Sample records for cell types indicating

  1. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic and Proteomic Expression Patterns.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilton, Susan C.; Karin, Norman J.; Tolic, Ana

    2014-08-01

    The growing use of engineered nanoparticles (NPs) in commercial and medical applications raises the urgent need for tools that can predict NP toxicity. Global transcriptome and proteome analyses were conducted on three human cell types, exposed to two high aspect ratio NP types, to identify patterns of expression that might indicate high versus low NP toxicity. Three cell types representing the most common routes of human exposure to NPs, including macrophage-like (THP-1), small airway epithelial and intestinal (Caco-2/HT29-MTX) cells, were exposed to TiO2 nanobelts (TiO2-NB; high toxicity) and multi-walled carbon nanotubes (MWCNT; low toxicity) at low (10 µg/mL) and highmore » (100 µg/mL) concentrations for 1 and 24 h. Unique patterns of gene and protein expressions were identified for each cell type, with no differentially expressed (p < 0.05, 1.5-fold change) genes or proteins overlapping across all three cell types. While unique to each cell type, the early response was primarily independent of NP type, showing similar expression patterns in response to both TiO2-NB and MWCNT. The early response might, therefore, indicate a general response to insult. In contrast, the 24 h response was unique to each NP type. The most significantly (p < 0.05) enriched biological processes in THP-1 cells indicated TiO2-NB regulation of pathways associated with inflammation, apoptosis, cell cycle arrest, DNA replication stress and genomic instability, while MWCNT-regulated pathways indicated increased cell proliferation, DNA repair and anti-apoptosis. These two distinct sets of biological pathways might, therefore, underlie cellular responses to high and low NP toxicity, respectively.« less

  2. Morphological and immunohistochemical diversity of endometrial stromal sarcoma in rats.

    PubMed

    Kumabe, Shino; Sato, Junko; Tomonari, Yuki; Takahashi, Miwa; Inoue, Kaoru; Yoshida, Midori; Doi, Takuya; Wako, Yumi; Tsuchitani, Minoru

    2018-04-01

    To clarify the histopathological characteristics of rat endometrial stromal sarcoma (ESS), we morphologically reviewed 12 malignant uterine tumors protruding into the lumen in previous rat carcinogenicity studies. The 12 cases were classified into the following 6 types based on their morphological features: spindle cell and collagen rich type, pleomorphic/spindle cell and compact type, decidual alteration type, histiocytic and multinucleated giant cell mixture type, Antoni A-type schwannoma type, and Antoni B-type schwannoma type. Immunohistochemically, tumor cells in all cases exhibited focal or diffuse positive reactions for vimentin, and 11 of the 12 cases were positive for S-100. Interestingly, 9 cases were positive for desmin or αSMA, indicating tumor cells expressing smooth muscle properties. Both Antoni A- and B-type schwannoma types showed low reactions for both muscle markers. Positive results for estrogen receptor α in the 11 cases suggested that they were derived from endometrial stromal cells. On the basis of their immunohistochemical profiles, they were considered to be derived from endometrial stromal cells while they showed morphological variation. The detection of a basement membrane surrounding tumor cells might not be a definitive indicator for differential diagnosis of ESS from malignant schwannoma. In conclusion, ESS could exhibit wide morphological and immunohistochemical variation including features of schwannoma or smooth muscle tumor.

  3. Ultrastructural sinusoidal changes in extrahepatic cholestasis. Light and electron microscopic immunohistochemical localization of collagen type III and type IV.

    PubMed

    Gulubova, M V

    1996-07-01

    Extrahepatic cholestasis causes excessive extracellular matrix formation perisinusoidally. Ito cells, transitional and endothelial cells are considered to be a source of extracellular matrix proteins in experimental cholestasis. The localization of collagens type III and type IV in human liver in extrahepatic cholestasis was investigated immunohistochemically in the present study. Immersion fixation was used after modification to be applied to surgical biopsies with commercially available kits. Sinusoidal changes were observed that indicated excessive collagen and matrix formation. Light microscopically, increased immunostaining with the two collagen antibodies was found perisinusoidally and portally. Ultrastructurally, collagen type III positive fibres were found beneath basement membranes of vessels, in collagen bundles and as a fibrillar network in the space of Disse. Collagen type IV immunostaining was located in portal tracts and near hepatocyte microvilli. Intracellular staining with collagen type IV was detected in the rough endoplasmic reticulum of some transitional cells. Immunostaining was located around transitional cells, Ito cells or endothelial cells mainly. Our study indicates that Ito cells, transitional and endothelial cells are the main source of collagens type III and IV in the space of Disse in extrahepatic cholestasis in humans.

  4. GiniClust: detecting rare cell types from single-cell gene expression data with Gini index.

    PubMed

    Jiang, Lan; Chen, Huidong; Pinello, Luca; Yuan, Guo-Cheng

    2016-07-01

    High-throughput single-cell technologies have great potential to discover new cell types; however, it remains challenging to detect rare cell types that are distinct from a large population. We present a novel computational method, called GiniClust, to overcome this challenge. Validation against a benchmark dataset indicates that GiniClust achieves high sensitivity and specificity. Application of GiniClust to public single-cell RNA-seq datasets uncovers previously unrecognized rare cell types, including Zscan4-expressing cells within mouse embryonic stem cells and hemoglobin-expressing cells in the mouse cortex and hippocampus. GiniClust also correctly detects a small number of normal cells that are mixed in a cancer cell population.

  5. The Human Respiratory Syncytial Virus Nonstructural Protein 1 Regulates Type I and Type II Interferon Pathways*

    PubMed Central

    Hastie, Marcus L.; Headlam, Madeleine J.; Patel, Nirav B.; Bukreyev, Alexander A.; Buchholz, Ursula J.; Dave, Keyur A.; Norris, Emma L.; Wright, Cassandra L.; Spann, Kirsten M.; Collins, Peter L.; Gorman, Jeffrey J.

    2012-01-01

    Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets. PMID:22322095

  6. Mitogenic effect contributes to increased virulence of Streptococcus suis sequence type 7 to cause streptococcal toxic shock-like syndrome.

    PubMed

    Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J

    2008-09-01

    Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect.

  7. Mitogenic effect contributes to increased virulence of Streptococcus suis sequence type 7 to cause streptococcal toxic shock-like syndrome

    PubMed Central

    Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J

    2008-01-01

    Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect. PMID:18803762

  8. Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons.

    PubMed

    Wong-Riley, M T; Trusk, T C; Kaboord, W; Huang, Z

    1994-09-01

    One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome oxidase-poor interpuffs with reference to their metabolic cell types and the effect of intraretinal tetrodotoxin treatment. The same three metabolic types were found in interpuffs, except that type B and C neurons were smaller and less cytochrome oxidase-reactive in interpuffs than in puffs. Type A neurons had small perikarya, low levels of cytochrome oxidase, and received exclusively symmetric axosomatic synapses. The largest neurons were pyramidal, type B cells with moderate cytochrome oxidase activity and were also contacted exclusively by symmetric axosomatic synapses. Type C cells medium-sized with a rich supply of large, darkly reactive mitochondria and possessed all the characteristics of GABAergic neurons. They were the only cell type that received both symmetric and asymmetric axosomatic synapses. Two weeks of monocular tetrodotoxin blockade in adult monkeys caused all three major cell types in deprived interpuffs to suffer a significant downward shift in the size and cytochrome oxidase reactivity of their mitochondria, but the effects were more severe in type B and C neurons. In nondeprived interpuffs, all three cell types gained both in size and absolute number of mitochondria, and type A cells also had an elevated level of cytochrome oxidase, indicating that they might be functioning at a competitive advantage over cells in deprived columns. However, type B and C neurons showed a net loss of darkly reactive mitochondria, indicating that these cells became less active. Thus, mature interpuff neurons remained vulnerable to retinal impulse blockade and the metabolic capacity of these cells remains tightly regulated by neuronal activity.

  9. Human T-cell leukemia virus type 1 infects multiple lineage hematopoietic cells in vivo

    PubMed Central

    Sugata, Kenji; Ueno, Takaharu; Koh, Ki-Ryang; Higuchi, Yusuke; Matsuda, Fumihiko; Melamed, Anat; Bangham, Charles R.

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) infects mainly CD4+CCR4+ effector/memory T cells in vivo. However, it remains unknown whether HTLV-1 preferentially infects these T cells or this virus converts infected precursor cells to specialized T cells. Expression of viral genes in vivo is critical to study viral replication and proliferation of infected cells. Therefore, we first analyzed viral gene expression in non-human primates naturally infected with simian T-cell leukemia virus type 1 (STLV-1), whose virological attributes closely resemble those of HTLV-1. Although the tax transcript was detected only in certain tissues, Tax expression was much higher in the bone marrow, indicating the possibility of de novo infection. Furthermore, Tax expression of non-T cells was suspected in bone marrow. These data suggest that HTLV-1 infects hematopoietic cells in the bone marrow. To explore the possibility that HTLV-1 infects hematopoietic stem cells (HSCs), we analyzed integration sites of HTLV-1 provirus in various lineages of hematopoietic cells in patients with HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and a HTLV-1 carrier using the high-throughput sequencing method. Identical integration sites were detected in neutrophils, monocytes, B cells, CD8+ T cells and CD4+ T cells, indicating that HTLV-1 infects HSCs in vivo. We also detected Tax protein in myeloperoxidase positive neutrophils. Furthermore, dendritic cells differentiated from HTLV-1 infected monocytes caused de novo infection to T cells, indicating that infected monocytes are implicated in viral spreading in vivo. Certain integration sites were re-detected in neutrophils from HAM/TSP patients at different time points, indicating that infected HSCs persist and differentiate in vivo. This study demonstrates that HTLV-1 infects HSCs, and infected stem cells differentiate into diverse cell lineages. These data indicate that infection of HSCs can contribute to the persistence and spread of HTLV-1 in vivo. PMID:29186194

  10. Dnmt1 activity is dispensable in δ-cells but is essential for α-cell homeostasis.

    PubMed

    Damond, Nicolas; Thorel, Fabrizio; Kim, Seung K; Herrera, Pedro L

    2017-07-01

    In addition to β-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive β-cell ablation in mice, may help restoring a functional β-cell mass in type 1 diabetes. Yet, the spontaneous α-to-β and δ-to-β conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a β-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in β-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  12. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System.

    PubMed

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell-cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system.

  13. Type I and type II interferons upregulate functional type I interleukin-1 receptor in a human fibroblast cell line TIG-1.

    PubMed

    Takii, T; Niki, N; Yang, D; Kimura, H; Ito, A; Hayashi, H; Onozaki, K

    1995-12-01

    The regulation of type I interleukin-1 receptor (IL-1R) expression by type I, interferon (IFN)-alpha A/D, and type II IFN, IFN-gamma, in a human fibroblast cell line TIG-1 was investigated. After 2 h stimulation with human IFN-alpha A/D or IFN-gamma, the levels of type I IL-1R mRNA increased. We previously reported that IL-1 upregulates transcription and cell surface molecules of type I IL-1R in TIG-1 cells through induction of prostaglandin (PG) E2 and cAMP accumulation. However, indomethacin was unable to inhibit the effect of IFNs, indicating that IFNs augment IL-1R expression through a pathway distinct from that of IL-1. The augmentation was also observed in other fibroblast cell lines. Nuclear run-on assays and studies of the stability of mRNA suggested that the increase in IL-1R mRNA was a result of the enhanced transcription of IL-1R gene. Binding studies using 125I-IL-1 alpha revealed that the number of cell surface IL-1R increased with no change in binding affinity by treatment with these IFNs. Pretreatment of the cells with IFNs enhanced IL-1-induced IL-6 production, indicating that IFNs upregulate functional IL-1R. IL-1 and IFNs are produced by the same cell types, as well as by the adjacent different cell types, and are concomitantly present in lesions of immune and inflammatory reactions. These results therefore suggest that IFNs exhibit synergistic effects with IL-1 through upregulation of IL-1R. Augmented production of IL-6 may also contribute to the reactions.

  14. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.

    PubMed

    Poma, A; Miranda, M; Spanò, L

    1998-10-01

    The cytotoxicity and inhibitory effect on proliferation of the type 1 ribosome-inactivating protein luffin purified from the seeds of Luffa aegyptiaca were investigated both in human metastatic melanoma cells and in murine Ehrlich ascites tumour cells. Results indicate that luffin from the seeds of Luffa aegyptiaca is cytotoxic to the cell lines tested, with approximately 10 times greater potency in Ehrlich cells. Luffin was found to induce an increase in cytosolic oligonucleosome-bound DNA in both melanoma and Ehrlich ascites tumour cells, the level of DNA fragmentation in the former cell line being higher than in the latter. Experiments with melanoma cells indicate that an increase in cytosolic nucleosomes could be supportive of apoptosis as the type of cell death induced by luffin.

  15. Interactions between Innate Lymphoid Cells and Cells of the Innate and Adaptive Immune System

    PubMed Central

    Symowski, Cornelia; Voehringer, David

    2017-01-01

    Type 2 innate lymphoid cells (ILC2s) are a major source of cytokines, which are also produced by Th2 cells and several cell types of the innate immune system. Work over the past few years indicates that ILC2s play a central role in regulating type 2 immune responses against allergens and helminths. ILC2s can interact with a variety of cells types of the innate and adaptive immune system by cell–cell contacts or by communication via soluble factors. In this review, we provide an overview about recent advances in our understanding how ILC2s orchestrate type 2 immune responses with focus on direct interactions between ILC2s and other cells of the immune system. PMID:29163497

  16. Monte Carlo Study Elucidates the Type 1/Type 2 Choice in Apoptotic Death Signaling in Healthy and Cancer Cells

    PubMed Central

    Raychaudhuri, Subhadip; Raychaudhuri, Somkanya C

    2013-01-01

    Apoptotic cell death is coordinated through two distinct (type 1 and type 2) intracellular signaling pathways. How the type 1/type 2 choice is made remains a central problem in the biology of apoptosis and has implications for apoptosis related diseases and therapy. We study the problem of type 1/type 2 choice in silico utilizing a kinetic Monte Carlo model of cell death signaling. Our results show that the type 1/type 2 choice is linked to deterministic versus stochastic cell death activation, elucidating a unique regulatory control of the apoptotic pathways. Consistent with previous findings, our results indicate that caspase 8 activation level is a key regulator of the choice between deterministic type 1 and stochastic type 2 pathways, irrespective of cell types. Expression levels of signaling molecules downstream also regulate the type 1/type 2 choice. A simplified model of DISC clustering elucidates the mechanism of increased active caspase 8 generation and type 1 activation in cancer cells having increased sensitivity to death receptor activation. We demonstrate that rapid deterministic activation of the type 1 pathway can selectively target such cancer cells, especially if XIAP is also inhibited; while inherent cell-to-cell variability would allow normal cells stay protected. PMID:24709706

  17. Biophotonics sensor acclimatization to stem cells environment

    NASA Astrophysics Data System (ADS)

    Mohamad Shahimin, Mukhzeer

    2017-11-01

    The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.

  18. Collagen as potential cell scaffolds for tissue engineering.

    PubMed

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  19. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts.

    PubMed

    Ahmed, Emad A; Vélaz, Eukene; Rosemann, Michael; Gilbertz, Klaus-P; Scherthan, Harry

    2017-03-01

    Noncycling and terminally differentiated (TD) cells display differences in radiosensitivity and DNA damage response. Unlike other TD cells, Sertoli cells express a mixture of proliferation inducers and inhibitors in vivo and can reenter the cell cycle. Being in a G 1 -like cell cycle stage, TD Sertoli cells are expected to repair DSBs by the error-prone nonhomologous end-joining pathway (NHEJ). Recently, we have provided evidence for the involvement of Ku-dependent NHEJ in protecting testis cells from DNA damage as indicated by persistent foci of the DNA double-strand break (DSB) repair proteins phospho-H2AX, 53BP1, and phospho-ATM in TD Sertoli cells of Ku70-deficient mice. Here, we analyzed the kinetics of 53BP1 foci induction and decay up to 12 h after 0.5 Gy gamma irradiation in DNA-PKcs-deficient (Prkdc scid ) and wild-type Sertoli cells. In nonirradiated mice and Prkdc scid Sertoli cells displayed persistent DSBs foci in around 12 % of cells and a fivefold increase in numbers of these DSB DNA damage-related foci relative to the wild type. In irradiated mice, Prkdc scid Sertoli cells showed elevated levels of DSB-indicating foci in 82 % of cells 12 h after ionizing radiation (IR) exposure, relative to 52 % of irradiated wild-type Sertoli cells. These data indicate that Sertoli cells respond to and repair IR-induced DSBs in vivo, with repair kinetics being slow in the wild type and inefficient in Prkdc scid . Applying the same dose of IR to Prdkc -/- and Ku -/- mouse embryonic fibroblast (MEF) cells revealed a delayed induction of 53BP1 DSB-indicating foci 5 min post-IR in Prdkc -/- cells. Inefficient DSB repair was evident 7 h post-IR in DNA-PKcs-deficient cells, but not in Ku -/- MEFs. Our data show that quiescent Sertoli cells repair genotoxic DSBs by DNA-PKcs-dependent NEHJ in vivo with a slower kinetics relative to somatic DNA-PKcs-deficient cells in vitro, while DNA-PKcs deficiency caused inefficient DSB repair at later time points post-IR in both conditions. These observations suggest that DNA-PKcs contributes to the fast and slow repair of DSBs by NHEJ.

  20. Fabrication of type I collagen microcarrier using a microfluidic 3D T-junction device and its application for the quantitative analysis of cell-ECM interactions.

    PubMed

    Yoon, Junghyo; Kim, Jaehoon; Jeong, Hyo Eun; Sudo, Ryo; Park, Myung-Jin; Chung, Seok

    2016-08-26

    We presented a new quantitative analysis for cell and extracellular matrix (ECM) interactions, using cell-coated ECM hydrogel microbeads (hydrobeads) made of type I collagen. The hydrobeads can carry cells as three-dimensional spheroidal forms with an ECM inside, facilitating a direct interaction between the cells and ECM. The cells on hydrobeads do not have a hypoxic core, which opens the possibility for using as a cell microcarrier for bottom-up tissue reconstitution. This technique can utilize various types of cells, even MDA-MB-231 cells, which have weak cell-cell interactions and do not form spheroids in conventional spheroid culture methods. Morphological indices of the cell-coated hydrobead visually present cell-ECM interactions in a quantitative manner.

  1. Cell wall polysaccharides from fern leaves: evidence for a mannan-rich Type III cell wall in Adiantum raddianum.

    PubMed

    Silva, Giovanna B; Ionashiro, Mari; Carrara, Thalita B; Crivellari, Augusto C; Tiné, Marco A S; Prado, Jefferson; Carpita, Nicholas C; Buckeridge, Marcos S

    2011-12-01

    Primary cell walls from plants are composites of cellulose tethered by cross-linking glycans and embedded in a matrix of pectins. Cell wall composition varies between plant species, reflecting in some instances the evolutionary distance between them. In this work the monosaccharide compositions of isolated primary cell walls of nine fern species and one lycophyte were characterized and compared with those from Equisetum and an angiosperm dicot. The relatively high abundance of mannose in these plants suggests that mannans may constitute the major cross-linking glycan in the primary walls of pteridophytes and lycophytes. Pectin-related polysaccharides contained mostly rhamnose and uronic acids, indicating the presence of rhamnogalacturonan I highly substituted with galactose and arabinose. Structural and fine-structural analyses of the hemicellulose fraction of leaves of Adiantum raddianum confirmed this hypothesis. Linkage analysis showed that the mannan contains mostly 4-Man with very little 4,6-Man, indicating a low percentage of branching with galactose. Treatment of the mannan-rich fractions with endo-β-mannanase produced characteristic mannan oligosaccharides. Minor amounts of xyloglucan and xylans were also detected. These data and those of others suggest that all vascular plants contain xyloglucans, arabinoxylans, and (gluco)mannans, but in different proportions that define cell wall types. Whereas xyloglucan and pectin-rich walls define Type I walls of dicots and many monocots, arabinoxylans and lower proportion of pectin define the Type II walls of commelinoid monocots. The mannan-rich primary walls with low pectins of many ferns and a lycopod indicate a fundamentally different wall type among land plants, the Type III wall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Cyclic phosphatidic acid induces G0/G1 arrest, inhibits AKT phosphorylation, and downregulates cyclin D1 expression in colorectal cancer cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2015-03-01

    Lysophosphatidic acid (LPA) and its analogs are well-known mitogens for various cell types. Many reports have confirmed that several types of cancer cell produce LPA to promote survival, growth and tumorigenesis. This indicates that the interface between the LPA signaling pathway and the cell cycle signaling system is critical to the control of cancer cell proliferation. However, our previous study indicated that cyclic phosphatidic acid (cPA), which is structurally similar to LPA, inhibits the proliferation and migration of colon cancer cells. It has been reported that cPA shows several biological activities not shown by LPA. However, understanding of the detailed molecular and cellular mechanism underlying the regulation of the cell cycle by cPA is still in its infancy. In this study, we investigated the effect of cPA treatment on human DLD-1 colon cancer cells by analyzing cell cycle dynamics, gene expression, and AKT phosphorylation. Our findings indicate that cPA inhibits cell cycle progression in DLD-1 colon cancer cells via the downregulation of cyclin D1 and the inhibition of AKT phosphorylation.

  3. Evaluation of a Passive Heat Exchanger Based Cooling System for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Burke, Kenneth A.

    2011-01-01

    Fuel cell cooling is conventionally performed with an actively controlled, dedicated coolant loop that exchanges heat with a separate external cooling loop. To simplify this system the concept of directly cooling a fuel cell utilizing a coolant loop with a regenerative heat exchanger to preheat the coolant entering the fuel cell with the coolant exiting the fuel cell was analyzed. The preheating is necessary to minimize the temperature difference across the fuel cell stack. This type of coolant system would minimize the controls needed on the coolant loop and provide a mostly passive means of cooling the fuel cell. The results indicate that an operating temperature of near or greater than 70 C is achievable with a heat exchanger effectiveness of around 90 percent. Of the heat exchanger types evaluated with the same type of fluid on the hot and cold side, a counter flow type heat exchanger would be required which has the possibility of achieving the required effectiveness. The number of heat transfer units required by the heat exchanger would be around 9 or greater. Although the analysis indicates the concept is feasible, the heat exchanger design would need to be developed and optimized for a specific fuel cell operation in order to achieve the high effectiveness value required.

  4. Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I.

    PubMed

    Huang, Y; Ohtani, K; Iwanaga, R; Matsumura, Y; Nakamura, M

    2001-03-01

    Cyclins are one of the pivotal determinants regulating cell cycle progression. We previously reported that the trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) induces endogenous cyclin D2 expression along with cell cycle progression in a resting human T-cell line, Kit 225, suggesting a role of cyclin D2 in Tax-mediated cell cycle progression. The cyclin D2 gene has a typical E2F binding element, raising the possibility that induction of cyclin D2 expression is a consequence of cell cycle progression. In this study, we examined the role and molecular mechanism of induction of the endogenous human cyclin D2 gene by Tax. Introduction of p19(INK4d), a cyclin dependent kinase (CDK) inhibitor of the INK4 family specific for D-type CDK, inhibited Tax-mediated activation of E2F, indicating requirement of D-type CDK in Tax-mediated activation of E2F. Previously indicated E2F binding element and two NF-kappaB-like binding elements in the 1.6 kbp cyclin D2 promoter fragment had little, if any, effect on responsiveness to Tax. We found that trans-activation of the cyclin D2 promoter by Tax was mainly mediated by a newly identified NF-kappaB-like element with auxiliary contribution of a CRE-like element residing in sequences downstream of -444 which were by themselves sufficient for trans-activation by Tax. These results indicate that Tax directly trans-activates the cyclin D2 gene, resulting in growth promotion and perhaps leukemogenesis through activation of D-type CDK.

  5. Up-regulation of phosphoinositide metabolism in tobacco cells constitutively expressing the human type I inositol polyphosphate 5-phosphatase

    NASA Technical Reports Server (NTRS)

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.

  6. Up-Regulation of Phosphoinositide Metabolism in Tobacco Cells Constitutively Expressing the Human Type I Inositol Polyphosphate 5-Phosphatase1

    PubMed Central

    Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.

    2002-01-01

    To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP3) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP3. The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP3 compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP3 in both wild-type and transgenic cells. However, even with stimulation, InsP3 levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP3 signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP2), the lipid precursor of InsP3, was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP2 metabolism showed that the activity of the PtdInsP2-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of 32P into PtdInsP2 in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP2 synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP2 synthesis as a regulatory step in this system. PMID:12177493

  7. Infection with human herpesvirus type 8 and human T-cell leukaemia virus type 1 among individuals participating in a case–control study in Havana City, Cuba

    PubMed Central

    Fernandez, L; Serraino, D; Rezza, G; Lence, J; Ortiz, R M; Cruz, T; Vaccarella, S; Sarmati, L; Andreoni, M; Franceschi, S

    2002-01-01

    Infection with human herpesvirus type 8 and with human T-cell leukaemia virus type-1 shows strong geographic variations. We conducted this study to assess prevalence and risk factors for human herpesvirus type 8 infection in Havana City, Cuba. Information and residual serum samples already collected for a hospital based case–control study were used. A total of 379 individuals (267 males and 112 females; median age=63 years) were evaluated. Antibodies to the lytic antigen of human herpesvirus type 8 were detected by using an immunofluorescence assay, while human T-cell leukaemia virus type-1 serology was performed by means of an ELISA test (alpha Biotech). Overall, 64 subjects (16.9%, 95% confidence interval: 13.1–20.0) were positive for human herpesvirus type 8 antibodies. Human herpesvirus type 8 seroprevalence significantly increased with age (odds ratio=1.9 for ⩾65 vs <55 years), and was twice as frequent in blacks than in whites. No association emerged with gender, socio-economic indicators, family size, history of sexually transmitted disease, sexual behaviour. Overall, 16 persons had anti-human T-cell leukaemia virus type-1 antibodies (4.2%, 95% confidence interval: 2.2–6.4). No relationship emerged between human T-cell leukaemia virus type-1 and human herpesvirus type 8 serostatus. The study findings indicate that human herpesvirus type 8 infection is relatively common in Havana City, Cuba, suggesting that Cuba may represent an intermediate endemical area. Sexual transmission does not seem to play a major role in the spread human herpesvirus type 8 infection. British Journal of Cancer (2002) 87, 1253–1256. doi:10.1038/sj.bjc.6600613 www.bjcancer.com © 2002 Cancer Research UK PMID:12439714

  8. The Macrophage Galactose-Type Lectin Can Function as an Attachment and Entry Receptor for Influenza Virus

    PubMed Central

    Ng, Wy Ching; Liong, Stella; Tate, Michelle D.; Irimura, Tatsuro; Denda-Nagai, Kaori; Brooks, Andrew G.; Londrigan, Sarah L.

    2014-01-01

    Specific protein receptors that mediate internalization and entry of influenza A virus (IAV) have not been identified for any cell type. Sialic acid (SIA), the primary attachment factor for IAV hemagglutinin, is expressed by numerous cell surface glycoproteins and glycolipids, confounding efforts to identify specific receptors involved in virus infection. Lec1 Chinese hamster ovary (CHO) epithelial cells express cell surface SIA and bind IAV yet are largely resistant to infection. Here, we demonstrate that expression of the murine macrophage galactose-type lectin 1 (MGL1) by Lec1 cells enhanced Ca2+-dependent IAV binding and restored permissivity to infection. Lec1 cells expressing MGL1 were infected in the presence or absence of cell surface SIA, indicating that MGL1 can act as a primary receptor or as a coreceptor with SIA. Lec1 cells expressing endocytosis-deficient MGL1 mediated Ca2+-dependent IAV binding but were less sensitive to IAV infection, indicating that direct internalization via MGL1 can result in cellular infection. Together, these studies identify MGL1 as a cell surface glycoprotein that can act as an authentic receptor for both attachment and infectious entry of IAV. PMID:24257596

  9. Self-recognition of high-mannose type glycans mediating adhesion of embryonal fibroblasts.

    PubMed

    Yoon, Seon-Joo; Utkina, Natalia; Sadilek, Martin; Yagi, Hirokazu; Kato, Koichi; Hakomori, Sen-itiroh

    2013-07-01

    High-mannose type N-linked glycan with 6 mannosyl residues, termed "M6Gn2", displayed clear binding to the same M6Gn2, conjugated with ceramide mimetic (cer-m) and incorporated in liposome, or coated on polystyrene plates. However, the conjugate of M6Gn2-cer-m did not interact with complex-type N-linked glycan with various structures having multiple GlcNAc termini, conjugated with cer-m. The following observations indicate that hamster embryonic fibroblast NIL-2 K cells display homotypic autoadhesion, mediated through the self-recognition capability of high-mannose type glycans expressed on these cells: (i) NIL-2 K cells display clear binding to lectins capable of binding to high-mannose type glycans (e.g., ConA), but not to other lectins capable of binding to other carbohydrates (e.g. GS-II). (ii) NIL-2 K cells adhere strongly to plates coated with M6Gn2-cer-m, but not to plates coated with complex-type N-linked glycans having multiple GlcNAc termini, conjugated with cer-m; (iii) degree of NIL-2 K cell adhesion to plates coated with M6Gn2-cer-m showed a clear dose-dependence on the amount of M6Gn2-cer-m; and (iv) the degree of NIL-2 K adhesion to plates coated with M6Gn2-cer-m was inhibited in a dose-dependent manner by α1,4-L-mannonolactone, the specific inhibitor in high-mannose type glycans addition. These data indicate that adhesion of NIL-2 K is mediated by self-aggregation of high mannose type glycan. Further studies are to be addressed on auto-adhesion of other types of cells based on self interaction of high mannose type glycans.

  10. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿

    PubMed Central

    Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600

  11. Expression of Tlx in both stem cells and transit amplifying progenitors regulates stem cell activation and differentiation in the neonatal lateral subependymal zone.

    PubMed

    Obernier, Kirsten; Simeonova, Ina; Fila, Tatiana; Mandl, Claudia; Hölzl-Wenig, Gabriele; Monaghan-Nichols, Paula; Ciccolini, Francesca

    2011-09-01

    Niche homeostasis in the postnatal subependymal zone of the lateral ventricle (lSEZ) requires coordinated proliferation and differentiation of neural progenitor cells. The mechanisms regulating this balance are scarcely known. Recent observations indicate that the orphan nuclear receptor Tlx is an intrinsic factor essential in maintaining this balance. However, the effect of Tlx on gene expression depends on age and cell-type cues. Therefore, it is essential to establish its expression pattern at different developmental ages. Here, we show for the first time that in the neonatal lSEZ activated neural stem cells (NSCs) and especially transit-amplifying progenitors (TAPs) express Tlx and that its expression may be regulated at the posttranscriptional level. We also provide evidence that in both cell types Tlx affects gene expression in a positive and negative manner. In activated NSCs, but not in TAPs, absence of Tlx leads to overexpression of negative cell cycle regulators and impairment of proliferation. Moreover, in both cell types, the homeobox transcription factor Dlx2 is downregulated in the absence of Tlx. This is paralleled by increased expression of Olig2 in activated NSCs and glial fibrillary acidic protein in TAPs, indicating that in both populations Tlx decreases gliogenesis. Consistent with this, we found a higher proportion of cells expressing glial makers in the neonatal lSEZ of mutant mice than in the wild type counterpart. Thus, Tlx playing a dual role affects the expression of distinct genes in these two lSEZ cell types. Copyright © 2011 AlphaMed Press.

  12. Bacterial Biofilms as Complex Communities

    NASA Astrophysics Data System (ADS)

    Vlamakis, Hera

    2010-03-01

    Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.

  13. Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing.

    PubMed

    Renthal, William

    2018-01-01

    Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.

  14. Clustering Single-Cell Expression Data Using Random Forest Graphs.

    PubMed

    Pouyan, Maziyar Baran; Nourani, Mehrdad

    2017-07-01

    Complex tissues such as brain and bone marrow are made up of multiple cell types. As the study of biological tissue structure progresses, the role of cell-type-specific research becomes increasingly important. Novel sequencing technology such as single-cell cytometry provides researchers access to valuable biological data. Applying machine-learning techniques to these high-throughput datasets provides deep insights into the cellular landscape of the tissue where those cells are a part of. In this paper, we propose the use of random-forest-based single-cell profiling, a new machine-learning-based technique, to profile different cell types of intricate tissues using single-cell cytometry data. Our technique utilizes random forests to capture cell marker dependences and model the cellular populations using the cell network concept. This cellular network helps us discover what cell types are in the tissue. Our experimental results on public-domain datasets indicate promising performance and accuracy of our technique in extracting cell populations of complex tissues.

  15. High cell surface death receptor expression determines type I versus type II signaling.

    PubMed

    Meng, Xue Wei; Peterson, Kevin L; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D; Gores, Gregory J; Kaufmann, Scott H

    2011-10-14

    Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.

  16. Homeostatic plasticity shapes cell-type-specific wiring in the retina

    PubMed Central

    Tien, Nai-Wen; Soto, Florentina; Kerschensteiner, Daniel

    2017-01-01

    SUMMARY Convergent input from different presynaptic partners shapes the responses of postsynaptic neurons. Whether developing postsynaptic neurons establish connections with each presynaptic partner independently, or balance inputs to attain specific responses is unclear. Retinal ganglion cells (RGCs) receive convergent input from bipolar cell types with different contrast responses and temporal tuning. Here, using optogenetic activation and pharmacogenetic silencing, we found that type 6 bipolar cells (B6) dominate excitatory input to ONα-RGCs. We generated mice in which B6 cells were selectively removed from developing circuits (B6-DTA). In B6-DTA mice, ONα-RGCs adjusted connectivity with other bipolar cells in a cell-type-specific manner. They recruited new partners, increased synapses with some existing partners, and maintained constant input from others. Patch clamp recordings revealed that anatomical rewiring precisely preserved contrast- and temporal frequency response functions of ONα-RGCs, indicating that homeostatic plasticity shapes cell-type-specific wiring in the developing retina to stabilize visual information sent to the brain. PMID:28457596

  17. Fuel Cells

    ERIC Educational Resources Information Center

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  18. Sensing of substratum rigidity and directional migration by fast-crawling cells

    NASA Astrophysics Data System (ADS)

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ˜10 μ m and migration velocity is ˜10 μ m /min . In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  19. Sensing of substratum rigidity and directional migration by fast-crawling cells.

    PubMed

    Okimura, Chika; Sakumura, Yuichi; Shimabukuro, Katsuya; Iwadate, Yoshiaki

    2018-05-01

    Living cells sense the mechanical properties of their surrounding environment and respond accordingly. Crawling cells detect the rigidity of their substratum and migrate in certain directions. They can be classified into two categories: slow-moving and fast-moving cell types. Slow-moving cell types, such as fibroblasts, smooth muscle cells, mesenchymal stem cells, etc., move toward rigid areas on the substratum in response to a rigidity gradient. However, there is not much information on rigidity sensing in fast-moving cell types whose size is ∼10 μm and migration velocity is ∼10 μm/min. In this study, we used both isotropic substrata with different rigidities and an anisotropic substratum that is rigid on the x axis but soft on the y axis to demonstrate rigidity sensing by fast-moving Dictyostelium cells and neutrophil-like differentiated HL-60 cells. Dictyostelium cells exerted larger traction forces on a more rigid isotropic substratum. Dictyostelium cells and HL-60 cells migrated in the "soft" direction on the anisotropic substratum, although myosin II-null Dictyostelium cells migrated in random directions, indicating that rigidity sensing of fast-moving cell types differs from that of slow types and is induced by a myosin II-related process.

  20. Piwi Is Required in Multiple Cell Types to Control Germline Stem Cell Lineage Development in the Drosophila Ovary

    PubMed Central

    Ma, Xing; Wang, Su; Do, Trieu; Song, Xiaoqing; Inaba, Mayu; Nishimoto, Yoshiya; Liu, Lu-ping; Gao, Yuan; Mao, Ying; Li, Hui; McDowell, William; Park, Jungeun; Malanowski, Kate; Peak, Allison; Perera, Anoja; Li, Hua; Gaudenz, Karin; Haug, Jeff; Yamashita, Yukiko; Lin, Haifan; Ni, Jian-quan; Xie, Ting

    2014-01-01

    The piRNA pathway plays an important role in maintaining genome stability in the germ line by silencing transposable elements (TEs) from fly to mammals. As a highly conserved piRNA pathway component, Piwi is widely expressed in both germ cells and somatic cells in the Drosophila ovary and is required for piRNA production in both cell types. In addition to its known role in somatic cap cells to maintain germline stem cells (GSCs), this study has demonstrated that Piwi has novel functions in somatic cells and germ cells of the Drosophila ovary to promote germ cell differentiation. Piwi knockdown in escort cells causes a reduction in escort cell (EC) number and accumulation of undifferentiated germ cells, some of which show active BMP signaling, indicating that Piwi is required to maintain ECs and promote germ cell differentiation. Simultaneous knockdown of dpp, encoding a BMP, in ECs can partially rescue the germ cell differentiation defect, indicating that Piwi is required in ECs to repress dpp. Consistent with its key role in piRNA production, TE transcripts increase significantly and DNA damage is also elevated in the piwi knockdown somatic cells. Germ cell-specific knockdown of piwi surprisingly causes depletion of germ cells before adulthood, suggesting that Piwi might control primordial germ cell maintenance or GSC establishment. Finally, Piwi inactivation in the germ line of the adult ovary leads to gradual GSC loss and germ cell differentiation defects, indicating the intrinsic role of Piwi in adult GSC maintenance and differentiation. This study has revealed new germline requirement of Piwi in controlling GSC maintenance and lineage differentiation as well as its new somatic function in promoting germ cell differentiation. Therefore, Piwi is required in multiple cell types to control GSC lineage development in the Drosophila ovary. PMID:24658126

  1. Podocalyxin Is a Glycoprotein Ligand of the Human Pluripotent Stem Cell-Specific Probe rBC2LCN

    PubMed Central

    Tateno, Hiroaki; Matsushima, Asako; Hiemori, Keiko; Onuma, Yasuko; Ito, Yuzuru; Hasehira, Kayo; Nishimura, Ken; Ohtaka, Manami; Takayasu, Satoko; Nakanishi, Mahito; Ikehara, Yuzuru; Nakanishi, Mio; Ohnuma, Kiyoshi; Chan, Techuan; Toyoda, Masashi; Akutsu, Hidenori; Umezawa, Akihiro; Asashima, Makoto

    2013-01-01

    In comprehensive glycome analysis with a high-density lectin microarray, we have previously shown that the recombinant N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia (rBC2LCN) binds exclusively to undifferentiated human induced pluripotent stem (iPS) cells and embryonic stem (ES) cells but not to differentiated somatic cells. Here we demonstrate that podocalyxin, a heavily glycosylated type 1 transmembrane protein, is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. When analyzed by DNA microarray, podocalyxin was found to be highly expressed in both iPS cells and ES cells. Western and lectin blotting revealed that rBC2LCN binds to podocalyxin with a high molecular weight of more than 240 kDa in undifferentiated iPS cells of six different origins and four ES cell lines, but no binding was observed in either differentiated mouse feeder cells or somatic cells. The specific binding of rBC2LCN to podocalyxin prepared from a large set of iPS cells (138 types) and ES cells (15 types) was also confirmed using a high-throughput antibody-overlay lectin microarray. Alkaline digestion greatly reduced the binding of rBC2LCN to podocalyxin, indicating that the major glycan ligands of rBC2LCN are presented on O-glycans. Furthermore, rBC2LCN was found to exhibit significant affinity to a branched O-glycan comprising an H type 3 structure (Ka, 2.5 × 104 M−1) prepared from human 201B7 iPS cells, indicating that H type 3 is a most probable potential pluripotency marker. We conclude that podocalyxin is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. PMID:23526252

  2. Effect of infrared light on live blood cells: Role of β-carotene.

    PubMed

    Barkur, Surekha; Bankapur, Aseefhali; Chidangil, Santhosh; Mathur, Deepak

    2017-06-01

    We have utilized Raman tweezers to measure and assign micro-Raman spectra of optically trapped, live red blood cells (RBCs), white blood cells (WBCs) and platelets. Various types of WBCs- both granulocytes, lymphocytes, and their different types have been studied. The Raman bands are assigned to different biomolecules of blood cells. The Raman spectra thus obtained has been enabled detection of β-carotene in these blood cells, the spectral features of which act as a signature that facilitates experimental probing of the effect of 785nm laser light on different blood cells as a function of incident laser power in the mW range. The spectral changes that we obtain upon laser irradiation indicate that, both haemoglobin as well as the cell membrane sustains damage. In case of lymphocytes and platelets the peaks corresponding to β-carotene showed drastic changes. Thorough analysis of the spectral changes indicates possibility of free radical induced damage of β-carotene in lymphocytes and platelets. Among different blood cells, RBCs have a power threshold of only 10mW. The power threshold for other types of blood cells is somewhat higher, but always below about 30mW. These values are likely to serve as useful guides for Raman tweezers based experiments on live cells. Copyright © 2017. Published by Elsevier B.V.

  3. Silicon solar cell development and radiation effects study for low temperature and low illumination intensity operation, volume 2

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, A. R.

    1972-01-01

    The results are presented of a study to determine the effect of in-situ proton irradiation upon low temperature, low intensity performance of several cell types. The cell types were selected in an attempt to distinguish variations in temperature-dependent radiation resistance which could be attributed to the n-p or p-n structure, diffused or implanted junctions, crucible grown or float-zone type base material, and high or low base resistivity. The results indicate that while expected variations of performance occur at room temperature, all cell types degrade more or less similarly at lower temperatures with normalized degradation becoming increasingly rapid as temperature is reduced. Recommendations for an optimized cell for Jupiter probe use are included along with a definition of the testing required on these cells to insure good performance characteristics.

  4. Oncogenicity of L-type amino-acid transporter 1 (LAT1) revealed by targeted gene disruption in chicken DT40 cells: LAT1 is a promising molecular target for human cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkawa, Mayumi; Ohno, Yoshiya; Masuko, Kazue

    Highlights: {yields} We established LAT1 amino-acid transporter-disrupted DT40 cells. {yields} LAT1-disrupted cells showed slow growth and lost the oncogenicity. {yields} siRNA and mAb inhibited human tumor growth in vitro and in vivo. {yields} LAT1 is a promising target molecule for cancer therapy. -- Abstract: L-type amino-acid transporter 1 (LAT1) is the first identified light chain of CD98 molecule, disulfide-linked to a heavy chain of CD98. Following cDNA cloning of chicken full-length LAT1, we have constructed targeting vectors for the disruption of chicken LAT1 gene from genomic DNA of chicken LAT1 consisting of 5.4 kb. We established five homozygous LAT1-disrupted (LAT1{supmore » -/-}) cell clones, derived from a heterozygous LAT1{sup +/-} clone of DT40 chicken B cell line. Reactivity of anti-chicken CD98hc monoclonal antibody (mAb) with LAT1{sup -/-} DT40 cells was markedly decreased compared with that of wild-type DT40 cells. All LAT1{sup -/-} cells were deficient in L-type amino-acid transporting activity, although alternative-splice variant but not full-length mRNA of LAT1 was detected in these cells. LAT1{sup -/-} DT40 clones showed outstandingly slow growth in liquid culture and decreased colony-formation capacity in soft agar compared with wild-type DT40 cells. Cell-cycle analyses indicated that LAT1{sup -/-} DT40 clones have prolonged cell-cycle phases compared with wild-type or LAT1{sup +/-} DT40 cells. Knockdown of human LAT1 by small interfering RNAs resulted in marked in vitro cell-growth inhibition of human cancer cells, and in vivo tumor growth of HeLa cells in athymic mice was significantly inhibited by anti-human LAT1 mAb. All these results indicate essential roles of LAT1 in the cell proliferation and occurrence of malignant phenotypes and that LAT1 is a promising candidate as a molecular target of human cancer therapy.« less

  5. Glucosylceramide is Critical for Cell-Type Differentiation and Organogenesis, but not for Cell Viability in Arabidopsis

    PubMed Central

    Msanne, Joseph; Chen, Ming; Luttgeharm, Kyle D.; Bradley, Amanda M.; Mays, Elizabeth S.; Paper, Janet M.; Boyle, Daniel L.; Cahoon, Rebecca E.; Schrick, Kathrin; Cahoon, Edgar B.

    2015-01-01

    Summary Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryote cells. Yet, the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines lacking or deficient in GlcCer by insertional disruption or by RNAi suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated “gcs-1”) were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce GlcCer amounts in excess of that required for normal development. PMID:26313010

  6. 75 FR 60761 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... cells conjugated to a K-type CpG oligodeoxynucleotide (ODN) to a subject. Methods for treating a tumor... therapeutically effective amount of apoptotic tumor cells conjugated to a K-type CpG oligodeoxynucleotide (ODN) to... the prevention of cancer and other indications Use of CpG oligonucleotides for prophylaxis and/or...

  7. An uptake of cationized ferritin by alveolar type I cells in airway-instilled goat lung: distribution of anionic sites on the epithelial surface.

    PubMed

    Atwal, O S; Viel, L; Minhas, K J

    1990-07-01

    The present study has investigated ultrastructural localization of anionic sites on the luminal surface of the alveolar epithelium of goat lung by direct airway instillation of cationized ferritin (CF) in the cranial lobe of the right lung through a bronchoscope. The cationic probe decorated preferentially the luminal plasmalemmal vesicles and plasmalemma proper of alveolar type I cell. This indicated the presence of highly charged anionic microdomains at these binding sites. The ligand was internalized in the free plasmalemmal vesicles of alveolar type I cell within 2 min. Heavy decoration of vesicles at 5 min of perfusion indicated that the amount of CF internalization increased with its concentration in the alveoli. It is suggested that exposure of alveolar surface to several gases of ruminal-origin induces changes in the surface charge of luminal plasmalemma of alveolar type I cells. The significance of these anionic plasmalemmal sites is discussed in relation to the adjustment of osmotic pressure gradient across the alveolar-capillary membrane of the ruminant lung.

  8. Sensitivity of chloride efflux vs. transepithelial measurements in mixed CF and normal airway epithelial cell populations.

    PubMed

    Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C

    2010-01-01

    While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.

  9. Multiphoton luminescent graphene quantum dots for in vivo tracking of human adipose-derived stem cells

    NASA Astrophysics Data System (ADS)

    Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo

    2016-04-01

    The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c

  10. C-Terminal Region of EBNA-2 Determines the Superior Transforming Ability of Type 1 Epstein-Barr Virus by Enhanced Gene Regulation of LMP-1 and CXCR7

    PubMed Central

    Cancian, Laila; Bosshard, Rachel; Lucchesi, Walter; Karstegl, Claudio Elgueta; Farrell, Paul J.

    2011-01-01

    Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs. PMID:21857817

  11. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    PubMed

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  12. Endothelial binding of beta toxin to small intestinal mucosal endothelial cells in early stages of experimentally induced Clostridium perfringens type C enteritis in pigs.

    PubMed

    Schumacher, V L; Martel, A; Pasmans, F; Van Immerseel, F; Posthaus, H

    2013-07-01

    Beta toxin (CPB) is known to be an essential virulence factor in the development of lesions of Clostridium perfringens type C enteritis in different animal species. Its target cells and exact mechanism of toxicity have not yet been clearly defined. Here, we evaluate the suitability of a neonatal piglet jejunal loop model to investigate early lesions of C. perfringens type C enteritis. Immunohistochemically, CPB was detected at microvascular endothelial cells in intestinal villi during early and advanced stages of lesions induced by C. perfringens type C. This was first associated with capillary dilatation and subsequently with widespread hemorrhage in affected intestinal segments. CPB was, however, not demonstrated on intestinal epithelial cells. This indicates a tropism of CPB toward endothelial cells and suggests that CPB-induced endothelial damage plays an important role in the early stages of C. perfringens type C enteritis in pigs.

  13. Oncolytic vesicular stomatitis virus induces apoptosis in U87 glioblastoma cells by a type II death receptor mechanism and induces cell death and tumor clearance in vivo.

    PubMed

    Cary, Zachary D; Willingham, Mark C; Lyles, Douglas S

    2011-06-01

    Vesicular stomatitis virus (VSV) is a potential oncolytic virus for treating glioblastoma multiforme (GBM), an aggressive brain tumor. Matrix (M) protein mutants of VSV have shown greater selectivity for killing GBM cells versus normal brain cells than VSV with wild-type M protein. The goal of this research was to determine the contribution of death receptor and mitochondrial pathways to apoptosis induced by an M protein mutant (M51R) VSV in U87 human GBM tumor cells. Compared to controls, U87 cells expressing a dominant negative form of Fas (dnFas) or overexpressing Bcl-X(L) had reduced caspase-3 activation following infection with M51R VSV, indicating that both the death receptor pathway and mitochondrial pathways are important for M51R VSV-induced apoptosis. Death receptor signaling has been classified as type I or type II, depending on whether signaling is independent (type I) or dependent on the mitochondrial pathway (type II). Bcl-X(L) overexpression inhibited caspase activation in response to a Fas-inducing antibody, similar to the inhibition in response to M51R VSV infection, indicating that U87 cells behave as type II cells. Inhibition of apoptosis in vitro delayed, but did not prevent, virus-induced cell death. Murine xenografts of U87 cells that overexpress Bcl-X(L) regressed with a time course similar to that of control cells following treatment with M51R VSV, and tumors were not detectable at 21 days postinoculation. Immunohistochemical analysis demonstrated similar levels of viral antigen expression but reduced activation of caspase-3 following virus treatment of Bcl-X(L)-overexpressing tumors compared to controls. Further, the pathological changes in tumors following treatment with virus were quite different in the presence versus the absence of Bcl-X(L) overexpression. These results demonstrate that M51R VSV efficiently induces oncolysis in GBM tumor cells despite deregulation of apoptotic pathways, underscoring its potential use as a treatment for GBM.

  14. Coercivity temperature dependence of Sm2Co17-type sintered magnets with different cell and cell boundary microchemistry

    NASA Astrophysics Data System (ADS)

    Yu, Nengjun; Zhu, Minggang; Song, Liwei; Fang, Yikun; Song, KuiKui; Wang, Qiang; Li, Wei

    2018-04-01

    High maximum energy product ((BH)max) Sm(CobalFe0.18Cu0.07Zr0.03)7.7 magnet (type-A) and high temperature Sm(CobalFe0.1Cu0.09Zr0.03)7.2 magnet (type-B) were prepared by a traditional powder metallurgical technology. A record (BH)max of 98.7 kJ/m3 with a coercivity (Hcj) of 501.5 kA/m at 773 K was achieved for the type-B magnet, which is much higher than that of type-A magnet (63.7 kJ/m3). The microstructures of the magnets were revealed by high-resolution transmission electron microscope. The average cell size of the type-A and B magnet are 110 nm and 90 nm, respectively. Moreover, the type-B magnet shows a wider cell boundary than the type-A magnet. Additionally, the element distribution of the cell/cell boundary interfaces was measured by energy-dispersive spectroscopy. The cell phase of the type-A magnet contains a higher Fe content as about 17 at%, comparing with that of the type-B magnet (∼8.9 at%). On the other hand, the Cu content of the cell boundary phase is 18 at% almost twice higher than the type-B magnet (8.6 at%). Theoretical Hcj temperature dependence of these two kinds of magnets indicates that the lower Cu content in the cell boundary phase and the appropriate Fe content in the cell phase are the key factors for the high Hcj for the type-B magnet at elevated temperature.

  15. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity

    USGS Publications Warehouse

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.

    2011-01-01

    Previously, we demonstrated that a representative M genogroup type strain of infectious haematopoietic necrosis virus (IHNV) from rainbow trout grows well in rainbow trout-derived RTG-2 cells, but a U genogroup type strain from sockeye salmon has restricted growth, associated with reduced genome replication and mRNA transcription. Here, we analysed further the mechanisms for this growth restriction of U-type IHNV in RTG-2 cells, using strategies that assessed differences in viral genes, host immune regulation and phosphorylation. To determine whether the viral glycoprotein (G) or non-virion (NV) protein was responsible for the growth restriction, four recombinant IHNV viruses were generated in which the G gene of an infectious IHNV clone was replaced by the G gene of U- or M-type IHNV and the NV gene was replaced by NV of U- or M-type IHNV. There was no significant difference in the growth of these recombinants in RTG-2 cells, indicating that G and NV proteins are not major factors responsible for the differential growth of the U- and M-type strains. Poly I:C pretreatment of RTG-2 cells suppressed the growth of both U- and M-type IHNV, although the M virus continued to replicate at a reduced level. Both viruses induced type 1 interferon (IFN1) and the IFN1 stimulated gene Mx1, but the expression levels in M-infected cells were significantly higher than in U-infected cells and an inhibitor of the IFN1-inducible protein kinase PKR, 2-aminopurine (2-AP), did not affect the growth of U- or M-type IHNV in RTG-2 cells. These data did not indicate a role for the IFN1 system in the restricted growth of U-type IHNV in RTG-2 cells. Prediction of kinase-specific phosphorylation sites in the viral phosphoprotein (P) using the NetPhosK program revealed differences between U- and M-type P genes at five phosphorylation sites. Pretreatment of RTG-2 cells with a PKC inhibitor or a p38MAPK inhibitor did not affect the growth of the U- and M-type viruses. However, 100 μm of the casein kinase II (CKII) inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), reduced the titre of the U type 8.3-fold at 24 h post-infection. In contrast, 100 μm of the CKII inhibitor reduced the titre of the M type only 1.3-fold at 48 h post-infection. Our data suggest that the different growth of U- and M-type IHNV in RTG-2 cells may be linked to a differential requirement for cellular protein kinases such as CKII for their growth.

  16. Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds.

    PubMed

    Yang, Ruibiao; Ma, Huazhi; Thomas, Stacey M; Kinnamon, John C

    2007-06-20

    Mammalian buds contain a variety of morphological taste cell types, but the type III taste cell is the only cell type that has synapses onto nerve processes. We hypothesize that taste cell synapses utilize the SNARE protein machinery syntaxin, SNAP-25, and synaptobrevin, as is used by synapses in the central nervous system (CNS) for Ca2+-dependent exocytosis. Previous studies have shown that taste cells with synapses display SNAP-25- and synaptobrevin-2-like immunoreactivity (LIR) (Yang et al. [2000a] J Comp Neurol 424:205-215, [2004] J Comp Neurol 471:59-71). In the present study we investigated the presynaptic membrane protein, syntaxin-1, in circumvallate taste buds of the rat. Our results indicate that diffuse cytoplasmic and punctate syntaxin-1-LIR are present in different subsets of taste cells. Diffuse, cytoplasmic syntaxin-1-LIR is present in type III cells while punctate syntaxin-1-LIR is present in type II cells. The punctate syntaxin-1-LIR is believed to be associated with Golgi bodies. All of the synapses associated with syntaxin-1-LIR taste cells are from type III cells onto nerve processes. These results support the proposition that taste cell synapses use classical SNARE machinery such as syntaxin-1 for neurotransmitter release in rat circumvallate taste buds. (c) 2007 Wiley-Liss, Inc.

  17. Morphology of retinal ganglion cells in the ferret (Mustela putorius furo).

    PubMed

    Isayama, Tomoki; O'Brien, Brendan J; Ugalde, Irma; Muller, Jay F; Frenz, Aaron; Aurora, Vikas; Tsiaras, William; Berson, David M

    2009-12-01

    The ferret is the premiere mammalian model of retinal and visual system development, but the spectrum and properties of its retinal ganglion cells are less well understood than in another member of the Carnivora, the domestic cat. Here, we have extensively surveyed the dendritic architecture of ferret ganglion cells and report that the classification scheme previously developed for cat ganglion cells can be applied with few modifications to the ferret retina. We confirm the presence of alpha and beta cells in ferret retina, which are very similar to those in cat retina. Both cell types exhibited an increase in dendritic field size with distance from the area centralis (eccentricity) and with distance from the visual streak. Both alpha and beta cell populations existed as two subtypes whose dendrites stratified mainly in sublamina a or b of the inner plexiform layer. Six additional morphological types of ganglion cells were identified: four monostratified cell types (delta, epsilon, zeta, and eta) and two bistratified types (theta and iota). These types closely resembled their counterparts in the cat in terms of form, relative field size, and stratification. Our data indicate that, among carnivore species, the retinal ganglion cells resemble one another closely and that the ferret is a useful model for studies of the ontogenetic differentiation of ganglion cell types.

  18. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    PubMed Central

    Ibeas, Miguel A.; Grant-Grant, Susana; Navarro, Nathalia; Perez, M. F.; Roschzttardtz, Hannetz

    2017-01-01

    Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds. PMID:29312417

  19. The gonadotropin-releasing hormone system: Perspectives from reproduction to cancer (Review).

    PubMed

    Aguilar-Rojas, Arturo; Pérez-Solis, Marco Allan; Maya-Núñez, Guadalupe

    2016-03-01

    Recently, an increasing amount of evidence indicates that human gonadotropin-releasing hormone (hGnRH) and its receptor (hGnRHR) are important regulatory components not only to the reproduction process but also in the regulation of some cancer cell functions such as cell proliferation, in both hormone-dependent and -independent types of tumors. The hGnRHR is a naturally misfolded protein that is retained mostly in the endoplasmic reticulum; however, this mechanism can be overcome by treatment with several pharmacoperones, therefore, increasing the amount of receptors in the cell membrane. In addition, several reports indicate that the expression level of hGnRHR in tumor cells is even lower than in pituitary or gonadotrope cells. The signal transduction pathways activated by hGnRH in both gonadotrope and different cancer cell types are described in the present review. We also discuss how the rescue of misfolded receptors in tumor cells could be a promising strategy for cancer therapy.

  20. Immunocytochemical analysis of P2X2 in rat circumvallate taste buds.

    PubMed

    Yang, Ruibiao; Montoya, Alana; Bond, Amanda; Walton, Jenna; Kinnamon, John C

    2012-05-23

    Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3). P2X2/P2X3(Dbl-/-) mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2. P2X2-like immunoreactivity is present in intragemmal nerve processes in rat circumvallate taste buds. Intense immunoreactivity can also be seen in the subgemmal nerve plexuses located below the basal lamina. The P2X2 immunoreactive nerve processes also display syntaxin-1-LIR. The immunoreactive nerves are in close contact with the IP(3)R3-LIR Type II cells and syntaxin-1-LIR and/or 5-HT-LIR Type III cells. Taste cell synapses are observed only from Type III taste cells onto P2X2-LIR nerve processes. Unusually large, "atypical" mitochondria in the Type II taste cells are found only at close appositions with P2X2-LIR nerve processes. P2X2 immunogold particles are concentrated at the membranes of nerve processes at close appositions with taste cells. Based on our immunofluorescence and immunoelectron microscopical studies we believe that both perigemmal and most all intragemmal nerve processes display P2X2-LIR. Moreover, colloidal gold immunoelectron microscopy indicates that P2X2-LIR in nerve processes is concentrated at sites of close apposition with Type II cells. This supports the hypothesis that ATP may be a key neurotransmitter in taste transduction and that Type II cells release ATP, activating P2X2 receptors in nerve processes.

  1. The neural stem cell fate determinant TLX promotes tumorigenesis and genesis of cells resembling glioma stem cells.

    PubMed

    Park, Hyo-Jung; Kim, Jun-Kyum; Jeon, Hye-Min; Oh, Se-Yeong; Kim, Sung-Hak; Nam, Do-Hyun; Kim, Hyunggee

    2010-11-01

    A growing body of evidence indicates that deregulation of stem cell fate determinants is a hallmark of many types of malignancies. The neural stem cell fate determinant TLX plays a pivotal role in neurogenesis in the adult brain by maintaining neural stem cells. Here, we report a tumorigenic role of TLX in brain tumor initiation and progression. Increased TLX expression was observed in a number of glioma cells and glioma stem cells, and correlated with poor survival of patients with gliomas. Ectopic expression of TLX in the U87MG glioma cell line and Ink4a/Arf-deficient mouse astrocytes (Ink4a/Arf(-/-) astrocytes) induced cell proliferation with a concomitant increase in cyclin D expression, and accelerated foci formation in soft agar and tumor formation in in vivo transplantation assays. Furthermore, overexpression of TLX in Ink4a/Arf(-/-) astrocytes inhibited cell migration and invasion and promoted neurosphere formation and Nestin expression, which are hallmark characteristics of glioma stem cells, under stem cell culture conditions. Our results indicate that TLX is involved in glioma stem cell genesis and represents a potential therapeutic target for this type of malignancy.

  2. [Use of Caco-2 cells for isolation of influenza virus].

    PubMed

    Yoshino, S; Yamamoto, S; Kawabata, N

    1998-04-01

    In this study we assessed the usefulness of Caco-2 cells, derived from a human colon carcinoma, to isolate an influenza virus. Throat washings collected from 30 patients with influenza-like illnesses in Miyazaki Prefecture in 1997 were inoculated in MDCK and Caco-2 cells, 17 influenza virus strains were isolated in MDCK cells, and 20 in Caco-2 cells. Of all the viruses isolated, only one strain was identified as influenza virus type B; other strains were identified as type A (H3N2). Furthermore, some influenza viruses were isolated in Caco-2 cells also from the specimens collected between 1991 and 1997. With Caco-2 cells, each type of influenza virus was isolated effectively without the supplement of trypsin in the culture medium. These facts indicate the usefulness of Caco-2 cells as a host to isolate influenza virus as shown to be suitable in the detection of many types of enteric viruses. Caco-2 cells will serve as a useful cell line for the surveillance of infectious disease because Caco-2 cells are sensitive to a wide range of virus.

  3. Damage and Recovery of Hair Cells in Fish Canal (But Not Superficial) Neuromasts after Gentamicin Exposure

    NASA Technical Reports Server (NTRS)

    Song, Jiakun; Yan, Hong Young; Popper, Arthur N.

    1995-01-01

    Recent evidence demonstrating the presence of two types of sensory hair cells in the ear of a telcost fish (Astronotus ocellatus, the oscar) indicates that hair cell heterogeneity may exist not only in amniotic vertebrates but also in anamniotes. Here we report that a similar heterogeneity between hair cell types may also occur in the other mechanosensory organ of the oscar, the lateral line. We exposed oscars to the aminoglycoside (ototoxic) antibiotic gentamicin sulfate and found damaged sensory hair cells in one class of the lateral line receptors, the canal neuromasts, but not in the other class, the superficial neuromasts. This effect was not due to the canal environment. Moreover, new ciliary bundles on hair cells of the canal neuromasts were found after, and during, gentamicin exposure. The pattern of hair cell destruction and recovery in canal neuromasts is similar to that of type 1-like hair cells found in the striolar region of the utricle and lagena of the oscar after gentamicin treatment. These results suggest that the hair cells in the canal and superficial neuromasts may be similar to type 1-like and type 2 hair cells, respectively, in the fish ear.

  4. In Vitro Evaluation of Cell-Seeded Chitosan Films for Peripheral Nerve Tissue Engineering

    PubMed Central

    Wrobel, Sandra; Serra, Sofia Cristina; Ribeiro-Samy, Silvina; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Haastert-Talini, Kirsten

    2014-01-01

    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)—immortalized, neonatal, and adult—as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono- and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell–biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts. PMID:24606318

  5. Urine Cytology

    MedlinePlus

    ... types of cells were found in your urine sample. You may need to repeat the test. Negative. This means no cancer cells were identified in your urine sample. Atypical. This indicates that some abnormalities were found ...

  6. Three-Dimensional Gene Map of Cancer Cell Types: Structural Entropy Minimisation Principle for Defining Tumour Subtypes

    PubMed Central

    Li, Angsheng; Yin, Xianchen; Pan, Yicheng

    2016-01-01

    In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724

  7. Genetic studies of cell fusion induced by herpes simplex virus type 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, G.S.; Person, S.; Keller, P.M.

    1980-07-01

    Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less

  8. Differential Protein Composition and Gene Expression in Leaf Mesophyll Cells and Bundle Sheath Cells of the C(4) Plant Digitaria sanguinalis (L.) Scop.

    PubMed

    Potter, J W; Black, C C

    1982-08-01

    The distribution and molecular weights of cellular proteins in soluble and membrane-associated locations were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining of leaf (Digitaria sanguinalis L. Scop.) extracts and isolated cell extracts. Leaf polypeptides also were pulse-labeled, followed by isolation of the labeled leaf cell types and analysis of the newly synthesized polypeptides in each cell type by electrophoresis and fluorography.Comparison of the electrophoretic patterns of crabgrass whole leaf polypeptides with isolated cell-type polypeptides indicated a difference in protein distribution patterns for the two cell types. The mesophyll cells exhibited a greater allocation of total cellular protein into membrane-associated proteins relative to soluble proteins. In contrast, the bundle sheath cells exhibited a higher percentage of total cellular protein in soluble proteins. Phosphoenolpyruvate carboxylase was the major soluble protein in the mesophyll cell and ribulose bisphosphate carboxylase was the major soluble protein in the bundle sheath cell. The majority of in vivo(35)S-pulse-labeled proteins synthesized by the two crabgrass cell types corresponded in molecular weight to the proteins present in the cell types which were detected by conventional staining techniques. The bundle sheath cell and mesophyll cell fluorograph profiles each had 15 major (35)S-labeled proteins. The major incorporation of (35)S by bundle sheath cells was into products which co-electrophoresed with the large and small subunits of ribulose bisphosphate carboxylase. In contrast, a major (35)S-labeled product in mesophyll cell extracts co-electrophoresed with the subunit of phosphoenolpyruvate carboxylase. Both cell types exhibited equivalent in vivo labeling of a polypeptide with one- and two-dimensional electrophoretic behavior similar to the major apoprotein of the light-harvesting chlorophyll a/b protein. Results from the use of protein synthesis inhibitors during pulse-labeling experiments indicated intercellular differences in both organelle and cytoplasmic protein synthesis. A majority of the (35)S incorporation by crabgrass mesophyll cell 70S ribosomes was associated with a pair of membrane-associated polypeptides of molecular weight 32,000 and 34,500; a comparison of fluorograph and stained gel profiles suggests these products resemble the precursor and mature forms of the maize chloroplast 32,000 dalton protein reported by Grebanier et al. (1978 J. Cell Biol. 28:734-746). In contrast, crabgrass bundle sheath cell organelle translation was directed predominantly into a product which co-electrophoresed with the large subunit of ribulose bisphosphate carboxylase.

  9. Histochemical analysis of collagen fibers in giant cell fibroma and inflammatory fibrous hyperplasia.

    PubMed

    Schmidt, Mônica Jarema; Tschoeke, André; Noronha, Lúcia; Moraes, Rafaela Scariot de; Mesquita, Ricardo Alves; Grégio, Ana Maria Trindade; Alanis, Luciana Reis Azevedo; Ignácio, Sérgio Aparecido; Santos, Jean Nunes Dos; Lima, Antonio Adilson Soares de; Luiz, Teixeira Suelen; Michels, Arielli Carine; Aguiar, Maria Cássia Ferreira; Johann, Aline Cristina Batista Rodrigues

    2016-06-01

    The aim was to investigate collagen fibers in giant cell fibroma, inflammatory fibrous hyperplasia, and oral normal mucosa. Sixty-six cases were stained with picrosirius red. The slides were observed under polarization, followed by the measurement of the area and the percentage of the type I and type III collagens. The age and gender were obtained from the clinical records. No differences could be observed in both the area and percentage of the type I and type III collagens within the categories of lesions and normal mucosa. In the giant cells fibroma, a greater area and percentage of type I collagen could be identified in individuals of less than 41.5 years (p<0.05). The distribution of type I and type III collagen fibers in the studied lesions followed a similar pattern to that observed in the normal mucosa, indicating a normal collagen maturation process of type III to I. The study supports that multinucleated and stellate cells of the giant cell fibroma appear to be functional within collagen types III and I turnover. The greater amount of type I collagen identified in giant cell fibroma in individuals of less than 41.5 years reinforce the neoplastic nature of lesion. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Restoration of Wild-Type Activity to Mutant p53 in Prostate Cancer: A Novel Therapeutic Approach

    DTIC Science & Technology

    2006-01-01

    B) Cells were transfected with 1 mg of the indicated luciferase reporter constructs and 50 ng of pRL- Renilla . 24 hrs post transfections p53 was...induced by removal of tetracyline. Cells were lysed and assayed for luciferase and Renilla activities 24 hrs after induction of p53. The indicated

  11. Identification of transcript regulatory patterns in cell differentiation.

    PubMed

    Gusnanto, Arief; Gosling, John Paul; Pope, Christopher

    2017-10-15

    Studying transcript regulatory patterns in cell differentiation is critical in understanding its complex nature of the formation and function of different cell types. This is done usually by measuring gene expression at different stages of the cell differentiation. However, if the gene expression data available are only from the mature cells, we have some challenges in identifying transcript regulatory patterns that govern the cell differentiation. We propose to exploit the information of the lineage of cell differentiation in terms of correlation structure between cell types. We assume that two different cell types that are close in the lineage will exhibit many common genes that are co-expressed relative to those that are far in the lineage. Current analysis methods tend to ignore this correlation by testing for differential expression assuming some sort of independence between cell types. We employ a Bayesian approach to estimate the posterior distribution of the mean of expression in each cell type, by taking into account the cell formation path in the lineage. This enables us to infer genes that are specific in each cell type, indicating the genes are involved in directing the cell differentiation to that particular cell type. We illustrate the method using gene expression data from a study of haematopoiesis. R codes to perform the analysis are available in http://www1.maths.leeds.ac.uk/∼arief/R/CellDiff/. a.gusnanto@leeds.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. NFIB regulates embryonic development of submandibular glands.

    PubMed

    Mellas, R E; Kim, H; Osinski, J; Sadibasic, S; Gronostajski, R M; Cho, M; Baker, O J

    2015-02-01

    NFIB (nuclear factor I B) is a NFI transcription factor family member, which is essential for the development of a variety of organ systems. Salivary gland development occurs through several stages, including prebud, bud, pseudoglandular, canalicular, and terminal. Although many studies have been done to understand mouse submandibular gland (SMG) branching morphogenesis, little is known about SMG cell differentiation during the terminal stages. The goal of this study was to determine the role of NFIB during SMG development. We analyzed SMGs from wild-type and Nfib-deficient mice (Nfib (-/-)). At embryonic (E) day 18.5, SMGs from wild-type mice showed duct branching morphogenesis and differentiation of tubule ductal cells into tubule secretory cells. In contrast, SMGs from Nfib (-/-) mice at E18.5 failed to differentiate into tubule secretory cells while branching morphogenesis was unaffected. SMGs from wild-type mice at E16.5 displayed well-organized cuboidal inner terminal tubule cells. However, SMGs from Nfib (-/-) at E16.5 displayed disorganized inner terminal tubule cells. SMGs from wild-type mice at E18.5 became fully differentiated, as indicated by a high degree of apicobasal polarization (i.e., presence of apical ZO-1 and basolateral E-cadherin) and columnar shape. Furthermore, SMGs from wild-type mice at E18.5 expressed the protein SMGC, a marker for tubule secretory cells. However, SMGs from Nfib (-/-) mice at E18.5 showed apicobasal polarity, but they were disorganized and lost the ability to secrete SMGC. These findings indicate that the transcription factor NFIB is not required for branching morphogenesis but plays a key role in tubule cell differentiation during mouse SMG development. © International & American Associations for Dental Research 2014.

  13. Chromosomal aberrations in peripheral lymphocytes of train engine drivers.

    PubMed

    Nordenson, I; Mild, K H; Järventaus, H; Hirvonen, A; Sandström, M; Wilén, J; Blix, N; Norppa, H

    2001-07-01

    Studies of Swedish railway employees have indicated that railroad engine drivers have an increased cancer morbidity and incidence of chronic lymphatic leukemia. The drivers are exposed to relatively high magnetic fields (MF), ranging from a few to over a hundred microT. Although the possible genotoxic potential of MF is unclear, some earlier studies have indicated that occupational exposure to MF may increase chromosome aberrations in blood lymphocytes. Since an increased level of chromosomal aberrations has been suggested to predict elevated cancer risk, we performed a cytogenetic analysis on cultured (48 h) peripheral lymphocytes of Swedish train engine drivers. A pilot study of 18 engine drivers indicated a significant difference in the frequency of cells with chromosomal aberrations (gaps included or excluded) in comparison with seven concurrent referents (train dispatchers) and a control group of 16 office workers. The engine drivers had about four times higher frequency of cells with chromosome-type aberrations (excluding gaps) than the office workers (P < 0.01) and the dispatchers (P < 0.05). Seventy-eight percent of the engine drivers showed at least one cell per 100 with chromosome-type aberrations compared with 29% among the dispatchers and 31% among the office workers. In a follow-up study, another 30 engine drivers showed an increase (P < 0.05) in the frequency of cells with chromosome-type aberrations (gaps excluded) as compared with 30 referent policemen. Sixty percent of the engine drivers had one or more cells (per 100 cells) with chromosome-type aberrations compared with 30% among the policemen. In conclusion, the results of the two studies support the hypothesis that exposure to MF at mean intensities of 2-15 microT can induce chromosomal damage. Copyright 2001 Wiley-Liss, Inc.

  14. Differential tumor biology effects of double-initiation in a mouse skin chemical carcinogenesis model comparing wild type versus protein kinase Cepsilon overexpression mice.

    PubMed

    Li, Yafan; Wheeler, Deric L; Ananthaswamy, Honnavara N; Verma, Ajit K; Oberley, Terry D

    2007-12-01

    Our previous studies showed that protein kinase Cepsilon (PKCepsilon) verexpression in mouse skin resulted in metastatic squamous cell carcinoma (SCC) elicited by single 7,12-dimethylbenz(a)anthracene (DMBA)-initiation and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promotion in the absence of preceding papilloma formation as is typically observed in wild type mice. The present study demonstrates that double-DMBA initiation modulates tumor incidence, multiplicity, and latency period in both wild type and PKCepsilon overexpression transgenic (PKCepsilon-Tg) mice. After 17 weeks (wks) of tumor promotion, a reduction in papilloma multiplicity was observed in double- versus single-DMBA initiated wild type mice. Papilloma multiplicity was inversely correlated with cell death indices of interfollicular keratinocytes, indicating decreased papilloma formation was caused by increased cell death and suggesting the origin of papillomas is in interfollicular epidermis. Double-initiated PKCepsilon-Tg mice had accelerated carcinoma formation and cancer incidence in comparison to single-initiated PKCepsilon-Tg mice. Morphologic analysis of mouse skin following double initiation and tumor promotion showed a similar if not identical series of events to those previously observed following single initiation and tumor promotion: putative preneoplastic cells were observed arising from hyperplastic hair follicles (HFs) with subsequent cancer cell infiltration into the dermis. Single-initiated PKCepsilon-Tg mice exhibited increased mitosis in epidermal cells of HFs during tumor promotion.

  15. Culturability as an indicator of succession in microbial communities

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Adams, J. L.; Kerkhof, L.

    2001-01-01

    Successional theory predicts that opportunistic species with high investment of energy in reproduction and wide niche width will be replaced by equilibrium species with relatively higher investment of energy in maintenance and narrower niche width as communities develop. Since the ability to rapidly grow into a detectable colony on nonselective agar medium could be considered as characteristic of opportunistic types of bacteria, the percentage of culturable cells may be an indicator of successional state in microbial communities. The ratios of culturable cells (colony forming units on R2A agar) to total cells (acridine orange direct microscopic counts) and culturable cells to active cells (reduction of 5-cyano-2,3-ditolyl tetrazolium chloride) were measured over time in two types of laboratory microcosms (the rhizosphere of hydroponically grown wheat and aerobic, continuously stirred tank reactors containing plant biomass) to determine the effectiveness of culturabilty as an index of successional state. The culturable cell:total cell ratio in the rhizosphere decreased from approximately 0.25 to less than 0.05 during the first 30-50 days of plant growth, and from 0.65 to 0.14 during the first 7 days of operation of the bioreactor. The culturable cell:active cell ratio followed similar trends, but the values were consistently greater than the culturable cell:total cell ratio, and even exceeded I in early samples. Follow-up studies used a cultivation-independent method, terminal restriction fragment length polymorphisms (TRFLP) from whole community DNA, to assess community structure. The number of TRFLP peaks increased with time, while the number of culturable types did not, indicating that the general decrease in culturability is associated with a shift in community structure. The ratio of respired to assimilated C-14-labeled amino acids increased with the age of rhizosphere communities, supporting the hypothesis that a shift in resource allocation from growth to maintenance occurs with time. Results from this work indicate that the percentage of culturable cells may be a useful method for assessing the successional state of microbial communities.

  16. Pros and cons of fish skin cells in culture: long-term full skin and short-term scale cell culture from rainbow trout, Oncorhynchus mykiss.

    PubMed

    Rakers, Sebastian; Klinger, Matthias; Kruse, Charli; Gebert, Marina

    2011-12-01

    Here, we report the establishment of a permanent skin cell culture from rainbow trout (Oncorhynchus mykiss). The cells of the fish skin cell culture could be propagated over 60 passages so far. Furthermore, we show for the first time that it is possible to integrate freshly harvested rainbow trout scales into this new fish skin cell culture. We further demonstrated that epithelial cells derived from the scales survived in the artificial micro-environment of surrounding fibroblast-like cells. Also, antibody staining indicated that both cell types proliferated and started to build connections with the other cell type. It seems that it is possible to generate an 'artificial skin' with two different cell types. This could lead to the development of a three-dimensional test system, which might be a better in vitro representative of fish skin in vivo than individual skin cell lines. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Automated cell-type classification in intact tissues by single-cell molecular profiling

    PubMed Central

    2018-01-01

    A major challenge in biology is identifying distinct cell classes and mapping their interactions in vivo. Tissue-dissociative technologies enable deep single cell molecular profiling but do not provide spatial information. We developed a proximity ligation in situ hybridization technology (PLISH) with exceptional signal strength, specificity, and sensitivity in tissue. Multiplexed data sets can be acquired using barcoded probes and rapid label-image-erase cycles, with automated calculation of single cell profiles, enabling clustering and anatomical re-mapping of cells. We apply PLISH to expression profile ~2900 cells in intact mouse lung, which identifies and localizes known cell types, including rare ones. Unsupervised classification of the cells indicates differential expression of ‘housekeeping’ genes between cell types, and re-mapping of two sub-classes of Club cells highlights their segregated spatial domains in terminal airways. By enabling single cell profiling of various RNA species in situ, PLISH can impact many areas of basic and medical research. PMID:29319504

  18. Redifferentiation of human hepatoma cells (SMMC-7721) induced by two new highly oxygenated bisabolane-type sesquiterpenes.

    PubMed

    Miao, Ruidong; Wei, Juan; Zhang, Qi; Sajja, Venkateswara; Yang, Jinbo; Wang, Qin

    2008-12-01

    Bisabolane-type sesquiterpenes are a class of biologically active compounds that has antitumour,antifungal, antibacterial,antioxidant and antivenom properties.We investigated the effect of two new highly oxygenated bisabolane-type sesquiterpenes (HOBS)isolated from Cremanthodium discoideum (C.discoideum) on tumour cells. Our results showed that HOBS induced morphological differentiation and reduced microvilli formation on the cell surface in SMMC-7721 cells.Flow cytometry analysis demonstrated that HOBS could induce cell-cycle arrest in the G1 phase. Moreover,HOBS was able to increase tyrosine-alpha ketoglutarate transaminase activity,decrease alpha- foetoprotein level and gamma-glutamyl transferase activity. In addition,we found that HOBS inhibited the anchorage- independent growth of SMMC-7721 cells in a dose-dependent manner.Taken together,all the above observations indicate that HOBS might be able to normalize malignant SMMC-7721 cells by inhibiting cell proliferation and inducing redifferentiation.

  19. Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira

    2016-01-01

    An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.

  20. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye

    PubMed Central

    Morrison, Carolyn A.; Chen, Hao; Cook, Tiffany; Brown, Stuart

    2018-01-01

    Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye. PMID:29324767

  1. Root graviresponsiveness and cellular differentiation in wild-type and a starchless mutant of Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Moore, R.

    1989-01-01

    Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.

  2. Neuronal cell fate specification in Drosophila.

    PubMed

    Jan, Y N; Jan, L Y

    1994-02-01

    Recent work indicates that the Drosophila nervous system develops in a progressive process of cell fate specification. Expression of specific proneural genes in clusters of cells (the proneural clusters) in the cellular blastoderm endows these cells with the potential to form certain types of neural precursors. Intercellular interactions that involve both proneural genes and neurogenic genes then allow the neural precursors to be singled out from the proneural clusters. Expression of neural precursor genes in all neural precursors is likely to account for the universal aspects of neuronal differentiation, such as axonal outgrowth. Selective expression of certain neuronal-type selector genes further specifies the type of neuron(s) that a neural precursor will produce.

  3. Mitochondrial transcription factor A serves as a danger signal by augmenting plasmacytoid dendritic cell responses to DNA.

    PubMed

    Julian, Mark W; Shao, Guohong; Bao, Shengying; Knoell, Daren L; Papenfuss, Tracey L; VanGundy, Zachary C; Crouser, Elliott D

    2012-07-01

    Plasmacytoid dendritic cells (pDC) are potent APCs known to regulate immune responses to self-Ags, particularly DNA. The mitochondrial fraction of necrotic cells was found to most potently promote human pDC activation, as reflected by type I IFN release, which was dependent upon the presence of mitochondrial DNA and involved TLR9 and receptors for advanced glycation end products. Mitochondrial transcription factor A (TFAM), a highly abundant mitochondrial protein that is functionally and structurally homologous to high mobility group box protein 1, was observed to synergize with CpG-containing oligonucleotide, type A, DNA to promote human pDC activation. pDC type I IFN responses to TFAM and CpG-containing oligonucleotide, type A, DNA indicated their engagement with receptors for advanced glycation end products and TLR9, respectively, and were dependent upon endosomal processing and PI3K, ERK, and NF-κB signaling. Taken together, these results indicate that pDC contribute to sterile immune responses by recognizing the mitochondrial component of necrotic cells and further incriminate TFAM and mitochondrial DNA as likely mediators of pDC activation under these circumstances.

  4. Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.

    PubMed

    Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile; Ordaz-Ortiz, José J; Farkas, Vladimir; Pedersen, Henriette L; Willats, William G T; Knox, J Paul

    2008-05-22

    Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.

  5. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells.

    PubMed

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E

    1993-08-05

    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  6. Novel role of the LPS core glycosyltransferase WapH for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis.

    PubMed

    Benforte, Florencia C; Colonnella, Maria A; Ricardi, Martiniano M; Solar Venero, Esmeralda C; Lizarraga, Leonardo; López, Nancy I; Tribelli, Paula M

    2018-01-01

    Psychrotroph microorganisms have developed cellular mechanisms to cope with cold stress. Cell envelopes are key components for bacterial survival. Outer membrane is a constituent of Gram negative bacterial envelopes, consisting of several components, such as lipopolysaccharides (LPS). In this work we investigated the relevance of envelope characteristics for cold adaptation in the Antarctic bacterium Pseudomonas extremaustralis by analyzing a mini Tn5 wapH mutant strain, encoding a core LPS glycosyltransferase. Our results showed that wapH strain is impaired to grow under low temperature but not for cold survival. The mutation in wapH, provoked a strong aggregative phenotype and modifications of envelope nanomechanical properties such as lower flexibility and higher turgor pressure, cell permeability and surface area to volume ratio (S/V). Changes in these characteristics were also observed in the wild type strain grown at different temperatures, showing higher cell flexibility but lower turgor pressure under cold conditions. Cold shock experiments indicated that an acclimation period in the wild type is necessary for cell flexibility and S/V ratio adjustments. Alteration in cell-cell interaction capabilities was observed in wapH strain. Mixed cells of wild type and wapH strains, as well as those of the wild type strain grown at different temperatures, showed a mosaic pattern of aggregation. These results indicate that wapH mutation provoked marked envelope alterations showing that LPS core conservation appears as a novel essential feature for active growth under cold conditions.

  7. Ribbon Synaptic Plasticity in Gravity Sensors of Rats Flown on Neurolab

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Varelas, Joseph

    2003-01-01

    Previous spaceflight experiments (Space Life Sciences-1 and -2 (SLS-1 and SLS-2)) first demonstrated the extraordinary ability of gravity sensor hair cells to change the number, kind, and distribution of connections (synapses) they make to other cells while in weightlessness. The number of synapses in hair cells in one part of the inner ear (the utricle) was markedly elevated on flight day 13 (FD13) of SLS-2. Unanswered questions, however, were whether these increases in synapses occur rapidly and whether they remain stable in weightlessness. The answers have implications for long-duration human space travel. If gravity sensors can adapt quickly, crews may be able to move easily between different gravity levels, since the sensors will adapt rapidly to weightlessness on the spacecraft and then back to Earth's gravity when the mission ends. This ability to adapt is also important for recovery from balance disorders. To further our understanding of this adaptive potential (a property called neuronal synaptic plasticity), the present Neurolab research was undertaken. Our experiment examined whether: (a) increases in synapses would remain stable throughout the flight, (b) changes in the number of synapses were uniform across different portions of the gravity sensors (the utricle and saccule), and (c) synaptic changes were similar for the different types of hair cells (Type I and Type II). Utricular and saccular maculae (the gravity-sensing portions of the inner ear) were collected in flight from rats on FD2 and FD14. Samples were also collected from control rats on the ground. Tissues were prepared for ultrastructural study. Hair cells and their ribbon synapses were examined in a transmission electron microscope. Synapses were counted in all hair cells in 50 consecutive sections that crossed the striolar zone. Results indicate that utricular hair cell synapses initially increased significantly in number in both types of hair cells by FD2. Counts declined by FD14, but the mean number of synapses in utricular Type II cells remained significantly higher than in the ground control rats. For saccular samples, synaptic number in Type I and Type II cells declined on FD2, but returned to near-baseline values by FD14. These findings indicate that: (a) synaptic plasticity occurs rapidly in weightlessness, and (b) synaptic changes are not identical for the two types of hair cells or for the two maculae.

  8. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology.

    PubMed

    Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim

    2008-08-25

    Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.

  9. Inter-observer variability in the classification of ovarian cancer cell type using microscopy: a pilot study

    NASA Astrophysics Data System (ADS)

    Gavrielides, Marios A.; Ronnett, Brigitte M.; Vang, Russell; Seidman, Jeffrey D.

    2015-03-01

    Studies have shown that different cell types of ovarian carcinoma have different molecular profiles, exhibit different behavior, and that patients could benefit from typespecific treatment. Different cell types display different histopathology features, and different criteria are used for each cell type classification. Inter-observer variability for the task of classifying ovarian cancer cell types is an under-examined area of research. This study served as a pilot study to quantify observer variability related to the classification of ovarian cancer cell types and to extract valuable data for designing a validation study of digital pathology (DP) for this task. Three observers with expertise in gynecologic pathology reviewed 114 cases of ovarian cancer with optical microscopy, with specific guidelines for classifications into distinct cell types. For 93 cases all 3 pathologists agreed on the same cell type, for 18 cases 2 out of 3 agreed, and for 3 cases there was no agreement. Across cell types with a minimum sample size of 10 cases, agreement between all three observers was {91.1%, 80.0%, 90.0%, 78.6%, 100.0%, 61.5%} for the high grade serous carcinoma, low grade serous carcinoma, endometrioid, mucinous, clear cell, and carcinosarcoma cell types respectively. These results indicate that unanimous agreement varied over a fairly wide range. However, additional research is needed to determine the importance of these differences in comparison studies. These results will be used to aid in the design and sizing of such a study comparing optical and digital pathology. In addition, the results will help in understanding the potential role computer-aided diagnosis has in helping to improve the agreement of pathologists for this task.

  10. Loss of Nrf2 promotes alveolar type 2 cell loss in irradiated, fibrotic lung.

    PubMed

    Traver, Geri; Mont, Stacey; Gius, David; Lawson, William E; Ding, George X; Sekhar, Konjeti R; Freeman, Michael L

    2017-11-01

    The development of radiation-induced pulmonary fibrosis represents a critical clinical issue limiting delivery of therapeutic doses of radiation to non-small cell lung cancer. Identification of the cell types whose injury initiates a fibrotic response and the underlying biological factors that govern that response are needed for developing strategies that prevent or mitigate fibrosis. C57BL/6 mice (wild type, Nrf2 null, Nrf2 flox/flox , and Nrf2 Δ/Δ ; SPC-Cre) were administered a thoracic dose of 12Gy and allowed to recover for 250 days. Whole slide digital and confocal microscopy imaging of H&E, Masson's trichrome and immunostaining were used to assess tissue remodeling, collagen deposition and cell renewal/mobilization during the regenerative process. Histological assessment of irradiated, fibrotic wild type lung revealed significant loss of alveolar type 2 cells 250 days after irradiation. Type 2 cell loss and the corresponding development of fibrosis were enhanced in the Nrf2 null mouse. Yet, conditional deletion of Nrf2 in alveolar type 2 cells in irradiated lung did not impair type 2 cell survival nor yield an increased fibrotic phenotype. Instead, radiation-induced ΔNp63 stem/progenitor cell mobilization was inhibited in the Nrf2 null mouse while the propensity for radiation-induced myofibroblasts derived from alveolar type 2 cells was magnified. In summary, these results indicate that Nrf2 is an important regulator of irradiated lung's capacity to maintain alveolar type 2 cells, whose injury can initiate a fibrotic phenotype. Loss of Nrf2 inhibits ΔNp63 stem/progenitor mobilization, a key event for reconstitution of injured lung, while promoting a myofibroblast phenotype that is central for fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Surface Position, Not Signaling from Surrounding Maternal Tissues, Specifies Aleurone Epidermal Cell Fate in Maize[OA

    PubMed Central

    Gruis, Darren (Fred); Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne

    2006-01-01

    Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions. PMID:16698897

  12. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis.

    PubMed

    Conrad, Curdin; Di Domizio, Jeremy; Mylonas, Alessio; Belkhodja, Cyrine; Demaria, Olivier; Navarini, Alexander A; Lapointe, Anne-Karine; French, Lars E; Vernez, Maxime; Gilliet, Michel

    2018-01-02

    Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.

  13. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen–Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold

    PubMed Central

    Su, Juin-Yih; Chen, Shi-Hui; Chen, Yu-Pin; Chen, Wei-Chuan

    2017-01-01

    Chondral or osteochondral defects are still controversial problems in orthopedics. Here, chondrocytes labeled with magnetic nanoparticles were cultivated on a biphasic, type II collagen–chitosan/poly(lactic-co-glycolic acid) scaffold in an attempt to develop cultures with trackable cells exhibiting growth, differentiation, and regeneration. Rabbit chondrocytes were labeled with magnetic nanoparticles and characterized by scanning electron microscopy (SEM), transmission electron (TEM) microscopy, and gene and protein expression analyses. The experimental results showed that the magnetic nanoparticles did not affect the phenotype of chondrocytes after cell labeling, nor were protein and gene expression affected. The biphasic type II collagen–chitosan/poly(lactic-co-glycolic) acid scaffold was characterized by SEM, and labeled chondrocytes showed a homogeneous distribution throughout the scaffold after cultivation onto the polymer. Cellular phenotype remained unaltered but with increased gene expression of type II collagen and aggrecan, as indicated by cell staining, indicating chondrogenesis. Decreased SRY-related high mobility group-box gene (Sox-9) levels of cultured chondrocytes indicated that differentiation was associated with osteogenesis. These results are encouraging for the development of techniques for trackable cartilage regeneration and osteochondral defect repair which may be applied in vivo and, eventually, in clinical trials. PMID:28054960

  14. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Tamaddon, M.; Burrows, M.; Ferreira, S. A.; Dazzi, F.; Apperley, J. F.; Bradshaw, A.; Brand, D. D.; Czernuszka, J.; Gentleman, E.

    2017-03-01

    Osteoarthritis (OA) is a common cause of pain and disability and is often associated with the degeneration of articular cartilage. Lesions to the articular surface, which are thought to progress to OA, have the potential to be repaired using tissue engineering strategies; however, it remains challenging to instruct cell differentiation within a scaffold to produce tissue with appropriate structural, chemical and mechanical properties. We aimed to address this by driving progenitor cells to adopt a chondrogenic phenotype through the tailoring of scaffold composition and physical properties. Monomeric type-I and type-II collagen scaffolds, which avoid potential immunogenicity associated with fibrillar collagens, were fabricated with and without chondroitin sulfate (CS) and their ability to stimulate the chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells was assessed. Immunohistochemical analyses showed that cells produced abundant collagen type-II on type-II scaffolds and collagen type-I on type-I scaffolds. Gene expression analyses indicated that the addition of CS - which was released from scaffolds quickly - significantly upregulated expression of type II collagen, compared to type-I and pure type-II scaffolds. We conclude that collagen type-II and CS can be used to promote a more chondrogenic phenotype in the absence of growth factors, potentially providing an eventual therapy to prevent OA.

  15. An outer membrane protein (porin) as an eliciting antigen for delayed-type hypersensitivity in murine salmonellosis.

    PubMed Central

    Udhayakumar, V; Muthukkaruppan, V R

    1987-01-01

    The porin, an outer membrane protein of Salmonella typhimurium, was found to be a suitable antigen for eliciting delayed-type hypersensitivity in mouse salmonellosis. Histological examination of the reaction site revealed that the porin was superior to other antigenic preparations in eliciting a typical delayed-type hypersensitivity reaction consisting of mononuclear cell infiltration without polymorphonuclear cell contamination. This study indicates the importance of using a suitable protein antigen from S. typhi for human application. Images PMID:3028963

  16. Molecular characterization of chronic-type adult T-cell leukemia/lymphoma.

    PubMed

    Yoshida, Noriaki; Karube, Kennosuke; Utsunomiya, Atae; Tsukasaki, Kunihiro; Imaizumi, Yoshitaka; Taira, Naoya; Uike, Naokuni; Umino, Akira; Arita, Kotaro; Suguro, Miyuki; Tsuzuki, Shinobu; Kinoshita, Tomohiro; Ohshima, Koichi; Seto, Masao

    2014-11-01

    Adult T-cell leukemia/lymphoma (ATL) is a human T-cell leukemia virus type-1-induced neoplasm with four clinical subtypes: acute, lymphoma, chronic, and smoldering. Although the chronic type is regarded as indolent ATL, about half of the cases progress to acute-type ATL. The molecular pathogenesis of acute transformation in chronic-type ATL is only partially understood. In an effort to determine the molecular pathogeneses of ATL, and especially the molecular mechanism of acute transformation, oligo-array comparative genomic hybridization and comprehensive gene expression profiling were applied to 27 and 35 cases of chronic and acute type ATL, respectively. The genomic profile of the chronic type was nearly identical to that of acute-type ATL, although more genomic alterations characteristic of acute-type ATL were observed. Among the genomic alterations frequently observed in acute-type ATL, the loss of CDKN2A, which is involved in cell-cycle deregulation, was especially characteristic of acute-type ATL compared with chronic-type ATL. Furthermore, we found that genomic alteration of CD58, which is implicated in escape from the immunosurveillance mechanism, is more frequently observed in acute-type ATL than in the chronic-type. Interestingly, the chronic-type cases with cell-cycle deregulation and disruption of immunosurveillance mechanism were associated with earlier progression to acute-type ATL. These findings suggested that cell-cycle deregulation and the immune escape mechanism play important roles in acute transformation of the chronic type and indicated that these alterations are good predictive markers for chronic-type ATL. ©2014 American Association for Cancer Research.

  17. ECAS Phase I fuel cell results. [Energy Conservation Alternatives Study

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1978-01-01

    This paper summarizes and discusses the fuel cell system results of Phase I of the Energy Conversion Alternatives Study (ECAS). Ten advanced electric powerplant systems for central-station baseload generation using coal were studied by NASA in ECAS. Three types of low-temperature fuel cells (solid polymer electrolyte, SPE, aqueous alkaline, and phosphoric acid) and two types of high-temperature fuel cells (molten carbonate, MC, and zirconia solid electrolyte, SE) were studied. The results indicate that (1) overall efficiency increases with fuel cell temperature, and (2) scale-up in powerplant size can produce a significant reduction in cost of electricity (COE) only when it is accompanied by utilization of waste fuel cell heat through a steam bottoming cycle and/or integration with a gasifier. For low-temperature fuel cell systems, the use of hydrogen results in the highest efficiency and lowest COE. In spite of higher efficiencies, because of higher fuel cell replacement costs integrated SE systems have higher projected COEs than do integrated MC systems. Present data indicate that life can be projected to over 30,000 hr for MC fuel cells, but data are not yet sufficient for similarly projecting SE fuel cell life expectancy.

  18. Comparative analysis of cell proliferation ratio in plaque and erosive oral lichen planus: An immunohistochemical study.

    PubMed

    Redder, C Pramod; Pandit, Siddharth; Desai, Dinkar; Kandagal, V Suresh; Ingaleshwar, Pramod S; Shetty, Sharan J; Vibhute, Nupura

    2014-05-01

    Proliferating cell nuclear antigen (PCNA) is a nuclear protein synthesized in the late G1 and S-phase of the cell cycle. Detection of this protein represents a useful marker of the proliferation status of lesions. This study has been carried out to evaluate the cell proliferation rate in oral lichen planus (OLP) and comparison between plaque and erosive lichen planus, which indicates the potential for malignant transformation. This study was comprised of 64 cases of histologically proven lichen planus, out of which 32 cases of plaque and erosive each was taken. Two sections were taken from each, one for H and E staining to verify histological diagnosis according to Eisenberg criteria, other sections were stained according to super sensitive polymer horse radish peroxidise method for identifying immunohistochemical expression of PCNA. Data were statistically analyzed by Tukey high-range statistical domain test. Statistically significant P value was considered <0.05. In two types of lichen planus, erosive type (66.86%) showed higher expression of PCNA followed by plaque (17.07%). Overall, P value was <0.001, which was statistically significant. It indicates that proliferation activity is more in erosive lichen planus followed by plaque type, which ultimately results in increased rate of malignant transformation. PCNA is a good nuclear protein marker to evaluate the proliferation status of OLP. Out of the two types of lichen planus, erosive type possesses more proliferative ratio and chances of malignant change is more in this type. It emphasizes the importance of long-term follow-up with erosive type when compared with plaque type.

  19. Influence of the Cell Wall on Intracellular Delivery to Algal Cells by Electroporation and Sonication

    PubMed Central

    Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.

    2007-01-01

    To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827

  20. Retinoic acid, hemin and hexamethylen bisacetamide interference with "in vitro" differentiation of chick embryo chondrocytes.

    PubMed

    Manduca, P; Abelmoschi, M L

    1992-01-01

    We have investigated the effect of all-trans Retinoic acid, and of substances (Hemine and Hexamethylene bisacetamide) which interfere with "in vitro" differentiation of mesenchyme derived cell lineages on the expression of specific markers of hyperthrophy in "in vitro" differentiating chick embryo chondrocytes. (Castagnola P., et al., 1986). Continuous treatment of chondrogenic cells in conditions allowing differentiation "in vitro" with Retinoic acid resulted in persistence of type I collagen synthesis and in lack of type X collagen and Ch 21 protein expression. Hemin treated cells secreted a reduced amount of type X collagen. HMBA treatment inhibited type X collagen expression and caused reduction of the ratio between type II collagen and Ch 21 synthesized. The data indicate an independent regulation of these markers during chondrocyte differentiation.

  1. Direct detection of diverse metabolic changes in virally transformed and tax-expressing cells by mass spectrometry.

    PubMed

    Sripadi, Prabhakar; Shrestha, Bindesh; Easley, Rebecca L; Carpio, Lawrence; Kehn-Hall, Kylene; Chevalier, Sebastien; Mahieux, Renaud; Kashanchi, Fatah; Vertes, Akos

    2010-09-07

    Viral transformation of a cell starts at the genetic level, followed by changes in the proteome and the metabolome of the host. There is limited information on the broad metabolic changes in HTLV transformed cells. Here, we report the detection of key changes in metabolites and lipids directly from human T-lymphotropic virus type 1 and type 3 (HTLV1 and HTLV3) transformed, as well as Tax1 and Tax3 expressing cell lines by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Comparing LAESI-MS spectra of non-HTLV1 transformed and HTLV1 transformed cells revealed that glycerophosphocholine (PC) lipid components were dominant in the non-HTLV1 transformed cells, and PC(O-32:1) and PC(O-34:1) plasmalogens were displaced by PC(30:0) and PC(32:0) species in the HTLV1 transformed cells. In HTLV1 transformed cells, choline, phosphocholine, spermine and glutathione, among others, were downregulated, whereas creatine, dopamine, arginine and AMP were present at higher levels. When comparing metabolite levels between HTLV3 and Tax3 transfected 293T cells, there were a number of common changes observed, including decreased choline, phosphocholine, spermine, homovanillic acid, and glycerophosphocholine and increased spermidine and N-acetyl aspartic acid. These results indicate that the lipid metabolism pathway as well as the creatine and polyamine biosynthesis pathways are commonly deregulated after expression of HTLV3 and Tax3, indicating that the noted changes are likely due to Tax3 expression. N-acetyl aspartic acid is a novel metabolite that is upregulated in all cell types and all conditions tested. We demonstrate the high throughput in situ metabolite profiling of HTLV transformed and Tax expressing cells, which facilitates the identification of virus-induced perturbations in the biochemical processes of the host cells. We found virus type-specific (HTLV1 vs. HTLV3), expression-specific (Tax1 vs. Tax3) and cell-type-specific (T lymphocytes vs. kidney epithelial cells) changes in the metabolite profiles. The new insight on the affected metabolic pathways can be used to better understand the molecular mechanisms of HTLV induced transformation, which in turn can result in new treatment strategies.

  2. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system

    PubMed Central

    Villar-Cheda, Begoña; Costa-Besada, Maria A; Valenzuela, Rita; Perez-Costas, Emma; Melendez-Ferro, Miguel; Labandeira-Garcia, Jose L

    2017-01-01

    The ‘classical’ renin–angiotensin system (RAS) is a circulating system that controls blood pressure. Local/paracrine RAS, identified in a variety of tissues, including the brain, is involved in different functions and diseases, and RAS blockers are commonly used in clinical practice. A third type of RAS (intracellular/intracrine RAS) has been observed in some types of cells, including neurons. However, its role is still unknown. The present results indicate that in brain cells the intracellular RAS counteracts the intracellular superoxide/H2O2 and oxidative stress induced by the extracellular/paracrine angiotensin II acting on plasma membrane receptors. Activation of nuclear receptors by intracellular or internalized angiotensin triggers a number of mechanisms that protect the cell, such as an increase in the levels of protective angiotensin type 2 receptors, intracellular angiotensin, PGC-1α and IGF-1/SIRT1. Interestingly, this protective mechanism is altered in isolated nuclei from brains of aged animals. The present results indicate that at least in the brain, AT1 receptor blockers acting only on the extracellular or paracrine RAS may offer better protection of cells. PMID:28880266

  3. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    PubMed

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  4. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B; Georgia Institute of Technology, Atlanta, GA; Wang, C

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities.more » These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing cell survival curves for high-LET radiation.« less

  5. JACKDAW controls epidermal patterning in the Arabidopsis root meristem through a non-cell-autonomous mechanism.

    PubMed

    Hassan, Hala; Scheres, Ben; Blilou, Ikram

    2010-05-01

    In Arabidopsis, specification of the hair and non-hair epidermal cell types is position dependent, in that hair cells arise over clefts in the underlying cortical cell layer. Epidermal patterning is determined by a network of transcriptional regulators that respond to an as yet unknown cue from underlying tissues. Previously, we showed that JACKDAW (JKD), a zinc finger protein, localizes in the quiescent centre and the ground tissue, and regulates tissue boundaries and asymmetric cell division by delimiting SHORT-ROOT movement. Here, we provide evidence that JKD controls position-dependent signals that regulate epidermal-cell-type patterning. JKD is required for appropriately patterned expression of the epidermal cell fate regulators GLABRA2, CAPRICE and WEREWOLF. Genetic interaction studies indicate that JKD operates upstream of the epidermal patterning network in a SCRAMBLED (SCM)-dependent fashion after embryogenesis, but acts independent of SCM in embryogenesis. Tissue-specific induction experiments indicate non-cell-autonomous action of JKD from the underlying cortex cell layer to specify epidermal cell fate. Our findings are consistent with a model where JKD induces a signal in every cortex cell that is more abundant in the hair cell position owing to the larger surface contact of cells located over a cleft.

  6. Formation and regeneration of the urothelium.

    PubMed

    Yamany, Tammer; Van Batavia, Jason; Mendelsohn, Cathy

    2014-06-01

    This review addresses significant changes in our understanding of urothelial development and regeneration. Understanding urothelial differentiation will be important in the push to find new methods of bladder reconstruction and augmentation, as well as identification of bladder cancer stem cells. This review will cover recent findings including the identification of novel progenitor cells in the embryo and adult urothelium, function of the urothelium, and regeneration of the urothelium. Using Cre-lox recombination with cell-type-specific Cre lines, lineage studies from our laboratory have revealed novel urothelial cell types and progenitors that are critical for formation and regeneration of the urothelium. Interestingly, our studies indicate that Keratin-5-expressing basal cells, which have previously been proposed to be urothelial stem cells, are a self-renewing unipotent population, whereas P-cells, a novel urothelial cell type, are progenitors in the embryo, and intermediate cells serve as a progenitor pool in the adult. These findings could have important implications for our understanding of cancer tumorigenesis and could move the fields of regeneration and reconstruction forward.

  7. The Human NK Cell Response to Yellow Fever Virus 17D Is Primarily Governed by NK Cell Differentiation Independently of NK Cell Education.

    PubMed

    Marquardt, Nicole; Ivarsson, Martin A; Blom, Kim; Gonzalez, Veronica D; Braun, Monika; Falconer, Karolin; Gustafsson, Rasmus; Fogdell-Hahn, Anna; Sandberg, Johan K; Michaëlsson, Jakob

    2015-10-01

    NK cells play an important role in the defense against viral infections. However, little is known about the regulation of NK cell responses during the first days of acute viral infections in humans. In this study, we used the live attenuated yellow fever virus (YFV) vaccine 17D as a human in vivo model to study the temporal dynamics and regulation of NK cell responses in an acute viral infection. YFV induced a robust NK cell response in vivo, with an early activation and peak in NK cell function at day 6, followed by a delayed peak in Ki67 expression, which was indicative of proliferation, at day 10. The in vivo NK cell response correlated positively with plasma type I/III IFN levels at day 6, as well as with the viral load. YFV induced an increased functional responsiveness to IL-12 and IL-18, as well as to K562 cells, indicating that the NK cells were primed in vivo. The NK cell responses were associated primarily with the stage of differentiation, because the magnitude of induced Ki67 and CD69 expression was distinctly higher in CD57(-) NK cells. In contrast, NK cells expressing self- and nonself-HLA class I-binding inhibitory killer cell Ig-like receptors contributed, to a similar degree, to the response. Taken together, our results indicate that NK cells are primed by type I/III IFN in vivo early after YFV infection and that their response is governed primarily by the differentiation stage, independently of killer cell Ig-like receptor/HLA class I-mediated inhibition or education. Copyright © 2015 by The American Association of Immunologists, Inc.

  8. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    PubMed Central

    Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, it suggests that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. PMID:17659854

  9. Histone deacetylase inhibitors reduce differentiating osteoblast-mediated protection of acute myeloid leukemia cells from cytarabine

    PubMed Central

    Sterner, Rosalie M.; Kremer, Kimberly N.; Al-Kali, Aref; Patnaik, Mrinal M.; Gangat, Naseema; Litzow, Mark R.; Kaufmann, Scott H.; Westendorf, Jennifer J.; van Wijnen, Andre J.; Hedin, Karen E.

    2017-01-01

    The bone marrow microenvironment protects acute myeloid leukemia (AML) cells during chemotherapy and is a major factor in relapse. Here, we examined which type(s) of bone marrow cells are responsible for the relapse of AML following treatment with cytarabine (Ara-C), and we identified a means to inhibit this protection. To determine the protective cell type(s), AML cells were treated with Ara-C, and AML cell survival in the presence or absence of osteoblast lineage cells was assessed. Cultured AML cells and patient bone marrow isolates were each significantly protected from Ara-C-induced apoptosis by co-culture with differentiating osteoblasts. Moreover, pretreating differentiating osteoblasts with the histone deacetylase inhibitors (HDACi) vorinostat and panobinostat abrogated the ability of the differentiating osteoblasts to protect AML cells. Together, our results indicate that differentiating osteoblasts have the potential to promote residual AML in the bone marrow following standard chemotherapy and act via a mechanism requiring HDACi-sensitive gene expression. Using HDACi to target the leukemic microenvironment in combination with Ara-C could potentially improve treatment of AML. Moreover, other strategies for manipulating bone marrow osteoblasts may also help eradicate AML cells and reduce relapse. PMID:29212250

  10. Involvement of specific macrophage-lineage cells surrounding arterioles in barrier and scavenger function in brain cortex.

    PubMed Central

    Mato, M; Ookawara, S; Sakamoto, A; Aikawa, E; Ogawa, T; Mitsuhashi, U; Masuzawa, T; Suzuki, H; Honda, M; Yazaki, Y; Watanabe, E; Luoma, J; Yla-Herttuala, S; Fraser, I; Gordon, S; Kodama, T

    1996-01-01

    The transport of solutes between blood and brain is regulated by a specific barrier. Capillary endothelial cells of brain are known to mediate barrier function and facilitate transport. Here we report that specific cells surrounding arterioles, known as Mato's fluorescent granular perithelial (FGP) cells or perivascular microglial cells, contribute to the barrier function. Immunohistochemical and in situ hybridization studies indicate that, in normal brain cortex, type I and type II macrophage scavenger receptors are expressed only in FGP/perivascular microglial cells, and surface markers of macrophage lineage are also detected on them. These cells mediate the uptake of macromolecules, including modified low density lipoprotein, horseradish peroxidase, and ferritin injected either into the blood or into the cerebral ventricles. Accumulation of scavenged materials with aging or after the administration of a high-fat diet results in the formation of honeycomb-like foam cells and the narrowing of the lumen of arterioles in the brain cortex. These results indicate involvement of FGP/perivascular microglial cells in the barrier and scavenger functions in the central nervous system. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 Fig. 6 PMID:8622926

  11. Selective deletion of Smad4 in postnatal germ cells does not affect spermatogenesis or fertility in mice.

    PubMed

    Hao, Xiao-Xia; Chen, Su-Ren; Tang, Ji-Xin; Li, Jian; Cheng, Jin-Mei; Jin, Cheng; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-07-01

    SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor.

    PubMed

    Mavlyutov, Timur A; Nickells, Robert W; Guo, Lian-Wang

    2011-04-26

    The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1(-/-)) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve. Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1(-/-) mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery. Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1(-/-), demonstrating a significant difference between the wild-type and the Sigmar1(-/-) in crush-induced ganglion cell loss. Our data indicated faster retinal ganglion cell death in Sigmar1(-/-) than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma.

  13. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor

    PubMed Central

    Mavlyutov, Timur A.; Nickells, Robert W.

    2011-01-01

    Purpose The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1−/−) to demonstrate unambiguously the role of the σR1 in protecting the retinal ganglion cells against degeneration after acute damage to the optic nerve. Methods Retinal σR binding sites were labeled with radioiodinated σR ligands and analyzed by autoradiography. Localization of the σR1 was performed by indirect immunofluorescence on frozen retinal sections. Retinal ganglion cell death was induced by acute optic nerve crush in wild-type and Sigmar1−/− mice. Surviving cells in the ganglion cell layer were counted on Nissl-stained retinal whole mounts 7 days after the crush surgery. Results Photoaffinity labeling indicated the presence of the σR1 in the retina, in concentrations equivalent to those in liver tissue. Immunolabeling detected this receptor in cells of both the ganglion cell layer and the photoreceptor cell layer in wild-type retinas. Quantification of cells remaining after optic nerve crush showed that 86.8±7.9% cells remained in the wild-type ganglion cell layer, but only 68.3±3.4% survived in the Sigmar1−/−, demonstrating a significant difference between the wild-type and the Sigmar1−/− in crush-induced ganglion cell loss. Conclusions Our data indicated faster retinal ganglion cell death in Sigmar1−/− than in wild-type mice under the stresses caused by optic nerve crush, providing direct evidence for a role of the σR1 in alleviating retinal degeneration. This conclusion is consistent with the previous pharmacological studies using σR1 agonists. Thus, our study supports the idea that the σR1 is a promising therapeutic target for neurodegenerative retinal diseases, such as glaucoma. PMID:21541278

  14. The glutaminase activity of l-asparaginase is not required for anticancer activity against ASNS-negative cells

    PubMed Central

    Chan, Wai Kin; Lorenzi, Philip L.; Anishkin, Andriy; Purwaha, Preeti; Rogers, David M.; Sukharev, Sergei; Rempe, Susan B.; Weinstein, John N.

    2014-01-01

    l-Asparaginase (l-ASP) is a key component of therapy for acute lymphoblastic leukemia. Its mechanism of action, however, is still poorly understood, in part because of its dual asparaginase and glutaminase activities. Here, we show that l-ASP’s glutaminase activity is not always required for the enzyme’s anticancer effect. We first used molecular dynamics simulations of the clinically standard Escherichia coli l-ASP to predict what mutated forms could be engineered to retain activity against asparagine but not glutamine. Dynamic mapping of enzyme substrate contacts identified Q59 as a promising mutagenesis target for that purpose. Saturation mutagenesis followed by enzymatic screening identified Q59L as a variant that retains asparaginase activity but shows undetectable glutaminase activity. Unlike wild-type l-ASP, Q59L is inactive against cancer cells that express measurable asparagine synthetase (ASNS). Q59L is potently active, however, against ASNS-negative cells. Those observations indicate that the glutaminase activity of l-ASP is necessary for anticancer activity against ASNS-positive cell types but not ASNS-negative cell types. Because the clinical toxicity of l-ASP is thought to stem from its glutaminase activity, these findings suggest the hypothesis that glutaminase-negative variants of l-ASP would provide larger therapeutic indices than wild-type l-ASP for ASNS-negative cancers. PMID:24659632

  15. Aggregation and lack of secretion of most newly synthesized proinsulin in non-beta-cell lines.

    PubMed

    Zhu, Yong Lian; Abdo, Alexander; Gesmonde, Joan F; Zawalich, Kathleen C; Zawalich, Walter; Dannies, Priscilla S

    2004-08-01

    Myoblasts transfected with HB10D insulin secrete more hormone than those transfected with wild-type insulin, as published previously, indicating that production of wild-type insulin is not efficient in these cells. The ability of non-beta-cells to produce insulin was examined in several cell lines. In clones of neuroendocrine GH(4)C(1) cells stably transfected with proinsulin, two thirds of (35)S-proinsulin was degraded within 3 h of synthesis, whereas (35)S-prolactin was stable. In transiently transfected neuroendocrine AtT20 cells, half of (35)S-proinsulin was degraded within 3 h after synthesis, whereas (35)S-GH was stable. In transiently transfected fibroblast COS cells, (35)S-proinsulin was stable for longer, but less than 10% was secreted 8 h after synthesis. Proinsulin formed a concentrated patch detected by immunofluorescence in transfected cells that did not colocalize with calreticulin or BiP, markers for the endoplasmic reticulum, but did colocalize with membrin, a marker for the cis-medial Golgi complex. Proinsulin formed a Lubrol-insoluble aggregate within 30 min after synthesis in non-beta-cells but not in INS-1E cells, a beta-cell line that normally produces insulin. More than 45% of (35)S-HB10D proinsulin was secreted from COS cells 3 h after synthesis, and this mutant formed less Lubrol-insoluble aggregate in the cells than did wild-type hormone. These results indicate that proinsulin production from these non-beta-cells is not efficient and that proinsulin aggregates in their secretory pathways. Factors in the environment of the secretory pathway of beta-cells may prevent aggregation of proinsulin to allow efficient production.

  16. Mutant human tumor suppressor p53 modulates the activation of mitogen-activated protein kinase and nuclear factor-kappaB, but not c-Jun N-terminal kinase and activated protein-1.

    PubMed

    Gulati, Anthony P; Yang, Yang-Ming; Harter, David; Mukhopadhyay, Asok; Aggarwal, Bharat B; Aggarwal, Bharat A; Benzil, Deborah L; Whysner, John; Albino, Anthony P; Murali, Raj; Jhanwar-Uniyal, Meena

    2006-01-01

    The roles of the mitogen-activated kinase protein (MAPK) pathway, nuclear factor-kappa B (NF-kappaB), and activator protein-1 (AP-1) in cellular responses to growth factors and mitogen are well established. However, the manner by which these proliferative pathways are affected by the tumor suppressor protein p53 is not fully understood. We report here the results of an investigation of the status of p53 on two human melanoma cell lines with wild-type p53 (SK-Mel-186) or mutant p53 (SK-Mel-110). The basal levels of the activated extracellular-signal regulated kinases 1 and 2 (ERK1/2) were high in cells with wild-type p53, but low in cells with mutant p53. The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of ERK1/2 through the phosphorylation of threonine and tyrosine at 202 and 204, respectively, was demonstrated in both cell lines, however, in a discrete manner. TPA-induced activation of ERK1/2 was sustained in wild-type p53 cells, while only a transient activation was seen in mutant p53 cells. Inhibition of MAPK kinase (MEK), an upstream kinase, by U0126, blocked TPA-induced activation of ERK1/2 in wild-type p53 cells and in mutant p53 cells. Treatment of wild-type p53 (SK-Mel 186) cells with small interfering RNA (siRNA) of p53 displayed a transient induction of activation of ERK1/2 following TPA treatment, indicating that p53 has a role in the regulation of the activation of ERK1/2. NF-kappaB activity decreased significantly in cells with wild-type p53, while enhanced NF-kappaB activity was evident in cells with mutant p53. The expression of either wild-type or mutant p53 had a similar effect on TPA-induced Jun N-terminal kinase (JNK) activation, indicating specificity for the ERK pathway. Similarly, AP-1 binding activity showed a transient variation in both cell lines after TPA treatment but with different kinetics. These observations suggest that both wild-type and mutant p53 can modulate the activation pathways for ERK1/2, and NF-kappaB distinctively, while modulating the pathways of JNK and AP-1 similarly. These differences may influence cellular processes such as proliferation, differentiation, and apoptosis. 2005 Wiley-Liss, Inc.

  17. Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures.

    PubMed

    Tang, Yee-Chin; Katsuma, Shoji; Fujimoto, Shinji; Hiromoto, Sachiko

    2006-11-01

    The electrochemical corrosion behaviour of Type 304 and 316L stainless steels was studied in Hanks' solution, Eagle's minimum essential medium (MEM), serum containing medium (MEM with 10% of fetal bovine serum) without cells, and serum containing medium with cells over a 1-week period. Polarization resistance measurements indicated that the stainless steels were resistant to Hanks' and MEM solutions. Type 304 was more susceptible to pitting corrosion than Type 316L in Hanks' and MEM solutions. The uniform corrosion resistance of stainless steels, determined by R(p), was lower in culturing medium than in Hanks' and MEM. The low corrosion resistance was due to surface passive film with less protective to reveal high anodic dissolution rate. When cells were present, the initial corrosion resistance was low, but gradually increased after 3 days, consistent with the trend of cell coverage. The presence of cells was found to suppress the cathodic reaction, that is, oxygen reduction, and increase the uniform corrosion resistance as a consequence. On the other hand, both Type 304 and 316L stainless steels became more susceptible to pitting corrosion when they were covered with cells.

  18. Systematic pan-cancer analysis reveals immune cell interactions in the tumor microenvironment

    PubMed Central

    Varn, Frederick S.; Wang, Yue; Mullins, David W.; Fiering, Steven; Cheng, Chao

    2017-01-01

    With the recent advent of immunotherapy, there is a critical need to understand immune cell interactions in the tumor microenvironment in both pan-cancer and tissue-specific contexts. Multi-dimensional datasets have enabled systematic approaches to dissect these interactions in large numbers of patients, furthering our understanding of the patient immune response to solid tumors. Using an integrated approach, we inferred the infiltration levels of distinct immune cell subsets in 23 tumor types from The Cancer Genome Atlas. From these quantities, we constructed a co-infiltration network, revealing interactions between cytolytic cells and myeloid cells in the tumor microenvironment. By integrating patient mutation data, we found that while mutation burden was associated with immune infiltration differences between distinct tumor types, additional factors likely explained differences between tumors originating from the same tissue. We concluded this analysis by examining the prognostic value of individual immune cell subsets as well as how co-infiltration of functionally discordant cell types associated with patient survival. In multiple tumor types, we found that the protective effect of CD8+ T cell infiltration was heavily modulated by co-infiltration of macrophages and other myeloid cell types, suggesting the involvement of myeloid-derived suppressor cells in tumor development. Our findings illustrate complex interactions between different immune cell types in the tumor microenvironment and indicate these interactions play meaningful roles in patient survival. These results demonstrate the importance of personalized immune response profiles when studying the factors underlying tumor immunogenicity and immunotherapy response. PMID:28126714

  19. A Comparative Study of the Aneugenic and Polyploidy-inducing Effects of Fisetin and Two Model Aurora Kinase Inhibitors

    PubMed Central

    Gollapudi, P.; Hasegawa, L.S.; Eastmond, D.A.

    2014-01-01

    Fisetin, a plant flavonol commonly found in fruits, nuts and vegetables, is frequently added to nutritional supplements due to its reported cardioprotective, anti-carcinogenic and antioxidant properties. Earlier reports from our laboratory and others have indicated that fisetin has both aneugenic and clastogenic properties in cultured cells. More recently, fisetin has also been reported to target Aurora B kinase, a Ser/Thr kinase involved in ensuring proper microtubule attachment at the spindle assembly checkpoint, and an enzyme that is overexpressed in several types of cancer. Here we have further characterized the chromosome damage caused by fisetin and compared it with that induced by two known Aurora kinase inhibitors, VX-680 and ZM-447439, in cultured TK6 cells using the micronucleus assay with CREST staining as well as a flow cytometry-based assay that measures multiple types of numerical chromosomal aberrations. The three compounds were highly effective in inducing aneuploidy and polyploidy as evidenced by increases in kinetochore-positive micronuclei, hyperdiploidy, and polyploidy. With fisetin, however, the latter two effects were most significantly observed only after cells were allowed to overcome a cell cycle delay, and occurred at higher concentrations than those induced by the other Aurora kinase inhibitors. Modest increases in kinetochore-negative micronuclei were also seen with the model Aurora kinase inhibitors. These results indicate that fisetin induces multiple types of chromosome abnormalities in human cells, and indicate a need for a thorough investigation of fisetin-augmented dietary supplements. PMID:24680981

  20. The primary culture of mirror carp snout and caudal fin tissues and the isolation of Koi herpesvirus.

    PubMed

    Zhou, Jingxiang; Wang, Hao; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2013-10-01

    The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types.

  1. Lung Cancer Pathological Image Analysis Using a Hidden Potts Model

    PubMed Central

    Li, Qianyun; Yi, Faliu; Wang, Tao; Xiao, Guanghua; Liang, Faming

    2017-01-01

    Nowadays, many biological data are acquired via images. In this article, we study the pathological images scanned from 205 patients with lung cancer with the goal to find out the relationship between the survival time and the spatial distribution of different types of cells, including lymphocyte, stroma, and tumor cells. Toward this goal, we model the spatial distribution of different types of cells using a modified Potts model for which the parameters represent interactions between different types of cells and estimate the parameters of the Potts model using the double Metropolis-Hastings algorithm. The double Metropolis-Hastings algorithm allows us to simulate samples approximately from a distribution with an intractable normalizing constant. Our numerical results indicate that the spatial interaction between the lymphocyte and tumor cells is significantly associated with the patient’s survival time, and it can be used together with the cell count information to predict the survival of the patients. PMID:28615918

  2. Accelerated stress testing of terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.

    1982-01-01

    The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.

  3. Five Xanthomonas type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades

    PubMed Central

    Teper, Doron; Sunitha, Sukumaran; Martin, Gregory B; Sessa, Guido

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades play a fundamental role in signaling of plant immunity and mediate elicitation of cell death. Xanthomonas spp. manipulate plant signaling by using a type III secretion system to deliver effector proteins into host cells. We examined the ability of 33 Xanthomonas effectors to inhibit cell death induced by overexpression of components of MAPK cascades in Nicotiana benthamiana plants. Five effectors inhibited cell death induced by overexpression of MAPKKKα and MEK2, but not of MAP3Kϵ. In addition, expression of AvrBs1 in yeast suppressed activation of the high osmolarity glycerol MAPK pathway, suggesting that the target of this effector is conserved in eukaryotic organisms. These results indicate that Xanthomonas employs several type III effectors to suppress immunity-associated cell death mediated by MAPK cascades. PMID:26237448

  4. Characterization of an in vitro system for the synthesis of mRNA from human parainfluenza virus type 3.

    PubMed

    De, B P; Galinski, M S; Banerjee, A K

    1990-03-01

    A cell extract derived from human parainfluenza virus type 3-infected human lung carcinoma (HLC) cells synthesized mRNA in vitro. Under optimal conditions, the extract was able to support transcription of all virus-encoded genes as determined by hybridization analyses. The RNA products contained full-length poly(A)-containing mRNA species similar to those observed in acutely infected cells. Further purification of the viral nucleocapsids from the infected HLC cell extract resulted in total loss of the capacity of the extract to synthesize mRNA in vitro. However, the addition of cytoplasmic extracts from uninfected HLC cells to the nucleocapsid preparations restored transcription to levels observed in the infected cell lysates, indicating requirement of a host factor(s) in the human parainfluenza virus type 3 transcription process. In distinction to the abundant transcription observed in the cell extract from HLC cells, cell extract prepared from CV-1 cells failed to support transcription in vitro. High levels of RNase activity in the cell extract from CV-1 cells appears to be the principal reason for this difference.

  5. Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.

  6. Retinal Pigment Epithelial Cells are a Potential Reservoir for Ebola Virus in the Human Eye

    PubMed Central

    Smith, Justine R.; Todd, Shawn; Ashander, Liam M.; Charitou, Theodosia; Ma, Yuefang; Yeh, Steven; Crozier, Ian; Michael, Michael Z.; Appukuttan, Binoy; Williams, Keryn A.; Lynn, David J.; Marsh, Glenn A.

    2017-01-01

    Purpose Success of Ebola virus (EBOV) as a human pathogen relates at the molecular level primarily to blockade the host cell type I interferon (IFN) antiviral response. Most individuals who survive Ebola virus disease (EVD) develop a chronic disease syndrome: approximately one-quarter of survivors suffer from uveitis, which has been associated with presence of EBOV within the eye. Clinical observations of post-Ebola uveitis indicate involvement of retinal pigment epithelial cells. Methods We inoculated ARPE-19 human retinal pigment epithelial cells with EBOV, and followed course of infection by immunocytochemistry and measurement of titer in culture supernatant. To interrogate transcriptional responses of infected cells, we combined RNA sequencing with in silico pathway, gene ontology, transcription factor binding site, and network analyses. We measured infection-induced changes of selected transcripts by reverse transcription-quantitative polymerase chain reaction. Results Human retinal pigment epithelial cells were permissive to infection with EBOV, and supported viral replication and release of virus in high titer. Unexpectedly, 28% of 560 upregulated transcripts in EBOV-infected cells were type I IFN responsive, indicating a robust type I IFN response. Following EBOV infection, cells continued to express multiple immunomodulatory molecules linked to ocular immune privilege. Conclusions Human retinal pigment epithelial cells may serve as an intraocular reservoir for EBOV, and the molecular response of infected cells may contribute to the persistence of live EBOV within the human eye. Translational Relevance This bedside-to-bench research links ophthalmic findings in survivors of EVD who suffer from uveitis with interactions between retinal pigment epithelial cells and EBOV. PMID:28721309

  7. Alveolar type II cell-fibroblast interactions, synthesis and secretion of surfactant and type I collagen.

    PubMed

    Griffin, M; Bhandari, R; Hamilton, G; Chan, Y C; Powell, J T

    1993-06-01

    During alveolar development and alveolar repair close contacts are established between fibroblasts and lung epithelial cells through gaps in the basement membrane. Using co-culture systems we have investigated whether these close contacts influence synthesis and secretion of the principal surfactant apoprotein (SP-A) by cultured rat lung alveolar type II cells and the synthesis and secretion of type I collagen by fibroblasts. The alveolar type II cells remained cuboidal and grew in colonies on fibroblast feeder layers and on Matrigel-coated cell culture inserts but were progressively more flattened on fixed fibroblast monolayers and plastic. Alveolar type II cells cultured on plastic released almost all their SP-A into the medium by 4 days. Alveolar type II cells cultured on viable fibroblasts or Matrigel-coated inserts above fibroblasts accumulated SP-A in the medium at a constant rate for the first 4 days, and probably recycle SP-A by endocytosis. The amount of mRNA for SP-A was very low after 4 days of culture of alveolar type II cells on plastic, Matrigel-coated inserts or fixed fibroblast monolayers: relatively, the amount of mRNA for SP-A was increased 4-fold after culture of alveolar type II cells on viable fibroblasts. Co-culture of alveolar type II cells with confluent human dermal fibroblasts stimulated by 2- to 3-fold the secretion of collagen type I into the culture medium, even after the fibroblasts' growth had been arrested with mitomycin C. Collagen secretion, by fibroblasts, also was stimulated 2-fold by conditioned medium from alveolar type II cells cultured on Matrigel. The amount of mRNA for type I collagen increased only modestly when fibroblasts were cultured in this conditioned medium. This stimulation of type I collagen secretion diminished as the conditioned medium was diluted out, but at high dilutions further stimulation occurred, indicating that a factor that inhibited collagen secretion also was being diluted out. The conditioned medium contained low levels of IGF-1 and the stimulation of type I collagen secretion was abolished when the conditioned medium was pre-incubated with antibodies to insulin-like growth factor 1 (IGF-1). There are important reciprocal interactions between alveolar type II cells and fibroblasts in co-culture. Direct contacts between alveolar type II cells and fibroblasts appear to have a trophic effect on cultured alveolar type II cells, increasing the levels of mRNA for SP-A. Rat lung alveolar type II cells appear to release a factor (possibly IGF-1) that stimulates type I collagen secretion by fibroblasts.

  8. Deletion of the Dynein Heavy-Chain Gene DYN1 Leads to Aberrant Nuclear Positioning and Defective Hyphal Development in Candida albicans

    PubMed Central

    Martin, R.; Walther, A.; Wendland, J.

    2004-01-01

    Cytoplasmic dynein is a microtubule-associated minus-end-directed motor protein. CaDYN1 encodes the single dynein heavy-chain gene of Candida albicans. The open reading frames of both alleles of CaDYN1 were completely deleted via a PCR-based approach. Cadyn1 mutants are viable but grow more slowly than the wild type. In vivo time-lapse microscopy was used to compare growth of wild-type (SC5314) and dyn1 mutant strains during yeast growth and after hyphal induction. During yeast-like growth, Cadyn1 strains formed chains of cells. Chromosomal TUB1-GFP and HHF1-GFP alleles were used both in wild-type and mutant strains to monitor the orientation of mitotic spindles and nuclear positioning in C. albicans. In vivo fluorescence time-lapse analyses with HHF1-GFP over several generations indicated defects in dyn1 cells in the realignment of spindles with the mother-daughter axis of yeast cells compared to that of the wild type. Mitosis in the dyn1 mutant, in contrast to that of wild-type yeast cells, was very frequently completed in the mother cells. Nevertheless, daughter nuclei were faithfully transported into the daughter cells, resulting in only a small number of multinucleate cells. Cadyn1 mutant strains responded to hypha-inducing media containing l-proline or serum with initial germ tube formation. Elongation of the hyphal tubes eventually came to a halt, and these tubes showed a defect in the tipward localization of nuclei. Using a heterozygous DYN1/dyn1 strain in which the remaining copy was controlled by the regulatable MAL2 promoter, we could switch between wild-type and mutant phenotypes depending on the carbon source, indicating that the observed mutant phenotypes were solely due to deletion of DYN1. PMID:15590831

  9. Cell-mediated immunity to herpes simplex virus: recognition of type-specific and type-common surface antigens by cytotoxic T cell populations.

    PubMed Central

    Eberle, R; Russell, R G; Rouse, B T

    1981-01-01

    In this communication, we examine the specificity of anti-herpes simplex virus (HSV) cytotoxic T lymphocytes (CTL). Serological studies of the two related HSV serotypes (HSV-1 and HSV-2) have revealed both type-specific and cross-reactive antigenic determinants in the viral envelope and on the surface of infected cells. By analysis of cytotoxicity of CTL, generated in vitro by restimulation of splenocytes from mice primed with one or the other HSV serotype, the recognition of both type-specific and cross-reactive determinants on infected target cells by anti-HSV CTL was detectable. Thus, effector cells generated by priming and restimulating with the same virus recognized both type-specific and cross-reactive determinants on target cells infected with the homologous virus, but only cross-reactive determinants on target cells infected with the heterologous HSV serotype. CTL generated by restimulation with the heterologous virus were capable of recognizing only the cross-reactive determinants on either HSV-1- or HSV-2-infected target cells. These results indicate that two subpopulations of CTL exist in a population of anti-HSV immune spleen cells--those which recognize type-specific determinants and those specific for cross-reactive antigenic determinants present on the surface of HSV infected cells. The type-specific subset of anti-HSV CTL was shown to recognize the gC glycoprotein of HSV-1 infected target cells. In addition to the gC glycoprotein, at least one other type-specific surface antigen was also recognized by anti-HSV CTL in addition to the cross-reactive determinants recognized by anti-HSV CTL. PMID:6277790

  10. Effects of selective type I and II adrenal steroid agonists on immune cell distribution.

    PubMed

    Miller, A H; Spencer, R L; hassett, J; Kim, C; Rhee, R; Ciurea, D; Dhabhar, F; McEwen, B; Stein, M

    1994-11-01

    Adrenal steroids exert their effects through two distinct adrenal steroid receptor subtypes; the high affinity type I, or mineralocorticoid, receptor and the lower affinity type II, or glucocorticoid, receptor. Adrenal steroids have well known effects on immune cell distribution, and although both type I and II receptors are expressed in immune cells and tissues, few data exist on the relative effects mediated through these two receptor subtypes. Accordingly, we administered selective type I and II adrenal steroid receptor agonists to young adult male Sprague-Dawley rats for 7 days and then measured immune cell distribution in the peripheral blood and spleen. Results were compared with those of similar studies using the naturally occurring glucocorticoid of the rat, corticosterone, which binds both type I and II receptors. The majority of the well characterized effects of adrenal steroids on peripheral blood immune cells (increased neutrophils and decreased lymphocytes and monocytes) were reproduced by the type II receptor agonist, RU28362. RU28362 decreased the numbers of all lymphocyte subsets [T-cells, B-cells, and natural killer (NK) cells] to very low absolute levels. The largest relative decrease (i.e. in percentage) was seen in B-cells, whereas NK cells exhibited the least relative decrease and actually showed a 2-fold increase in relative percentage during RU28362 treatment. Similar to RU28362, the type I receptor agonist, aldosterone, significantly reduced the number of lymphocytes and monocytes. In contrast to RU28362, however, aldosterone significantly decreased the number of neutrophils. Moreover, aldosterone decreased the number of T-helper cells and NK cells, while having no effect on the number of B-cells or T-suppressor/cytotoxic cells. Corticosterone at physiologically relevant concentrations had potent effects on immune cell distribution, which were indistinguishable from those of the type II receptor agonist, RU28362. Taken together, these results indicate that effects of adrenal steroids on immune cell distribution are dependent on the receptor subtype involved as well as the specific cell type targeted. These factors allow for varied and complex effects of adrenal steroids on the immune system under physiological conditions.

  11. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    PubMed

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  12. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity.

    PubMed

    Wu, Gongqing; Liu, Yi; Ding, Ying; Yi, Yunhong

    2016-08-01

    Galleria mellonella larvae have been widely used as a model to study the virulence of various human pathogens. Hemocytes play important roles in the innate immune response of G. mellonella. In this study, the hemocytes of G. mellonella larvae were analyzed by transmission electron microscope, light microscope, and cytochemistry. The cytological and morphological analyses revealed four types of hemocytes; Plasmatocytes, granular cells, spherule cells and oenocytoids. Differential hemocyte counts showed that under our conditions plasmatocytes and granular cells were the most abundant circulating cell types in the hemolymph. We also investigated the role of different types of hemocytes in the cellular and humoral immune defenses. The in-vivo experiment showed that plasmatocytes, granular cells and oenocytoids phagocytized FITC-labelled Escherichia coli bacteria in larvae of G. mellonella, whereas the granular cells exhibited the strongest phagocytic ability against these microbial cells. After incubation with L-DOPA, plasmatocytes, granular cells and oenocytoids are stained brown, indicating the presence of phenoloxidase activity. These results shed new light on our understanding of the immune function of G. mellonella hemocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Pirfenidone inhibits proliferation, arrests the cell cycle, and downregulates heat shock protein-47 and collagen type I in rat hepatic stellate cells in vitro.

    PubMed

    Xiang, Xian-Hong; Jiang, Tian-Peng; Zhang, Shuai; Song, Jie; Li, Xing; Yang, Jian-Yong; Zhou, Shi

    2015-07-01

    Pirfenidone (esbiret) is an established anti-fibrotic and anti-inflammatory drug used to treat idiopathic pulmonary fibrosis. In the present study, the dose-dependent effects of pirfenidone on the cell cycle, proliferation and expression of heat shock protein (HSP)-47 and collagen type I in a cultured rat hepatic stellate cell line (HSC-T6) were investigated. Following pirfenidone treatment, cell proliferation was determined using the cell counting kit-8 assay and the cell cycle was measured using flow cytometry. HSP-47 expression was estimated using western blot analysis and collagen type I mRNA was assessed using reverse transcription quantitative polymerase chain reaction. Pirfenidone induced significant dose-dependent inhibition of proliferation in HSC-T6 cells. Cell viability was unaffected by treatment with pirfenidone (0, 10 or 100 µM) for 24 and 72 h. However, after 24 h, HSC-T6 cells exhibited dose-dependent decreases in HSP-47 protein and collagen I mRNA levels. In conclusion, pirfenidone inhibited HSC-T6 cell proliferation, arrested the cell cycle and reduced the expression of HSP-47 and collagen type I, indicating that pirfenidone may be a promising drug in the treatment of liver fibrosis.

  14. Neutral lipid trafficking regulates alveolar type II cell surfactant phospholipid and surfactant protein expression.

    PubMed

    Torday, John; Rehan, Virender

    2011-08-01

    Adipocyte differentiation-related protein (ADRP) is a critically important protein that mediates lipid uptake, and is highly expressed in lung lipofibroblasts (LIFs). Triacylglycerol secreted from the pulmonary circulation and stored in lipid storage droplets is a robust hormonal-, growth factor-, and stretch-regulated precursor for surfactant phospholipid synthesis by alveolar type II epithelial (ATII) cells. A549 lung epithelial cells rapidly take up green fluorescent protein (GFP)-ADRP fusion protein-associated lipid droplets (LDs) in a dose-dependent manner. The LDs initially localize to the perinuclear region of the cell, followed by localization in the cytoplasm. Uptake of ADRP-LDs causes a time- and dose-dependent increase in surfactant protein-B (SP-B) expression. This mechanism can be inhibited by either actinomycin D or cycloheximide, indicating that ADRP-LDs induce newly synthesized SP-B. ADRP-LDs concomitantly stimulate saturated phosphatidylcholine (satPC) synthesis by A549 cells, which is inhibited by ADRP antibody, indicating that this is a receptor-mediated mechanism. Intravenous administration of GFP-ADRP LDs to adult rats results in dose-dependent increases in lung ADRP and SP-B expression. These data indicate that lipofibroblast-derived ADRP coordinates ATII cells' synthesis of the surfactant phospholipid-protein complex by stimulating both satPC and SP-B. The authors propose, therefore, that ADRP is the physiologic determinant for the elusive coordinated, stoichiometric synthesis of surfactant phospholipid and protein by pulmonary ATII cells.

  15. "Subpial Fan Cell" - A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex.

    PubMed

    Gabbott, Paul L A

    2016-01-01

    Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class - termed "subpial fan (SPF) cell" - described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A - presumed excitatory) and symmetric (S - presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata - with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC - possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts - thus affecting information processing in discrete patches of layer 1 in adult monkey PFC.

  16. Investigation of accelerated stress factors and failure/degradation mechanisms in terrestrial solar cells

    NASA Technical Reports Server (NTRS)

    Lathrop, J. W.

    1984-01-01

    Research on the reliability of terrestrial solar cells was performed to identify failure/degradation modes affecting solar cells and to relate these to basic physical, chemical, and metallurgical phenomena. Particular concerns addressed were the reliability attributes of individual single crystalline, polycrystalline, and amorphous thin film silicon cells. Results of subjecting different types of crystalline cells to the Clemson accelerated test schedule are given. Preliminary step stress results on one type of thin film amorphous silicon (a:Si) cell indicated that extraneous degradation modes were introduced above 140 C. Also described is development of measurement procedures which are applicable to the reliability testing of a:Si solar cells as well as an approach to achieving the necessary repeatability of fabricating a simulated a:Si reference cell from crystalline silicon photodiodes.

  17. An authentic imaging probe to track cell fate from beginning to end.

    PubMed

    Lee, Seung Koo; Mortensen, Luke J; Lin, Charles P; Tung, Ching-Hsuan

    2014-10-17

    Accurate tracing of cell viability is critical for optimizing delivery methods and evaluating the efficacy and safety of cell therapeutics. A nanoparticle-based cell tracker is developed to image cell fate from live to dead. The particle is fabricated from two types of optically quenched polyelectrolytes, a life indicator and a death indicator, through electrostatic interactions. On incubation with cells, the fabricated bifunctional nanoprobes are taken up efficiently and the first colour is produced by normal intracellular proteolysis, reflecting the healthy status of the cells. Depending on the number of coated layers, the signal can persist for several replication cycles. However, as the cells begin dying, the second colour appears quickly to reflect the new cell status. Using this chameleon-like cell tracker, live cells can be distinguished from apoptotic and necrotic cells instantly and definitively.

  18. Human stem cells and drug screening: opportunities and challenges.

    PubMed

    Ebert, Allison D; Svendsen, Clive N

    2010-05-01

    High-throughput screening technologies are widely used in the early stages of drug discovery to rapidly evaluate the properties of thousands of compounds. However, they generally rely on testing compound libraries on highly proliferative immortalized or cancerous cell lines, which do not necessarily provide an accurate indication of the effects of compounds in normal human cells or the specific cell type under study. Recent advances in stem cell technology have the potential to allow production of a virtually limitless supply of normal human cells that can be differentiated into any specific cell type. Moreover, using induced pluripotent stem cell technology, they can also be generated from patients with specific disease traits, enabling more relevant modelling and drug screens. This article discusses the opportunities and challenges for the use of stem cells in drug screening with a focus on induced pluripotent stem cells.

  19. Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.

    PubMed

    Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders

    2016-10-01

    The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.

  20. Discrimination of taste qualities among mouse fungiform taste bud cells.

    PubMed

    Yoshida, Ryusuke; Miyauchi, Aya; Yasuo, Toshiaki; Jyotaki, Masafumi; Murata, Yoshihiro; Yasumatsu, Keiko; Shigemura, Noriatsu; Yanagawa, Yuchio; Obata, Kunihiko; Ueno, Hiroshi; Margolskee, Robert F; Ninomiya, Yuzo

    2009-09-15

    Multiple lines of evidence from molecular studies indicate that individual taste qualities are encoded by distinct taste receptor cells. In contrast, many physiological studies have found that a significant proportion of taste cells respond to multiple taste qualities. To reconcile this apparent discrepancy and to identify taste cells that underlie each taste quality, we investigated taste responses of individual mouse fungiform taste cells that express gustducin or GAD67, markers for specific types of taste cells. Type II taste cells respond to sweet, bitter or umami tastants, express taste receptors, gustducin and other transduction components. Type III cells possess putative sour taste receptors, and have well elaborated conventional synapses. Consistent with these findings we found that gustducin-expressing Type II taste cells responded best to sweet (25/49), bitter (20/49) or umami (4/49) stimuli, while all GAD67 (Type III) taste cells examined (44/44) responded to sour stimuli and a portion of them showed multiple taste sensitivities, suggesting discrimination of each taste quality among taste bud cells. These results were largely consistent with those previously reported with circumvallate papillae taste cells. Bitter-best taste cells responded to multiple bitter compounds such as quinine, denatonium and cyclohexamide. Three sour compounds, HCl, acetic acid and citric acid, elicited responses in sour-best taste cells. These results suggest that taste cells may be capable of recognizing multiple taste compounds that elicit similar taste sensation. We did not find any NaCl-best cells among the gustducin and GAD67 taste cells, raising the possibility that salt sensitive taste cells comprise a different population.

  1. Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.

    PubMed

    Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M

    1990-06-01

    It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and intestinal-type metaplastic changes of epithelial cells lining the main and interlobular ducts of the pancreas.

  2. Negative regulation of AMP-activated protein kinase (AMPK) activity by macrophage migration inhibitory factor (MIF) family members in non-small cell lung carcinomas.

    PubMed

    Brock, Stephanie E; Rendon, Beatriz E; Yaddanapudi, Kavitha; Mitchell, Robert A

    2012-11-02

    AMP-activated protein kinase (AMPK) is a nutrient- and metabolic stress-sensing enzyme activated by the tumor suppressor kinase, LKB1. Because macrophage migration inhibitory factor (MIF) and its functional homolog, d-dopachrome tautomerase (d-DT), have protumorigenic functions in non-small cell lung carcinomas (NSCLCs) but have AMPK-activating properties in nonmalignant cell types, we set out to investigate this apparent paradox. Our data now suggest that, in contrast to MIF and d-DTs AMPK-activating properties in nontransformed cells, MIF and d-DT act cooperatively to inhibit steady-state phosphorylation and activation of AMPK in LKB1 wild type and LKB1 mutant human NSCLC cell lines. Our data further indicate that MIF and d-DT, acting through their shared cell surface receptor, CD74, antagonize NSCLC AMPK activation by maintaining glucose uptake, ATP production, and redox balance, resulting in reduced Ca(2+)/calmodulin-dependent kinase kinase β-dependent AMPK activation. Combined, these studies indicate that MIF and d-DT cooperate to inhibit AMPK activation in an LKB1-independent manner.

  3. Rules of tissue packing involving different cell types: human muscle organization

    PubMed Central

    Sánchez-Gutiérrez, Daniel; Sáez, Aurora; Gómez-Gálvez, Pedro; Paradas, Carmen; Escudero, Luis M.

    2017-01-01

    Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the “slow” and “fast” fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist. PMID:28071729

  4. Rules of tissue packing involving different cell types: human muscle organization.

    PubMed

    Sánchez-Gutiérrez, Daniel; Sáez, Aurora; Gómez-Gálvez, Pedro; Paradas, Carmen; Escudero, Luis M

    2017-01-10

    Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the "slow" and "fast" fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist.

  5. Transient chondrogenic phase in the intramembranous pathway during normal skeletal development.

    PubMed

    Nah, H D; Pacifici, M; Gerstenfeld, L C; Adams, S L; Kirsch, T

    2000-03-01

    Calvarial and facial bones form by intramembranous ossification, in which bone cells arise directly from mesenchyme without an intermediate cartilage anlage. However, a number of studies have reported the emergence of chondrocytes from in vitro calvarial cell or organ cultures and the expression of type II collagen, a cartilage-characteristic marker, in developing calvarial bones. Based on these findings we hypothesized that a covert chondrogenic phase may be an integral part of the normal intramembranous pathway. To test this hypothesis, we analyzed the temporal and spatial expression patterns of cartilage characteristic genes in normal membranous bones from chick embryos at various developmental stages (days 12, 15 and 19). Northern and RNAse protection analyses revealed that embryonic frontal bones expressed not only the type I collagen gene but also a subset of cartilage characteristic genes, types IIA and XI collagen and aggrecan, thus resembling a phenotype of prechondrogenic-condensing mesenchyme. The expression of cartilage-characteristic genes decreased with the progression of bone maturation. Immunohistochemical analyses of developing embryonic chick heads indicated that type II collagen and aggrecan were produced by alkaline phosphatase activity positive cells engaged in early stages of osteogenic differentiation, such as cells in preosteogenic-condensing mesenchyme, the cambium layer of periosteum, the advancing osteogenic front, and osteoid bone. Type IIB and X collagen messenger RNAs (mRNA), markers for mature chondrocytes, were also detected at low levels in calvarial bone but not until late embryonic stages (day 19), indicating that some calvarial cells may undergo overt chondrogenesis. On the basis of our findings, we propose that the normal intramembranous pathway in chicks includes a previously unrecognized transient chondrogenic phase similar to prechondrogenic mesenchyme, and that the cells in this phase retain chondrogenic potential that can be expressed in specific in vitro and in vivo microenvironments.

  6. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    PubMed Central

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P < 0.05). Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P < 0.05), an indication of reduced microvessel density in tumor xenografts. Moreover, high-dose icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  7. Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning.

    PubMed

    Inoue, Kimiko; Ogonuki, Narumi; Mochida, Keiji; Yamamoto, Yoshie; Takano, Kaoru; Kohda, Takashi; Ishino, Fumitoshi; Ogura, Atsuo

    2003-10-01

    Although it is widely assumed that the cell type and genotype of the donor cell affect the efficiency of somatic cell cloning, little systematic analysis has been done to verify this assumption. The present study was undertaken to examine whether donor cell type, donor genotype, or a combination thereof increased the efficiency of mouse cloning. Initially we assessed the developmental ability of embryos that were cloned from cumulus or immature Sertoli cells with six different genotypes (i.e., 2 x 6 factorial). Significantly better cleavage rates were obtained with cumulus cells than with Sertoli cells (P < 0.005, two-way ANOVA), which probably was due to the superior cell-cycle synchrony of cumulus cells at G0/G1. After embryo transfer, there was a significant effect of cell type on the birth rate, with Sertoli cells giving the better result (P < 0.005). Furthermore, there was a significant interaction (P < 0.05) between the cell type and genotype, which indicates that cloning efficiency is determined by a combination of these two factors. The highest mean birth rate (10.8 +/- 2.1%) was obtained with (B6 x 129)F1 Sertoli cells. In the second series of experiments, we examined whether the developmental ability of clones with the wild-type genotype (JF1) was improved when combined with the 129 genotype. Normal pups were cloned from cumulus and immature Sertoli cells of the (129 x JF1)F1 and (JF1 x 129)F1 genotypes, whereas no pups were born from cells with the (B6 x JF1)F1 genotype. The present study clearly demonstrates that the efficiency of somatic cell cloning, and in particular fetal survival after embryo transfer, may be improved significantly by choosing the appropriate combinations of cell type and genotype.

  8. Type III Cells in Anterior Taste Fields Are More Immunohistochemically Diverse Than Those of Posterior Taste Fields in Mice.

    PubMed

    Wilson, Courtney E; Finger, Thomas E; Kinnamon, Sue C

    2017-10-31

    Activation of Type III cells in mammalian taste buds is implicated in the transduction of acids (sour) and salty stimuli. Several lines of evidence suggest that function of Type III cells in the anterior taste fields may differ from that of Type III cells in posterior taste fields. Underlying anatomy to support this observation is, however, scant. Most existing immunohistochemical data characterizing this cell type focus on circumvallate taste buds in the posterior tongue. Equivalent data from anterior taste fields-fungiform papillae and soft palate-are lacking. Here, we compare Type III cells in four taste fields: fungiform, soft palate, circumvallate, and foliate in terms of reactivity to four canonical markers of Type III cells: polycystic kidney disease 2-like 1 (PKD2L1), synaptosomal associated protein 25 (SNAP25), serotonin (5-HT), and glutamate decarboxylase 67 (GAD67). Our findings indicate that while PKD2L1, 5-HT, and SNAP25 are highly coincident in posterior taste fields, they diverge in anterior taste fields. In particular, a subset of taste cells expresses PKD2L1 without the synaptic markers, and a subset of SNAP25 cells lacks expression of PKD2L1. In posterior taste fields, GAD67-positive cells are a subset of PKD2L1 expressing taste cells, but anterior taste fields also contain a significant population of GAD67-only expressing cells. These differences in expression patterns may underlie the observed functional differences between anterior and posterior taste fields. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells

    PubMed Central

    Tan, Lei; Sui, Xin; Deng, Hongkui; Ding, Mingxiao

    2011-01-01

    Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3 cell line. Generation of holoclones can serve as a novel model for studying cancer stem cells, and attribute to developing new anti-cancer drugs. PMID:21826251

  10. Search for infective mammalian type-C virus-related genes in the DNA of human sarcomas and leukemias.

    PubMed

    Nicolson, M O; Gilden, R V; Charman, H; Rice, N; Heberling, R; McAllister, R M

    1978-06-15

    DNA was extracted from two human sarcoma cell lines, TE-32 and TE-418, and the leukemic cells from five children with acute myelocytic leukemia, three children with acute lymphocytic leukemia and four adults with acute myelocytic leukemia. The DNAs, assayed for infectivity by transfection techniques, induced no measurable virus by methods which would detect known mammalian C-type antigens or RNA-directed DNA polymerase in TE-32, D-17 dog cells and other indicator cells, nor did they recombine with or rescue endogenous human or exogenous murine or baboon type-C virus. Model systems used as controls were human sarcoma cells, TE-32 and HT-1080, and human lymphoma cells TE-543, experimentally infected with KiMuLV, GaLV or baboon type-C virus, all of which released infectious virus and whose DNAs were infectious for TE-32 and D-17 dog cells. Other model systems included two baboon placentas and one embryonic cell strain spontaneously releasing infectious endogenous baboon virus and yielding DNAs infectious for D-17 dog cells but not for TE-32 cells. Four other baboon embryonic tissues and two embryonic cell strains, releasing either low levels of virus or no virus, did not yield infectious DNA.

  11. Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals.

    PubMed

    Kozlowski, J; Czarnoleski, M; François-Krassowska, A; Maciak, S; Pis, T

    2010-12-23

    We examined cell size correlations between tissues, and cell size to body mass relationships in passerine birds, amphibians and mammals. The size correlated highly between all cell types in birds and amphibians; mammalian tissues clustered by size correlation in three tissue groups. Erythrocyte size correlated well with the volume of other cell types in birds and amphibians, but poorly in mammals. In birds, body mass correlated positively with the size of all cell types including erythrocytes, and in mammals only with the sizes of some cell types. Size of mammalian erythrocytes correlated with body mass only within the most taxonomically uniform group of species (rodents and lagomorphs). Cell volume increased with body mass of birds and mammals to less than 0.3 power, indicating that body size evolved mostly by changes in cell number. Our evidence suggests that epigenetic mechanisms determining cell size relationships in tissues are conservative in birds and amphibians, but less stringent in mammals. The patterns of cell size to body mass relationships we obtained challenge some key assumptions of fractal and cellular models used by allometric theory to explain mass-scaling of metabolism. We suggest that the assumptions in both models are not universal, and that such models need reformulation.

  12. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective

    PubMed Central

    Llinás, Rodolfo R.

    2014-01-01

    This brief review summarizes work done in mammalian neuroscience concerning the intrinsic electrophysiological properties of four neuronal types; Cerebellar Purkinje cells, inferior olivary cells, thalamic cells, and some cortical interneurons. It is a personal perspective addressing an interesting time in neuroscience when the reflex view of brain function, as the paradigm to understand global neuroscience, began to be modified toward one in which sensory input modulates rather than dictates brain function. The perspective of the paper is not a comprehensive description of the intrinsic electrical properties of all nerve cells but rather addresses a set of cell types that provide indicative examples of mechanisms that modulate brain function. PMID:25408634

  13. Cuticular features as indicators of environmental pollution

    Treesearch

    G. K. Sharma

    1976-01-01

    Several leaf cuticular features such as stomatal frequency, stomatal size, trichome length, type, and frequency, and subsidiary cell complex respond to environmental pollution in different ways and hence can be used as indicators of environmental pollution in an area. Several modifications in cuticular features under polluted environments seem to indicate ecotypic or...

  14. Characterization of mesenchymal stem cells and fibrochondrocytes in three-dimensional co-culture: analysis of cell shape, matrix production, and mechanical performance.

    PubMed

    McCorry, Mary Clare; Puetzer, Jennifer L; Bonassar, Lawrence J

    2016-03-12

    Bone marrow mesenchymal stem cells (MSCs) have shown positive therapeutic effects for meniscus regeneration and repair. Preliminary in vitro work has indicated positive results for MSC applications for meniscus tissue engineering; however, more information is needed on how to direct MSC behavior. The objective of this study was to examine the effect of MSC co-culture with primary meniscal fibrochondrocytes (FCCs) in a three-dimensional collagen scaffold in fibrochondrogenic media. Co-culture of MSCs and FCCs was hypothesized to facilitate the transition of MSCs to a FCC cell phenotype as measured by matrix secretion and morphology. MSCs and FCCs were isolated from bovine bone marrow and meniscus, respectively. Cells were seeded in a 20 mg/mL high-density type I collagen gel at MSC:FCC ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. Constructs were cultured for up to 2 weeks and then analyzed for cell morphology, glycosaminoglycan content, collagen content, and production of collagen type I, II, and X. Cells were homogeneously mixed throughout the scaffold and cells had limited direct cell-cell contact. After 2 weeks in culture, MSCs transitioned from a spindle-like morphology toward a rounded phenotype, while FCCs remained rounded throughout culture. Although MSC shape changed with culture, the overall size was significantly larger than FCCs throughout culture. While 75:25 and 100:0 (MSC mono-culture) culture groups produced significantly more glycosaminoglycan (GAG)/DNA than FCCs in mono-culture, GAG retention was highest in 50:50 co-cultures. Similarly, the aggregate modulus was highest in 100:0 and 50:50 co-cultures. All samples contained both collagen types I and II after 2 weeks, and collagen type X expression was evident only in MSC mono-culture gels. MSCs shift to a FCC morphology in both mono- and co-culture. Co-culture reduced hypertrophy by MSCs, indicated by collagen type X. This study shows that MSC phenotype can be influenced by indirect homogeneous cell culture in a three-dimensional gel, demonstrating the applicability of MSCs in meniscus tissue engineering applications.

  15. Effects of Elevated Pax6 Expression and Genetic Background on Mouse Eye Development

    PubMed Central

    Chanas, Simon A.; Collinson, J. Martin; Ramaesh, Thaya; Dorà, Natalie; Kleinjan, Dirk A.; Hill, Robert E.; West, John D.

    2009-01-01

    Purpose To analyze the effects of Pax6 overexpression and its interaction with genetic background on eye development. Methods Histologic features of eyes from hemizygous PAX77+/− transgenic (high Pax6 gene dose) and wild-type mice were compared on different genetic backgrounds. Experimental PAX77+/−↔wild-type and control wild-type↔wild-type chimeras were analyzed to investigate the causes of abnormal eye development in PAX77+/− mice. Results PAX77+/− mice showed an overlapping but distinct spectrum of eye abnormalities to Pax6+/− heterozygotes (low Pax6 dose). Some previously reported PAX77+/− eye abnormalities did not occur on all three genetic backgrounds examined. Several types of eye abnormalities occurred in the experimental PAX77+/−↔wild-type chimeras, and they occurred more frequently in chimeras with higher contributions of PAX77+/− cells. Groups of RPE cells intruded into the optic nerve sheath, indicating that the boundary between the retina and optic nerve may be displaced. Both PAX77+/− and wild-type cells were involved in this ingression and in retinal folds, suggesting that neither effect was cell-autonomous. Cell-autonomous effects included failure of PAX77+/− and wild-type cells to mix normally and overrepresentation of PAX77+/− in the lens epithelium and RPE. Conclusions The extent of PAX77+/− eye abnormalities depended on PAX77+/− genotype, genetic background, and stochastic variation. Chimera analysis identified two types of cell-autonomous effects of the PAX77+/− genotype. Abnormal cell mixing between PAX77+/− and wild-type cells suggests altered expression of cell surface adhesion molecules. Some phenotypic differences between PAX77+/−↔wild-type and Pax6+/−↔wild-type chimeras may reflect differences in the levels of PAX77+/− and Pax6+/− contributions to chimeric lenses. PMID:19387074

  16. In Vitro Differentiation of First Trimester Human Umbilical Cord Perivascular Cells into Contracting Cardiomyocyte-Like Cells.

    PubMed

    Szaraz, Peter; Librach, Matthew; Maghen, Leila; Iqbal, Farwah; Barretto, Tanya A; Kenigsberg, Shlomit; Gauthier-Fisher, Andrée; Librach, Clifford L

    2016-01-01

    Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of our study was to investigate the cardiomyogenic differentiation potential of first trimester human umbilical cord perivascular cells (FTM HUCPVCs), a novel, young source of immunoprivileged mesenchymal stromal cells. Based on the expression of cardiomyocyte markers (cTnT, MYH6, SIRPA, and CX43) FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to bone marrow MSCs, while their immunogenicity remained significantly lower as indicated by HLA-A and HLA-G expression and susceptibility to T cell mediated cytotoxicity. When applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells within 1 week of coculture, making them the first MSC type with this ability. Our results indicate that young FTM HUCPVCs have superior cardiomyogenic potential coupled with beneficial immunogenic properties when compared to MSCs of older tissue sources, suggesting that in vitro predifferentiation could be a potential strategy to increase their effectiveness in vivo.

  17. A Cell Number Counting Factor Regulates Akt/Protein Kinase B To Regulate Dictyostelium discoideum Group Size

    PubMed Central

    Gao, Tong; Knecht, David; Tang, Lei; Hatton, R. Diane; Gomer, Richard H.

    2004-01-01

    Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of ∼20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin− cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB. PMID:15470246

  18. Evidence of the Insensitivity of the α-inc Allele to the Function of the Homothallic Genes in Saccharomyces Yeasts

    PubMed Central

    Takano, Isamu; Arima, Kenji

    1979-01-01

    The possible function of the α-inc allele (an α mating-type allele that is insensitive to the function of the homothallic gene system) was investigated by means of protoplast fusion. The fusion of protoplasts prepared from haploid strains of α-inc HO HMα HMa and α ho hmα HMa gave rise mainly to nonmating clones (58 of 64 isolates) and a few clones (six of 64 isolates) showing α mating type. Thirty of the 58 nonmating clones showed the diploid cell size and 28 clones had a larger cell size. Tetrad analysis of the nonmating clones with diploid cell size indicated that they were a/α-inc diploid; the normal α allele in α/α-inc cells was preferentially switched to an a allele. This observation further indicated that the HO/ho HMα/hmα HMa/HMa genotype is effective for the conversion of the α to a and that the inconvertibility of the α-inc allele is due to the insensitivity of the mating-type allele to the functional combination of the homothallic genes. It was suspected that fusion products larger than diploid cells might have been caused by multiple fusion of protoplasts. PMID:17248884

  19. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  20. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus

    PubMed Central

    Smith, Emily M.; Lajoie, Bryan R.; Jain, Gaurav; Dekker, Job

    2016-01-01

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. PMID:26748519

  1. Silicon heterojunction solar cells with novel fluorinated n-type nanocrystalline silicon oxide emitters on p-type crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dhar, Sukanta; Mandal, Sourav; Das, Gourab; Mukhopadhyay, Sumita; Pratim Ray, Partha; Banerjee, Chandan; Barua, Asok Kumar

    2015-08-01

    A novel fluorinated phosphorus doped silicon oxide based nanocrystalline material have been used to prepare heterojunction solar cells on flat p-type crystalline silicon (c-Si) Czochralski (CZ) wafers. The n-type nc-SiO:F:H material were deposited by radio frequency plasma enhanced chemical vapor deposition. Deposited films were characterized in detail by using atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM), Raman, fourier transform infrared spectroscopy (FTIR) and optoelectronics properties have been studied using temperature dependent conductivity measurement, Ellipsometry, UV-vis spectrum analysis etc. It is observed that the cell fabricated with fluorinated silicon oxide emitter showing higher initial efficiency (η = 15.64%, Jsc = 32.10 mA/cm2, Voc = 0.630 V, FF = 0.77) for 1 cm2 cell area compare to conventional n-a-Si:H emitter (14.73%) on flat c-Si wafer. These results indicate that n type nc-SiO:F:H material is a promising candidate for heterojunction solar cell on p-type crystalline wafers. The high Jsc value is associated with excellent quantum efficiencies at short wavelengths (<500 nm).

  2. Various heterologous cells exhibit interferon induced transfer of viral resistance.

    PubMed

    Hughes, T K; Blalock, J E; Baron, S

    1978-01-01

    Previously it was shown that cocultivation of mouse L and human WISH or baby hamster kidney cells in the presence of mouse interferon resulted in decreased viral yield from both cell species. We now show that this phenomenon also occurs when rabbit kidney and human WISH cells, with their corresponding interferons, are cocultivated with human WISH and baby hamster kidney cells, respectively. This finding increases the number of donor cell types to three. The related finding that monkey VERO and chick embryo cells can be recipients of transferred resistance expands the number of heterologous recipient cell species capable of receiving transferred resistence to five. Not all cell types tested have been shown to function in this transfer system. The fact that VERO cells, which do not produce interferon, are capable of receiving transferred resistence is significant because it indicates that the mechanism of transfer does not involve production or interferon by the recipient cells.

  3. Generation Of Functional Insulin-Producing Cells In The Gut By Foxo1 Ablation

    PubMed Central

    Talchai, Chutima; Xuan, Shouhong; Kitamura, Tadahiro; DePinho, Ronald A.; Accili, Domenico

    2012-01-01

    Restoration of regulated insulin secretion is the ultimate goal of type 1 diabetes therapy. Here we show that, surprisingly, somatic ablation of Foxo1 in Neurog3+ enteroendocrine progenitor cells gives rise to gut insulin-positive cells (Ins+) that express markers of mature β-cells, and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments show that gut Ins+ cells arise cell-autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also results in the generation of gut Ins+ cells. Following ablation by the β-cell toxin, streptozotocin, gut Ins+ cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3+ enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins+ cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes. PMID:22406641

  4. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva.

    PubMed

    Perillo, Margherita; Wang, Yue Julia; Leach, Steven D; Arnone, Maria Ina

    2016-05-26

    Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems.

  5. The Placenta: Applications in Orthopaedic Sports Medicine.

    PubMed

    McIntyre, James Alexander; Jones, Ian A; Danilkovich, Alla; Vangsness, C Thomas

    2018-01-01

    Placenta has a long history of use for treating burns and wounds. It is a rich source of collagen and other extracellular matrix proteins, tissue reparative growth factors, and stem cells, including mesenchymal stem cells (MSCs). Recent data show its therapeutic potential for orthopaedic sports medicine indications. To provide orthopaedic surgeons with an anatomic description of the placenta, to characterize its cellular composition, and to review the literature reporting the use of placenta-derived cells and placental tissue allografts for orthopaedic sports medicine indications in animal models and in humans. Systematic review. Using a total of 63 keyword combinations, the PubMed and MEDLINE databases were searched for published articles describing the use of placental cells and/or tissue for orthopaedic sports medicine indications. Information was collected on placental tissue type, indications, animal model, study design, treatment regimen, safety, and efficacy outcomes. Results were categorized by indication and subcategorized by animal model. Outcomes for 29 animal studies and 6 human studies reporting the use of placenta-derived therapeutics were generally positive; however, the placental tissue source, clinical indication, and administration route were highly variable across these studies. Fourteen animal studies described the use of placental tissue for tendon injuries, 13 studies for osteoarthritis or articular cartilage injuries, 3 for ligament injuries, and 1 for synovitis. Both placenta-derived culture-expanded cells (epithelial cells or MSCs) and placental tissue allografts were used in animal studies. In all human studies, commercial placental allografts were used. Five of 6 human studies examined the treatment of foot and ankle pathological conditions, and 1 studied the treatment of knee osteoarthritis. A review of the small number of reported studies revealed a high degree of variability in placental cell types, placental tissue preparation, routes of administration, and treatment regimens, which prohibits making any definitive conclusions. Currently, the clinical use of placenta is limited to only commercial placental tissue allografts, as there are no placenta-derived biological drugs approved for the treatment of orthopaedic sports medicine conditions in the United States. However, this review shows that the application of placental cells or tissue allografts appears to be safe and has potential to improve outcomes for orthopaedic sports medicine indications.

  6. Disordered expression of inhibitory receptors on the NK1-type natural killer (NK) leukaemic cells from patients with hypersensitivity to mosquito bites

    PubMed Central

    Seo, N; Tokura, Y; Ishihara, S; Takeoka, Y; Tagawa, S; Takigawa, M

    2000-01-01

    Recent studies have revealed the existence of a distinct type of NK cell leukaemia of the juvenile type, which presents with hypersensitivity to mosquito bites (HMB) as an essential clinical manifestation and is infected with clonal Epstein–Barr virus (EBV). This disorder is thus called HMB-EBV-NK disease and has been reported in Orientals, mostly from Japan. We investigated the profile of cytokine production and the expression of both types of NK inhibitory receptors, i.e. CD94 lectin-like dimers and killer-cell immunoglobulin-like receptors, in NK leukaemic cells from three patients with HMB-EBV-NK disease. It was found that freshly isolated NK leukaemic cells expressed mRNA for interferon-gamma (IFN-γ) and additionally produced IL-10 upon stimulation with IL-2, indicating that the NK cells were of NK1 type. More than 98% of NK cells from the patients bore CD94 at a higher level than did normal NK cells, whereas p70 or NKAT2, belonging to immunoglobulin-like receptor, was not expressed in those NK cells. Freshly isolated leukaemic NK cells transcribed mRNA for CD94-associated molecule NKG2C at an abnormally high level, and upon stimulation with IL-2 and/or IL-12 they expressed NKG2A as well. The disordered expression of these inhibitory receptors not only provides some insights into the pathogenesis of HMB-EBV-NK disease but also can be used as phenotypic markers for the diagnosis of this type of NK cell leukaemia. PMID:10844517

  7. Mammalian Vestibular Macular Synaptic Plasticity: Results from SLS-2 Spaceflight

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.D.

    1994-01-01

    The effects of exposure to microgravity were studied in rat utricular maculas collected inflight (IF, day 13), post-flight on day of orbiter landing (day 14, R+O) and after 14 days (R+ML). Controls were collected at corresponding times. The objectives were 1) to learn whether hair cell ribbon synapses counts would be higher in tissues collected in space than in tissues collected postflight during or after readaptation to Earth's gravity; and 2) to compare results with those of SLS-1. Maculas were fixed by immersion, micro-dissected, dehydrated and prepared for ultrastructural study by usual methods. Synapses were counted in 100 serial sections 150 nm thick and were located to specific hair cells in montages of every 7th section. Counts were analyzed for statistical significance using analysis of variance. Results in maculas of IF dissected rats, one 13 day control (IFC), and one R + 0 rat have been analyzed. Study of an R+ML macula is nearly completed. For type I cells, IF mean is 2.3 +/-1.6; IFC mean is 1.6 +/-1.0; R+O mean is 2.3 +/- 1.6. For type II cells, IF mean is 11.4 +/- 17.1; IFC mean is 5.5 +/-3.5; R+O mean is 10.1 +/- 7.4. The difference between IF and IFC means for type I cells is statistically significant (p less than 0.0464). For type It cells, IF compared to IFC means, p less than 0.0003; and for IFC to R+O means, p less than 0.0139. Shifts toward spheres (p less than 0.0001) and pairs (p less than 0.0139) were significant in type II cells of IF rats. The results are largely replicating findings from SLS-1 and indicate that spaceflight affects synaptic number, form and distribution, particularly in type II hair cells. The increases in synaptic number and in sphere-like ribbons are interpreted to improve synaptic efficacy, to help return afferent discharges to a more normal state. Findings indicate that a great capacity for synaptic plasticity exists in mammalian gravity sensors, and that this plasticity is more dominant in the local circuitry. The local circuit includes type II cells and is interpreted to be responsible for shaping the final output of the system.

  8. Vascular endothelial cells express isoforms of protein kinase A inhibitor.

    PubMed

    Lum, Hazel; Hao, Zengping; Gayle, Dave; Kumar, Priyadarsini; Patterson, Carolyn E; Uhler, Michael D

    2002-01-01

    The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.

  9. Early effects of altered gravity environments on plant cell growth and cell proliferation: Characterization of morphofunctional nucleolar types in an Arabidopsis cell culture system

    NASA Astrophysics Data System (ADS)

    Manzano, Ana Isabel; Herranz, Raul; Manzano, Aránzazu; Van Loon, Jack; Medina, Francisco Javier

    2016-02-01

    Changes in the cell growth rate of an in vitro cellular system in Arabidopsis thaliana induced by short exposure to an altered gravity environment have been estimated by a novel approach. The method consisted of defining three structural nucleolar types which are easy and reliable indicators of the ribosome biogenesis activity and, consequently, of protein biosynthesis, a parameter strictly correlated to cell growth in this cellular system. The relative abundance of each nucleolar type was statistically assessed in different conditions of gravity. Samples exposed to simulated microgravity for 200 min showed a significant decrease in nucleolar activity compared to 1g controls, whereas samples exposed to hypergravity (2g) for the same period showed nucleolar activity slightly increased,. These effects could be considered as an early cellular response to the environmental alteration, given the short duration of the treatment. The functional significance of the structural data was validated by a combination of several different well-known parameters, using microscopical, flow cytometry, qPCR and proteomic approaches, which showed that the decreased cell growth rate was decoupled from an increased cell proliferation rate under simulated microgravity, and the opposite trend was observed under hypergravity. Actually, not all parameters tested showed the same quantitative changes, indicating that the response to the environmental alteration is time-dependent. These results are in agreement with previous observations in root meristematic cells and they show the ability of plant cells to produce a response to gravity changes, independently of their integration into plant organs.

  10. Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.

    PubMed

    Soni, Shivani; Bala, Shashi; Hanspal, Manjit

    2008-01-01

    Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.

  11. Glycyrrhizin restores the impaired IL-12 production in thermally injured mice.

    PubMed

    Utsunomiya, T; Kobayashi, M; Ito, M; Herndon, D N; Pollard, R B; Suzuki, F

    2001-04-07

    Mice 6 days after thermal injury (TI-mice) did not respond to lipopolysaccharide (LPS) stimulation for production of serum interleukin 12 (IL-12; 2 h after LPS stimulation, <20 pg/ml in TI-mice; 1091+/-162 pg/ml in normal mice). However, 2 h after LPS stimulation, 1456+/-118 pg/ml of IL-12 were demonstrated in sera of TI-mice previously treated with a 10 mg/kg i.p. dose of glycyrrhizin (GR). IL-12 was not induced by LPS in sera of normal mice inoculated with burn-associated type 2 T cells (IL-4/IL-10-producing CD8+CD11b+TCRgamma/delta+T cells isolated from spleens of TI-mice). However, IL-12 production was induced by LPS in sera of these mice previously treated with GR or a mixture of monoclonal antibodies (mAbs) for type 2 cytokines. Also, IL-12 production was induced by LPS in TI-mice inoculated with CD4+T cells from spleens of GR-treated normal mice (GR-CD4+T cells, 5x10(6)cells/mouse). Since GR-CD4+T cells have been shown to be antagonistic cells against production of type 2 cytokines by burn-associated type 2 T cells, these results indicate that IL-12 unresponsiveness shown in TI-mice is recovered by GR through the regulation of burn-associated type 2 T cell responses. Copyright 2001 Academic Press.

  12. GLUT4 in the endocrine pancreas--indicating an impact in pancreatic islet cell physiology?

    PubMed

    Bähr, I; Bazwinsky-Wutschke, I; Wolgast, S; Hofmann, K; Streck, S; Mühlbauer, E; Wedekind, D; Peschke, E

    2012-06-01

    The glucose transporter GLUT4 is well known to facilitate the transport of blood glucose into insulin-sensitive muscle and adipose tissue. In this study, molecular, immunohistochemical, and Western blot investigations revealed evidence that GLUT4 is also located in the mouse, rat, and human endocrine pancreas. In addition, high glucose decreased and insulin elevated the GLUT4 expression in pancreatic α-cells. In contrast, high glucose increased GLUT4 expression, whereas insulin led to a reduced expression level of the glucose transporter in pancreatic β-cells. In vivo experiments showed that in pancreatic tissue of type 2 diabetic rats as well as type 2 diabetic patients, the GLUT4 expression is significantly increased compared to the nondiabetic control group. Furthermore, type 1 diabetic rats exhibited reduced GLUT4 transcript levels in pancreatic tissue, whereas insulin treatment of type 1 diabetic animals enhanced the GLUT4 expression back to control levels. These data provide evidence for the existence of GLUT4 in the endocrine pancreas and indicate a physiological relevance of this glucose transporter as well as characteristic changes in diabetic disease. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Nuclear microscope analysis of blood cells from the tropical ascidian Phallusia philippinensis

    NASA Astrophysics Data System (ADS)

    Hogarth, A. N.; Thong, P. S. P.; Lane, D. J. W.; Watt, F.

    1997-07-01

    The present study examines the concentrations of vanadium, bromine and sulphur contained within cryofixed/freeze dried blood cells of the ascidian Phallusia philippinensis (Millar, 1975). Elemental profiles of seven cell types were obtained using the National University of Singapore nuclear microscope. Morula cells were found to contain the following mean values; 0.8% vanadium, 3.5% bromine and 6.1% sulphur. Signet ring cells contained 0.5% vanadium, 2.4% bromine and 1.5% sulphur. Compartment cells had 0.1% vanadium, 2.1% bromine and 2.4% sulphur. Other less abundant cell types such as lymphocytes, macrogranular amoebocytes, carotenoid pigment cells and granular amoebocytes were also analysed and found to contain 0.4%, 0.7%, 0.2% and 1.0% vanadium, 2.0%, 1.6%, 0.6% and 1.2% bromine and 1.3%, 1.5%, 0.3% and 4.3% sulphur respectively. Sulphur occurred in high levels in all cell types, which could indicate its involvement in the vanadium concentration process, while bromine, incorporated into complexes, may be utilised for anti-fouling rather than as a deterrent to predators.

  14. Differential proliferation and metabolic activity of Sertoli cells in the testes of broiler and layer breeder chickens.

    PubMed

    Faure, Mélanie; Guibert, Edith; Crochet, Sabine; Chartrin, Pascal; Brillard, Jean-Pierre; Collin, Anne; Froment, Pascal

    2017-07-01

    Decades of genetic selection have generated 2 different, highly specialized types of chickens in which 1 type, known as the layer-type chicken, expresses high laying performance while the other type, known as the broiler-type chicken, is dedicated to the production of fast-growing birds. Selected lines for the latter type often express disorders in their reproductive performance including early sexual maturation and accelerated, non-reversible seasonal decline of their semen production and mating behavior. The aim of the present study was to characterize some metabolic markers of the Sertoli cell populations. Sertoli cells are somatic cells known to support, coordinate, nourish, and protect the germ cell populations from onset to the end of their meiotic process. Comparisons of gonadal development between males of the 2 genetic types taken at their pre-pubertal period indicated that the testes of layer-type chickens are significantly less developed than in broiler-type males taken at the same age. In addition, cultures of purified Sertoli cells from the 2 types revealed in vitro a higher proliferative capacity when issued from layer compared to broiler-type chickens. This was associated with a higher expression of the genes involved in the beta-oxidation of fatty acids (CPT1; PPARβ) as well as a 4-fold increase in the Lactate Dehydrogenase-A expression and activity. In contrast, Sertoli cells from broiler-type chickens presented an elevated activity of citrate synthase and mitochondria, suggesting a better efficacy of aerobic metabolism in Sertoli cells from broiler compared to layer-type chickens. Moreover, the testis from broiler-type chickens seems to be more sensitive to oxidative stress due to the lower global antioxidant capacity compared to layer-type chickens.In conclusion, these results suggest that the metabolic activity of testicular tissues is different in the layer and broiler breeder chickens. The aerobic metabolism more prevalent in broiler-type chickens could be a factor to reduce the male fertility such as germ cell quality. © 2017 Poultry Science Association Inc.

  15. Electron and photon degradation in aluminum, gallium and boron doped float zone silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rahilly, W. P.; Scott-Monck, J.; Anspaugh, B.; Locker, D.

    1976-01-01

    Solar cells fabricated from Al, Ga and B doped Lopex silicon over a range of resistivities were tested under varying conditions of 1 MeV electron fluence, light exposures and thermal cycling. Results indicate that Al and Ga can replace B as a P type dopant to yield improved solar cell performance.

  16. HLA-B27 Modulates Intracellular Growth of Salmonella Pathogenicity Island 2 Mutants and Production of Cytokines in Infected Monocytic U937 Cells

    PubMed Central

    Ge, Shichao; He, Qiushui; Granfors, Kaisa

    2012-01-01

    Background Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells. Methods/Principal Findings To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis. Conclusions The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis. PMID:22470519

  17. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however,more » were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.« less

  18. Mapping of Variable DNA Methylation Across Multiple Cell Types Defines a Dynamic Regulatory Landscape of the Human Genome.

    PubMed

    Gu, Junchen; Stevens, Michael; Xing, Xiaoyun; Li, Daofeng; Zhang, Bo; Payton, Jacqueline E; Oltz, Eugene M; Jarvis, James N; Jiang, Kaiyu; Cicero, Theodore; Costello, Joseph F; Wang, Ting

    2016-04-07

    DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Many studies have mapped DNA methylation changes associated with embryogenesis, cell differentiation, and cancer at a genome-wide scale. Our understanding of genome-wide DNA methylation changes in a developmental or disease-related context has been steadily growing. However, the investigation of which CpGs are variably methylated in different normal cell or tissue types is still limited. Here, we present an in-depth analysis of 54 single-CpG-resolution DNA methylomes of normal human cell types by integrating high-throughput sequencing-based methylation data. We found that the ratio of methylated to unmethylated CpGs is relatively constant regardless of cell type. However, which CpGs made up the unmethylated complement was cell-type specific. We categorized the 26,000,000 human autosomal CpGs based on their methylation levels across multiple cell types to identify variably methylated CpGs and found that 22.6% exhibited variable DNA methylation. These variably methylated CpGs formed 660,000 variably methylated regions (VMRs), encompassing 11% of the genome. By integrating a multitude of genomic data, we found that VMRs enrich for histone modifications indicative of enhancers, suggesting their role as regulatory elements marking cell type specificity. VMRs enriched for transcription factor binding sites in a tissue-dependent manner. Importantly, they enriched for GWAS variants, suggesting that VMRs could potentially be implicated in disease and complex traits. Taken together, our results highlight the link between CpG methylation variation, genetic variation, and disease risk for many human cell types. Copyright © 2016 Gu et al.

  19. Human type II pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A.

    PubMed

    Ji, Rong; Lee, Clement M; Gonzales, Linda W; Yang, Yi; Aksoy, Mark O; Wang, Ping; Brailoiu, Eugen; Dun, Nae; Hurford, Matthew T; Kelsen, Steven G

    2008-06-01

    Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.

  20. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci.

    PubMed

    Coetzee, Simon G; Shen, Howard C; Hazelett, Dennis J; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J; Couch, Fergus J; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N A; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A; Pharoah, Paul D P; Noushmehr, Houtan; Gayther, Simon A

    2015-07-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10(-30)), OSECs (P = 2.4 × 10(-23)) and HMECs (P = 6.7 × 10(-15)) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Agonist-stimulated cobalt uptake provides selective visualization of neurons expressing AMPA- or kainate-type glutamate receptors in the retina.

    PubMed

    Pourcho, Roberta G; Qin, Pu; Goebel, Dennis J; Fyk-Kolodziej, Bozena

    2002-12-16

    Fast-acting excitatory neurotransmission in the retina is mediated primarily by glutamate, acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) -selective and kainate-selective receptors. To localize these sites of action, cat retinas were stimulated with either AMPA or kainate and processed for histochemical visualization of cobalt uptake through calcium-permeable channels. Treatment with both agonists resulted in staining of A- and B-type horizontal cells and several types of OFF cone bipolar cells; there was no evidence for staining of ON cone bipolar cells or rod bipolar cells. The subpopulations of OFF cone bipolar cells differed in their responses with two distinct types that stained heavily with cobalt after exposure to AMPA and three different types that were preferentially labeled after exposure to kainate. Although many amacrine and ganglion cells appeared to respond to both agonists, AII amacrine cells were stained after stimulation by AMPA but not by kainate. The OFF cone bipolar cells that exhibit AMPA-stimulated cobalt uptake were found to have a high level of correspondence with cells that show immunocytochemical staining for the AMPA-selective glutamate receptor subunits GluR1 and GluR2/3. Similarly, the cone bipolar cells exhibiting kainate-stimulated cobalt uptake resemble those that are immunoreactive for the kainate subunit GluR5. The results indicate that, whereas many retinal neurons express both AMPA and kainate receptors, AII amacrine cells and subpopulations of OFF cone bipolar cells are limited to the expression of either AMPA or kainate receptors. This differential expression may contribute to the unique character of transmission by these cell types. Copyright 2002 Wiley-Liss, Inc.

  2. LocExpress: a web server for efficiently estimating expression of novel transcripts.

    PubMed

    Hou, Mei; Tian, Feng; Jiang, Shuai; Kong, Lei; Yang, Dechang; Gao, Ge

    2016-12-22

    The temporal and spatial-specific expression pattern of a transcript in multiple tissues and cell types can indicate key clues about its function. While several gene atlas available online as pre-computed databases for known gene models, it's still challenging to get expression profile for previously uncharacterized (i.e. novel) transcripts efficiently. Here we developed LocExpress, a web server for efficiently estimating expression of novel transcripts across multiple tissues and cell types in human (20 normal tissues/cells types and 14 cell lines) as well as in mouse (24 normal tissues/cell types and nine cell lines). As a wrapper to RNA-Seq quantification algorithm, LocExpress efficiently reduces the time cost by making abundance estimation calls increasingly within the minimum spanning bundle region of input transcripts. For a given novel gene model, such local context-oriented strategy allows LocExpress to estimate its FPKMs in hundreds of samples within minutes on a standard Linux box, making an online web server possible. To the best of our knowledge, LocExpress is the only web server to provide nearly real-time expression estimation for novel transcripts in common tissues and cell types. The server is publicly available at http://loc-express.cbi.pku.edu.cn .

  3. Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma.

    PubMed

    Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A

    2005-06-01

    Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.

  4. Old and sticky—adhesive mechanisms in the living fossil Nautilus pompilius (Mollusca, Cephalopoda)

    PubMed Central

    von Byern, Janek; Wani, Ryoji; Schwaha, Thomas; Grunwald, Ingo; Cyran, Norbert

    2012-01-01

    Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction. PMID:22221553

  5. IL-21: an executor of B cell fate.

    PubMed

    Konforte, Danijela; Simard, Nathalie; Paige, Christopher J

    2009-02-15

    IL-21 is a type I cytokine that shares the common receptor gamma-chain with IL-2, IL-4, IL-7, IL-9, and IL-15. B cells are one of the lymphoid cell types whose development and function are regulated by IL-21. Depending on the interplay with costimulatory signals and on the developmental stage of a B cell, IL-21 can induce proliferation, differentiation into Ig-producing plasma cells, or apoptosis in both mice and humans. Alone and in combination with Th cell-derived cytokines IL-21 can regulate class switch recombination to IgG, IgA, or IgE isotypes, indicating its important role in shaping the effector function of B cells. This review highlights the role of IL-21 in B cell development, function, and disease and provides some perspectives on the future studies in this area.

  6. Genome Wide DNA Methylation Profiles Provide Clues to the Origin and Pathogenesis of Germ Cell Tumors

    PubMed Central

    Rijlaarsdam, Martin A.; Tax, David M. J.; Gillis, Ad J. M.; Dorssers, Lambert C. J.; Koestler, Devin C.; de Ridder, Jeroen; Looijenga, Leendert H. J.

    2015-01-01

    The cell of origin of the five subtypes (I-V) of germ cell tumors (GCTs) are assumed to be germ cells from different maturation stages. This is (potentially) reflected in their methylation status as fetal maturing primordial germ cells are globally demethylated during migration from the yolk sac to the gonad. Imprinted regions are erased in the gonad and later become uniparentally imprinted according to fetal sex. Here, 91 GCTs (type I-IV) and four cell lines were profiled (Illumina’s HumanMethylation450BeadChip). Data was pre-processed controlling for cross hybridization, SNPs, detection rate, probe-type bias and batch effects. The annotation was extended, covering snRNAs/microRNAs, repeat elements and imprinted regions. A Hidden Markov Model-based genome segmentation was devised to identify differentially methylated genomic regions. Methylation profiles allowed for separation of clusters of non-seminomas (type II), seminomas/dysgerminomas (type II), spermatocytic seminomas (type III) and teratomas/dermoid cysts (type I/IV). The seminomas, dysgerminomas and spermatocytic seminomas were globally hypomethylated, in line with previous reports and their demethylated precursor. Differential methylation and imprinting status between subtypes reflected their presumed cell of origin. Ovarian type I teratomas and dermoid cysts showed (partial) sex specific uniparental maternal imprinting. The spermatocytic seminomas showed uniparental paternal imprinting while testicular teratomas exhibited partial imprinting erasure. Somatic imprinting in type II GCTs might indicate a cell of origin after global demethylation but before imprinting erasure. This is earlier than previously described, but agrees with the totipotent/embryonic stem cell like potential of type II GCTs and their rare extra-gonadal localization. The results support the common origin of the type I teratomas and show strong similarity between ovarian type I teratomas and dermoid cysts. In conclusion, we identified specific and global methylation differences between GCT subtypes, providing insight into their developmental timing and underlying developmental biology. Data and extended annotation are deposited at GEO (GSE58538 and GPL18809). PMID:25859847

  7. Immortal, telomerase-negative cell lines derived from a Li-Fraumeni syndrome patient exhibit telomere length variability and chromosomal and minisatellite instabilities.

    PubMed

    Tsutsui, Takeki; Kumakura, Shin-Ichi; Tamura, Yukiko; Tsutsui, Takeo W; Sekiguchi, Mizuki; Higuchi, Tokihiro; Barrett, J Carl

    2003-05-01

    Five immortal cell lines derived from a Li-Fraumeni syndrome patient (MDAH 087) with a germline mutant p53 allele were characterized with respect to telomere length and genomic instability. The remaining wild-type p53 allele is lost in the cell lines. Telomerase activity was undetectable in all immortal cell lines. Five subclones of each cell line and five re-subclones of each of the subclones also showed undetectable telomerase activity. All five immortal cell lines exhibited variability in the mean length of terminal restriction fragments (TRFs). Subclones of each cell line, and re-subclones of the subclones also showed TRF variability, indicating that the variability is owing to clonal heterogeneity. Chromosome aberrations were observed at high frequencies in these cell lines including the subclones and re-subclones, and the principal types of aberrations were breaks, double minute chromosomes and dicentric chromosomes. In addition, minisatellite instability detected by DNA fingerprints was observed in the immortal cell lines. However, all of the cell lines were negative for microsatellite instability. As minisatellite sequences are considered recombinogenic in mammalian cells, these results suggest that recombination rates can be increased in these cell lines. Tumor-derived human cell lines, HT1080 cells and HeLa cells that also lack p53 function, exhibited little genomic instability involving chromosomal and minisatellite instabilities, indicating that chromosomal and minisatellite instabilities observed in the immortal cell lines lacking telomerase activity could not result from loss of p53 function.

  8. Hematopoietic stem cell transplantation in Europe 1998.

    PubMed

    Gratwohl, A; Passweg, J; Baldomero, H; Hermans, J; Urbano-Ispizua, A

    2000-01-01

    Transplantation of hematopoietic stem cells from blood or bone marrow has become accepted therapy for many diseases. Numbers of transplants have increased significantly and stem cell source, donor type and indications have changed during this decade. Information on these changes is essential for interpretation of current data, patient counseling and health care planning. Since 1990, members of the European Group for Blood and Marrow Transplantation and teams known to perform blood or marrow transplants have been invited annually to report their transplant numbers by indication, donor type and stem cell source. Data from these surveys have been used to present data for 1998, to assess current status and to give numbers of transplants per participating country, coefficients of variation between countries for individual indications and changes in indication, stem cell source and donor type over the past decade. In 1998, a total of 20 892 transplants were performed by 528 teams in 31 European countries. Of these transplants 18 400 were first transplants, 5308 (29%) were allogenic, and 13 092 (71%) were autologous. Of the autologous transplants, 809 (6%) were bone marrow derived, and 12 283 (94%) were from peripheral blood stems cells. Of the allogeneic transplants, 3372 (64%) were bone marrow derived, and 1936 (36%) were peripheral blood stem cell transplants. In 1990, the respective figures were 2137 allogeneic (50%) and 2097 (50%) autologous transplants, all exclusively bone marrow derived. Main indications in 1998 were leukemias with 6015 transplants (33%), 68% thereof allogeneic transplants; lymphomas with 7492 transplants (41%), 94% thereof autologous transplants; solid tumors with 4025 transplants (22%), 99% thereof autologous transplants; non-malignant disorders with 868 transplants (5%), 80% thereof allogeneic transplants. Absolute numbers of transplants per year did increase from 4234 in 1990 to 20 892 in 1998. Increase is higher for autologous, than for allogeneic transplants. There were differences in absolute or relative increase over time for individual indications. Transplant rates per number of inhabitants varied between countries, ranging from 0 to >500 total transplants per 10 million inhabitants with a clear correlation between number of teams and transplants per 10 million inhabitants (r=0.61, P<0.001). The least variation between countries was observed for acute leukemias, chronic myeloid leukemia and severe aplastic anemia in allogeneic transplants, for Hodgkin's disease and non-Hodgkin's lymphoma in autologous transplants. These data reflect the current status of blood and marrow transplantation in Europe. They show the continuing increase in utilization, highlight the change from bone marrow to blood as stem cell source and give an objective assessment on presence or absence of trends.

  9. Characteristics of microRNAs enriched in specific cell types and primary tissue types in solid organs.

    PubMed

    Kriegel, Alison J; Liu, Yong; Liu, Pengyuan; Baker, Maria Angeles; Hodges, Matthew R; Hua, Xing; Liang, Mingyu

    2013-12-01

    Knowledge of miRNA expression and function in specific cell types in solid organs is limited because of difficulty in obtaining appropriate specimens. We used laser capture microdissection to obtain nine tissue regions from rats, including the nucleus of the solitary tract, hypoglossal motor nucleus, ventral respiratory column/pre-Bötzinger complex, and midline raphe nucleus from the brain stem, myocardium and coronary artery from the heart, and glomerulus, proximal convoluted tubule, and medullary thick ascending limb from the kidney. Each tissue region consists of or is enriched for a specific cell type. Differential patterns of miRNA expression obtained by deep sequencing of minute amounts of laser-captured cells were highly consistent with data obtained from real-time PCR analysis. miRNA expression patterns correctly clustered the specimens by tissue regions and then by primary tissue types (neural, muscular, or epithelial). The aggregate difference in miRNA profiles between tissue regions that contained the same primary tissue type was as large as one-half of the aggregate difference between primary tissue types. miRNAs differentially expressed between primary tissue types are more likely to be abundant miRNAs, while miRNAs differentially expressed between tissue regions containing the same primary tissue type were distributed evenly across the abundance spectrum. The tissue type-enriched miRNAs were more likely to target genes enriched for specific functional categories compared with either cell type-enriched miRNAs or randomly selected miRNAs. These data indicate that the role of miRNAs in determining characteristics of primary tissue types may be different than their role in regulating cell type-specific functions in solid organs.

  10. Jacalin and peanut agglutinin (PNA) bindings in the taste bud cells of the rat: new reliable markers for type IV cells of the rat taste buds.

    PubMed

    Taniguchi, Ryo; Shi, Lei; Fujii, Masae; Ueda, Katsura; Honma, Shiho; Wakisaka, Satoshi

    2005-12-01

    Lectin histochemistry of Jacalin (Artocarpus integrifolia) and peanut agglutinin (PNA), specific lectins for galactosyl (beta-1, 3) N-acetylgalactosamine (galactosyl (beta-1, 3) GalNAc), was applied to the gustatory epithelium of the adult rat. In the ordinary lingual epithelium, Jacalin and PNA labeled the cell membrane from the basal to granular cell layer. They also bound membranes of rounded-cells at the basal portion of taste buds, but the number of PNA labeled cells was smaller than that of Jacalin labeled cells. There was no apparent difference in the binding patterns of Jacalin and PNA among the taste buds of the lingual papillae and those of the palatal epithelium. Occasionally, a few spindle-shaped cells were labeled with Jacalin, but not with PNA. Double labeling of Jacalin and alpha-gustducin, a specific marker for type II cells, revealed that Jacalin-labeled spindle-shaped taste cells were immunonegative for alpha-gustducin. Spindle-shaped cells expressing protein gene product 9.5 (PGP 9.5) immunoreactivity lacked Jacalin labeling. During the development of taste buds in circumvallate papillae, the binding pattern of Jacalin became almost identical from postnatal day 5. The present results indicate that rounded cells at the basal portion of the taste buds cells (type IV cells) bind to Jacalin and PNA, and these lectins are specific markers for type IV cells of the rat taste cells.

  11. Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain.

    PubMed

    Torres-Pérez, Maximiliano; Rosillo, Juan Carlos; Berrosteguieta, Ines; Olivera-Bravo, Silvia; Casanova, Gabriela; García-Verdugo, José Manuel; Fernández, Anabel Sonia

    2017-10-15

    Our previous studies demonstrated that Austrolebias charrua annual fish is an excellent model to study adult brain cell proliferation and neurogenesis due to the presence of active and fast neurogenesis in several regions during its short lifespan. Our main goal was to identify and localize the cells that compose the neurogenic areas throughout the Austrolebias brain. To do this, we used two thymidine halogenated analogs to detect cell proliferation at different survival times: 5-chloro-2'-deoxyuridine (CldU) at 1day and 5-iodo-2'-deoxyuridine (IdU) at 30days. Three types of proliferating cells were identified: I - transient amplifying or fast cycling cells that uptake CldU; II - stem cells or slow cycling cells, that were labeled with both CldU and IdU and did not migrate; and III - migrant cells that uptake IdU. Mapping and 3D-reconstruction of labeled nuclei showed that type I and type II cells were preferentially found close to ventricle walls. Type III cells appeared widespread and migrating in tangential and radial routes. Use of proliferation markers together with Vimentin or Nestin evidenced that type II cells are the putative stem cells that are located at the ventricular lumen. Double label cells with IdU+ and NeuN or HuC/D allowed us identify migrant neurons. Quantitation of labeled nuclei indicates that the proportion of putative stem cells is around 10% in all regions of the brain. This percentage of stem cells suggests the existence of a constant brain cell population in Austrolebias charrua that seems functional to the maintainance of adult neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation

    PubMed Central

    Lim, Chinten James; Spiegelman, George B.; Weeks, Gerald

    2001-01-01

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC– cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC– cells stimulated by 2′-deoxy-cAMP, but is produced in response to GTPγS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC– cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC– cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC– cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC– cells, suggesting that AleA may activate RasC. PMID:11500376

  13. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.

    PubMed

    Lim, C J; Spiegelman, G B; Weeks, G

    2001-08-15

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.

  14. A Learning Model for L/M Specificity in Ganglion Cells

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  15. Tachykinins Stimulate a Subset of Mouse Taste Cells

    PubMed Central

    Grant, Jeff

    2012-01-01

    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods. PMID:22363709

  16. Human Embryonic and Induced Pluripotent Stem Cell Research Trends: Complementation and Diversification of the Field

    PubMed Central

    Kobold, Sabine; Guhr, Anke; Kurtz, Andreas; Löser, Peter

    2015-01-01

    Summary Research in human induced pluripotent stem cells (hiPSCs) is rapidly developing and there are expectations that this research may obviate the need to use human embryonic stem cells (hESCs), the ethics of which has been a subject of controversy for more than 15 years. In this study, we investigated approximately 3,400 original research papers that reported an experimental use of these types of human pluripotent stem cells (hPSCs) and were published from 2008 to 2013. We found that research into both cell types was conducted independently and further expanded, accompanied by a growing intersection of both research fields. Moreover, an in-depth analysis of papers that reported the use of both cell types indicates that hESCs are still being used as a “gold standard,” but in a declining proportion of publications. Instead, the expanding research field is diversifying and hESC and hiPSC lines are increasingly being used in more independent research and application areas. PMID:25866160

  17. Cancer type-dependent genetic interactions between cancer driver alterations indicate plasticity of epistasis across cell types

    PubMed Central

    Park, Solip; Lehner, Ben

    2015-01-01

    Cancers, like many diseases, are normally caused by combinations of genetic alterations rather than by changes affecting single genes. It is well established that the genetic alterations that drive cancer often interact epistatically, having greater or weaker consequences in combination than expected from their individual effects. In a stringent statistical analysis of data from > 3,000 tumors, we find that the co-occurrence and mutual exclusivity relationships between cancer driver alterations change quite extensively in different types of cancer. This cannot be accounted for by variation in tumor heterogeneity or unrecognized cancer subtypes. Rather, it suggests that how genomic alterations interact cooperatively or partially redundantly to driver cancer changes in different types of cancers. This re-wiring of epistasis across cell types is likely to be a basic feature of genetic architecture, with important implications for understanding the evolution of multicellularity and human genetic diseases. In addition, if this plasticity of epistasis across cell types is also true for synthetic lethal interactions, a synthetic lethal strategy to kill cancer cells may frequently work in one type of cancer but prove ineffective in another. PMID:26227665

  18. Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping

    PubMed Central

    Swain, Robin J.; Kemp, Sarah J.; Goldstraw, Peter; Tetley, Teresa D.; Stevens, Molly M.

    2010-01-01

    Abstract Researchers have previously questioned the suitability of cell lines as models for primary cells. In this study, we used Raman microspectroscopy to characterize live A549 cells from a unique molecular biochemical perspective to shed light on their suitability as a model for primary human pulmonary alveolar type II (ATII) cells. We also investigated a recently developed transduced type I (TT1) cell line as a model for alveolar type I (ATI) cells. Single-cell Raman spectra provide unique biomolecular fingerprints that can be used to characterize cellular phenotypes. A multivariate statistical analysis of Raman spectra indicated that the spectra of A549 and TT1 cells are characterized by significantly lower phospholipid content compared to ATII and ATI spectra because their cytoplasm contains fewer surfactant lamellar bodies. Furthermore, we found that A549 spectra are statistically more similar to ATI spectra than to ATII spectra. The spectral variation permitted phenotypic classification of cells based on Raman spectral signatures with >99% accuracy. These results suggest that A549 cells are not a good model for ATII cells, but TT1 cells do provide a reasonable model for ATI cells. The findings have far-reaching implications for the assessment of cell lines as suitable primary cellular models in live cultures. PMID:20409492

  19. Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells.

    PubMed

    Zebedin, Eva; Sandtner, Walter; Galler, Stefan; Szendroedi, Julia; Just, Herwig; Todt, Hannes; Hilber, Karlheinz

    2004-08-01

    Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C(2)C(12) murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Na(v)1.5 compared with the skeletal muscle isoform Na(v)1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties.

  20. Persistent hyperplastic primary vitreous due to somatic mosaic deletion of the arf tumor suppressor.

    PubMed

    Thornton, J Derek; Swanson, Doug J; Mary, Michelle N; Pei, Deqing; Martin, Amy C; Pounds, Stanley; Goldowitz, Dan; Skapek, Stephen X

    2007-02-01

    Mice lacking the Arf tumor-suppressor gene develop eye disease reminiscent of persistent hyperplastic primary vitreous (PHPV). The current work explores mechanisms by which Arf promotes eye development, and its absence causes a PHPV-like disease. Chimeric mice were made by fusing wild-type and Arf(-/-) morulae. In these experiments, wild-type cells are identified by transgenic expression of GFP from a constitutive promoter. PCR-based genotyping and quantitative analyses after immunofluorescence staining of tissue and cultured cells documented the relative contribution of wild-type and Arf(-/-) cells to different tissues in the eye and different types of cells in the vitreous. The contributions of the Arf(-/-) lineage to the tail DNA, cornea, retina, and retina pigment epithelium (RPE) correlated with each other in wild-type<-->Arf(-/-) chimeric mice. Newborn chimeras had primary vitreous hyperplasia, evident as a retrolental mass. The mass was usually present when the proportion of Arf(-/-) cells was relatively high and absent when the Arf(-/-) proportion was low. The Pdgfrbeta- and Sma-expressing cells within the mass arose predominantly from the Arf(-/-) population. Ectopic Arf expression induced smooth muscle proteins in cultured pericyte-like cells, and Arf and Sma expression overlapped in hyaloid vessels. In the mouse model, loss of Arf in only a subset of cells causes a PHPV-like disease. The data indicate that both cell autonomous and non-cell autonomous effects of Arf may contribute to its role in vitreous development.

  1. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1.

    PubMed

    Ramberger, Melanie; Högl, Birgit; Stefani, Ambra; Mitterling, Thomas; Reindl, Markus; Lutterotti, Andreas

    2017-03-01

    Narcolepsy type 1 is accompanied by a selective loss of orexin/hypocretin (hcrt) neurons in the lateral hypothalamus caused by yet unknown mechanisms. Epidemiologic and genetic associations strongly suggest an immune-mediated pathogenesis of the disease. We compared specific T-cell reactivity to orexin/hcrt peptides in peripheral blood mononuclear cells of narcolepsy type 1 patients to healthy controls by a carboxyfluorescein succinimidyl ester proliferation assay. Orexin/hcrt-specific T-cell reactivity was also determined by cytokine (interferon gamma and granulocyte-macrophage colony-stimulating factor) analysis. Individuals were considered as responders if the cell division index of CD3+CD4+ T cells and both stimulation indices of cytokine secretion exceeded the cutoff 3. Additionally, T-cell reactivity to orexin/hcrt had to be confirmed by showing reactivity to single peptides present in different peptide pools. Using these criteria, 3/15 patients (20%) and 0/13 controls (0%) showed orexin/hcrt-specific CD4+ T-cell proliferation (p = .2262). The heterogeneous reactivity pattern did not allow the identification of a preferential target epitope. A significant role of orexin/hcrt-specific T cells in narcolepsy type 1 patients could not be confirmed in this study. Further studies are needed to assess the exact role of CD4+ T cells and possible target antigens in narcolepsy type 1 patients. © Sleep Research Society 2016. Published by Oxford University Press [on behalf of the Sleep Research Society].

  2. Identification of distinct topographical surface microstructures favoring either undifferentiated expansion or differentiation of murine embryonic stem cells.

    PubMed

    Markert, Lotte D'Andrea; Lovmand, Jette; Foss, Morten; Lauridsen, Rune Hoff; Lovmand, Michael; Füchtbauer, Ernst-Martin; Füchtbauer, Annette; Wertz, Karin; Besenbacher, Flemming; Pedersen, Finn Skou; Duch, Mogens

    2009-11-01

    The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.

  3. 7-Hydroxystaurosporine (UCN-01) preferentially sensitizes cells with a disrupted TP53 to gamma radiation in lung cancer cell lines.

    PubMed

    Xiao, Helen H; Makeyev, Yan; Butler, James; Vikram, Bhadrasain; Franklin, William A

    2002-07-01

    Mutations in TP53 occur in more than 50% of the lung cancer patients and are associated with an increased resistance to chemotherapy and radiotherapy. The human lung adenocarcinoma cell lines A549 and LXSN contain a wild-type TP53 and were growth arrested at both the G(1)- and G(2)-phase checkpoints after irradiation. However, a TP53-disrupted cell line, E6, was arrested only at the G(2)-phase checkpoint. UCN-01 (7-hydroxystaurosporine), a CHEK1 inhibitor that abrogates the G(2) block, has been reported to enhance radiation toxicity in human lymphoma and colon cancer cell lines. In this study, UCN-01 preferentially enhanced the radiosensitivity of the TP53-disrupted E6 cells compared to the TP53 wild-type cells. This effect was more pronounced in cells synchronized in early G(1) phase, where the E6 cells showed a higher resistance to radiation in the absence of drug. These results indicate that the combination of UCN-01 and radiation can more specifically target resistant TP53 mutated cancer cells and spare TP53 wild-type normal cells.

  4. AhR modulates the IL-22-producing cell proliferation/recruitment in imiquimod-induced psoriasis mouse model.

    PubMed

    Cochez, Perrine M; Michiels, Camille; Hendrickx, Emilie; Van Belle, Astrid B; Lemaire, Muriel M; Dauguet, Nicolas; Warnier, Guy; de Heusch, Magali; Togbe, Dieudonnée; Ryffel, Bernhard; Coulie, Pierre G; Renauld, Jean-Christophe; Dumoutier, Laure

    2016-06-01

    IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRβ(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRβ(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRβ(+) T cells and ILCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Properties of glutamate-gated ion channels in horizontal cells of the perch retina.

    PubMed

    Schmidt, K F

    1997-08-01

    The effect of two different concentrations of L-glutamate and kainate on the gating kinetics of amino acid-sensitive non-NMDA channels were studied in cultured teleost retinal horizontal cells by single-channel recording and by noise analysis of whole-cell currents. When the glutamate agonist kainate was applied clearly parabolic mean-variance relations of whole-cell membrane currents (up to 3000 pA) indicated that this agonist was acting on one type of channels with a conductance of 5-10 pS. The cells were less sensitive when L-glutamate was used as the agonist and in most cases whole-cell currents amounted to less than 200 pA. The mean-variance relation of glutamate induced currents was complex, indicating that more than one type of channel opening could be involved. Power spectra of whole-cell currents were fitted with two Lorentzians with time constants of approx. 1 and 5-20 msec. Effects on amplitudes and time constants of agonist concentrations are demonstrated. Two categories of unitary events with mean open times of approx. 1 and 7 msec and conductances of approx. 7 and 12 pS, respectively, were obtained in single-channel recordings from cell-attached patches at different concentrations of glutamate in the pipette.

  6. [Construction and identification of recombinant human platelet-derived growth factor-B adenoviral vector and transfection into periodontal ligament stem cells].

    PubMed

    Shang, Shu-huan; Zhang, Yu-feng; Shi, Bin; Cheng, Xiang-rong

    2008-10-01

    To construct a recombinant human platelet-derived growth factor-B (PDGF-B) adenoviral vector and to transfect it into human periodontal ligament stem cells (PDLSC). The recombinant plasmid pAd-PDGF-B was constructed by homologous recombination and confirmed by restriction endonucleases digestion. Recombinant adenovirus was packaged in HEK293 cells. PDLSC were transfected with recombinant adenovirus and PDGF-B expression was confirmed. Expression of collagen type I gene was determined by quantitative analysis of the products of RT-PCR. The cell proliferation was determined with MTT colorimetric assay. The recombinant plasmid pAd-PDGF-B was confirmed by restriction endonucleases digestion. EGFP expression was observed on the third day after transfecting, and the expression of PDGF-B was detected. Immunohistochemical methods revealed that PDGF-B was expressed in PDLSC. Levels of expression of collagen type I gene were increased significantly by transfer of the exogenous PDGF-B gene to PDLSC. At the same time, findings indicated that Ad-PDGF-B stimulated PDLSC proliferation. MTT assay indicated the absorbance of PDLSC by stimulating with Ad-PDGF-B was (0.68 +/- 0.02), P < 0.01. Using the AdEasy system, the human PDGF-B recombinant adenovirus can be rapidly obtained. These results indicate that recombinant adenoviruses encoding PDGF-B transgenes could modulate proliferative activity of PDLSC, enhance the high expression of collagen type I and lay the foundation for periodontal tissue regeneration and dental implant gene therapy.

  7. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.

    PubMed

    Musser, Jacob M; Arendt, Detlev

    2017-11-01

    Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    PubMed

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  9. The effect of antilymphocytic antibody on the humoral immune response in different strains of mice

    PubMed Central

    Ghaffar, A.; James, K.

    1973-01-01

    The effect of a single batch of horse anti-mouse thymocyte globulin on the immune response to type III polysaccharide antigen has been investigated in 2–3-month-old male A/HeJ, C57B1, BALB/c, DBA/1, CBA and C3H mice. In almost all cases the intraperitoneal administration of 5 mg of this material on days –4 and –2 significantly suppressed the immune response to 0.1, 1.0 and 5.0 μg of antigen injected i.v. on day 0. Further studies undertaken in BALB/c mice indicated that effective suppression of the immune response to type III polysaccharide antigen could also be achieved by injecting 5 mg of this product (i.p.) some 15–30 minutes prior to antigenic challenge. Preliminary cell reconstitution studies in antilymphocytic antibody-treated CBA mice indicate that the ability to respond to type III polysaccharide can be partially restored by the injection of syngeneic thymocytes, bone marrow cells or spleen cells. PMID:4146227

  10. Cell type-specific hypersensitivity to oxidative damage in CSB and XPA mice.

    PubMed

    de Waard, Harm; de Wit, Jan; Gorgels, Theo G M F; van den Aardweg, Gerard; Andressoo, Jaan Olle; Vermeij, Marcel; van Steeg, Harry; Hoeijmakers, Jan H J; van der Horst, Gijsbertus T J

    2003-01-02

    Mutations in the CSB gene cause Cockayne syndrome (CS), a rare inherited disorder, characterized by UV-sensitivity, severe neurodevelopmental and progeroid symptoms. CSB functions in the transcription-coupled repair (TCR) sub-pathway of nucleotide excision repair (NER), responsible for the removal of UV-induced and other helix-distorting lesions from the transcribed strand of active genes. Several lines of evidence support the notion that the CSB TCR defect extends to other non-NER type transcription-blocking lesions, notably various kinds of oxidative damage, which may provide an explanation for part of the severe CS phenotype. We used genetically defined mouse models to examine the relationship between the CSB defect and sensitivity to oxidative damage in different cell types and at the level of the intact organism. The main conclusions are: (1) CSB(-/-) mouse embryo fibroblasts (MEFs) exhibit a clear hypersensitivity to ionizing radiation, extending the findings in genetically heterogeneous human CSB fibroblasts to another species. (2) CSB(-/-) MEFs are highly sensitive to paraquat, strongly indicating that the increased cytotoxicity is due to oxidative damage. (3) The hypersenstivity is independent of genetic background and directly related to the CSB defect and is not observed in totally NER-deficient XPA MEFs. (4) Wild type embryonic stem (ES) cells display an increased sensitivity to ionizing radiation compared to fibroblasts. Surprisingly, the CSB deficiency has only a very minor additional effect on ES cell sensitivity to oxidative damage and is comparable to that of an XPA defect, indicating cell type-specific differences in the contribution of TCR and NER to cellular survival. (5) Similar to ES cells, CSB and XPA mice both display a minor sensitivity to whole-body X-ray exposure. This suggests that the response of an intact organism to radiation is largely determined by the sensitivity of stem cells, rather than differentiated cells. These findings establish the role of transcription-coupled repair in resistance to oxidative damage and reveal a cell- and organ-specific impact of this repair pathway to the clinical phenotype of CS and XP.

  11. Membrane-type matrix metalloproteinases mediate curcumin-induced cell migration in non-tumorigenic colon epithelial cells differing in Apc genotype.

    PubMed

    Fenton, Jenifer I; Wolff, Margaret S; Orth, Michael W; Hord, Norman G

    2002-06-01

    Colonic epithelial cell migration is required for normal differentiated cell function. This migratory phenotype is dependent upon wild-type adenomatous polyposis coli (Apc) expression. Non-tumorigenic murine colon epithelial cell lines with distinct Apc genotypes, i.e. young adult mouse colon (YAMC; Apc(+/+)) and immortomouse/Min colon epithelial (IMCE; Apc(Min/+) cells) were used to assess the association between the Apc genotype, cell motility and matrix metalloproteinase (MMP) activity. Cells were treated with epidermal growth factor (EGF; 1, 10 and 25 ng/ml), hepatocyte growth factor (HGF; 1, 10 and 25 ng/ml) and/or curcumin (0.1-100 microM). EGF (25 ng/ml) and HGF (25 ng/ml) induced a greater migratory response in YAMC compared with IMCE cells after 24 h (P < 0.05). Treatment with curcumin induced a greater or equivalent migratory response in IMCE than YAMC cells. When migrating cells were treated with Ilomastat (MMP inhibitor), migration was inhibited in both cell types. High concentrations of Ilomastat (25 and 50 microM) inhibited migration in both cell types, while low concentrations (10 microM) inhibited HGF-induced IMCE migration. Curcumin-induced migration was inhibited in both cell types at the highest concentration of Ilomastat (50 microM). Immuno-localization analysis of membrane type-1 (MT1)-MMP indicated that migration is associated with the redistribution of this protein from the endoplasmic reticulum to the plasma membrane. Addition of neutralizing polyclonal antibodies against MT1-MMP or a mixture of MT1, 2- and 3-MMPs demonstrated partial or complete inhibition of cell migration in both cell types, respectively. The data provide the first evidence that migration in non-tumorigenic murine colon epithelial cells is: (i) inducible by EGF and HGF in an Apc genotype-dependent manner, (ii) dependent on MT-MMP activity and (iii) inducible by curcumin in an Apc genotype-independent manner. The data suggest a potential mechanism by which curcumin may induce cells heterozygous for Apc to overcome defective cell migration, a phenotype associated with cell differentiation and apoptosis.

  12. [Indication of chemotherapy according to histological type of musculoskeletal sarcomas].

    PubMed

    Goto, Takahiro; Okuma, Tomotake; Ogura, Koichi; Imanishi, Jungo; Hozumi, Takahiro; Kondo, Taiji

    2009-02-01

    In high-grade musculoskeletal sarcomas, adjuvant chemotherapy is often performed to prevent distant metastases. As the efficacy of chemotherapy varies according to the histological type of sarcoma, its indication is determined according to the histological type and the stage. Prognoses are poor in patients with osteosarcoma, Ewing's sarcoma, or rhabdomyosarcoma, when surgery alone is performed. However, because these sarcomas are chemosensitive, their prognoses are improved with adjuvant chemotherapy, so it is absolutely necessary. Drugs commonly used for osteosarcoma include adriamycin, cisplatin, methotrexate, vincristine, and ifosfamide. For Ewing's sarcoma and rhabdomyosarcoma, vincristine, actinomycin-D, cyclophosphamide, etoposide, and ifosfamide are commonly used. On the other hand, the efficacy of chemotherapy is unclear in most of the non-round cell sarcomas, e. g., malignant fibrous histiocytoma, pleomorphic liposarcoma, and leiomyosarcoma, so adjuvant chemotherapy is relatively indicated and often performed preoperatively. The efficacy is evaluated by reduction of the tumor volume as a surrogate marker. Postoperative chemotherapy is performed when the preoperative chemotherapy is effective. Nowadays, several kinds of antitumor agents are usually used for non-round cell sarcomas, and many authors have reported various kinds of regimens and their clinical results. Among them, the key drugs are adriamycin and ifosfamide. Recently, taxanes and gemcitabine are sometimes used. For chemoresistant sarcomas, e. g., chondrosarcoma, chordoma, alveolar soft part sarcoma, chemotherapy is rarely indicated, even if the tumor is histologically high grade and large. Low-grade musculoskeletal sarcomas, e. g., low-grade chondrosarcoma, central low-grade osteosarcoma, parosteal osteosarcoma, well-differentiated liposarcoma, and dermatofibrosarcoma protuberans, are well cured only by surgical excision, and adjuvant chemotherapy is therefore not indicated. Superficially-located, small-size non-round cell sarcomas, even though histologically high grade, are well healed only by surgical excision, and adjuvant chemotherapy is rarely indicated.

  13. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    NASA Technical Reports Server (NTRS)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  14. Invariant TAD Boundaries Constrain Cell-Type-Specific Looping Interactions between Promoters and Distal Elements around the CFTR Locus.

    PubMed

    Smith, Emily M; Lajoie, Bryan R; Jain, Gaurav; Dekker, Job

    2016-01-07

    Three-dimensional genome structure plays an important role in gene regulation. Globally, chromosomes are organized into active and inactive compartments while, at the gene level, looping interactions connect promoters to regulatory elements. Topologically associating domains (TADs), typically several hundred kilobases in size, form an intermediate level of organization. Major questions include how TADs are formed and how they are related to looping interactions between genes and regulatory elements. Here we performed a focused 5C analysis of a 2.8 Mb chromosome 7 region surrounding CFTR in a panel of cell types. We find that the same TAD boundaries are present in all cell types, indicating that TADs represent a universal chromosome architecture. Furthermore, we find that these TAD boundaries are present irrespective of the expression and looping of genes located between them. In contrast, looping interactions between promoters and regulatory elements are cell-type specific and occur mostly within TADs. This is exemplified by the CFTR promoter that in different cell types interacts with distinct sets of distal cell-type-specific regulatory elements that are all located within the same TAD. Finally, we find that long-range associations between loci located in different TADs are also detected, but these display much lower interaction frequencies than looping interactions within TADs. Interestingly, interactions between TADs are also highly cell-type-specific and often involve loci clustered around TAD boundaries. These data point to key roles of invariant TAD boundaries in constraining as well as mediating cell-type-specific long-range interactions and gene regulation. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays

    PubMed Central

    Rampersad, Sephra N.

    2012-01-01

    Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls. PMID:23112716

  16. Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.

    PubMed

    Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji

    2015-04-07

    To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.

  17. Conceptual Difficulties Experienced by Prospective Teachers in Electrochemistry: Half-Cell Potential, Cell Potential, and Chemical and Electrochemical Equilibrium in Galvanic Cells.

    ERIC Educational Resources Information Center

    Ozkaya, Ali Riza

    2002-01-01

    A previous study of prospective teachers found that students from different countries and different levels of electrochemistry hold common misconceptions, indicating that concepts were presented to them poorly. Reports on how prospective teachers' scientifically incorrect ideas were used to form assertion-reason-type questions and how these…

  18. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines

    PubMed Central

    Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.

    2015-01-01

    Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381

  19. Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines.

    PubMed

    Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N; McMahon, D G; Brecha, N C

    2015-10-29

    Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. Published by Elsevier Ltd.

  20. Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411.

    PubMed

    Holmboe, Sif; Hansen, Pernille Lund; Thisgaard, Helge; Block, Ines; Müller, Carolin; Langkjær, Niels; Høilund-Carlsen, Poul Flemming; Olsen, Birgitte Brinkmann; Mollenhauer, Jan

    2017-01-01

    Cancer stem cells represent the putative tumor-driving subpopulation thought to account for drug resistance, relapse, and metastatic spread of epithelial and other cancer types. Accordingly, cell surface markers for therapeutic delivery to cancer stem cells are subject of intense research. Somatostatin receptor 2 and nucleolin are known to be overexpressed by various cancer types, which have elicited comprehensive efforts to explore their therapeutic utilization. Here, we evaluated somatostatin receptor 2 targeting and nucleolin targeting for therapeutic delivery to cancer stem cells from lung cancer. Nucleolin is expressed highly but not selectively, while somatostatin receptor 2 is expressed selectively but not highly by cancer cells. The non-small cell lung cancer cell lines A549 and H1299, displayed average levels of both surface molecules as judged based on analysis of a larger cell line panel. H1299 compared to A549 cells showed significantly elevated sphere-forming capacity, indicating higher cancer stem cell content, thus qualifying as suitable test system. Nucleolin-targeting 57Co-DOTA-AS1411 aptamer showed efficient internalization by cancer cells and, remarkably, at even higher efficiency by cancer stem cells. In contrast, somatostatin receptor 2 expression levels were not sufficiently high in H1299 cells to confer efficient uptake by either non-cancer stem cells or cancer stem cells. The data provides indication that the nucleolin-targeting AS1411 aptamer might be used for therapeutic delivery to non-small cell lung cancer stem cells.

  1. Effects of exercise on tenocyte cellularity and tenocyte nuclear morphology in immature and mature equine digital tendons.

    PubMed

    Stanley, R L; Goodship, A E; Edwards, B; Firth, E C; Patterson-Kane, J C

    2008-03-01

    The injury-prone, energy-storing equine superficial digital flexor tendon (SDFT) of the mature performance horse has a limited ability to respond to exercise in contrast with the noninjury-prone, anatomically opposing common digital extensor tendon (CDET). Previous studies have indicated low levels of cellular activity in the mature SDFT, but in foal tendons the tenocytes may still have the ability to adapt positively to increased exercise. To measure tenocyte densities and types in histological sections from the SDFT and CDET of horses from controlled long-term, short-term and foal exercise studies. Specimens were collected from mid-metacarpal segments of the CDET and SDFT for each horse and processed for histology; central and peripheral regions of the SDFT cross-section were analysed separately (SDFTc, SDFTp). Tenocyte nuclei were counted in a total area of 1.59 mm(2) for each tendon region in each horse. Each nucleus was classified as type 1 (elongate and thin), type 2 (ovoid and plump) or type 3 (chondrocyte-like); type 1 cells are proposed to be less synthetically active than type 2 cells. No significant differences were noted between exercise and control groups in any of the studies, with the exception of an exercise-related reduction in the proportion of type 1 tenocytes for all tendons combined in the long-term study. There were tendon- and site-specific differences in tenocyte densities and proportions of type 1 and 2 cells in all 3 studies. There was no indication that exercise increased tenocyte density or proportions of the (theoretically) more active type 2 cells in immature horses (short-term and foal studies), perhaps because the training regimens did not achieve certain threshold strain levels. In the foal study these findings can still be interpreted positively as evidence that the training regimen did not induce subclinical damage.

  2. Discriminatory ability of simple OGTT-based beta cell function indices for prediction of prediabetes and type 2 diabetes: the CODAM study.

    PubMed

    den Biggelaar, Louise J C J; Sep, Simone J S; Eussen, Simone J P M; Mari, Andrea; Ferrannini, Ele; van Greevenbroek, Marleen M J; van der Kallen, Carla J H; Schalkwijk, Casper G; Stehouwer, Coen D A; Dagnelie, Pieter C

    2017-03-01

    The hyperglycaemic clamp technique and the frequently sampled IVGTT are unsuitable techniques to assess beta cell function (BCF) in large cohorts. Therefore, the aim of this study was to evaluate the discriminatory ability of simple OGTT-based BCF indices for prediction of prediabetes (meaning impaired fasting glucose and/or impaired glucose tolerance) and type 2 diabetes. Glucose metabolism status was assessed by 2 h 75 g OGTT at baseline (n = 476, mean age 59.2 years, 38.7% women) and after 7 years of follow-up (n = 416) in the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study (1999-2009). Baseline plasma glucose, insulin and C-peptide values during OGTTs were used to calculate 21 simple indices of BCF. Disposition indices (BCF index × Matsuda index), to compensate for the prevailing level of insulin resistance, were calculated for the BCF indices with the best discriminatory abilities. The discriminatory ability of the BCF indices was estimated by the area under the receiver operating characteristics curve (ROC AUC) with an outcome of incident prediabetes (n = 73) or type 2 diabetes (n = 60 and n = 18 cases, respectively, in individuals who were non-diabetic or had normal glucose metabolism at baseline). For incident prediabetes (n = 73), all ROC AUCs were less than 70%, whereas for incident type 2 diabetes, I 30 /I 0 , CP 30 /CP 0 , ΔI 30 /ΔG 30 , ΔCP 30 /ΔG 30 (where I, CP and G are the plasma concentrations of insulin, C-peptide and glucose, respectively, at the times indicated), and corrected insulin response at 30 min had ROC AUCs over 70%. In at-baseline non-diabetic individuals, disposition indices ΔI 30 /ΔG 30 , ΔCP 30 /ΔG 30 and corrected insulin response at 30 min had ROC AUCs of over 80% for incident type 2 diabetes. Moreover, these BCF disposition indices had significantly better discriminatory abilities for incident type 2 diabetes than the Matsuda index alone. BCF indices reflecting early-phase insulin secretion have the best ability to discriminate individuals who will develop prediabetes and type 2 diabetes. Of these, ΔCP 30 /ΔG 30 , often referred to as the C-peptidogenic index, performed consistently well.

  3. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining

    PubMed Central

    Wang, Manna; Ning, Xiangkai; He, Meifang; Hu, Yazhuo; Yuan, Long; Li, Shichong; Wang, Qiwei; Liu, Hong; Chen, Zhaolie; Ren, Jun; Sun, Qiang

    2015-01-01

    Although Cell-in-cell structures (CICs) had been documented in human tumors for decades, it is unclear what types of CICs were formed largely due to low resolution of traditional way such as H&E staining. In this work, we employed immunofluorescent method to stain a panel of human tumor samples simultaneously with antibodies against E-cadherin for Epithelium, CD68 for Macrophage and CD45 for Leukocytes, which we termed as “EML method” based on the cells detected. Detail analysis revealed four types of CICs, with tumor cells or macrophage engulfing tumor cells or leukocytes respectively. Interestingly, tumor cells seem to be dominant over macrophage (93% vs 7%) as the engulfer cells in all CICs detected, whereas the overall amount of internalized tumor cells is comparable to that of internalized CD45+ leukocytes (57% vs 43%). The CICs profiles vary from tumor to tumor, which may indicate different malignant stages and/or inflammatory conditions. Given the potential impacts different types of CICs might have on tumor growth, we therefore recommend EML analysis of tumor samples to clarify the correlation of CICs subtypes with clinical prognosis in future researches. PMID:26109430

  4. Detecting cell-in-cell structures in human tumor samples by E-cadherin/CD68/CD45 triple staining.

    PubMed

    Huang, Hongyan; Chen, Ang; Wang, Ting; Wang, Manna; Ning, Xiangkai; He, Meifang; Hu, Yazhuo; Yuan, Long; Li, Shichong; Wang, Qiwei; Liu, Hong; Chen, Zhaolie; Ren, Jun; Sun, Qiang

    2015-08-21

    Although Cell-in-cell structures (CICs) had been documented in human tumors for decades, it is unclear what types of CICs were formed largely due to low resolution of traditional way such as H&E staining. In this work, we employed immunofluorescent method to stain a panel of human tumor samples simultaneously with antibodies against E-cadherin for Epithelium, CD68 for Macrophage and CD45 for Leukocytes, which we termed as "EML method" based on the cells detected. Detail analysis revealed four types of CICs, with tumor cells or macrophage engulfing tumor cells or leukocytes respectively. Interestingly, tumor cells seem to be dominant over macrophage (93% vs 7%) as the engulfer cells in all CICs detected, whereas the overall amount of internalized tumor cells is comparable to that of internalized CD45+ leukocytes (57% vs 43%). The CICs profiles vary from tumor to tumor, which may indicate different malignant stages and/or inflammatory conditions. Given the potential impacts different types of CICs might have on tumor growth, we therefore recommend EML analysis of tumor samples to clarify the correlation of CICs subtypes with clinical prognosis in future researches.

  5. The electrical losses induced by silver paste in n-type silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aoyama, Takayuki; Aoki, Mari; Sumita, Isao; Yoshino, Yasushi; Ohshita, Yoshio; Ogura, Atsushi

    2017-10-01

    Aluminum-added silver paste (Ag/Al paste) has been used for p+ emitter of n-type solar cells. The electrical losses due to shunting and recombination caused by the paste in the cells have been reported to originate from huge metallic spikes due to the aluminum. However, whether the aluminum actually induces the losses has not been clarified yet. In this study, the “floating contact method” is applied to aluminum-free silver (Al-free Ag) paste to investigate the effects of aluminum extraction from the Ag/Al paste and to understand how the aluminum principally induces the losses for the p+ emitter. Furthermore, the interfacial morphology between the Al-free Ag paste and p-type silicon is investigated. The Ag paste itself creates tiny crystallites for the p+ emitter, resulting in shunting and recombination. The result indicates that the aluminum addition to Ag paste is not the main reason for the electrical losses in the n-type solar cells.

  6. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    PubMed Central

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3 -). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3 - responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3 -. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  7. Maintenance of memory-type pathogenic Th2 cells in the pathophysiology of chronic airway inflammation.

    PubMed

    Hirahara, Kiyoshi; Shinoda, Kenta; Endo, Yusuke; Ichikawa, Tomomi; Nakayama, Toshinori

    2018-01-01

    Immunological memory is critical for long-standing protection against microorganisms; however, certain antigen-specific memory CD4 + T helper (Th) cells drive immune-related pathology, including chronic allergic inflammation such as asthma. The IL-5-producing memory-type Tpath2 subset is important for the pathogenesis of chronic allergic inflammation. This memory-type pathogenic Th2 cell population (Tpath2) can be detected in various allergic inflammatory lesions. However, how these pathogenic populations are maintained at the local inflammatory site has remained unclear. We performed a series of experiments using mice model for chronic airway inflammation. We also investigated the human samples from patients with eosinophilic chronic rhinosinusitis. We recently reported that inducible bronchus-associated lymphoid tissue (iBALT) was shaped during chronic inflammation in the lung. We also found that memory-type Tpath2 cells are maintained within iBALT. The maintenance of the Tpath2 cells within iBALT is supported by specific cell subpopulations within the lung. Furthermore, ectopic lymphoid structures consisting of memory CD4 + T cells were found in nasal polyps of eosinophilic chronic rhinosinusitis patients, indicating that the persistence of inflammation is controlled by these structures. Thus, the cell components that organize iBALT formation may be therapeutic targets for chronic allergic airway inflammation.

  8. A secreted protein is an endogenous chemorepellant in Dictyostelium discoideum

    PubMed Central

    Phillips, Jonathan E.; Gomer, Richard H.

    2012-01-01

    Chemorepellants may play multiple roles in physiological and pathological processes. However, few endogenous chemorepellants have been identified, and how they function is unclear. We found that the autocrine signal AprA, which is produced by growing Dictyostelium discoideum cells and inhibits their proliferation, also functions as a chemorepellant. Wild-type cells at the edge of a colony show directed movement outward from the colony, whereas cells lacking AprA do not. Cells show directed movement away from a source of recombinant AprA and dialyzed conditioned media from wild-type cells, but not dialyzed conditioned media from aprA− cells. The secreted protein CfaD, the G protein Gα8, and the kinase QkgA are necessary for the chemorepellant activity of AprA as well as its proliferation-inhibiting activity, whereas the putative transcription factor BzpN is dispensable for the chemorepellant activity of AprA but necessary for inhibition of proliferation. Phospholipase C and PI3 kinases 1 and 2, which are necessary for the activity of at least one other chemorepellant in Dictyostelium, are not necessary for recombinant AprA chemorepellant activity. Starved cells are not repelled by recombinant AprA, suggesting that aggregation-phase cells are not sensitive to the chemorepellant effect. Cell tracking indicates that AprA affects the directional bias of cell movement, but not cell velocity or the persistence of cell movement. Together, our data indicate that the endogenous signal AprA acts as an autocrine chemorepellant for Dictyostelium cells. PMID:22711818

  9. SIRT3 Enhances Glycolysis and Proliferation in SIRT3-Expressing Gastric Cancer Cells

    PubMed Central

    Cui, Yang; Qin, Lili; Wu, Jing; Qu, Xuan; Hou, Chen; Sun, Wenyan; Li, Shiyong; Vaughan, Andrew T. M.; Li, Jian Jian; Liu, Jiankang

    2015-01-01

    SIRT3 is a key NAD+-dependent protein deacetylase in the mitochondria of mammalian cells, functioning to prevent cell aging and transformation via regulation of mitochondrial metabolic homeostasis. However, SIRT3 is also found to express in some human tumors; its role in these SIRT3-expressing tumor cells needs to be elucidated. This study demonstrated that the expression of SIRT3 was elevated in a group of gastric cancer cells compared to normal gastric epithelial cells. Although SIRT3 expression levels were increased in the gastric tumor tissues compared to the adjacent non-tumor tissues, SIRT3 positive cancer cells were more frequently detected in the intestinal type gastric cancers than the diffuse type gastric cancers, indicating that SIRT3 is linked with subtypes of gastric cancer. Overexpression of SIRT3 promoted cell proliferation and enhanced ATP generation, glucose uptake, glycogen formation, MnSOD activity and lactate production, which were inhibited by SIRT3 knockdown, indicating that SIRT3 plays a role in reprogramming the bioenergetics in gastric tumor cells. Further analysis revealed that SIRT3 interacted with and deacetylated the lactate dehydrogenase A (LDHA), a key protein in regulating anaerobic glycolysis, enhancing LDHA activity. In consistence, a cluster of glycolysis-associated genes was upregulated in the SIRT3-overexpressing gastric tumor cells. Thus, in addition to the well-documented SIRT3-mediated mitochondrial homeostasis in normal cells, SIRT3 may enhance glycolysis and cell proliferation in SIRT3-expressing cancer cells. PMID:26121691

  10. Nanoparticles modulate surfactant protein A and D mediated protection against influenza A infection in vitro

    PubMed Central

    McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Tetley, Teresa D.; Morgan, Cliff; Griffiths, Mark; Clark, Howard W.; Madsen, Jens

    2015-01-01

    Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections. TT1, A549 and differentiated THP-1 cells, representing the predominant cell types found in the alveolus namely alveolar type I (ATI) epithelial cells, ATII cells and macrophages, were used to examine the effect of two model nanoparticles, 100 nm amine modified (A-PS) and unmodified polystyrene (U-PS), on the ability of SP-A and SP-D to neutralize influenza A infections in vitro. Pre-incubation of low concentrations of U-PS with SP-A resulted in a reduction of SP-A anti-influenza activity in A549 cells, whereas at higher concentrations there was an increase in SP-A antiviral activity. This differential pattern of U-PS concentration on surfactant protein mediated protection against IAV was also shown with SP-D in TT1 cells. On the other hand, low concentrations of A-PS particles resulted in a reduction of SP-A activity in TT1 cells and a reduction in SP-D activity in A549 cells. These results indicate that nanoparticles can modulate the ability of SP-A and SP-D to combat viral challenges. Furthermore, the nanoparticle concentration, surface chemistry and cell type under investigation are important factors in determining the extent of these modulations. PMID:25533100

  11. Crystallography of some lunar plagioclases

    USGS Publications Warehouse

    Stewart, D.B.; Appleman, D.E.; Huebner, J.S.; Clark, J.R.

    1970-01-01

    Crystals of calcic bytownite from type B rocks have space group U with c ??? 14 angstroms. Bytownite crystals from type A rocks are more sodic and have space group C1, c ??? 7 angstroms. Cell parameters of eight bulk feldspar separates from crystalline rocks indicate that the range of angle gamma is about 23 times the standard error of measurement, and its value might be useful for estimation of composition. Cell parameters of seven ilmenites are close to those of pure FeTiO3.

  12. Cytochemical and functional characterization of blood and inflammatory cells from the lizard Ameiva ameiva.

    PubMed

    Alberio, Sanny O; Diniz, Jose A; Silva, Edilene O; de Souza, Wanderley; DaMatta, Renato A

    2005-06-01

    The fine structure and differential cell count of blood and coelomic exudate leukocytes were studied with the aim to identify granulocytes from Ameiva ameiva, a lizard distributed in the tropical regions of the Americas. Blood leukocytes were separated with a Percoll cushion and coelomic exudate cells were obtained 24 h after intracoelomic thioglycollate injection. In the blood, erythrocytes, monocytes, thrombocytes, lymphocytes, plasma cells and four types of granulocytes were identified based on their morphology and cytochemistry. Types I and III granulocytes had round intracytoplasmic granules with the same basic morphology; however, type III granulocyte had a bilobued nucleus and higher amounts of heterochromatin suggesting an advance stage of maturation. Type II granulocytes had fusiformic granules and more mitochondria. Type IV granulocytes were classified as the basophil mammalian counterpart based on their morphology and relative number. Macrophages and granulocytes type III were found in the normal coelomic cavity. However, after the thioglycollate injection the number of type III granulocyte increased. Granulocytes found in the coelomic cavity were related to type III blood granulocyte based on the morphology and cytochemical localization of alkaline phosphatase and basic proteins in their intracytoplasmic granules. Differential blood leukocyte counts showed a predominance of type III granulocyte followed by lymphocyte, type I granulocyte, type II granulocyte, monocyte and type IV granulocyte. Taken together, these results indicate that types I and III granulocytes correspond to the mammalian neutrophils/heterophils and type II to the eosinophil granulocytes.

  13. 76 FR 1181 - Oncologic Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... lymphoblastic leukemia (ALL) whose disease has not responded to or has relapsed following treatment with at..., application submitted by GlaxoSmithKline, indicated for the treatment of patients with types of leukemia or lymphoma known as T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma whose disease has...

  14. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells

    NASA Astrophysics Data System (ADS)

    Xu, Wenwei; Mezencev, Roman; Kim, Byungkyu; Wang, Lijuan; McDonald, John; Sulchek, Todd; Sulchek Team; McDonald Team

    2013-03-01

    The metastatic potential of cells is an important parameter in the design of optimal strategies for the personalized treatment of cancer. Using atomic force microscopy (AFM), we show that ovarian cancer cells are generally softer and display lower intrinsic variability in cell stiffness than non-malignant ovarian epithelial cells. A detailed study of highly invasive ovarian cancer cells (HEY A8) and their less invasive parental cells (HEY), demonstrates that deformability can serve as an accurate biomarker of metastatic potential. Comparative gene expression profiling indicate that the reduced stiffness of highly metastatic HEY A8 cells is associated with actin cytoskeleton remodeling, microscopic examination of actin fiber structure in these cell lines is consistent with this prediction. Our results indicate that cell stiffness not only distinguishes ovarian cancer cells from non-malignant cells, but may also be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells.

  15. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  16. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.

    PubMed

    Kim, Seong Gon; Theera-Ampornpunt, Nawanol; Fang, Chih-Hao; Harwani, Mrudul; Grama, Ananth; Chaterji, Somali

    2016-08-01

    Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to differentiation. Recent genome-wide investigation of epigenomic marks has indicated that enhancer elements could be enriched for certain epigenomic marks, such as, combinatorial patterns of histone modifications. Our efforts in this paper are motivated by these recent advances in epigenomic profiling methods, which have uncovered enhancer-associated chromatin features in different cell types and organisms. Specifically, in this paper, we use recent state-of-the-art Deep Learning methods and develop a deep neural network (DNN)-based architecture, called EP-DNN, to predict the presence and types of enhancers in the human genome. It uses as features, the expression levels of the histone modifications at the peaks of the functional sites as well as in its adjacent regions. We apply EP-DNN to four different cell types: H1, IMR90, HepG2, and HeLa S3. We train EP-DNN using p300 binding sites as enhancers, and TSS and random non-DHS sites as non-enhancers. We perform EP-DNN predictions to quantify the validation rate for different levels of confidence in the predictions and also perform comparisons against two state-of-the-art computational models for enhancer predictions, DEEP-ENCODE and RFECS. We find that EP-DNN has superior accuracy and takes less time to make predictions. Next, we develop methods to make EP-DNN interpretable by computing the importance of each input feature in the classification task. This analysis indicates that the important histone modifications were distinct for different cell types, with some overlaps, e.g., H3K27ac was important in cell type H1 but less so in HeLa S3, while H3K4me1 was relatively important in all four cell types. We finally use the feature importance analysis to reduce the number of input features needed to train the DNN, thus reducing training time, which is often the computational bottleneck in the use of a DNN. In this paper, we developed EP-DNN, which has high accuracy of prediction, with validation rates above 90 % for the operational region of enhancer prediction for all four cell lines that we studied, outperforming DEEP-ENCODE and RFECS. Then, we developed a method to analyze a trained DNN and determine which histone modifications are important, and within that, which features proximal or distal to the enhancer site, are important.

  17. Localization of sesquiterpene lactone biosynthesis in cells of capitate glandular trichomes of Helianthus annuus (Asteraceae).

    PubMed

    Amrehn, Evelyn; Aschenbrenner, Anna-Katharina; Heller, Annerose; Spring, Otmar

    2016-03-01

    Capitate glandular trichomes (CGT) of sunflower, Helianthus annuus, synthesize bioactive sesquiterpene lactones (STLs) within a short period of only a few days during trichome development. In the current project, the subcellular localization of H. annuus germacrene A monooxygenase (HaGAO), a key enzyme of the STL biosynthesis in sunflower CGT, was investigated. A polyclonal antibody raised against this enzyme was used for immunolabelling. HaGAO was found in secretory and stalk cells of CGT. This correlated with the appearance of smooth endoplasmic reticulum in both cell types. Stalk cells and secretory cells differed in form, size and types of plastids, but both had structures necessary for secretion. No HaGAO-specific immunoreaction was found in sunflower leaf tissue outside of CGT or in developing CGT before the secretory phase had started. Our results indicated that not only secretory cells but also nearly all cells of the CGT were involved in the biosynthesis of STL and that this process was not linked to the presence or absence of a specific type of plastid.

  18. Effect of strenuous physical exercise on circulating cell-derived microparticles.

    PubMed

    Chaar, Vicky; Romana, Marc; Tripette, Julien; Broquere, Cédric; Huisse, Marie-Geneviève; Hue, Olivier; Hardy-Dessources, Marie-Dominique; Connes, Philippe

    2011-01-01

    Strenuous exercise is associated with an inflammatory response involving the activation of several types of blood cells. In order to document the specific activation of these cell types, we studied the effect of three maximal exercise tests conducted to exhaustion on the quantitative and qualitative pattern of circulating cell-derived microparticles and inflammatory molecules in healthy subjects. This study mainly indicated that the plasma concentration of microparticles from platelets and polymorphonuclear neutrophils (PMN) was increased immediately after the strenuous exercise. In addition, the increase in plasma concentration of microparticles from PMN and platelets was still observed after 2 hours of recovery. A similar pattern was observed for the IL-6 plasma level. In contrast, no change was observed for either soluble selectins or plasma concentration of microparticles from red blood cells, monocytes and endothelial cells. In agreement, sVCAM-1 and sICAM-1 levels were not changed by the exercise. We conclude that a strenuous exercise is accompanied by platelet- and PMN-derived microparticle production that probably reflects the activation of these two cell types.

  19. Cdx mutant axial progenitor cells are rescued by grafting to a wild type environment.

    PubMed

    Bialecka, Monika; Wilson, Valerie; Deschamps, Jacqueline

    2010-11-01

    Cdx transcription factors are required for axial extension. Cdx genes are expressed in the posterior growth zone, a region that supplies new cells for axial elongation. Cdx2(+/-)Cdx4(-/-) (Cdx2/4) mutant embryos show abnormalities in axis elongation from E8.5, culminating in axial truncation at E10.5. These data raised the possibility that the long-term axial progenitors of Cdx mutants are intrinsically impaired in their ability to contribute to posterior growth. We investigated whether we could identify cell-autonomous defects of the axial progenitor cells by grafting mutant cells into a wild type growth zone environment. We compared the contribution of GFP labeled mutant and wild type progenitors grafted to unlabeled wild type recipients subsequently cultured over the period during which Cdx2/4 defects emerge. Descendants of grafted cells were scored for their contribution to differentiated tissues in the elongating axis and to the posterior growth zone. No difference between the contribution of descendants from wild type and mutant grafted progenitors was detected, indicating that rescue of the Cdx mutant progenitors by the wild type recipient growth zone is provided non-cell autonomously. Recently, we showed that premature axial termination of Cdx mutants can be partly rescued by stimulating canonical Wnt signaling in the posterior growth zone. Taken together with the data shown here, this suggests that Cdx genes function to maintain a signaling-dependent niche for the posterior axial progenitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission.

    PubMed

    Lee, Sang-Hun; Dudok, Barna; Parihar, Vipan K; Jung, Kwang-Mook; Zöldi, Miklós; Kang, Young-Jin; Maroso, Mattia; Alexander, Allyson L; Nelson, Gregory A; Piomelli, Daniele; Katona, István; Limoli, Charles L; Soltesz, Ivan

    2017-07-01

    In the not too distant future, humankind will embark on one of its greatest adventures, the travel to distant planets. However, deep space travel is associated with an inevitable exposure to radiation fields. Space-relevant doses of protons elicit persistent disruptions in cognition and neuronal structure. However, whether space-relevant irradiation alters neurotransmission is unknown. Within the hippocampus, a brain region crucial for cognition, perisomatic inhibitory control of pyramidal cells (PCs) is supplied by two distinct cell types, the cannabinoid type 1 receptor (CB 1 )-expressing basket cells (CB 1 BCs) and parvalbumin (PV)-expressing interneurons (PVINs). Mice subjected to low-dose proton irradiation were analyzed using electrophysiological, biochemical and imaging techniques months after exposure. In irradiated mice, GABA release from CB 1 BCs onto PCs was dramatically increased. This effect was abolished by CB 1 blockade, indicating that irradiation decreased CB 1 -dependent tonic inhibition of GABA release. These alterations in GABA release were accompanied by decreased levels of the major CB 1 ligand 2-arachidonoylglycerol. In contrast, GABA release from PVINs was unchanged, and the excitatory connectivity from PCs to the interneurons also underwent cell type-specific alterations. These results demonstrate that energetic charged particles at space-relevant low doses elicit surprisingly selective long-term plasticity of synaptic microcircuits in the hippocampus. The magnitude and persistent nature of these alterations in synaptic function are consistent with the observed perturbations in cognitive performance after irradiation, while the high specificity of these changes indicates that it may be possible to develop targeted therapeutic interventions to decrease the risk of adverse events during interplanetary travel.

  1. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    PubMed Central

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  2. Incidence of low risk human papillomavirus in oral cancer: a real time PCR study on 278 patients.

    PubMed

    Palmieri, A; Scapoli, L; Martinelli, M; Pezzetti, F; Girardi, A; Spinelli, G; Lucchese, A; Carinci, F

    2011-01-01

    Squamous cell carcinoma is the most frequent malignant tumour of the oral cavity. It is widely known that tobacco and alcohol consumption are the major causes of the development of oral squamous cell carcinoma (OSCC). The human papilloma virus infection has also been postulated as a risk factor for squamous cell carcinoma, although conflicting results have been reported. The aim of this study is to evaluate the presence of high-risk and low-risk type human papillomavirus in a large sample of squamous cell carcinoma limited to the oral cavity by means of quantitative real-time polymerase chain reaction. Data were obtained from 278 squamous cell carcinoma limited to oral cavity proper. Sequencing revealed that 5 samples were positive for HPV type 16, 5 for HPV type 11, and 1 for HPV type 6. Human papillomavirus 11 was detected in 5 tumours out of the 278 examined. The prevalence rate for Human papillomavirus 11 was 1.8% (C.I. 0.7-3.9). The matched case-controls analysis indicated that the prevalence among controls did not significantly differ with respect to cases and that Human papillomavirus 11 alone did not correlate with squamous cell carcinoma.

  3. Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells

    NASA Astrophysics Data System (ADS)

    Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.

    2006-07-01

    We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.

  4. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of (/sup 3/H)serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamir, H.; Theoharides, T.C.; Gershon, M.D.

    1982-06-01

    The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10/sup -6/ M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD/sub 1/ = 4.5 x 10/sup -/8 M; KD/sub 2/ = 3.9 x 10/sup -6/ M) did not bind to Con A. Moreover, binding of (/sup 3/H)serotonin to protein ofmore » Peak I was sensitive to inhibition by reserpine, while binding of (/sup 3/H)serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of (/sup 3/H) serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules.« less

  5. Nano- and Micro-Patterned S-, H-, and X-PDMS for Cell-Based Applications: Comparison of Wettability, Roughness, and Cell-Derived Parameters

    PubMed Central

    Scharin-Mehlmann, Marina; Häring, Aaron; Rommel, Mathias; Dirnecker, Tobias; Friedrich, Oliver; Frey, Lothar; Gilbert, Daniel F.

    2018-01-01

    Polydimethylsiloxane (PDMS) is a promising biomaterial for generating artificial extracellular matrix (ECM) like patterned topographies, yet its hydrophobic nature limits its applicability to cell-based approaches. Although plasma treatment can enhance the wettability of PDMS, the surface is known to recover its hydrophobicity within a few hours after exposure to air. To investigate the capability of a novel PDMS-type (X-PDMS) for in vitro based assessment of physiological cell properties, we designed and fabricated plane as well as nano- and micrometer-scaled pillar-patterned growth substrates using the elastomer types S-, H- and X-PDMS, which were fabricated from commercially available components. Most importantly, we compared X-PDMS based growth substrates which have not yet been investigated in this context with H- as well as well-known S-PDMS based substrates. Due to its applicability to fabricating nanometer-sized topographic features with high accuracy and pattern fidelity, this material may be of high relevance for specific biomedical applications. To assess their applicability to cell-based approaches, we characterized the generated surfaces using water contact angle (WCA) measurement and atomic force microscopy (AFM) as indicators of wettability and roughness, respectively. We further assessed cell number, cell area and cellular elongation as indirect measures of cellular viability and adhesion by image cytometry and phenotypic profiling, respectively, using Calcein and Hoechst 33342 stained human foreskin fibroblasts as a model system. We show for the first time that different PDMS types are differently sensitive to plasma treatment. We further demonstrate that surface hydrophobicity changes along with changing height of the pillar-structures. Our data indicate that plane and structured X-PDMS shows cytocompatibility and adhesive properties comparable to the previously described elastomer types S- and H-PDMS. We conclude that nanometer-sized structuring of X-PDMS may serve as a powerful method for altering surface properties toward production of biomedical devices for cell-based applications. PMID:29765941

  6. IL-33 Drives Augmented Responses to Ozone in Obese Mice

    PubMed Central

    Mathews, Joel A.; Krishnamoorthy, Nandini; Kasahara, David Itiro; Cho, Youngji; Wurmbrand, Allison Patricia; Ribeiro, Luiza; Smith, Dirk; Umetsu, Dale; Levy, Bruce D.; Shore, Stephanie Ann

    2016-01-01

    Background: Ozone increases IL-33 in the lungs, and obesity augments the pulmonary effects of acute ozone exposure. Objectives: We assessed the role of IL-33 in the augmented effects of ozone observed in obese mice. Methods: Lean wildtype and obese db/db mice were pretreated with antibodies blocking the IL-33 receptor, ST2, and then exposed to ozone (2 ppm for 3 hr). Airway responsiveness was assessed, bronchoalveolar lavage (BAL) was performed, and lung cells harvested for flow cytometry 24 hr later. Effects of ozone were also assessed in obese and lean mice deficient in γδ T cells and their wildtype controls. Results and Discussion: Ozone caused greater increases in BAL IL-33, neutrophils, and airway responsiveness in obese than lean mice. Anti-ST2 reduced ozone-induced airway hyperresponsiveness and inflammation in obese mice but had no effect in lean mice. Obesity also augmented ozone-induced increases in BAL CXCL1 and IL-6, and in BAL type 2 cytokines, whereas anti-ST2 treatment reduced these cytokines. In obese mice, ozone increased lung IL-13+ innate lymphoid cells type 2 (ILC2) and IL-13+ γδ T cells. Ozone increased ST2+ γδ T cells, indicating that these cells can be targets of IL-33, and γδ T cell deficiency reduced obesity-related increases in the response to ozone, including increases in type 2 cytokines. Conclusions: Our data indicate that IL-33 contributes to augmented responses to ozone in obese mice. Obesity and ozone also interacted to promote type 2 cytokine production in γδ T cells and ILC2 in the lungs, which may contribute to the observed effects of IL-33. Citation: Mathews JA, Krishnamoorthy N, Kasahara DI, Cho Y, Wurmbrand AP, Ribeiro L, Smith D, Umetsu D, Levy BD, Shore SA. 2017. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect 125:246–253; http://dx.doi.org/10.1289/EHP272 PMID:27472835

  7. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation.

    PubMed

    Liao, W; Bisgrove, B W; Sawyer, H; Hug, B; Bell, B; Peters, K; Grunwald, D J; Stainier, D Y

    1997-01-01

    The zebrafish cloche mutation affects both the endothelial and hematopoietic lineages at a very early stage (Stainier, D. Y. R., Weinstein, B. M., Detrich, H. W., Zon, L. I. and Fishman, M. C. (1995). Development 121, 3141-3150). The most striking vascular phenotype is the absence of endocardial cells from the heart. Microscopic examination of mutant embryos reveals the presence of endothelial-like cells in the lower trunk and tail regions while head vessels appear to be missing, indicating a molecular diversification of the endothelial lineage. Cell transplantation experiments show that cloche acts cell-autonomously within the endothelial lineage. To analyze further the role of cloche in regulating endothelial cell differentiation, we have examined the expression of flk-1 and tie, two receptor tyrosine kinase genes expressed early and sequentially in the endothelial lineage. In wild-type fish, flk-1-positive cells are found throughout the embryo and differentiate to form the nascent vasculature. In cloche mutants, flk-1-positive cells are found only in the lower trunk and tail regions, and this expression is delayed as compared to wild-type. Unlike the flk-1-positive cells in wild-type embryos, those in cloche mutants do not go on to express tie, suggesting that their differentiation is halted at an early stage. We also find that the cloche mutation is not linked to flk-1. These data indicate that cloche affects the differentiation of all endothelial cells and that it acts at a very early stage, either by directly regulating flk-1 expression or by controlling the differentiation of cells that normally develop to express flk-1. cloche mutants also have a blood deficit and their hematopoietic tissues show no expression of the hematopoietic transcription factor genes GATA-1 or GATA-2 at early stages. Because the appearance of distinct levels of flk-1 expression is delayed in cloche mutants, we examined GATA-1 expression at late embryonic stages and found some blood cell differentiation that appears to be limited to the region lined by the flk-1-expressing cells. The spatial restriction of blood in the ventroposterior-most region of cloche mutant embryos may be indicative of a ventral source of signal(s) controlling hematopoietic differentiation. In addition, the restricted colocalization of blood and endothelium in cloche mutants suggests that important interactions occur between these two lineages during normal development.

  8. Effect of the nuclear-donor cell lineage, type, and cell donor on development of somatic cell nuclear transfer embryos in cattle.

    PubMed

    Batchelder, Cynthia A; Hoffert, Kara A; Bertolini, Marcelo; Moyer, Alice L; Mason, Jeffery B; Petkov, Stoyan G; Famula, Thomas R; Anderson, Gary B

    2005-01-01

    Potential applications of somatic cell nuclear transfer to agriculture and medicine are currently constrained by low efficiency and high rates of embryonic, fetal, and neonatal loss. Nuclear transfer efficiency in cattle was compared between three donor-cell treatments from a single animal, between four donor-cell treatments in sequential stages of differentiation from a single cell lineage and genotype, and between the same cell type in two donors. Cumulus and granulosa donor cells resulted in a greater proportion of viable day-7 embryos than ear-skin cells; pregnancy rate and losses were not different among treatments. The least differentiated cell type in the follicular cell lineage, preantral follicle cells, resulted in fewer cloned blastocysts (11%) than cumulus (30%), granulosa (23%), and luteal (25%) donor cells. Cloned blastocysts that did develop from preantral follicle cells (75%) were more likely to progress through implantation into later stages of pregnancy than cloned blastocysts from cumulus (10%), granulosa (9%), and luteal (11%) donor cells (p < 0.05). Day-7 embryo development from granulosa cells was similar between two donors (19 vs. 24%) and proved to be a poor indicator of further development as day-30 pregnancy rates varied threefold between donors (48 vs. 15%, p < 0.05). Results reported here emphasize the crucial role of the nuclear donor cell in the outcome of the nuclear-transfer process.

  9. High expression of A-type lamin in the leading front is required for Drosophila thorax closure.

    PubMed

    Kosakamoto, Hina; Fujisawa, Yuya; Obata, Fumiaki; Miura, Masayuki

    2018-05-05

    Tissue closure involves the coordinated unidirectional movement of a group of cells without loss of cell-cell contact. However, the molecular mechanisms controlling the tissue closure are not fully understood. Here, we demonstrate that Lamin C, the sole A-type lamin in Drosophila, contributes to the process of thorax closure in pupa. High expression of Lamin C was observed at the leading front of the migrating wing imaginal discs. Live imaging analysis revealed that knockdown of Lamin C in the thorax region affected the coordinated movement of the leading front, resulting in incomplete tissue fusion required for formation of the adult thorax. The closure defect due to knockdown of Lamin C correlated with insufficient accumulation of F-actin at the front. Our study indicates a link between A-type lamin and the cell migration behavior during tissue closure. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Conformational epitopes at cadherin calcium-binding sites and p120-catenin phosphorylation regulate cell adhesion

    PubMed Central

    Petrova, Yuliya I.; Spano, MarthaJoy M.; Gumbiner, Barry M.

    2012-01-01

    We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin–catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor–induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane. PMID:22513089

  11. “Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex

    PubMed Central

    Gabbott, Paul L. A.

    2016-01-01

    Layer 1 of the cortex contains populations of neurochemically distinct neurons and afferent fibers which markedly affect neural activity in the apical dendritic tufts of pyramidal cells. Understanding the causal mechanisms requires knowledge of the cellular architecture and synaptic organization of layer 1. This study has identified eight morphological classes of calretinin immunopositive (CRet+) neurons (including Cajal-Retzius cells) in layer 1 of the prefrontal cortex (PFC) in adult monkey (Macaca fasicularis), with a distinct class — termed “subpial fan (SPF) cell” — described in detail. SPF cells were rare horizontal unipolar CRet+ cells located directly beneath the pia with a single thick primary dendrite that branched into a characteristic fan-like dendritic tree tangential to the pial surface. Dendrites had spines, filamentous processes and thorny branchlets. SPF cells lay millimeters apart with intralaminar axons that ramified widely in upper layer 1. Such cells were GABA immunonegative (-) and occurred in areas beyond PFC. Interspersed amidst SPF cells displaying normal structural integrity were degenerating CRet+ neurons (including SPF cells) and clumps of lipofuscin-rich cellular debris. The number of degenerating SPF cells increased during adulthood. Ultrastructural analyses indicated SPF cell somata received asymmetric (A — presumed excitatory) and symmetric (S — presumed inhibitory) synaptic contacts. Proximal dendritic shafts received mainly S-type and distal shafts mostly A-type input. All dendritic thorns and most dendritic spines received both synapse types. The tangential areal density of SPF cell axonal varicosities varied radially from parent somata — with dense clusters in more distal zones. All boutons formed A-type contacts with CRet- structures. The main post-synaptic targets were dendritic shafts (67%; mostly spine-bearing) and dendritic spines (24%). SPF-SPF cell innervation was not observed. Morphometry of SPF cells indicated a unique class of CRet+/GABA- neuron in adult monkey PFC — possibly a subtype of persisting Cajal-Retzius cell. The distribution and connectivity of SPF cells suggest they act as integrative hubs in upper layer 1 during postnatal maturation. The main synaptic output of SPF cells likely provides a transminicolumnar excitatory influence across swathes of apical dendritic tufts — thus affecting information processing in discrete patches of layer 1 in adult monkey PFC. PMID:27147978

  12. Protective role of p53 in skin cancer: Carcinogenesis studies in mice lacking epidermal p53.

    PubMed

    Page, Angustias; Navarro, Manuel; Suarez-Cabrera, Cristian; Alameda, Josefa P; Casanova, M Llanos; Paramio, Jesús M; Bravo, Ana; Ramirez, Angel

    2016-04-12

    p53 is a protein that causes cell cycle arrest, apoptosis or senescence, being crucial in the process of tumor suppression in several cell types. Different in vitro and animal models have been designed for the study of p53 role in skin cancer. These models have revealed opposing results, as in some experimental settings it appears that p53 protects against skin cancer, but in others, the opposite conclusion emerges. We have generated cohorts of mice with efficient p53 deletion restricted to stratified epithelia and control littermates expressing wild type p53 and studied their sensitivity to both chemically-induced and spontaneous tumoral transformation, as well as the tumor types originated in each experimental group. Our results indicate that the absence of p53 in stratified epithelia leads to the appearance, in two-stage skin carcinogenesis experiments, of a higher number of tumors that grow faster and become malignant more frequently than tumors arisen in mice with wild type p53 genotype. In addition, the histological diversity of the tumor type is greater in mice with epidermal p53 loss, indicating the tumor suppressive role of p53 in different epidermal cell types. Aging mice with p53 inactivation in stratified epithelia developed spontaneous carcinomas in skin and other epithelia. Overall, these results highlight the truly protective nature of p53 functions in the development of cancer in skin and in other stratified epithelia.

  13. p53 regulates mesenchymal stem cell-mediated tumor suppression in a tumor microenvironment through immune modulation.

    PubMed

    Huang, Y; Yu, P; Li, W; Ren, G; Roberts, A I; Cao, W; Zhang, X; Su, J; Chen, X; Chen, Q; Shou, P; Xu, C; Du, L; Lin, L; Xie, N; Zhang, L; Wang, Y; Shi, Y

    2014-07-17

    p53 is one of the most studied genes in cancer biology, and mutations in this gene may be predictive for the development of many types of cancer in humans and in animals. However, whether p53 mutations in non-tumor stromal cells can affect tumor development has received very little attention. In this study, we show that B16F0 melanoma cells form much larger tumors in p53-deficient mice than in wild-type mice, indicating a potential role of p53 deficiency in non-tumor cells of the microenvironment. As mesenchymal stem cells (MSCs) are attracted to tumors and form a major component of the tumor microenvironment, we examined the potential role of p53 status in MSCs in tumor development. We found that larger tumors resulted when B16F0 melanoma cells were co-injected with bone marrow MSCs derived from p53-deficient mice rather than MSCs from wild-type mice. Interestingly, this tumor-promoting effect by p53-deficient MSCs was not observed in non-obese diabetic/severe combined immunodeficiency mice, indicating the immune response has a critical role. Indeed, in the presence of inflammatory cytokines, p53-deficient MSCs expressed more inducible nitric oxide synthase (iNOS) and exhibited greater immunosuppressive capacity. Importantly, tumor promotion by p53-deficient MSCs was abolished by administration of S-methylisothiourea, an iNOS inhibitor. Therefore, our data demonstrate that p53 status in tumor stromal cells has a key role in tumor development by modulating immune responses.

  14. Platinum folate nanoparticles toxicity: cancer vs. normal cells.

    PubMed

    Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam H; Rigas, Basil

    2013-03-01

    Almost for two decades metallic nanoparticles are successfully used for cancer detection, imaging and treatment. Due to their high electron density they can be easily observed by electron microscopy and used in laser and radiofrequency therapy as energy releasing agents. However, the limitation for this practice is an inability to generate tumor-specific heating in a minimally invasive manner to the healthy tissue. To overcome this restraint we proposed to use folic acid coated metallic nanoparticles and determine whether they preferentially penetrate cancer cells. We developed technique for synthesizing platinum nanoparticles using folic acid as stabilizing agent which produced particles of relatively narrow size distribution, having d=2.3 ± 0.5 nm. High resolution TEM and zeta potential analysis indicated that the particles produced by this method had a high degree of crystalline order with no amorphous outer shell and a high degree of colloidal stability. The keratinocytes and mammary breast cells (cancer and normal) were incubated with platinum folate nanoparticles, and the results showed that the IC50 was significantly higher for the normal cells than the cancer cells in both cases, indicating that these nanoparticles preferentially target the cancer cells. TEM images of thin sections taken from the two types of cells indicated that the number of vacuoles and morphology changes after incubation with nanoparticles was also larger for the cancer cells in both types of tissue studied. No preferential toxicity was observed when folic acid receptors were saturated with free folic acid prior to exposure to nanoparticles. These results confirm our hypothesis regarding the preferential penetration of folic acid coated nanoparticles to cancer cells due to receptor mediated endocytosis. Published by Elsevier Ltd.

  15. A pilot study showing associations between frequency of CD4(+) memory cell subsets at diagnosis and duration of partial remission in type 1 diabetes.

    PubMed

    Moya, Rosita; Robertson, Hannah Kathryn; Payne, Dawson; Narsale, Aditi; Koziol, Jim; Davies, Joanna Davida

    2016-05-01

    In some patients with type 1 diabetes the dose of insulin required to achieve euglycemia is substantially reduced soon after diagnosis. This partial remission is associated with β-cell function and good glucose control. The purpose of this study was to assess whether frequencies of CD4(+) T cell subsets in children newly diagnosed with type 1 diabetes are associated with length of partial remission. We found that the frequency of CD4(+) memory cells, activated Treg cells and CD25(+) cells that express a high density of the IL-7 receptor, CD127 (CD127(hi)) are strongly associated with length of partial remission. Prediction of length of remission via Cox regression is significantly enhanced when CD25(+) CD127(hi) cell frequency is combined with either Insulin Dependent Adjusted A1c (IDAA1c), or glycosylated hemoglobin (HbA1c), or C-peptide levels at diagnosis. CD25(+) CD127(hi) cells do not express Foxp3, LAG-3 and CD49b, indicating that they are neither Treg nor Tr1 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion.

    PubMed

    Veenendaal, Andreas K J; Hodgkinson, Julie L; Schwarzer, Lynn; Stabat, David; Zenk, Sebastian F; Blocker, Ariel J

    2007-03-01

    Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.

  17. Serum total cholesterol and triglycerides levels in patients with lung cancer.

    PubMed

    Siemianowicz, K; Gminski, J; Stajszczyk, M; Wojakowski, W; Goss, M; Machalski, M; Telega, A; Brulinski, K; Magiera-Molendowska, H

    2000-02-01

    Epidemiological studies indicate that low serum total cholesterol level may increase the risk of death due to cancer, mainly lung cancer. The aim of our study was to evaluate serum levels of total cholesterol (TC) and triglycerides (TG) in patients with squamous cell and small cell lung cancer and their dependence on the histological type and the clinical stage of the neoplasm. Lung cancer patients (n=135) and healthy controls (n=39) entered the study. All lung cancer patients had higher rate of hypocholesterolemia and lower TC and TG levels than the control group. TC concentration was lower in lung cancer patients and in both histological types in comparison with the control group, TG level was lower only in patients with squamous cell lung cancer. There were no statistically significant differences of TC and TG levels between the histological types, or between the clinical stages of each histological type.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, H; Zhang, H

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less

  19. Mixed endocrine gastric tumors associated with hypergastrinemia of antral origin.

    PubMed Central

    Larsson, L. I.; Rehfeld, J. F.; Stockbrügger, R.; Blohme, G.; Schöön, I. M.; Lundqvist, G.; Kindblom, L. G.; Säve-Söderberg, J.; Grimelius, L.; Olbe, L.

    1978-01-01

    A patient with atrophic gastritis and excessively raised serum gastrin concentrations (4000 to 5000 pg/ml) was found to have multiple polypous tumors of the gastric corpus mucosa. Following gastrectomy, serum gastrin concentrations decreased to undetectable levels. The tumors consisted of a mixed population of endocrine cells. The majority of tumor cells were of the ECL type, but, in addition, enterochromaffin cells of various subtypes as well as agranular cells were found. The tumors were locally invasive and invaded the walls of submucosal blood vessels. The surrounding mucosa showed a severe atrophic gastritis with intestinalization and contained numerous goblet cells, enterochromaffin cells, and cholecystokinin cells. Cholecystokinin cells do not occur in the normal oxyntic mucosa. Hence, the observation of this cell type in intestinalized gastric epithelium suggests that "intestinalization also is associated with changes in endocrine cell populations. Gastrin has been shown to affect the function of the ECL cells. Indications for a trophic action of gastrin on these cells have been obtained. It is discussed whether greatly raised serum gastrin levels in patients with atrophic gastritis may be associated with increased risks for the development of certain types of gastric tumors. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 1 Figure 2 Figure 3 PMID:696807

  20. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    PubMed

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases. © 2017 American Heart Association, Inc.

  1. Cell-based therapy technology classifications and translational challenges

    PubMed Central

    Mount, Natalie M.; Ward, Stephen J.; Kefalas, Panos; Hyllner, Johan

    2015-01-01

    Cell therapies offer the promise of treating and altering the course of diseases which cannot be addressed adequately by existing pharmaceuticals. Cell therapies are a diverse group across cell types and therapeutic indications and have been an active area of research for many years but are now strongly emerging through translation and towards successful commercial development and patient access. In this article, we present a description of a classification of cell therapies on the basis of their underlying technologies rather than the more commonly used classification by cell type because the regulatory path and manufacturing solutions are often similar within a technology area due to the nature of the methods used. We analyse the progress of new cell therapies towards clinical translation, examine how they are addressing the clinical, regulatory, manufacturing and reimbursement requirements, describe some of the remaining challenges and provide perspectives on how the field may progress for the future. PMID:26416686

  2. Identification of Carbohydrate-Binding Domains in the Attachment Proteins of Type 1 and Type 3 Reoviruses

    PubMed Central

    Chappell, James D.; Duong, Joy L.; Wright, Benjamin W.; Dermody, Terence S.

    2000-01-01

    The reovirus attachment protein, ς1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The ς1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of ς1 that binds cell surface carbohydrate. Chimeric and truncated ς1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-ς1 antibodies, and oligomerization indicates that the chimeric and truncated ς1 proteins are properly folded. To assess carbohydrate binding, recombinant ς1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated ς1 proteins, the sialic acid-binding domain of type 3 ς1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted β-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of ς1 protein purified from virions. In contrast, the homologous region of T1L ς1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 ς1 tail. Furthermore, our findings indicate that T1L and T3D ς1 proteins contain different arrangements of receptor-binding domains. PMID:10954547

  3. Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses.

    PubMed

    Chappell, J D; Duong, J L; Wright, B W; Dermody, T S

    2000-09-01

    The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor-binding domains.

  4. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation.

    PubMed

    Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce

    2014-04-01

    Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. HCN1 channels in cerebellar Purkinje cells promote late stages of learning and constrain synaptic inhibition

    PubMed Central

    Rinaldi, Arianna; Defterali, Cagla; Mialot, Antoine; Garden, Derek L F; Beraneck, Mathieu; Nolan, Matthew F

    2013-01-01

    Neural computations rely on ion channels that modify neuronal responses to synaptic inputs. While single cell recordings suggest diverse and neurone type-specific computational functions for HCN1 channels, their behavioural roles in any single neurone type are not clear. Using a battery of behavioural assays, including analysis of motor learning in vestibulo-ocular reflex and rotarod tests, we find that deletion of HCN1 channels from cerebellar Purkinje cells selectively impairs late stages of motor learning. Because deletion of HCN1 modifies only a subset of behaviours involving Purkinje cells, we asked whether the channel also has functional specificity at a cellular level. We find that HCN1 channels in cerebellar Purkinje cells reduce the duration of inhibitory synaptic responses but, in the absence of membrane hyperpolarization, do not affect responses to excitatory inputs. Our results indicate that manipulation of subthreshold computation in a single neurone type causes specific modifications to behaviour. PMID:24000178

  6. Efficacy of ribavirin against malignant glioma cell lines: Follow-up study

    PubMed Central

    Ochiai, Yushi; Sano, Emiko; Okamoto, Yutaka; Yoshimura, Sodai; Makita, Kotaro; Yamamuro, Shun; Ohta, Takashi; Ogino, Akiyoshi; Tadakuma, Hisashi; Ueda, Takuya; Nakayama, Tomohiro; Hara, Hiroyuki; Yoshino, Atsuo; Katayama, Yoichi

    2018-01-01

    Ribavirin, a nucleic acid analog, has been employed as an antiviral agent against RNA and DNA viruses and has become the standard agent used for chronic hepatitis C in combination with interferon-α2a. Furthermore, the potential antitumor efficacy of ribavirin has attracted increasing interest. Recently, we demonstrated a dose-dependent antitumor effect of ribavirin for seven types of malignant glioma cell lines. However, the mechanism underlying the antitumor effect of ribavirin has not yet been fully elucidated. Therefore, the main aim of the present study was to provide further relevant data using two types of malignant glioma cell lines (U-87MG and U-138MG) with different expression of MGMT. Dotted accumulations of γH2AX were found in the nuclei and increased levels of ATM and phosphorylated ATM protein expression were also observed following ribavirin treatment (10 µM of ribavirin, clinical relevant concentration) in both the malignant glioma cells, indicating double-strand breaks as one possible mechanism underlying the antitumor effect of ribavirin. In addition, based on assessements using FACS, ribavirin treatment tended to increase the G0/G1 phase, with a time-lapse, indicating the induction of G0/G1-phase arrest. Furthermore, an increased phosphorylated p53 and p21 protein expression was confirmed in both glioma cells. Additionally, analysis by FACS indicated that apoptosis was induced following ribavirin treatment and caspase cascade, downstream of the p53 pathway, which indicated the activation of both exogenous and endogenous apoptosis in both malignant glioma cell lines. These findings may provide an experimental basis for the clinical treatment of glioblastomas with ribavirin. PMID:29251333

  7. Characterization of atrial natriuretic peptide receptors in brain microvessel endothelial cells

    NASA Technical Reports Server (NTRS)

    Whitson, Peggy A.; Huls, M. H.; Sams, Clarence F.

    1989-01-01

    In view of the suggestions by Chabrier et al. (1987) and Steardo and Nathanson (1987) that atrial natriuretic peptide (ANP) may play a role in the fluid homeostasis of the brain, the ANP receptors in primary cultures of bovine brain microvessel endothelian cells were quantitated and characterized. Results of partition binding studies and the effect of cGMP additions indicated the presence of at least two types of ANP receptors, with the majority of the receptors being the nonguanylate cyclase coupled receptors. The presence of at least two ANP receptor types suggests an active role for ANP in regulating brain endothelial cell function.

  8. Isolation and biological characterization of tendon-derived stem cells from fetal bovine.

    PubMed

    Yang, Jinjuan; Zhao, Qianjun; Wang, Kunfu; Liu, Hao; Ma, Caiyun; Huang, Hongmei; Liu, Yingjie

    2016-09-01

    The lack of appropriate candidates of cell sources for cell transplantation has hampered efforts to develop therapies for tendon injuries, such as tendon rupture, tendonitis, and tendinopathy. Tendon-derived stem cells (TDSCs) are a type of stem cells which may be used in the treatment of tendon injuries. In this study, TDSCs were isolated from 5-mo-old Luxi Yellow fetal bovine and cultured in vitro and further analyzed for their biological characteristics using immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) assays. It was found that primary TDSCs could be expanded for 42 passages in vitro maintaining proliferation. The expressions of stem cell marker nucleostemin and tenocyte-related markers, such as collagen I, collagen II, collagen III, and tenascin-C, were observed on different passage cells by immunofluorescence. The results from RT-PCR show that TDSCs were positive for collagen type I, CD44, tenascin-C, and collagen type III but negative for collagen type II. Meanwhile, TDSC passage 4 was successfully induced to differentiate into osteoblasts, adipocytes, and chondrocytes. Our results indicate that the fetal bovine TDSCs not only had strong self-renewal capacity but also possess the potential for multi-lineage differentiation. This study provides theoretical basis and experimental foundation for potential therapeutic application of the fetal bovine TDSCs in the treatment of tendon injuries.

  9. Zn(II)-curc targets p53 in thyroid cancer cells.

    PubMed

    Garufi, Alessia; D'Orazi, Valerio; Crispini, Alessandra; D'Orazi, Gabriella

    2015-10-01

    TP53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers.

  10. The molecular chaperone alphaA-crystallin enhances lens epithelial cell growth and resistance to UVA stress.

    PubMed

    Andley, U P; Song, Z; Wawrousek, E F; Bassnett, S

    1998-11-20

    alphaA-Crystallin (alphaA) is a member of the small heat shock protein (sHSP) family and has the ability to prevent denatured proteins from aggregating in vitro. Lens epithelial cells express relatively low levels of alphaA, but in differentiated fiber cells, alphaA is the most abundant soluble protein. The lenses of alphaA-knock-out mice develop opacities at an early age, implying a critical role for alphaA in the maintenance of fiber cell transparency. However, the function of alpha-crystallin in the lens epithelium is unknown. To investigate the physiological function of alphaA in lens epithelial cells, we used the following two systems: alphaA knock-out (alphaA(-/-)) mouse lens epithelial cells and human lens epithelial cells that overexpress alphaA. The growth rate of alphaA(-/-) mouse lens epithelial cells was reduced by 50% compared with wild type cells. Cell cycle kinetics, measured by fluorescence-activated cell sorter analysis of propidium iodide-stained cells, indicated a relative deficiency of alphaA(-/-) cells in the G2/M phases. Exposure of mouse lens epithelial cells to physiological levels of UVA resulted in an increase in the number of apoptotic cells in the cultures. Four hours after irradiation the fraction of apoptotic cells in the alphaA(-/-) cultures was increased 40-fold over wild type. In cells lacking alphaA, UVA exposure modified F-actin, but actin was protected in cells expressing alphaA. Stably transfected cell lines overexpressing human alphaA were generated by transfecting extended life span human lens epithelial cells with the mammalian expression vector construct pCI-neoalphaA. Cells overexpressing alphaA were resistant to UVA stress, as determined by clonogenic survival. alphaA remained cytoplasmic after exposure to either UVA or thermal stress indicating that, unlike other sHSPs, the protective effect of alphaA was not associated with its relocalization to the nucleus. These results indicate that alphaA has important cellular functions in the lens over and above its well characterized role in refraction.

  11. Use of Disposable Micro Tissue Culture Plates for Antiviral and Interferon Induction Studies

    PubMed Central

    Sidwell, Robert W.; Huffman, John H.

    1971-01-01

    A reproducible test system requiring small amounts of test compound was developed for evaluating antiviral and interferon-inducing activity. In the antiviral experiments, KB cells were grown in disposable polystyrene microplates covered with a standard domestic plastic wrap. Viruses used in the system were types 1 and 2 herpes simplex virus, vaccinia virus, type 3 adenovirus, myxoma virus, pseudorabies virus, type 3 parainfluenza virus, types 1A and 13 rhinovirus, vesicular stomatitis virus, coxsackievirus B, and type 2 poliovirus. Inhibition of viral cytopathogenic effect was the primary criterion of evaluation of antiviral activity. Reduction in cell and supernatant fluid virus titers was used as a secondary means of evaluation. The microplate system was adaptable for determining prophylactic, therapeutic, and inactivating effects against viruses. Mouse L-929 cells were used for the interferon induction studies, with vesicular stomatitis virus utilized as the indicator of interferon activity. Known active compounds evaluated in this microplate system had activity similar to that seen in macro in vitro systems. PMID:4332040

  12. Stimulation of interleukin-13 expression by human T-cell leukemia virus type 1 oncoprotein Tax via a dually active promoter element responsive to NF-kappaB and NFAT.

    PubMed

    Silbermann, Katrin; Schneider, Grit; Grassmann, Ralph

    2008-11-01

    The human T-cell leukemia virus type 1 (HTLV-1) Tax oncoprotein transforms human lymphocytes and is critical for the pathogenesis of HTLV-1-induced adult T-cell leukaemia. In HTLV-transformed cells, Tax upregulates interleukin (IL)-13, a cytokine with proliferative and anti-apoptotic functions that is linked to leukaemogenesis. Tax-stimulated IL-13 is thought to result in autocrine stimulation of HTLV-infected cells and thus may be relevant to their growth. The causal transactivation of the IL-13 promoter by Tax is predominantly dependent on a nuclear factor of activated T cells (NFAT)-binding P element. Here, it was shown that the isolated IL-13 Tax-responsive element (IL13TaxRE) was sufficient to mediate IL-13 transactivation by Tax and NFAT1. However, cyclosporin A, a specific NFAT inhibitor, revealed that Tax transactivation of IL13TaxRE or wild-type IL-13 promoter was independent of NFAT and that NFAT did not contribute to IL-13 upregulation in HTLV-transformed cells. By contrast, Tax stimulation was repressible by an efficient nuclear factor (NF)-kappaB inhibitor (IkBaDN), indicating the requirement for NF-kappaB. The capacity of NF-kappaB to stimulate IL13TaxRE was demonstrated by a strong response to NF-kappaB in reporter assays and by direct binding of NF-kappaB to IL13TaxRE. Thus, IL13TaxRE in the IL-13 promoter represents a dually active promoter element responsive to NF-kappaB and NFAT. Together, these results indicate that Tax causes IL-13 upregulation in HTLV-1-infected cells via NF-kappaB.

  13. Evidence for organ-specific stem cell microenvironments.

    PubMed

    Ghinassi, Barbara; Martelli, Fabrizio; Verrucci, Maria; D'Amore, Emanuela; Migliaccio, Giovanni; Vannucchi, Alessandro Maria; Hoffman, Ronald; Migliaccio, Anna Rita

    2010-05-01

    The X-linked Gata1(low) mutation in mice induces strain-restricted myeloproliferative disorders characterized by extramedullary hematopoiesis in spleen (CD1 and DBA/2) and liver (CD1 only). To assess the role of the microenvironment in establishing this myeloproliferative trait, progenitor cell compartments of spleen and marrow from wild-type and Gata1(low) mice were compared. Phenotype and clonal assay of non-fractionated cells indicated that Gata1(low) mice contain progenitor cell numbers 4-fold lower and 10-fold higher than normal in marrow and spleen, respectively. However, progenitor cells prospectively isolated from spleen, but not from marrow, of Gata1(low) mice expressed colony-forming function in vitro. Therefore, calculation of cloning activity of purified cells demonstrated that the total number of Gata1(low) progenitor cells was 10- to 100-fold lower than normal in marrow and >1,000 times higher than normal in spleen. This observation indicates that Gata1(low) hematopoiesis is favored by the spleen and is in agreement with our previous report that removal of this organ induces wild-type hematopoiesis in heterozygous Gata1(low/+) females (Migliaccio et al., 2009, Blood 114:2107). To clarify if rescue of wild-type hematopoiesis by splenectomy prevented extramedullary hematopoiesis in liver, marrow cytokine expression profile and liver histopathology of splenectomized Gata1(low/+) females were investigated. After splenectomy, the marrow expression levels of TGF-beta, VEGF, osteocalcin, PDGF-alpha, and SDF-1 remained abnormally high while Gata1(low) hematopoiesis was detectable in liver of both CD1 and DBA/2 mutants. Therefore, in the absence of the spleen, Gata1(low) hematopoiesis is supported by the liver suggesting that treatment of myelofibrosis in these animals requires the rescue of both stem cell and microenvironmental functions.

  14. Interleukin (IL)-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts1

    PubMed Central

    Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D.; Abe, Toyofumi; Su, Charles A.; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.

    2016-01-01

    Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared to complete MHC-mismatched wild type cardiac allografts, IL-1R−/− allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R−/− allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R−/− cardiac allografts took 3 weeks longer than wild type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R−/−/wild type chimeric donors indicated that IL-1R signaling on graft non-hematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli provoking development and elicitation of optimal alloimmune responses to the grafts. PMID:26856697

  15. Role of CXCR4 in Cell-Cell Fusion and Infection of Monocyte-Derived Macrophages by Primary Human Immunodeficiency Virus Type 1 (HIV-1) Strains: Two Distinct Mechanisms of HIV-1 Dual Tropism

    PubMed Central

    Yi, Yanjie; Isaacs, Stuart N.; Williams, Darlisha A.; Frank, Ian; Schols, Dominique; De Clercq, Erik; Kolson, Dennis L.; Collman, Ronald G.

    1999-01-01

    Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4). PMID:10438797

  16. Electrochemical properties of 316L stainless steel with culturing L929 fibroblasts

    PubMed Central

    Hiromoto, Sachiko; Hanawa, Takao

    2005-01-01

    Potentiodynamic polarization and impedance tests were carried out on 316L stainless steel with culturing murine fibroblast L929 cells to elucidate the corrosion behaviour of 316L steel with L929 cells and to understand the electrochemical interface between 316L steel and cells, respectively. Potential step test was carried out on 316L steel with type I collagen coating and culturing L929 cells to compare the effects of collagen and L929 cells. The open-circuit potential of 316L steel slightly shifted in a negative manner and passive current density increased with cells, indicating a decrease in the protective ability of passive oxide film. The pitting potential decreased with cells, indicating a decrease in the pitting corrosion resistance. In addition, a decrease in diffusivity at the interface was indicated from the decrease in the cathodic current density and the increase in the diffusion resistance parameter in the impedance test. The anodic peak current in the potential step test decreased with cells and collagen. Consequently, the corrosion resistance of 316L steel decreases with L929 cells. In addition, collagen coating would provide an environment for anodic reaction similar to that with culturing cells. PMID:16849246

  17. High-density lipoprotein of patients with breast cancer complicated with type 2 diabetes mellitus promotes cancer cells adhesion to vascular endothelium via ICAM-1 and VCAM-1 upregulation.

    PubMed

    Huang, Xiaoqin; He, Dan; Ming, Jia; He, Yubin; Zhou, Champion; Ren, Hui; He, Xin; Wang, Chenguang; Jin, Jingru; Ji, Liang; Willard, Belinda; Pan, Bing; Zheng, Lemin

    2016-02-01

    Adhesion of disseminating tumor cells to vascular endothelium is a pivotal starting point in the metastasis cascade. We have shown previously that diabetic high-density lipoprotein (HDL) has the capability of promoting breast cancer metastasis, and this report summarizes our more recent work studying the role of abnormal HDL in facilitating the adhesion of the circulating tumor cells to the endothelium. This is an initiating step in breast cancer metastasis, and this work assesses the role of ICAM-1 and VCAM-1 in this process. MDA-MB-231, MCF 7, and human umbilical vein endothelial cells (HUVECs) were treated with normal HDL from healthy controls (N-HDL), HDL from breast cancer patients (B-HDL), or HDL from breast cancer patients complicated with type 2 diabetes mellitus (BD-HDL), and the cell adhesion abilities were determined. ICAM-1 and VCAM-1 expression as well as the protein kinase C (PKC) activity were evaluated. The effect of PKC inhibitor and PKC siRNA on adhesion was also studied. The immunohistochemical staining of ICAM-1, VCAM-1, and E-selectin from breast cancer patients and breast cancer patients complicated with type 2 diabetes mellitus (T2DM) were examined. Our results indicate that BD-HDL promoted an increase in breast cancer cell adhesion to HUVECs and stimulated higher ICAM-1 and VCAM-1 expression on the cells surface of both breast cancer and HUVEC cells, along with the activation of PKC. Increased tumor cell (TC)-HUVEC adhesion, as well as ICAM-1 and VCAM-1 expression induced by BD-HDL, could be inhibited by staurosporine and PKC siRNA. In addition, a Db/db type 2 diabetes mouse model has more TC-Vascular Endothelium adhesion compared to a normal model. However, BD patients have a lower expression of ICAM-1, VCAM-1, and E-selectin in their tumor tissues. BD-HDL facilitates the adhesion of tumor cells to vascular endothelium by upregulating the expression of ICAM-1 and VCAM-1, thereby promoting the initial progression of breast cancer metastasis. This work indicates a prospective utilization of HDL-based strategies in the treatment of breast cancer patients with type 2 diabetes.

  18. Systems biology approach to developing S(2)RM-based "systems therapeutics" and naturally induced pluripotent stem cells.

    PubMed

    Maguire, Greg; Friedman, Peter

    2015-05-26

    The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell's power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely "systems therapeutic", can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called "systems therapeutics". A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S(2)RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S(2)RM technology, to develop a new class of therapeutics called "systems therapeutics." Given the ubiquitous and powerful nature of innate S(2)RM-based healing in the human body, this "systems therapeutic" approach using S(2)RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.

  19. Metabolic rescue in pluripotent cells from patients with mtDNA disease.

    PubMed

    Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat

    2015-08-13

    Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.

  20. Immunostimulatory activities of dendritic cells loaded with adenovirus vector carrying HBcAg/HBsAg

    PubMed Central

    Jia, Hongyu; Li, Chunling; Zhang, Yimin; Yu, Liang; Xiang, Dairong; Liu, Jun; Chen, Fengzhe; Han, Xiaochun

    2015-01-01

    Objective: This study is to investigate the immunostimulatory activities of dendritic cells (DCs) transfected with HBcAg and/or HBsAg recombinant adenovirus (rAd). Methods: DCs were transfected with rAd (DC/Ad-C+Ad-S, DC/Ad-C, and DC/Ad-S), or pulsed with HBcAg antigen (DC/HBcAg). Flow cytometry was used to detect the phenotype of DCs and the cytokine production of T lymphocytes. Mice were vaccinated with DCs transfected with rAd or pulsed with antigen, and DNA vaccine. Mixed lymphocyte reaction (MLR) was used to evaluate the T-cell stimulatory capacity, and HBcAg-specific cytotoxic T lymphocyte (CTL) activity was assessed. Results: Phenotypic analysis showed that DCs transfected with rAd or pulsed with HBcAg antigen exhibited mature phenotypes. MLR indicated no significant differences in stimulating T-cell proliferation between the DC/rAd and DC/HBcAg groups. When mixed with DCs, Th and Tc cells mainly secreted IFN-γ, indicating type I immune responses. In vaccinated mice, DCs transduced with rAd and pulsed with HBcAg induced significantly more IFN-γ secretion from Th cells, compared with DNA vaccine, indicating stronger Th1 response. Moreover, DCs transduced with rAd stimulated Tc cells to produce more IFN-γ, indicating stronger Tc1 response. In vaccinated mice, HBcAg-specific CTL activities were decreased in the following order: the DC/Ad-C+Ad-S, DC/Ad-C, DC/Ad-S, DC/HBcAg, and DNA vaccine groups. Conclusion: DCs transfected with rAd induce stronger Th1/Tc1 (type I) cell immune responses and specific CTL response than HBcAg-pulsed DCs or DNA vaccine. Our findings suggest that DCs transfected with rAd-C/rAd-S might provide an effective approach in the treatment of persistent hepatitis B virus infection. PMID:26064236

  1. Mast cells mediate the immune suppression induced by dermal exposure to JP-8 jet fuel.

    PubMed

    Limón-Flores, Alberto Y; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E

    2009-11-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell-mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel-induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell "knock-in mice") restored JP-8-induced immune suppression. When, however, mast cells from prostaglandin E(2) (PGE(2))-deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell-derived PGE(2) was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8-induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel-induced immune suppression.

  2. Immuno Nanoparticles Integrated Electrical Control of Targeted Cancer Cell Development Using Whole Cell Bioelectronic Device

    PubMed Central

    Hondroulis, Evangelia; Zhang, Rui; Zhang, Chengxiao; Chen, Chunying; Ino, Kosuke; Matsue, Tomokazu; Li, Chen-Zhong

    2014-01-01

    Electrical properties of cells determine most of the cellular functions, particularly ones which occur in the cell's membrane. Manipulation of these electrical properties may provide a powerful electrotherapy option for the treatment of cancer as cancerous cells have been shown to be more electronegative than normal proliferating cells. Previously, we used an electrical impedance sensing system (EIS) to explore the responses of cancerous SKOV3 cells and normal HUVEC cells to low intensity (<2 V/cm) AC electric fields, determining that the optimal frequency for SKOV3 proliferation arrest was 200 kHz, without harming the non-cancerous HUVECs. In this study, to determine if these effects are cell type dependant, human breast adenocarcinoma cells (MCF7) were subjected to a range of frequencies (50 kHz-2 MHz) similar to the previously tested SKOV3. For the MCF7, an optimal frequency of 100 kHz was determined using the EIS, indicating a higher sensitivity towards the applied field. Further experiments specifically targeting the two types of cancer cells using HER2 antibody functionalized gold nanoparticles (HER2-AuNPs) were performed to determine if enhanced electric field strength can be induced via the application of nanoparticles, consequently leading to the killing of the cancerous cells without affecting non cancerous HUVECs and MCF10a providing a platform for the development of a non-invasive cancer treatment without any harmful side effects. The EIS was used to monitor the real-time consequences on cellular viability and a noticeable decrease in the growth profile of the MCF7 was observed with the application of the HER2-AuNPs and the electric fields indicating specific inhibitory effects on dividing cells in culture. To further understand the effects of the externally applied field to the cells, an Annexin V/EthD-III assay was performed to determine the cell death mechanism indicating apoptosis. The zeta potential of the SKOV3 and the MCF7 before and after incorporation of the HER2-AuNPs was also obtained indicating a decrease in zeta potential with the incorporation of the nanoparticles. The outcome of this research will improve our fundamental understanding of the behavior of cancer cells and define optimal parameters of electrotherapy for clinical and drug delivery applications. PMID:25057316

  3. Comparison of Perturbed Pathways in Two Different Cell Models for Parkinson's Disease with Structural Equation Model.

    PubMed

    Pepe, Daniele; Do, Jin Hwan

    2015-12-16

    Increasing evidence indicates that different morphological types of cell death coexist in the brain of patients with Parkinson's disease (PD), but the molecular explanation for this is still under investigation. In this study, we identified perturbed pathways in two different cell models for PD through the following procedures: (1) enrichment pathway analysis with differentially expressed genes and the Reactome pathway database, and (2) construction of the shortest path model for the enriched pathway and detection of significant shortest path model with fitting time-course microarray data of each PD cell model to structural equation model. Two PD cell models constructed by the same neurotoxin showed different perturbed pathways. That is, one showed perturbation of three Reactome pathways, including cellular senescence, chromatin modifying enzymes, and chromatin organization, while six modules within metabolism pathway represented perturbation in the other. This suggests that the activation of common upstream cell death pathways in PD may result in various down-stream processes, which might be associated with different morphological types of cell death. In addition, our results might provide molecular clues for coexistence of different morphological types of cell death in PD patients.

  4. Long non-coding RNA phosphatase and tensin homolog pseudogene 1 suppresses osteosarcoma cell growth via the phosphoinositide 3-kinase/protein kinase B signaling pathway.

    PubMed

    Yan, Bin; Wubuli, Aikepaer; Liu, Yidong; Wang, Xin

    2018-06-01

    Osteosarcoma is a common type of human carcinoma, which exhibits a high metastasis and recurrence rate. Previous studies have indicated that long non-coding RNA phosphatase and tensin homolog pseudogene 1 (lnPTENP1) has tumor suppressive action by modulating PTEN expression in different types of tumor cells. However, the potential mechanism by which lnPTENP1 has an effect in osteosarcoma cells remains elusive. In the present study, the role of lnPTENP1 in osteosarcoma cells was investigated and the possible mechanisms by which it functions were explored. It was revealed that lnPTENP1 transfection significantly inhibited osteosarcoma cell growth, proliferation, migration and invasion. LnPTENP1 transfection also significantly promoted apoptosis in Mg63 cells treated with tunicamycin. Further analysis revealed that lnPTENP1 transfection regulated osteosarcoma cell growth via the PI3K/AKT signaling pathway. In vivo assays revealed that lnPTENP1 transfection significantly inhibited osteosarcoma tumor growth and significantly increased the protein expression and phosphorylation levels of PI3K and AKT. In conclusion, the results of the present study indicated that lnPTENP1 may inhibit osteosarcoma cell growth via the PI3K/AKT signaling pathway, which may be a potential novel target for human osteosarcoma therapy.

  5. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells

    PubMed Central

    Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula

    2016-01-01

    Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. PMID:27494133

  6. Performance evaluation of multi-junction solar cells by spatially resolved electroluminescence microscopy.

    PubMed

    Kong, Lijing; Wu, Zhiming; Chen, Shanshan; Cao, Yiyan; Zhang, Yong; Li, Heng; Kang, Junyong

    2015-01-01

    An electroluminescence microscopy combined with a spectroscopy was developed to visually analyze multi-junction solar cells. Triple-junction solar cells with different conversion efficiencies were characterized by using this system. The results showed that the mechanical damages and material defects in solar cells can be clearly distinguished, indicating a high-resolution imaging. The external quantum efficiency (EQE) measurements demonstrated that different types of defects or damages impacted cell performance in various degrees and the electric leakage mostly degraded the EQE. Meanwhile, we analyzed the relationship between electroluminescence intensity and short-circuit current density J SC. The results indicated that the gray value of the electroluminescence image corresponding to the intensity was almost proportional to J SC. This technology provides a potential way to evaluate the current matching status of multi-junction solar cells.

  7. Eigenstrain as a mechanical set-point of cells.

    PubMed

    Lin, Shengmao; Lampi, Marsha C; Reinhart-King, Cynthia A; Tsui, Gary; Wang, Jian; Nelson, Carl A; Gu, Linxia

    2018-02-05

    Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell-substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of cell mechanosensing. We showed that cell spread area, traction force on a substrate, as well as the average stress of a cell were increased in response to a stiffer substrate. However, the cell average strain, which is cell type-specific, was kept at the same level regardless of the substrate stiffness. This indicated that the cell average strain is the tensional homeostasis that each type of cell tries to maintain. Furthermore, cell contraction in terms of eigenstrain was found to be the same for both BAECs and fibroblast cells in different mechanical environments. This implied a potential mechanical set-point across different cell types. Our results suggest that additional measurements of contractility might be useful for monitoring cell mechanosensing as well as dynamic remodeling of the extracellular matrix (ECM). This work could help to advance the understanding of the cell-ECM relationship, leading to better regenerative strategies.

  8. [EXPERIMENTAL RESEARCH OF DIFFERENTIATION OF HUMAN AMNIOTIC MESENCHYMAL STEM CELLS INTO LIGAMENT CELLS IN VITRO].

    PubMed

    Jin, Ying; Li, Yuwan; Zhang, Chenghao; Wu, Shuhong; Cheng, Daixiong; Liu, Yi

    2016-02-01

    To discuss whether human amniotic mesenchymal stem cells (hAMSCs) possesses the characteristic of mesenchymal stem cells, and could differentiate into ligament cells in vitro after induction. The hAMSCs were separated through enzyme digestion, and the phenotypic characteristics of hAMSCs were tested through flow cytometry. The cells at passage 3 were cultured with L-DMEM/F12 medium containing transforming growth factor beta1 (TGF-beta1) + basic fibroblast growth factor (bFGF) (group A), containing hyaluronic acid (HA) (group B), containing TGF-beta1+bFGF+HA (group C), and simple L-DMEM/F12 medium (group D) as control group. The morphology changes of cells in each group were observed by inverted phase contrast microscope at 21 days after induction; the cellular activities and proliferation were examined by sulforhodamine (SRB) colorimetric method; and specific mRNA and protein expressions of ligament including collagen type I, collagen type III, and tenascin C (TNC) were measured by real-time fluorescence quantitative PCR and immunohistochemical staining. The flow cytometry result indicated that hAMSCs expressed mesenchymal stem cell phenotype. After 21 days of induction, the cells in groups A, B, and C grew like spindle-shaped fibroblasts under inverted phase contrast microscope, and cells showed single shape, obvious directivity, and compact arrangement in group C. The SRB result indicated that the cells in each group reached the peak of growth curve at 6 days; the cellular activities of groups A, B, and C were significantly higher than that of group D at 6 days after induction. Also, the immunohistochemical staining results showed that no expressions of TNC were detected in 4 groups at 7 days; expressions of collagen type I in groups A, B, and C were significantly higher than that in group D at 7, 14, and 21 days (P<0.001); the expressions of collagen type III in groups A, B, and C were significantly higher than that in group D at 14 and 21 days (P<0.001). There was an increasing tendency with time in collagen type I of group B, in collagen type III and TNC of groups A and C, showing significant difference among different time points (P<0.001). The real-time fluorescence quantitative PCR results revealed that the mRNA expressions of collagen type I and TNC in group C were significantly higher than those in groups A and B (P<0.05), and the mRNA expression of collagen type III in group B were significantly higher than that in groups A and C at 21 days (P<0.05). The mRNA expressions of collagen type I and TNC in groups A and C and mRNA expression of collagen type III in group C had an increasing tendency with time, showing significant difference among different time points (P<0.001). The hAMSCs possesses the characteristics of mesenchymal stem cells and excellent proliferation capacity. After in vitro induction, the expressions of ligament specific genes can be up-regulated and the synthesis of ligament specific proteins can be also strengthened. As a result, it can be used as one of ligament tissue engineering seed cell sources.

  9. Genistein Enhances or Reduces Glycosaminoglycan Quantity in a Cell Type-Specific Manner.

    PubMed

    Lan, Ying; Li, Xiulian; Liu, Xuebo; Hao, Cui; Song, Ni; Ren, Sumei; Wang, Wei; Feng, Ningchuan; Zhang, Lijuan

    2018-06-27

    Genistein is a natural isoflavone enriched in soybeans. It has beneficial effects for patients with mucopolysaccharidose type III through inhibiting glycosaminoglycan biosynthesis. However, other studies indicate that genistein does not always inhibit glycosaminoglycan biosynthesis. To understand the underlying molecular mechanisms, CHOK1, CHO3.1, CHO3.3, and HCT116 cells were treated with genistein and the monosaccharide compositions and quantity of all glycans from the cell lysate were measured after thorough acid hydrolysis followed by HPLC analysis. In addition, the glycosaminoglycan disaccharide compositions were obtained by stable isotope labeling coupled with LC/MS analysis. Genistein treatment reduced the amount of glycans but increased the amount of glycosaminoglycans in HCT116 cells. In contrast, genistein treatment reduced both glycan and glycosaminoglycan quantities in CHOK1, CHO3.1, and CHO3.3 cells in addition to differential changes in glycosaminoglycan disaccharide compositions. Genistein treatment reduced overall glycan quantity but glycosaminoglycan quantities were either increased or decreased in a cell type-dependent manner. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. Cell-phone vs microphone recordings: Judging emotion in the voice.

    PubMed

    Green, Joshua J; Eigsti, Inge-Marie

    2017-09-01

    Emotional states can be conveyed by vocal cues such as pitch and intensity. Despite the ubiquity of cellular telephones, there is limited information on how vocal emotional states are perceived during cell-phone transmissions. Emotional utterances (neutral, happy, angry) were elicited from two female talkers and simultaneously recorded via microphone and cell-phone. Ten-step continua (neutral to happy, neutral to angry) were generated using the straight algorithm. Analyses compared reaction time (RT) and emotion judgment as a function of recording type (microphone vs cell-phone). Logistic regression revealed no judgment differences between recording types, though there were interactions with emotion type. Multi-level model analyses indicated that RT data were best fit by a quadratic model, with slower RT at the middle of each continuum, suggesting greater ambiguity, and slower RT for cell-phone stimuli across blocks. While preliminary, results suggest that critical acoustic cues to emotion are largely retained in cell-phone transmissions, though with effects of recording source on RT, and support the methodological utility of collecting speech samples by phone.

  11. Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis.

    PubMed

    Koshino-Kimura, Yoshihiro; Wada, Takuji; Tachibana, Tatsuhiko; Tsugeki, Ryuji; Ishiguro, Sumie; Okada, Kiyotaka

    2005-06-01

    Epidermal cell differentiation in Arabidopsis root is studied as a model system for understanding cell fate specification. Two types of MYB-related transcription factors are involved in this cell differentiation. One of these, CAPRICE (CPC), encoding an R3-type MYB protein, is a positive regulator of hair cell differentiation and is preferentially transcribed in hairless cells. We analyzed the regulatory mechanism of CPC transcription. Deletion analyses of the CPC promoter revealed that hairless cell-specific transcription of the CPC gene required a 69 bp sequence, and a tandem repeat of this region was sufficient for its expression in epidermis. This region includes two MYB-binding sites, and the epidermis-specific transcription of CPC was abolished when base substitutions were introduced in these sites. We showed by gel mobility shift experiments and by yeast one-hybrid assay that WEREWOLF (WER), which is an R2R3-type MYB protein, directly binds to this region. We showed that WER also binds to the GL2 promoter region, indicating that WER directly regulates CPC and GL2 transcription by binding to their promoter regions.

  12. Interferon-induced TRAIL-independent cell death in DNase II-/- embryos.

    PubMed

    Kitahara, Yusuke; Kawane, Kohki; Nagata, Shigekazu

    2010-09-01

    The chromosomal DNA of apoptotic cells and the nuclear DNA expelled from erythroid precursors is cleaved by DNase II in lysosomes after the cells or nuclei are engulfed by macrophages. DNase II(-/-) embryos suffer from lethal anemia due to IFN-beta produced in the macrophages carrying undigested DNA. Here, we show that Type I IFN induced a caspase-dependent cell death in human epithelial cells that were transformed to express a high level of IFN type I receptor. During this death process, a set of genes was strongly activated, one of which encoded TRAIL, a death ligand. A high level of TRAIL mRNA was also found in the fetal liver of the lethally anemic DNase II(-/-) embryos, and a lack of IFN type I receptor in the DNase II(-/-) IFN-IR(-/-) embryos blocked the expression of TRAIL mRNA. However, a null mutation in TRAIL did not rescue the lethal anemia of the DNase II(-/-) embryos, indicating that TRAIL is dispensable for inducing the apoptosis of erythroid cells in DNase II(-/-) embryos, and therefore, that there is a TRAIL-independent mechanism for the IFN-induced apoptosis.

  13. Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

    PubMed Central

    Rao, Sambasiva P.; Sancho, Jose; Campos-Rivera, Juanita; Boutin, Paula M.; Severy, Peter B.; Weeden, Timothy; Shankara, Srinivas; Roberts, Bruce L.; Kaplan, Johanne M.

    2012-01-01

    Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact. PMID:22761788

  14. The antiproliferative effect of C2-ceramide on lung cancer cells through apoptosis by inhibiting Akt and NFκB.

    PubMed

    Lin, I-Ling; Chou, Han-Lin; Lee, Jin-Ching; Chen, Feng-Wei; Fong, Yao; Chang, Wei-Chiao; Huang, Hurng Wern; Wu, Chang-Yi; Chang, Wen-Tsan; Wang, Hui-Min David; Chiu, Chien-Chih

    2014-01-06

    The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NFκB, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells.

  15. H{sub 2}S does not regulate proliferation via T-type Ca{sup 2+} channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elies, Jacobo; Johnson, Emily; Boyle, John P.

    T-type Ca{sup 2+} channels (Cav3.1, 3.2 and 3.3) strongly influence proliferation of various cell types, including vascular smooth muscle cells (VSMCs) and certain cancers. We have recently shown that the gasotransmitter carbon monoxide (CO) inhibits T-type Ca{sup 2+} channels and, in so doing, attenuates proliferation of VSMC. We have also shown that the T-type Ca{sup 2+} channel Cav3.2 is selectively inhibited by hydrogen sulfide (H{sub 2}S) whilst the other channel isoforms (Cav3.1 and Cav3.3) are unaffected. Here, we explored whether inhibition of Cav3.2 by H{sub 2}S could account for the anti-proliferative effects of this gasotransmitter. H{sub 2}S suppressed proliferation inmore » HEK293 cells expressing Cav3.2, as predicted by our previous observations. However, H{sub 2}S was similarly effective in suppressing proliferation in wild type (non-transfected) HEK293 cells and those expressing the H{sub 2}S insensitive channel, Cav3.1. Further studies demonstrated that T-type Ca{sup 2+} channels in the smooth muscle cell line A7r5 and in human coronary VSMCs strongly influenced proliferation. In both cell types, H{sub 2}S caused a concentration-dependent inhibition of proliferation, yet by far the dominant T-type Ca{sup 2+} channel isoform was the H{sub 2}S-insensitive channel, Cav3.1. Our data indicate that inhibition of T-type Ca{sup 2+} channel-mediated proliferation by H{sub 2}S is independent of the channels’ sensitivity to H{sub 2}S. - Highlights: • T-type Ca{sup 2+} channels regulate proliferation and are sensitive to the gasotransmitters CO and H{sub 2}S. • H{sub 2}S reduced proliferation in HEK293 cells expressing the H{sub 2}S sensitive Cav3.2 channel. • H{sub 2}S also inhibited proliferation in non-transfected cells and HEK293 cells expressing Cav3.1. • Native smooth muscle cells primarily express Cav3.1. Their proliferation was also inhibited by H{sub 2}S. • Unlike CO, H{sub 2}S does not regulate smooth muscle proliferation via T-type Ca{sup 2+} channel inhibition.« less

  16. Polarized type 1 cytokine profile in bronchoalveolar lavage T cells of patients with hypersensitivity pneumonitis.

    PubMed

    Yamasaki, H; Ando, M; Brazer, W; Center, D M; Cruikshank, W W

    1999-09-15

    Hypersensitivity pneumonitis (HP) is characterized by an inflammatory lymphocytic alveolitis comprised of both CD8+ and CD4+ T cells. Animal models suggest that HP is facilitated by overproduction of IFN-gamma, and that IL-10 ameliorates severity of the disease, indicating a Th1-type response. To determine whether a Th1 phenotype in HP also exists clinically, bronchoalveolar lavage (BAL) and peripheral blood (PB) T cells were obtained from HP individuals and analyzed for Th1 vs Th2 cytokine profiles. It was determined that soluble OKT3-stimulated BAL T cells cocultured with alveolar macrophages produced more IFN-gamma and less IL-10 than PB T cells cocultured with monocytes, but no difference was observed in IL-4 production. The monocytic cells did not account for this difference, as CD80 and CD86 expressions were similar, and coculturing PB T cells with alveolar macrophages resulted in no difference in IFN-gamma production. Similarly, there was no difference in IL-12 production between stimulated BAL or PB T cells; however, addition of rIL-12 significantly increased production of IFN-gamma by BAL T cells, but not by PB T cells. This effect was due to a difference in IL-12R expression. High affinity IL-12R were only present in association with BAL T cells. These studies indicate that clinical HP is characterized by a predominance of IFN-gamma-producing T cells, perhaps resulting from a reduction in IL-10 production and an increase in high affinity IL-12R compared with blood T cells.

  17. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells

    PubMed Central

    Michaelis, M; Rothweiler, F; Barth, S; Cinatl, J; van Rikxoort, M; Löschmann, N; Voges, Y; Breitling, R; von Deimling, A; Rödel, F; Weber, K; Fehse, B; Mack, E; Stiewe, T; Doerr, H W; Speidel, D; Cinatl, J

    2011-01-01

    Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines displaying a multi-drug resistance phenotype. Only 2 out of 28 sublines adapted to various cytotoxic drugs harboured p53 mutations. Nutlin-3-adapted UKF-NB-3 cells (UKF-NB-3rNutlin10 μM, harbouring a G245C mutation) were also radiation resistant. Analysis of UKF-NB-3 and UKF-NB-3rNutlin10 μM cells by RNA interference experiments and lentiviral transduction of wild-type p53 into p53-mutated UKF-NB-3rNutlin10 μM cells revealed that the loss of p53 function contributes to the multi-drug resistance of UKF-NB-3rNutlin10 μM cells. Bioinformatics PANTHER pathway analysis based on microarray measurements of mRNA abundance indicated a substantial overlap in the signalling pathways differentially regulated between UKF-NB-3rNutlin10 μM and UKF-NB-3 and between UKF-NB-3 and its cisplatin-, doxorubicin-, or vincristine-resistant sublines. Repeated nutlin-3 adaptation of neuroblastoma cells resulted in sublines harbouring various p53 mutations with high frequency. A p53 wild-type single cell-derived UKF-NB-3 clone was adapted to nutlin-3 in independent experiments. Eight out of ten resulting sublines were p53-mutated harbouring six different p53 mutations. This indicates that nutlin-3 induces de novo p53 mutations not initially present in the original cell population. Therefore, nutlin-3-treated cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells. PMID:22170099

  18. Effects of angiotensin II type 2 receptor overexpression on the growth of hepatocellular carcinoma cells in vitro and in vivo.

    PubMed

    Du, Hongyan; Liang, Zhibing; Zhang, Yanling; Jie, Feilong; Li, Jinlong; Fei, Yang; Huang, Zhi; Pei, Nana; Wang, Suihai; Li, Andrew; Chen, Baihong; Zhang, Yi; Sumners, Colin; Li, Ming; Li, Hongwei

    2013-01-01

    Increasing evidence suggests that the renin-angiotensin system (RAS) plays an important role in tumorigenesis. The interaction between Angiotensin II (AngII) and angiotensin type 1 receptor (AT1R) may have a pivotal role in hepatocellular carcinoma (HCC) and therefore, AT1R blocker and angiotensin I-converting enzyme (ACE) inhibitors may have therapeutic potential in the treatment of hepatic cancer. Although the involvement of AT1R has been well explored, the role of the angiotensin II Type 2 receptor (AT2R) in HCC progression remains poorly understood. Thus, the aim of this study was to explore the effects of AT2R overexpression on HCC cells in vitro and in mouse models of human HCC. An AT2R recombinant adenoviral vector (Ad-G-AT2R-EGFP) was transduced into HCC cell lines and orthotopic tumor grafts. The results indicate that the high dose of Ad-G-AT2R-EGFP-induced overexpression of AT2R in transduced HCC cell lines produced apoptosis. AT2R overexpression in SMMC7721 cells inhibited cell proliferation with a significant reduction of S-phase cells and an enrichment of G1-phase cells through changing expression of CDK4 and cyclinD1. The data also indicate that overexpression of AT2R led to apoptosis via cell death signaling pathway that is dependent on activation of p38 MAPK, pJNK, caspase-8 and caspase-3 and inactivation of pp42/44 MAPK (Erk1/2). Finally, we demonstrated that moderately increasing AT2R expression could increase the growth of HCC tumors and the proliferation of HCC cells in vivo. Our findings suggest that AT2R overexpression regulates proliferation of hepatocellular carcinoma cells in vitro and in vivo, and the precise mechanisms of this phenomenon are yet to be fully determined.

  19. Computation and measurement of cell decision making errors using single cell data.

    PubMed

    Habibi, Iman; Cheong, Raymond; Lipniacki, Tomasz; Levchenko, Andre; Emamian, Effat S; Abdi, Ali

    2017-04-01

    In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF-NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell's inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves.

  20. Dual Roles of Reactive Oxygen Species and NADPH Oxidase RBOHD in an Arabidopsis-Alternaria Pathosystem1[W

    PubMed Central

    Pogány, Miklós; von Rad, Uta; Grün, Sebastian; Dongó, Anita; Pintye, Alexandra; Simoneau, Philippe; Bahnweg, Günther; Kiss, Levente; Barna, Balázs; Durner, Jörg

    2009-01-01

    Arabidopsis (Arabidopsis thaliana) NADPH oxidases have been reported to suppress the spread of pathogen- and salicylic acid-induced cell death. Here, we present dual roles of RBOHD (for respiratory burst oxidase homolog D) in an Arabidopsis-Alternaria pathosystem, suggesting either initiation or prevention of cell death dependent on the distance from pathogen attack. Our data demonstrate that a rbohD knockout mutant exhibits increased spread of cell death at the macroscopic level upon inoculation with the fungus Alternaria brassicicola. However, the cellular patterns of reactive oxygen species accumulation and cell death are fundamentally different in the AtrbohD mutant compared with the wild type. Functional RBOHD causes marked extracellular hydrogen peroxide accumulation as well as cell death in distinct, single cells of A. brassicicola-infected wild-type plants. This single cell response is missing in the AtrbohD mutant, where infection triggers spreading-type necrosis preceded by less distinct chloroplastic hydrogen peroxide accumulation in large clusters of cells. While the salicylic acid analog benzothiadiazole induces the action of RBOHD and the development of cell death in infected tissues, the ethylene inhibitor aminoethoxyvinylglycine inhibits cell death, indicating that both salicylic acid and ethylene positively regulate RBOHD and cell death. Moreover, A. brassicicola-infected AtrbohD plants hyperaccumulate ethylene and free salicylic acid compared with the wild type, suggesting negative feedback regulation of salicylic acid and ethylene by RBOHD. We propose that functional RBOHD triggers death in cells that are damaged by fungal infection but simultaneously inhibits death in neighboring cells through the suppression of free salicylic acid and ethylene levels. PMID:19726575

  1. Metabolic responses induced by DNA damage and poly (ADP-ribose) polymerase (PARP) inhibition in MCF-7 cells

    PubMed Central

    Bhute, Vijesh J.; Palecek, Sean P.

    2015-01-01

    Genomic instability is one of the hallmarks of cancer. Several chemotherapeutic drugs and radiotherapy induce DNA damage to prevent cancer cell replication. Cells in turn activate different DNA damage response (DDR) pathways to either repair the damage or induce cell death. These DDR pathways also elicit metabolic alterations which can play a significant role in the proper functioning of the cells. The understanding of these metabolic effects resulting from different types of DNA damage and repair mechanisms is currently lacking. In this study, we used NMR metabolomics to identify metabolic pathways which are altered in response to different DNA damaging agents. By comparing the metabolic responses in MCF-7 cells, we identified the activation of poly (ADP-ribose) polymerase (PARP) in methyl methanesulfonate (MMS)-induced DNA damage. PARP activation led to a significant depletion of NAD+. PARP inhibition using veliparib (ABT-888) was able to successfully restore the NAD+ levels in MMS-treated cells. In addition, double strand break induction by MMS and veliparib exhibited similar metabolic responses as zeocin, suggesting an application of metabolomics to classify the types of DNA damage responses. This prediction was validated by studying the metabolic responses elicited by radiation. Our findings indicate that cancer cell metabolic responses depend on the type of DNA damage responses and can also be used to classify the type of DNA damage. PMID:26478723

  2. Cellular transfer of magnetic nanoparticles via cell microvesicles: impact on cell tracking by magnetic resonance imaging.

    PubMed

    Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence

    2012-05-01

    Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.

  3. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2601.) [37 FR 13626, July 12, 1972...

  4. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2601.) [37 FR 13626, July 12, 1972...

  5. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2601.) [37 FR 13626, July 12, 1972...

  6. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2601.) [37 FR 13626, July 12, 1972...

  7. 7 CFR 29.2530 - Leaf structure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2601.) [37 FR 13626, July 12, 1972...

  8. Wild-type myoblasts rescue the ability of myogenin-null myoblasts to fuse in vivo.

    PubMed

    Myer, A; Wagner, D S; Vivian, J L; Olson, E N; Klein, W H

    1997-05-15

    Skeletal muscle is formed via a complex series of events during embryogenesis. These events include commitment of mesodermal precursor cells, cell migration, cell-cell recognition, fusion of myoblasts, activation of structural genes, and maturation. In mice lacking the bHLH transcription factor myogenin, myoblasts are specified and positioned correctly, but few fuse to form multinucleated fibers. This indicates that myogenin is critical for the fusion process and subsequent differentiation events of myogenesis. To further define the nature of the myogenic defects in myogenin-null mice, we investigated whether myogenin-null myoblasts are capable of fusing with wild-type myoblasts in vivo using chimeric mice containing mixtures of myogenin-null and wild-type cells. Chimeric embryos demonstrated that myogenin-null myoblasts readily fused in the presence of wild-type myoblasts. However, chimeric myofibers did not express wild-type levels of muscle-specific gene products, and myofibers with a high percentage of mutant nuclei appeared abnormal, suggesting that the wild-type nuclei could not fully rescue mutant nuclei in the myofibers. These data demonstrate that myoblast fusion can be uncoupled from complete myogenic differentiation and that myogenin regulates a specific subset of genes with diverse function. Thus, myogenin appears to control not only transcription of muscle structural genes but also the extracellular environment in which myoblast fusion takes place. We propose that myogenin regulates the expression of one or more extracellular or cell surface proteins required to initiate the muscle differentiation program.

  9. Receptosecretory nature of type III cells in the taste bud.

    PubMed

    Yoshie, Sumio

    2009-01-01

    Type III cells in taste buds form chemical synapses with intragemmal afferent nerve fibers and are characterized by the presence of membrane-bound vesicles in the cytoplasm. Although the vesicles differ in shape and size among species, they are primarily categorized into small clear (40 nm in diameter) and large dense-cored (90-200 nm) types. As such vesicles tend to be closely juxtaposed to the synaptic membrane of the cells, it is reasonable to consider that the vesicles include transmitter(s) towards the gustatory nerve. In the guinea-pig taste bud, stimulation with various taste substances (sucrose, sodium chloride, quinine hydrochloride, or monosodium L-glutamate) causes ultrastructural alterations of the type III cells. At the synapse, the presynaptic plasma membrane often displays invaginations of 90 nm in a mean diameter towards the cytoplasm, which indicates the dense-cored vesicles opening into the synaptic cleft by means of exocytosis. The vesicles are also exocytosed at the non-synaptic region into the intercellular space. These findings strongly suggest that the transmitters presumably contained in the vesicles are released to conduct the excitement of the type III cells to the nerves and also to exert their paracrine effects upon the surroundings, such as the Ebner's salivary gland, acting as local hormones.

  10. Cell Kinetic and Histomorphometric Analysis of Microgravitational Osteopenia: PARE.03B

    NASA Technical Reports Server (NTRS)

    Roberts, W. Eugene; Garetto, Lawrence P.

    1998-01-01

    Previous methods of identifying cells undergoing DNA synthesis (S-phase) utilized 3H-thymidine (3HT) autoradiography. 5-Bromo-2'-deoxyuridine (BrdU) immunohistochemistry is a nonradioactive alternative method. This experiment compared the two methods using the nuclear volume model for osteoblast histogenesis in two different embedding media. Twenty Sprague-Dawley rats were used, with half receiving 3HT (1 micro-Ci/g) and the other half BrdU (50 micro-g/g). Condyles were embedded (one side in paraffin, the other in plastic) and S-phase nuclei were identified using either autoradiography or immunohistochemistry. The fractional distribution of preosteoblast cell types and the percentage of labeled cells (within each cell fraction and label index) were calculated and expressed as mean +/- standard error. Chi-Square analysis showed only a minor difference in the fractional distribution of cell types. However, there were,significant differences (p less than 0.05) by ANOVA, in the nuclear labeling of specific cell types. With the exception of the less-differentiated A+A' cells, more BrdU label was consistently detected in paraffin than in plastic-embedded sections. In general, more nuclei were labeled with 3H-thymidine than with BrdU in both types of embedding media (Fig 2.). Labeling index data (labeled cells/total cells sampled x 100) indicated that BrdU in paraffin, but not plastic gave the same results as 3HT in either embedding method. Thus, we conclude that the two labeling methods do not yield the same results.

  11. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers.

    PubMed Central

    Kukowska-Latallo, J F; Bielinska, A U; Johnson, J; Spindler, R; Tomalia, D A; Baker, J R

    1996-01-01

    Starburst polyamidoamine dendrimers are a new class of synthetic polymers with unique structural and physical characteristics. These polymers were investigated for the ability to bind DNA and enhance DNA transfer and expression in a variety of mammalian cell lines. Twenty different types of polyamidoamine dendrimers were synthesized, and the polymer structure was confirmed using well-defined analytical techniques. The efficiency of plasmid DNA transfection using dendrimers was examined using two reporter gene systems: firefly luciferase and bacterial beta-galactosidase. The transfections were performed using various dendrimers, and levels of expression of the reporter protein were determined. Highly efficient transfection of a broad range of eukaryotic cells and cell lines was achieved with minimal cytotoxicity using the DNA/dendrimer complexes. However, the ability to transfect cells was restricted to certain types of dendrimers and in some situations required the presence of additional compounds, such as DEAE-dextran, that appeared to alter the nature of the complex. A few cell lines demonstrated enhanced transfection with the addition of chloroquine, indicating endosomal localization of the complexes. The capability of a dendrimer to transfect cells appeared to depend on the size, shape, and number of primary amino groups on the surface of the polymer. However, the specific dendrimer most efficient in achieving transfection varied between different types of cells. These studies demonstrate that Starburst dendrimers can transfect a wide variety of cell types in vitro and offer an efficient method for producing permanently transfected cell lines. Images Fig. 1 Fig. 2 Fig. 4 PMID:8643500

  12. Use of repetitive DNA sequences to distinguish Mus musculus and Mus caroli cells by in situ hybridization.

    PubMed

    Siracusa, L D; Chapman, V M; Bennett, K L; Hastie, N D; Pietras, D F; Rossant, J

    1983-02-01

    Mammalian chimaeras have proved useful for investigating early steps in embryonic development. However, a complete clonal analysis of cell lineages has been limited by the lack of a marker which is ubiquitous and can distinguish parental cell types in situ. We have developed a cell marker system which fulfils these criteria. Chimaeric mice were successfully produced from two mouse species which possess sufficient genetic differences to allow unequivocal identification of parental cell types. DNA-DNA in situ hybridization with cloned, species-specific sequences was performed to distinguish the parental cell types. We have identified a cloned, Mus musculus satellite DNA sequence which shows hybridization differences between Mus musculus and Mus caroli DNA. This clone was used a a probe in in situ hybridizations to bone marrow chromosomes from Mus musculus, Mus caroli, and an interspecific F1 hybrid. The clone could qualitatively distinguish Mus musculus from Mus caroli chromosomes after in situ hybridization, even when they were derived from the same F1 hybrid cell. Quantitation of this hybridization to interphase nuclei from bone marrow spreads indicates that the probe can successfully distinguish Mus musculus from Mus caroli cells and can determine the percentage contribution of Mus musculus in mixtures of bone marrow cells of these species and in chimaeric bone marrow cell preparations.

  13. Mast Cells Mediate the Immune Suppression Induced by Dermal Exposure to JP-8 Jet Fuel

    PubMed Central

    Limón-Flores, Alberto Y.; Chacón-Salinas, Rommel; Ramos, Gerardo; Ullrich, Stephen E.

    2009-01-01

    Applying jet propulsion-8 (JP-8) jet fuel to the skin of mice induces immune suppression. Applying JP-8 to the skin of mice suppresses T-cell–mediated immune reactions including, contact hypersensitivity (CHS) delayed-type hypersensitivity and T-cell proliferation. Because dermal mast cells play an important immune regulatory role in vivo, we tested the hypothesis that mast cells mediate jet fuel–induced immune suppression. When we applied JP-8 to the skin of mast cell deficient mice CHS was not suppressed. Reconstituting mast cell deficient mice with wild-type bone marrow derived mast cells (mast cell “knock-in mice”) restored JP-8–induced immune suppression. When, however, mast cells from prostaglandin E2 (PGE2)–deficient mice were used, the ability of JP-8 to suppress CHS was not restored, indicating that mast cell–derived PGE2 was activating immune suppression. Examining the density of mast cells in the skin and lymph nodes of JP-8-treated mice indicated that jet fuel treatment caused an initial increase in mast cell density in the skin, followed by increased numbers of mast cells in the subcutaneous space and then in draining lymph nodes. Applying JP-8 to the skin increased mast cell expression of CXCR4, and increased the expression of CXCL12 by draining lymph node cells. Because CXCL12 is a chemoattractant for CXCR4+ mast cells, we treated JP-8-treated mice with AMD3100, a CXCR4 antagonist. AMD3100 blocked the mobilization of mast cells to the draining lymph node and inhibited JP-8–induced immune suppression. Our findings demonstrate the importance of mast cells in mediating jet fuel–induced immune suppression. PMID:19726579

  14. Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection

    PubMed Central

    Kernbauer, Elisabeth; Maier, Verena; Stoiber, Dagmar; Strobl, Birgit; Schneckenleithner, Christine; Sexl, Veronika; Reichart, Ursula; Reizis, Boris; Kalinke, Ulrich; Jamieson, Amanda; Müller, Mathias; Decker, Thomas

    2012-01-01

    Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection. PMID:22719255

  15. Lung Epithelial Healing: A Modified Seed and Soil Concept

    PubMed Central

    Brechbuhl, Heather M.; Smith, Mary Kathryn; Smith, Russell W.; Ghosh, Moumita

    2012-01-01

    Airway epithelial healing is defined as restoration of health or soundness; to cure. Our research indicates that two types of progenitor cells participate in this process: the tissue-specific stem cell (TSC) and the facultative basal progenitor (FBP). The TSC restores the epithelium to its normal structure and function. Thus, the TSC regenerates the epithelium. In contrast, the FBP-derived epithelium is characterized by regions of cellular hyperplasia and hypoplasia. Since the FBP-derived epithelium deviates from normal, we term the FBP-mediated process repair. Our work indicates that the TSC responds to signals from other epithelial cells, including the FBP. These signals instruct the TSC to proliferate or to select one of several differentiation pathways. We interpret these data in the context of Stephen Padget’s “seed and soil” paradigm. Therein, Padget explained that metastasis of a tumor, the seed, to a specific site, the soil, was determined by the growth and differentiation requirements of the tumor cell. By extending the seed and soil paradigm to airway epithelial healing, we suggest that proliferation and differentiation of the TSC, the seed, is determined by its interactions with other cell types, the soil. Based on this concept, we provide a set of suggestions for development of cell-based therapies that are directed toward chronic airways disease. PMID:22550238

  16. Capturing the metabolomic diversity of KRAS mutants in non-small-cell lung cancer cells

    PubMed Central

    Marabese, Mirko; Broggini, Massimo; Pastorelli, Roberta

    2014-01-01

    In non-small-cell lung cancer (NSCLC), one-fifth of patients have KRAS mutations, which are considered a negative predictive factor to first-line therapy. Evidence is emerging that not all KRAS mutations have the same biological activities and possible remodeling of cell metabolism by KRAS activation might complicate the scenario. An open question is whether different KRAS mutations at codon-12 affect cellular metabolism differently with possible implications for different responses to cancer treatments. We applied an explorative mass spectrometry-based untargeted metabolomics strategy to characterize the largest possible number of metabolites that might distinguish isogenic NSCLC cells overexpressing mutated forms of KRAS at codon-12 (G12C, G12D, G12V) and the wild-type. The glutamine deprivation assay and real-time PCR were used to confirm the involvement of some of the metabolic pathways highlighted. Cell clones indicated distinct metabolomic profiles in KRAS wild-type and mutants. Clones harboring different KRAS mutations at codon-12 also had different metabolic remodeling, such as a different redox buffering system and different glutamine-dependency not driven by the transcriptional state of enzymes involved in glutaminolysis. These findings indicate that KRAS mutations at codon-12 are associated with different metabolomic profiles that might affect the responses to cancer treatments. PMID:24952473

  17. Learning the Cell Structures with Three-Dimensional Models: Students' Achievement by Methods, Type of School and Questions' Cognitive Level

    NASA Astrophysics Data System (ADS)

    Lazarowitz, Reuven; Naim, Raphael

    2013-08-01

    The cell topic was taught to 9th-grade students in three modes of instruction: (a) students "hands-on," who constructed three-dimensional cell organelles and macromolecules during the learning process; (b) teacher demonstration of the three-dimensional model of the cell structures; and (c) teaching the cell topic with the regular learning material in an expository mode (which use one- or two-dimensional cell structures as are presented in charts, textbooks and microscopic slides). The sample included 669, 9th-grade students from 25 classes who were taught by 22 Biology teachers. Students were randomly assigned to the three modes of instruction, and two tests in content knowledge in Biology were used. Data were treated with multiple analyses of variance. The results indicate that entry behavior in Biology was equal for all the study groups and types of schools. The "hands-on" learning group who build three-dimensional models through the learning process achieved significantly higher on academic achievements and on the high and low cognitive questions' levels than the other two groups. The study indicates the advantages students may have being actively engaged in the learning process through the "hands-on" mode of instruction/learning.

  18. Role of the M3 muscarinic acetylcholine receptor in beta-cell function and glucose homeostasis.

    PubMed

    Gautam, D; Han, S-J; Duttaroy, A; Mears, D; Hamdan, F F; Li, J H; Cui, Y; Jeon, J; Wess, J

    2007-11-01

    The release of insufficient amounts of insulin in the presence of elevated blood glucose levels is one of the key features of type 2 diabetes. Various lines of evidence indicate that acetylcholine (ACh), the major neurotransmitter of the parasympathetic nervous system, can enhance glucose-stimulated insulin secretion from pancreatic beta-cells. Studies with isolated islets prepared from whole body M(3) muscarinic ACh receptor knockout mice showed that cholinergic amplification of glucose-dependent insulin secretion is exclusively mediated by the M(3) muscarinic receptor subtype. To investigate the physiological relevance of this muscarinic pathway, we used Cre/loxP technology to generate mutant mice that lack M(3) receptors only in pancreatic beta-cells. These mutant mice displayed impaired glucose tolerance and significantly reduced insulin secretion. In contrast, transgenic mice overexpressing M(3) receptors in pancreatic beta-cells showed a pronounced increase in glucose tolerance and insulin secretion and were resistant to diet-induced glucose intolerance and hyperglycaemia. These findings indicate that beta-cell M(3) muscarinic receptors are essential for maintaining proper insulin secretion and glucose homeostasis. Moreover, our data suggest that enhancing signalling through beta-cell M(3) muscarinic receptors may represent a new avenue in the treatment of glucose intolerance and type 2 diabetes.

  19. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms

    PubMed Central

    Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.

    2016-01-01

    Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding. PMID:26865617

  20. The Product of the Herpes Simplex Virus Type 1 UL25 Gene Is Required for Encapsidation but Not for Cleavage of Replicated Viral DNA

    PubMed Central

    McNab, Alistair R.; Desai, Prashant; Person, Stan; Roof, Lori L.; Thomsen, Darrell R.; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    1998-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278–283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246–259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA. PMID:9445000

  1. Comparing corn types for differences in cell wall characteristics and p-coumaroylation of lignin.

    PubMed

    Hatfield, Ronald D; Chaptman, Ann K

    2009-05-27

    This study was undertaken to compare cell wall characteristics including levels of p-coumarate (pCA) and lignin in corn (Zea mays L.) types. Five different types of corn, four commercial and Teosinte, were grown in the greenhouse in individual pots. For each corn type replicate stems were harvested at tassel emergence. Tissues for cell wall analysis were harvested from stems (separated into rind and pith tissues) and roots. Stem cell wall characteristics across the different corn types were similar for total neutral sugars, total uronosyls, lignin, and phenolic acids. However, the neutral sugar composition of root cell walls was markedly different, with high levels of galactose and arabinose. Levels of pCA in the different tissues ranged from 13.8 to 33.1 mg g(-1) of CW depending upon the type of tissue. There was no evidence that pCA was incorporated into cell walls attached to arabinoxylans. Lignin levels were similar within a given tissue, with pith ranging from 86.1 to 132.0 mg g(-1) of CW, rind from 178.4 to 236.6 mg g(-1) of CW, and roots from 216.5 to 242.6 mg g(-1) of CW. The higher values for lignins in root tissue may be due to suberin remaining in the acid-insoluble residue, forming Klason lignins. With the exception of root tissues, higher pCA levels accompanied higher lignin levels. This may indicate a potential role of pCA aiding lignin formation in corn cell walls during the lignification process.

  2. Genome-Wide Analysis Reveals the Unique Stem Cell Identity of Human Amniocytes

    PubMed Central

    Maguire, Colin T.; Demarest, Bradley L.; Hill, Jonathon T.; Palmer, James D.; Brothman, Arthur R.; Yost, H. Joseph; Condic, Maureen L.

    2013-01-01

    Human amniotic fluid contains cells that potentially have important stem cell characteristics, yet the programs controlling their developmental potency are unclear. Here, we provide evidence that amniocytes derived from multiple patients are marked by heterogeneity and variability in expression levels of pluripotency markers. Clonal analysis from multiple patients indicates that amniocytes have large pools of self-renewing cells that have an inherent property to give rise to a distinct amniocyte phenotype with a heterogeneity of pluripotent markers. Significant to their therapeutic potential, genome-wide profiles are distinct at different gestational ages and times in culture, but do not differ between genders. Based on hierarchical clustering and differential expression analyses of the entire transcriptome, amniocytes express canonical regulators associated with pluripotency and stem cell repression. Their profiles are distinct from human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), and newborn foreskin fibroblasts. Amniocytes have a complex molecular signature, coexpressing trophoblastic, ectodermal, mesodermal, and endodermal cell-type-specific regulators. In contrast to the current view of the ground state of stem cells, ESCs and iPSCs also express high levels of a wide range of cell-type-specific regulators. The coexpression of multilineage differentiation markers combined with the strong expression of a subset of ES cell repressors in amniocytes suggests that these cells have a distinct phenotype that is unlike any other known cell-type or lineage. PMID:23326421

  3. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    PubMed

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  4. Berberine Attenuates Inflammation Associated with Delayed-Type Hypersensitivity via Suppressing Th1 Response and Inhibiting Apoptosis.

    PubMed

    Wang, Zhigang; Chen, Zhe; Chen, Tao; Yi, Tao; Zheng, Zhou; Fan, Hong; Chen, Zebin

    2017-02-01

    Berberine, one of the active alkaloids from Rhizoma Coptidis, has been indicated to have anti-inflammatory and immunosuppressive properties. The aim of this study was to determine the role of berberine on ovalbumin (OVA)-induced delayed-type hypersensitivity (DTH) and its potential mechanisms. Berberine treatment significantly reduced footpad swelling, inflammatory cells infiltration, anti-OVA IgG levels, IgE concentration in serum, and the tetramer + CD8 + cells. In homogenized footpad tissue, the production of Th1-mediated cytokines including IFN-γ, TNF-α, and IL-2 were suppressed following the administration of berberine. Detailed studies revealed that berberine prevented differentiation into Th1 cells in the OVA-primed lymphocytes, resulting from suppressing the expression of T-bet and secretion of IFN-γ but not IL-4. Concanavalin A stimulation assay and MTT assay also indicated inhibiting effect of berberine treatment on IFN-γ production and decreased cytotoxicity in lymphocytes proliferation, respectively. Additionally, berberine obviously decreased the cell apoptosis and enzymatic activity of caspase-3, which was further confirmed by the facts that berberine clearly lowered Bax/Bcl-2 ratio and expression of cleaved caspase-3 protein. On correlation analysis, the percentage of apoptotic cells showed a significant positive relationship with IFN-γ/IL-4 ratio of supernatant from footpad tissue in berberine-treated DTH mice. These results demonstrated that berberine attenuated Th1-mediated inflammation in OVA-induced DTH by curbing Th1 response and inhibiting cell apoptosis, suggesting a therapeutic potential for berberine for the treatment of type IV hypersensitivity.

  5. Constitutive expression of tert in thymocytes leads to increased incidence and dissemination of T-cell lymphoma in Lck-Tert mice.

    PubMed

    Canela, Andrés; Martín-Caballero, Juan; Flores, Juana M; Blasco, María A

    2004-05-01

    Here we describe a new mouse model with constitutive expression of the catalytic subunit of telomerase (Tert) targeted to thymocytes and peripheral T cells (Lck-Tert mice). Two independent Lck-Tert mouse lines showed higher incidences of spontaneous T-cell lymphoma than the corresponding age-matched wild-type controls, indicating that constitutive expression of Tert promotes lymphoma. Interestingly, T-cell lymphomas in Lck-Tert mice were more disseminated than those in wild-type controls and affected both lymphoid and nonlymphoid tissues, while nonlymphoid tissues were never affected with lymphoma in age-matched wild-type controls. Importantly, these roles of Tert constitutive expression in promoting tumor progression and dissemination were independent of the role of telomerase in telomere length maintenance, since telomere length distributions on a single-cell basis were identical in Lck-Tert and wild-type thymocytes. Finally, Tert constitutive expression did not interfere with telomere capping in Lck-Tert primary thymocytes, although it resulted in greater chromosomal instability upon gamma irradiation in Lck-Tert primary lymphocytes than in controls, suggesting that Tert overexpression may interfere with the cellular response to DNA damage.

  6. Repurposed JAK1/JAK2 Inhibitor Reverses Established Autoimmune Insulitis in NOD Mice.

    PubMed

    Trivedi, Prerak M; Graham, Kate L; Scott, Nicholas A; Jenkins, Misty R; Majaw, Suktilang; Sutherland, Robyn M; Fynch, Stacey; Lew, Andrew M; Burns, Christopher J; Krishnamurthy, Balasubramanian; Brodnicki, Thomas C; Mannering, Stuart I; Kay, Thomas W; Thomas, Helen E

    2017-06-01

    Recent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis. There is good evidence for activation of the JAK1/JAK2 and signal transducer and activator of transcription (STAT) 1 pathway in human type 1 diabetes and in mouse models, especially in β-cells. We tested the hypothesis that using these drugs to block the JAK-STAT pathway would prevent autoimmune diabetes. The JAK1/JAK2 inhibitor AZD1480 blocked the effect of cytokines on mouse and human β-cells by inhibiting MHC class I upregulation. This prevented the direct interaction between CD8 + T cells and β-cells, and reduced immune cell infiltration into islets. NOD mice treated with AZD1480 were protected from autoimmune diabetes, and diabetes was reversed in newly diagnosed NOD mice. This provides mechanistic groundwork for repurposing clinically approved JAK1/JAK2 inhibitors for type 1 diabetes. © 2017 by the American Diabetes Association.

  7. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.

    PubMed

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-25

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.

  8. Stochastic gene expression in Arabidopsis thaliana.

    PubMed

    Araújo, Ilka Schultheiß; Pietsch, Jessica Magdalena; Keizer, Emma Mathilde; Greese, Bettina; Balkunde, Rachappa; Fleck, Christian; Hülskamp, Martin

    2017-12-14

    Although plant development is highly reproducible, some stochasticity exists. This developmental stochasticity may be caused by noisy gene expression. Here we analyze the fluctuation of protein expression in Arabidopsis thaliana. Using the photoconvertible KikGR marker, we show that the protein expressions of individual cells fluctuate over time. A dual reporter system was used to study extrinsic and intrinsic noise of marker gene expression. We report that extrinsic noise is higher than intrinsic noise and that extrinsic noise in stomata is clearly lower in comparison to several other tissues/cell types. Finally, we show that cells are coupled with respect to stochastic protein expression in young leaves, hypocotyls and roots but not in mature leaves. Our data indicate that stochasticity of gene expression can vary between tissues/cell types and that it can be coupled in a non-cell-autonomous manner.

  9. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging

    PubMed Central

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-01-01

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176

  10. Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT.

    PubMed

    Ajat, Mokrish; Molenaar, Martijn; Brouwers, Jos F H M; Vaandrager, Arie B; Houweling, Martin; Helms, J Bernd

    2017-02-01

    Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC-MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species. Quiescent primary HSCs contain predominantly retinyl palmitate. Exogenous fatty acids are a major determinant in the retinyl ester species synthesized by activated HSCs and LX-2 cells, indicating that HSCs shift their retinyl ester synthesizing capacity from LRAT to DGAT1 during activation. Quiescent LRAT -/- HSCs retain the capacity to synthesize retinyl esters and to store neutral lipids in lipid droplets ex vivo. The median lipid droplet size in LRAT -/- HSCs (1080nm) is significantly smaller than in wild type HSCs (1618nm). This is a consequence of an altered lipid droplet size distribution with 50.5±9.0% small (≤700nm) lipid droplets in LRAT -/- HSCs and 25.6±1.4% large (1400-2100nm) lipid droplets in wild type HSC cells. Upon prolonged (24h) incubation, the amounts of small (≤700nm) lipid droplets strongly increased both in wild type and in LRAT -/- HSCs, indicating a dynamic behavior in both cell types. The absence of retinyl esters and reduced number of lipid droplets in LRAT-deficient HSCs in vivo will be discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Replication of Murine Cytomegalovirus in Differentiated Macrophages as a Determinant of Viral Pathogenesis

    PubMed Central

    Hanson, Laura K.; Slater, Jacquelyn S.; Karabekian, Zaruhi; Virgin, Herbert W.; Biron, Christine A.; Ruzek, Melanie C.; van Rooijen, Nico; Ciavarra, Richard P.; Stenberg, Richard M.; Campbell, Ann E.

    1999-01-01

    Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as “filters” in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection. PMID:10364349

  12. Generation of Mast Cells from Mouse Fetus: Analysis of Differentiation and Functionality, and Transcriptome Profiling Using Next Generation Sequencer

    PubMed Central

    Fukuishi, Nobuyuki; Igawa, Yuusuke; Kunimi, Tomoyo; Hamano, Hirofumi; Toyota, Masao; Takahashi, Hironobu; Kenmoku, Hiromichi; Yagi, Yasuyuki; Matsui, Nobuaki; Akagi, Masaaki

    2013-01-01

    While gene knockout technology can reveal the roles of proteins in cellular functions, including in mast cells, fetal death due to gene manipulation frequently interrupts experimental analysis. We generated mast cells from mouse fetal liver (FLMC), and compared the fundamental functions of FLMC with those of bone marrow-derived mouse mast cells (BMMC). Under electron microscopy, numerous small and electron-dense granules were observed in FLMC. In FLMC, the expression levels of a subunit of the FcεRI receptor and degranulation by IgE cross-linking were comparable with BMMC. By flow cytometry we observed surface expression of c-Kit prior to that of FcεRI on FLMC, although on BMMC the expression of c-Kit came after FcεRI. The surface expression levels of Sca-1 and c-Kit, a marker of putative mast cell precursors, were slightly different between bone marrow cells and fetal liver cells, suggesting that differentiation stage or cell type are not necessarily equivalent between both lineages. Moreover, this indicates that phenotypically similar mast cells may not have undergone an identical process of differentiation. By comprehensive analysis using the next generation sequencer, the same frequency of gene expression was observed for 98.6% of all transcripts in both cell types. These results indicate that FLMC could represent a new and useful tool for exploring mast cell differentiation, and may help to elucidate the roles of individual proteins in the function of mast cells where gene manipulation can induce embryonic lethality in the mid to late stages of pregnancy. PMID:23573287

  13. A silencing suppressor protein (NSs) of a tospovirus enhances baculovirus replication in permissive and semipermissive insect cell lines.

    PubMed

    Oliveira, Virgínia Carla; Bartasson, Lorrainy; de Castro, Maria Elita Batista; Corrêa, José Raimundo; Ribeiro, Bergmann Morais; Resende, Renato Oliveira

    2011-01-01

    The nonstructural protein (NSs) of the Tomato spotted wilt virus (TSWV) has been identified as an RNAi suppressor in plant cells. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) designated vAcNSs, containing the NSs gene under the control of the viral polyhedrin (polh) gene promoter, was constructed and the effects of NSs in permissive, semipermissive and nonpermissive insect cells to vAcNSs infection were evaluated. vAcNSs produced more budded virus when compared to wild type in semipermissive cells. Co-infection of vAcNSs with wild type baculoviruses clearly enhanced polyhedra production in all host cells. Confocal microscopy analysis showed that NSs accumulated in abundance in the cytoplasm of permissive and semipermissive cells. In contrast, high amounts of NSs were detected in the nuclei of nonpermissive cells. Co-infection of vAcNSs with a recombinant AcMNPV containing the enhanced green fluorescent protein (egfp) gene, significantly increased EGFP expression in semipermissive cells and in Anticarsia gemmatalis-hemocytes. Absence of small RNA molecules of egfp transcripts in this cell line and in a permissive cell line indicates the suppression of gene silencing activity. On the other hand, vAcNSs was not able to suppress RNAi in a nonpermissive cell line. Our data showed that NSs protein of TSWV facilitates baculovirus replication in different lepidopteran cell lines, and these results indicate that NSs could play a similar role during TSWV-infection in its thrips vector. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Characterization of Epicardial-Derived Cardiac Interstitial Cells: Differentiation and Mobilization of Heart Fibroblast Progenitors

    PubMed Central

    Ehrbar, Martin; Pérez-Pomares, José M.

    2013-01-01

    The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729

  15. Delayed rectifier and A-type potassium channels associated with Kv 2.1 and Kv 4.3 expression in embryonic rat neural progenitor cells.

    PubMed

    Smith, Dean O; Rosenheimer, Julie L; Kalil, Ronald E

    2008-02-13

    Because of the importance of voltage-activated K(+) channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and betaIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K(+) currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells.

  16. Origin and specification of type II neuroblasts in the Drosophila embryo.

    PubMed

    Álvarez, José-Andrés; Díaz-Benjumea, Fernando J

    2018-04-05

    In Drosophila , neural stem cells or neuroblasts (NBs) acquire different identities according to their site of origin in the embryonic neuroectoderm. Their identity determines the number of times they will divide and the types of daughter cells they will generate. All NBs divide asymmetrically, with type I NBs undergoing self-renewal and generating another cell that will divide only once more. By contrast, a small set of NBs in the larval brain, type II NBs, divides differently, undergoing self-renewal and generating an intermediate neural progenitor (INP) that continues to divide asymmetrically several more times, generating larger lineages. In this study, we have analysed the origin of type II NBs and how they are specified. Our results indicate that these cells originate in three distinct clusters in the dorsal protocerebrum during stage 12 of embryonic development. Moreover, it appears that their specification requires the combined action of EGFR signalling and the activity of the related genes buttonhead and Drosophila Sp1 In addition, we also show that the INPs generated in the embryo enter quiescence at the end of embryogenesis, resuming proliferation during the larval stage. © 2018. Published by The Company of Biologists Ltd.

  17. Preparation of p-type NiO films by reactive sputtering and their application to CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryousuke; Furuya, Yasuaki; Araki, Ryouichi; Nomoto, Takahiro; Ogawa, Yohei; Hosono, Aikyo; Okamoto, Tamotsu; Tsuboi, Nozomu

    2016-02-01

    Transparent p-type NiO films were prepared by reactive sputtering using the facing-target system under Ar-diluted O2 gas at Tsub of 30 and 200 °C. The increasing intensity of dominant X-ray diffraction (XRD) peaks indicates improvements in the crystallinity of NiO films upon Cu doping. In spite of the crystallographic and optical changes after Cu-doping, the electrical properties of Cu-doped NiO films were slightly improved. Upon Ag-doping at 30 °C under low O2 concentration, on the other hand, the intensity of the dominant (111) XRD peaks was suppressed and p-type conductivity increased from ˜10-3 to ˜10-1 S cm-1. Finally, our Ag-doped NiO films were applied as the back contact of CdTe solar cells. CdTe solar cells with a glass/ITO/CdS/CdTe/NiO structure exhibited an efficiency of 6.4%, suggesting the high potential of using p-type NiO for the back-contact film in thin-film solar cells.

  18. Complexes of D-type cyclins with CDKs during maize germination

    PubMed Central

    Vázquez-Ramos, Jorge M.

    2013-01-01

    The importance of cell proliferation in plant growth and development has been well documented. The majority of studies on basic cell cycle mechanisms in plants have been at the level of gene expression and much less knowledge has accumulated in terms of protein interactions and activation. Two key proteins, cyclins and cyclin-dependent kinases (CDKs) are fundamental for cell cycle regulation and advancement. Our aim has been to understand the role of D-type cyclins and type A and B CDKs in the cell cycle taking place during a developmental process such as maize seed germination. Results indicate that three maize D-type cyclins—D2;2, D4;2, and D5;3—(G1-S cyclins by definition) bind and activate two different types of CDK—A and B1;1—in a differential way during germination. Whereas CDKA–D-type cyclin complexes are more active at early germination times than at later times, it was surprising to observe that CDKB1;1, a supposedly G2-M kinase, bound in a differential way to all D-type cyclins tested during germination. Binding to cyclin D2;2 was detectable at all germination times, forming a complex with kinase activity, whereas binding to D4;2 and D5;3 was more variable; in particular, D5;3 was only detected at late germination times. Results are discussed in terms of cell cycle advancement and its importance for seed germination. PMID:24127516

  19. Overexpression of ZDHHC14 promotes migration and invasion of scirrhous type gastric cancer.

    PubMed

    Oo, Htoo Zarni; Sentani, Kazuhiro; Sakamoto, Naoya; Anami, Katsuhiro; Naito, Yutaka; Uraoka, Naohiro; Oshima, Takashi; Yanagihara, Kazuyoshi; Oue, Naohide; Yasui, Wataru

    2014-07-01

    Scirrhous type gastric cancer is highly aggressive and has a poorer prognosis than many other types of gastric carcinoma, due to its characteristic rapid cancer cell infiltration and proliferation, extensive stromal fibrosis, and frequent peritoneal dissemination. The aim of the present study was to identify novel prognostic markers or therapeutic targets for scirrhous type gastric cancer. We reviewed a list of genes with upregulated expression in scirrhous type gastric cancer and compared their expression with that in normal stomach from our previous Escherichia coli (E. coli) ampicillin secretion-trap (CAST) analysis. We focused on the ZDHHC14 gene, which encodes zinc finger, DHHC-type containing 14 protein. qRT-PCR analysis of ZDHHC14 in 41 gastric cancer cases revealed that compared to mRNA levels in normal non-neoplastic gastric mucosa, ZDHHC14 mRNA was overexpressed in 27% of gastric cancer tissue samples. The overexpression of ZDHHC14 was significantly associated with depth of tumor invasion, undifferentiated histology and scirrhous pattern. The invasiveness of ZDHHC14-knockdown HSC-44PE and 44As3 gastric cancer cells was decreased in comparison with that of the negative control siRNA-transfected cells, together with downregulation of MMP-17 mRNA. Integrins α5 and β1 were also downregulated in ZDHHC14-knockdown 44As3 cells. Forced expression of ZDHHC14 activated gastric cancer cell migration and invasion in vitro. These results indicate that ZDHHC14 is involved in tumor progression in patients with scirrhous type gastric cancer.

  20. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  1. Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice.

    PubMed

    Antoniak, S; Tatsumi, K; Hisada, Y; Milner, J J; Neidich, S D; Shaver, C M; Pawlinski, R; Beck, M A; Bastarache, J A; Mackman, N

    2016-06-01

    Essentials H1N1 Influenza A virus (IAV) infection is a hemostatic challenge for the lung. Tissue factor (TF) on lung epithelial cells maintains lung hemostasis after IAV infection. Reduced TF-dependent activation of coagulation leads to alveolar hemorrhage. Anticoagulation might increase the risk for hemorrhages into the lung during severe IAV infection. Background Influenza A virus (IAV) infection is a common respiratory tract infection that causes considerable morbidity and mortality worldwide. Objective To investigate the effect of genetic deficiency of tissue factor (TF) in a mouse model of IAV infection. Methods Wild-type mice, low-TF (LTF) mice and mice with the TF gene deleted in different cell types were infected with a mouse-adapted A/Puerto Rico/8/34 H1N1 strain of IAV. TF expression was measured in the lungs, and bronchoalveolar lavage fluid (BALF) was collected to measure extracellular vesicle TF, activation of coagulation, alveolar hemorrhage, and inflammation. Results IAV infection of wild-type mice increased lung TF expression, activation of coagulation and inflammation in BALF, but also led to alveolar hemorrhage. LTF mice and mice with selective deficiency of TF in lung epithelial cells had low basal levels of TF and failed to increase TF expression after infection; these two strains of mice had more alveolar hemorrhage and death than controls. In contrast, deletion of TF in either myeloid cells or endothelial cells and hematopoietic cells did not increase alveolar hemorrhage or death after IAV infection. These results indicate that TF expression in the lung, particularly in epithelial cells, is required to maintain alveolar hemostasis after IAV infection. Conclusion Our study indicates that TF-dependent activation of coagulation is required to limit alveolar hemorrhage and death after IAV infection. © 2016 International Society on Thrombosis and Haemostasis.

  2. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Jung; Tzeng, Yan-Kai; Chang, Wei-Wei; Cheng, Chi-An; Kuo, Yung; Chien, Chin-Hsiang; Chang, Huan-Cheng; Yu, John

    2013-09-01

    Lung stem/progenitor cells are potentially useful for regenerative therapy, for example in repairing damaged or lost lung tissue in patients. Several optical imaging methods and probes have been used to track how stem cells incorporate and regenerate themselves in vivo over time. However, these approaches are limited by photobleaching, toxicity and interference from background tissue autofluorescence. Here we show that fluorescent nanodiamonds, in combination with fluorescence-activated cell sorting, fluorescence lifetime imaging microscopy and immunostaining, can identify transplanted CD45-CD54+CD157+ lung stem/progenitor cells in vivo, and track their engraftment and regenerative capabilities with single-cell resolution. Fluorescent nanodiamond labelling did not eliminate the cells' properties of self-renewal and differentiation into type I and type II pneumocytes. Time-gated fluorescence imaging of tissue sections of naphthalene-injured mice indicates that the fluorescent nanodiamond-labelled lung stem/progenitor cells preferentially reside at terminal bronchioles of the lungs for 7 days after intravenous transplantation.

  3. Investigation of welded interconnection of large area wraparound contacted silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1984-01-01

    An investigation was conducted to evaluate the welding and temperature cycle testing of large area 5.9 x 5.9 wraparound silicon solar cells utilizing printed circuit substrates with SSC-155 interconnect copper metals and the LMSC Infrared Controlled weld station. An initial group of 5 welded modules containing Phase 2 developmental 5.9 x 5.9 cm cells were subjected to cyclical temperatures of + or 80 C at a rate of 120 cycles per day. Anomalies were noted in the adhesion of the cell contact metallization; therefore, 5 additional modules were fabricated and tested using available Phase I cells with demonstrated contact integrity. Cycling of the later module type through 12,000 cycles indicated the viability of this type of lightweight flexible array concept. This project demonstrated acceptable use of an alternate interconnect copper in combination with large area wraparound cells and emphasized the necessity to implement weld pull as opposed to solder pull procedures at the cell vendors for cells that will be interconnected by welding.

  4. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.

    PubMed

    Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli

    2010-03-23

    The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.

  5. Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis

    PubMed Central

    Stiff , Michael R.; Haigler, Candace H.

    2016-01-01

    Cotton fibers arise through highly anisotropic expansion of a single seed epidermal cell. We obtained evidence that apical cell wall synthesis occurs through examining the tips of young elongating Gossypium hirsutum (Gh) and G. barbadense (Gb) fibers. We characterized two tip types in Gh fiber (hemisphere and tapered), each with distinct apical diameter, central vacuole location, and distribution of cell wall components. The apex of Gh hemisphere tips was enriched in homogalacturonan epitopes, including a relatively high methyl-esterified form associated with cell wall pliability. Other wall components increased behind the apex including cellulose and the α-Fuc-(1,2)-β-Gal epitope predominantly found in xyloglucan. Gb fibers had only one narrow tip type featuring characters found in each Gh tip type. Pulse-labeling of cell wall glucans indicated wall synthesis at the apex of both Gh tip types and in distal zones. Living Gh hemisphere and Gb tips ruptured preferentially at the apex upon treatment with wall degrading enzymes, consistent with newly synthesized wall at the apex. Gh tapered tips ruptured either at the apex or distantly. Overall, the results reveal diverse cotton fiber tip morphologies and support primary wall synthesis occurring at the apex and discrete distal regions of the tip. PMID:27301434

  6. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    PubMed

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-07-03

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  7. Comparison Between Supervised and Unsupervised Classifications of Neuronal Cell Types: A Case Study

    PubMed Central

    Guerra, Luis; McGarry, Laura M; Robles, Víctor; Bielza, Concha; Larrañaga, Pedro; Yuste, Rafael

    2011-01-01

    In the study of neural circuits, it becomes essential to discern the different neuronal cell types that build the circuit. Traditionally, neuronal cell types have been classified using qualitative descriptors. More recently, several attempts have been made to classify neurons quantitatively, using unsupervised clustering methods. While useful, these algorithms do not take advantage of previous information known to the investigator, which could improve the classification task. For neocortical GABAergic interneurons, the problem to discern among different cell types is particularly difficult and better methods are needed to perform objective classifications. Here we explore the use of supervised classification algorithms to classify neurons based on their morphological features, using a database of 128 pyramidal cells and 199 interneurons from mouse neocortex. To evaluate the performance of different algorithms we used, as a “benchmark,” the test to automatically distinguish between pyramidal cells and interneurons, defining “ground truth” by the presence or absence of an apical dendrite. We compared hierarchical clustering with a battery of different supervised classification algorithms, finding that supervised classifications outperformed hierarchical clustering. In addition, the selection of subsets of distinguishing features enhanced the classification accuracy for both sets of algorithms. The analysis of selected variables indicates that dendritic features were most useful to distinguish pyramidal cells from interneurons when compared with somatic and axonal morphological variables. We conclude that supervised classification algorithms are better matched to the general problem of distinguishing neuronal cell types when some information on these cell groups, in our case being pyramidal or interneuron, is known a priori. As a spin-off of this methodological study, we provide several methods to automatically distinguish neocortical pyramidal cells from interneurons, based on their morphologies. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 71: 71–82, 2011 PMID:21154911

  8. SARS coronavirus papain-like protease up-regulates the collagen expression through non-Samd TGF-β1 signaling.

    PubMed

    Wang, Ching-Ying; Lu, Chien-Yi; Li, Shih-Wen; Lai, Chien-Chen; Hua, Chun-Hung; Huang, Su-Hua; Lin, Ying-Ju; Hour, Mann-Jen; Lin, Cheng-Wen

    2017-05-02

    SARS coronavirus (CoV) papain-like protease (PLpro) reportedly induced the production of TGF-β1 through p38 MAPK/STAT3-meidated Egr-1-dependent activation (Sci. Rep. 6, 25754). This study investigated the correlation of PLpro-induced TGF-β1 with the expression of Type I collagen in human lung epithelial cells and mouse pulmonary tissues. Specific inhibitors for TGF-βRI, p38 MAPK, MEK, and STAT3 proved that SARS-CoV PLpro induced TGF-β1-dependent up-regulation of Type I collagen in vitro and in vivo. Subcellular localization analysis of SMAD3 and SMAD7 indicated that non-SMAD pathways in TGF-β1 signaling involved in the production of Type I collagen in transfected cells with pSARS-PLpro. Comprehensive analysis of ubiquitin-conjugated proteins using immunoprecipitation and nanoLC-MS/MS indicated that SARS-CoV PLpro caused the change in the ubiquitination profile of Rho GTPase family proteins, in which linked with the increase of Rho-like GTPase family proteins. Moreover, selective inhibitors TGF-βRI and STAT6 (AS1517499) ascertained that STAT6 activation was required for PLpro-induced TGF-β1-dependent up-regulation of Type I collagen in human lung epithelial cells. The results showed that SARS-CoV PLpro stimulated TGF-β1-dependent expression of Type I collagen via activating STAT6 pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53.

    PubMed

    Kitagaki, J; Yang, Y; Saavedra, J E; Colburn, N H; Keefer, L K; Perantoni, A O

    2009-01-29

    Nitric oxide (NO) is a major effector molecule in cancer prevention. A number of studies have shown that NO prodrug JS-K (O(2)-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate) induces apoptotic cell death in vitro and in vivo, indicating that it is a promising new therapeutic for cancer. However, the mechanism of its tumor-killing activity remains unclear. Ubiquitin plays an important role in the regulation of tumorigenesis and cell apoptosis. Our earlier report has shown that inactivation of the ubiquitin system through blocking E1 (ubiquitin-activating enzyme) activity preferentially induces apoptosis in p53-expressing transformed cells. As E1 has an active cysteine residue that could potentially interact with NO, we hypothesized that JS-K could inactivate E1 activity. E1 activity was evaluated by detecting ubiquitin-E1 conjugates through immunoblotting. JS-K strikingly inhibits the ubiquitin-E1 thioester formation in cells in a dose-dependent manner with an IC(50) of approximately 2 microM, whereas a JS-K analog that cannot release NO did not affect these levels in cells. Moreover, JS-K decreases total ubiquitylated proteins and increases p53 levels, which is mainly regulated by ubiquitin and proteasomal degradation. Furthermore, JS-K preferentially induces cell apoptosis in p53-expressing transformed cells. These findings indicate that JS-K inhibits E1 activity and kills transformed cells harboring wild-type p53.

  10. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells

    PubMed Central

    Coccia, Andrea; Mosca, Luciana; Puca, Rosa; Mangino, Giorgio; Rossi, Alessandro; Lendaro, Eugenio

    2016-01-01

    Epidemiological data indicate that the daily consumption of extra-virgin olive oil (EVOO), a common dietary habit of the Mediterranean area, lowers the incidence of certain types of cancer, in particular bladder neoplasm. The aim of the present study was to evaluate the antiproliferative activity of polyphenols extracted from EVOO on bladder cancer (BCa), and to clarify the biological mechanisms that trigger cell death. Furthermore, we also evaluated the ability of low doses of extra-virgin olive oil extract (EVOOE) to modulate the in vitro activity of paclitaxel or mitomycin, two antineoplastic drugs used in the management of different types of cancer. Our results showed that EVOOE significantly inhibited the proliferation and clonogenic ability of T24 and 5637 BCa cells in a dose-dependent manner. Furthermore, cell cycle analysis after EVOOE treatment showed a marked growth arrest prior to mitosis in the G2/M phase for both cell lines, with the subsequent induction of apoptosis only in the T24 cells. Notably, simultaneous treatment of mitomycin C and EVOOE reduced the drug cytotoxicity due to inhibition of ROS production. Conversely, the co-treatment of T24 cells with paclitaxel and the polyphenol extract strongly increased the apoptotic cell death at each tested concentration compared to paclitaxel alone. Our results support the epidemiological evidence indicating that olive oil consumption exerts health benefits and may represent a starting point for the development of new anticancer strategies. PMID:27748855

  11. Aciculatin Induces p53-Dependent Apoptosis via MDM2 Depletion in Human Cancer Cells In Vitro and In Vivo

    PubMed Central

    Lai, Chin-Yu; Tsai, An-Chi; Chen, Mei-Chuan; Chang, Li-Hsun; Sun, Hui-Lung; Chang, Ya-Ling; Chen, Chien-Chih

    2012-01-01

    Aciculatin, a natural compound extracted from the medicinal herb Chrysopogon aciculatus, shows potent anti-cancer potency. This study is the first to prove that aciculatin induces cell death in human cancer cells and HCT116 mouse xenografts due to G1 arrest and subsequent apoptosis. The primary reason for cell cycle arrest and cell death was p53 accumulation followed by increased p21 level, dephosphorylation of Rb protein, PUMA expression, and induction of apoptotic signals such as cleavage of caspase-9, caspase-3, and PARP. We demonstrated that p53 allele-null (−/−) (p53-KO) HCT116 cells were more resistant to aciculatin than cells with wild-type p53 (+/+). The same result was achieved by knocking down p53 with siRNA in p53 wild-type cells, indicating that p53 plays a crucial role in aciculatin-induced apoptosis. Although DNA damage is the most common event leading to p53 activation, we found only weak evidence of DNA damage after aciculatin treatment. Interestingly, the aciculatin-induced downregulation of MDM2, an important negative regulator of p53, contributed to p53 accumulation. The anti-cancer activity and importance of p53 after aciculatin treatment were also confirmed in the HCT116 xenograft models. Collectively, these results indicate that aciculatin treatment induces cell cycle arrest and apoptosis via inhibition of MDM2 expression, thereby inducing p53 accumulation without significant DNA damage and genome toxicity. PMID:22912688

  12. Type II cGMP‑dependent protein kinase inhibits the migration, invasion and proliferation of several types of human cancer cells.

    PubMed

    Wu, Min; Wu, Yan; Qian, Hai; Tao, Yan; Pang, Ji; Wang, Ying; Chen, Yongchang

    2017-10-01

    Previous studies have indicated that type II cyclic guanosine monophosphate (cGMP)‑dependent protein kinase (PKG II) could inhibit the proliferation and migration of gastric cancer cells. However, the effects of PKG II on the biological functions of other types of cancer cells remain to be elucidated. Therefore, the aim of the present study was to investigate the effects of PKG II on cancer cells derived from various types of human tissues, including A549 lung, HepG2 hepatic, OS‑RC‑2 renal, SW480 colon cancer cells and U251 glioma cells. Cancer cells were infected with adenoviral constructs coding PKG II (Ad‑PKG II) to up‑regulate PKG II expression, and treated with 8‑(4‑chlorophenylthio) (8‑pCPT)‑cGMP to activate the kinase. A Cell Counting kit 8 assay was used to detect cell proliferation. Cell migration was measured using a Transwell assay, whereas a terminal deoxynucleotidyl transferase 2'‑deoxyuridine, 5'‑triphosphate nick‑end labeling assay was used to detect cell apoptosis. A pull‑down assay was used to investigate the activation of Ras‑related C3 botulinum toxin substrate (Rac) 1 and western blotting was used to detect the expression of proteins of interest. The present results demonstrated that EGF (100 ng/ml, 24 h) promoted the proliferation and migration of cancer cells, and it suppressed their apoptosis. In addition, treatment with EGF enhanced the activation of Rac1, and up‑regulated the protein expression of proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2, MMP7 and B‑cell lymphoma (Bcl)‑2, whereas it down‑regulated the expression of Bcl‑2‑associated X protein. Transfection of cancer cells with Ad‑PKG II, and PKG II activation with 8‑pCPT‑cGMP, was identified to counteract the effects triggered by EGF. The present results suggested that PKG II may exert inhibitory effects on the proliferation and migration of various types of cancer cells.

  13. Cellular injury evidenced by impedance technology and infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2015-03-01

    Fourier Transform Infrared (FTIR) spectroscopy is finding increasing biological application, for example in the analysis of diseased tissues and cells, cell cycle studies and investigating the mechanisms of action of anticancer drugs. Cancer treatment studies routinely define the types of cell-drug responses as either total cell destruction by the drug (all cells die), moderate damage (cell deterioration where some cells survive) or reversible cell cycle arrest (cytostasis). In this study the loss of viability and related chemical stress experienced by cells treated with the medicinal plant, Plectranthus ciliatus, was investigated using real time cell electronic sensing (RT-CES) technology and FTIR microspectroscopy. The use of plants as medicines is well established and ethnobotany has proven that crude extracts can serve as treatments against various ailments. The aim of this study was to determine whether FTIR microspectroscopy would successfully distinguish between different types of cellular injury induced by a potentially anticancerous plant extract. Cervical adenocarcinoma (HeLa) cells were treated with a crude extract of Pciliatus and cells monitored using RT-CES to characterize the type of cellular responses induced. Cell populations were then investigated using FTIR microspectroscopy and statistically analysed using One-way Analysis of Variance (ANOVA) and Principal Component Analysis (PCA). The plant extract and a cancer drug control (actinomycin D) induced concentration dependent cellular responses ranging from nontoxic, cytostatic or cytotoxic. Thirteen spectral peaks (915 cm-1, 933 cm-1, 989 cm-1, 1192 cm-1, 1369 cm-1, 1437 cm-1, 1450 cm-1, 1546 cm-1, 1634 cm-1, 1679 cm-1 1772 cm-1, 2874 cm-1 and 2962 cm-1) associated with cytotoxicity were significantly (p value < 0.05, one way ANOVA, Tukey test, Bonferroni) altered, while two of the bands were also indicative of early stress related responses. In PCA, poor separation between nontoxic and cytostatic responses was evident while clear separation was linked to cytotoxicity. RT-CES detected morphological changes as indicators of cell injury and could distinguish between viable, cytostatic and cytotoxic responses. FTIR microspectroscopy confirmed that cytostatic cells were viable and could still recover while also describing early cellular stress related responses on a molecular level.

  14. Computation and measurement of cell decision making errors using single cell data

    PubMed Central

    Habibi, Iman; Cheong, Raymond; Levchenko, Andre; Emamian, Effat S.; Abdi, Ali

    2017-01-01

    In this study a new computational method is developed to quantify decision making errors in cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signaling pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this method identifies two types of incorrect cell decisions called false alarm and miss. These two events represent, respectively, declaring a signal which is not present and missing a signal that does exist. Using single cell experimental data and the developed method, we compute false alarm and miss error probabilities in wild-type cells and provide a formulation which shows how these metrics depend on the signal transduction noise level. We also show that in the presence of abnormalities in a cell, decision making processes can be significantly affected, compared to a wild-type cell, and the method is able to model and measure such effects. In the TNF—NF-κB pathway, the method computes and reveals changes in false alarm and miss probabilities in A20-deficient cells, caused by cell’s inability to inhibit TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnormal TNF signaling system indicates perceiving more cytokine signals which in fact do not exist at the system input, whereas a higher miss metric indicates that it is highly likely to miss signals that actually exist. Overall, this study demonstrates the ability of the developed method for modeling cell decision making errors under normal and abnormal conditions, and in the presence of transduction noise uncertainty. Compared to the previously reported pathway capacity metric, our results suggest that the introduced decision error metrics characterize signaling failures more accurately. This is mainly because while capacity is a useful metric to study information transmission in signaling pathways, it does not capture the overlap between TNF-induced noisy response curves. PMID:28379950

  15. Upregulation of Immunoproteasome Subunits in Myositis Indicates Active Inflammation with Involvement of Antigen Presenting Cells, CD8 T-Cells and IFNγ

    PubMed Central

    Ghannam, Khetam; Martinez-Gamboa, Lorena; Spengler, Lydia; Krause, Sabine; Smiljanovic, Biljana; Bonin, Marc; Bhattarai, Salyan; Grützkau, Andreas; Burmester, Gerd-R.

    2014-01-01

    Objective In idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers. Methods Expression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses. Results Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood. Conclusions Immunoproteasomes seem to indicate IIM activity and suggest that dominant involvement of antigen processing and presentation may qualify these diseases exemplarily for the evolving therapeutic concepts of immunoproteasome specific inhibition. PMID:25098831

  16. Upregulation of immunoproteasome subunits in myositis indicates active inflammation with involvement of antigen presenting cells, CD8 T-cells and IFNΓ.

    PubMed

    Ghannam, Khetam; Martinez-Gamboa, Lorena; Spengler, Lydia; Krause, Sabine; Smiljanovic, Biljana; Bonin, Marc; Bhattarai, Salyan; Grützkau, Andreas; Burmester, Gerd-R; Häupl, Thomas; Feist, Eugen

    2014-01-01

    In idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers. Expression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses. Real-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood. Immunoproteasomes seem to indicate IIM activity and suggest that dominant involvement of antigen processing and presentation may qualify these diseases exemplarily for the evolving therapeutic concepts of immunoproteasome specific inhibition.

  17. Different surface sensing of the cell body and nucleus in healthy primary cells and in a cancerous cell line on nanogrooves.

    PubMed

    Davidson, Patricia M; Bigerelle, Maxence; Reiter, Günter; Anselme, Karine

    2015-10-01

    Cancer cells are known to have alterations compared to healthy cells, but can these differences extend to the way cells interact with their environment? Here, the authors focused on the alignment on an array of grooves of nanometer depth using two cell types: healthy osteoprogenitor primary cells (HOP) and a cancerous osteosarcoma (SaOs-2) cell line. Another concern was how this alignment affects the cell's interior, namely, the nucleus. Based on the results, it is proposed that these two cell types respond to different size regimes: SaOs-2 cells are more sensitive to shallow grooves while HOP cells are strongly aligned with deep grooves. As a measure of the impact of cell alignment on the nucleus the orientation and elongation of the nucleus were determined. Compared to HOP cells, the cell nucleus of SaOs-2 cells is more aligned and elongated in response to grooves, suggesting a softer nucleus and/or increased force transmission. These results support the hypothesis that cancer cells have reduced nucleus rigidity compared to healthy ones and further indicate differences in sensing, which may be important during metastasis.

  18. Behavior of bone cells in contact with magnesium implant material.

    PubMed

    Burmester, Anna; Willumeit-Römer, Regine; Feyerabend, Frank

    2017-01-01

    Magnesium-based implants exhibit several advantages, such as biodegradability and possible osteoinductive properties. Whether the degradation may induce cell type-specific changes in metabolism still remains unclear. To examine the osteoinductivity mechanisms, the reaction of bone-derived cells (MG63, U2OS, SaoS2, and primary human osteoblasts (OB)) to magnesium (Mg) was determined. Mg-based extracts were used to mimic more realistic Mg degradation conditions. Moreover, the influence of cells having direct contact with the degrading Mg metal was investigated. In exposure to extracts and in direct contact, the cells decreased pH and osmolality due to metabolic activity. Proliferating cells showed no significant reaction to extracts, whereas differentiating cells were negatively influenced. In contrast to extract exposure, where cell size increased, in direct contact to magnesium, cell size was stable or even decreased. The amount of focal adhesions decreased over time on all materials. Genes involved in bone formation were significantly upregulated, especially for primary human osteoblasts. Some osteoinductive indicators were observed for OB: (i) an increased cell count after extract addition indicated a higher proliferation potential; (ii) increased cell sizes after extract supplementation in combination with augmented adhesion behavior of these cells suggest an early switch to differentiation; and (iii) bone-inducing gene expression patterns were determined for all analyzed conditions. The results from the cell lines were inhomogeneous and showed no specific stimulus of Mg. The comparison of the different cell types showed that primary cells of the investigated tissue should be used as an in vitro model if Mg is analyzed. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 165-179, 2017. © 2015 Wiley Periodicals, Inc.

  19. Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W

    PubMed Central

    Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah

    2008-01-01

    Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421

  20. Adjuvant-specific regulation of long-term antibody responses by ZBTB20

    PubMed Central

    Wang, Yinan

    2014-01-01

    The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants. PMID:24711582

  1. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    PubMed

    Dearth, Christopher L; Goh, Qingnian; Marino, Joseph S; Cicinelli, Peter A; Torres-Palsa, Maria J; Pierre, Philippe; Worth, Randall G; Pizza, Francis X

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  2. Regulated Exopolysaccharide Production in Myxococcus xanthus

    PubMed Central

    Kim, Sang-Hoon; Ramaswamy, Srinivas; Downard, John

    1999-01-01

    Myxococcus xanthus fibrils are cell surface-associated structures composed of roughly equal amounts of polysaccharide and protein. The level of M. xanthus polysaccharide production under different conditions in the wild type and in several mutants known to have alterations in fibril production was investigated. Wild-type exopolysaccharide increased significantly as cells entered the stationary phase of growth or upon addition of Ca2+ to growing cells, and the polysaccharide-induced cells exhibited an enhanced capacity for cell-cell agglutination. The activity of the key gluconeogenic pathway enzyme phosphoenolpyruvate carboxykinase (Pck) also increased under these conditions. Most fibril-deficient mutants failed to produce polysaccharide in a stationary-phase- or Ca2+-dependent fashion. However, regulation of Pck activity was generally unimpaired in these mutant strains. In an stk mutant, which overproduces fibrils, polysaccharide production and Pck activity were constitutively high under the conditions tested. Polysaccharide production increased in most fibril-deficient strains when an stk mutant allele was present, indicating that these fibril-deficient mutants retained the basic cellular components required for fibril polysaccharide production. In contrast to other divalent cations tested, Sr2+ effectively replaced Ca2+ in stimulating polysaccharide production, and either Ca2+ or Sr2+ was required for fruiting-body formation by wild-type cells. By using transmission electron microscopy of freeze-substituted log-phase wild-type cells, fibril material was observed as a cell surface-associated layer of uniform thickness composed of filaments with an ordered structure. PMID:10049381

  3. Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response

    PubMed Central

    Dearth, Christopher L.; Goh, Qingnian; Marino, Joseph S.; Cicinelli, Peter A.; Torres-Palsa, Maria J.; Pierre, Philippe; Worth, Randall G.; Pizza, Francis X.

    2013-01-01

    We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells. PMID:23505517

  4. Profiling of zinc altered gene expression in human prostate normal versus cancer cells: a time course study

    PubMed Central

    Lin, Shu-fei; Wei, Hua; Maeder, Dennis; Franklin, Renty B.; Feng, Pei

    2010-01-01

    We have demonstrated that zinc exposure induces apoptosis in human prostate cancer cells (PC-3) and benign hyperplasia cells (BPH), but not in normal prostate cells (HPR-1). However, the mechanisms underlying the effects of zinc on prostate cancer cell growth and zinc homeostasis remain unclear. To explore the zinc effect on gene expression profiles in normal (HPR-1) and malignant prostate cells (PC-3), we conducted a time course study of Zn treatment with microarray analysis. Microarray data were evaluated and profiled using computational approach for the primary and secondary data analyses. Final analyses were focused on the genes: 1. highly sensitive to zinc, 2. associated with zinc homeostasis, i.e. metallothioneins (MTs), solute zinc carriers (ZIPs) and zinc exporters (ZnTs), 3. relevant to several oncogenic pathways. Zinc-mediated mRNA levels of MT isotypes were further validated by semi-quantitative RT-PCR. Results showed that zinc effect on genome-wide expression patterns was cell type specific, and zinc appeared to have mainly down-regulatory effects on thousands of genes (1,953 in HPR-1; 3,534 in PC-3) with a threshold of ±2.5-fold, while fewer genes were up-regulated (872 in HPR-1; 571 in PC-3). The patterns of zinc effect on functional MT genes’ expression provided evidence for the cell-type dependent zinc accumulation and zinc-induced apoptosis in prostate cells. In PC-3 cells, zinc significantly up-regulated the expression of MT-1 isotypes -J and -M, denoted previously as “non-functional” MT genes, and now a depictive molecular structure of MT-1J was proposed. Examination of genes involved in oncogenic pathways indicated that certain genes, e.g. Fos, Akt1, Jak3 and PI3K were highly regulated by zinc with cell type specificity. This work provided an extensive database on zinc related prostate cancer research. The strategy of data analysis was devoted to find genes highly sensitive to Zn, and the genes associated with zinc accumulation and zinc-induced apoptosis. The results indicate that zinc regulation of gene expression is cell-type specific, and MT genes play important roles in prostate malignancy. PMID:19071009

  5. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments.

    PubMed

    Regier, Mary C; Maccoux, Lindsey J; Weinberger, Emma M; Regehr, Keil J; Berry, Scott M; Beebe, David J; Alarid, Elaine T

    2016-08-01

    Heterotypic interactions in cancer microenvironments play important roles in disease initiation, progression, and spread. Co-culture is the predominant approach used in dissecting paracrine interactions between tumor and stromal cells, but functional results from simple co-cultures frequently fail to correlate to in vivo conditions. Though complex heterotypic in vitro models have improved functional relevance, there is little systematic knowledge of how multi-culture parameters influence this recapitulation. We therefore have employed a more iterative approach to investigate the influence of increasing model complexity; increased heterotypic complexity specifically. Here we describe how the compartmentalized and microscale elements of our multi-culture device allowed us to obtain gene expression data from one cell type at a time in a heterotypic culture where cells communicated through paracrine interactions. With our device we generated a large dataset comprised of cell type specific gene-expression patterns for cultures of increasing complexity (three cell types in mono-, co-, or tri-culture) not readily accessible in other systems. Principal component analysis indicated that gene expression was changed in co-culture but was often more strongly altered in tri-culture as compared to mono-culture. Our analysis revealed that cell type identity and the complexity around it (mono-, co-, or tri-culture) influence gene regulation. We also observed evidence of complementary regulation between cell types in the same heterotypic culture. Here we demonstrate the utility of our platform in providing insight into how tumor and stromal cells respond to microenvironments of varying complexities highlighting the expanding importance of heterotypic cultures that go beyond conventional co-culture.

  6. Differentiation Generates Paracrine Cell Pairs That Maintain Basaloid Mouse Mammary Tumors: Proof of Concept

    PubMed Central

    Kim, Soyoung; Goel, Shruti; Alexander, Caroline M.

    2011-01-01

    There is a paradox offered up by the cancer stem cell hypothesis. How are the mixed populations that are characteristic of heterogeneous solid tumors maintained at constant proportion, given their high, and different, mitotic indices? In this study, we evaluate a well-characterized mouse model of human basaloid tumors (induced by the oncogene Wnt1), which comprise mixed populations of mammary epithelial cells resembling their normal basal and luminal counterparts. We show that these cell types are substantially inter-dependent, since the MMTV LTR drives expression of Wnt1 ligand in luminal cells, whereas the functional Wnt1-responsive receptor (Lrp5) is expressed by basal cells, and both molecules are necessary for tumor growth. There is a robust tumor initiating activity (tumor stem cell) in the basal cell population, which is associated with the ability to differentiate into luminal and basal cells, to regenerate the oncogenic paracrine signaling cell pair. However, we found an additional tumor stem cell activity in the luminal cell population. Knowing that tumors depend upon Wnt1-Lrp5, we hypothesized that this stem cell must express Lrp5, and found that indeed, all the stem cell activity could be retrieved from the Lrp5-positive cell population. Interestingly, this reflects post-transcriptional acquisition of Lrp5 protein expression in luminal cells. Furthermore, this plasticity of molecular expression is reflected in plasticity of cell fate determination. Thus, in vitro, Wnt1-expressing luminal cells retro-differentiate to basal cell types, and in vivo, tumors initiated with pure luminal cells reconstitute a robust basal cell subpopulation that is indistinguishable from the populations initiated by pure basal cells. We propose this is an important proof of concept, demonstrating that bipotential tumor stem cells are essential in tumors where oncogenic ligand-receptor pairs are separated into different cell types, and suggesting that Wnt-induced molecular and fate plasticity can close paracrine loops that are usually separated into distinct cell types. PMID:21541292

  7. Thermal and Cycle-Life Behavior of Commercial Li-ion and Li-Polymer Cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.; Quinzio, M. V.

    2001-01-01

    Accelerated and real-time LEO cycle-life test data will be presented for a range of commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance that can be obtained, and the performance screening tests that must be done to assure long life. The data show large performance variability between cells, as well as a highly variable degradation signature during non-cycling periods within the life tests. High-resolution Dynamic Calorimetry data will be presented showing the complex series of reactions occurring within these Li cells as they are cycled. Data will also be presented for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that continuously adapts itself to changes in cell performance, operation, or environment to both find and maintain the optimum recharge over life. The ACCA has been used to prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells. While this is important for all these cell types, it is most critical for Li-ion cells, which are not designed with electrochemical tolerance for overcharge.

  8. Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco.

    PubMed

    Vidal, Guillaume; Ribas-Carbo, Miquel; Garmier, Marie; Dubertret, Guy; Rasmusson, Allan G; Mathieu, Chantal; Foyer, Christine H; De Paepe, Rosine

    2007-02-01

    Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I-deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin N(Ea) induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.

  9. Antiviral effect of lithium chloride on infection of cells by canine parvovirus.

    PubMed

    Zhou, Pei; Fu, Xinliang; Yan, Zhongshan; Fang, Bo; Huang, San; Fu, Cheng; Hong, Malin; Li, Shoujun

    2015-11-01

    Canine parvovirus type 2 causes significant viral disease in dogs, with high morbidity, high infectivity, and high mortality. Lithium chloride is a potential antiviral drug for viruses. We determined the antiviral effect of Lithium Chloride on canine parvovirus type 2 in feline kidney cells. The viral DNA and proteins of canine parvovirus were suppressed in a dose-dependent manner by lithium chloride. Further investigation verified that viral entry into cells was inhibited in a dose-dependent manner by lithium chloride. These results indicated that lithium chloride could be a potential antiviral drug for curing dogs with canine parvovirus infection. The specific steps of canine parvovirus entry into cells that are affected by lithium chloride and its antiviral effect in vivo should be explored in future studies.

  10. IL-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts.

    PubMed

    Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D; Abe, Toyofumi; Su, Charles A; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L

    2016-03-15

    Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil, and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor (IL-1R) signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared with complete MHC-mismatched wild-type cardiac allografts, IL-1R(-/-) allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant, whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R(-/-) allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R(-/-) cardiac allografts took 3 wk longer than wild-type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R(-/-)/wild-type chimeric donors indicated that IL-1R signaling on graft nonhematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild-type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli-provoking development and elicitation of optimal alloimmune responses to the grafts. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Linear-quadratic dose kinetics or dose-dependent repair/misrepair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braby, L.A.; Nelson, J.M.

    1991-09-01

    Models for the response of cells exposed to low LET radiation can be grouped into three general types on the basis of assumptions about the nature of the interaction which results in the shoulder of the survival curve. The three forms of interaction are (1) sublethal damage becoming lethal, (2) potentially lethal damage becoming irreparable, and (3) potentially lethal damage saturating'' a repair system. The effects that these three forms of interaction would have on the results of specific types of experiments are investigated. Comparisons with experimental results indicate that only the second type is significant in determining the responsemore » of typical cultured mammalian cells. 5 refs., 2 figs.« less

  12. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments.

    PubMed

    Bravo, Rafael; Axelrod, David E

    2013-11-18

    Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.

  13. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOEpatents

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  14. Id-1 and Id-2 genes and products as markers of epithelial cancer

    DOEpatents

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2011-10-04

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  15. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma

    PubMed Central

    Banat, G-Andre; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Wilhelm, Jochen; Weigert, Andreas; Olesch, Catherine; Ebel, Katharina; Stiewe, Thorsten; Grimminger, Friedrich; Seeger, Werner; Fink, Ludger; Savai, Rajkumar

    2015-01-01

    Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+), cytotoxic-T cells (CD8+), T-helper cells (CD4+), B cells (CD20+), macrophages (CD68+), mast cells (CD117+), mononuclear cells (CD11c+), plasma cells, activated-T cells (MUM1+), B cells, myeloid cells (PD1+) and neutrophilic granulocytes (myeloperoxidase+) compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells) in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition. PMID:26413839

  16. Soluble antigens from group B streptococci induce cytokine production in human blood cultures.

    PubMed Central

    von Hunolstein, C; Totolian, A; Alfarone, G; Mancuso, G; Cusumano, V; Teti, G; Orefici, G

    1997-01-01

    Group B streptococcal antigens stimulated tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), and IL-6 production in human blood cultures in a concentration- and time-dependent fashion. The minimal concentrations of type-specific polysaccharides, lipoteichoic acid, and group-specific polysaccharide required to produce these effects were, respectively, 0.01, 1, and 10 microg/ml. Cell separation experiments indicated that monocytes were the cell type mainly responsible for cytokine production. Time course studies indicated that TNF-alpha was released before the other cytokines. TNF-alpha, however, did not appear to directly induce IL-1beta, as shown by blockade experiments with anti-TNF-alpha antibodies. IL-6 levels were moderately but significantly decreased by anti-TNF-alpha. These data indicate that several products from group B streptococci are able to directly stimulate human monocytes to release TNF-alpha, IL-1beta, and IL-6. These findings may be clinically relevant, since proinflammatory cytokines can mediate pathophysiologic changes during sepsis. PMID:9317001

  17. Role of the ARF Tumor Suppressor in Prostate Cancer

    DTIC Science & Technology

    2006-10-01

    also a paucity of rough endoplasmic reticulum compared to wild-type cells ( diamond headed arrows, upper panels) indicating a decrease in protein...cell cycle and cell growth (48). For example, the Tuberous Sclerosis Complex inherited cancer syndrome is caused by germline mutations in either the...J. M. Gardner , F. J. Tavner, D. A. Jans, B. R. Henderson, and T. J. Gonda. 2003. Myb-binding protein 1a is a nucleocytoplasmic shuttling protein that

  18. Emergency Blood Transfusions in Combat Theaters and Impact on HIV Testing Policy

    DTIC Science & Technology

    2008-06-02

    or sickle cell traits, an approximate 8.6% misidentification of blood type is thought to have occurred, further indicating the importance of thorough...Military Medicine. 149:55-62. o. Spinella PC, Perkins JG, Gathwohl KW et al. (2007) Risks Associated with Fresh Whole Blood and Red Blood Cell ...administering trauma care in theater, tested packed red blood cells (PRBC) are the only blood component therapy available to the Forward Surgical Team

  19. Charge Control Investigation of Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Otzinger, B.; Somoano, R.

    1984-01-01

    An ambient temperature rechargeable Li-TiS2 cell was cycled under conditions which simulate aerospace applications. A novel charge/discharge state-of-charge control scheme was used, together with tapered current charging, to overcome deleterious effects associated with end-of-charge and end-of-discharge voltages. The study indicates that Li-TiS2 cells hold promise for eventual synchronous satellite-type applications. Problem areas associated with performance degradation and reconditioning effects are identified.

  20. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish

    PubMed Central

    Frohnhöfer, Hans Georg; Krauss, Jana; Maischein, Hans-Martin; Nüsslein-Volhard, Christiane

    2013-01-01

    Colour patterns of adult fish are produced by several types of pigment cells that distribute in the dermis during juvenile development. The zebrafish, Danio rerio, displays a striking pattern of dark stripes of melanophores interspersed by light stripes of xanthophores. Mutants lacking either cell type do not form proper stripes, indicating that interactions between these two chromatophore types are required for stripe formation. A third cell type, silvery iridophores, participates to render a shiny appearance to the pattern, but its role in stripe formation has been unclear. Mutations in rose (rse) or shady (shd) cause a lack or strong reduction of iridophores in adult fish; in addition, the melanophore number is drastically reduced and stripes are broken up into spots. We show that rse and shd are autonomously required in iridophores, as mutant melanophores form normal sized stripes when confronted with wild-type iridophores in chimeric animals. We describe stripe formation in mutants missing one or two of the three chromatophore types. None of the chromatophore types alone is able to create a pattern but residual stripe formation occurs with two cell types. Our analysis shows that iridophores promote and sustain melanophores. Furthermore, iridophores attract xanthophores, whereas xanthophores repel melanophores. We present a model for the interactions between the three chromatophore types underlying stripe formation. Stripe formation is initiated by iridophores appearing at the horizontal myoseptum, which serves as a morphological landmark for stripe orientation, but is subsequently a self-organising process. PMID:23821036

  1. Oral administration of a Spirulina extract enriched for Braun-type lipoproteins protects mice against influenza A(H1N1) virus infection

    USDA-ARS?s Scientific Manuscript database

    Previous studies indicate that Immulina, a commercial extract of Arthrospira (Spirulina) platensis, is a potent activator of innate immune cells and that Braun-type lipoproteins (a principal toll-like receptor (TLR) 2 ligand) are the main active components within this product. In the present study, ...

  2. Adipocyte differentiation influences the proliferation and migration of normal and tumoral breast epithelial cells.

    PubMed

    Creydt, Virginia Pistone; Sacca, Paula Alejandra; Tesone, Amelia Julieta; Vidal, Luciano; Calvo, Juan Carlos

    2010-01-01

    Stromal tissue regulates the development and differentiation of breast epithelial cells, with adipocytes being the main stromal cell type. The aim of the present study was to evaluate the effect of adipocyte differentiation on proliferation and migration, as well as to assess the activity of heparanase and metalloproteinase-9 (MMP-9), in normal (NMuMG) and tumoral (LM3) murine breast epithelial cells. NMuMG and LM3 cells were grown on irradiated 3T3-L1 cells (stromal support, SS) at various degrees of differentiation [preadipocytes (preA), poorly differentiated adipocytes (pDA) and mature adipocytes (MA)] and/or were incubated in the presence of conditioned medium (CM) derived from each of these three types of differentiated cells. Cells grown on a plastic support or in fresh medium served as the controls. Cell proliferation was measured with a commercial colorimetric kit, and the motility of the epithelial cells was evaluated by means of a wound-healing assay. Heparanase activity was assessed by quantifying heparin degradation, and the expression of MMP-9 was determined using Western blotting. The results indicate that cell proliferation was increased after 24 and 48 h in the NMuMG and LM3 cells grown on preA, pDA and MA SS. In the NMuMG cells cultured on SS in the presence of all three types of CM, proliferation was enhanced. LM3 cell migration was increased in the presence of all three types of CM and in cells grown on preA SS. Heparanase activity was increased in the NMuMG cells incubated with all three types of CM, and in the LM3 cells incubated with the CM from pDA and MA. Both the NMuMG and LM3 cell lines presented basal expression of MMP-9; however, a significant increase in MMP-9 expression was observed in the LM3 cells incubated with each of the three types of CM. In conclusion, adipocyte differentiation influences normal and tumoral breast epithelial cell proliferation and migration. Heparanase and MMP-9 appear to be involved in this regulation. The experimental model presented in this study is in keeping with the characteristics of the physiological environment of breast epithelial cells, in terms of both the soluble and insoluble factors present and the stromal structure per se.

  3. An Immunohistochemical Study of Matrix Proteins in the Craniofacial Cartilage in Midterm Human Fetuses

    PubMed Central

    Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.

    2013-01-01

    Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192

  4. Maize pollen coat xylanase facilitates pollen tube penetration into silk during sexual reproduction.

    PubMed

    Suen, Der Fen; Huang, Anthony H C

    2007-01-05

    Cell wall hydrolases are well documented to be present on pollen, but their roles on the stigma during sexual reproduction have not been previously demonstrated. We explored the function of the tapetum-synthesized xylanase, ZmXYN1, on maize (Zea mays L.) pollen. Transgenic lines (xyl-less) containing little or no xylanase in the pollen coat were generated with use of an antisense construct of the xylanase gene-coding region driven by the XYN1 gene promoter. Xyl-less and wild-type plants had similar vegetative growth. Electron microscopy revealed no appreciable morphological difference in anther cells and pollen between xyl-less lines and the wild type, whereas immunofluorescence microscopy and biochemical analyses indicated an absence of xylanase on xyl-less pollen. Xyl-less pollen germinated as efficiently as wild-type pollen in vitro in a liquid medium but less so on gel media of increasing solidity or on silk, which is indicative of partial impaired water uptake. Once germinated in vitro or on silk, the xyl-less and wild-type pollen tubes elongated at comparable rates. Tubes of germinated xyl-less pollen on silk did not penetrate into the silk as efficiently as tubes of wild-type pollen, and this lower efficiency could be overcome by the addition of xylanase to the silk. For wild-type pollen, coat xylanase activity on oat spelled xylan in vitro and tube penetration into silk were inhibited by xylose but not glucose. The overall findings indicate that maize pollen coat xylanase facilitates pollen tube penetration into silk via enzymatic xylan hydrolysis.

  5. A co-culture system with an organotypic lung slice and an immortal alveolar macrophage cell line to quantify silica-induced inflammation.

    PubMed

    Hofmann, Falk; Bläsche, Robert; Kasper, Michael; Barth, Kathrin

    2015-01-01

    There is growing evidence that amorphous silica nanoparticles cause toxic effects on lung cells in vivo as well as in vitro and induce inflammatory processes. The phagocytosis of silica by alveolar macrophages potentiates these effects. To understand the underlying molecular mechanisms of silica toxicity, we applied a co-culture system including the immortal alveolar epithelial mouse cell line E10 and the macrophage cell line AMJ2-C11. In parallel we exposed precision-cut lung slices (lacking any blood cells as well as residual alveolar macrophages) of wild type and P2rx7-/- mice with or without AMJ2-C11 cells to silica nanoparticles. Exposure of E10 cells as well as slices of wild type mice resulted in an increase of typical alveolar epithelial type 1 cell proteins like T1α, caveolin-1 and -2 and PKC-β1, whereas the co-culture with AMJ2-C11 showed mostly a slightly lesser increase of these proteins. In P2rx7-/- mice most of these proteins were slightly decreased. ELISA analysis of the supernatant of wild type and P2rx7-/- mice precision-cut lung slices showed decreased amounts of IL-6 and TNF-α when incubated with nano-silica. Our findings indicate that alveolar macrophages influence the early inflammation of the lung and also that cell damaging reagents e.g. silica have a smaller impact on P2rx7-/- mice than on wild type mice. The co-culture system with an organotypic lung slice is a useful tool to study the role of alveolar macrophages during lung injury at the organoid level.

  6. Preparing Fresh Retinal Slices from Adult Zebrafish for Ex Vivo Imaging Experiments.

    PubMed

    Giarmarco, Michelle M; Cleghorn, Whitney M; Hurley, James B; Brockerhoff, Susan E

    2018-05-09

    The retina is a complex tissue that initiates and integrates the first steps of vision. Dysfunction of retinal cells is a hallmark of many blinding diseases, and future therapies hinge on fundamental understandings about how different retinal cells function normally. Gaining such information with biochemical methods has proven difficult because contributions of particular cell types are diminished in the retinal cell milieu. Live retinal imaging can provide a view of numerous biological processes on a subcellular level, thanks to a growing number of genetically encoded fluorescent biosensors. However, this technique has thus far been limited to tadpoles and zebrafish larvae, the outermost retinal layers of isolated retinas, or lower resolution imaging of retinas in live animals. Here we present a method for generating live ex vivo retinal slices from adult zebrafish for live imaging via confocal microscopy. This preparation yields transverse slices with all retinal layers and most cell types visible for performing confocal imaging experiments using perfusion. Transgenic zebrafish expressing fluorescent proteins or biosensors in specific retinal cell types or organelles are used to extract single-cell information from an intact retina. Additionally, retinal slices can be loaded with fluorescent indicator dyes, adding to the method's versatility. This protocol was developed for imaging Ca 2+ within zebrafish cone photoreceptors, but with proper markers it could be adapted to measure Ca 2+ or metabolites in Müller cells, bipolar and horizontal cells, microglia, amacrine cells, or retinal ganglion cells. The retinal pigment epithelium is removed from slices so this method is not suitable for studying that cell type. With practice, it is possible to generate serial slices from one animal for multiple experiments. This adaptable technique provides a powerful tool for answering many questions about retinal cell biology, Ca 2+ , and energy homeostasis.

  7. p- to n-type conductivity transition in 1.0 eV GaInNAs solar cells controlled by the V/III ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langer, Fabian, E-mail: fabian.langer@physik.uni-wuerzburg.de; Perl, Svenja; Kamp, Martin

    2015-02-09

    In this work, we report a p- to n-type conductivity transition of GaInNAs (1.0 eV bandgap) layers in p-i-n dilute nitride solar cells continuously controlled by the V/III ratio during growth. Near the transition region, we were able to produce GaInNAs layers with very low effective electrically active doping concentrations resulting in wide depleted areas. We obtained internal quantum efficiencies (IQEs) up to 85% at 0.2 eV above the bandgap. However, the high IQE comes along with an increased dark current density resulting in a decreased open circuit voltage of about 0.2 V. This indicates the formation of non-radiant defect centers related tomore » the p-type to n-type transition. Rapid-thermal annealing of the solar cells on the one hand helps to anneal some of these defects but on the other hand increases the effective doping concentrations.« less

  8. White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis.

    PubMed

    Wang, Y T; Liu, W; Seah, J N; Lam, C S; Xiang, J H; Korzh, V; Kwang, J

    2002-12-10

    White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes--GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.

  9. Layered transition metal thiophosphates /MPX3/ as photoelectrodes in photoelectrochemical cells

    NASA Technical Reports Server (NTRS)

    Byvik, C. E.; Smith, B. T.; Reichman, B.

    1982-01-01

    Layered crystals of the transition metal thiophosphates were synthesized and characterized for use as photoelectrodes in photoelectrochemical cells. Crystals incorporating tin and manganese show n-type response while those with iron and nickel show p-type response. These materials have a measured indirect bandgap of about 2.1 eV. They show ability to photoelectrolyze water in acid solutions with onset potentials which change in a Nernstian way as the PH of the solution changes. The onset potential is near zero volts versus a saturated calomel electrode at pH 2. At n-type crystals, oxygen could be evolved upon irradiation at underpotentials of 850 mV and at p-type crystals, hydrogen could be evolved at underpotentials of 400 mV, indicating a net gain in energy conversion. All crystals were unstable in basic solution. Liquid junction photovoltaic cells in iodide-triiodide acid solution using these layered materials were also constructed and found to have low efficiences.

  10. PAX6 maintains β cell identity by repressing genes of alternative islet cell types.

    PubMed

    Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H; Glaser, Benjamin; Ashery-Padan, Ruth; Dor, Yuval

    2017-01-03

    Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.

  11. PAX6 maintains β cell identity by repressing genes of alternative islet cell types

    PubMed Central

    Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H.; Glaser, Benjamin; Ashery-Padan, Ruth

    2016-01-01

    Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes. PMID:27941241

  12. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor.

    PubMed

    Bayguinov, Peter O; Ma, Yihe; Gao, Yu; Zhao, Xinyu; Jackson, Meyer B

    2017-09-20

    Genetically encoded voltage indicators create an opportunity to monitor electrical activity in defined sets of neurons as they participate in the complex patterns of coordinated electrical activity that underlie nervous system function. Taking full advantage of genetically encoded voltage indicators requires a generalized strategy for targeting the probe to genetically defined populations of cells. To this end, we have generated a mouse line with an optimized hybrid voltage sensor (hVOS) probe within a locus designed for efficient Cre recombinase-dependent expression. Crossing this mouse with Cre drivers generated double transgenics expressing hVOS probe in GABAergic, parvalbumin, and calretinin interneurons, as well as hilar mossy cells, new adult-born neurons, and recently active neurons. In each case, imaging in brain slices from male or female animals revealed electrically evoked optical signals from multiple individual neurons in single trials. These imaging experiments revealed action potentials, dynamic aspects of dendritic integration, and trial-to-trial fluctuations in response latency. The rapid time response of hVOS imaging revealed action potentials with high temporal fidelity, and enabled accurate measurements of spike half-widths characteristic of each cell type. Simultaneous recording of rapid voltage changes in multiple neurons with a common genetic signature offers a powerful approach to the study of neural circuit function and the investigation of how neural networks encode, process, and store information. SIGNIFICANCE STATEMENT Genetically encoded voltage indicators hold great promise in the study of neural circuitry, but realizing their full potential depends on targeting the sensor to distinct cell types. Here we present a new mouse line that expresses a hybrid optical voltage sensor under the control of Cre recombinase. Crossing this line with Cre drivers generated double-transgenic mice, which express this sensor in targeted cell types. In brain slices from these animals, single-trial hybrid optical voltage sensor recordings revealed voltage changes with submillisecond resolution in multiple neurons simultaneously. This imaging tool will allow for the study of the emergent properties of neural circuits and permit experimental tests of the roles of specific types of neurons in complex circuit activity. Copyright © 2017 the authors 0270-6474/17/379305-15$15.00/0.

  13. Aberrant splicing in maize rough endosperm3 reveals a conserved role for U12 splicing in eukaryotic multicellular development

    PubMed Central

    Barbazuk, W. Brad

    2017-01-01

    RNA splicing of U12-type introns functions in human cell differentiation, but it is not known whether this class of introns has a similar role in plants. The maize ROUGH ENDOSPERM3 (RGH3) protein is orthologous to the human splicing factor, ZRSR2. ZRSR2 mutations are associated with myelodysplastic syndrome (MDS) and cause U12 splicing defects. Maize rgh3 mutants have aberrant endosperm cell differentiation and proliferation. We found that most U12-type introns are retained or misspliced in rgh3. Genes affected in rgh3 and ZRSR2 mutants identify cell cycle and protein glycosylation as common pathways disrupted. Transcripts with retained U12-type introns can be found in polysomes, suggesting that splicing efficiency can alter protein isoforms. The rgh3 mutant protein disrupts colocalization with a known ZRSR2-interacting protein, U2AF2. These results indicate conserved function for RGH3/ZRSR2 in U12 splicing and a deeply conserved role for the minor spliceosome to promote cell differentiation from stem cells to terminal fates. PMID:28242684

  14. Data on correlations between T cell subset frequencies and length of partial remission in type 1 diabetes.

    PubMed

    Narsale, Aditi; Moya, Rosita; Robertson, Hannah Kathryn; Davies, Joanna Davida

    2016-09-01

    Partial remission in patients newly diagnosed with type 1 diabetes is a period of good glucose control that can last from several weeks to over a year. The clinical significance of the remission period is that patients might be more responsive to immunotherapy if treated within this period. This article provides clinical data that indicates the level of glucose control and insulin-secreting β-cell function of each patient in the study at baseline (within 3 months of diagnosis), and at 3, 6, 9, 12, 18 and 24 months post-baseline. The relative frequency of immune cell subsets in the PBMC of each patient and the association between the frequency of immune cell subsets measured and length of remission is also shown. These data support the findings reported in the accompanying publication, "A pilot study showing associations between frequency of CD4+ memory cell subsets at diagnosis and duration of partial remission in type 1 diabetes" (Moya et al., 2016) [1], where a full interpretation, including biological relevance of the study can be found.

  15. Flat-plate solar array project process development area process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Three sets of samples were laser processed and then cell processed. The laser processing was carried out on P-type and N-type web at laser power levels from 0.5 joule/sq cm to 2.5 joule/sq cm. Six different liquid dopants were tested (3 phosphorus dopants, 2 boron dopants, 1 aluminum dopant). The laser processed web strips were fabricated into solar cells immediately after laser processing and after various annealing cycles. Spreading resistance measurements made on a number of these samples indicate that the N(+)P (phosphorus doped) junction is approx. 0.2 micrometers deep and suitable for solar cells. However, the P(+)N (or P(+)P) junction is very shallow ( 0.1 micrometers) with a low surface concentration and resulting high resistance. Due to this effect, the fabricated cells are of low efficiency. The maximum efficiency attained was 9.6% on P-type web after a 700 C anneal. The main reason for the low efficiency was a high series resistance in the cell due to a high resistance back contact.

  16. Retrovirus-mediated conditional immortalization and analysis of established cell lines of osteoclast precursor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawata, Shigehisa; Suzuki, Jun; Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871

    2006-11-10

    Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types ofmore » cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.« less

  17. Role of ATM in bystander signaling between human monocytes and lung adenocarcinoma cells.

    PubMed

    Ghosh, Somnath; Ghosh, Anu; Krishna, Malini

    2015-12-01

    The response of a cell or tissue to ionizing radiation is mediated by direct damage to cellular components and indirect damage mediated by radiolysis of water. Radiation affects both irradiated cells and the surrounding cells and tissues. The radiation-induced bystander effect is defined by the presence of biological effects in cells that were not themselves in the field of irradiation. To establish the contribution of the bystander effect in the survival of the neighboring cells, lung carcinoma A549 cells were exposed to gamma-irradiation, 2Gy. The medium from the irradiated cells was transferred to non-irradiated A549 cells. Irradiated A549 cells as well as non-irradiated A549 cells cultured in the presence of medium from irradiated cells showed decrease in survival and increase in γ-H2AX and p-ATM foci, indicating a bystander effect. Bystander signaling was also observed between different cell types. Phorbol-12-myristate-13-acetate (PMA)-stimulated and gamma-irradiated U937 (human monocyte) cells induced a bystander response in non-irradiated A549 (lung carcinoma) cells as shown by decreased survival and increased γ-H2AX and p-ATM foci. Non-stimulated and/or irradiated U937 cells did not induce such effects in non-irradiated A549 cells. Since ATM protein was activated in irradiated cells as well as bystander cells, it was of interest to understand its role in bystander effect. Suppression of ATM with siRNA in A549 cells completely inhibited bystander effect in bystander A549 cells. On the other hand suppression of ATM with siRNA in PMA stimulated U937 cells caused only a partial inhibition of bystander effect in bystander A549 cells. These results indicate that apart from ATM, some additional factor may be involved in bystander effect between different cell types. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. α3 Chains of type V collagen regulate breast tumour growth via glypican-1

    PubMed Central

    Huang, Guorui; Ge, Gaoxiang; Izzi, Valerio; Greenspan, Daniel S.

    2017-01-01

    Pericellular α3(V) collagen can affect the functioning of cells, such as adipocytes and pancreatic β cells. Here we show that α3(V) chains are an abundant product of normal mammary gland basal cells, and that α3(V) ablation in a mouse mammary tumour model inhibits mammary tumour progression by reducing the proliferative potential of tumour cells. These effects are shown to be primarily cell autonomous, from loss of α3(V) chains normally produced by tumour cells, in which they affect growth by enhancing the ability of cell surface proteoglycan glypican-1 to act as a co-receptor for FGF2. Thus, a mechanism is presented for microenvironmental influence on tumour growth. α3(V) chains are produced in both basal-like and luminal human breast tumours, and its expression levels are tightly coupled with those of glypican-1 across breast cancer types. Evidence indicates α3(V) chains as potential targets for inhibiting tumour growth and as markers of oncogenic transformation. PMID:28102194

  19. Cellular changes in microgravity and the design of space radiation experiments

    NASA Technical Reports Server (NTRS)

    Morrison, D. R.

    1994-01-01

    Cell metabolism, secretion and cell-cell interactions can be altered during space flight. Early radiobiology experiments have demonstrated synergistic effects of radiation and microgravity as indicated by increased mutagenesis, increased chromosome aberrations, inhibited development, and retarded growth. Microgravity-induced changes in immune cell functions include reduced blastogenesis and cell-mediated, delayed-type hypersensitivity responses, increased cytokine secretions, but inhibited cytotoxic effects an macrophage differentiation. These effects are important because of the high radiosensitivity of immune cells. It is difficult to compare ground studies with space radiation biology experiments because of the complexity of the space radiation environment, types of radiation damage and repair mechanisms. Altered intracellular functions and molecular mechanisms must be considered in the design and interpretation of space radiation experiments. Critical steps in radiocarcinogenesis could be affected. New cell systems and hardware are needed to determine the biological effectiveness of the low dose rate, isotropic, multispectral space radiation and the potential usefulness of radioprotectants during space flight.

  20. Oxidative stress: a key regulator of leiomyoma cell survival.

    PubMed

    Fletcher, Nicole M; Abusamaan, Mohammed S; Memaj, Ira; Saed, Mohammed G; Al-Hendy, Ayman; Diamond, Michael P; Saed, Ghassan M

    2017-06-01

    To determine the effects of attenuating oxidative stress with the use of dichloroacetate (DCA) on the expression of key redox enzymes myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) as well as on apoptosis. Prospective experimental study. University medical center. Cells established from myometrium and uterine fibroid from the same patients. Cells were exposed to normal (20% O 2 ) or hypoxic (2% O 2 ) conditions for 24 hours with or without DCA (20 μg/mL), a metabolic modulator that shifts anaerobic to aerobic metabolism. Nitrate/nitrite (iNOS activity indicator), iNOS, Bcl-2/Bax ratio, MPO, and caspase-3 activities and levels were determined by means of Greiss assay, real-time reverse-transcription polymerase chain reaction, and ELISA. Data were analyzed with the use of SPSS by means of one-way analysis of variance with Tukey post hoc analysis and independent t tests. MPO, iNOS, and nitrate/nitrite expression were higher in leiomyoma than in myometrial cells, and they were further enhanced by hypoxia in myometrial cells. Treatment with the use of DCA decreased MPO, iNOS, and nitrate/nitrite levels and negated the effect of hypoxia in both types of cells. Leiomyoma cells showed less apoptosis, as indicated by both caspase-3 activity and the Bcl-2/Bax ratio, than myometrial cells. Hypoxia further decreased apoptosis in myometrial cells with no further effect on leiomyoma cells. Treatment with DCA resulted in increased apoptosis in both types of cells, even in the presence of hypoxia. Shifting anaerobic to aerobic metabolism with the use of DCA resulted in an increase in apoptosis in leiomyoma cells and protected myometrial cells from the acquisition of the leiomyoma-like phenotype. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Rubisco small subunit, chlorophyll a/b-binding protein and sucrose:fructan-6-fructosyl transferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light.

    PubMed

    Lu, Chungui; Koroleva, Olga A; Farrar, John F; Gallagher, Joe; Pollock, Chris J; Tomos, A Deri

    2002-11-01

    We describe a highly efficient two-step single-cell reverse transcriptase-polymerase chain reaction technique for analyzing gene expression at the single-cell level. Good reproducibility and a linear dose response indicated that the technique has high specificity and sensitivity for detection and quantification of rare RNA. Actin could be used as an internal standard. The expression of message for Rubisco small subunit (RbcS), chlorophyll a/b-binding protein (Cab), sucrose (Suc):fructan-6-fructosyl transferase (6-SFT), and Actin were measured in individual photosynthetic cells of the barley (Hordeum vulgare) leaf. Only Actin was found in the non-photosynthetic epidermal cells. Cab, RbcS, and 6-SFT genes were expressed at a low level in mesophyll and parenchymatous bundle sheath (BS) cells when sampled from plants held in dark for 40 h. Expression increased considerably after illumination. The amount of 6-SFT, Cab, and RbcS transcript increased more in mesophyll cells than in the parenchymatous BS cells. The difference may be caused by different chloroplast structure and posttranscriptional control in mesophyll and BS cells. When similar single-cell samples were assayed for Suc, glucose, and fructan, there was high correlation between 6-SFT gene expression and Suc and glucose concentrations. This is consistent with Suc concentration being the trigger for transcription. Together with earlier demonstrations that the mesophyll cells have a higher sugar threshold for fructan polymerization, our data may indicate separate control of transcription and enzyme activity. Values for the sugar concentrations of the individual cell types are reported.

  2. Cloning and characterization of human immunodeficiency virus type 1 variants diminished in the ability to induce syncytium-independent cytolysis.

    PubMed Central

    Stevenson, M; Haggerty, S; Lamonica, C; Mann, A M; Meier, C; Wasiak, A

    1990-01-01

    The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell. Images PMID:1695254

  3. (-)-Epicatechin-induced recovery of mitochondria from simulated diabetes: Potential role of endothelial nitric oxide synthase.

    PubMed

    Ramírez-Sánchez, Israel; Rodríguez, Alonso; Moreno-Ulloa, Aldo; Ceballos, Guillermo; Villarreal, Francisco

    2016-05-01

    (-)-Epicatechin increases indicators associated with mitochondrial biogenesis in endothelial cells and myocardium. We investigated endothelial nitric oxide synthase involvement on (-)-epicatechin-induced increases in indicators associated with mitochondrial biogenesis in human coronary artery endothelial cells cultured in normal-glucose and high-glucose media, as well as to restore indicators of cardiac mitochondria from the effects of simulated diabetes. Here, we demonstrate the role of endothelial nitric oxide synthase on (-)-epicatechin-induced increases in mitochondrial proteins, transcription factors and sirtuin 1 under normal-glucose conditions. In simulated diabetes endothelial nitric oxide synthase function, mitochondrial function-associated and biogenesis-associated indicators were adversely impacted by high glucose, effects that were reverted by (-)-epicatechin. As an animal model of type 2 diabetes, 2-month old C57BL/6 mice were fed a high-fat diet for 16 weeks. Fasting and fed blood glucose levels were increased and NO plasma levels decreased. High-fat-diet-fed mice myocardium revealed endothelial nitric oxide synthase dysfunction, reduced mitochondrial activity and markers of mitochondrial biogenesis. The administration of 1 mg/kg (-)-epicatechin for 15 days by oral gavage shifted these endpoints towards control mice values. Results suggest that endothelial nitric oxide synthase mediates (-)-epicatechin-induced increases of indicators associated with mitochondrial biogenesis in endothelial cells. (-)-Epicatechin also counteracts the negative effects that high glucose or simulated type 2 diabetes has on endothelial nitric oxide synthase function. © The Author(s) 2016.

  4. Detection and discrimination of colour, a comparison of physiological and psychophysical data

    NASA Astrophysics Data System (ADS)

    Valberg, A.; Lee, B. B.

    1989-01-01

    Whereas the physiological basis of colorimetry (colour matches) is well understood in terms of the trireceptor theory of colour vision, colour discrimination and scaling still lack a comparable foundation. We present here experimental data that demonstrate how sensitivity and responsiveness of different types of cone-opponent and non-opponent cells of the macaque monkey correlate with human threshold sensitivity on the one hand, and how they in combination can be used to construct a suprathreshold equidistant colour space. Psychophysical thresholds correlate well with the threshold envelope of the most sensitive cells when stimuli are projected upon a steady white background. Detection thresholds for stimuli of differing wavelength and purity (saturation) generally indicate a transition from a phasic non-opponent system to a tonic opponent system of on-centre cells as purity increases. Detection and chromatic discrimination thresholds coincide only for long and short wavelengths of high purity, whereas they differ for mid-spectral lights. Different cell types may thus support detection and discrimination with different stimuli. With chromatic scaling of surface colours on the other hand, when stimuli are darker than an adaptation field still other cell types are needed. We demonstrate that it is possible, from a combination of on- and off-opponent cells, to reconstruct a uniform colour space, using summed outputs of cells with the same cone combination and vector addition for cells with different combinations. Different hues are represented by opponent cells with inputs from different cone types, the hue percept being related to the ratio of the activities of these cell systems.

  5. MANF silencing, immunity induction or autophagy trigger an unusual cell type in metamorphosing Drosophila brain.

    PubMed

    Stratoulias, Vassilis; Heino, Tapio I

    2015-05-01

    Glia are abundant cells in the brain of animals ranging from flies to humans. They perform conserved functions not only in neural development and wiring, but also in brain homeostasis. Here we show that by manipulating gene expression in glia, a previously unidentified cell type appears in the Drosophila brain during metamorphosis. More specifically, this cell type appears in three contexts: (1) after the induction of either immunity, or (2) autophagy, or (3) by silencing of neurotrophic factor DmMANF in glial cells. We call these cells MANF immunoreactive Cells (MiCs). MiCs are migratory based on their shape, appearance in brain areas where no cell bodies exist and the nuclear localization of dSTAT. They are labeled with a unique set of molecular markers including the conserved neurotrophic factor DmMANF and the transcription factor Zfh1. They possess the nuclearly localized protein Relish, which is the hallmark of immune response activation. They also express the conserved engulfment receptor Draper, therefore indicating that they are potentially phagocytic. Surprisingly, they do not express any of the common glial and neuronal markers. In addition, ultrastructural studies show that MiCs are extremely rich in lysosomes. Our findings reveal critical molecular and functional components of an unusual cell type in the Drosophila brain. We suggest that MiCs resemble macrophages/hemocytes and vertebrate microglia based on their appearance in the brain upon genetically challenged conditions and the expression of molecular markers. Interestingly, macrophages/hemocytes or microglia-like cells have not been reported in the fly nervous system before.

  6. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    PubMed

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  7. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice

    PubMed Central

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight. PMID:27780273

  8. Imaging trace element distributions in single organelles and subcellular features

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  9. The telomeric protein AKTIP interacts with A- and B-type lamins and is involved in regulation of cellular senescence

    PubMed Central

    Burla, Romina; Carcuro, Mariateresa; Torre, Mattia La; Fratini, Federica; Crescenzi, Marco; D'Apice, Maria Rosaria; Spitalieri, Paola; Raffa, Grazia Daniela; Astrologo, Letizia; Lattanzi, Giovanna; Cundari, Enrico; Raimondo, Domenico; Biroccio, Annamaria; Gatti, Maurizio

    2016-01-01

    AKTIP is a shelterin-interacting protein required for replication of telomeric DNA. Here, we show that AKTIP biochemically interacts with A- and B-type lamins and affects lamin A, but not lamin C or B, expression. In interphase cells, AKTIP localizes at the nuclear rim and in discrete regions of the nucleoplasm just like lamins. Double immunostaining revealed that AKTIP partially co-localizes with lamin B1 and lamin A/C in interphase cells, and that proper AKTIP localization requires functional lamin A. In mitotic cells, AKTIP is enriched at the spindle poles and at the midbody of late telophase cells similar to lamin B1. AKTIP-depleted cells show senescence-associated markers and recapitulate several aspects of the progeroid phenotype. Collectively, our results indicate that AKTIP is a new player in lamin-related processes, including those that govern nuclear architecture, telomere homeostasis and cellular senescence. PMID:27512140

  10. Fragments of Target Cells are Internalized into Retroviral Envelope Protein-Expressing Cells during Cell-Cell Fusion by Endocytosis

    PubMed Central

    Izumida, Mai; Kamiyama, Haruka; Suematsu, Takashi; Honda, Eri; Koizumi, Yosuke; Yasui, Kiyoshi; Hayashi, Hideki; Ariyoshi, Koya; Kubo, Yoshinao

    2016-01-01

    Retroviruses enter into host cells by fusion between viral and host cell membranes. Retroviral envelope glycoprotein (Env) induces the membrane fusion, and also mediates cell-cell fusion. There are two types of cell-cell fusions induced by the Env protein. Fusion-from-within is induced by fusion between viral fusogenic Env protein-expressing cells and susceptible cells, and virions induce fusion-from-without by fusion between adjacent cells. Although entry of ecotropic murine leukemia virus (E-MLV) requires host cell endocytosis, the involvement of endocytosis in cell fusion is unclear. By fluorescent microscopic analysis of the fusion-from-within, we found that fragments of target cells are internalized into Env-expressing cells. Treatment of the Env-expressing cells with an endocytosis inhibitor more significantly inhibited the cell fusion than that of the target cells, indicating that endocytosis in Env-expressing cells is required for the cell fusion. The endocytosis inhibitor also attenuated the fusion-from-without. Electron microscopic analysis suggested that the membrane fusion resulting in fusion-from-within initiates in endocytic membrane dents. This study shows that two types of the viral cell fusion both require endocytosis, and provides the cascade of fusion-from-within. PMID:26834711

  11. Dietary gluten triggers concomitant activation of CD4+ and CD8+ αβ T cells and γδ T cells in celiac disease

    PubMed Central

    Han, Arnold; Newell, Evan W.; Glanville, Jacob; Fernandez-Becker, Nielsen; Khosla, Chaitan; Chien, Yueh-hsiu; Davis, Mark M.

    2013-01-01

    Celiac disease is an intestinal autoimmune disease driven by dietary gluten and gluten-specific CD4+ T-cell responses. In celiac patients on a gluten-free diet, exposure to gluten induces the appearance of gluten-specific CD4+ T cells with gut-homing potential in the peripheral blood. Here we show that gluten exposure also induces the appearance of activated, gut-homing CD8+ αβ and γδ T cells in the peripheral blood. Single-cell T-cell receptor sequence analysis indicates that both of these cell populations have highly focused T-cell receptor repertoires, indicating that their induction is antigen-driven. These results reveal a previously unappreciated role of antigen in the induction of CD8+ αβ and γδ T cells in celiac disease and demonstrate a coordinated response by all three of the major types of T cells. More broadly, these responses may parallel adaptive immune responses to viral pathogens and other systemic autoimmune diseases. PMID:23878218

  12. Resistance of human plasmacytoid dendritic CAL-1 cells to infection with lymphocytic choriomeningitis virus (LCMV) is caused by restricted virus cell entry, which is overcome by contact of CAL-1 cells with LCMV-infected cells.

    PubMed

    Iwasaki, Masaharu; Sharma, Siddhartha M; Marro, Brett S; de la Torre, Juan C

    2017-11-01

    Plasmacytoid dendritic cells (pDCs), a main source of type I interferon in response to viral infection, are an early cell target during lymphocytic choriomeningitis virus (LCMV) infection, which has been associated with the LCMV's ability to establish chronic infections. Human blood-derived pDCs have been reported to be refractory to ex vivo LCMV infection. In the present study we show that human pDC CAL-1 cells are refractory to infection with cell-free LCMV, but highly susceptible to infection with recombinant LCMVs carrying the surface glycoprotein of VSV, indicating that LCMV infection of CAL-1 cells is restricted at the cell entry step. Co-culture of uninfected CAL-1 cells with LCMV-infected HEK293 cells enabled LCMV to infect CAL-1 cells. This cell-to-cell spread required direct cell-cell contact and did not involve exosome pathway. Our findings indicate the presence of a novel entry pathway utilized by LCMV to infect pDC. Copyright © 2017. Published by Elsevier Inc.

  13. Quantitative and qualitative differences in use and trends of hematopoietic stem cell transplantation: a Global Observational Study

    PubMed Central

    Gratwohl, Alois; Baldomero, Helen; Gratwohl, Michael; Aljurf, Mahmoud; Bouzas, Luis Fernando; Horowitz, Mary; Kodera, Yoshihisa; Lipton, Jeff; Iida, Minako; Pasquini, Marcelo C.; Passweg, Jakob; Szer, Jeff; Madrigal, Alejandro; Frauendorfer, Karl; Niederwieser, Dietger

    2013-01-01

    Fifty-five years after publication of the first hematopoietic stem cell transplantation this technique has become an accepted treatment option for defined hematologic and non-hematologic disorders. There is considerable interest in understanding differences in its use and trends on a global level and the macro-economic factors associated with these differences. Data on the numbers of hematopoietic stem cell transplants performed in the 3-year period 2006–2008 were obtained from Worldwide Network for Blood and Marrow Transplantation member registries and from transplant centers in countries without registries. Population and macro-economic data were collected from the World Bank and from the International Monetary Fund. Transplant rates were analyzed by indication, donor type, country, and World Health Organization regional offices areas and related to selected health care indicators using single and multiple linear regression analyses. Data from a total of 146,808 patients were reported by 1,411 teams from 72 countries over five continents. The annual number of transplants increased worldwide with the highest relative increase in the Asia Pacific region. Transplant rates increased preferentially in high income countries (P=0.02), not in low or medium income countries. Allogeneic transplants increased for myelodysplasia, chronic lymphocytic leukemia, acute leukemias, and non-malignant diseases but decreased for chronic myelogenous leukemia. Autologous transplants increased for autoimmune and lymphoproliferative diseases but decreased for leukemias and solid tumors. Transplant rates (P<0.01), donor type (P<0.01) aand disease indications (P<0.01) differed significantly between countries and regions. Transplant rates were associated with Gross National Income/capita (P<0.01) but showed a wide variation of explanatory content by donor type, disease indication and World Health Organization region. Hematopoietic stem cell transplantation activity is increasing worldwide. The preferential increase in high income countries, the widening gap between low and high income countries and the significant regional differences suggest that different strategies are required in individual countries to foster hematopoietic stem cell transplantation as an efficient and cost-effective treatment modality. PMID:23508009

  14. Activity of botulinum neurotoxin type D (strain 1873) in human neurons

    PubMed Central

    Pellett, Sabine; Tepp, William H.; Scherf, Jacob M.; Pier, Christina L.; Johnson, Eric A.

    2015-01-01

    Botulinum Neurotoxin type D (BoNT/D) causes periodic outbreaks of botulism in cattle and horses, but is rarely associated with human botulism. Previous studies have shown that humans responded poorly to peripheral injection of up to 10 U of BoNT/D. Isolated human pyramidalis muscle preparations were resistant to BoNT/D, whereas isolated human intercostal muscle preparations responded to BoNT/D similarly as to other BoNT serotypes. In vitro data indicate that BoNT/D does not cleave human VAMP1 efficiently, and differential expression of the VAMP 1 and 2 isoforms may be responsible for the above observations. Here we examined sensitivity of cultured human neurons derived from human induced pluripotent stem cells to BoNT/D. Our data indicate that BoNT/D can enter and cleave VAMP 2 in human neurons, but at significantly lower efficiency than other BoNT serotypes. In addition, BoNT/D had a short duration of action in the cultured neurons, similar to that of BoNT/E. In vivo analyses indicated a slower time to death in mice, as well as a later onset and shorter duration of action than BoNT/A1. Finally, examination of BoNT/D activity in various rodent and human cell models resulted in dramatic differences in sensitivity, indicating a unique cell entry mechanism of BoNT/D. PMID:25937339

  15. Computational modeling and functional analysis of Herpes simplex virus type-1 thymidine kinase and Escherichia coli cytosine deaminase fusion protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jufeng; Wang, Zhanli; Wei, Fang

    2007-08-17

    Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. Themore » toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.« less

  16. Long non-coding RNA XIST inhibited breast cancer cell growth, migration, and invasion via miR-155/CDX1 axis.

    PubMed

    Zheng, Ruinian; Lin, Shunhuan; Guan, Ling; Yuan, Huiling; Liu, Kejun; Liu, Chun; Ye, Weibiao; Liao, Yuting; Jia, Jun; Zhang, Ruopeng

    2018-04-15

    Long non-coding RNA (lncRNA) is an important member of non-coding RNA family and emerging evidence has indicated that it plays a pivotal role in many physiological and pathological processes. The lncRNA X inactive specific transcript (XIST) is a potential tumour suppressor in some types of cancers. However, the expression and function of XIST in breast cancer remain largely unclear. The objective of this study was to evaluate the expression and biological role of XIST in breast cancer. The results showed that XIST was significantly down-regulated in breast cancer tissues and cell lines. Further functional analysis indicated that overexpression of XIST remarkably inhibited breast cancer cell growth, migration, and invasion. The results of luciferase reporter assays verified that miR-155 was a direct target of XIST in breast cancer. Moreover, caudal-type homeobox 1 (CDX1) was identified as a direct target of miR-155 and miR-155/CDX1 rescued the effects of XIST in breast cancer cells. Taken together, our results suggest that XIST is down-regulated in breast cancer and suppresses breast cancer cell growth, migration, and invasion via the miR-155/CDX1 axis. Copyright © 2018. Published by Elsevier Inc.

  17. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and "early aging" mice.

    PubMed

    Guest, Ian; Ilic, Zoran; Scrable, Heidi; Sell, Stewart

    2015-12-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16-18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best.

  18. Survival of irradiated recipient mice after transplantation of bone marrow from young, old and “early aging” mice

    PubMed Central

    Guest, Ian; Ilic, Zoran; Sell, Stewart

    2015-01-01

    Bone marrow transplantation is used to examine survival, hematopoietic stem cell function and pathology in recipients of young and old wild type bone marrow derived stem cells (BMDSCs) as well as cells from p53-based models of premature aging. There is no difference in the long term survival of recipients of 8 week-old p53+/m donor cells compared to recipients of 8 week-old wild-type (WT) donor cells (70 weeks) or of recipients of 16–18 weeks-old donor cells from either p53+/m or WT mice. There is shorter survival in recipients of older versus younger WT donor bone marrow, but the difference is only significant when comparing 8 and 18 week-old donors. In the p44-based model, short term survival/engraftment is significantly reduced in recipients of 11 month-old p44 donor cells compared to 4 week-old p44 or wild type donor cells of either age; mid-life survival at 40 weeks is also significantly less in recipients of p44 cells. BMDSCs are readily detectable within recipient bone marrow, lymph node, intestinal villi and liver sinusoids, but not in epithelial derived cells. These results indicate that recipients of young BMDSCs may survive longer than recipients of old bone marrow, but the difference is marginal at best. PMID:26796640

  19. Viral infections in type 1 diabetes mellitus — why the β cells?

    PubMed Central

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection — particularly by enteroviruses (for example, coxsackievirus) — as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review. PMID:27020257

  20. Dectin-1 diversifies Aspergillus fumigatus–specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation

    PubMed Central

    Hohl, Tobias M.; Collins, Nichole; Leiner, Ingrid; Gallegos, Alena; Saijo, Shinobu; Coward, Jesse W.; Iwakura, Yoichiro

    2011-01-01

    Pulmonary infection of mice with Aspergillus fumigatus induces concurrent T helper type 1 (Th1) and Th17 responses that depend on Toll-like receptor/MyD88 and Dectin-1, respectively. However, the mechanisms balancing Th1 and Th17 CD4 T cell populations during infection remain incompletely defined. In this study, we show that Dectin-1 deficiency disproportionally increases Th1 responses and decreases Th17 differentiation after A. fumigatus infection. Dectin-1 signaling in A. fumigatus–infected wild-type mice reduces IFN-γ and IL-12p40 expression in the lung, thereby decreasing T-bet expression in responding CD4 T cells and enhancing Th17 responses. Absence of IFN-γ or IL-12p35 in infected mice or T-bet in responding CD4 T cells enhances Th17 differentiation, independent of Dectin-1 expression, in A. fumigatus–infected mice. Transient deletion of monocyte-derived dendritic cells also reduces Th1 and boosts Th17 differentiation of A. fumigatus–specific CD4 T cells. Our findings indicate that Dectin-1–mediated signals alter CD4 T cell responses to fungal infection by decreasing the production of IL-12 and IFN-γ in innate cells, thereby decreasing T-bet expression in A. fumigatus–specific CD4 T cells and enabling Th17 differentiation. PMID:21242294

  1. The nexin link and B-tubule glutamylation maintain the alignment of outer doublets in the ciliary axoneme.

    PubMed

    Alford, Lea M; Stoddard, Daniel; Li, Jennifer H; Hunter, Emily L; Tritschler, Douglas; Bower, Raqual; Nicastro, Daniela; Porter, Mary E; Sale, Winfield S

    2016-06-01

    We developed quantitative assays to test the hypothesis that the N-DRC is required for integrity of the ciliary axoneme. We examined reactivated motility of demembranated drc cells, commonly termed "reactivated cell models." ATP-induced reactivation of wild-type cells resulted in the forward swimming of ∼90% of cell models. ATP-induced reactivation failed in a subset of drc cell models, despite forward motility in live drc cells. Dark-field light microscopic observations of drc cell models revealed various degrees of axonemal splaying. In contrast, >98% of axonemes from wild-type reactivated cell models remained intact. The sup-pf4 and drc3 mutants, unlike other drc mutants, retain most of the N-DRC linker that interconnects outer doublet microtubules. Reactivated sup-pf4 and drc3 cell models displayed nearly wild-type levels of forward motility. Thus, the N-DRC linker is required for axonemal integrity. We also examined reactivated motility and axoneme integrity in mutants defective in tubulin polyglutamylation. ATP-induced reactivation resulted in forward swimming of >75% of tpg cell models. Analysis of double mutants defective in tubulin polyglutamylation and different regions of the N-DRC indicate B-tubule polyglutamylation and the distal lobe of the linker region are both important for axonemal integrity and normal N-DRC function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Immunohistochemical analysis of cytochrome P4501A induction in organs and cell types of Rivulus marmoratus exposed to waterborne 2,3,7,8-tetrachlorodibenzo-p-dioxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegeman, J.; Smolowitz, R.; Burnett, K.

    1994-12-31

    Identifying target cells and organs is critical to establishing the sites and mechanisms of toxicity of Ah-receptor agonists. Previous studies have described the localization of CYPLA induced in multiple organs of fish exposed to Ah-receptor agonists. Here the authors compare the responses in multiple cell types and organs of small fish (Rivulus) exposed to waterborne TCDD. Adult fish were exposed to TCDD at concentrations from 0.01 to 10 ng/liter for 48 hours, then prepared and analyzed by immunohistochemistry with monoclonal antibody to teleost CYPIAI. At the highest dose profound induction was detected in virtually every organ. Structures staining intensely were:more » nasal and cephalic chemoreceptors, including sensory and basal cells; superficial cells in skin and pharynx; cartilage cells (chondrocytes) in the head, gills, growth plates and fins; epithelial and endothelial cells of liver, gut, kidney, and gill; pseudobranch vessels and glandular cells; eye lens epithelium; endothelium in vessels of eye, brain, skin, muscle, thymus and gonad. Lesser concentrations of TCDD elicited less strong responses, and control fish showed mild staining only in cartilage structures. The dose-dependent patterns of induction differed between different cell types. Responsive cells identified is these fish indicate sites where toxicity associated with Ah-receptor agonists or with CYPLA function may be expressed.« less

  3. Discriminating the hemolytic risk of blood type A plasmas using the complement hemolysis using human erythrocytes (CHUHE) assay.

    PubMed

    Cunnion, Kenji M; Hair, Pamela S; Krishna, Neel K; Sass, Megan A; Enos, Clinton W; Whitley, Pamela H; Maes, Lanne Y; Goldberg, Corinne L

    2017-03-01

    The agglutination-based cross-matching method is sensitive for antibody binding to red blood cells but is only partially predictive of complement-mediated hemolysis, which is important in many acute hemolytic transfusion reactions. Here, we describe complement hemolysis using human erythrocytes (CHUHE) assays that directly evaluate complement-mediated hemolysis between individual serum-plasma and red blood cell combinations. The CHUHE assay is used to evaluate correlations between agglutination titers and complement-mediated hemolysis as well as the hemolytic potential of plasma from type A blood donors. Plasma or serum from each type A blood donor was incubated with AB or B red blood cells in the CHUHE assay and measured for free hemoglobin release. CHUHE assays for serum or plasma demonstrate a wide, dynamic range and high sensitivity for complement-mediated hemolysis for individual serum/plasma and red blood cell combinations. CHUHE results suggest that agglutination assays alone are only moderately predictive of complement-mediated hemolysis. CHUHE results also suggest that plasma from particular type A blood donors produce minimal complement-mediated hemolysis, whereas plasma from other type A blood donors produce moderate to high-level complement-mediated hemolysis, depending on the red blood cell donor. The current results indicate that the CHUHE assay can be used to assess complement-mediated hemolysis for plasma or serum from a type A blood donor, providing additional risk discrimination over agglutination titers alone. © 2016 AABB.

  4. P-type proton ATPases are involved in intracellular calcium and proton uptake in the plant parasite Phytomonas francai.

    PubMed

    Miranda, Kildare; Vercesi, Anibal E; Catisti, Rosana; De Souza, Wanderley; Rodrigues, Claudia O; Docampo, Roberto

    2005-01-01

    The use of digitonin to permeabilize the plasma membrane of promastigotes of Phytomonas francai allowed the identification of two non-mitochondrial Ca(2+) compartments; one sensitive to ionomycin and vanadate (neutral or alkaline), possibly the endoplasmic reticulum, and another sensitive to the combination of nigericin plus ionomycin (acidic), possibly the acidocalcisomes. A P-type (phospho-intermediate form) Ca(2+)-ATPase activity was found to be responsible for intracellular Ca(2+) transport in these cells, with no evidence of a mitochondrial Ca(2+) transport activity. ATP-driven acidification of internal compartments in cell lysates and cells mechanically permeabilized was assayed spectrophotometrically with acridine orange. This activity was inhibited by low concentrations of vanadate and digitonin, was insensitive to bafilomycin A(1), and stimulated by Na(+) ions. Taken together, our results indicate that P-type ATPases are involved in intracellular Ca(2+) and H(+) transport in promastigotes of P. francai.

  5. Band alignment at the CdS/FeS2 interface based on the first-principles calculation

    NASA Astrophysics Data System (ADS)

    Ichimura, Masaya; Kawai, Shoichi

    2015-03-01

    FeS2 is potentially well-suited for the absorber layer of a thin-film solar cell. Since it usually has p-type conductivity, a pn heterojunction cell can be fabricated by combining it with an n-type material. In this work, the band alignment in the heterostructure based on FeS2 is investigated on the basis of the first-principles calculation. CdS, the most popular buffer-layer material for thin-film solar cells, is selected as the partner in the heterostructure. The results indicate that there is a large conduction band offset (0.65 eV) at the interface, which will hinder the flow of photogenerated electrons from FeS2 to CdS. Thus an n-type material with the conduction band minimum positioned lower than that of CdS will be preferable as the partner in the heterostructure.

  6. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor

    PubMed Central

    De Meyer, Simon F.; Vanhoorelbeke, Karen; Chuah, Marinee K.; Pareyn, Inge; Gillijns, Veerle; Hebbel, Robert P.; Collen, Désiré; Deckmyn, Hans; VandenDriessche, Thierry

    2006-01-01

    Von Willebrand disease (VWD) is an inherited bleeding disorder, caused by quantitative (type 1 and 3) or qualitative (type 2) defects in von Willebrand factor (VWF). Gene therapy is an appealing strategy for treatment of VWD because it is caused by a single gene defect and because VWF is secreted into the circulation, obviating the need for targeting specific organs or tissues. However, development of gene therapy for VWD has been hampered by the considerable length of the VWF cDNA (8.4 kb [kilobase]) and the inherent complexity of the VWF protein that requires extensive posttranslational processing. In this study, a gene-based approach for VWD was developed using lentiviral transduction of blood-outgrowth endothelial cells (BOECs) to express functional VWF. A lentiviral vector encoding complete human VWF was used to transduce BOECs isolated from type 3 VWD dogs resulting in high-transduction efficiencies (95.6% ± 2.2%). Transduced VWD BOECs efficiently expressed functional vector-encoded VWF (4.6 ± 0.4 U/24 hour per 106 cells), with normal binding to GPIbα and collagen and synthesis of a broad range of multimers resulting in phenotypic correction of these cells. These results indicate for the first time that gene therapy of type 3 VWD is feasible and that BOECs are attractive target cells for this purpose. PMID:16478886

  7. Delayed Rectifier and A-Type Potassium Channels Associated with Kv 2.1 and Kv 4.3 Expression in Embryonic Rat Neural Progenitor Cells

    PubMed Central

    Smith, Dean O.; Rosenheimer, Julie L.; Kalil, Ronald E.

    2008-01-01

    Background Because of the importance of voltage-activated K+ channels during embryonic development and in cell proliferation, we present here the first description of these channels in E15 rat embryonic neural progenitor cells derived from the subventricular zone (SVZ). Activation, inactivation, and single-channel conductance properties of recorded progenitor cells were compared with those obtained by others when these Kv gene products were expressed in oocytes. Methodology/Principal Findings Neural progenitor cells derived from the subventricular zone of E15 embryonic rats were cultured under conditions that did not promote differentiation. Immunocytochemical and Western blot assays for nestin expression indicated that almost all of the cells available for recording expressed this intermediate filament protein, which is generally accepted as a marker for uncommitted embryonic neural progenitor cells. However, a very small numbers of the cells expressed GFAP, a marker for astrocytes, O4, a marker for immature oligodendrocytes, and βIII-tubulin, a marker for neurons. Using immunocytochemistry and Western blots, we detected consistently the expression of Kv2.1, and 4.3. In whole-cell mode, we recorded two outward currents, a delayed rectifier and an A-type current. Conclusions/Significance We conclude that Kv2.1, and 4.3 are expressed in E15 SVZ neural progenitor cells, and we propose that they may be associated with the delayed-rectifier and the A-type currents, respectively, that we recorded. These results demonstrate the early expression of delayed rectifier and A-type K+ currents and channels in embryonic neural progenitor cells prior to the differentiation of these cells. PMID:18270591

  8. Stereological estimation of the surface area and oxygen diffusing capacity of the respiratory stomach of the air-breathing armored catfish Pterygoplichthys anisitsi (Teleostei: Loricariidae).

    PubMed

    da Cruz, André Luis; Pedretti, Ana Carolina Elias; Fernandes, Marisa Narciso

    2009-05-01

    The stomach of Pterygoplichthys anisitsi has a thin, translucent wall and a simple squamous epithelium with an underlying dense capillary network. In the cardiac and pyloric regions, most cells have short microvilli distributed throughout the cell surface and their edges are characterized by short, densely packed microvilli. The mucosal layer of the stomach has two types of pavement epithelial cells that are similar to those in the aerial respiratory organs. Type 1 pavement epithelial cells, resembling the Type I pneumocyte in mammal lungs, are flat, with a large nucleus, and extend a thin sheet of cytoplasm on the underlying capillary. Type 2 cells, resembling the Type II pneumocyte, possess numerous mitochondria, a well-developed Golgi complex, rough endoplasmic reticulum, and numerous lamellar bodies in different stages of maturation. The gastric glands, distributed throughout the mucosal layer, also have several cells with many lamellar bodies. The total volume (air + tissue), tissue, and air capacity of the stomach when inflated, increase along with body mass. The surface-to-tissue-volume ratio of stomach varies from 108 cm(-1) in the smallest fish (0.084 kg) to 59 cm(-1) in the largest fish (0.60 kg). The total stomach surface area shows a low correlation to body mass. Nevertheless, the body-mass-specific surface area varied from 281.40 cm(2) kg(-1) in the smallest fish to 68.08 cm(2) kg(-1) in the largest fish, indicating a negative correlation to body mass (b = -0.76). The arithmetic mean barrier thickness between air and blood was 1.52 +/- 0.07 microm, whereas the harmonic mean thickness (tau(h)) of the diffusion barrier ranged from 0.40 to 0.74 microm. The anatomical diffusion factor (ADF = cm(2) microm(-1) kg(-1)) and the morphological O(2) diffusion capacity (D(morphol)O(2) = cm(3) min(-1) mmHg(-1) kg(-1)) are higher in the smallest specimen and lower in the largest one. In conclusion, the structure and morphometric data of P. anisitsi stomach indicate that this organ is adapted for oxygen uptake from air. (c) 2008 Wiley-Liss, Inc.

  9. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway.

    PubMed

    Wang, Junjian; Huang, Shaoxiang

    2018-03-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro . MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro , which may provide a novel approach for clinical treatment.

  10. Fisetin inhibits the growth and migration in the A549 human lung cancer cell line via the ERK1/2 pathway

    PubMed Central

    Wang, Junjian; Huang, Shaoxiang

    2018-01-01

    Lung cancer is the most prevalent malignant tumor type in the developed world and the discovery of novel anti-tumor drugs is a research hotspot. Fisetin, a naturally occurring flavonoid, has been reported to have anti-cancer effects in multiple tumor types. The present study found that fisetin inhibited the growth and migration of non-small cell lung cancer in vitro. MTT, wound-healing, cell-matrix adhesion and Transwell assays were performed and demonstrated that fisetin suppressed proliferation, migration, adhesion and invasion, respectively. Flow cytometric analysis indicated that fisetin induced apoptosis in the A549 cell line by decreasing the expression of c-myc, cyclin-D1, cyclooxygenase-2, B cell lymphoma-2, CXC chemokine receptor type 4, cluster of differentiation 44 and metalloproteinase-2/9, increasing the expression of cyclin dependent kinase inhibitor (CDKN) 1A/B, CDKN2D and E-cadherin and increasing the activity of caspase-3/9 via targeting the extracellular signal-regulated kinase signaling pathway. The results provided comprehensive evidence for the anti-tumor effects of fisetin in non-small cell lung cancer in vitro, which may provide a novel approach for clinical treatment. PMID:29467859

  11. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer.

    PubMed

    Chung, Suyoun; Suzuki, Hanae; Miyamoto, Takashi; Takamatsu, Naofumi; Tatsuguchi, Ayako; Ueda, Koji; Kijima, Kyoko; Nakamura, Yusuke; Matsuo, Yo

    2012-12-01

    We previously reported MELK (maternal embryonic leucine zipper kinase) as a novel therapeutic target for breast cancer. MELK was also reported to be highly upregulated in multiple types of human cancer. It was implied to play indispensable roles in cancer cell survival and indicated its involvement in the maintenance of tumor-initiating cells. We conducted a high-throughput screening of a compound library followed by structure-activity relationship studies, and successfully obtained a highly potent MELK inhibitor OTSSP167 with IC₅₀ of 0.41 nM. OTSSP167 inhibited the phosphorylation of PSMA1 (proteasome subunit alpha type 1) and DBNL (drebrin-like), which we identified as novel MELK substrates and are important for stem-cell characteristics and invasiveness. The compound suppressed mammosphere formation of breast cancer cells and exhibited significant tumor growth suppression in xenograft studies using breast, lung, prostate, and pancreas cancer cell lines in mice by both intravenous and oral administration. This MELK inhibitor should be a promising compound possibly to suppress the growth of tumor-initiating cells and be applied for treatment of a wide range of human cancer.

  12. Impaired interferon signaling is a common immune defect in human cancer

    PubMed Central

    Critchley-Thorne, Rebecca J.; Simons, Diana L.; Yan, Ning; Miyahira, Andrea K.; Dirbas, Frederick M.; Johnson, Denise L.; Swetter, Susan M.; Carlson, Robert W.; Fisher, George A.; Koong, Albert; Holmes, Susan; Lee, Peter P.

    2009-01-01

    Immune dysfunction develops in patients with many cancer types and may contribute to tumor progression and failure of immunotherapy. Mechanisms underlying cancer-associated immune dysfunction are not fully understood. Efficient IFN signaling is critical to lymphocyte function; animals rendered deficient in IFN signaling develop cancer at higher rates. We hypothesized that altered IFN signaling may be a key mechanism of immune dysfunction common to cancer. To address this, we assessed the functional responses to IFN in peripheral blood lymphocytes from patients with 3 major cancers: breast cancer, melanoma, and gastrointestinal cancer. Type-I IFN (IFN-α)-induced signaling was reduced in T cells and B cells from all 3 cancer-patient groups compared to healthy controls. Type-II IFN (IFN-γ)-induced signaling was reduced in B cells from all 3 cancer patient groups, but not in T cells or natural killer cells. Impaired-IFN signaling was equally evident in stage II, III, and IV breast cancer patients, and downstream functional defects in T cell activation were identified. Taken together, these findings indicate that defects in lymphocyte IFN signaling arise in patients with breast cancer, melanoma, and gastrointestinal cancer, and these defects may represent a common cancer-associated mechanism of immune dysfunction. PMID:19451644

  13. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions.

    PubMed

    Islam, Rafique; Kristiansen, Lars V; Romani, Susana; Garcia-Alonso, Luis; Hortsch, Michael

    2004-04-01

    Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.

  14. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo.

    PubMed

    Fox, James M; Hilburn, Silva; Demontis, Maria-Antonietta; Brighty, David W; Rios Grassi, Maria Fernanda; Galvão-Castro, Bernardo; Taylor, Graham P; Martin, Fabiola

    2016-03-14

    Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1) infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1), HTLV-1 plasma RNA is sparse. The contribution of the "mitotic" spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR) DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT) usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC) of asymptomatic carriers (ACs) and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) or adult T cell leukaemia/lymphoma (ATLL). 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  15. Ectopically hTERT expressing adult human mesenchymal stem cells are less radiosensitive than their telomerase negative counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serakinci, Nedime; Christensen, Rikke; Graakjaer, Jesper

    2007-03-10

    During the past several years increasing evidence indicating that the proliferation capacity of mammalian cells is highly radiosensitive, regardless of the species and the tissue of origin of the cells, has accumulated. It has also been shown that normal bone marrow cells of mice have a similar radiosensitivity to other mammalian cells so far tested. In this study, we investigated the genetic effects of ionizing radiation (2.5-15 Gy) on normal human mesenchymal stem cells and their telomerised counterpart hMSC-telo1. We evaluated overall genomic integrity, DNA damage/repair by applying a fluorescence-detected alkaline DNA unwinding assay together with Western blot analyses formore » phosphorylated H2AX and Q-FISH was applied for investigation of telomeric damage. Our results indicate that hMSC and TERT-immortalized hMSCs can cope with relatively high doses of {gamma}-rays and that overall DNA repair is similar in the two cell lines. The telomeres were extensively destroyed after irradiation in both cell types suggesting that telomere caps are especially sensitive to radiation. The TERT-immortalized hMSCs showed higher stability at telomeric regions than primary hMSCs indicating that cells with long telomeres and high telomerase activity have the advantage of re-establishing the telomeric caps.« less

  16. An RNA-binding protein, Qki5, regulates embryonic neural stem cells through pre-mRNA processing in cell adhesion signaling.

    PubMed

    Hayakawa-Yano, Yoshika; Suyama, Satoshi; Nogami, Masahiro; Yugami, Masato; Koya, Ikuko; Furukawa, Takako; Zhou, Li; Abe, Manabu; Sakimura, Kenji; Takebayashi, Hirohide; Nakanishi, Atsushi; Okano, Hideyuki; Yano, Masato

    2017-09-15

    Cell type-specific transcriptomes are enabled by the action of multiple regulators, which are frequently expressed within restricted tissue regions. In the present study, we identify one such regulator, Quaking 5 (Qki5), as an RNA-binding protein (RNABP) that is expressed in early embryonic neural stem cells and subsequently down-regulated during neurogenesis. mRNA sequencing analysis in neural stem cell culture indicates that Qki proteins play supporting roles in the neural stem cell transcriptome and various forms of mRNA processing that may result from regionally restricted expression and subcellular localization. Also, our in utero electroporation gain-of-function study suggests that the nuclear-type Qki isoform Qki5 supports the neural stem cell state. We next performed in vivo transcriptome-wide protein-RNA interaction mapping to search for direct targets of Qki5 and elucidate how Qki5 regulates neural stem cell function. Combined with our transcriptome analysis, this mapping analysis yielded a bona fide map of Qki5-RNA interaction at single-nucleotide resolution, the identification of 892 Qki5 direct target genes, and an accurate Qki5-dependent alternative splicing rule in the developing brain. Last, our target gene list provides the first compelling evidence that Qki5 is associated with specific biological events; namely, cell-cell adhesion. This prediction was confirmed by histological analysis of mice in which Qki proteins were genetically ablated, which revealed disruption of the apical surface of the lateral wall in the developing brain. These data collectively indicate that Qki5 regulates communication between neural stem cells by mediating numerous RNA processing events and suggest new links between splicing regulation and neural stem cell states. © 2017 Hayakawa-Yano et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Lens epithelial cells derived from alphaB-crystallin knockout mice demonstrate hyperproliferation and genomic instability.

    PubMed

    Andley, U P; Song, Z; Wawrousek, E F; Brady, J P; Bassnett, S; Fleming, T P

    2001-01-01

    alphaB-crystallin is a member of the small heat shock protein family and can act as a molecular chaperone preventing the in vitro aggregation of other proteins denatured by heat or other stress conditions. Expression of alphaB-crystallin increases in cells exposed to stress and enhanced in tumors of neuroectodermal origin and in many neurodegenerative diseases. In the present study, we examined the properties of lens epithelial cells derived from mice in which the alphaB-crystallin gene had been knocked out. Primary rodent cells immortalize spontaneously in tissue culture with a frequency of 10(-5) to 10(-6). Primary lens epithelial cells derived from alphaB-crystallin-/- mice produced hyperproliferative clones at a frequency of 7.6 x 10(-2), four orders of magnitude greater than predicted by spontaneous immortalization (1). Hyperproliferative alphaB-crystallin-/- cells were shown to be truly immortal since they have been passaged for more than 100 population doublings without any diminution in growth potential. In striking contrast to the wild-type cells, which were diploid, the alphaB-crystallin-/- cultures had a high proportion of tetraploid and higher ploidy cells, indicating that the loss of alphaB-crystallin is associated with an increase in genomic instability. Further evidence of genomic instability of alphaB-crystallin-/- cells was observed when primary cultures were infected with Ad12-SV40 hybrid virus. In striking contrast to wild-type cells, alphaB-crystallin-/- cells expressing SV40 T antigen exhibited a widespread cytocidal response 2 to 3 days after attaining confluence, indicating that SV40 T antigen enhanced the intrinsic genomic instability of alphaB-crystallin-/- lens epithelial cells. These observations suggest that the widely distributed molecular chaperone alphaB-crystallin may play an important nuclear role in maintaining genomic integrity.

  18. Oxygen depletion speeds and simplifies diffusion in HeLa cells.

    PubMed

    Edwald, Elin; Stone, Matthew B; Gray, Erin M; Wu, Jing; Veatch, Sarah L

    2014-10-21

    Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.

  19. Engagement of Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4) Induces Transforming Growth Factor β (TGF-β) Production by Murine CD4+ T Cells

    PubMed Central

    Chen, Wanjun; Jin, Wenwen; Wahl, Sharon M.

    1998-01-01

    Evidence indicates that cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) may negatively regulate T cell activation, but the basis for the inhibitory effect remains unknown. We report here that cross-linking of CTLA-4 induces transforming growth factor β (TGF-β) production by murine CD4+ T cells. CD4+ T helper type 1 (Th1), Th2, and Th0 clones all secrete TGF-β after antibody cross-linking of CTLA-4, indicating that induction of TGF-β by CTLA-4 signaling represents a ubiquitous feature of murine CD4+ T cells. Stimulation of the CD3–T cell antigen receptor complex does not independently induce TGF-β, but is required for optimal CTLA-4–mediated TGF-β production. The consequences of cross-linking of CTLA-4, together with CD3 and CD28, include inhibition of T cell proliferation and interleukin (IL)-2 secretion, as well as suppression of both interferon γ (Th1) and IL-4 (Th2). Moreover, addition of anti–TGF-β partially reverses this T cell suppression. When CTLA-4 was cross-linked in T cell populations from TGF-β1 gene–deleted (TGF-β1−/−) mice, the T cell responses were only suppressed 38% compared with 95% in wild-type mice. Our data demonstrate that engagement of CTLA-4 leads to CD4+ T cell production of TGF-β, which, in part, contributes to the downregulation of T cell activation. CTLA-4, through TGF-β, may serve as a counterbalance for CD28 costimulation of IL-2 and CD4+ T cell activation. PMID:9815262

  20. Emergence and patterning of the five cell types of the Zea mays anther locule

    PubMed Central

    Kelliher, Timothy; Walbot, Virginia

    2011-01-01

    One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis, however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium the somatic tissues consist of four concentric cell layers which surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over thirty days of wild type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2′-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain. PMID:21070762

  1. Negative regulation of STAT3 protein-mediated cellular respiration by SIRT1 protein.

    PubMed

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro; Scheibye-Knudsen, Morten; Song, Shaoming; He, Hua-Jun; Armour, Sean M; Hubbard, Basil P; Bohr, Vilhelm A; Wang, Lili; Zong, Yaping; Sinclair, David A; de Cabo, Rafael

    2011-06-03

    In mammals, the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) is regulated by the deacetylase SIRT1. However, whether the newly described nongenomic actions of STAT3 toward mitochondrial oxidative phosphorylation are dependent on SIRT1 is unclear. In this study, Sirt1 gene knock-out murine embryonic fibroblast (MEF) cells were used to delineate the role of SIRT1 in the regulation of STAT3 mitochondrial function. Here, we show that STAT3 mRNA and protein levels and the accumulation of serine-phosphorylated STAT3 in mitochondria were increased significantly in Sirt1-KO cells as compared with wild-type MEFs. Various mitochondrial bioenergetic parameters, such as the oxygen consumption rate in cell cultures, enzyme activities of the electron transport chain complexes in isolated mitochondria, and production of ATP and lactate, indicated that Sirt1-KO cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-κB pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1 appears to be a functional regulator of NF-κB-dependent STAT3 expression that induces mitochondrial biogenesis. These results have implications for understanding the interplay between STAT3 and SIRT1 in pro-inflammatory conditions.

  2. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein*

    PubMed Central

    Bernier, Michel; Paul, Rajib K.; Martin-Montalvo, Alejandro; Scheibye-Knudsen, Morten; Song, Shaoming; He, Hua-Jun; Armour, Sean M.; Hubbard, Basil P.; Bohr, Vilhelm A.; Wang, Lili; Zong, Yaping; Sinclair, David A.; de Cabo, Rafael

    2011-01-01

    In mammals, the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) is regulated by the deacetylase SIRT1. However, whether the newly described nongenomic actions of STAT3 toward mitochondrial oxidative phosphorylation are dependent on SIRT1 is unclear. In this study, Sirt1 gene knock-out murine embryonic fibroblast (MEF) cells were used to delineate the role of SIRT1 in the regulation of STAT3 mitochondrial function. Here, we show that STAT3 mRNA and protein levels and the accumulation of serine-phosphorylated STAT3 in mitochondria were increased significantly in Sirt1-KO cells as compared with wild-type MEFs. Various mitochondrial bioenergetic parameters, such as the oxygen consumption rate in cell cultures, enzyme activities of the electron transport chain complexes in isolated mitochondria, and production of ATP and lactate, indicated that Sirt1-KO cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-κB pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1 appears to be a functional regulator of NF-κB-dependent STAT3 expression that induces mitochondrial biogenesis. These results have implications for understanding the interplay between STAT3 and SIRT1 in pro-inflammatory conditions. PMID:21467030

  3. Nanosilica induced dose-dependent cytotoxicity and cell type-dependent multinucleation in HepG2 and L-02 cells

    NASA Astrophysics Data System (ADS)

    Yu, Yongbo; Duan, Junchao; Li, Yang; Yu, Yang; Hu, Hejing; Wu, Jing; Zhang, Yannan; Li, Yanbo; CaixiaGuo; Zhou, Xianqing; Sun, Zhiwei

    2016-11-01

    The prevalent exposure to nanosilica gained concerns about health effects of these particles on human beings. Although nanosilica-induced multinucleation has been confirmed previously, the underlying mechanism was still not clear; this study was to investigate the origination of multinucleated cells caused by nanosilica (62 nm) in both HepG2 and L-02 cells. Cell viability and cellular uptake was determined by MTT assay and transmission electron microscope (TEM), respectively. Giemsa staining was applied to detect multinucleation. To clarify the origination of multinucleated cells, fluorescent probes, PKH26 and PKH67, time-lapse observation were further conducted by confocal microscopy. Results indicated that nanosilica particles were internalized into cells and induced cytotoxicity in a dose-dependent manner. Quantification analysis showed that nanosilica significantly increased the rates of binucleated and multinucleated cells, which suggested mitotic catastrophe induction. Moreover, dynamic visualization verified that multinucleation resulted from cell fusion in HepG2 cells not in L-02 cells after nanosilica exposure, suggesting cell type-dependent multinucleation formation. Both multinucleation and cell fusion were involved in genetic instability, which emphasized the significance to explore the multinucleation induced by nanosilica via environmental, occupational and consumer product exposure.

  4. ABO and Rh blood group genotypes in a cohort of Saudi stem cell donors.

    PubMed

    Alzahrani, M; Jawdat, D; Alaskar, A; Cereb, N; Hajeer, A H

    2018-04-01

    The ABO and rhesus (Rh) blood group antigens are the most frequently studied genetic markers in a large group of people. Blood type frequencies vary in different racial/ethnic groups. Our objective was to investigate the distribution of the ABO and rhesus (Rh) blood groups by molecular typing method in a population of Saudi stem cell donors. Our data indicate that the most common blood group in our population is group O followed by group A then group B, and finally, the least common is group AB. © 2018 John Wiley & Sons Ltd.

  5. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-11-01

    The response of Acidithiobacillus ferrooxidans ATCC 23270 to copper was analyzed in sulfur-grown cells by using quantitative proteomics. Forty-seven proteins showed altered levels in cells grown in the presence of 50 mM copper sulfate. Of these proteins, 24 were up-regulated and 23 down-regulated. As seen before in ferrous iron-grown cells, there was a notorious up-regulation of RND-type Cus systems and different RND-type efflux pumps, indicating that these proteins are very important in copper resistance. Copper also triggered the down-regulation of the major outer membrane porin of A. ferrooxidans in sulfur-grown bacteria, suggesting they respond to the metal by decreasing the influx of cations into the cell. On the contrary, copper in sulfur-grown cells caused an overexpression of putative TadA and TadB proteins known to be essential for biofilm formation in bacteria. Surprisingly, sulfur-grown microorganisms showed increased levels of proteins related with energy generation (rus and petII operons) in the presence of copper. Although rus operon is overexpressed mainly in cells grown in ferrous iron, the up-regulation of rusticyanin in sulfur indicates a possible role for this protein in copper resistance as well. Finally, copper response in A. ferrooxidans appears to be influenced by the substrate being oxidized by the microorganism. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  6. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing.

    PubMed

    Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas

    2010-03-01

    Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.

  7. Genome-wide and locus-specific DNA hypomethylation in G9a deficient mouse embryonic stem cells.

    PubMed

    Ikegami, Kohta; Iwatani, Misa; Suzuki, Masako; Tachibana, Makoto; Shinkai, Yoichi; Tanaka, Satoshi; Greally, John M; Yagi, Shintaro; Hattori, Naka; Shiota, Kunio

    2007-01-01

    In the mammalian genome, numerous CpG-rich loci define tissue-dependent and differentially methylated regions (T-DMRs). Euchromatin from different cell types differs in terms of its tissue-specific DNA methylation profile as defined by these T-DMRs. G9a is a euchromatin-localized histone methyltransferase (HMT) and catalyzes methylation of histone H3 at lysines 9 and 27 (H3-K9 and -K27). To test whether HMT activity influences euchromatic cytosine methylation, we analyzed the DNA methylation status of approximately 2000 CpG-rich loci, which are predicted in silico, in G9a(-/-) embryonic stem cells by restriction landmark genomic scanning (RLGS). While the RLGS profile of wild-type cells contained about 1300 spots, 32 new spots indicating DNA demethylation were seen in the profile of G9a(-/-) cells. Virtual-image RLGS (Vi-RLGS) allowed us to identify the genomic source of ten of these spots. These were confirmed to be cytosine demethylated, not just at the Not I site detected by the RLGS but extending over several kilobase pairs in cis. Chromatin immunoprecipitation (ChIP) confirmed these loci to be targets of G9a, with decreased H3-K9 and/or -K27 dimethylation in the G9a(-/-) cells. These data indicate that G9a site-selectively contributes to DNA methylation.

  8. Attack of the nervous system by Clostridium perfringens Epsilon toxin: from disease to mode of action on neural cells.

    PubMed

    Wioland, Laetitia; Dupont, Jean-Luc; Bossu, Jean-Louis; Popoff, Michel R; Poulain, Bernard

    2013-12-01

    Epsilon toxin (ET), produced by Clostridium perfringens types B and D, ranks among the four most potent poisonous substances known so far. ET-intoxication is responsible for enterotoxaemia in animals, mainly sheep and goats. This disease comprises several manifestations indicating the attack of the nervous system. This review aims to summarize the effects of ET on central nervous system. ET binds to endothelial cells of brain capillary vessels before passing through the blood-brain barrier. Therefore, it induces perivascular oedema and accumulates into brain. ET binding to different brain structures and to different component in the brain indicates regional susceptibility to the toxin. Histological examination has revealed nerve tissue and cellular lesions, which may be directly or indirectly caused by ET. The naturally occurring disease caused by ET-intoxication can be reproduced experimentally in rodents. In mice and rats, ET recognizes receptor at the surface of different neural cell types, including certain neurons (e.g. the granule cells in cerebellum) as well as oligodendrocytes, which are the glial cells responsible for the axons myelination. Moreover, ET induces release of glutamate and other transmitters, leading to firing of neural network. The precise mode of action of ET on neural cells remains to be determined. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  10. Membrane properties and cell ultrastructure of taste receptor cells in Necturus lingual slices.

    PubMed

    Bigiani, A; Kim, D J; Roper, S D

    1996-05-01

    1. Whole cell patch-clamp recordings and electron micrographs were obtained from cells in Necturus taste buds in lingual slices to study their membrane properties and to correlate these properties with cell ultrastructure. 2. Two different populations of taste receptor cells could be identified: one type possessed voltage-gated Na+ and K+ (noninactivating) currents (group 1 cells); the other type possessed only K+ (inactivating) currents (group 2 cells). 3. The zero-current ("resting") potential (Vo) and whole cell resistance (Ro) of these two types of taste cells differed significantly. For group 1 cells, on average, Vo = -75 mV and Ro = 24.6 G omega, and for group 2 cells, Vo = -49 mV and Ro = 48.9 G omega. The difference in Ro was not explained completely by differences in cell sizes, suggesting that intrinsic membrane properties differed between the populations. 4. Cells injected with biocytin were the electron microscope after tissues were reacted with majority (14 of 16) of cells with voltage-gated Na+ and K+ currents (group 1 cells) were characterized by abundant rough endoplasmic reticulum and dense granular packets in the apical process. These are features of dark cells. All the cells that only possessed K+ currents (group 2 cells) were characterize by well-developed smooth endoplasmic reticulum and an absence granular packets. These features characterize light cells. 5. These findings indicate that there is a good, although not exact, correlation between electrophysiological properties and cell morphotype in Necturus taste bud cells. All dark cells possessed Na+ and K+ currents and thus would be expected to be capable of generating action potentials. Most light cells only possessed outward K+ currents and thus would be incapable of generating action potentials.

  11. Indicators: Sediment Diatoms

    EPA Pesticide Factsheets

    Diatoms are a type of algae that are typically abundant in marine and freshwater ecosystems. They have inorganic cell walls made up of silica (glass). Diatoms most commonly grow suspended in water, although they can also attach to substrates.

  12. Phosphate and calcium are required for TGFbeta-mediated stimulation of ANK expression and function during chondrogenesis.

    PubMed

    Oca, Paulina; Zaka, Raihana; Dion, Arnold S; Freeman, Theresa A; Williams, Charlene J

    2010-08-01

    The expression of ANK, a key player in biomineralization, is stimulated by treatment with TGFbeta. The purpose of this study was to determine whether TGFbeta stimulation of ANK expression during chondrogenesis was dependent upon the influx of calcium and phosphate into cells. Treatment of ATDC5 cells with TGFbeta increased ANK expression during all phases of chondrogenic differentiation, particularly at day 14 (proliferation) and day 32 (mineralizing hypertrophy) of culture. Phosphate uptake studies in the presence and absence of phosphonoformic acid (PFA), a competitive inhibitor of the type III Na(+)/Pi channels Pit-1 and Pit-2, indicated that the stimulation of ANK expression by TGFbeta required the influx of phosphate, specifically by the Pit-1 transporter, at all phases of differentiation. At hypertrophy, when alkaline phosphatase is highly expressed, inhibition of its activity with levamisole also abrogated the stimulatory effect of TGFbeta on ANK expression, further illustrating that Pi availability and uptake by the cells is necessary for stimulation of ANK expression in response to TGFbeta. Since previous studies of endochondral ossification in the growth plate have shown that L-type calcium channels are essential for chondrogenesis, we investigated their role in the TGFbeta-stimulated ANK response in ATDC5 cells. Treatment with nifedipine to inhibit calcium influx via the L-type channel Cav1.2 (alpha(1C)) inhibited the TGFbeta stimulated increase in ANK expression at all phases of chondrogenesis. Our findings indicate that TGFbeta stimulation of ANK expression is dependent upon the influx of phosphate and calcium into ATDC5 cells at all stages of differentiation.

  13. [The relationship of the saturation density of multilayer cell cultures to their mass exchange with the medium].

    PubMed

    Akatov, V S; Lavrovskaia, V P

    1991-01-01

    Chinese hamster fibroblasts (CHF) and NIH 3T3 cells were cultured on a glass substrate at different distances from the porous membrane separating the cells from the perfusing medium. It is shown that with perfusion of medium above the membrane there is no movement of the medium near the cells. In both the types of culture, the cells grow in multilayers, however the multilayer character of growth in CHF is more pronounced than in NIH 3T3 cells. The saturation density of the cultures depends on the cell-membrane separation, and at separations of no more than 0.2 mm exceeds the saturation density in the monolayer by 8-10 fold. The dependences of the saturation density on separation are different for CHE and NIH 3T3 cells, indicating qualitative differences in the inhibition of cell growth in monolayers between these cultures. The results obtained indicate that the inhibition of cell growth in monolayer is due to mass exchange limitations, rather than to intercellular contact interactions.

  14. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration.

    PubMed

    Kawasaki, Fumiko; Koonce, Noelle L; Guo, Linda; Fatima, Shahroz; Qiu, Catherine; Moon, Mackenzie T; Zheng, Yunzhen; Ordway, Richard W

    2016-09-01

    Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule cytoskeleton after HS stress. These findings establish a model for genetic analysis of degeneration and protection mechanisms involving contributions of environmental factors, and advance our understanding of the protective functions and therapeutic potential of small HSPs. © 2016. Published by The Company of Biologists Ltd.

  15. CD34+ Testicular Stromal Cells Support Long-Term Expansion of Embryonic and Adult Stem and Progenitor Cells

    PubMed Central

    Kim, Jiyeon; Seandel, Marco; Falciatori, Ilaria; Wen, Duancheng; Rafii, Shahin

    2010-01-01

    Stem cells reside in specialized microenvironments created by supporting stromal cells that orchestrate self-renewal and lineage-specific differentiation. However, the precise identity of the cellular and molecular pathways that support self-renewal of stem cells is not known. For example, long-term culture of prototypical stem cells, such as adult spermatogonial stem and progenitor cells (SPCs), in vitro has been impeded by the lack of an optimal stromal cell line that initiates and sustains proliferation of these cells. Indeed, current methods, including the use of mouse embryonic fibroblasts (MEFs), have not been efficient and have generally led to inconsistent results. Here, we report the establishment of a novel CD34-positive cell line, referred to as JK1, derived from mouse testicular stromal cells that not only facilitated long-term SPC culture but also allowed faithful generation of SPCs and multipotent stem cells. SPCs generated on JK1 maintained key features of germ line stem cells, including expression of PLZF, DAZL, and GCNA. Furthermore, these feeders also promoted the long-term cultivation of other types of primitive cells including multi-potent adult spermatogonial-derived stem cells, pluripotent murine embryonic stem cells, and embryonic germ cells derived from primordial germ cells. Stem cells could be passaged serially and still maintained expression of characteristic markers such as OCT4 and NANOG in vitro, as well as the ability to generate all three germ layers in vivo. These results indicate that the JK1 cell line is capable of promoting long-term culture of primitive cells. As such, this cell line allows for identification of stromal-derived factors that support long-term proliferation of various types of stem cells and constitutes a convenient alternative to other types of feeder layers. PMID:18669907

  16. [The protective role of postvaccinal immunity in mumps in children].

    PubMed

    Zheleznikova, G F; Ivanova, V V; Bekhtereva, M K; Gnilevskaia, Z U; Monakhova, N E; Novozhilova, E V; Goleva, O V; Sizemov, A N

    2000-01-01

    The immunological study of children with infectious parotitis (IP) without complications and with such complications as pancreatitis, meningitis or orchitis in the glandular form was carried out. In accordance with the previously proposed principle, 4 types of immune response (IR) were established on the basis of differences in initial resistance and the IR profile: cell-mediated immunity (types I and III) and humoral immunity (types II and IV). The patients included nonvaccinated children, as well as children vaccinated on epidemic indications, 3-6, 7-9, 10 and more years before infection. The comparative analysis of the number of IP cases with and without complications in the groups of children, divided according to their immunization history and the type of IR, revealed that postvaccinal immunity in children vaccinated on epidemic indications (less than a month ago) or 3-6 years before infection had protective potential, sufficient for the prevention of complicated forms of IP. Immunity obtained 7-9 years ago was effective for the protection from IP complications only in cell-mediated, but not humoral IR. Postvaccinal immunity obtained more than 10 years ago did not ensure the decrease in the occurrence of complicated forms of IP (in comparison with that in nonvaccinated patients) in children with any type of IR.

  17. A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes.

    PubMed

    Aghaeepour, Nima; Chattopadhyay, Pratip; Chikina, Maria; Dhaene, Tom; Van Gassen, Sofie; Kursa, Miron; Lambrecht, Bart N; Malek, Mehrnoush; McLachlan, G J; Qian, Yu; Qiu, Peng; Saeys, Yvan; Stanton, Rick; Tong, Dong; Vens, Celine; Walkowiak, Sławomir; Wang, Kui; Finak, Greg; Gottardo, Raphael; Mosmann, Tim; Nolan, Garry P; Scheuermann, Richard H; Brinkman, Ryan R

    2016-01-01

    The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of computational methods for identifying cell populations in multidimensional flow cytometry data. Here we report the results of FlowCAP-IV where algorithms from seven different research groups predicted the time to progression to AIDS among a cohort of 384 HIV+ subjects, using antigen-stimulated peripheral blood mononuclear cell (PBMC) samples analyzed with a 14-color staining panel. Two approaches (FlowReMi.1 and flowDensity-flowType-RchyOptimyx) provided statistically significant predictive value in the blinded test set. Manual validation of submitted results indicated that unbiased analysis of single cell phenotypes could reveal unexpected cell types that correlated with outcomes of interest in high dimensional flow cytometry datasets. © 2015 International Society for Advancement of Cytometry.

  18. Deletion of Adseverin in Osteoclasts Affects Cell Structure But Not Bone Metabolism.

    PubMed

    Cao, Yixuan; Wang, Yongqiang; Sprangers, Sara; Picavet, Daisy I; Glogauer, Michael; McCulloch, Christopher A; Everts, Vincent

    2017-08-01

    Adseverin is an actin-severing/capping protein that may contribute to osteoclast differentiation in vitro but its role in bone remodeling of healthy animals is not defined. We analyzed bone and osteoclast structure in adseverin conditional null mice at alveolar and long bone sites. In wild-type and adseverin null mice, as measured by dual-energy X-ray absorptiometry, there were no differences of bone mineral content or bone mineral density, indicating no change of bone metabolism. In tibiae, TRAcP + osteoclasts were formed in comparable numbers in adseverin null and wild-type mice. Ultrastructural analysis showed normal and similar abundance of ruffled borders, sealing zones, and mitochondria, and with no difference of osteoclast nuclear numbers. In contrast, analyses of long bone showed that in the absence of adseverin osteoclasts were smaller (120 ± 13 vs. 274 ± 19 µm 2 ; p < 0.05), as were nuclear size and the surface area of cytoplasm. The nuclei of adseverin null osteoclasts exhibited more heterochromatin (31 ± 3%) than wild-type cells (8 ± 1%), suggesting that adseverin affects cell differentiation. The data indicate that in healthy, developing tissues, adseverin contributes to the regulation of osteoclast structure but not to bone metabolism in vivo.

  19. Transitions from mono- to co- to tri-culture uniquely affect gene expression in breast cancer, stromal, and immune compartments

    PubMed Central

    Weinberger, Emma M.; Regehr, Keil J.; Berry, Scott M.; Beebe, David J.; Alarid, Elaine T.

    2016-01-01

    Heterotypic interactions in cancer microenvironments play important roles in disease initiation, progression, and spread. Co-culture is the predominant approach used in dissecting paracrine interactions between tumor and stromal cells, but functional results from simple co-cultures frequently fail to correlate to in vivo conditions. Though complex heterotypic in vitro models have improved functional relevance, there is little systematic knowledge of how multi-culture parameters influence this recapitulation. We therefore have employed a more iterative approach to investigate the influence of increasing model complexity; increased heterotypic complexity specifically. Here we describe how the compartmentalized and microscale elements of our multi-culture device allowed us to obtain gene expression data from one cell type at a time in a heterotypic culture where cells communicated through paracrine interactions. With our device we generated a large dataset comprised of cell type specific gene-expression patterns for cultures of increasing complexity (three cell types in mono-, co-, or tri-culture) not readily accessible in other systems. Principal component analysis indicated that gene expression was changed in co-culture but was often more strongly altered in tri-culture as compared to mono-culture. Our analysis revealed that cell type identity and the complexity around it (mono-, co-, or tri-culture) influence gene regulation. We also observed evidence of complementary regulation between cell types in the same heterotypic culture. Here we demonstrate the utility of our platform in providing insight into how tumor and stromal cells respond to microenvironments of varying complexities highlighting the expanding importance of heterotypic cultures that go beyond conventional co-culture. PMID:27432323

  20. Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma

    PubMed Central

    Zielinska, Ewelina; Zauszkiewicz-Pawlak, Agata; Wojcik, Michal; Inkielewicz-Stepniak, Iwona

    2018-01-01

    Pancreatic ductal adenocarcinoma, with the high resistance to chemotherapeutic agents, remains the fourth leading cause of cancer-death in the world. Due to the wide range of biological activity and unique properties, silver nanoparticles (AgNPs) are indicated as agents with potential to overcome barriers involved in chemotherapy failure. Therefore, in our study we decided to assess the ability of AgNPs to kill pancreatic cancer cells, and then to identify the molecular mechanism underlying this effect. Moreover, we evaluated the cytotoxicity of AgNPs against non-tumor cell of the same tissue (hTERT-HPNE cells) for comparison. Our results indicated that AgNPs with size of 2.6 and 18 nm decreased viability, proliferation and caused death of pancreatic cancer cells in a size- and concentration-dependent manner. Ultrastructural analysis identified that cellular uptake of AgNPs resulted in apoptosis, autophagy, necroptosis and mitotic catastrophe. These alterations were associated with increased pro-apoptotic protein Bax and decreased level of anti-apoptotic protein Bcl-2. Moreover, AgNPs significantly elevated the level of tumor suppressor p53 protein as well as necroptosis- and autophagy-related proteins: RIP-1, RIP-3, MLKL and LC3-II, respectively. In addition, we found that PANC-1 cells were more vulnerable to AgNPs-induced cytotoxicity compared to pancreatic non-tumor cells. In conclusion, AgNPs by inducing mixed type of programmed cell death in PANC-1 cells, could provide a new therapeutic strategy to overcome chemoresistance in one of the deadliest human cancer. PMID:29435134

  1. Expression of EphA2 protein is positively associated with age, tumor size and Fuhrman nuclear grade in clear cell renal cell carcinomas.

    PubMed

    Wang, Longxin; Hu, Haibing; Tian, Feng; Zhou, Wenquan; Zhou, Shuigen; Wang, Jiandong

    2015-01-01

    The receptor tyrosine kinase of EphA2 has been shown frequently overexpressed in various types of human carcinomas, which implicated that it plays important roles in carcinogenesis. Although EphA2 protein expression has been investigated in many types of human carcinomas, the relationship between the expression of EphA2 protein in clear cell renal cell carcinoma was not well documented. In the present study, using specific anit-EphA2 polyclonal antibody and immunohistochemistry, we evaluated EphA2 protein expression levels in clear cell RCC specimens surgically resected from 90 patients. Our results shows that EphA2 protein was positively expressed in all normal renal tubes of 90 samples (100%, 3+), which was expressed at low levels in renal cortex but high levels in the collecting ducts of the renal medulla and papilla. EphA2 was negatively or weakly expressed in 30 out of 90 samples (33.3%, 0/1+), moderately expressed in 24 samples (26.7%, 2+) and strongly expressed in 36 samples (40%, 3+). Expression of EphA2 was positively associated with age (P=0.029), tumor diameters (P<0.001) and Fuhrman nuclear grade (P<0.001). Our results indicate that EphA2 variably expressed in clear cell renal cell carcinomas. High expression of EphA2 was more often found in big size and high nuclear grade tumors, which indicated EphA2 protein may be used as a new marker for the prognosis of clear cell renal cell carcinoma.

  2. Toward angiogenesis of implanted bio-artificial liver using scaffolds with type I collagen and adipose tissue-derived stem cells.

    PubMed

    Lee, Jae Geun; Bak, Seon Young; Nahm, Ji Hae; Lee, Sang Woo; Min, Seon Ok; Kim, Kyung Sik

    2015-05-01

    Stem cell therapies for liver disease are being studied by many researchers worldwide, but scientific evidence to demonstrate the endocrinologic effects of implanted cells is insufficient, and it is unknown whether implanted cells can function as liver cells. Achieving angiogenesis, arguably the most important characteristic of the liver, is known to be quite difficult, and no practical attempts have been made to achieve this outcome. We carried out this study to observe the possibility of angiogenesis of implanted bio-artificial liver using scaffolds. This study used adipose tissue-derived stem cells that were collected from adult patients with liver diseases with conditions similar to the liver parenchyma. Specifically, microfilaments were used to create an artificial membrane and maintain the structure of an artificial organ. After scratching the stomach surface of severe combined immunocompromised (SCID) mice (n=4), artificial scaffolds with adipose tissue-derived stem cells and type I collagen were implanted. Expression levels of angiogenesis markers including vascular endothelial growth factor (VEGF), CD34, and CD105 were immunohistochemically assessed after 30 days. Grossly, the artificial scaffolds showed adhesion to the stomach and surrounding organs; however, there was no evidence of angiogenesis within the scaffolds; and VEGF, CD34, and CD105 expressions were not detected after 30 days. Although implantation of cells into artificial scaffolds did not facilitate angiogenesis, the artificial scaffolds made with type I collagen helped maintain implanted cells, and surrounding tissue reactions were rare. Our findings indicate that type I collagen artificial scaffolds can be considered as a possible implantable biomaterial.

  3. Norepinephrine is coreleased with serotonin in mouse taste buds.

    PubMed

    Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D

    2008-12-03

    ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.

  4. Mesenchymal stem cells and cardiac repair

    PubMed Central

    Nesselmann, Catharina; Ma, Nan; Bieback, Karen; Wagner, Wolfgang; Ho, Anthony; Konttinen, Yrjö T; Zhang, Hao; Hinescu, Mihail E; Steinhoff, Gustav

    2008-01-01

    Accumulating clinical and experimental evidence indicates that mesenchymal stem cells (MSCs) are promising cell types in the treatment of cardiac dysfunction. They may trigger production of reparative growth factors, replace damaged cells and create an environment that favours endogenous cardiac repair. However, identifying mechanisms which regulate the role of MSCs in cardiac repair is still at work. To achieve the maximal clinical benefits, ex vivo manipulation can further enhance MSC therapeutic potential. This review focuses on the mechanism of MSCs in cardiac repair, with emphasis on ex vivo manipulation. PMID:18684237

  5. Synthesis and photodynamic activities of modified corrole derivatives on nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Chang, Chi K.; Kong, Pak-Wing; Liu, Hai-Yang; Yeung, Lam-Lung; Koon, Ho-Kee; Mak, Nai-Ki

    2006-02-01

    Ten trans-A2B and A3-type corrole photosensitizers carrying functional groups were synthesized and screened for PDT activities. Photocytotoxicity was measured by the MTT cell reduction assay on a cultured human nasopharyngeal carcinoma (NPC) cell line (HONE-1). Experimental results indicated that corroles containing a single hydroxyphenyl substituent (3, 4 and 5) exhibit the highest activity among the corrole derivatives investigated. Confocal microscopy revealed that the site of cellular localization of the photosensitizers is predominantly at mitochondria. Also, nuclear staining detected apoptotic cell death.

  6. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study

    PubMed Central

    Mendivil, Carlos O; Toloza, Freddy JK; Ricardo-Silgado, Maria L; Morales-Álvarez, Martha C; Mantilla-Rivas, Jose O; Pinzón-Cortés, Jairo A; Lemus, Hernán N

    2017-01-01

    Background Autoimmunity against insulin-producing beta cells from pancreatic islets is a common phenomenon in type 1 diabetes and latent autoimmune diabetes in adults. Some reports have also related beta-cell autoimmunity to insulin resistance (IR) in type 2 diabetes. However, the extent to which autoimmunity against components of beta cells is present and relates to IR and insulin secretion in nondiabetic adults is uncertain. Aim To explore the association between antibodies against glutamic acid decarboxylase (GADA), a major antigen from beta cells, and indices of whole-body IR and beta-cell capacity/insulin secretion in adults who do not have diabetes. Methods We studied 81 adults of both sexes aged 30–70, without known diabetes or any autoimmune disease. Participants underwent an oral glucose tolerance test (OGTT) with determination of plasma glucose and insulin at 0, 30, 60, 90, and 120 minutes. From these results we calculated indices of insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR] and incremental area under the insulin curve [iAUCins]) and insulin secretion (corrected insulin response at 30 minutes and HOMA beta-cell%). GADAs were measured in fasting plasma using immunoenzymatic methods. Results We found an overall prevalence of GADA positivity of 21.3%, without differences by sex and no correlation with age. GADA titers did not change monotonically across quartiles of any of the IR or insulin secretion indices studies. GADA did not correlate linearly with fasting IR expressed as HOMA-IR (Spearman’s r=−0.18, p=0.10) or postabsorptive IR expressed as iAUCins (r=−0.15, p=0.18), but did show a trend toward a negative correlation with insulin secretory capacity expressed by the HOMA-beta cell% index (r=−0.20, p=0.07). Hemoglobin A1c, body mass index, and waist circumference were not associated with GADA titers. Conclusion GADA positivity is frequent and likely related to impaired beta-cell function among adults without known diabetes. PMID:28507444

  7. Co-ordinated expression of MMP-2 and its putative activator, MT1-MMP, in human placentation.

    PubMed

    Bjørn, S F; Hastrup, N; Lund, L R; Danø, K; Larsen, J F; Pyke, C

    1997-08-01

    The spatial expression of mRNA for matrix metalloproteinase 2 (MMP-2), its putative activator, the membrane-type 1 matrix metalloproteinase (MT1-MMP), and the MMP-2 substrate type IV collagen was investigated in human placentas of both normal and tubal ectopic pregnancies and in cyclic endometrium using in-situ hybridization. Cytokeratin staining applied to adjacent sections was used to identify epithelial and trophoblast cells. In both normal and tubal pregnancies MT1-MMP, MMP-2 and type IV collagen mRNA were highly expressed and co-localized in the extravillous cytotrophoblasts of anchoring villi, in cytotrophoblasts that had penatrated into the placental bed and in cytotrophoblastic cell islands. In addition, the decidual cells of normal pregnancies in some areas co-expressed MT1-MMP and MMP-2 mRNA, with moderate signals for both components. Fibroblast-like stromal cells in tubal pregnancies were positive for MMP-2 mRNA but generally negative for MT1-MMP mRNA. The consistent co-localization of MT1-MMP with MMP-2 and type IV collagen in the same subset of cytotrophoblasts strongly suggests that all three components co-operate in the tightly regulated fetal invasion process. The co-expression of MT1-MMP and MMP-2 mRNA in some of the decidual cells indicates that these cells are also actively involved in the placentation process.

  8. Onecut1 and Onecut2 redundantly regulate early retinal cell fates during development

    PubMed Central

    Sapkota, Darshan; Chintala, Hemabindu; Wu, Fuguo; Fliesler, Steven J.; Hu, Zihua; Mu, Xiuqian

    2014-01-01

    Previously, we have shown that Onecut1 (Oc1) and Onecut2 (Oc2) are expressed in retinal progenitor cells, developing retinal ganglion cells (RGCs), and horizontal cells (HCs). However, in Oc1-null mice, we only observed an 80% reduction in HCs, but no defects in other cell types. We postulated that the lack of defects in other cell types in Oc1-null retinas was a result of redundancy with Oc2. To test this theory, we have generated Oc2-null mice and now show that their retinas also only have defects in HCs, with a 50% reduction in their numbers. However, when both Oc1 and Oc2 are knocked out, the retinas exhibit more profound defects in the development of all early retinal cell types, including completely failed genesis of HCs, compromised generation of cones, reduced production (by 30%) of RGCs, and absence of starburst amacrine cells. Cone subtype diversification and RGC subtype composition also were affected in the double-null retina. Using RNA-Seq expression profiling, we have identified downstream genes of Oc1 and Oc2, which not only confirms the redundancy between the two factors and renders a molecular explanation for the defects in the double-null retinas, but also shows that the onecut factors suppress the production of the late cell type, rods, indicating that the two factors contribute to the competence of retinal progenitor cells for the early retinal cell fates. Our results provide insight into how onecut factors regulate the creation of cellular diversity in the retina and, by extension, in the central nervous system in general. PMID:25228773

  9. Morphological study of tooth development in podoplanin-deficient mice.

    PubMed

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  10. Isolation, characterization, and differentiation of stem cells for cartilage regeneration.

    PubMed

    Beane, Olivia S; Darling, Eric M

    2012-10-01

    The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.

  11. The role of alpha3beta1 integrin in determining the supramolecular organization of laminin-5 in the extracellular matrix of keratinocytes.

    PubMed

    deHart, Gregory W; Healy, Kevin E; Jones, Jonathan C R

    2003-02-01

    Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the incorporation of laminin-5 into its proper higher-order structure within the extracellular matrix of keratinocytes and (2) that the organizational state of laminin-5 has an influence on laminin-5 matrix function. Copyright 2003 Elsevier Science (USA)

  12. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. © 2015 Institute of Botany, Chinese Academy of Sciences.

  13. Independent of plasmacytoid dendritic cell (pDC) infection, pDC triggered by virus-infected cells mount enhanced type I IFN responses of different composition as opposed to pDC stimulated with free virus.

    PubMed

    Frenz, Theresa; Graalmann, Lukas; Detje, Claudia N; Döring, Marius; Grabski, Elena; Scheu, Stefanie; Kalinke, Ulrich

    2014-09-01

    Upon treatment with vesicular stomatitis virus (VSV) particles, plasmacytoid dendritic cells (pDC) are triggered to mount substantial type I IFN responses, whereas myeloid DC (mDC) are only minor producers. Interestingly, bone marrow-derived (BM-)mDC were more vulnerable to infection with enhanced GFP (eGFP)-expressing VSV (VSVeGFP) than BM-pDC. BM-pDC stimulated with wild-type VSV mounted TLR-dependent IFN responses that were independent of RIG-I-like helicase (RLH) signaling. In contrast, in BM-pDC the VSV variant M2 induced particularly high IFN responses triggered in a TLR- and RLH-dependent manner, whereas BM-mDC stimulation was solely RLH-dependent. Importantly, VSVeGFP treatment of BM-pDC derived from IFN-β yellow fluorescent protein (YFP) reporter mice (messenger of IFN-β) resulted in YFP(+) and eGFP(+) single-positive cells, whereas among messenger of IFN-β-BM-mDC most YFP(+) cells were also eGFP(+). This observation indicated that unlike mDC, direct virus infection was not required to trigger IFN responses of pDC. VSV-infected BM-mDC triggered BM-pDC to mount significantly higher IFN responses than free virus particles. Stimulation with infected cells enhanced the percentages of pDC subsets expressing either IFN-β(+) or IFN-α6(+) plus IFN-β(+). Irrespective of whether stimulated with free virus or infected cells, IFN induction was dependent on autophagy of pDC, whereas autophagy of the infected mDC was dispensable. Collectively, these results indicated that productive VSV infection was needed to trigger IFN responses of mDC, but not of pDC, and that IFN responses were primarily induced by virus-infected cells that stimulated pDC in a TLR-dependent manner. Copyright © 2014 by The American Association of Immunologists, Inc.

  14. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy.

    PubMed

    Jiao, Jiao; Tian, Weihua; Qiu, Ping; Norton, Elizabeth L; Wang, Michael M; Chen, Y Eugene; Yang, Bo

    2018-03-12

    The NOTCH1 gene mutation has been identified in bicuspid aortic valve patients. We developed an in vitro model with human induced pluripotent stem cells (iPSCs) to evaluate the role of NOTCH1 in smooth muscle and endothelial cell (EC) differentiation. The iPSCs were derived from a patient with a normal tricuspid aortic valve and aorta. The NOTCH1 gene was targeted in iPSCs with the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 nuclease (Cas9) system. The NOTCH1 -/- (NOTCH1 homozygous knockout) and isogenic control iPSCs (wild type) were differentiated into neural crest stem cells (NCSCs) and into cardiovascular progenitor cells (CVPCs). The NCSCs were differentiated into smooth muscle cells (SMCs). The CVPCs were differentiated into ECs. The differentiations of SMCs and ECs were compared between NOTCH1 -/- and wild type cells. The expression of NCSC markers (SRY-related HMG-box 10 and transcription factor AP-2 alpha) was significantly lower in NOTCH1 -/- NCSCs than in wild type NCSCs. The SMCs derived from NOTCH1 -/- NCSCs showed immature morphology with smaller size and decreased expression of all SMC-specific contractile proteins. In NOTCH1 -/- CVPCs, the expression of ISL1, NKX2.5, and MYOCD was significantly lower than that in isogenic control CVPCs, indicating impaired differentiation from iPSCs to CVPCs. The NOTCH1 -/- ECs derived from CVPCs showed significantly lower expression of cluster of differentiation 105 and cluster of differentiation 31 mRNA and protein, indicating a defective differentiation process. NOTCH1 is critical in SMC and EC differentiation of iPSCs through NCSCs and CVPCs, respectively. NOTCH1 gene mutations might potentially contribute to the development of thoracic aortic aneurysms by affecting SMC differentiation in some patients with bicuspid aortic valve. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.

    PubMed Central

    Nash, G S; Niedt, G W; MacDermott, R P

    1980-01-01

    Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881

  16. A Common Position-Dependent Mechanism Controls Cell-Type Patterning and GLABRA2 Regulation in the Root and Hypocotyl Epidermis of Arabidopsis1

    PubMed Central

    Hung, Chen-Yi; Lin, Yan; Zhang, Meng; Pollock, Susan; David Marks, M.; Schiefelbein, John

    1998-01-01

    A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling. PMID:9576776

  17. The 5-HT{sub 2A} serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonier, Brigitte; Arseneault, Madeleine; Institut National de la Recherche Scientifique-Institut Armand-Frappier, Montreal, Que.

    2006-05-19

    Serotonin (5-hydroxytryptamine, 5-HT) has been described as a mitogen in a variety of cell types and carcinomas. It exerts its mitogenic effect by interacting with a wide range of 5-HT receptor types. Certain studies suggest that some selective serotonin re-uptake inhibitors promote breast cancer in animals and humans. This study attempts to clarify the role of serotonin in promoting the growth of neoplastic mammary cells. Expression of the 5-HT{sub 2A} serotoninergic receptor subtype in MCF-7 cells was determined by RT-PCR, Western blotting, and immunofluorescence analysis. The mitogenic effect of 5-HT on MCF-7 cells was determined by means of the MTTmore » proliferation assay. We have demonstrated that the 5-HT{sub 2A} receptor subtype is fully expressed in the MCF-7 human breast cancer cell line, in terms of encoding mRNA and receptor protein. Automated sequencing has confirmed that the 5-HT{sub 2A} receptor present in this cell line is identical to the 5-HT{sub 2A} receptor found in human platelets and in human cerebral cortex. Furthermore, this receptor was found by immunofluorescence to be on the plasma membrane. MTT proliferation assays revealed that 5-HT and DOI, a selective 5-HT{sub 2A} receptor subtype agonist, stimulated MCF-7 cell. These results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells. Our data also indicate that 5-HT exerts this positive growth effect on MCF-7 cells through, in part, the 5-HT{sub 2A} receptor subtype, which is fully expressed in this cell line.« less

  18. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis

    PubMed Central

    Zhang, Feng; Zhang, Chun-Mei; Li, Shu; Wang, Kun-Kun; Guo, Bin-Bin; Fu, Yao; Liu, Lu-Yang; Zhang, Yu; Jiang, Hai-Yu; Wu, Chang-Jun

    2018-01-01

    Hepatoblastoma (HB) is the most common type of pediatric liver malignancy, which predominantly occurs in young children (aged <5 years), and continues to be a therapeutic challenge in terms of metastasis and drug resistance. As a new pattern of tumor blood supply, vasculogenic mimicry (VM) is a channel structure lined by tumor cells rather than endothelial cells, which contribute to angiogenesis. VM occurs in a variety of solid tumor types, including liver cancer, such as hepatocellular carcinoma. The aim of the present study was to elucidate the effect of arsenic trioxide (As2O3) on VM. In vitro experiments identified that HB cell line HepG2 cells form typical VM structures on Matrigel, and the structures were markedly damaged by As2O3 at a low concentration before the cell viability significantly decreased. The western blot results indicated that As2O3 downregulated the expression level of VM-associated proteins prior to the appearance of apoptotic proteins. In vivo, VM has been observed in xenografts of HB mouse models and identified by periodic acid-Schiff+/CD105− channels lined by HepG2 cells without necrotic cells. As2O3 (2 mg/kg) markedly depresses tumor growth without causing serious adverse reactions by decreasing the number of VM channels via inhibiting the expression level of VM-associated proteins. Thus, the present data strongly indicate that low dosage As2O3 reduces the formation of VM in HB cell line HepG2 cells, independent of cell apoptosis in vivo and in vitro, and may represent as a candidate drug for HB targeting VM. PMID:29138840

  19. Porous silicon-copper phthalocyanine heterostructure based photoelectrochemical cell

    NASA Astrophysics Data System (ADS)

    A. Betty, C.; N, Padma; Arora, Shalav; Survaiya, Parth; Bhattacharya, Debarati; Choudhury, Sipra; Roy, Mainak

    2018-01-01

    A hybrid solar cell consisting of nanostructured p-type porous silicon (PS) deposited with visible light absorbing dye, Copper Phthalocyanine (CuPc) has been prepared in the photoelectrochemical cell configuration. P-type PS with (100) and (111) orientations which have different porous structures were used for studying the effects of the substrate morphology on the cell efficiency. Heterostructures were prepared by depositing three different thicknesses of CuPc for optimizing the cell efficiency. Structural and surface characterizations were studied using XRD, Raman, SEM and AFM on the PS-CuPc heterostructure. XRD spectrum on both plane silicon and porous silicon indicates the π-π stacking of CuPc with increased disorder for CuPc film on porous silicon. Electrochemical characterizations under sun light type radiation have been carried out to evaluate the photosensitivity of the heterostructure. Between the two different substrates, (100) PS gives better photocurrent, possibly due to the higher surface area and lower series resistance of the structure. Among the (100) PS substrates, (100) PS with 15 nm CuPc film gives Voc more than 1 V resulting in higher efficiency for the cell. The study suggests the scope for optimization of solar cell efficiency using various combinations of the substrate structure and thickness of the sensitizing layer.

  20. In vitro time- and dose-effect response of JP-8 and S-8 jet fuel on alveolar type II epithelial cells of rats.

    PubMed

    Robb, Tiffany M; Rogers, Michael J; Woodward, Suann S; Wong, Simon S; Witten, Mark L

    2010-07-01

    This study was designed to characterize and compare the effects of jet propellant-8 (JP-8) fuel and synthetic-8 (S-8) on cell viability and nitric oxide synthesis in cultured alveolar type II epithelial cells of rats. Exposure times varied from 0.25, 0.5, 1, and 6 hours at the following concentrations of jet fuel: 0.0, 0.1, 0.4, and 2.0 microg/mL. Data indicate that JP-8 presents a gradual decline in cell viability and steady elevation in nitric oxide release as exposure concentrations increase. At a 2.0 microg/mL concentration of JP-8, nearly all of the cells are not viable. Moreover, S-8 exposure to rat type II lung cells demonstrated an abrupt fall in percentage cell viability and increases in nitric oxide measurement, particularly after the 2.0 microg/mL was reached at 1 and 6 hours. At 0.0, 0.2, and 0.4 microg/mL concentrations of S-8, percentage viability was sustained at steady concentrations. The results suggest different epithelial toxicity and mechanistic effects of S-8 and JP-8, providing further insight concerning the impairment imposed at specific levels of lung function and pathology induced by the different fuels.

  1. Autophagy and Oxidative Stress in Gliomas with IDH1 Mutations

    PubMed Central

    Gilbert, Misty R.; Liu, Yinxing; Neltner, Janna; Pu, Hong; Morris, Andrew; Sunkara, Manjula; Pittman, Thomas; Kyprianou, Natasha; Horbinski, Craig

    2013-01-01

    IDH1 mutations in gliomas associate with longer survival. Prooxidant and antiproliferative effects of IDH1 mutations and its D-2-hydroxyglutarate (2-HG) product have been described in vitro, but inconsistently observed. It is also unclear whether overexpression of mutant IDH1 in wild-type cells accurately phenocopies the effects of endogenous IDH1-mutations on tumor apoptosis and autophagy. Herein we investigated the effects of 2-HG and mutant IDH1 overexpression on proliferation, apoptosis, oxidative stress, and autophagy in IDH1 wild-type glioma cells, and compared those results with patient-derived tumors. 2-HG reduced viability and proliferation of U87MG and LN18 cells, triggered apoptosis in LN18 cells, and autophagy in U87MG cells. In vitro studies and flank xenografts of U87MG cells overexpressing R132H IDH1 exhibited increased oxidative stress, including increases of both manganese superoxide dismutase (MnSOD) and p62. Patient-derived IDH1-mutant tumors showed no significant differences in apoptosis or autophagy, but showed p62 accumulation and actually trended toward reduced MnSOD expression. These data indicate that mutant IDH1 and 2-HG can induce oxidative stress, autophagy, and apoptosis, but these effects vary greatly according to cell type. PMID:24150401

  2. Embryonic hematopoiesis in vertebrate somites gives rise to definitive hematopoietic stem cells

    PubMed Central

    Qiu, Juhui; Fan, Xiaoying; Wang, Yixia; Jin, Hongbin; Song, Yixiao; Han, Yang; Huang, Shenghong; Meng, Yaping; Tang, Fuchou; Meng, Anming

    2016-01-01

    Hematopoietic stem cells (HSCs) replenish all types of blood cells. It is debating whether HSCs in adults solely originate from the aorta-gonad-mesonephros (AGM) region, more specifically, the dorsal aorta, during embryogenesis. Here, we report that somite hematopoiesis, a previously unwitnessed hematopoiesis, can generate definitive HSCs (dHSCs) in zebrafish. By transgenic lineage tracing, we found that a subset of cells within the forming somites emigrate ventromedially and mix with lateral plate mesoderm-derived primitive hematopoietic cells before the blood circulation starts. These somite-derived hematopoietic precursors and stem cells (sHPSCs) subsequently enter the circulation and colonize the kidney of larvae and adults. RNA-seq analysis reveals that sHPSCs express hematopoietic genes with sustained expression of many muscle/skeletal genes. Embryonic sHPSCs transplanted into wild-type embryos expand during growth and survive for life time with differentiation into various hematopoietic lineages, indicating self-renewal and multipotency features. Therefore, the embryonic origin of dHSCs in adults is not restricted to the AGM. PMID:27252540

  3. The haemagglutination activity of equine herpesvirus type 1 glycoprotein C.

    PubMed

    Andoh, Kiyohiko; Hattori, Shiho; Mahmoud, Hassan Y A H; Takasugi, Maaya; Shimoda, Hiroshi; Bannai, Hiroshi; Tsujimura, Koji; Matsumura, Tomio; Kondo, Takashi; Kirisawa, Rikio; Mochizuki, Masami; Maeda, Ken

    2015-01-02

    Equine herpesvirus type 1 (EHV-1) has haemagglutination (HA) activity toward equine red blood cells (RBCs), but the identity of its haemagglutinin is unknown. To identify the haemagglutinin of EHV-1, the major glycoproteins of EHV-1 were expressed in 293T cells, and the cells or cell lysates were mixed with equine RBCs. The results showed that only EHV-1 glycoprotein C (gC)-producing cells adsorbed equine RBCs, and that the lysate of EHV-1 gC-expressing cells agglutinated equine RBCs. EHV-1 lacking gC did not show HA activity. HA activity was inhibited by monoclonal antibodies (MAbs) specific for gC, but not by antibodies directed against other glycoproteins. In addition, HA activity was not inhibited by the addition of heparin. These results indicate that EHV-1 gC can bind equine RBCs irrespective of heparin, in contrast to other herpesvirus gC proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. High hydrostatic pressure inactivation of Lactobacillus plantarum cells in (O/W)-emulsions is independent from cell surface hydrophobicity and lipid phase parameters

    NASA Astrophysics Data System (ADS)

    Kafka, T. A.; Reitermayer, D.; Lenz, C. A.; Vogel, R. F.

    2017-07-01

    Inactivation efficiency of high hydrostatic pressure (HHP) processing of food is strongly affected by food matrix composition. We investigated effects of fat on HHP inactivation of spoilage-associated Lactobacillus (L.) plantarum strains using defined oil-in-water (O/W)-emulsion model systems. Since fat-mediated effects on HHP inactivation could be dependent on interactions between lipid phase and microbial cells, three major factors possibly influencing such interactions were considered, that is, cell surface hydrophobicity, presence and type of surfactants, and oil droplet size. Pressure tolerance varied noticeably among L. plantarum strains and was independent of cell surface hydrophobicity. We showed that HHP inactivation of all strains tended to be more effective in presence of fat. The observation in both, surfactant-stabilized and surfactant-free (O/W)-emulsion, indicates that cell surface hydrophobicity is no intrinsic pressure resistance factor. In contrast to the presence of fat per se, surfactant type and oil droplet size did not affect inactivation efficiency.

  5. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax

    PubMed Central

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. PMID:25175936

  6. Evidence for the involvement of type I interferon in pulmonary arterial hypertension.

    PubMed

    George, Peter M; Oliver, Eduardo; Dorfmuller, Peter; Dubois, Olivier D; Reed, Daniel M; Kirkby, Nicholas S; Mohamed, Nura A; Perros, Frederic; Antigny, Fabrice; Fadel, Elie; Schreiber, Benjamin E; Holmes, Alan M; Southwood, Mark; Hagan, Guy; Wort, Stephen J; Bartlett, Nathan; Morrell, Nicholas W; Coghlan, John G; Humbert, Marc; Zhao, Lan; Mitchell, Jane A

    2014-02-14

    Evidence is increasing of a link between interferon (IFN) and pulmonary arterial hypertension (PAH). Conditions with chronically elevated endogenous IFNs such as systemic sclerosis are strongly associated with PAH. Furthermore, therapeutic use of type I IFN is associated with PAH. This was recognized at the 2013 World Symposium on Pulmonary Hypertension where the urgent need for research into this was highlighted. To explore the role of type I IFN in PAH. Cells were cultured using standard approaches. Cytokines were measured by ELISA. Gene and protein expression were measured using reverse transcriptase polymerase chain reaction, Western blotting, and immunohistochemistry. The role of type I IFN in PAH in vivo was determined using type I IFN receptor knockout (IFNAR1(-/-)) mice. Human lung cells responded to types I and II but not III IFN correlating with relevant receptor expression. Type I, II, and III IFN levels were elevated in serum of patients with systemic sclerosis associated PAH. Serum interferon γ inducible protein 10 (IP10; CXCL10) and endothelin 1 were raised and strongly correlated together. IP10 correlated positively with pulmonary hemodynamics and serum brain natriuretic peptide and negatively with 6-minute walk test and cardiac index. Endothelial cells grown out of the blood of PAH patients were more sensitive to the effects of type I IFN than cells from healthy donors. PAH lung demonstrated increased IFNAR1 protein levels. IFNAR1(-/-) mice were protected from the effects of hypoxia on the right heart, vascular remodeling, and raised serum endothelin 1 levels. These data indicate that type I IFN, via an action of IFNAR1, mediates PAH.

  7. New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases

    PubMed Central

    Choi, C J; Berges, J A

    2013-01-01

    Metacaspases are evolutionarily distant homologs of caspases that are found outside the metazoan and are known to have key roles in programmed cell death (PCD). Two types of metacaspases (types I and II) have been defined in plants based on their domain structures; these have similarities to metazoan ‘initiator' and ‘executioner' caspases. However, we know little about metacaspases in unicellular organisms and even less about their roles in cell death. We identified a novel group of metacaspases in sequenced phytoplanktonic protists that show domain architectures distinct from either type I or II enzymes; we designate them as type III. Type III metacaspases exhibit a rearrangement of domain structures between N- and C-terminus. In addition, we found a group of metacaspase-like proteases in phytoplankton that show sequence homology with other metacaspases, but defy classification in conventional schemes. These metacaspase-like proteases exist in bacteria alongside a variant of type I metacaspases and we propose these bacterial metacaspases are the origins of eukaryotic metacaspases. Type II and III metacaspases were not detected in bacteria and they might be variants of bacterial type I metacaspases that evolved in plants and phytoplanktonic protists, respectively, during the establishment of plastids through the primary and secondary endosymbiotic events. A complete absence of metacaspases in protists that lost plastids, such as oömycetes and ciliates indicates the gene loss during the plastid-to-nucleus gene transfer. Taken together, our findings suggest endosymbiotic gene transfer (EGT) is a key mechanism resulting in the evolutionary diversity of cell death proteases. PMID:23412383

  8. Efficiency of introns from various origins in fish cells.

    PubMed

    Bétancourt, O H; Attal, J; Théron, M C; Puissant, C; Houdebine, L M

    1993-06-01

    Several vectors containing (1) regulatory regions from Rous sarcoma virus (RSV), human cytomegalovirus (CMV), and herpes simplex thymidine kinase (TK); (2) introns from early or late SV40 genes and from trout growth hormone gene (tGH); (3) chloramphenicol acetyltransferase gene (CAT); and (4) transcription terminators from SV40 were transfected into carp EPC cells, salmon CHSE cells, tilapia TO2 cells, quail QT6 cells, and hamster CHO cells. CAT activity was measured in extracts from several cell lines 3 days after transfection and in the fish EPC stable clones. The CMV and RSV promoters were the most potent in all cell types. The intron from late SV40 genes (VP1 intron) worked properly in QT6 and CHO cells but not in EPC and very weakly in TO2 cells. The tGH intron was efficient in all cell types but preferentially in fish cells. The small t intron from SV40 was processed in all cell types. The small t and, to a lesser extent, the tGH introns amplified expression of cat gene in stable clones, in comparison to the transiently transfected cells. These results indicate that elements from mammalian genes may not be properly recognized by the fish cellular machinery and in an unpredictable manner. This finding suggests that vectors prepared to express foreign genes in transfected cultured fish cells and transgenic fish should preferably contain DNA sequences from fish genes or, alternatively, those sequences from mammalian genes that have been previously proved to be compatible with the fish cellular machinery.

  9. The C-Type Lectin OCILRP2 Costimulates EL4 T Cell Activation via the DAP12-Raf-MAP Kinase Pathway

    PubMed Central

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation. PMID:25411776

  10. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway.

    PubMed

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimura, Hiroaki

    Mating pheromones, a- and {alpha}-factors, arrest the division of cells of opposite mating types, {alpha} and a cells, respectively. The author has isolated a sterile mutant of Saccharomyces cerevisiae using EMS that is defective in division arrest in response to {alpha}-factor but not defective in morphological changes and agglutinin induction. The mutation was designated dac2 for division arrest control by mating pheromones. The dac2 mutation was closely linked to gal1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11, ste12, ste18, and dac1). Although dac2 cells had no phenotype in the absence ofmore » pheromones, they showed morphological alterations and divided continuously in the presence of pheromones. As a result, dac2 cells had a mating defect. The dac2 mutation could suppress the lethality caused by the disruption of the GPA1 gene. These results suggest that the DAC2 product may control the signal for G-protein-mediated cell-cycle arrest and indicate that the synchronization of haploid yeast cell cycles by mating pheromones is essential for cell fusion during conjugation.« less

  12. GAD-specific T cells are induced by GAD-alum treatment in Type-1 diabetes patients.

    PubMed

    Pihl, Mikael; Barcenilla, Hugo; Axelsson, Stina; Chéramy, Mikael; Åkerman, Linda; Johansson, Ingela; Ludvigsson, Johnny; Casas, Rosaura

    2017-03-01

    Administration of Glutamic Acid Decarboxylase (GAD) 65 formulated in aluminium hydroxide preserved insulin secretion in a phase II trial in recent onset Type 1 Diabetes. A subsequent European phase III trial was closed at 15months after failing to reach primary endpoint, but the majority of the Swedish patients completed the 21months follow-up. We studied the frequencies and phenotype of T cells, suppressive capacity of Tregs, GAD 65 -induced proliferation, and frequencies of T cells with a GAD 65 -specific TCR in Swedes participating in the trial. Stimulation with GAD 65 induced activated T cells and also cells with a suppressive phenotype. Activated GAD 65 -specific effector T cells were detected by tetramer staining while the frequency of GAD 65 -specific Treg was not affected by the treatment. Additional doses of GAD-alum increased frequencies of CD25 + CD127 + , but had no effect on CD25 hi CD127 lo . Our findings indicate that GAD-alum treatment primarily induced activated T cells. GAD 65 -specific cells were mainly of activated phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ablation of type I hypersensitivity in experimental allergic conjunctivitis by eotaxin-1/CCR3 blockade

    PubMed Central

    Nakamura, Takao; Ohbayashi, Masaharu; Kuo, Chuan Hui; Komatsu, Naoki; Yakura, Keiko; Tominaga, Takeshi; Inoue, Yoshitsugu; Higashi, Hidemitsu; Murata, Meguru; Takeda, Shuzo; Fukushima, Atsuki; Liu, Fu-Tong; Rothenberg, Marc E.; Ono, Santa Jeremy

    2009-01-01

    The immune response is regulated, in part, by effector cells whose activation requires multiple signals. For example, T cells require signals emanating from the T cell antigen receptor and co-stimulatory molecules for full activation. Here, we present evidence indicating that IgE-mediated hypersensitivity reactions in vivo also require cognate signals to activate mast cells. Immediate hypersensitivity reactions in the conjunctiva are ablated in mice deficient in eotaxin-1, despite normal numbers of tissue mast cells and levels of IgE. To further define the co-stimulatory signals mediated by chemokine receptor 3 (CCR3), an eotaxin-1 receptor, effects of CCR3 blockade were tested with an allergic conjunctivitis model and in ex vivo isolated connective tissue-type mast cells. Our results show that CCR3 blockade significantly suppresses allergen-mediated hypersensitivity reactions as well as IgE-mediated mast cell degranulation. We propose that a co-stimulatory axis by CCR3, mainly stimulated by eotaxin-1, is pivotal in mast cell-mediated hypersensitivity reactions. PMID:19147836

  14. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility

    PubMed Central

    1993-01-01

    Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis. PMID:8380174

  15. Immunohistochemical Analysis Using Antipodocalyxin Monoclonal Antibody PcMab-47 Demonstrates Podocalyxin Expression in Oral Squamous Cell Carcinomas.

    PubMed

    Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Harada, Hiroyuki; Kato, Yukinari

    2017-10-01

    Podocalyxin is a CD34-related type I transmembrane protein that is highly glycosylated with N-glycan, O-glycan, and keratan sulfate. Podocalyxin was originally found in the podocytes of rat kidney and is reportedly expressed in many types of tumors, including brain tumors, colorectal cancers, and breast cancers. Overexpression of podocalyxin is an independent predictor of progression, metastasis, and poor outcome. We recently immunized mice with recombinant human podocalyxin, which was produced using LN229 glioblastoma cells, and produced a novel antipodocalyxin monoclonal antibody (mAb), PcMab-47, which reacts with endogenous podocalyxin-expressing cancer cell lines and normal cell lines independent of glycosylation in Western blot, flow cytometry, and immunohistochemical analyses. In this study, we performed immunohistochemical analysis against oral cancers using PcMab-47. PcMab-47-stained oral squamous cell carcinoma cells in a cytoplasmic pattern and detected 26/38 (68.4%) of oral squamous cell carcinoma cells on tissue microarrays. These results indicate that PcMab-47 is useful in detecting podocalyxin of oral cancers for immunohistochemical analysis.

  16. FDA Approval for Imiquimod

    Cancer.gov

    On July 15, 2004, the U.S. Food and Drug Administration (FDA) announced the approval of a new indication for Aldara® (imiquimod) topical cream for the treatment of superficial basal cell carcinoma (sBCC), a type of skin cancer.

  17. In vitro antiviral activity of aqueous extract of Phaleria macrocarpa fruit against herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Ismaeel, Mahmud Yusef Yusef; Dyari, Herryawan Ryadi Eziwar; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2018-04-01

    Phaleria macrocarpa fruits have been used as herbal medicine for several diseases. This study aims to determine the cytotoxicity and antiviral activity of aqueous extract of P. macrocarpa fruit (AEPMF). Phytochemical analysis showed the presence of steroids, tannins, flavones aglycones, saponins, terpenoids and alkaloids. AEPMF was found to contain protein with the concentration of 740 µg/mL. The cytotoxicity towards Vero cell was evaluated using MTT assay with 50% cytotoxic concentration (CC50) value of AEPMF 5 mg/mL. The finding indicates that AEPMF is safe and not toxic towards Vero cells. Screening by plaque reduction assay showed that AEPMF have antiviral activity against herpes simplex virus type 1 (HSV-1) with effective concentration (EC50) was 0.28 mg/mL. The selective index (SI=CC50/EC50) of AEPMF is 17.9 indicating AEPMF have potential for further evaluation in antiviral activity.

  18. Comprehensive Interrogation of the Cellular Response to Fluorescent, Detonation and Functionalized Nanodiamonds

    PubMed Central

    Moore, L.; Grobárová, V.; Shen, H.; Man, H. B.; Míčová, J.; Ledvina, M.; Štursa, J.; Nesladek, M.

    2015-01-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation. PMID:25037888

  19. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds.

    PubMed

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-10-21

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

  20. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds

    NASA Astrophysics Data System (ADS)

    Moore, Laura; Grobárová, Valéria; Shen, Helen; Man, Han Bin; Míčová, Júlia; Ledvina, Miroslav; Štursa, Jan; Nesladek, Milos; Fišerová, Anna; Ho, Dean

    2014-09-01

    Nanodiamonds (NDs) are versatile nanoparticles that are currently being investigated for a variety of applications in drug delivery, biomedical imaging and nanoscale sensing. Although initial studies indicate that these small gems are biocompatible, there is a great deal of variability in synthesis methods and surface functionalization that has yet to be evaluated. Here we present a comprehensive analysis of the cellular compatibility of an array of nanodiamond subtypes and surface functionalization strategies. These results demonstrate that NDs are well tolerated by multiple cell types at both functional and gene expression levels. In addition, ND-mediated delivery of daunorubicin is less toxic to multiple cell types than treatment with daunorubicin alone, thus demonstrating the ability of the ND agent to improve drug tolerance and decrease therapeutic toxicity. Overall, the results here indicate that ND biocompatibility serves as a promising foundation for continued preclinical investigation.

Top