TP53 mutations, while mutations in steroid receptors greatly accelerate DNA methylation age in breast cancer. Finally, I characterize the 353 CpG sites that together form an aging clock in terms of chromatin states and tissue variance. Conclusions I propose that DNA methylation age measures the cumulative effect of an epigenetic maintenance system. This novel epigenetic clock can be used to address a host of questions in developmental biology, cancer and aging research. PMID:24138928

  9. Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh–Nagumo oscillators

    PubMed Central

    Grace, Miriam; Hütt, Marc-Thorsten

    2013-01-01

    In many biological systems, variability of the components can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In pioneering work in the late 1990s, it was hypothesized that a drift of cellular parameters (along a ‘developmental path’), together with differences in cell properties (‘desynchronization’ of cells on the developmental path) can establish self-organized spatio-temporal patterns (in their example, spiral waves of cAMP in a colony of Dictyostelium discoideum cells) starting from a homogeneous state. Here, we embed a generic model of an excitable medium, a lattice of diffusively coupled FitzHugh–Nagumo oscillators, into a developmental-path framework. In this minimal model of spiral wave generation, we can now study the predictability of spatio-temporal patterns from cell properties as a function of desynchronization (or ‘spread’) of cells along the developmental path and the drift speed of cell properties on the path. As a function of drift speed and desynchronization, we observe systematically different routes towards fully established patterns, as well as strikingly different correlations between cell properties and pattern features. We show that the predictability of spatio-temporal patterns from cell properties contains important information on the pattern formation process as well as on the underlying dynamical system. PMID:23349439

  10. Developmental potential of murine germinal vesicle stage cumulus-oocyte complexes following exposure to dimethylsulphoxide or cryopreservation: loss of membrane integrity of cumulus cells after thawing.

    PubMed

    Ruppert-Lingham, C J; Paynter, S J; Godfrey, J; Fuller, B J; Shaw, R W

    2003-02-01

    Cumulus cells of the cumulus-oocyte complex (COC) are important in oocyte maturation. Thus, in preserving immature oocytes it is prudent to also preserve their associated cumulus cells. The survival and function of oocytes and their associated cumulus cells was assessed following cryopreservation or exposure to cryoprotectant without freezing. Immature COCs were collected from mice primed with pregnant mare's serum. COCs were either slow-cooled or exposed to 1.5 mol/l dimethylsulphoxide without freezing. Treated and fresh COCs were stained for membrane integrity or, after in-vitro maturation and IVF, were assessed for developmental capability. Development of cumulus-denuded fresh oocytes, as well as denuded and frozen-thawed oocytes co-cultured with fresh cumulus cells, was assessed. Slow-cooled oocytes had significantly reduced coverage by intact cumulus cells compared with fresh COCs. Cumulus cell association and developmental capability were not substantially affected by exposure to cryoprotectant without freezing. Denuded fresh oocytes and cryopreserved COCs had decreased developmental potential that was not overcome by co-culture with fresh cumulus cells. Loss of association between oocyte and cumulus cells was induced by cryopreservation, but not by treatment with cryoprotectant alone. The data indicate that direct physical contact between cumulus cells and the oocyte, throughout maturation, improves subsequent embryo development.

  11. Progranulin regulates neurogenesis in the developing vertebrate retina.

    PubMed

    Walsh, Caroline E; Hitchcock, Peter F

    2017-09-01

    We evaluated the expression and function of the microglia-specific growth factor, Progranulin-a (Pgrn-a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn-a is expressed throughout the forebrain, but by 48 hpf pgrn-a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn-a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed-retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn-a knockdown. Depleting Pgrn-a results in a significant lengthening of the cell cycle. These data suggest that Pgrn-a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn-a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114-1129, 2017. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.

  12. Identification of immunophenotypic subtypes with different prognoses in extranodal natural killer/T-cell lymphoma, nasal type.

    PubMed

    Yu, Jian-Bo; Zuo, Zhuo; Zhang, Wen-Yan; Yang, Qun-Pei; Zhang, Ying-Chun; Tang, Yuan; Zhao, Sha; Mo, Xian-Ming; Liu, Wei-Ping

    2014-11-01

    To analyze the differentiation characteristics of extranodal natural killer/T-cell lymphoma, nasal type, one nude mouse model, cell lines SNK6 and SNT8, and 16 fresh human samples were analyzed by flow cytometry immunophenotyping and immunohistochemistry staining; and 115 archived cases were used for phenotypic detection and prognostic analysis. We found that CD25 was expressed by most tumor cells in all samples, and CD56(+)CD25(+) cells were the predominant population in the mouse model, the 2 cell lines, and 10 of the 16 fresh tumor samples; in the other 6 fresh tumor samples, the predominant cell population was of the CD16(+)CD25(+) phenotype, and only a minor population showed the CD56(+)CD25(+) phenotype. The phenotype detected by immunohistochemistry staining generally was consistent with the phenotype found by flow cytometry immunophenotyping. According to the expression of CD56 and CD16, 115 cases could be classified into 3 phenotypic subtypes: CD56(-)CD16(-), CD56(+)CD16(-), and CD56(dim/-)CD16(+). Patients with tumors of the CD56(dim/-)CD16(+) phenotype had a poorer prognosis than patients with tumors of the other phenotypes. Differentiation of extranodal natural killer/T-cell lymphoma, nasal type apparently resembles the normal natural killer cell developmental pattern, and these tumors can be classified into 3 phenotypic subtypes of different aggressiveness. Expression of CD56(dim/-)CD16(+) implies a poorer prognosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Decoding the Regulatory Network for Blood Development from Single-Cell Gene Expression Measurements

    PubMed Central

    Haghverdi, Laleh; Lilly, Andrew J.; Tanaka, Yosuke; Wilkinson, Adam C.; Buettner, Florian; Macaulay, Iain C.; Jawaid, Wajid; Diamanti, Evangelia; Nishikawa, Shin-Ichi; Piterman, Nir; Kouskoff, Valerie; Theis, Fabian J.; Fisher, Jasmin; Göttgens, Berthold

    2015-01-01

    Here we report the use of diffusion maps and network synthesis from state transition graphs to better understand developmental pathways from single cell gene expression profiling. We map the progression of mesoderm towards blood in the mouse by single-cell expression analysis of 3,934 cells, capturing cells with blood-forming potential at four sequential developmental stages. By adapting the diffusion plot methodology for dimensionality reduction to single-cell data, we reconstruct the developmental journey to blood at single-cell resolution. Using transitions between individual cellular states as input, we develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model that recapitulates blood development. Model predictions were validated by showing that Sox7 inhibits primitive erythropoiesis, and that Sox and Hox factors control early expression of Erg. We therefore demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that control organogenesis. PMID:25664528

  14. Primary cilia: cellular sensors for the skeleton.

    PubMed

    Anderson, Charles T; Castillo, Alesha B; Brugmann, Samantha A; Helms, Jill A; Jacobs, Christopher R; Stearns, Tim

    2008-09-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions.

  15. Primary Cilia: Cellular Sensors for the Skeleton

    PubMed Central

    Anderson, Charles T.; Castillo, Alesha B.; Brugmann, Samantha A.; Helms, Jill A.; Jacobs, Christopher R.; Stearns, Tim

    2010-01-01

    The primary cilium is a solitary, immotile cilium that is present in almost every mammalian cell type. Primary cilia are thought to function as chemosensors, mechanosensors, or both, depending on cell type, and have been linked to several developmental signaling pathways. Primary cilium malfunction has been implicated in several human diseases, the symptoms of which include vision and hearing loss, polydactyly, and polycystic kidneys. Recently, primary cilia have also been implicated in the development and homeostasis of the skeleton. In this review, we discuss the structure and formation of the primary cilium and some of the mechanical and chemical signals to which it could be sensitive, with a focus on skeletal biology. We also raise several unanswered questions regarding the role of primary cilia as mechanosensors and chemosensors and identify potential research avenues to address these questions. PMID:18727074

  16. Systematic analysis of transcription start sites in avian development.

    PubMed

    Lizio, Marina; Deviatiiarov, Ruslan; Nagai, Hiroki; Galan, Laura; Arner, Erik; Itoh, Masayoshi; Lassmann, Timo; Kasukawa, Takeya; Hasegawa, Akira; Ros, Marian A; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Kawaji, Hideya; Gusev, Oleg; Sheng, Guojun

    2017-09-01

    Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic manipulation, our work also underscores the value of avian models in unravelling the complex regulatory mechanism of cell lineage specification during amniote development.

  17. Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing.

    PubMed

    Gao, Shuai; Yan, Liying; Wang, Rui; Li, Jingyun; Yong, Jun; Zhou, Xin; Wei, Yuan; Wu, Xinglong; Wang, Xiaoye; Fan, Xiaoying; Yan, Jie; Zhi, Xu; Gao, Yun; Guo, Hongshan; Jin, Xiao; Wang, Wendong; Mao, Yunuo; Wang, Fengchao; Wen, Lu; Fu, Wei; Ge, Hao; Qiao, Jie; Tang, Fuchou

    2018-06-01

    The development of the digestive tract is critical for proper food digestion and nutrient absorption. Here, we analyse the main organs of the digestive tract, including the oesophagus, stomach, small intestine and large intestine, from human embryos between 6 and 25 weeks of gestation as well as the large intestine from adults using single-cell RNA-seq analyses. In total, 5,227 individual cells are analysed and 40 cell types clearly identified. Their crucial biological features, including developmental processes, signalling pathways, cell cycle, nutrient digestion and absorption metabolism, and transcription factor networks, are systematically revealed. Moreover, the differentiation and maturation processes of the large intestine are thoroughly investigated by comparing the corresponding transcriptome profiles between embryonic and adult stages. Our work offers a rich resource for investigating the gene regulation networks of the human fetal digestive tract and adult large intestine at single-cell resolution.

  18. Prolonged cultivation of hippocampal neural precursor cells shifts their differentiation potential and selects for aneuploid cells.

    PubMed

    Nguyen, The Duy; Widera, Darius; Greiner, Johannes; Müller, Janine; Martin, Ina; Slotta, Carsten; Hauser, Stefan; Kaltschmidt, Christian; Kaltschmidt, Barbara

    2013-12-01

    Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.

  19. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity

    NASA Astrophysics Data System (ADS)

    van de Pavert, Serge A.; Ferreira, Manuela; Domingues, Rita G.; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F.; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R.; Habani, Yasmin; Haak, Esther; Santori, Fabio R.; Littman, Dan R.; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J. Pedro; Mebius, Reina E.; Veiga-Fernandes, Henrique

    2014-04-01

    The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.

  20. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity.

    PubMed

    van de Pavert, Serge A; Ferreira, Manuela; Domingues, Rita G; Ribeiro, Hélder; Molenaar, Rosalie; Moreira-Santos, Lara; Almeida, Francisca F; Ibiza, Sales; Barbosa, Inês; Goverse, Gera; Labão-Almeida, Carlos; Godinho-Silva, Cristina; Konijn, Tanja; Schooneman, Dennis; O'Toole, Tom; Mizee, Mark R; Habani, Yasmin; Haak, Esther; Santori, Fabio R; Littman, Dan R; Schulte-Merker, Stefan; Dzierzak, Elaine; Simas, J Pedro; Mebius, Reina E; Veiga-Fernandes, Henrique

    2014-04-03

    The impact of nutritional status during fetal life on the overall health of adults has been recognized; however, dietary effects on the developing immune system are largely unknown. Development of secondary lymphoid organs occurs during embryogenesis and is considered to be developmentally programmed. Secondary lymphoid organ formation depends on a subset of type 3 innate lymphoid cells (ILC3) named lymphoid tissue inducer (LTi) cells. Here we show that mouse fetal ILC3s are controlled by cell-autonomous retinoic acid (RA) signalling in utero, which pre-sets the immune fitness in adulthood. We found that embryonic lymphoid organs contain ILC progenitors that differentiate locally into mature LTi cells. Local LTi cell differentiation was controlled by maternal retinoid intake and fetal RA signalling acting in a haematopoietic cell-autonomous manner. RA controlled LTi cell maturation upstream of the transcription factor RORγt. Accordingly, enforced expression of Rorgt restored maturation of LTi cells with impaired RA signalling, whereas RA receptors directly regulated the Rorgt locus. Finally, we established that maternal levels of dietary retinoids control the size of secondary lymphoid organs and the efficiency of immune responses in the adult offspring. Our results reveal a molecular link between maternal nutrients and the formation of immune structures required for resistance to infection in the offspring.

  1. The nematode C. elegans - A model animal system for the detection of genetic and developmental lesions

    NASA Technical Reports Server (NTRS)

    Nelson, Gregory A.; Marshall, Tamara M.; Schubert, Wayne W.

    1989-01-01

    The effects of ionizing and nonionizing radiation effects on cell reproduction, differentiation, and mutation in vivo are studied using the nematode C. elegans. The relationships between fluence/dose and response and quality factor and linear energy transfer are analyzed. The data reveal that there is a complex repair pathway in the nematode and that mutants can be used to direct the sensitivity of the system to specific mutagens/radiation types.

  2. Novel Developmental Genes, fruCD, of Myxococcus xanthus: Involvement of a Cell Division Protein in Multicellular Development

    PubMed Central

    Akiyama, Takuya; Inouye, Sumiko; Komano, Teruya

    2003-01-01

    Myxococcus xanthus is a gram-negative soil bacterium that undergoes multicellular development upon nutrient starvation. In the present study, two novel developmental genes, fruC and fruD, of M. xanthus were identified and characterized. The FruD protein has significant amino acid sequence similarity to the DivIVA proteins of many bacteria including Bacillus subtilis. Vegetative cells of the fruD mutant exhibited a filamentous phenotype. The fruC and fruD mutants displayed similar delayed-development phenotypes. The formation of tightly aggregated mounds by fruC and fruD mutants was slower than that by the wild-type strain. Spore formation by the fruC and fruD mutants initiated after 30 h poststarvation, whereas wild-type M. xanthus initiated spore formation after 18 h. The fruCD genes were constitutively expressed as an operon during vegetative growth and development. S1 mapping revealed that transcription initiation sites of the fruCD operon were located 114 (P1) and 55 bp (P2) upstream of the fruC initiation codon. Only the P1 promoter was active during vegetative growth, while both the P1 and P2 promoters were active during development. The FruD protein was produced as a cytoplasmic protein and formed an oligomer during vegetative growth and development. PMID:12754229

  3. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells

    PubMed Central

    Scoville, Steven D.; Freud, Aharon G.; Caligiuri, Michael A.

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development. PMID:28396671

  4. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    PubMed

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  5. Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems.

    PubMed

    Greenberg, Maxim Vc; Bourc'his, Déborah

    2015-04-01

    Pluripotent stem cells (PSCs) in culture have become a widely used model for studying events occurring during mammalian development; they also present an exciting avenue for therapeutics. However, compared to their in vivo counterparts, cultured PSC derivatives have unique properties, and it is well established that their epigenome is sensitive to medium composition. Here we review the specific effects on genomic imprints in various PSC types and culture systems. Imprinted gene regulation is developmentally important, and imprinting defects have been associated with several human diseases. Therefore, imprint abnormalities in PSCs may have considerable consequences for downstream applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens

    DOE PAGES

    Berry, Elizabeth A.; Tran, Mai L.; Dimos, Christos S.; ...

    2016-03-08

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into severalmore » different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants.« less

  7. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens

    PubMed Central

    Berry, Elizabeth A.; Tran, Mai L.; Dimos, Christos S.; Budziszek, Michael J.; Scavuzzo-Duggan, Tess R.; Roberts, Alison W.

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells that developed on low osmolarity media and not in regenerating protoplasts. Mannan was the major hemicellulose detected in all tissues tested. Arabinogalactan proteins were detected in different cell types by different probes, consistent with structural heterogneity. The results reveal developmental and cell type specific differences in cell wall composition and provide a basis for analyzing cell wall phenotypes in knockout mutants. PMID:27014284

  8. Regulatory Role of N6 -methyladenosine (m6 A) Methylation in RNA Processing and Human Diseases.

    PubMed

    Wei, Wenqiang; Ji, Xinying; Guo, Xiangqian; Ji, Shaoping

    2017-09-01

    N 6 -methyladenosine (m 6 A) modification is an abundant and conservative RNA modification in bacterial and eukaryotic cells. m 6 A modification mainly occurs in the 3' untranslated regions (UTRs) and near the stop codons of mRNA. Diverse strategies have been developed for identifying m 6 A sites in single nucleotide resolution. Dynamic regulation of m 6 A is found in metabolism, embryogenesis, and developmental processes, indicating a possible epigenetic regulation role along RNA processing and exerting biological functions. It has been known that m 6 A editing involves in nuclear RNA export, mRNA degradation, protein translation, and RNA splicing. Deficiency of m 6 A modification will lead to kinds of diseases, such as obesity, cancer, type 2 diabetes mellitus (T2DM), infertility, and developmental arrest. Some specific inhibitors against methyltransferase and demethylase have been developed to selectively regulate m 6 A modification, which may be advantageous for treatment of m 6 A related diseases. J. Cell. Biochem. 118: 2534-2543, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly

    PubMed Central

    Peacock, Lori; Ferris, Vanessa; Sharma, Reuben; Sunter, Jack; Bailey, Mick; Carrington, Mark; Gibson, Wendy

    2011-01-01

    Elucidating the mechanism of genetic exchange is fundamental for understanding how genes for such traits as virulence, disease phenotype, and drug resistance are transferred between pathogen strains. Genetic exchange occurs in the parasitic protists Trypanosoma brucei, T. cruzi, and Leishmania major, but the precise cellular mechanisms are unknown, because the process has not been observed directly. Here we exploit the identification of homologs of meiotic genes in the T. brucei genome and demonstrate that three functionally distinct, meiosis-specific proteins are expressed in the nucleus of a single specific cell type, defining a previously undescribed developmental stage occurring within the tsetse fly salivary gland. Expression occurs in clonal and mixed infections, indicating that the meiotic program is an intrinsic but hitherto cryptic part of the developmental cycle of trypanosomes. In experimental crosses, expression of meiosis-specific proteins usually occurred before cell fusion. This is evidence of conventional meiotic division in an excavate protist, and the functional conservation of the meiotic machinery in these divergent organisms underlines the ubiquity and basal evolution of meiosis in eukaryotes. PMID:21321215

  10. Developmental immunotoxicity (DIT): assays for evaluating effects of exogenous agents on development of the immune system.

    PubMed

    DeWitt, Jamie C; Peden-Adams, Margie M; Keil, Deborah E; Dietert, Rodney R

    2012-02-01

    Developmental immunotoxicity (DIT) occurs when exposure to environmental risk factors prior to adulthood, including chemical, biological, physical, or physiological factors, alters immune system development. DIT may elicit suppression, hyperactivation, or misregulation of immune responses and may present clinically as decreased resistance to pathogens, allergic and autoimmune diseases, and inflammatory diseases. Immunotoxicity testing guidelines established by the Environmental Protection Agency for adult animals (OPPTS 8703.7800) require functional tests and immunophenotyping that are suitable for detecting immunomodulation, especially immunosuppression. However, evaluating immune function in offspring that are not fully immunocompetent yields results that are challenging to interpret. Therefore, this unit will describe an optimum exposure scenario, reference two assays (immunophenotyping and histopathology) appropriate for detecting immunomodulation in weaning-age offspring, and reference four assays (immunophenotyping, histopathology, T cell-dependent antibody responses, and delayed-type hypersensitivity) appropriate for detecting immunomodulation in immunocompetent offspring. The protocol also will reference other assays (natural killer cell and cytotoxic T lymphocyte) with potential utility for assessing DIT. © 2012 by John Wiley & Sons, Inc.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garige, Mamatha; Walters, Eric, E-mail: ewalters@howard.edu

    The molecular basis for nutraceutical properties of the polyphenol curcumin (Curcuma longa, Turmeric) is complex, affecting multiple factors that regulate cell signaling and homeostasis. Here, we report the effect of curcumin on cellular and developmental mechanisms in the eukaryotic model, Dictyostelium discoideum. Dictyostelium proliferation was inhibited in the presence of curcumin, which also suppressed the prestarvation marker, discoidin I, members of the yakA-mediated developmental signaling pathway, and expression of the extracellular matrix/cell adhesion proteins (DdCAD and csA). This resulted in delayed chemotaxis, adhesion, and development of the organism. In contrast to the inhibitory effects on developmental genes, curcumin induced gstAmore » gene expression, overall GST activity, and generated production of reactive oxygen species. These studies expand our knowledge of developmental and biochemical signaling influenced by curcumin, and lends greater consideration of GST enzyme function in eukaryotic cell signaling, development, and differentiation.« less

  12. Growth suppression of Leydig TM3 cells mediated by aryl hydrocarbon receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iseki, Minoru; Department of Regulation Biology, Faculty of Science, Saitama University, Saitama; Ikuta, Togo

    2005-06-17

    Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces developmental toxicity in reproductive organs. To elucidate the function of AhR, we generated stable transformants of TM3 cells overexpressing wild-type aryl hydrocarbon receptor (AhR) or its mutants which carried mutations in nuclear localization signal or nuclear export signal. In the presence of 3-methylcholanthrene (MC), proliferation of the cells transfected with wild-type AhR was completely suppressed, whereas cells expressing AhR mutants proliferated in a manner equivalent to control TM3 cells, suggesting AhR-dependent growth inhibition. The suppression was associated with up-regulation of cyclin-dependent kinase inhibitor p21{sup Cip1}, which was abolished by pretreatment with actinomycin D. A p38 MAPKmore » specific inhibitor, SB203580, blocked the increase of p21{sup Cip1} mRNA in response to MC. Treatment with indigo, another AhR ligand, failed to increase of p21{sup Cip1} mRNA, although up-regulation of mRNA for CYP1A1 was observed. These data suggest AhR in Leydig cells mediates growth inhibition by inducing p21{sup Cip1}.« less

  13. Membrane segregation and downregulation of raft markers during sarcolemmal differentiation in skeletal muscle cells.

    PubMed

    Draeger, A; Monastyrskaya, K; Burkhard, F C; Wobus, A M; Moss, S E; Babiychuk, E B

    2003-10-15

    Muscle contraction implies flexibility in combination with force resistance and requires a high degree of sarcolemmal organization. Smooth muscle cells differentiate largely from mesenchymal precursor cells and gradually assume a highly periodic sarcolemmal organization. Skeletal muscle undergoes an even more striking differentiation programme, leading to cell fusion and alignment into myofibrils. The lipid bilayer of each cell type is further segregated into raft and non-raft microdomains of distinct lipid composition. Considering the extent of developmental rearrangement in skeletal muscle, we investigated sarcolemmal microdomain organization in skeletal and smooth muscle cells. The rafts in both muscle types are characterized by marker proteins belonging to the annexin family which localize to the inner membrane leaflet, as well as glycosyl-phosphatidyl-inositol (GPI)-anchored enzymes attached to the outer leaflet. We demonstrate that the profound structural rearrangements that occur during skeletal muscle maturation coincide with a striking decrease in membrane lipid segregation, downregulation of annexins 2 and 6, and a significant decrease in raft-associated 5'-nucleotidase activity. The relative paucity of lipid rafts in mature skeletal in contrast to smooth muscle suggests that the organization of sarcolemmal microdomains contributes to the muscle-specific differences in stimulatory responses and contractile properties.

  14. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces.

    PubMed

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-08-24

    Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces

    PubMed Central

    Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto

    2015-01-01

    Summary Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. PMID:26235046

  16. Characterization of Human Neural Progenitor Cell Models for Developmental Neurotoxicity Screening

    EPA Science Inventory

    Current testing methods for developmental neurotoxicity (DNT) make evaluation of the effects of large numbers of chemicals impractical and prohibitively expensive. As such, we are evaluating two different human neural progenitor cell (hNPC) models for their utility in screens for...

  17. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells.

    PubMed

    Choi, Jiho; Huebner, Aaron J; Clement, Kendell; Walsh, Ryan M; Savol, Andrej; Lin, Kaixuan; Gu, Hongcang; Di Stefano, Bruno; Brumbaugh, Justin; Kim, Sang-Yong; Sharif, Jafar; Rose, Christopher M; Mohammad, Arman; Odajima, Junko; Charron, Jean; Shioda, Toshi; Gnirke, Andreas; Gygi, Steven; Koseki, Haruhiko; Sadreyev, Ruslan I; Xiao, Andrew; Meissner, Alexander; Hochedlinger, Konrad

    2017-08-10

    Concomitant activation of the Wnt pathway and suppression of Mapk signalling by two small molecule inhibitors (2i) in the presence of leukaemia inhibitory factor (LIF) (hereafter termed 2i/L) induces a naive state in mouse embryonic stem (ES) cells that resembles the inner cell mass (ICM) of the pre-implantation embryo. Since the ICM exists only transiently in vivo, it remains unclear how sustained propagation of naive ES cells in vitro affects their stability and functionality. Here we show that prolonged culture of male mouse ES cells in 2i/L results in irreversible epigenetic and genomic changes that impair their developmental potential. Furthermore, we find that female ES cells cultured in conventional serum plus LIF medium phenocopy male ES cells cultured in 2i/L. Mechanistically, we demonstrate that the inhibition of Mek1/2 is predominantly responsible for these effects, in part through the downregulation of DNA methyltransferases and their cofactors. Finally, we show that replacement of the Mek1/2 inhibitor with a Src inhibitor preserves the epigenetic and genomic integrity as well as the developmental potential of ES cells. Taken together, our data suggest that, although short-term suppression of Mek1/2 in ES cells helps to maintain an ICM-like epigenetic state, prolonged suppression results in irreversible changes that compromise their developmental potential.

  18. Human pluripotent stem cells: an emerging model in developmental biology

    PubMed Central

    Zhu, Zengrong; Huangfu, Danwei

    2013-01-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development ‘in a dish’. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development. PMID:23362344

  19. Ammonium Accumulation and Cell Death in a Rat 3D Brain Cell Model of Glutaric Aciduria Type I

    PubMed Central

    Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana

    2013-01-01

    Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I. PMID:23326493

  20. Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I.

    PubMed

    Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana

    2013-01-01

    Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

  1. The Developmental Regulator SEEDSTICK Controls Structural and Mechanical Properties of the Arabidopsis Seed Coat

    PubMed Central

    Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam

    2016-01-01

    Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758

  2. Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis.

    PubMed

    Lee, M M; Schiefelbein, J

    2001-05-01

    The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

  3. Identifying Support Functions in Developmental Relationships: A Self-Determination Perspective

    ERIC Educational Resources Information Center

    Janssen, Suzanne; van Vuuren, Mark; de Jong, Menno D. T.

    2013-01-01

    This study examines the content of developmental networks from the perspective of self-determination theory. We qualitatively examine 18 proteges' constellations of developmental relationships to identify specific types of developmental support functions. Our study shows that the adoption of self-determination theory leads to a theory-based…

  4. Wnt Signaling in Cardiac Disease.

    PubMed

    Hermans, Kevin C M; Blankesteijn, W Matthijs

    2015-07-01

    Wnt signaling encompasses multiple and complex signaling cascades and is involved in many developmental processes such as tissue patterning, cell fate specification, and control of cell division. Consequently, accurate regulation of signaling activities is essential for proper embryonic development. Wnt signaling is mostly silent in the healthy adult organs but a reactivation of Wnt signaling is generally observed under pathological conditions. This has generated increasing interest in this pathway from a therapeutic point of view. In this review article, the involvement of Wnt signaling in cardiovascular development will be outlined, followed by its implication in myocardial infarct healing, cardiac hypertrophy, heart failure, arrhythmias, and atherosclerosis. The initial experiments not always offer consensus on the effects of activation or inactivation of the pathway, which may be attributed to (i) the type of cardiac disease, (ii) timing of the intervention, and (iii) type of cells that are targeted. Therefore, more research is needed to determine the exact implication of Wnt signaling in the conditions mentioned above to exploit it as a powerful therapeutic target. © 2015 American Physiological Society.

  5. Cellular and Circuitry Bases of Autism: Lessons Learned from the Temporospatial Manipulation of Autism Genes in the Brain.

    PubMed

    Hulbert, Samuel W; Jiang, Yong-Hui

    2017-04-01

    Transgenic mice carrying mutations that cause Autism Spectrum Disorders (ASDs) continue to be valuable for determining the molecular underpinnings of the disorders. Recently, researchers have taken advantage of such models combined with Cre-loxP and similar systems to manipulate gene expression over space and time. Thus, a clearer picture is starting to emerge of the cell types, circuits, brain regions, and developmental time periods underlying ASDs. ASD-causing mutations have been restricted to or rescued specifically in excitatory or inhibitory neurons, different neurotransmitter systems, and cells specific to the forebrain or cerebellum. In addition, mutations have been induced or corrected in adult mice, providing some evidence for the plasticity and reversibility of core ASD symptoms. The limited availability of Cre lines that are highly specific to certain cell types or time periods provides a challenge to determining the cellular and circuitry bases of autism, but other technological advances may eventually overcome this obstacle.

  6. The Long Adventurous Journey of Rhombic Lip Cells in Jawed Vertebrates: A Comparative Developmental Analysis

    PubMed Central

    Wullimann, Mario F.; Mueller, Thomas; Distel, Martin; Babaryka, Andreas; Grothe, Benedikt; Köster, Reinhard W.

    2011-01-01

    This review summarizes vertebrate rhombic lip and early cerebellar development covering classic approaches up to modern developmental genetics which identifies the relevant differential gene expression domains and their progeny. Most of this information is derived from amniotes. However, progress in anamniotes, particularly in the zebrafish, has recently been made. The current picture suggests that rhombic lip and cerebellar development in jawed vertebrates (gnathostomes) share many characteristics. Regarding cerebellar development, these include a ptf1a expressing ventral cerebellar proliferation (VCP) giving rise to Purkinje cells and other inhibitory cerebellar cell types, and an atoh1 expressing upper rhombic lip giving rise to an external granular layer (EGL, i.e., excitatory granule cells) and an early ventral migration into the anterior rhombencephalon (cholinergic nuclei). As for the lower rhombic lip (LRL), gnathostome commonalities likely include the formation of precerebellar nuclei (mossy fiber origins) and partially primary auditory nuclei (likely convergently evolved) from the atoh1 expressing dorsal zone. The fate of the ptf1a expressing ventral LRL zone which gives rise to (excitatory cells of) the inferior olive (climbing fiber origin) and (inhibitory cells of ) cochlear nuclei in amniotes, has not been determined in anamniotes. Special for the zebrafish in comparison to amniotes is the predominant origin of anamniote excitatory deep cerebellar nuclei homologs (i.e., eurydendroid cells) from ptf1a expressing VCP cells, the sequential activity of various atoh1 paralogs and the incomplete coverage of the subpial cerebellar plate with proliferative EGL cells. Nevertheless, the conclusion that a rhombic lip and its major derivatives evolved with gnathostome vertebrates only and are thus not an ancestral craniate character complex is supported by the absence of a cerebellum (and likely absence of its afferent and efferent nuclei) in jawless fishes PMID:21559349

  7. Can the 'neuron theory' be complemented by a universal mechanism for generic neuronal differentiation.

    PubMed

    Ernsberger, Uwe

    2015-01-01

    With the establishment of the 'neuron theory' at the turn of the twentieth century, this remarkably powerful term was introduced to name a breathtaking diversity of cells unified by a characteristic structural compartmentalization and unique information processing and propagating features. At the beginning of the twenty-first century, developmental, stem cell and reprogramming studies converged to suggest a common mechanism involved in the generation of possibly all vertebrate, and at least a significant number of invertebrate, neurons. Sox and, in particular, SoxB and SoxC proteins as well as basic helix-loop-helix proteins play major roles, even though their precise contributions to progenitor programming, proliferation and differentiation are not fully resolved. In addition to neuronal development, these transcription factors also regulate sensory receptor and endocrine cell development, thus specifying a range of cells with regulatory and communicative functions. To what extent microRNAs contribute to the diversification of these cell types is an upcoming question. Understanding the transcriptional and post-transcriptional regulation of genes coding for cell type-specific cytoskeletal and motor proteins as well as synaptic and ion channel proteins, which mark differences but also similarities between the three communicator cell types, will provide a key to the comprehension of their diversification and the signature of 'generic neuronal' differentiation. Apart from the general scientific significance of a putative universal core instruction for neuronal development, the impact of this line of research for cell replacement therapy and brain tumor treatment will be of considerable interest.

  8. Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney.

    PubMed

    Rosines, Eran; Johkura, Kohei; Zhang, Xing; Schmidt, Heidi J; Decambre, Marvalyn; Bush, Kevin T; Nigam, Sanjay K

    2010-08-01

    The plausibility of constructing vascularized three-dimensional (3D) kidney tissue from cells was investigated. The kidney develops from mutual inductive interactions between cells of the ureteric bud (UB), derived from the Wolffian duct (WD), and the metanephric mesenchyme (MM). We found that isolated MMs were capable of inducing branching morphogenesis of the WD (an epithelial tube) in recombination cultures; suggesting that the isolated MM retains inductive capacity for WD-derived epithelial tubule cells other than those from the UB. Hanging drop aggregates of embryonic and adult renal epithelial cells from UB and mouse inner medullary collecting duct cell (IMCD) lines, which are ultimately of WD origin, were capable of inducing MM epithelialization and tubulogenesis with apparent connections (UB cells) and collecting duct-like tubules with lumens (IMCD). This supports the view that the collecting system can be constructed from certain epithelial cells (those ultimately of WD origin) when stimulated by MM. Although the functions of the MM could not be replaced by cultured mesenchymal cells, primary MM cells and one MM-derived cell line (BSN) produced factors that stimulate UB branching morphogenesis, whereas another, rat inducible metanephric mesenchyme (RIMM-18), supported WD budding as a feeder layer. This indicates that some MM functions can be recapitulated by cells. Although engineering of a kidney-like tissue from cultured cells alone remains to be achieved, these results suggest the feasibility of such an approach following the normal developmental progression of the UB and MM. Consistent with this notion, implants of kidney-like tissues constructed in vitro from recombinations of the UB and MM survived for over 5 weeks and achieved an apparently host-derived glomerular vasculature. Lastly, we addressed the issue of optimal macro- and micro-patterning of kidney-like tissue, which might be necessary for function of an organ assembled using a tissue engineering approach. To identify suitable conditions, 3D reconstructions of HoxB7-green fluorescent protein mouse rudiments (E12) cultured on a filter or suspended in a collagen gel (type I or type IV) revealed that type IV collagen 3D culture supports the deepest tissue growth (600 +/- 8 microm) and the largest kidney volume (0.22 +/- 0.02 mm(3)), and enabled the development of an umbrella-shaped collecting system such as occurs in vivo. Taken together with prior work (Rosines et al., 2007; Steer et al., 2002), these results support the plausibility of a developmental strategy for constructing and propagating vascularized 3D kidney-like tissues from recombinations of cultured renal progenitor cells and/or primordial tissue.

  9. The impact of transposable elements on mammalian development

    PubMed Central

    Garcia-Perez, Jose L.; Widmann, Thomas J.; Adams, Ian R.

    2018-01-01

    Summary Despite often being classified as selfish or junk DNA, transposable elements (TEs) are a group of abundant genetic sequences that significantly impact on mammalian development and genome regulation. In recent years, our understanding of how pre-existing TEs affect genome architecture, gene regulatory networks and protein function during mammalian embryogenesis has dramatically expanded. In addition, the mobilization of active TEs in selected cell types has been shown to generate genetic variation during development and in fully differentiated tissues. Importantly, the ongoing domestication and evolution of TEs appears to provide a rich source of regulatory elements, functional modules and genetic variation that fuels the evolution of mammalian developmental processes. Here, we review the functional impact that TEs exert on mammalian developmental processes and how the somatic activity of TEs can influence gene regulatory networks. PMID:27875251

  10. ABAEnrichment: an R package to test for gene set expression enrichment in the adult and developing human brain.

    PubMed

    Grote, Steffi; Prüfer, Kay; Kelso, Janet; Dannemann, Michael

    2016-10-15

    We present ABAEnrichment, an R package that tests for expression enrichment in specific brain regions at different developmental stages using expression information gathered from multiple regions of the adult and developing human brain, together with ontologically organized structural information about the brain, both provided by the Allen Brain Atlas. We validate ABAEnrichment by successfully recovering the origin of gene sets identified in specific brain cell-types and developmental stages. ABAEnrichment was implemented as an R package and is available under GPL (≥ 2) from the Bioconductor website (http://bioconductor.org/packages/3.3/bioc/html/ABAEnrichment.html). steffi_grote@eva.mpg.de, kelso@eva.mpg.de or michael_dannemann@eva.mpg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  11. Identification of Putative Cardiovascular System Developmental Toxicants using a Classification Model based on Signaling Pathway-Adverse Outcome Pathways

    EPA Science Inventory

    An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...

  12. MBD2 is a critical component of a methyl cytosine-binding protein complex isolated from primary erythroid cells

    PubMed Central

    Kransdorf, Evan P.; Wang, Shou Zhen; Zhu, Sheng Zu; Langston, Timothy B.; Rupon, Jeremy W.; Ginder, Gordon D.

    2006-01-01

    The chicken embryonic β-type globin gene, ρ, is a member of a small group of vertebrate genes whose developmentally regulated expression is mediated by DNA methylation. Previously, we have shown that a methyl cytosine-binding complex binds to the methylated ρ-globin gene in vitro. We have now chromatographically purified and characterized this complex from adult chicken primary erythroid cells. Four components of the MeCP1 transcriptional repression complex were identified: MBD2, RBAP48, HDAC2, and MTA1. These 4 proteins, as well as the zinc-finger protein p66 and the chromatin remodeling factor Mi2, were found to coelute by gel-filtration analysis and pull-down assays. We conclude that these 6 proteins are components of the MeCPC. In adult erythrocytes, significant enrichment for MBD2 is seen at the inactive ρ-globin gene by chromatin immunoprecipitation assay, whereas no enrichment is observed at the active βA-globin gene, demonstrating MBD2 binds to the methylated and transcriptionally silent ρ-globin gene in vivo. Knock-down of MBD2 resulted in up-regulation of a methylated ρ-gene construct in mouse erythroleukemic (MEL)-ρ cells. These results represent the first purification of a MeCP1-like complex from a primary cell source and provide support for a role for MBD2 in developmental gene regulation. PMID:16778143

  13. Fibroblast growth factor receptors: multifactorial-contributors to tumor initiation and progression.

    PubMed

    Feng, Shachuan; Zhou, Li; Nice, Edouard Collins; Huang, Canhua

    2015-01-01

    Fibroblast growth factor receptors (FGFRs), encoded by four genes (FGFR1, FGFR2, FGFR3, and FGFR4) are tightly associated with many biological processes such as organ development, cell proliferation and migration. Studies over the past decades have validated the pivotal roles FGFRs play in tumorigenesis due to the regulation of diverse tumorigenesis-related processes, including cell survival, proliferation, inflammation, metastasis and angiogenesis. Interestingly, FGFR mutations in somatic cells leading to tumorigenesis and those in germ cells leading to developmental disorders are identical, suggesting that FGFR mutations result in different diseases due to their spatio-temporal expression. Thus, discoveries in developmental biology may also be applicable to cancer. FGFRs regulate the expression and/or the activity of a myriad of molecules (e.g. matrix metalloproteinases (MMPs) and Snail) that are tightly linked to tumorigenesis by four main signaling pathways (RAS-MAPK, PI3K-AKT, PLCγ-PIP2, and STAT), as well as other minor branches. Epigenetic and genetic alteration of FGFR genes, including DNA methylation, histone remodeling, microRNA regulation, single nucleotide polymorphisms (SNPs), gene missense mutations, amplification, and fusion of FGFRs with other genes, which result in gain or loss of FGFR function, have been identified in many types of cancer. In this review, we focus in particular on recent advances in the relationship between FGFR disorders and tumorigenesis.

  14. Stem Cell Therapy: Repurposing Cell-Based Regenerative Medicine Beyond Cell Replacement.

    PubMed

    Napoli, Eleonora; Lippert, Trenton; Borlongan, Cesar V

    2018-02-27

    Stem cells exhibit simple and naive cellular features, yet their exact purpose for regenerative medicine continues to elude even the most elegantly designed research paradigms from developmental biology to clinical therapeutics. Based on their capacity to divide indefinitely and their dynamic differentiation into any type of tissue, the advent of transplantable stem cells has offered a potential treatment for aging-related and injury-mediated diseases. Recent laboratory evidence has demonstrated that transplanted human neural stem cells facilitate endogenous reparative mechanisms by initiating multiple regenerative processes in the brain neurogenic areas. Within these highly proliferative niches reside a myriad of potent regenerative molecules, including anti-inflammatory cytokines, proteomes, and neurotrophic factors, altogether representing a biochemical cocktail vital for restoring brain function in the aging and diseased brain. Here, we advance the concept of therapeutically repurposing stem cells not towards cell replacement per se, but rather exploiting the cells' intrinsic properties to serve as the host brain regenerative catalysts.

  15. Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers.

    PubMed Central

    Pennell, RI; Janniche, L; Kjellbom, P; Scofield, GN; Peart, JM; Roberts, K

    1991-01-01

    We have identified and characterized the temporal and spatial regulation of a plasma membrane arabinogalactan protein epitope during development of the aerial parts of oilseed rape using the monoclonal antibody JIM8. The JIM8 epitope is expressed by the first cells of the embryo and by certain cells in the sexual organs of flowers. During embryogenesis, the JIM8 epitope ceases to be expressed by the embryo proper but is still found in the suspensor. During differentiation of the stamens and carpels, expression of the JIM8 epitope progresses from one cell type to another, ultimately specifying the endothecium and sperm cells, the nucellar epidermis, synergid cells, and the egg cell. This complex temporal sequence demonstrates rapid turnover of the JIM8 epitope. There is no direct evidence for any cell-inductive process in plant development. However, if cell-cell interactions exist in plants and participate in flower development, the JIM8 epitope may be a marker for one set of them. PMID:12324592

  16. FOX and ETS family transcription factors regulate the pigment cell lineage in planarians.

    PubMed

    He, Xinwen; Lindsay-Mosher, Nicole; Li, Yan; Molinaro, Alyssa M; Pellettieri, Jason; Pearson, Bret J

    2017-12-15

    Many pigment cells acquire unique structural properties and gene expression profiles during animal development. The underlying differentiation pathways have been well characterized in cells formed during embryogenesis, such as the neural crest-derived melanocyte. However, much less is known about the developmental origins of pigment cells produced in adult organisms during tissue homeostasis and repair. Here we report a lineage analysis of ommochrome- and porphyrin-producing cells in the brown, freshwater planarian Schmidtea mediterranea Using an RNA-sequencing approach, we identified two classes of markers expressed in sequential fashion when new pigment cells are generated during regeneration or in response to pigment cell ablation. We also report roles for FOXF-1 and ETS-1 transcription factors, as well as for an FGFR-like molecule, in the specification and maintenance of this cell type. Together, our results provide insights into mechanisms of adult pigment cell development in the strikingly colorful Platyhelminthes phylum. © 2017. Published by The Company of Biologists Ltd.

  17. The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis.

    PubMed

    Kwak, Su-Hwan; Schiefelbein, John

    2007-02-01

    Cell-type patterning in the Arabidopsis root epidermis is achieved by a network of transcription factors and influenced by a position-dependent mechanism. The SCRAMBLED receptor-like kinase is required for the normal pattern to arise, but its precise role is not understood. Here we describe genetic and molecular studies to define the spatial and temporal role of SCM in epidermal patterning and its relationship to the transcriptional network. Our results suggest that SCM helps unspecified epidermal cells interpret their position in relation to the underlying cortical cells and establish distinct cell identities. Furthermore, SCM loss-of-function and overexpression analyses suggest that SCM influences cell fate through its negative transcriptional regulation of the WEREWOLF MYB gene in epidermal cells at the H position. We also find that SCM function is specifically required for patterning the post-embryonic root epidermis and not for the analogous epidermal cell-type patterning during embryogenesis or hypocotyl development. In addition, we show that two closely related SCM-like genes in Arabidopsis (SRF1 and SRF3) are not required alone or together with SCM for proper epidermal patterning. These findings help define the developmental and mechanistic role of SCM and suggest a new model for its action in root epidermal cell patterning.

  18. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    PubMed

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells

    PubMed Central

    Wakabayashi, Shunichi; Soma, Atsumi; Sato, Saeko; Nakatake, Yuhki; Oda, Mayumi; Murakami, Miyako; Sakota, Miki; Chikazawa-Nohtomi, Nana

    2016-01-01

    Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings. PMID:27802135

  20. Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds.

    PubMed

    Zhou, Jin; Zhang, Ye; Lin, Qiuxia; Liu, Zhiqiang; Wang, Haibin; Duan, Cuimi; Wang, Yanmeng; Hao, Tong; Wu, Kuiwu; Wang, Changyong

    2010-07-01

    Embryonic stem (ES) cells have the potential to develop into any type of tissue and are considered as a promising source of seeding cells for tissue engineering and transplantation therapy. The main catalyst for ES cells differentiation is the growth into embryoid bodies (EBs), which are utilized widely as the trigger of in vitro differentiation. In this study, a novel method for generating EBs from mouse ES cells through culture in collagen/Matrigel scaffolds was successfully established. When single ES cells were seeded in three dimensional collagen/Matrigel scaffolds, they grew into aggregates gradually and formed simple EBs with circular structures. After 7 days' culture, they formed into cystic EBs that would eventually differentiate into the three embryonic germ layers. Evaluation of the EBs in terms of morphology and potential to differentiate indicated that they were typical in structure and could generate various cell types; they were also able to form into tissue-like structures. Moreover, with introduction of ascorbic acid, ES cells differentiated into cardiomyocytes efficiently and started contracting synchronously at day 19. The results demonstrated that collagen/Matrigel scaffolds supported EBs formation and their subsequent differentiation in a single three dimensional environment. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

Top