Audesirk, T; Audesirk, G; Ferguson, C; Shugarts, D
1991-01-01
Lead exposure has devastating effects on the developing nervous system, and has been implicated in variety of behavioral and cognitive deficits as well as neural morphological abnormalities. Since lead impacts many calcium-dependent processes, one likely mechanism of lead toxicity is its disruption of calcium dependent processes, among which is neuronal differentiation. We investigated the effects of inorganic lead on survival and several parameters of differentiation of cultured neurons. Three different cell types were used: Rat hippocampal neurons (a primary CNS cell type), B50 rat neuroblastoma cells (a transformed CNS-derived cell line), and N1E-115 mouse neuroblastoma cells (a transformed peripherally-derived cell line). Lead concentrations ranged from low nM to 1 mM. Lead effects differed considerably among the three cell types, with B50 cells least affected. Lead effects were generally multimodal, with fewest effects observed at intermediate concentrations. Lead inhibited neurite initiation in hippocampal neurons, but stimulated initiation in N1E-115 cells. In those cells that differentiated, lead increased dendrite numbers in hippocampal neurons and neurite numbers in N1E-115 cells. Lead exposure increased both the length and the degree of branching of axons in hippocampal neurons and the length of neurites in N1E-115 cells. We hypothesize that lead impacts multiple regulatory processes that influence neuron survival and differentiation, and that its effects show differing dose-dependencies. The differing responses of the different cell types to lead suggests that differentiation may be regulated in different ways by the three types of cells. Alternatively, or additionally, the cell types may differ in their ability to compensate for, sequester, or expel lead.
Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R
2005-01-01
It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735
High cell surface death receptor expression determines type I versus type II signaling.
Meng, Xue Wei; Peterson, Kevin L; Dai, Haiming; Schneider, Paula; Lee, Sun-Hee; Zhang, Jin-San; Koenig, Alexander; Bronk, Steve; Billadeau, Daniel D; Gores, Gregory J; Kaufmann, Scott H
2011-10-14
Previous studies have suggested that there are two signaling pathways leading from ligation of the Fas receptor to induction of apoptosis. Type I signaling involves Fas ligand-induced recruitment of large amounts of FADD (FAS-associated death domain protein) and procaspase 8, leading to direct activation of caspase 3, whereas type II signaling involves Bid-mediated mitochondrial perturbation to amplify a more modest death receptor-initiated signal. The biochemical basis for this dichotomy has previously been unclear. Here we show that type I cells have a longer half-life for Fas message and express higher amounts of cell surface Fas, explaining the increased recruitment of FADD and subsequent signaling. Moreover, we demonstrate that cells with type II Fas signaling (Jurkat or HCT-15) can signal through a type I pathway upon forced receptor overexpression and that shRNA-mediated Fas down-regulation converts cells with type I signaling (A498) to type II signaling. Importantly, the same cells can exhibit type I signaling for Fas and type II signaling for TRAIL (TNF-α-related apoptosis-inducing ligand), indicating that the choice of signaling pathway is related to the specific receptor, not some other cellular feature. Additional experiments revealed that up-regulation of cell surface death receptor 5 levels by treatment with 7-ethyl-10-hydroxy-camptothecin converted TRAIL signaling in HCT116 cells from type II to type I. Collectively, these results suggest that the type I/type II dichotomy reflects differences in cell surface death receptor expression.
High expression of A-type lamin in the leading front is required for Drosophila thorax closure.
Kosakamoto, Hina; Fujisawa, Yuya; Obata, Fumiaki; Miura, Masayuki
2018-05-05
Tissue closure involves the coordinated unidirectional movement of a group of cells without loss of cell-cell contact. However, the molecular mechanisms controlling the tissue closure are not fully understood. Here, we demonstrate that Lamin C, the sole A-type lamin in Drosophila, contributes to the process of thorax closure in pupa. High expression of Lamin C was observed at the leading front of the migrating wing imaginal discs. Live imaging analysis revealed that knockdown of Lamin C in the thorax region affected the coordinated movement of the leading front, resulting in incomplete tissue fusion required for formation of the adult thorax. The closure defect due to knockdown of Lamin C correlated with insufficient accumulation of F-actin at the front. Our study indicates a link between A-type lamin and the cell migration behavior during tissue closure. Copyright © 2018 Elsevier Inc. All rights reserved.
Xu, Li; Zhang, Kun; Wang, Jin
2014-01-01
We explored the underlying mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation (cell type switchings) from landscape and flux perspectives. Lineage reprogramming is a new regenerative method to convert a matured cell into another cell including direct transdifferentiation without undergoing a pluripotent cell state and indirect transdifferentiation with an initial dedifferentiation-reversion (reprogramming) to a pluripotent cell state. Each cell type is quantified by a distinct valley on the potential landscape with higher probability. We investigated three driving forces for cell fate decision making: stochastic fluctuations, gene regulation and induction, which can lead to cell type switchings. We showed that under the driving forces the direct transdifferentiation process proceeds from a differentiated cell valley to another differentiated cell valley through either a distinct stable intermediate state or a certain series of unstable indeterminate states. The dedifferentiation process proceeds through a pluripotent cell state. Barrier height and the corresponding escape time from the valley on the landscape can be used to quantify the stability and efficiency of cell type switchings. We also uncovered the mechanisms of the underlying processes by quantifying the dominant biological paths of cell type switchings on the potential landscape. The dynamics of cell type switchings are determined by both landscape gradient and flux. The flux can lead to the deviations of the dominant biological paths for cell type switchings from the naively expected landscape gradient path. As a result, the corresponding dominant paths of cell type switchings are irreversible. We also classified the mechanisms of cell fate development from our landscape theory: super-critical pitchfork bifurcation, sub-critical pitchfork bifurcation, sub-critical pitchfork with two saddle-node bifurcation, and saddle-node bifurcation. Our model showed good agreements with the experiments. It provides a general framework to explore the mechanisms of differentiation, dedifferentiation, reprogramming and transdifferentiation. PMID:25133589
Maricic, Igor; Halder, Ramesh; Bischof, Felix; Kumar, Vipin
2014-01-01
CD1d-restricted NKT cells can be divided into two groups: type I NKT cells utilize a semi-invariant TCR whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the central nervous system tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. Here we have addressed the mechanism of regulation as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of PLP139-151/I-As–tetramer+ cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells in the periphery as well as CNS-resident microglia are inactivated following sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not αGalCer, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Since CD1 molecules are non-polymorphic, the sulfatide-mediated immune regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases. PMID:24973441
Porter, J; Barrett, T
2005-01-01
Type 2 diabetes mellitus is caused by a combination of insulin resistance and ß cell failure. The polygenic nature of type 2 diabetes has made it difficult to study. Although many candidate genes for this condition have been suggested, in most cases association studies have been equivocal. Monogenic forms of diabetes have now been studied extensively, and the genetic basis of many of these syndromes has been elucidated, leading to greater understanding of the functions of the genes involved. Common variations in the genes causing monogenic disorders have been associated with susceptibility to type 2 diabetes in several populations and explain some of the linkage seen in genome-wide scans. Monogenic disorders are also helpful in understanding both normal and disordered glucose and insulin metabolism. Three main areas of defect contribute to diabetes: defects in insulin signalling leading to insulin resistance; defects of insulin secretion leading to hypoinsulinaemia; and apoptosis leading to decreased ß cell mass. These three pathological pathways are reviewed, focusing on rare genetic syndromes which have diabetes as a prominent feature. Apoptosis seems to be a final common pathway in both type 1 and type 2 diabetes. Study of rare forms of diabetes may help ion determining new therapeutic targets to preserve or increase ß cell mass and function. PMID:15772126
Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles.
van Gestel, Jordi; Nowak, Martin A
2016-02-01
Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a 'sticky' cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles.
Baseline and annual repeat rounds of screening: implications for optimal regimens of screening.
Henschke, Claudia I; Salvatore, Mary; Cham, Matthew; Powell, Charles A; DiFabrizio, Larry; Flores, Raja; Kaufman, Andrew; Eber, Corey; Yip, Rowena; Yankelevitz, David F
2018-03-01
Differences in results of baseline and subsequent annual repeat rounds provide important information for optimising the regimen of screening. A prospective cohort study of 65,374 was reviewed to examine the frequency/percentages of the largest noncalcified nodule (NCN), lung cancer cell types and Kaplan-Meier (K-M) survival rates, separately for baseline and annual rounds. Of 65,374 baseline screenings, NCNs were identified in 28,279 (43.3%); lung cancer in 737 (1.1%). Of 74,482 annual repeat screenings, new NCNs were identified in 4959 (7%); lung cancer in 179 (0.24%). Only adenocarcinoma was diagnosed in subsolid NCNs. Percentages of lung cancers by cell type were significantly different (p < 0.0001) in the baseline round compared with annual rounds, reflecting length bias, as were the ratios, reflecting lead times. Long-term K-M survival rate was 100% for typical carcinoids and for adenocarcinomas manifesting as subsolid NCNs; 85% (95% CI 81-89%) for adenocarcinoma, 74% (95% CI 63-85%) for squamous cell, 48% (95% CI 34-62%) for small cell. The rank ordering by lead time was the same as the rank ordering by survival rates. The significant differences in the frequency of NCNs and frequency and aggressiveness of diagnosed cancers in baseline and annual repeat need to be recognised for an optimal regimen of screening. • Lung cancer aggressiveness varies considerably by cell type and nodule consistency. • Kaplan-Meier survival rates varied by cell type between 100% and 48%. • The percentages of lung cancers by cell type in screening rounds reflect screening biases. • Rank ordering by cell type survival is consistent with that by lead times. • Empirical evidence provides critical information for the regimen of screening.
Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies.
Rahmani, Elior; Zaitlen, Noah; Baran, Yael; Eng, Celeste; Hu, Donglei; Galanter, Joshua; Oh, Sam; Burchard, Esteban G; Eskin, Eleazar; Zou, James; Halperin, Eran
2016-05-01
In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html.
Pathogenesis and treatment of adult-type granulosa cell tumor of the ovary.
Färkkilä, Anniina; Haltia, Ulla-Maija; Tapper, Johanna; McConechy, Melissa K; Huntsman, David G; Heikinheimo, Markku
2017-08-01
Adult-type granulosa cell tumor is a clinically and molecularly unique subtype of ovarian cancer. These tumors originate from the sex cord stromal cells of the ovary and represent 3-5% of all ovarian cancers. The majority of adult-type granulosa cell tumors are diagnosed at an early stage with an indolent prognosis. Surgery is the cornerstone for the treatment of both primary and relapsed tumor, while chemotherapy is applied only for advanced or non-resectable cases. Tumor stage is the only factor consistently associated with prognosis. However, every third of the patients relapse, typically in 4-7 years from diagnosis, leading to death in 50% of these patients. Anti-Müllerian Hormone and inhibin B are currently the most accurate circulating biomarkers. Adult-type granulosa cell tumors are molecularly characterized by a pathognomonic somatic missense point mutation 402C->G (C134W) in the transcription factor FOXL2. The FOXL2 402C->G mutation leads to increased proliferation and survival of granulosa cells, and promotes hormonal changes. Histological diagnosis of adult-type granulosa cell tumor is challenging, therefore testing for the FOXL2 mutation is crucial for differential diagnosis. Large international collaborations utilizing molecularly defined cohorts are essential to improve and validate new treatment strategies for patients with high-risk or relapsed adult-type granulosa cell tumor. Key Messages: Adult-type granulosa cell tumor is a unique ovarian cancer with an indolent, albeit unpredictable disease course. Adult-type granulosa cell tumors harbor a pathognomonic somatic missense mutation in transcription factor FOXL2. The key challenges in the treatment of patients with adult-type granulosa cell tumor lie in the identification and management of patients with high-risk or relapsed disease.
Bertaux, François; Maler, Oded; Batt, Gregory
2013-01-01
Extrinsic apoptosis is a programmed cell death triggered by external ligands, such as the TNF-related apoptosis inducing ligand (TRAIL). Depending on the cell line, the specific molecular mechanisms leading to cell death may significantly differ. Precise characterization of these differences is crucial for understanding and exploiting extrinsic apoptosis. Cells show distinct behaviors on several aspects of apoptosis, including (i) the relative order of caspases activation, (ii) the necessity of mitochondria outer membrane permeabilization (MOMP) for effector caspase activation, and (iii) the survival of cell lines overexpressing Bcl2. These differences are attributed to the activation of one of two pathways, leading to classification of cell lines into two groups: type I and type II. In this work we challenge this type I/type II cell line classification. We encode the three aforementioned distinguishing behaviors in a formal language, called signal temporal logic (STL), and use it to extensively test the validity of a previously-proposed model of TRAIL-induced apoptosis with respect to experimental observations made on different cell lines. After having solved a few inconsistencies using STL-guided parameter search, we show that these three criteria do not define consistent cell line classifications in type I or type II, and suggest mutants that are predicted to exhibit ambivalent behaviors. In particular, this finding sheds light on the role of a feedback loop between caspases, and reconciliates two apparently-conflicting views regarding the importance of either upstream or downstream processes for cell-type determination. More generally, our work suggests that these three distinguishing behaviors should be merely considered as type I/II features rather than cell-type defining criteria. On the methodological side, this work illustrates the biological relevance of STL-diagrams, STL population data, and STL-guided parameter search implemented in the tool Breach. Such tools are well-adapted to the ever-increasing availability of heterogeneous knowledge on complex signal transduction pathways. PMID:23675292
Phenotypic Heterogeneity and the Evolution of Bacterial Life Cycles
van Gestel, Jordi; Nowak, Martin A.
2016-01-01
Most bacteria live in colonies, where they often express different cell types. The ecological significance of these cell types and their evolutionary origin are often unknown. Here, we study the evolution of cell differentiation in the context of surface colonization. We particularly focus on the evolution of a ‘sticky’ cell type that is required for surface attachment, but is costly to express. The sticky cells not only facilitate their own attachment, but also that of non-sticky cells. Using individual-based simulations, we show that surface colonization rapidly evolves and in most cases leads to phenotypic heterogeneity, in which sticky and non-sticky cells occur side by side on the surface. In the presence of regulation, cell differentiation leads to a remarkable set of bacterial life cycles, in which cells alternate between living in the liquid and living on the surface. The dominant life stage is formed by the surface-attached colony that shows many complex features: colonies reproduce via fission and by producing migratory propagules; cells inside the colony divide labour; and colonies can produce filaments to facilitate expansion. Overall, our model illustrates how the evolution of an adhesive cell type goes hand in hand with the evolution of complex bacterial life cycles. PMID:26894881
Is Type-2 Diabetes a Glycogen Storage Disease of Pancreatic β-Cells?
Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F
2018-01-01
Elevated plasma glucose leads to pancreatic β-cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this ‘glucotoxicity’ via dysregulated biochemical pathways promoting β-cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β-cells in normoglycaemia and in diabetes. PMID:28683284
The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.
Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan
2015-09-01
Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus
Tangvarasittichai, Surapon
2015-01-01
Oxidative stress is increased in metabolic syndrome and type 2 diabetes mellitus (T2DM) and this appears to underlie the development of cardiovascular disease, T2DM and diabetic complications. Increased oxidative stress appears to be a deleterious factor leading to insulin resistance, dyslipidemia, β-cell dysfunction, impaired glucose tolerance and ultimately leading to T2DM. Chronic oxidative stress, hyperglycemia and dyslipidemia are particularly dangerous for β-cells from lowest levels of antioxidant, have high oxidative energy requirements, decrease the gene expression of key β-cell genes and induce cell death. If β-cell functioning is impaired, it results in an under production of insulin, impairs glucose stimulated insulin secretion, fasting hyperglycemia and eventually the development of T2DM. PMID:25897356
Ribosome Profiling Reveals a Cell-Type-Specific Translational Landscape in Brain Tumors
Gonzalez, Christian; Sims, Jennifer S.; Hornstein, Nicholas; Mela, Angeliki; Garcia, Franklin; Lei, Liang; Gass, David A.; Amendolara, Benjamin; Bruce, Jeffrey N.
2014-01-01
Glioma growth is driven by signaling that ultimately regulates protein synthesis. Gliomas are also complex at the cellular level and involve multiple cell types, including transformed and reactive cells in the brain tumor microenvironment. The distinct functions of the various cell types likely lead to different requirements and regulatory paradigms for protein synthesis. Proneural gliomas can arise from transformation of glial progenitors that are driven to proliferate via mitogenic signaling that affects translation. To investigate translational regulation in this system, we developed a RiboTag glioma mouse model that enables cell-type-specific, genome-wide ribosome profiling of tumor tissue. Infecting glial progenitors with Cre-recombinant retrovirus simultaneously activates expression of tagged ribosomes and delivers a tumor-initiating mutation. Remarkably, we find that although genes specific to transformed cells are highly translated, their translation efficiencies are low compared with normal brain. Ribosome positioning reveals sequence-dependent regulation of ribosomal activity in 5′-leaders upstream of annotated start codons, leading to differential translation in glioma compared with normal brain. Additionally, although transformed cells express a proneural signature, untransformed tumor-associated cells, including reactive astrocytes and microglia, express a mesenchymal signature. Finally, we observe the same phenomena in human disease by combining ribosome profiling of human proneural tumor and non-neoplastic brain tissue with computational deconvolution to assess cell-type-specific translational regulation. PMID:25122893
Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis
Naikawadi, Ram P.; Disayabutr, Supparerk; Mallavia, Benat; Donne, Matthew L.; Green, Gary; La, Janet L.; Rock, Jason R.; Looney, Mark R.; Wolters, Paul J.
2016-01-01
Telomeres are short in type II alveolar epithelial cells (AECs) of patients with idiopathic pulmonary fibrosis (IPF). Whether dysfunctional telomeres contribute directly to development of lung fibrosis remains unknown. The objective of this study was to investigate whether telomere dysfunction in type II AECs, mediated by deletion of the telomere shelterin protein TRF1, leads to pulmonary fibrosis in mice (SPC-Cre TRF1fl/fl mice). Deletion of TRF1 in type II AECs for 2 weeks increased γH2AX DNA damage foci, but not histopathologic changes in the lung. Deletion of TRF1 in type II AECs for up to 9 months resulted in short telomeres and lung remodeling characterized by increased numbers of type II AECs, α-smooth muscle actin+ mesenchymal cells, collagen deposition, and accumulation of senescence-associated β-galactosidase+ lung epithelial cells. Deletion of TRF1 in collagen-expressing cells caused pulmonary edema, but not fibrosis. These results demonstrate that prolonged telomere dysfunction in type II AECs, but not collagen-expressing cells, leads to age-dependent lung remodeling and fibrosis. We conclude that telomere dysfunction in type II AECs is sufficient to cause lung fibrosis, and may be a dominant molecular defect causing IPF. SPC-Cre TRF1fl/fl mice will be useful for assessing cellular and molecular mechanisms of lung fibrosis mediated by telomere dysfunction. PMID:27699234
Battery selection for space experiments
NASA Technical Reports Server (NTRS)
Francisco, David R.
1992-01-01
This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese and nickel cadmium. A detailed description of the lead acid and silver zinc cells while a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage and with different types of loads. A description of the required maintenance for each type of battery will be investigated. The lifetime and number of charge/discharge cycles will be discussed.
Battery selection for Space Shuttle experiments
NASA Technical Reports Server (NTRS)
Francisco, David R.
1993-01-01
This paper will delineate the criteria required for the selection of batteries as a power source for space experiments. Four basic types of batteries will be explored, lead acid, silver zinc, alkaline manganese, and nickel cadmium. A detailed description of the lead acid and silver zinc cells and a brief exploration of the alkaline manganese and nickel cadmium will be given. The factors involved in battery selection such as packaging, energy density, discharge voltage regulation, and cost will be thoroughly examined. The pros and cons of each battery type will be explored. Actual laboratory test data acquired for the lead acid and silver zinc cell will be discussed. This data will include discharging under various temperature conditions, after three months of storage, and with different types of loads. The lifetime and number of charge/discharge cycles will also be discussed. A description of the required maintenance for each type of battery will be investigated.
Cnidarian Cell Type Diversity and Regulation Revealed by Whole-Organism Single-Cell RNA-Seq.
Sebé-Pedrós, Arnau; Saudemont, Baptiste; Chomsky, Elad; Plessier, Flora; Mailhé, Marie-Pierre; Renno, Justine; Loe-Mie, Yann; Lifshitz, Aviezer; Mukamel, Zohar; Schmutz, Sandrine; Novault, Sophie; Steinmetz, Patrick R H; Spitz, François; Tanay, Amos; Marlow, Heather
2018-05-31
The emergence and diversification of cell types is a leading factor in animal evolution. So far, systematic characterization of the gene regulatory programs associated with cell type specificity was limited to few cell types and few species. Here, we perform whole-organism single-cell transcriptomics to map adult and larval cell types in the cnidarian Nematostella vectensis, a non-bilaterian animal with complex tissue-level body-plan organization. We uncover eight broad cell classes in Nematostella, including neurons, cnidocytes, and digestive cells. Each class comprises different subtypes defined by the expression of multiple specific markers. In particular, we characterize a surprisingly diverse repertoire of neurons, which comparative analysis suggests are the result of lineage-specific diversification. By integrating transcription factor expression, chromatin profiling, and sequence motif analysis, we identify the regulatory codes that underlie Nematostella cell-specific expression. Our study reveals cnidarian cell type complexity and provides insights into the evolution of animal cell-specific genomic regulation. Copyright © 2018 Elsevier Inc. All rights reserved.
Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond
2016-01-01
Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119
Caballero, David; Osmani, Naël; Georges-Labouesse, Elisabeth; Labouesse, Michel; Riveline, Daniel
2012-01-01
Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with "stampcils" focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein-fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.
Is Type 2 Diabetes a Glycogen Storage Disease of Pancreatic β Cells?
Ashcroft, Frances M; Rohm, Maria; Clark, Anne; Brereton, Melissa F
2017-07-05
Elevated plasma glucose leads to pancreatic β cell dysfunction and death in type 2 diabetes. Glycogen accumulation, due to impaired metabolism, contributes to this "glucotoxicity" via dysregulated biochemical pathways promoting β cell dysfunction. Here, we review emerging data, and re-examine published findings, on the role of glycogen in β cells in normoglycemia and in diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.
Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih
2013-11-22
Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.
A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass
Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George
2016-01-01
The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622
Dietary toxins, endoplasmic reticulum (ER) stress and diabetes.
Hettiarachchi, Kalindi D; Zimmet, Paul Z; Myers, Mark A
2008-05-01
The incidence of Type 1 diabetes has been increasing at a rate too rapid to be due to changes in genetic risk. Instead changes in environmental factors are the likely culprit. The endoplasmic reticulum (ER) plays an important role in the production of newly synthesized proteins and interference with these processes leads to ER stress. The insulin-producing beta cells are particularly prone to ER stress as a result of their heavy engagement in insulin production. Increasing evidence suggests ER stress is central to initiation and progression of Type 1 diabetes. An early environmental exposure, such as toxins and viral infections, can impart a significant physiological load on beta cells to initiate abnormal processing of proinsulin, ER stress and insulin secretory defects. Release of altered proinsulin from the beta cells early in life may trigger autoimmunity in those with genetic susceptibility leading to cytokine-induced nitric oxide production and so exacerbating ER stress in beta cells, ultimately leading to apoptosis of beta cells and diabetes. Here we suggest that ER stress is an inherent cause of beta cell dysfunction and environmental factors, in particular dietary toxins derived from Streptomyces in infected root vegetables, can impart additional stress that aggravates beta cell death and progression to diabetes. Furthermore, we propose that the increasing incidence of Type 1 diabetes may be accounted for by increased dietary exposure to ER-stress-inducing Streptomyces toxins.
Baradat, Maryse; Jouanin, Isabelle; Dalleau, Sabine; Taché, Sylviane; Gieules, Mathilde; Debrauwer, Laurent; Canlet, Cécile; Huc, Laurence; Dupuy, Jacques; Pierre, Fabrice H F; Guéraud, Françoise
2011-11-21
Animal and epidemiological studies suggest that dietary heme iron would promote colorectal cancer. Oxidative properties of heme could lead to the formation of cytotoxic and genotoxic secondary lipid oxidation products, such as 4-hydroxy-2(E)-nonenal (HNE). This compound is more cytotoxic to mouse wild-type colon cells than to isogenic cells with a mutation on the adenomatous polyposis coli (APC) gene. The latter thus have a selective advantage, possibly leading to cancer promotion. This mutation is an early and frequent event in human colorectal cancer. To explain this difference, the HNE biotransformation capacities of the two cell types have been studied using radiolabeled and stable isotope-labeled HNE. Apc-mutated cells showed better biotransformation capacities than nonmutated cells did. Thiol compound conjugation capacities were higher for mutated cells, with an important advantage for the extracellular conjugation to cysteine. Both cells types were able to reduce HNE to 4-hydroxynonanal, a biotransformation pathway that has not been reported for other intestinal cells. Mutated cells showed higher capacities to oxidize 4-hydroxynonanal into 4-hydroxynonanoic acid. The mRNA expression of different enzymes involved in HNE metabolism such as aldehyde dehydrogenase 1A1, 2 and 3A1, glutathione transferase A4-4, or cystine transporter xCT was upregulated in mutated cells compared with wild-type cells. In conclusion, this study suggests that Apc-mutated cells are more efficient than wild-type cells in metabolizing HNE into thiol conjugates and 4-hydroxynonanoic acid due to the higher expression of key biotransformation enzymes. These differential biotransformation capacities would explain the differences of susceptibility between normal and Apc-mutated cells regarding secondary lipid oxidation products.
Rollin, Guillaume; Tan, Xin; Tros, Fabiola; Dupuis, Marion; Nassif, Xavier; Charbit, Alain; Coureuil, Mathieu
2017-01-01
The Gram-positive human pathogen Staphylococcus aureus is a leading cause of severe bacterial infections. Recent studies have shown that various cell types could readily internalize S. aureus and infected cells have been proposed to serve as vehicle for the systemic dissemination of the pathogen. Here we focused on the intracellular behavior of the Community-Associated Methicillin-Resistant S. aureus strain USA300. Supporting earlier observations, we found that wild-type S. aureus strain USA300 persisted for longer period within endothelial cells than within macrophages and that a mutant displaying the small colony variant phenotype (ΔhemDBL) had increased intracellular persistence. Time-lapse microscopy revealed that initial persistence of wild-type bacteria in endothelial cells corresponded to distinct single cell events, ranging from active intracellular bacterial proliferation, leading to cell lysis, to non-replicating bacterial persistence even 1 week after infection. In sharp contrast, ΔhemDBL mutant bacteria were essentially non-replicating up to 10 days after infection. These findings suggest that internalization of S. aureus in endothelial cells triggers its persistence and support the notion that endothelial cells might constitute an intracellular persistence niche responsible for reported relapse of infection after antibiotic therapy. PMID:28769913
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses
Nourbakhsh-Rey, Mehrnoush; Libault, Marc
2016-01-01
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less
Decipher the Molecular Response of Plant Single Cell Types to Environmental Stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nourbakhsh-Rey, Mehrnoush; Libault, Marc
The analysis of the molecular response of entire plants or organs to environmental stresses suffers from the cellular complexity of the samples used. Specifically, this cellular complexity masks cell-specific responses to environmental stresses and logically leads to the dilution of the molecular changes occurring in each cell type composing the tissue/organ/plant in response to the stress. Therefore, to generate a more accurate picture of these responses, scientists are focusing on plant single cell type approaches. Several cell types are now considered as models such as the pollen, the trichomes, the cotton fiber, various root cell types including the root hairmore » cell, and the guard cell of stomata. Among them, several have been used to characterize plant response to abiotic and biotic stresses. Lastly, in this review, we are describing the various -omic studies performed on these different plant single cell type models to better understand plant cell response to biotic and abiotic stresses.« less
Miura, Tanya A.; Wang, Jieru; Holmes, Kathryn V.; Mason, Robert J.
2007-01-01
We analyzed the ability of two rat coronavirus (RCoV) strains, sialodacryoadenitis virus (SDAV) and Parker’s RCoV (RCoV-P), to infect rat alveolar type I cells and induce chemokine expression. Primary rat alveolar type II cells were transdifferentiated into the type I cell phenotype. Type I cells were productively infected with SDAV and RCoV-P, and both live virus and UV-inactivated virus induced mRNA and protein expression of three CXC chemokines: CINC-2, CINC-3, and LIX, which are neutrophil chemoattractants. Dual immunolabeling of type I cells for viral antigen and CXC chemokines showed that chemokines were expressed primarily by uninfected cells. Virus-induced chemokine expression was reduced by the IL-1 receptor antagonist, suggesting that IL-1 produced by infected cells induces uninfected cells to express chemokines. Primary cultures of alveolar epithelial cells are an important model for the early events in viral infection that lead to pulmonary inflammation. PMID:17804032
NASA Astrophysics Data System (ADS)
Bourkoula, A.; Constantoudis, V.; Kontziampasis, D.; Petrou, P. S.; Kakabakos, S. E.; Tserepi, A.; Gogolides, E.
2016-08-01
Poly(methyl methacrylate) surfaces have been micro-nanotextured in oxygen plasmas with increasing ion energy, leading to micro-nanotopography characterized by increased root mean square roughness, correlation length and fractal dimension. Primary human skin fibroblasts and mouse immortalized 3T3 fibroblasts were cultured on these surfaces and the number of adhering cells, their proliferation rate and morphology (cytoplasm and nucleus area) were evaluated as a function of roughness height, correlation length, and fractal dimension. A roughness threshold behavior was observed for both types of cells leading to dramatic cell number decrease above this threshold, which is almost similar for the two types of cells, despite their differences in size and stiffness. The results are discussed based on two theoretical models, which are reconciled and unified when the elastic moduli and the size of the cells are taken into account.
[Pathogenic Mechanism and Diagnostic Testing for Drug Allergies].
Uno, Katsuji
2018-01-01
Three stages of the pathogenic mechanism of drug allergies can be considered: antigen formation, immune reaction and inflammation/disorder reaction. Drugs are thought to form 4 types of antigens: drug only, polymers, drug-carrier conjugates, and metabolite-carrier complexes. Antigens are recognized by B cell receptors and T cell receptors. Helper T cells (Th) are differentiated into four subsets, namely, Th1, Th2, Th17 and regulatory T cells (Treg). Th1 produces interleukin (IL)-2 and interferon (IFN)-γ, and activates macrophages and cytotoxic T cells (Tc). Macrophages induce type IV allergies, and Tc lead to serious type IV allergies. On the other hand, Th2 produces IL-4, IL-5, and IL-6, etc., and activates B cells. B cells produce IgE antibodies, and the IgE antibody affects mast cells and induces type I allergies. Activated eosinophil leads to the chronic state of type I allergy. Diagnostic testing for allergenic drugs is necessary for patients with drug allergies. Because in vivo diagnostic tests for allergenic drugs are associated with a risk and burden to the patient, in vitro allergy tests are recommended to identify allergenic drugs. In allergy tests performed in vitro, cytological tests are more effective than serological tests, and the leukocyte migration test (LMT) presently has the highest efficacy. An LMT-chamber is better than LMT-agarose in terms of usability and sensitivity, and it can detect about 80% of allergenic drugs.
Mechanisms of collective cell movement lacking a leading or free front edge in vivo.
Uechi, Hiroyuki; Kuranaga, Erina
2017-08-01
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Diabetes and renal tubular cell apoptosis
Habib, Samy L
2013-01-01
Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells. PMID:23593533
Diabetes and renal tubular cell apoptosis.
Habib, Samy L
2013-04-15
Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells.
[Methuosis: a novel type of cell death].
Cai, Hongbing; Liu, Jinkun; Fan, Qin; Li, Xin
2013-12-01
Cell death is a major physiological or pathological phenomenon in life activities. The classic forms of cell death include apoptosis, necrosis, and autophagy. Recently, a novel type of cell death has been observed and termed as methuosis, in which excessive stimuli can induce cytoplasmic uptake and accumulation of small bubbles that gradually merge into giant vacuoles, eventually leading to decreased cellular metabolic activity, cell membrane rupture and cell death. In this article, we describe the nomenclature, morphological characteristics and underlying mechanisms of methuosis, compare methuosis with autophagy, oncosis and paraptosis, and review the related researches.
Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model.
You, Li; Brown, Joel S; Thuijsman, Frank; Cunningham, Jessica J; Gatenby, Robert A; Zhang, Jingsong; Staňková, Kateřina
2017-12-21
Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT). However, resistance typically develops in about 1 year - a clinical condition termed metastatic castrate-resistant prostate cancer (mCRPC). We develop and investigate a spatial game (agent based continuous space) of mCRPC that considers three distinct cancer cell types: (1) those dependent on exogenous testosterone (T + ), (2) those with increased CYP17A expression that produce testosterone and provide it to the environment as a public good (T P ), and (3) those independent of testosterone (T - ). The interactions within and between cancer cell types can be represented by a 3 × 3 matrix. Based on the known biology of this cancer there are 22 potential matrices that give roughly three major outcomes depending upon the absence (good prognosis), near absence or high frequency (poor prognosis) of T - cells at the evolutionarily stable strategy (ESS). When just two cell types coexist the spatial game faithfully reproduces the ESS of the corresponding matrix game. With three cell types divergences occur, in some cases just two strategies coexist in the spatial game even as a non-spatial matrix game supports all three. Discrepancies between the spatial game and non-spatial ESS happen because different cell types become more or less clumped in the spatial game - leading to non-random assortative interactions between cell types. Three key spatial scales influence the distribution and abundance of cell types in the spatial game: i. Increasing the radius at which cells interact with each other can lead to higher clumping of each type, ii. Increasing the radius at which cells experience limits to population growth can cause densely packed tumor clusters in space, iii. Increasing the dispersal radius of daughter cells promotes increased mixing of cell types. To our knowledge the effects of these spatial scales on eco-evolutionary dynamics have not been explored in cancer models. The fact that cancer interactions are spatially explicit and that our spatial game of mCRPC provides in general different outcomes than the non-spatial game might suggest that non-spatial models are insufficient for capturing key elements of tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regulation of DNA replication during development
Nordman, Jared; Orr-Weaver, Terry L.
2012-01-01
As development unfolds, DNA replication is not only coordinated with cell proliferation, but is regulated uniquely in specific cell types and organs. This differential regulation of DNA synthesis requires crosstalk between DNA replication and differentiation. This dynamic aspect of DNA replication is highlighted by the finding that the distribution of replication origins varies between differentiated cell types and changes with differentiation. Moreover, differential DNA replication in some cell types can lead to increases or decreases in gene copy number along chromosomes. This review highlights the recent advances and technologies that have provided us with new insights into the developmental regulation of DNA replication. PMID:22223677
Qu, Wei; Diwan, Bhalchandra A.; Liu, Jie; Goyer, Robert A.; Dawson, Tammy; Horton, John L.; Cherian, M. George; Waalkes, Michael P.
2002-01-01
Susceptibility to lead toxicity in MT-null mice and cells, lacking the major forms of the metallothionein (MT) gene, was compared to wild-type (WT) mice or cells. Male MT-null and WT mice received lead in the drinking water (0 to 4000 ppm) for 10 to 20 weeks. Lead did not alter body weight in any group. Unlike WT mice, lead-treated MT-null mice showed dose-related nephromegaly. In addition, after lead exposure renal function was significantly diminished in MT-null mice in comparison to WT mice. MT-null mice accumulated less renal lead than WT mice and did not form lead inclusion bodies, which were present in the kidneys of WT mice. In gene array analysis, renal glutathione S-transferases were up-regulated after lead in MT-null mice only. In vitro studies on fibroblast cell lines derived from MT-null and WT mice showed that MT-null cells were much more sensitive to lead cytotoxicity. MT-null cells accumulated less lead and formed no inclusion bodies. The MT-null phenotype seems to preclude lead-induced inclusion body formation and increases lead toxicity at the organ and cellular level despite reducing lead accumulation. This study reveals important roles for MT in chronic lead toxicity, lead accumulation, and inclusion body formation. PMID:11891201
β-cell-specific CD8 T cell phenotype in type 1 diabetes reflects chronic autoantigen exposure
McLaren, James E.; Dolton, Garry; Matthews, Katherine K.; Gostick, Emma; Kronenberg-Versteeg, Deborah; Eichmann, Martin; Knight, Robin R.; Heck, Susanne; Powrie, Jake; Bingley, Polly J.; Dayan, Colin M.; Miles, John J.; Sewell, Andrew K.
2015-01-01
Autoreactive CD8 T cells play a central role in the destruction of pancreatic islet β-cells that leads to type 1 diabetes, yet the key features of this immune-mediated process remain poorly defined. In this study, we combined high definition polychromatic flow cytometry with ultrasensitive peptide-human leukocyte antigen class I (pHLAI) tetramer staining to quantify and characterize β-cell-specific CD8 T cell populations in patients with recent onset type 1 diabetes and healthy controls. Remarkably, we found that β-cell-specific CD8 T cell frequencies in peripheral blood were similar between subject groups. In contrast to healthy controls, however, patients with newly diagnosed type 1 diabetes displayed hallmarks of antigen-driven expansion uniquely within the β-cell-specific CD8 T cell compartment. Molecular analysis of selected β-cell-specific CD8 T cell populations further revealed highly skewed oligoclonal T cell receptor (TCR) repertoires comprising exclusively private clonotypes. Collectively, these data identify novel and distinctive features of disease-relevant CD8 T cells that inform the immunopathogenesis of type 1 diabetes. PMID:25249579
Snyder, Robert
2012-01-01
Excessive exposure to benzene has been known for more than a century to damage the bone marrow resulting in decreases in the numbers of circulating blood cells, and ultimately, aplastic anemia. Of more recent vintage has been the appreciation that an alternative outcome of benzene exposure has been the development of one or more types of leukemia. While many investigators agree that the array of toxic metabolites, generated in the liver or in the bone marrow, can lead to traumatic bone marrow injury, the more subtle mechanisms leading to leukemia have yet to be critically dissected. This problem appears to have more general interest because of the recognition that so-called “second cancer” that results from prior treatment with alkylating agents to yield tumor remissions, often results in a type of leukemia reminiscent of benzene-induced leukemia. Furthermore, there is a growing literature attempting to characterize the fine structure of the marrow and the identification of so called “niches” that house a variety of stem cells and other types of cells. Some of these “niches” may harbor cells capable of initiating leukemias. The control of stem cell differentiation and proliferation via both inter- and intra-cellular signaling will ultimately determine the fate of these transformed stem cells. The ability of these cells to avoid checkpoints that would prevent them from contributing to the leukemogenic response is an additional area for study. Much of the study of benzene-induced bone marrow damage has concentrated on determining which of the benzene metabolites lead to leukemogenesis. The emphasis now should be directed to understanding how benzene metabolites alter bone marrow cell biology. PMID:23066403
Different subsets of natural killer T cells may vary in their roles in health and disease
Kumar, Vipin; Delovitch, Terry L
2014-01-01
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid–CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes. PMID:24428389
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua; ...
2017-08-30
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI 3. The three-dimensional ASnI 3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI 3-xBr x. We show that en can serve as a new A cation capable ofmore » achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI 3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells.« less
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI 3. The three-dimensional ASnI 3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI 3-xBr x. We show that en can serve as a new A cation capable ofmore » achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI 3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells.« less
Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3
Ke, Weijun; Stoumpos, Constantinos C.; Zhu, Menghua; Mao, Lingling; Spanopoulos, Ioannis; Liu, Jian; Kontsevoi, Oleg Y.; Chen, Michelle; Sarma, Debajit; Zhang, Yongbo; Wasielewski, Michael R.; Kanatzidis, Mercouri G.
2017-01-01
Perovskite solar cells have revolutionized the fabrication of solution-processable solar cells. The presence of lead in the devices makes this technology less attractive, and alternative metals in perovskites are being researched as suitable alternatives. We demonstrate a new type of tin-based perovskite absorber that incorporates both ethylenediammonium (en) and formamidinium (FA), forming new materials of the type {en}FASnI3. The three-dimensional ASnI3 structure is stable only with methylammonium, FA, and Cs cations, and the bandgap can be tuned with solid solutions, such as ASnI3−xBrx. We show that en can serve as a new A cation capable of achieving marked increases in the bandgap without the need for solid solutions. The en introduces a new bandgap tuning mechanism that arises from massive Schottky style defects. In addition, incorporation of the en cation in the structure markedly increases the air stability and improves the photoelectric properties of the tin-based perovskite absorbers. Our best-performing {en}FASnI3 solar cell has the highest efficiency of 7.14%, which is achieved for a lead-free perovskite cell, and retains 96% of its initial efficiency after aging over 1000 hours with encapsulation. Our results introduce a new approach for improving the performance and stability of tin-based, lead-free perovskite solar cells. PMID:28875173
Genetics Home Reference: familial glucocorticoid deficiency
... familial glucocorticoid deficiency type 1 lead to defective trafficking of the receptor to the cell surface. J ... short stature, and natural killer cell deficiency in humans. J Clin Invest. 2012 Mar;122(3):814- ...
Chimeric antigen receptor (CAR) T-cell immunotherapy has emerged as a promising treatment for pre-B cell acute lymphoblastic leukemia (B-ALL), the most common type of childhood cancer. B-ALL is characterized by an overproduction of immature white blood cells called lymphoblasts. In a trial led by Center for Cancer Research investigators, around 70 to 90 percent of patients
Bacterial Biofilms as Complex Communities
NASA Astrophysics Data System (ADS)
Vlamakis, Hera
2010-03-01
Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.
Barrier Epithelial Cells and the Control of Type 2 Immunity.
Hammad, Hamida; Lambrecht, Bart N
2015-07-21
Type-2-cell-mediated immunity, rich in eosinophils, basophils, mast cells, CD4(+) T helper 2 (Th2) cells, and type 2 innate lymphoid cells (ILC2s), protects the host from helminth infection but also drives chronic allergic diseases like asthma and atopic dermatitis. Barrier epithelial cells (ECs) represent the very first line of defense and express pattern recognition receptors to recognize type-2-cell-mediated immune insults like proteolytic allergens or helminths. These ECs mount a prototypical response made up of chemokines, innate cytokines such as interleukin-1 (IL-1), IL-25, IL-33, and thymic stromal lymphopoietin (TSLP), as well as the alarmins uric acid, ATP, HMGB1, and S100 proteins. These signals program dendritic cells (DCs) to mount Th2-cell-mediated immunity and in so doing boost ILC2, basophil, and mast cell function. Here we review the general mechanisms of how different stimuli trigger type-2-cell-mediated immunity at mucosal barriers and how this leads to protection or disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Katsukawa, Mitsuko; Ohsawa, Shizue; Zhang, Lina; Yan, Yan; Igaki, Tatsushi
2018-06-04
Normal epithelial tissue exerts an intrinsic tumor-suppressive effect against oncogenically transformed cells. In Drosophila imaginal epithelium, clones of oncogenic polarity-deficient cells mutant for scribble (scrib) or discs large (dlg) are eliminated by cell competition when surrounded by wild-type cells. Here, through a genetic screen in Drosophila, we identify Serpin5 (Spn5), a secreted negative regulator of Toll signaling, as a crucial factor for epithelial cells to eliminate scrib mutant clones from epithelium. Downregulation of Spn5 in wild-type cells leads to elevation of Toll signaling in neighboring scrib cells. Strikingly, forced activation of Toll signaling or Toll-related receptor (TRR) signaling in scrib clones transforms scrib cells from losers to supercompetitors, resulting in tumorous overgrowth of mutant clones. Mechanistically, Toll activation in scrib clones leads to c-Jun N-terminal kinase (JNK) activation and F-actin accumulation, which cause strong activation of the Hippo pathway effector Yorkie that blocks cell death and promotes cell proliferation. Our data suggest that Spn5 secreted from normal epithelial cells acts as a component of the extracellular surveillance system that facilitates elimination of pre-malignant cells from epithelium. Copyright © 2018 Elsevier Ltd. All rights reserved.
Genetics Home Reference: spinal muscular atrophy
... atrophy types I, II, III, and IV. SMN1 gene mutations lead to a shortage of the SMN protein. ... to be broken down (degraded) within cells. UBA1 gene mutations lead to reduced or absent levels of functional ...
Inhibition of placental 11beta-hydroxysteroid dehydrogenase type 2 by lead.
St-Pierre, Joey; Fraser, Marc; Vaillancourt, Cathy
2016-10-01
Lead interferes with cortisol blood concentration, increases the risk of obstetrical complications, and could alter fetal development. The placenta controls maternal cortisol transfer to the fetus by the activity of the type 2 11β-hydroxysteroid dehydrogenase (11β-HSD2), which converts cortisol into inactive cortisone. This study determines the effect of lead on the expression and activity of the placental 11β-HSD2 in human trophoblast-like BeWo cells. Cells were treated with increasing concentration (0-1000nM) of PbCl2 for 24h. 11β-HSD2 protein expression was reduced by 45% at 1000nM of PbCl 2 compared to untreated cells, while the activity was significantly reduced by PbCl 2 at 10, 100 and 1000nM. This study shows the direct inhibitory action of lead on placental 11β-HSD2 activity and suggests that this heavy metal reduces the efficiency of the placental protection against the adverse effects of high cortisol level during fetal development. Copyright © 2016 Elsevier Inc. All rights reserved.
Random mtDNA mutations modulate proliferation capacity in mouse embryonic fibroblasts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukat, Alexandra; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases; Edgar, Daniel
2011-06-10
Highlights: {yields} Increased mtDNA mutations in MEFs lead to high level of spontaneous immortalization. {yields} This process is independent of endogenous ROS production. {yields} Aerobic glycolysis significantly contributes to spontaneous immortalization of MEFs. -- Abstract: An increase in mtDNA mutation load leads to a loss of critical cells in different tissues thereby contributing to the physiological process of organismal ageing. Additionally, the accumulation of senescent cells that display changes in metabolic function might act in an active way to further disrupt the normal tissue function. We believe that this could be the important link missing in our understanding of themore » molecular mechanisms of premature ageing in the mtDNA mutator mice. We tested proliferation capacity of mtDNA mutator cells in vitro. When cultured in physiological levels of oxygen (3%) their proliferation capacity is somewhat lower than wild-type cells. Surprisingly, in conditions of increased oxidative stress (20% O{sub 2}) mtDNA mutator mouse embryonic fibroblasts exhibit continuous proliferation due to spontaneous immortalization, whereas the same conditions promote senescence in wild-type cells. We believe that an increase in aerobic glycolysis observed in mtDNA mutator mice is a major mechanism behind this process. We propose that glycolysis promotes proliferation and allows a fast turnover of metabolites, but also leads to energy crisis due to lower ATP production rate. This could lead to compromised replication and/or repair and therefore, in rare cases, might lead to mutations in tumor suppressor genes and spontaneous immortalization.« less
Aboul-Ela, Ezzat I
2002-04-26
The protective effect of calcium given orally by gavage with two doses (40 and 80mg/kg body weight) was evaluated against clastogenecity induced by lead acetate with two concentrations (200 and 400mg/kg diet) on bone marrow and spermatocyte cells of mice in vivo. The parameter screened was percentage of chromosomal aberrations with and without gaps and sperm abnormalities. Statistical analyses indicated the protection efficacy of calcium with the high dose rather than the other in both types of mouse cells. The observation from the laboratory tests, dealing that lead acetate can be considered as an environmental genotoxic material. We recommended that it must be administered of calcium (as calcium chloride) as a protective agent to reduce the genotoxic effect of lead in the somatic and germ cells.
Lee, Hyang-Mi; Fleige, Anne; Forman, Ruth; Cho, Sunglim; Khan, Aly Azeem; Lin, Ling-Li; Nguyen, Duc T.; O'Hara-Hall, Aisling; Yin, Zhinan; Hunter, Christopher A.; Muller, Werner; Lu, Li-Fan
2015-01-01
IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population. PMID:25658840
De Palo, Giovanna; Yi, Darvin; Endres, Robert G.
2017-01-01
The transition from single-cell to multicellular behavior is important in early development but rarely studied. The starvation-induced aggregation of the social amoeba Dictyostelium discoideum into a multicellular slug is known to result from single-cell chemotaxis towards emitted pulses of cyclic adenosine monophosphate (cAMP). However, how exactly do transient, short-range chemical gradients lead to coherent collective movement at a macroscopic scale? Here, we developed a multiscale model verified by quantitative microscopy to describe behaviors ranging widely from chemotaxis and excitability of individual cells to aggregation of thousands of cells. To better understand the mechanism of long-range cell—cell communication and hence aggregation, we analyzed cell—cell correlations, showing evidence of self-organization at the onset of aggregation (as opposed to following a leader cell). Surprisingly, cell collectives, despite their finite size, show features of criticality known from phase transitions in physical systems. By comparing wild-type and mutant cells with impaired aggregation, we found the longest cell—cell communication distance in wild-type cells, suggesting that criticality provides an adaptive advantage and optimally sized aggregates for the dispersal of spores. PMID:28422986
Ischemic duodenal ulcer, an unusual presentation of sickle cell disease.
Julka, Rahul N; Aduli, Farshad; Lamps, Laura W; Olden, Kevin W
2008-03-01
Sickle cell disease is caused by molecular abnormalities in the formation of hemoglobin, leading to pain crisis from recurrent vascular occlusion by sickled hemoglobin. Impaired flow in the microvasculature can lead to ischemia, tissue infarction and ulceration. Abdominal pain, a common complaint in sickle cell disease, can be due to an uncommon etiology, ischemic duodenal ulceration. This is due to primary mucosal infarction caused by sickling, leading to poor healing of infarcted areas. Prompt endoscopic and/or urgent surgical intervention should be considered, particularly if anticoagulation is an issue, as proton pump inhibitor use is ineffective in healing this type of ulcer.
Cornish, Alex J; Filippis, Ioannis; David, Alessia; Sternberg, Michael J E
2015-09-01
Each cell type found within the human body performs a diverse and unique set of functions, the disruption of which can lead to disease. However, there currently exists no systematic mapping between cell types and the diseases they can cause. In this study, we integrate protein-protein interaction data with high-quality cell-type-specific gene expression data from the FANTOM5 project to build the largest collection of cell-type-specific interactomes created to date. We develop a novel method, called gene set compactness (GSC), that contrasts the relative positions of disease-associated genes across 73 cell-type-specific interactomes to map genes associated with 196 diseases to the cell types they affect. We conduct text-mining of the PubMed database to produce an independent resource of disease-associated cell types, which we use to validate our method. The GSC method successfully identifies known disease-cell-type associations, as well as highlighting associations that warrant further study. This includes mast cells and multiple sclerosis, a cell population currently being targeted in a multiple sclerosis phase 2 clinical trial. Furthermore, we build a cell-type-based diseasome using the cell types identified as manifesting each disease, offering insight into diseases linked through etiology. The data set produced in this study represents the first large-scale mapping of diseases to the cell types in which they are manifested and will therefore be useful in the study of disease systems. Overall, we demonstrate that our approach links disease-associated genes to the phenotypes they produce, a key goal within systems medicine.
1993-01-01
Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis. PMID:8380174
Different subsets of natural killer T cells may vary in their roles in health and disease.
Kumar, Vipin; Delovitch, Terry L
2014-07-01
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class-I-like molecule. Most type I NKT cells express a semi-invariant T-cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR-α dominates CD1d-lipid recognition by type I NKT cells, TCR-α and TCR-β contribute equally to CD1d-lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid-CD1d complexes activate a host of cytokine-dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen-presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes. © 2014 John Wiley & Sons Ltd.
Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.
Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry
2018-03-01
Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia normally act to mitigate neurodegeneration in ALS/FTLD? To what extent do cellular signaling pathways mediate non-cell autonomous communications between distinct central nervous system (CNS) cell types during disease? Is it possible to therapeutically target specific cell types in the CNS?
NASA Technical Reports Server (NTRS)
Baird, R. A.
1994-01-01
1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from < 0.5 to 1.25 microns and were largest in Type B and smallest in Type F and Type E cells. Sensitivity, defined as the slope of the normalized displacement-response curve, was inversely correlated with linear range. 4. The contribution of geometric factors associated with the hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the lever arm between kinociliary and stereociliary displacement; 2) tip link extension/linear displacement, largely a function of stereociliary height and separation; and 3) stereociliary number, an estimate of the number of transduction channels, were considered in this analysis. The first of these factors was quantitatively more important than the latter two factors and their total contribution was largest in Type B and Type C cells. Theoretical models were also used to calculate the relation between rotary and linear displacement.(ABSTRACT TRUNCATED AT 400 WORDS).
NASA Astrophysics Data System (ADS)
Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J. M.; Krawczyk, P.; Rozmanowski, T.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.
Reticulated vitreous carbon (RVC ®) and RVC ® plated with lead were investigated as carriers for the negative electrode of lead-acid cell. The RVC ® and Pb/RVC ® carriers were pasted with active paste (received from JENOX Ltd., Polish producer of lead-acid batteries) and prepared to be used in lead-acid cell. Comparative study of electrodes based on RVC ® and Pb/RVC ® has been done using constant-current charging/discharging, constant-potential discharging and cycling voltammetry measurements. Scanning electron microscopy (SEM) was employed to determine the morphology of the lead layer deposited on the RVC surface. Hybrid flooded single lead-acid cells containing one negative electrode, based on new type of carrier (RVC ® or Pb/RVC ®), sandwiched between two positive electrodes, based on the Pb-Ca grids, were assembled and subjected to electrochemical tests. It has been found that both materials, RVC ® and Pb/RVC ®, can be used as carriers of negative electrode, but the latter seems to have better influence on the discharge performance.
6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis.
Cavanagh, Amy T; Wassarman, Karen M
2013-05-01
We have discovered that 6S-1 RNA (encoded by bsrA) is important for appropriate timing of sporulation in Bacillus subtilis in that cells lacking 6S-1 RNA sporulate earlier than wild-type cells. The time to generate a mature spore once the decision to sporulate has been made is unaffected by 6S-1 RNA, and, therefore, we propose that it is the timing of onset of sporulation that is altered. Interestingly, the presence of cells lacking 6S-1 RNA in coculture leads to all cell types exhibiting an early-sporulation phenotype. We propose that cells lacking 6S-1 RNA modify their environment in a manner that promotes early sporulation. In support of this model, resuspension of wild-type cells in conditioned medium from ΔbsrA cultures also resulted in early sporulation. Use of Escherichia coli growth as a reporter of the nutritional status of conditioned media suggested that B. subtilis cells lacking 6S-1 RNA reduce the nutrient content of their environment earlier than wild-type cells. Several pathways known to impact the timing of sporulation, such as the skf- and sdp-dependent cannibalism pathways, were eliminated as potential targets of 6S-1 RNA-mediated changes, suggesting that 6S-1 RNA activity defines a novel mechanism for altering the timing of onset of sporulation. In addition, 6S-2 RNA does not influence the timing of sporulation, providing further evidence of the independent influences of these two related RNAs on cell physiology.
Chimeric antigen receptor (CAR) T-cell immunotherapy has emerged as a promising treatment for pre-B cell acute lymphoblastic leukemia (B-ALL), the most common type of childhood cancer. B-ALL is characterized by an overproduction of immature white blood cells called lymphoblasts. In a trial led by Center for Cancer Research investigators, around 70 to 90 percent of patients whose B-ALL has relapsed or developed resistance to chemotherapy entered remission after CAR T-cell therapy targeting CD19. Read more…
Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.
Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam
2016-07-01
Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Genetics Home Reference: Niemann-Pick disease
... is responsible for the conversion of a fat (lipid) called sphingomyelin into another type of lipid called ceramide. Mutations in SMPD1 lead to a ... these genes are involved in the movement of lipids within cells. Mutations in these genes lead to ...
Stem Cell Therapies in Retinal Disorders.
Garg, Aakriti; Yang, Jin; Lee, Winston; Tsang, Stephen H
2017-02-02
Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs) have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs) revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients' diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.
Cooperative cell motility during tandem locomotion of amoeboid cells
Bastounis, Effie; Álvarez-González, Begoña; del Álamo, Juan C.; Lasheras, Juan C.; Firtel, Richard A.
2016-01-01
Streams of migratory cells are initiated by the formation of tandem pairs of cells connected head to tail to which other cells subsequently adhere. The mechanisms regulating the transition from single to streaming cell migration remain elusive, although several molecules have been suggested to be involved. In this work, we investigate the mechanics of the locomotion of Dictyostelium tandem pairs by analyzing the spatiotemporal evolution of their traction adhesions (TAs). We find that in migrating wild-type tandem pairs, each cell exerts traction forces on stationary sites (∼80% of the time), and the trailing cell reuses the location of the TAs of the leading cell. Both leading and trailing cells form contractile dipoles and synchronize the formation of new frontal TAs with ∼54-s time delay. Cells not expressing the lectin discoidin I or moving on discoidin I–coated substrata form fewer tandems, but the trailing cell still reuses the locations of the TAs of the leading cell, suggesting that discoidin I is not responsible for a possible chemically driven synchronization process. The migration dynamics of the tandems indicate that their TAs’ reuse results from the mechanical synchronization of the leading and trailing cells’ protrusions and retractions (motility cycles) aided by the cell–cell adhesions. PMID:26912787
Activation of ERK signaling and induction of colon cancer cell death by piperlongumine
USDA-ARS?s Scientific Manuscript database
Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objectiv...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa
Highlights: Black-Right-Pointing-Pointer We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. Black-Right-Pointing-Pointer A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. Black-Right-Pointing-Pointer DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. Black-Right-Pointing-Pointer DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. Black-Right-Pointing-Pointer DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ andmore » aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after {gamma}-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of {gamma}H2AX foci after {gamma}-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of {gamma}H2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after {gamma}-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the number of 53BP1 foci compared with wild-type cells. These results suggest that low level of DNA-PK activity causes aberrant DNA-PKcs autophosphorylation in RIC1 cells. It is known that 53BP1 is involved in both DNA-PK dependent and independent NHEJ. Therefore we suggest that DNA-PK independent NHEJ repair DSBs under the condition of decreased DNA-PK activity, which causes reduction of HR efficiency.« less
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1981-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.
NASA Technical Reports Server (NTRS)
Trial, J.; Rice, L.; Alfrey, C. P.
2001-01-01
BACKGROUND: We have described the rapid destruction of young red blood cells (neocytolysis) in astronauts adapting to microgravity, in polycythemic high altitude dwellers who descend to sea level, and in patients with kidney disorders. This destruction results from a decrease in erythropoietin (EPO) production. We hypothesized that such EPO withdrawal could trigger physiological changes in cells other than red cell precursors and possibly lead to the uptake and destruction of young red cells by altering endothelial cell-macrophage interactions, most likely occurring in the spleen. METHODS: We identified EPO receptors on human splenic endothelial cells (HSEC) and investigated the responses of these cells to EPO withdrawal. RESULTS: A monolayer of HSEC, unlike human endothelial cells from aorta, glomerulus, or umbilical vein, demonstrated an increase in permeability upon EPO withdrawal that was accompanied by unique morphological changes. When HSEC were cultured with monocyte-derived macrophages (but not when either cell type was cultured alone), EPO withdrawal induced an increased ingestion of young red cells by macrophages when compared with the constant presence or absence of EPO. CONCLUSIONS: HSEC may represent a unique cell type that is able to respond to EPO withdrawal by increasing permeability and interacting with phagocytic macrophages, which leads to neocytolysis.
Leading Process Branch Instability in Lis1+/− Nonradially Migrating Interneurons
Gopal, Pallavi P.; Simonet, Jacqueline C.; Shapiro, William
2010-01-01
Mammalian forebrain development requires extensive migration, yet the mechanisms through which migrating neurons sense and respond to guidance cues are not well understood. Similar to the axon growth cone, the leading process and branches of neurons may guide migration, but the cytoskeletal events that regulate branching are unknown. We have previously shown that loss of microtubule-associated protein Lis1 reduces branching during migration compared with wild-type neurons. Using time-lapse imaging of Lis1+/− and Lis1+/+ cells migrating from medial ganglionic eminence explant cultures, we show that the branching defect is not due to a failure to initiate branches but a defect in the stabilization of new branches. The leading processes of Lis1+/− neurons have reduced expression of stabilized, acetylated microtubules compared with Lis1+/+ neurons. To determine whether Lis1 modulates branch stability through its role as the noncatalytic β regulatory subunit of platelet-activating factor (PAF) acetylhydrolase 1b, exogenous PAF was applied to wild-type cells. Excess PAF added to wild-type neurons phenocopies the branch instability observed in Lis1+/− neurons, and a PAF antagonist rescues leading process branching in Lis1+/− neurons. These data highlight a role for Lis1, acting through the PAF pathway, in leading process branching and microtubule stabilization. PMID:19861636
Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung
2004-03-15
The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.
Rakers, Sebastian; Klinger, Matthias; Kruse, Charli; Gebert, Marina
2011-12-01
Here, we report the establishment of a permanent skin cell culture from rainbow trout (Oncorhynchus mykiss). The cells of the fish skin cell culture could be propagated over 60 passages so far. Furthermore, we show for the first time that it is possible to integrate freshly harvested rainbow trout scales into this new fish skin cell culture. We further demonstrated that epithelial cells derived from the scales survived in the artificial micro-environment of surrounding fibroblast-like cells. Also, antibody staining indicated that both cell types proliferated and started to build connections with the other cell type. It seems that it is possible to generate an 'artificial skin' with two different cell types. This could lead to the development of a three-dimensional test system, which might be a better in vitro representative of fish skin in vivo than individual skin cell lines. Copyright © 2011 Elsevier GmbH. All rights reserved.
Long, Yan; Xu, Miao; Li, Rong; Dai, Sheng; Beers, Jeanette; Chen, Guokai; Soheilian, Ferri; Baxa, Ulrich; Wang, Mengqiao; Marugan, Juan J; Muro, Silvia; Li, Zhiyuan; Brady, Roscoe; Zheng, Wei
2016-12-01
: Niemann-Pick disease type A (NPA) is a lysosomal storage disease caused by mutations in the SMPD1 gene that encodes acid sphingomyelinase (ASM). Deficiency in ASM function results in lysosomal accumulation of sphingomyelin and neurodegeneration. Currently, there is no effective treatment for NPA. To accelerate drug discovery for treatment of NPA, we generated induced pluripotent stem cells from two patient dermal fibroblast lines and differentiated them into neural stem cells. The NPA neural stem cells exhibit a disease phenotype of lysosomal sphingomyelin accumulation and enlarged lysosomes. By using this disease model, we also evaluated three compounds that reportedly reduced lysosomal lipid accumulation in Niemann-Pick disease type C as well as enzyme replacement therapy with ASM. We found that α-tocopherol, δ-tocopherol, hydroxypropyl-β-cyclodextrin, and ASM reduced sphingomyelin accumulation and enlarged lysosomes in NPA neural stem cells. Therefore, the NPA neural stem cells possess the characteristic NPA disease phenotype that can be ameliorated by tocopherols, cyclodextrin, and ASM. Our results demonstrate the efficacies of cyclodextrin and tocopherols in the NPA cell-based model. Our data also indicate that the NPA neural stem cells can be used as a new cell-based disease model for further study of disease pathophysiology and for high-throughput screening to identify new lead compounds for drug development. Currently, there is no effective treatment for Niemann-Pick disease type A (NPA). To accelerate drug discovery for treatment of NPA, NPA-induced pluripotent stem cells were generated from patient dermal fibroblasts and differentiated into neural stem cells. By using the differentiated NPA neuronal cells as a cell-based disease model system, α-tocopherol, δ-tocopherol, and hydroxypropyl-β-cyclodextrin significantly reduced sphingomyelin accumulation in these NPA neuronal cells. Therefore, this cell-based NPA model can be used for further study of disease pathophysiology and for high-throughput screening of compound libraries to identify lead compounds for drug development. ©AlphaMed Press.
Linking innate to adaptive immunity through dendritic cells.
Steinman, Ralph M
2006-01-01
The function of dendritic cells (DCs) in linking innate to adaptive immunity is often summarized with two terms. DCs are sentinels, able to capture, process and present antigens and to migrate to lymphoid tissues to select rare, antigen-reactive T cell clones. DCs are also sensors, responding to a spectrum of environmental cues by extensive differentiation or maturation. The type of DC and the type of maturation induced by different stimuli influences the immunological outcome, such as the differentiation of Thl vs. Th2 T cells. Here we summarize the contributions of DCs to innate defences, particularly the production of immune enhancing cytokines and the activation of innate lymphocytes. Then we outline three innate features of DCs that influence peripheral tolerance and lead to adaptive immunity: a specialized endocytic system for antigen capture and processing, location and movements in vivo, and maturation in response to an array of stimuli. A new approach to the analysis of DC biology is to target antigens selectively to maturing DCs in vivo. This leads to stronger, more prolonged and broader (many immunogenic peptides) immunity by both T cells and B cells.
Ammonia toxicity: from head to toe?
Dasarathy, Srinivasan; Mookerjee, Rajeshwar P; Rackayova, Veronika; Rangroo Thrane, Vinita; Vairappan, Balasubramaniyan; Ott, Peter; Rose, Christopher F
2017-04-01
Ammonia is diffused and transported across all plasma membranes. This entails that hyperammonemia leads to an increase in ammonia in all organs and tissues. It is known that the toxic ramifications of ammonia primarily touch the brain and cause neurological impairment. However, the deleterious effects of ammonia are not specific to the brain, as the direct effect of increased ammonia (change in pH, membrane potential, metabolism) can occur in any type of cell. Therefore, in the setting of chronic liver disease where multi-organ dysfunction is common, the role of ammonia, only as neurotoxin, is challenged. This review provides insights and evidence that increased ammonia can disturb many organ and cell types and hence lead to dysfunction.
Conrad, Curdin; Di Domizio, Jeremy; Mylonas, Alessio; Belkhodja, Cyrine; Demaria, Olivier; Navarini, Alexander A; Lapointe, Anne-Karine; French, Lars E; Vernez, Maxime; Gilliet, Michel
2018-01-02
Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.
Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan
2016-02-01
Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.
Best, Sarah A; Kersbergen, Ariena; Asselin-Labat, Marie-Liesse; Sutherland, Kate D
2018-01-01
Lung cancers display considerable intertumoral heterogeneity, leading to the classification of distinct tumor subtypes. Our understanding of the genetic aberrations that underlie tumor subtypes has been greatly enhanced by recent genomic sequencing studies and state-of-the-art gene targeting technologies, highlighting evidence that distinct lung cancer subtypes may be derived from different "cells-of-origin". Here, we describe the intra-tracheal delivery of cell type-restricted Ad5-Cre viruses into the lungs of adult mice, combined with immunohistochemical and flow cytometry strategies for the detection of lung cancer-initiating cells in vivo.
Loss of tight junction barrier function and its role in cancer metastasis.
Martin, Tracey A; Jiang, Wen G
2009-04-01
As the most apical structure between epithelial and endothelial cells, tight junctions (TJ) are well known as functioning as a control for the paracellular diffusion of ions and certain molecules. It has however, become increasingly apparent that the TJ has a vital role in maintaining cell to cell integrity and that the loss of cohesion of the structure can lead to invasion and thus metastasis of cancer cells. This article will present data showing how modulation of expression of TJ molecules results in key changes in TJ barrier function leading to the successful metastasis of a number of different cancer types.
Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex
2017-01-01
A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921
Oh, Soong Ju; Berry, Nathaniel E; Choi, Ji-Hyuk; Gaulding, E Ashley; Paik, Taejong; Hong, Sung-Hoon; Murray, Christopher B; Kagan, Cherie R
2013-03-26
We investigate the effects of stoichiometric imbalance on the electronic properties of lead chalcogenide nanocrystal films by introducing excess lead (Pb) or selenium (Se) through thermal evaporation. Hall-effect and capacitance-voltage measurements show that the carrier type, concentration, and Fermi level in nanocrystal solids may be precisely controlled through their stoichiometry. By manipulating only the stoichiometry of the nanocrystal solids, we engineer the characteristics of electronic and optoelectronic devices. Lead chalcogenide nanocrystal field-effect transistors (FETs) are fabricated at room temperature to form ambipolar, unipolar n-type, and unipolar p-type semiconducting channels as-prepared and with excess Pb and Se, respectively. Introducing excess Pb forms nanocrystal FETs with electron mobilities of 10 cm(2)/(V s), which is an order of magnitude higher than previously reported in lead chalcogenide nanocrystal devices. Adding excess Se to semiconductor nanocrystal solids in PbSe Schottky solar cells enhances the power conversion efficiency.
Wild type measles virus attenuation independent of type I IFN.
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-02-03
Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.
Wild type measles virus attenuation independent of type I IFN
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-01-01
Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351
Common themes and cell type specific variations of higher order chromatin arrangements in the mouse
Mayer, Robert; Brero, Alessandro; von Hase, Johann; Schroeder, Timm; Cremer, Thomas; Dietzel, Steffen
2005-01-01
Background Similarities as well as differences in higher order chromatin arrangements of human cell types were previously reported. For an evolutionary comparison, we now studied the arrangements of chromosome territories and centromere regions in six mouse cell types (lymphocytes, embryonic stem cells, macrophages, fibroblasts, myoblasts and myotubes) with fluorescence in situ hybridization and confocal laser scanning microscopy. Both species evolved pronounced differences in karyotypes after their last common ancestors lived about 87 million years ago and thus seem particularly suited to elucidate common and cell type specific themes of higher order chromatin arrangements in mammals. Results All mouse cell types showed non-random correlations of radial chromosome territory positions with gene density as well as with chromosome size. The distribution of chromosome territories and pericentromeric heterochromatin changed during differentiation, leading to distinct cell type specific distribution patterns. We exclude a strict dependence of these differences on nuclear shape. Positional differences in mouse cell nuclei were less pronounced compared to human cell nuclei in agreement with smaller differences in chromosome size and gene density. Notably, the position of chromosome territories relative to each other was very variable. Conclusion Chromosome territory arrangements according to chromosome size and gene density provide common, evolutionary conserved themes in both, human and mouse cell types. Our findings are incompatible with a previously reported model of parental genome separation. PMID:16336643
Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN.
Haseneen, Nadia A; Vaday, Gayle G; Zucker, Stanley; Foda, Hussein D
2003-03-01
High-volume mechanical ventilation leads to ventilator-induced lung injury. This type of lung injury is accompanied by an increased release and activation of matrix metalloproteinases (MMPs). To investigate the mechanism leading to the increased MMP release, we systematically studied the effect of mechanical stretch on human microvascular endothelial cells isolated from the lung. We exposed cells grown on collagen 1 BioFlex plates to sinusoidal cyclic stretch at 0.5 Hz using the Flexercell system with 17-18% elongation of cells. After 4 days of cell stretching, conditioned media and cell lysate were collected and analyzed by gelatin, casein, and reverse zymograms as well as Western blotting. RT-PCR of mRNA extracted from stretched cells was performed. Our results show that 1) cyclic stretch led to increased release and activation of MMP-2 and MMP-1; 2) the activation of MMP-2 was accompanied by an increase in membrane type-1 MMP (MT1-MMP) and inhibited by a hydroxamic acid-derived inhibitor of MMPs (Prinomastat, AG3340); and 3) the MMP-2 release and activation were preceded by an increase in production of extracellular MMP inducer (EMMPRIN). These results suggest that cyclic mechanical stretch leads to MMP-2 activation through an MT1-MMP mechanism. EMMPRIN may play an important role in the release and activation of MMPs during lung injury.
Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M
2017-02-01
The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.
Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells.
Chang, Chan-Jung; Mitra, Koyel; Koya, Mariko; Velho, Michelle; Desprat, Romain; Lenz, Jack; Bouhassira, Eric E
2011-01-01
We have previously shown that human embryonic stem cells can be differentiated into embryonic and fetal type of red blood cells that sequentially express three types of hemoglobins recapitulating early human erythropoiesis. We report here that we have produced iPS from three somatic cell types: adult skin fibroblasts as well as embryonic and fetal mesenchymal stem cells. We show that regardless of the age of the donor cells, the iPS produced are fully reprogrammed into a pluripotent state that is undistinguishable from that of hESCs by low and high-throughput expression and detailed analysis of globin expression patterns by HPLC. This suggests that reprogramming with the four original Yamanaka pluripotency factors leads to complete erasure of all functionally important epigenetic marks associated with erythroid differentiation regardless of the age or the tissue type of the donor cells, at least as detected in these assays. The ability to produce large number of erythroid cells with embryonic and fetal-like characteristics is likely to have many translational applications.
Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus.
García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina; Lopez, Daniel
2017-09-12
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus , which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureus teichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.
Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus
García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina
2017-01-01
A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. PMID:28893374
Materials, device, and interface engineering to improve polymer-based solar cells
NASA Astrophysics Data System (ADS)
Hau, Steven Kin
The continued depletion of fossil fuel resources has lead to the rise in energy production costs which has lead to the search for an economically viable alternative energy source. One alternative of particular interest is solar energy. A promising alternative to inorganic materials is organic semiconductor polymer solar cells due to their advantages of being cheaper, light weight, flexible and made into large areas by roll-to-roll processing. In this dissertation, an integrated approach is taken to improve the overall performance of polymer-based solar cells by the development of new polymer materials, device architectures, and interface engineering of the contacts between layers. First, a new class of metallated conjugated polymers is explored as potential solar cell materials. Systematic modifications to the molecular units on the main chain of amorphous metallated Pt-polymers show a correlation that improving charge carrier mobility also improves solar cell performance leading to mobilities as high as 1 x 10-2 cm2/V·s and efficiencies as high as 4.1%. Second, an inverted device architecture using a more air stable electrode (Ag) is demonstrated to improve the ambient stability of unencapsulated P3HT:PCBM devices showing over 80% efficiency retention after 40 days of exposure. To further demonstrate the potential for roll-to-roll processing of polymer solar cells, solution processed Ag-nanoparticles were used to replace the vacuum deposited Ag anode electrode for inverted solar cells showing efficiencies as high as 3%. In addition, solution processed polymer based electrodes were demonstrated as a replacement to the expensive and brittle indium tin oxide showing efficiencies of 3% on flexible substrate solar cells. Third, interface engineering of the n-type (high temperature sol-gel processed TiO2 or ZnO, low temperature processed ZnO nanoparticles) electron selective metal oxide contacts in inverted solar cells with self-assembled monolayers (SAM) show improved device performance. Modifying the n-type layer in inverted cells with C60-SAMs containing different anchoring groups leads to an improvement in photocurrent density and fill factor leading to efficiencies as high as 4.9%.
Rucevic, Marijana; Kourjian, Georgio; Boucau, Julie; Blatnik, Renata; Garcia Bertran, Wilfredo; Berberich, Matthew J.; Walker, Bruce D.; Riemer, Angelika B.
2016-01-01
ABSTRACT Despite the critical role of epitope presentation for immune recognition, we still lack a comprehensive definition of HIV peptides presented by HIV-infected cells. Here we identified 107 major histocompatibility complex (MHC)-bound HIV peptides directly from the surface of live HIV-transfected 293T cells, HIV-infected B cells, and primary CD4 T cells expressing a variety of HLAs. The majority of peptides were 8 to 12 amino acids (aa) long and mostly derived from Gag and Pol. The analysis of the total MHC-peptidome and of HLA-A02-bound peptides identified new noncanonical HIV peptides of up to 16 aa that could not be predicted by HLA anchor scanning and revealed an heterogeneous surface peptidome. Nested sets of surface HIV peptides included optimal and extended HIV epitopes and peptides partly overlapping or distinct from known epitopes, revealing new immune responses in HIV-infected persons. Surprisingly, in all three cell types, a majority of Gag peptides derived from p15 rather than from the most immunogenic p24. The cytosolic degradation of peptide precursors in corresponding cells confirmed the generation of identified surface-nested peptides. Cytosolic degradation revealed peptides commonly produced in all cell types and displayed by various HLAs, peptides commonly produced in all cell types and selectively displayed by specific HLAs, and peptides produced in only one cell type. Importantly, we identified areas of proteins leading to common presentations of noncanonical peptides by several cell types with distinct HLAs. These peptides may benefit the design of immunogens, focusing T cell responses on relevant markers of HIV infection in the context of HLA diversity. IMPORTANCE The recognition of HIV-infected cells by immune T cells relies on the presentation of HIV-derived peptides by diverse HLA molecules at the surface of cells. The landscape of HIV peptides displayed by HIV-infected cells is not well defined. Considering the diversity of HLA molecules in the human population, it is critical for vaccine design to identify HIV peptides that may be displayed despite the HLA diversity. We identified 107 HIV peptides directly from the surface of three cell types infected with HIV. They corresponded to nested sets of HIV peptides of canonical and novel noncanonical lengths not predictable by the presence of HLA anchors. Importantly, we identified areas of HIV proteins leading to presentation of noncanonical peptides by several cell types with distinct HLAs. Including such peptides in vaccine immunogen may help to focus immune responses on common markers of HIV infection in the context of HLA diversity. PMID:27440904
Type17 T-cells in Central Nervous System Autoimmunity and Tumors
Okada, Hideho; Khoury, Samia J.
2012-01-01
Interleukin-17 (IL-17) producing Type17 T-cells, specifically T-helper (Th)17 cells reactive to central nervous system (CNS) autoantigens, manifest a higher migratory capability to the CNS parenchyma compared with other T-cell subpopulations due to their ability to penetrate the blood brain barrier (BBB). In the field of cancer immunotherapy, there are now a number of cell therapy approaches including early studies using T-cells transduced with chimeric antigen receptors in hematologic malignancy, suggesting that the use of T-cells or genetically modified T-cells could have a significant role in effective cancer therapy. However, the successful application of this strategy in solid tumors, such as CNS tumors, requires careful consideration of critical factors to improve the tumor-homing of T-cells. The current review is dedicated to discuss recent findings on the role of Type17 T-cells in CNS autoimmunity and cancer. The insight gained from these findings may lead to the development of novel therapeutic and prophylactic strategies for CNS autoimmunity and tumors. PMID:22454247
Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien
2011-10-01
Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.
Szaraz, Peter; Librach, Matthew; Maghen, Leila; Iqbal, Farwah; Barretto, Tanya A; Kenigsberg, Shlomit; Gauthier-Fisher, Andrée; Librach, Clifford L
2016-01-01
Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of our study was to investigate the cardiomyogenic differentiation potential of first trimester human umbilical cord perivascular cells (FTM HUCPVCs), a novel, young source of immunoprivileged mesenchymal stromal cells. Based on the expression of cardiomyocyte markers (cTnT, MYH6, SIRPA, and CX43) FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to bone marrow MSCs, while their immunogenicity remained significantly lower as indicated by HLA-A and HLA-G expression and susceptibility to T cell mediated cytotoxicity. When applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells within 1 week of coculture, making them the first MSC type with this ability. Our results indicate that young FTM HUCPVCs have superior cardiomyogenic potential coupled with beneficial immunogenic properties when compared to MSCs of older tissue sources, suggesting that in vitro predifferentiation could be a potential strategy to increase their effectiveness in vivo.
The role of AIRE in human autoimmune disease.
Akirav, Eitan M; Ruddle, Nancy H; Herold, Kevan C
2011-01-01
The autoimmune regulator (AIRE) gene encodes a transcription factor involved in the presentation of tissue-restricted antigens during T-cell development in the thymus. Mutations of this gene lead to type 1 autoimmune polyglandular syndrome (APS-1), also termed autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is characterized by the clinical presentation of at least two of a triad of underlying disorders: Addison disease, hypoparathyroidism and chronic mucocutaneous candidiasis. This Review describes the process of positive and negative selection of developing T cells in the thymus and the role of AIRE as a regulator of peripheral antigen presentation. Furthermore, it addresses how mutations of this gene lead to the failure to eliminate autoreactive T cells, which can lead to clinical autoimmune syndromes.
Differentiating Mouse Embryonic Stem Cells into Embryoid Bodies by Hanging-Drop Cultures.
Behringer, Richard; Gertsenstein, Marina; Nagy, Kristina Vintersten; Nagy, Andras
2016-12-01
Embryonic stem (ES) cells can develop into many types of differentiated tissues if they are placed into a differentiating environment. This can occur in vivo when the ES cells are injected into or aggregated with an embryo, or in vitro if their culture conditions are modified to induce differentiation. There are an increasing number of differentiating culture conditions that can bias the differentiation of ES cells into desired cell types. Determining the mechanisms that control ES cell differentiation into therapeutically important cell types is a quickly growing area of research. Knowledge gained from these studies may eventually lead to the use of stem cells to repair specific damaged tissues. Many times ES cell differentiation proceeds through an intermediate stage called the embryoid body (EB). EBs are round structures composed of ES cells that have undergone some of the initial stages of differentiation. EBs can then be manipulated further to generate more specific cell types. This protocol describes a method to differentiate ES cells into EBs. It produces EBs of comparable size. This aspect is important because the differentiation processes taking place inside an EB are influenced by its size. © 2016 Cold Spring Harbor Laboratory Press.
Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael
2013-06-01
Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.
Cardiac myosin binding protein C regulates postnatal myocyte cytokinesis
Jiang, Jianming; Burgon, Patrick G.; Wakimoto, Hiroko; Onoue, Kenji; Gorham, Joshua M.; O’Meara, Caitlin C.; Fomovsky, Gregory; McConnell, Bradley K.; Lee, Richard T.; Seidman, J. G.; Seidman, Christine E.
2015-01-01
Homozygous cardiac myosin binding protein C-deficient (Mybpct/t) mice develop dramatic cardiac dilation shortly after birth; heart size increases almost twofold. We have investigated the mechanism of cardiac enlargement in these hearts. Throughout embryogenesis myocytes undergo cell division while maintaining the capacity to pump blood by rapidly disassembling and reforming myofibrillar components of the sarcomere throughout cell cycle progression. Shortly after birth, myocyte cell division ceases. Cardiac MYBPC is a thick filament protein that regulates sarcomere organization and rigidity. We demonstrate that many Mybpct/t myocytes undergo an additional round of cell division within 10 d postbirth compared with their wild-type counterparts, leading to increased numbers of mononuclear myocytes. Short-hairpin RNA knockdown of Mybpc3 mRNA in wild-type mice similarly extended the postnatal window of myocyte proliferation. However, adult Mybpct/t myocytes are unable to fully regenerate the myocardium after injury. MYBPC has unexpected inhibitory functions during postnatal myocyte cytokinesis and cell cycle progression. We suggest that human patients with homozygous MYBPC3-null mutations develop dilated cardiomyopathy, coupled with myocyte hyperplasia (increased cell number), as observed in Mybpct/t mice. Human patients, with heterozygous truncating MYBPC3 mutations, like mice with similar mutations, have hypertrophic cardiomyopathy. However, the mechanism leading to hypertrophic cardiomyopathy in heterozygous MYBPC3+/− individuals is myocyte hypertrophy (increased cell size), whereas the mechanism leading to cardiac dilation in homozygous Mybpc3−/− mice is primarily myocyte hyperplasia. PMID:26153423
Melis, Daniela; Carbone, Fortunata; Minopoli, Giorgia; La Rocca, Claudia; Perna, Francesco; De Rosa, Veronica; Galgani, Mario; Andria, Generoso; Parenti, Giancarlo; Matarese, Giuseppe
2017-05-15
Glycogen storage disease type 1b (GSD-1b) is an autosomal-recessive disease caused by mutation of glucose-6-phosphate transporter and characterized by altered glycogen/glucose homeostasis. A higher frequency of autoimmune diseases has been observed in GSD-1b patients, but the molecular determinants leading to this phenomenon remain unknown. To address this question, we investigated the effect of glucose-6-phosphate transporter mutation on immune cell homeostasis and CD4 + T cell functions. In GSD-1b subjects, we found lymphopenia and a reduced capacity of T cells to engage glycolysis upon TCR stimulation. These phenomena associated with reduced expression of the FOXP3 transcription factor, lower suppressive function in peripheral CD4 + CD25 + FOXP3 + regulatory T cells, and an impaired capacity of CD4 + CD25 - conventional T cells to induce expression of FOXP3 after suboptimal TCR stimulation. These data unveil the metabolic determinant leading to an increased autoimmunity risk in GSD-1b patients. Copyright © 2017 by The American Association of Immunologists, Inc.
Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders.
Kaminsky, Natalie; Bihari, Ofer; Kanner, Sivan; Barzilai, Ari
2016-06-01
The DNA damage response (DDR) is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes). Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a "hostile" environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. Copyright © 2016 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
1984-08-01
exhibited strikingly different chromatographic characteristics. 2. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble...antigens. The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine , an acridine dye...chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis
The Players: Cells Involved in Glomerular Disease.
Kitching, A Richard; Hutton, Holly L
2016-09-07
Glomerular diseases are common and important. They can arise from systemic inflammatory or metabolic diseases that affect the kidney. Alternately, they are caused primarily by local glomerular abnormalities, including genetic diseases. Both intrinsic glomerular cells and leukocytes are critical to the healthy glomerulus and to glomerular dysregulation in disease. Mesangial cells, endothelial cells, podocytes, and parietal epithelial cells within the glomerulus all play unique and specialized roles. Although a specific disease often primarily affects a particular cell type, the close proximity, and interdependent functions and interactions between cells mean that even diseases affecting one cell type usually indirectly influence others. In addition to those cells intrinsic to the glomerulus, leukocytes patrol the glomerulus in health and mediate injury in disease. Distinct leukocyte types and subsets are present, with some being involved in different ways in an individual glomerular disease. Cells of the innate and adaptive immune systems are important, directing systemic immune and inflammatory responses, locally mediating injury, and potentially dampening inflammation and facilitating repair. The advent of new genetic and molecular techniques, and new disease models means that we better understand both the basic biology of the glomerulus and the pathogenesis of glomerular disease. This understanding should lead to better diagnostic techniques, biomarkers, and predictors of prognosis, disease severity, and relapse. With this knowledge comes the promise of better therapies in the future, directed toward halting pathways of injury and fibrosis, or interrupting the underlying pathophysiology of the individual diseases that lead to significant and progressive glomerular disease. Copyright © 2016 by the American Society of Nephrology.
IMM Solar Cell Shows Its Versatility - Continuum Magazine | NREL
. Inventing a new type of solar cell is one thing. Setting efficiency records with it and winning major awards add to the achievement. But when one of the world's leading manufacturers of compound semiconductor thin metal foil, and the substrate that the cell was grown on is removed. One advantage of this
Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.
Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A
2012-12-10
Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.
Adaptive and Pathogenic Responses to Stress by Stem Cells during Development
Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A
2012-01-01
Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies. PMID:24710551
Adcock, Robert S.; Schroeder, Chad E.; Chu, Yong-Kyu; Sotsky, Julie B.; Cramer, Daniel E.; Chilton, Paula M.; Song, Chisu; Anantpadma, Manu; Davey, Robert A.; Prodhan, Aminul I.; Yin, Xinmin; Zhang, Xiang
2016-01-01
Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons. PMID:27185801
Spatial distribution of filament elasticity determines the migratory behaviors of a cell
Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer
2016-01-01
ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488
Tulsani, Srikanth Reddy; Rath, Arup Kumar
2018-07-15
The solution-processed quantum dot (QD) solar cell technology has seen significant advancements in recent past to emerge as a potential contender for the next generation photovoltaic technology. In the development of high performance QD solar cell, the surface ligand chemistry has played the important role in controlling the doping type and doping density of QD solids. For instance, lead sulfide (PbS) QDs which is at the forefront of QD solar cell technology, can be made n-type or p-type respectively by using iodine or thiol as the surfactant. The advancements in surface ligand chemistry enable the formation of p-n homojunction of PbS QDs layers to attain high solar cell performances. It is shown here, however, that poor Fermi level alignment of thiol passivated p-type PbS QD hole transport layer with the n-type PbS QD light absorbing layer has rendered the photovoltaic devices from realizing their full potential. Here we develop a control surface oxidation technique using facile ultraviolet ozone treatment to increase the p-doping density in a controlled fashion for the thiol passivated PbS QD layer. This subtle surface modification tunes the Fermi energy level of the hole transport layer to deeper values to facilitate the carrier extraction and voltage generation in photovoltaic devices. In photovoltaic devices, the ultraviolet ozone treatment resulted in the average gain of 18% in the power conversion efficiency with the highest recorded efficiency of 8.98%. Copyright © 2018 Elsevier Inc. All rights reserved.
Inversin modulates the cortical actin network during mitosis
Werner, Michael E.; Ward, Heather H.; Phillips, Carrie L.; Miller, Caroline; Gattone, Vincent H.
2013-01-01
Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv−/− mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv−/− mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin. PMID:23515530
Cheung, Leonard Y. M.; Davis, Shannon W.; Brinkmeier, Michelle L.; Camper, Sally A.; Pérez-Millán, María Inés
2017-01-01
The anterior pituitary gland is comprised of specialized cell-types that produce and secrete polypeptide hormones in response to hypothalamic input and feedback from target organs. These specialized cells arise from stem cells that express SOX2 and the pituitary transcription factor PROP1, which is necessary to establish the stem cell pool and promote an epithelial to mesenchymal-like transition, releasing progenitors from the niche. The adult anterior pituitary responds to physiological challenge by mobilizing the SOX2-expressing progenitor pool and producing additional hormone-producing cells. Knowledge of the role of signaling pathways and extracellular matrix components in these processes may lead to improvements in the efficiency of differentiation of embryonic stem cells or induced pluripotent stem cells into hormone producing cells in vitro. Advances in our basic understanding of pituitary stem cell regulation and differentiation may lead to improved diagnosis and treatment for patients with hypopituitarism. PMID:27650955
Comparative modelling of human β tubulin isotypes and implications for drug binding
NASA Astrophysics Data System (ADS)
Torin Huzil, J.; Ludueña, Richard F.; Tuszynski, Jack
2006-02-01
The protein tubulin is a target for several anti-mitotic drugs, which affect microtubule dynamics, ultimately leading to cell cycle arrest and apoptosis. Many of these drugs, including the taxanes and Vinca alkaloids, are currently used clinically in the treatment of several types of cancer. Another tubulin binding drug, colchicine, although too toxic to be used as a chemotherapeutic agent, is commonly used for the treatment of gout. The main disadvantage that all of these drugs share is that they bind tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the broad cellular distribution of several tubulin isotypes provides a platform upon which to construct novel chemotherapeutic drugs that could differentiate between different cell types, reducing the undesirable side effects associated with current chemotherapeutic treatments. Here, we report an analysis of ten human β tubulin isotypes and discuss differences within each of the previously characterized paclitaxel, colchicine and vinblastine binding sites.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1980-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo
2016-12-01
In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.
Regulation of hematogenous tumor metastasis by acid sphingomyelinase
Carpinteiro, Alexander; Becker, Katrin Anne; Japtok, Lukasz; Hessler, Gabriele; Keitsch, Simone; Požgajovà, Miroslava; Schmid, Kurt W; Adams, Constantin; Müller, Stefan; Kleuser, Burkhard; Edwards, Michael J; Grassmé, Heike; Helfrich, Iris; Gulbins, Erich
2015-01-01
Metastatic dissemination of cancer cells is the ultimate hallmark of malignancy and accounts for approximately 90% of human cancer deaths. We investigated the role of acid sphingomyelinase (Asm) in the hematogenous metastasis of melanoma cells. Intravenous injection of B16F10 melanoma cells into wild-type mice resulted in multiple lung metastases, while Asm-deficient mice (Smpd1−/− mice) were protected from pulmonary tumor spread. Transplanting wild-type platelets into Asm-deficient mice reinstated tumor metastasis. Likewise, Asm-deficient mice were protected from hematogenous MT/ret melanoma metastasis to the spleen in a mouse model of spontaneous tumor metastasis. Human and mouse melanoma cells triggered activation and release of platelet secretory Asm, in turn leading to ceramide formation, clustering, and activation of α5β1 integrins on melanoma cells finally leading to adhesion of the tumor cells. Clustering of integrins by applying purified Asm or C16 ceramide to B16F10 melanoma cells before intravenous injection restored trapping of tumor cells in the lung in Asm-deficient mice. This effect was revertable by arginine-glycine-aspartic acid peptides, which are known inhibitors of integrins, and by antibodies neutralizing β1 integrins. These findings indicate that melanoma cells employ platelet-derived Asm for adhesion and metastasis. PMID:25851537
Accelerated stress testing of terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lathrop, J. W.; Hawkins, D. C.; Prince, J. L.; Walker, H. A.
1982-01-01
The development of an accelerated test schedule for terrestrial solar cells is described. This schedule, based on anticipated failure modes deduced from a consideration of IC failure mechanisms, involves bias-temperature testing, humidity testing (including both 85-85 and pressure cooker stress), and thermal-cycle thermal-shock testing. Results are described for 12 different unencapsulated cell types. Both gradual electrical degradation and sudden catastrophic mechanical change were observed. These effects can be used to discriminate between cell types and technologies relative to their reliability attributes. Consideration is given to identifying laboratory failure modes which might lead to severe degradation in the field through second quadrant operation. Test results indicate that the ability of most cell types to withstand accelerated stress testing depends more on the manufacturer's design, processing, and worksmanship than on the particular metallization system. Preliminary tests comparing accelerated test results on encapsulated and unencapsulated cells are described.
NASA Technical Reports Server (NTRS)
Sozer, Emre; Brehm, Christoph; Kiris, Cetin C.
2014-01-01
A survey of gradient reconstruction methods for cell-centered data on unstructured meshes is conducted within the scope of accuracy assessment. Formal order of accuracy, as well as error magnitudes for each of the studied methods, are evaluated on a complex mesh of various cell types through consecutive local scaling of an analytical test function. The tests highlighted several gradient operator choices that can consistently achieve 1st order accuracy regardless of cell type and shape. The tests further offered error comparisons for given cell types, leading to the observation that the "ideal" gradient operator choice is not universal. Practical implications of the results are explored via CFD solutions of a 2D inviscid standing vortex, portraying the discretization error properties. A relatively naive, yet largely unexplored, approach of local curvilinear stencil transformation exhibited surprisingly favorable properties
Beschasnyĭ, S P
2013-01-01
We investigated the effects of chronic bilateral sensorineural hearing loss of III-IV degree on the performance of interleukins, immunoglobulins serum and saliva, the functional activity of granulocyte-monocyte cell immunity, evaluated the activity of the hypothalamic-pituitary-adrenal system in children aged 7-11 years. It was found that due to stress activation of the sympathetic-adrenal system the function of granulocytes and monocytes is suppressed, with a predominance of production of anti-inflammatory interleukins. This leads to the dominance of T-helper type 2. Products granulocytes and T-helper type-2 anti-inflammatory interleukins IL-4, IL-5, IL-10, IL-13 leads to the activation of B-cells. Thus, in children 7-11 years of age with congenital bilateral sensorineural hearing loss is a decrease of non-specific humoral immunity dominated type of immune response to increased levels of IgG.
Kinetic Limitations of Cooperativity-Based Drug Delivery Systems
NASA Astrophysics Data System (ADS)
Licata, Nicholas A.; Tkachenko, Alexei V.
2008-04-01
We study theoretically a novel drug delivery system that utilizes the overexpression of certain proteins in cancerous cells for cell-specific chemotherapy. The system consists of dendrimers conjugated with “keys” (ex: folic acid) which “key-lock” bind to particular cell-membrane proteins (ex: folate receptor). The increased concentration of “locks” on the surface leads to a longer residence time for the dendrimer and greater incorporation into the cell. Cooperative binding of the nanocomplexes leads to an enhancement of cell specificity. However, both our theory and detailed analysis of in vitro experiments indicate that the degree of cooperativity is kinetically limited. We demonstrate that cooperativity and hence the specificity to particular cell type can be increased by making the strength of individual bonds weaker, and suggest a particular implementation of this idea.
Wrzaczek, Michael; Brosché, Mikael
2009-01-01
Programmed cell death is a common feature of developmental processes and responses to environmental cues in many multicellular organisms. Examples of programmed cell death in plants are leaf abscission in autumn and the hypersensitive response during pathogen attack. Reactive oxygen species (ROS) have been implicated in the regulation of various types of cell death.1,2 However, the precise mechanics of the involvement of ROS in the processes leading to initiation of cell death and subsequent containment are currently unknown. We recently showed the involvement of an Arabidopsis protein GRIM REAPER in the regulation of ROS-induced cell death under stress conditions.3 Our results indicated that the presence of a truncated protein primes plants for cell death in the presence of ROS leading to ozone sensitivity and increased resistance to hemibiotrophic pathogens. PMID:19820355
The Role of Platelet-Derived Growth Factor C and Its Splice Variant in Breast Cancer
2012-02-01
epithelial-mesenchymal transition leading instead to apoptosis (8). Furthermore, inhibition of PDGFR signaling by the PDGFR inhibitor STI571...PDGFRs are expressed in many different cell types including endothelial, epithelial and neural cells and are necessary for embryological development (as
Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation.
Velez, Tania E; Bryce, Paul J; Hulse, Kathryn E
2018-04-17
This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.
Bień, K; Sobańska, Z; Sokołowska, J; Bąska, P; Nowak, Z; Winnicka, A; Krzyzowska, M
2016-04-01
Ectromelia virus (ECTV) is an orthopoxvirus (OPV) that causes mousepox, the murine equivalent of human smallpox. Fas receptor-Fas ligand (FasL) signaling is involved in apoptosis of immune cells and virus-specific cytotoxicity. The Fas/FasL pathway also plays an important role in controlling the local inflammatory response during ECTV infection. Here, the immune response to the ECTV Moscow strain was examined in Fas (-) (lpr), FasL (-) (gld) and C57BL6 wild-type mice. During ECTV-MOS infection, Fas- and FasL mice showed increased viral titers, decreased total numbers of NK cells, CD4(+) and CD8(+) T cells followed by decreased percentages of IFN-γ expressing NK cells, CD4(+) and CD8(+) T cells in spleens and lymph nodes. At day 7 of ECTV-MOS infection, Fas- and FasL-deficient mice had the highest regulatory T cell (Treg) counts in spleen and lymph nodes in contrast to wild-type mice. Furthermore, at days 7 and 10 of the infection, we observed significantly higher numbers of PD-L1-expressing dendritic cells in Fas (-) and FasL (-) mice in comparison to wild-type mice. Experiments in co-cultures of CD4(+) T cells and bone-marrow-derived dendritic cells showed that the lack of bilateral Fas-FasL signalling led to expansion of Tregs. In conclusion, our results demonstrate that during ECTV infection, Fas/FasL can regulate development of tolerogenic DCs and Tregs, leading to an ineffective immune response.
Ryan, Gillian L; Watanabe, Naoki; Vavylonis, Dimitrios
2012-04-01
A characteristic feature of motile cells as they undergo a change in motile behavior is the development of fluctuating exploratory motions of the leading edge, driven by actin polymerization. We review quantitative models of these protrusion and retraction phenomena. Theoretical studies have been motivated by advances in experimental and computational methods that allow controlled perturbations, single molecule imaging, and analysis of spatiotemporal correlations in microscopic images. To explain oscillations and waves of the leading edge, most theoretical models propose nonlinear interactions and feedback mechanisms among different components of the actin cytoskeleton system. These mechanisms include curvature-sensing membrane proteins, myosin contraction, and autocatalytic biochemical reaction kinetics. We discuss how the combination of experimental studies with modeling promises to quantify the relative importance of these biochemical and biophysical processes at the leading edge and to evaluate their generality across cell types and extracellular environments. Copyright © 2012 Wiley Periodicals, Inc.
Rapid, efficient charging of lead-acid and nickel-zinc traction cells
NASA Technical Reports Server (NTRS)
Smithrick, J. J.
1978-01-01
Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate tapered direct current (HRTDC) charge method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, in these preliminary tests, 300 amp-hour nickel-zinc traction cells were given a HRTDC (initial current 500 amps, final current 100 amps) to 78 percent of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92 percent and an energy efficiency of 52 percent. Three hundred amp-hour lead-acid traction cells were charged to 69 percent of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91 percent with an energy efficiency of 64 percent. In order to find ways to further decrease the recharge times, the effect of periodically (0 to 400 Hz) pulse discharging cells during a constant current charging process (94% duty cycle) was investigated. Preliminary data indicate no significant effect of this type of pulse discharging during charge on charge acceptance of lead-acid or nickel-zinc cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, J.; Schlehofer, J.R.; Mergener, K.
1989-09-01
Treatment with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or irradiation with ultraviolet light (uv254 nm) induces amplification of integrated as well as episomal sequences of bovine papillomavirus (BPV) type 1 DNA in BPV-1-transformed mouse C127 cells (i.e., ID13 cells). This is shown by filter in situ hybridization and Southern blot analysis of cellular DNA. Similarly, infection of ID13 cells with herpes simplex virus (HSV) type 1 which has been shown to be mutagenic for host cell DNA leads to amplification of BPV DNA sequences. In contrast to this induction of DNA amplification by initiators, treatment of ID13 cells with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA)more » does not result in increased synthesis of BPV DNA nor does TPA treatment modulate the initiator-induced DNA amplification. Similar to other cell systems infection with adeno-associated virus (AAV) type 2 inhibits BPV-1 DNA amplification irrespective of the inducing agent. In contrast to initiator-induced DNA amplification, treatment with carcinogen (MNNG) or tumor promoters or combination of MNNG and promoter of C127 cells prior to transformation by BPV-1 does not lead to an increase in the number of transformed foci. The induction of amplification of papillomavirus DNA by initiating agents possibly represents one of the mechanisms by which the observed synergism between papillomavirus infection and initiators in tumorigenesis might occur.« less
Evasion of cell senescence in SHH medulloblastoma.
Tamayo-Orrego, Lukas; Swikert, Shannon M; Charron, Frédéric
2016-08-17
The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1 +/- mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis.
Evasion of cell senescence in SHH medulloblastoma
Tamayo-Orrego, Lukas; Swikert, Shannon M.; Charron, Frédéric
2016-01-01
ABSTRACT The mechanisms leading to brain tumor formation are poorly understood. Using Ptch1+/− mice as a medulloblastoma model, sequential mutations were found to shape tumor evolution. Initially, medulloblastoma preneoplastic lesions display loss of heterozygosity of the Ptch1 wild-type allele, an event associated with cell senescence in preneoplasia. Subsequently, p53 mutations lead to senescence evasion and progression from preneoplasia to medulloblastoma. These findings are consistent with a model where high levels of Hedgehog signaling caused by the loss of the tumor suppressor Ptch1 lead to oncogene-induced senescence and drive p53 mutations. Thus, cell senescence is an important characteristic of a subset of SHH medulloblastoma and might explain the acquisition of somatic TP53 mutations in human medulloblastoma. This mode of medulloblastoma formation contrasts with the one characterizing Li-Fraumeni patients with medulloblastoma, where TP53 germ-line mutations cause chromothriptic genomic instability and lead to mutations in Hedgehog signaling genes, which drive medulloblastoma growth. Here we discuss in detail these 2 alternative mechanisms leading to medulloblastoma tumorigenesis. PMID:27229128
Redox Homeostasis in Pancreatic β Cells
Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie
2012-01-01
We reviewed mechanisms that determine reactive oxygen species (redox) homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release. PMID:23304259
Langerhans Cells: the 'Yin and Yang' of HIV Restriction and Transmission.
Mayr, Luzia; Su, Bin; Moog, Christiane
2017-03-01
Langerhans cells are specialized sentinels present in the epidermis expressing Langerin, a specific C-type lectin receptor involved in HIV capture and destruction. Recently, the specific mechanism leading to this HIV restriction was discovered. Nevertheless, Langerhans cells can be infected and the way HIV escapes this restriction needs to be unraveled. Copyright © 2017. Published by Elsevier Ltd.
The story of DNase II: a stifled death-wish leads to self-harm.
Crow, Yanick J
2010-09-01
DNase II is an endonuclease which plays a fundamental role in the degradation of DNA from both apoptotic cells, and nuclei extruded from red blood cells during erythropoiesis: important tasks, considering that everyday 10(8)-10(9) cells undergo apoptosis, and 10(11) red blood cells are produced in the adult human. The DNase II-null mouse demonstrates embryonic lethality due to type I interferon-mediated erythroid precursor cell death triggered by undegraded nucleic acids. However, the mechanisms leading to such cytotoxicity are poorly understood. A study in the current issue of the European Journal of Immunology investigates the role of the death ligand TRAIL in this process. Although TRAIL is shown to be dispensable for the interferon-induced apoptosis of erythroid cells in DNAse II(-/-) embryos, the authors have developed a useful strategy for further exploring this question in future studies. Interestingly, earlier studies by the same group showed that crossing the DNase II-null mouse with a mouse deficient for the type I interferon receptor can rescue the lethal anaemia observed in the DNase II-null embryos, but only at the cost of developing autoimmunity.
SAMPLING DEVICE FOR pH MEASUREMENT IN PROCESS STREAMS
Michelson, C.E.; Carson, W.N. Jr.
1958-11-01
A pH cell is presented for monitoring the hydrogen ion concentration of a fluid in a process stream. The cell is made of glass with a side entry arm just above a reservoir in which the ends of a glass electrode and a reference electrode are situated. The glass electrode contains the usual internal solution which is connected to a lead. The reference electrode is formed of saturated calomel having a salt bridge in its bottom portion fabricated of a porous glass to insure low electrolyte flow. A flush tube leads into the cell through which buffer and flush solutions are introduced. A ground wire twists about both electrode ends to insure constant electrical grounding of the sample. The electrode leads are electrically connected to a pH meter of aay standard type.
Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells
NASA Astrophysics Data System (ADS)
Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho
2018-03-01
Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.
Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L.; Agha, Golareh; Colicino, Elena; Just, Allan C.; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A.; DeMeo, Dawn L.; Gillman, Matthew W.; Wright, Robert O.; Oken, Emily
2017-01-01
Background: Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. Objectives: We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Methods: Among 268 mother–infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. Results: The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (−1.4% per doubling increase in lead exposure; p=2.3×10−7) and was annotated to C-Type Lectin Domain Family 11, Member A (CLEC11A), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (−4.3% per doubling increase in lead exposure; p=1.1×10−06), was annotated to Dynein Heavy Chain Domain 1 gene (DNHD1) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Conclusion: Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246 PMID:28858830
Wu, Shaowei; Hivert, Marie-France; Cardenas, Andres; Zhong, Jia; Rifas-Shiman, Sheryl L; Agha, Golareh; Colicino, Elena; Just, Allan C; Amarasiriwardena, Chitra; Lin, Xihong; Litonjua, Augusto A; DeMeo, Dawn L; Gillman, Matthew W; Wright, Robert O; Oken, Emily; Baccarelli, Andrea A
2017-08-25
Early-life exposure to lead is associated with deficits in neurodevelopment and with hematopoietic system toxicity. DNA methylation may be one of the underlying mechanisms for the adverse effects of prenatal lead on the offspring, but epigenome-wide methylation data for low levels of prenatal lead exposure are lacking. We investigated the association between prenatal maternal lead exposure and epigenome-wide DNA methylation in umbilical cord blood nucleated cells in Project Viva, a prospective U.S.-based prebirth cohort with relatively low levels of lead exposure. Among 268 mother-infant pairs, we measured lead concentrations in red blood cells (RBC) from prenatal maternal blood samples, and using HumanMethylation450 Bead Chips, we measured genome-wide methylation levels at 482,397 CpG loci in umbilical cord blood and retained 394,460 loci after quality control. After adjustment for batch effects, cell types, and covariates, we used robust linear regression models to examine associations of prenatal lead exposure with DNA methylation in cord blood at epigenome-wide significance level [false discovery rate (FDR)<0.05]. The mean [standard deviation (SD)] maternal RBC lead level was 1.22 (0.63) μg/dL. CpG cg10773601 showed an epigenome-wide significant negative association with prenatal lead exposure (-1.4% per doubling increase in lead exposure; p=2.3×10-7) and was annotated to C-Type Lectin Domain Family 11, Member A ( CLEC11A ), which functions as a growth factor for primitive hematopoietic progenitor cells. In sex-specific analyses, we identified more CpGs with FDR<0.05 among female infants (n=38) than among male infants (n=2). One CpG (cg24637308), which showed a strong negative association with prenatal lead exposure among female infants (-4.3% per doubling increase in lead exposure; p=1.1×10-06), was annotated to Dynein Heavy Chain Domain 1 gene ( DNHD1 ) which is highly expressed in human brain. Interestingly, there were strong correlations between blood and brain methylation for CpG (cg24637308) based on another independent set of samples with a high proportion of female participants. Prenatal low-level lead exposure was associated with newborn DNA methylation, particularly in female infants. https://doi.org/10.1289/EHP1246.
Higgins, LeeAnn; Markowski, Todd; Brambl, Robert
2016-01-01
A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869
Peripheral vestibular pathology in Mondini dysplasia.
Kaya, Serdar; Hızlı, Ömer; Kaya, Fatıma Kübra; Monsanto, Rafael DaCosta; Paparella, Michael M; Cureoglu, Sebahattin
2017-01-01
In this study, our objective was to histopathologically analyze the peripheral vestibular system in patients with Mondini dysplasia. Comparative human temporal bone study. We assessed the sensory epithelium of the human vestibular system with a focus on the number of type I and type II hair cells, as well as the total number of hair cells. We compared those numbers in our Mondini dysplasia group versus our control group. The loss of type I and type II hair cells in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, was significantly higher in our Mondini dysplasia group than in our control group. The total number of hair cells significantly decreased in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, in our Mondini dysplasia group. Loss of vestibular hair cells can lead to vestibular dysfunction in patients with Mondini dysplasia. NA Laryngoscope, 127:206-209, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye.
Johnston, Robert J; Otake, Yoshiaki; Sood, Pranidhi; Vogt, Nina; Behnia, Rudy; Vasiliauskas, Daniel; McDonald, Elizabeth; Xie, Baotong; Koenig, Sebastian; Wolf, Reinhard; Cook, Tiffany; Gebelein, Brian; Kussell, Edo; Nakagoshi, Hideki; Desplan, Claude
2011-06-10
How complex networks of activators and repressors lead to exquisitely specific cell-type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression. dve is a shared component of two opposing, interlocked feedforward loops (FFLs). Orthodenticle and Dve interact in an incoherent FFL to repress Rhodopsin expression throughout the eye. In R7 and R8 photoreceptors, a coherent FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network uses repression to restrict and combinatorial activation to induce cell-type-specific expression. Furthermore, Dve levels are finely tuned to yield cell-type- and region-specific repression or activation outcomes. This interlocked FFL motif may be a general mechanism to control terminal cell-fate specification. Copyright © 2011 Elsevier Inc. All rights reserved.
Coque, Emmanuelle; Raoul, Cédric; Bowerman, Mélissa
2014-01-01
Spinal muscular atrophy (SMA) is the most common genetic disease causing infant death, due to an extended loss of motoneurons. This neuromuscular disorder results from deletions and/or mutations within the Survival Motor Neuron 1 (SMN1) gene, leading to a pathological decreased expression of functional full-length SMN protein. Emerging studies suggest that the small GTPase RhoA and its major downstream effector Rho kinase (ROCK), which both play an instrumental role in cytoskeleton organization, contribute to the pathology of motoneuron diseases. Indeed, an enhanced activation of RhoA and ROCK has been reported in the spinal cord of an SMA mouse model. Moreover, the treatment of SMA mice with ROCK inhibitors leads to an increased lifespan as well as improved skeletal muscle and neuromuscular junction pathology, without preventing motoneuron degeneration. Although motoneurons are the primary target in SMA, an increasing number of reports show that other cell types inside and outside the central nervous system contribute to SMA pathogenesis. As administration of ROCK inhibitors to SMA mice was systemic, the improvement in survival and phenotype could therefore be attributed to specific effects on motoneurons and/or on other non-neuronal cell types. In the present review, we will present the various roles of the RhoA/ROCK pathway in several SMA cellular targets including neurons, myoblasts, glial cells, cardiomyocytes and pancreatic cells as well as discuss how ROCK inhibition may ameliorate their health and function. It is most likely a concerted influence of ROCK modulation on all these cell types that ultimately lead to the observed benefits of pharmacological ROCK inhibition in SMA mice. PMID:25221469
Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air.
Ito, Nozomi; Kamarudin, Muhammad Akmal; Hirotani, Daisuke; Zhang, Yaohong; Shen, Qing; Ogomi, Yuhei; Iikubo, Satoshi; Minemoto, Takashi; Yoshino, Kenji; Hayase, Shuzi
2018-04-05
Lead-based perovskite solar cells have gained ground in recent years, showing efficiency as high as 20%, which is on par with that of silicon solar cells. However, the toxicity of lead makes it a nonideal candidate for use in solar cells. Alternatively, tin-based perovskites have been proposed because of their nontoxic nature and abundance. Unfortunately, these solar cells suffer from low efficiency and stability. Here, we propose a new type of perovskite material based on mixed tin and germanium. The material showed a band gap around 1.4-1.5 eV as measured from photoacoustic spectroscopy, which is ideal from the perspective of solar cells. In a solar cell device with inverted planar structure, pure tin perovskite solar cell showed a moderate efficiency of 3.31%. With 5% doping of germanium into the perovskite, the efficiency improved up to 4.48% (6.90% after 72 h) when measured in air without encapsulation.
Camouflage and misdirection: the full-on assault of ebola virus disease.
Misasi, John; Sullivan, Nancy J
2014-10-23
Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and nonhuman primates. Ebola protein interactions with host cellular proteins disrupt type I and type II interferon responses, RNAi antiviral responses, antigen presentation, T-cell-dependent B cell responses, humoral antibodies, and cell-mediated immunity. This multifaceted approach to evasion and suppression of innate and adaptive immune responses in their target hosts leads to the severe immune dysregulation and "cytokine storm" that is characteristic of fatal ebolavirus infection. Here, we highlight some of the processes by which Ebola interacts with its mammalian hosts to evade antiviral defenses.
Aging and differentiation in yeast populations: elders with different properties and functions.
Palková, Zdena; Wilkinson, Derek; Váchová, Libuše
2014-02-01
Over the past decade, it has become evident that similarly to cells forming metazoan tissues, yeast cells have the ability to differentiate and form specialized cell types. Examples of yeast cellular differentiation have been identified both in yeast liquid cultures and within multicellular structures occupying solid surfaces. Most current knowledge on different cell types comes from studies of the spatiotemporal internal architecture of colonies developing on various media. With a few exceptions, yeast cell differentiation often concerns nongrowing, stationary-phase cells and leads to the formation of cell subpopulations differing in stress resistance, cell metabolism, respiration, ROS production, and others. These differences can affect longevity of particular subpopulations. In contrast to liquid cultures, where various cell types are dispersed within stationary-phase populations, cellular differentiation depends on the specific position of particular cells within multicellular colonies. Differentiated colonies, thus, resemble primitive multicellular organisms, in which the gradients of certain compounds and the position of cells within the structure affect cellular differentiation. In this review, we summarize and compare the properties of diverse types of differentiated chronologically aging yeast cells that have been identified in colonies growing on different media, as well as of those found in liquid cultures. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Attenuation Measurements of Cell Pellets Using Through Transmission
NASA Astrophysics Data System (ADS)
Vadas, Justin; Greene, Claudia; Grygotis, Emma; Kuhn, Stephen; Mahlalela, Sanele; Newland, Tinisha; Ovutmen, Idil; Herd, Maria-Teresa
2011-10-01
A better understanding of differences in ultrasound tissue characteristics (such as speed of sound, attenuation, and backscatter coefficients) of benign compared to malignant cells could lead to improved cancer detection and diagnosis. A narrow band technique for measuring ultrasonic speed of sound and attenuation of small biological materials was developed and tested. Several mechanical improvements were made to the system to drastically improve alignment, allowing for accurate measurements of small cell pellets. Narrow band attenuation measurements were made first with tissue-mimicking phantoms and then with three different types of cell pellets: Chinese hamster ovary cells, healthy human prostate cells, and cancerous human prostate cells. Attenuation and speed of sound results for all three cell types, as well as the culture medium and tissue mimicking phantoms, are presented for a frequency range of 5 to 25 MHz.
Cellular automata and integrodifferential equation models for cell renewal in mosaic tissues
Bloomfield, J. M.; Sherratt, J. A.; Painter, K. J.; Landini, G.
2010-01-01
Mosaic tissues are composed of two or more genetically distinct cell types. They occur naturally, and are also a useful experimental method for exploring tissue growth and maintenance. By marking the different cell types, one can study the patterns formed by proliferation, renewal and migration. Here, we present mathematical modelling suggesting that small changes in the type of interaction that cells have with their local cellular environment can lead to very different outcomes for the composition of mosaics. In cell renewal, proliferation of each cell type may depend linearly or nonlinearly on the local proportion of cells of that type, and these two possibilities produce very different patterns. We study two variations of a cellular automaton model based on simple rules for renewal. We then propose an integrodifferential equation model, and again consider two different forms of cellular interaction. The results of the continuous and cellular automata models are qualitatively the same, and we observe that changes in local environment interaction affect the dynamics for both. Furthermore, we demonstrate that the models reproduce some of the patterns seen in actual mosaic tissues. In particular, our results suggest that the differing patterns seen in organ parenchymas may be driven purely by the process of cell replacement under different interaction scenarios. PMID:20375040
Wiggers, Erin Callie; Johnson, William; Tucci, Michelle; Benghuzzi, Hamed
2011-01-01
Osteomyelitis is a bacterial infection of the bone that occurs frequently as a complication of open fractures and various kinds of orthopedic surgery. This infection can often lead to more extensive surgeries and even death of the patient. In animal models of osteomyelitis, the site of infection by Staphylococcus aureus was observed to have high numbers of both macrophages and osteoclasts, both of which may contribute to large amounts of osteolysis and tissue damage. In order to evaluate the immune response in both types of cells, two cells lines, a macrophage cell line and a macrophage cell line stimulated to become osteoclasts by the addition of receptor activator of nuclear-factor B (RANKL), were exposed to lipopolysaccharides, opsonized S. aureus, and unopsonized S. aureus. The results showed that both cell types activated a biochemical cascade that included the release of cytokines and nitric oxide associated with cell damage and death in response to infection. However, macrophages and osteoclasts differed in response magnitude, most likely due to differences in cell-membrane receptors. This data supports the growing body of research that links the immune and skeletal systems. Further understanding of biochemical pathways shared by the two systems could lead to significant advances in the treatment of osteomyelitis and the success of prostheses.
Annexin A2 in Proliferative Vitreoretinopathy
2017-10-01
cells , leading to formation of an epiretinal membrane, retinal detachment, and loss of vision. At present, there are no reliable means of...type versus annexin A2- deficient mice, [2] define the role of A2 in the function of activated macrophages and RPE cells in PVR, and [3] examine the...expression is needed in both macrophages and RPE cells , and that A2 is extensively expressed within cells of epiretinal membranes in human PVR. Our
Single cell transcriptome profiling of developing chick retinal cells.
Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M
2017-08-15
The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.
Simakov, Oleg; Larsson, Tomas A; Arendt, Detlev
2013-09-01
Ever since the origin of the first metazoans over 600 million years ago, cell type diversification has been driven by micro-evolutionary processes at population level, leading to macro-evolution changes above species level. In this review, we introduce the marine annelid Platynereis dumerilii, a member of the lophotrochozoan clade (a key yet most understudied superphylum of bilaterians), as a suitable model system for the simultaneous study, at cellular resolution, of macro-evolutionary processes across phyla and of micro-evolutionary processes across highly polymorphic populations collected worldwide. Recent advances in molecular and experimental techniques, easy maintenance and breeding, and the fast, synchronous and stereotypical development have facilitated the establishment of Platynereis as one of the leading model species in the eco-evo-devo field. Most importantly, Platynereis allows the combination of expression profiling, morphological and physiological characterization at the single cell level. Here, we discuss recent advances in the collection of -omics data for the lab strain and for natural populations collected world-wide that can be integrated with population-specific cellular analyses to result in a cellular atlas integrating genetic, phenotypic and ecological variation. This makes Platynereis a tractable system to begin understanding the interplay between macro- and micro-evolutionary processes and cell type diversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Esder; Ryu, Gyeong Ryul; Ko, Seung-Hyun
Objectives: To investigate whether the activation of pancreatic stellate cells (PSCs) leads to pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). Methods: The pancreases of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an animal model of T2DM, and patient with T2DM were analyzed. And the in vitro and in vivo effects of pirfenidone, an antifibrotic agent, on PSC activation, islet fibrosis, and β-cells were studied. Results: The extent of islet fibrosis and the percentage of activated PSCs, positive for α-smooth muscle actin, in the islets were significantly greater in OLETF rats compared with non-diabetic rats. Also, the extent of islet fibrosis inmore » patients with T2DM was slightly greater compared with age- and BMI-matched non-diabetic patients. In rat PSCs cultured with high glucose for 72 h, pirfenidone produced decreases in cell proliferation, release of collagen, and the expression of fibronectin and connective tissue growth factor. Treatment of OLETF rats with pirfenidone for 16 weeks decreased the activation of PSCs and the extent of islet fibrosis, but did not enhance glucose tolerance, pancreatic insulin content, or β-cell mass. Conclusions: Activated PSCs in islets might lead to islet fibrosis in T2DM. However, PSC activation itself might not contribute significantly to progressive β-cell failure in T2DM. - Highlights: • Islet fibrosis developed progressively in OLETF rats, a model of type 2 diabetes. • PSCs in the islets became activated in OLETF rats. • Islet fibrosis was increased in patients with type 2 diabetes. • Pirfenidone attenuated the activation of PSCs and islet fibrosis in OLETF rats. • Pirfenidonet had no effects on glucose tolerance or on β-cells in OLETF rats.« less
Loo, Christopher P; Snyder, Christopher M; Hill, Ann B
2017-01-01
Increasing amounts of pathogen replication usually lead to a proportionate increase in size and effector differentiation of the CD8 + T cell response, which is attributed to increased Ag and inflammation. Using a murine CMV that is highly sensitive to the antiviral drug famciclovir to modulate virus replication, we found that increased virus replication drove increased effector CD8 + T cell differentiation, as expected. Paradoxically, however, increased virus replication dramatically decreased the size of the CD8 + T cell response to two immunodominant epitopes. The decreased response was due to type I IFN-dependent depletion of conventional dendritic cells and could be reproduced by specific depletion of dendritic cells from day 2 postinfection or by sterile induction of type I IFN. Increased virus replication and type I IFN specifically inhibited the response to two immunodominant epitopes that are known to be dependent on Ag cross-presented by DCs, but they did not inhibit the response to "inflationary" epitopes whose responses can be sustained by infected nonhematopoietic cells. Our results show that type I IFN can suppress CD8 + T cell responses to cross-presented Ag by depleting cross-presenting conventional dendritic cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Castro-Longoria, E; Trejo-Guillén, K; Vilchis-Nestor, A R; Avalos-Borja, M; Andrade-Canto, S B; Leal-Alvarado, D A; Santamaría, J M
2014-02-01
Salvinia minima Baker is a small floating aquatic fern that is efficient for the removal and storage of heavy metals such as lead and cadmium. In this study, we report that lead removal by S. minima causes large accumulation of lead inside the cells in the form of nanoparticles (PbNPs). The accumulation pattern of lead was analyzed in both, submerged root-like modified fronds (here named "roots"), and in its aerial leaf-like fronds ("leaves"). Analysis by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) confirmed the biosynthesis of PbNPs by the plant. In both, roots and leaves, PbNPs were found to accumulate almost exclusively at the cell wall and closely associated to the cell membrane. Two types of PbNPs shapes were found in cells of both tissues, those associated to the cell wall were quasi-spherical with 17.2±4.2 nm of diameter, while those associated to the cell membrane/cytoplasm were elongated. Elongated particles were 53.7±29.6 nm in length and 11.1±2.4 nm wide. Infrared spectroscopy (IR) results indicate that cellulose, lignin and pectin are the major components that may be acting as the reducing agents for lead ions; these findings strongly suggest the potential use of this fern to further explore the bio-assisted synthesis of heavy metal nanostructures. Copyright © 2013 Elsevier B.V. All rights reserved.
Control of Cell Morphology: Signalling by the Receptor Notch.
1996-10-01
missense mutations or small deletions at the extreme C-terminus of NOTCH, and lie within the minimal region that includes the C-terminal binding site for...20 Figure 4. Genetic interaction of null and hypomorphic alleles of Notch with abl mutations ...wide variety of cell types during Drosophila embryogenesis [1, 2]. Mutations in the Notch gene lead to severe defects in cell identity in the nervous
Engineering Sialic Acid Synthesis Ability in Insect Cells.
Viswanathan, Karthik; Narang, Someet; Betenbaugh, Michael J
2015-01-01
Insect cells lack the ability to synthesize the sialic acid donor molecule CMP-sialic acid or its precursor, sialic acid. In this chapter, we describe a method to engineer CMP-sialic acid synthesis capability into Spodoptera frugiperda (Sf9) cells, a prototypical insect cell line, by recombinant expression of sialic acid synthesis pathway genes using baculovirus technology. Co-expression of a sialuria mutant UDP-GlcNAc-2-epimerase/ManNAc kinase (EKR263L), wild-type sialic acid 9-phosphate synthase (SAS), and wild-type CMP-sialic acid synthetase (CSAS) in the presence of GlcNAc leads to synthesis of CMP-sialic acids synthesis to support sialylation of N-glycans on glycoproteins.
Woodham, Andrew W; Skeate, Joseph G; Sanna, Adriana M; Taylor, Julia R; Da Silva, Diane M; Cannon, Paula M; Kast, W Martin
2016-07-01
In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.
Woodham, Andrew W.; Skeate, Joseph G.; Sanna, Adriana M.; Taylor, Julia R.; Da Silva, Diane M.; Cannon, Paula M.
2016-01-01
Abstract In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4+ T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection. PMID:27410493
Division of Labor in Biofilms: the Ecology of Cell Differentiation.
van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto
2015-04-01
The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.
Lund, Michael Taulo; Hansen, Merethe; Skaaby, Stinna; Dalby, Sina; Støckel, Mikael; Floyd, Andrea Karen; Bech, Karsten; Helge, Jørn Wulff; Holst, Jens Juul; Dela, Flemming
2015-01-01
The majority of the patients with type 2 diabetes (T2DM) show remission after Roux-en-Y gastric bypass (RYGB). This is the result of increased postoperative insulin sensitivity and β-cell secretion. The aim of the present study was to elucidate the importance of the preoperative β-cell function in T2DM for the chance of remission after RYGB. Fifteen patients with and 18 without T2DM had 25 g oral (OGTT) and intravenous (IVGTT) glucose tolerance tests performed at inclusion, after a diet-induced weight loss, and 4 and 18 months after RYGB. Postoperative first phase insulin secretion rate (ISR) during the IVGTT and β-cell glucose sensitivity during the OGTT increased in T2DM. Postoperative insulin sensitivity and the disposition index (DI) markedly increased in both groups. By stratifying the T2DM into two groups according to highest (T2DMhigh) and lowest (T2DMlow) baseline DI, a restoration of first phase ISR and β-cell glucose sensitivity were seen only in T2DMhigh. Remission of type 2 diabetes was 71 and 38% in T2DMhigh and T2DMlow, respectively. Postoperative postprandial GLP-1 concentrations increased markedly, but did not differ between the groups. Our findings emphasize the importance of the preoperative of β-cell function for remission of diabetes after RYGB. Key points Roux-en-Y gastric bypass surgery leads to remission of type 2 diabetes in the majority of patients suffering from the disease. The gut hormone glucagon-like peptide-1 is believed to be of major importance for the remission process. The present project demonstrates a marked difference in the chance of remission of type 2 diabetes in patients with low or high preoperative β-cell function in spite of a similar post-surgery increase in postprandial glucagon-like peptide-1 release. Furthermore, post-surgery intravenous glucose administration, which does not stimulate release of glucagon-like peptide-1, leads to increased insulin secretion in the patients with the best preoperative β-cell function. Together the present findings indicate that patients with type 2 diabetes with high preoperative β-cell function experience a glucagon-like peptide-1-independent increase in β-cell function after gastric bypass surgery. PMID:25867961
Inflammation and regeneration in the dentin-pulp complex: a double-edged sword.
Cooper, Paul R; Holder, Michelle J; Smith, Anthony J
2014-04-01
Dental tissue infection and disease result in acute and chronic activation of the innate immune response, which is mediated by molecular and cellular signaling. Different cell types within the dentin-pulp complex are able to detect invading bacteria at all stages of the infection. Indeed, at relatively early disease stages, odontoblasts will respond to bacterial components, and as the disease progresses, core pulpal cells including fibroblasts, stems cells, endothelial cells, and immune cells will become involved. Pattern recognition receptors, such as Toll-like receptors expressed on these cell types, are responsible for detecting bacterial components, and their ligand binding leads to the activation of the nuclear factor-kappa B and p38 mitogen-activated protein (MAP) kinase intracellular signaling cascades. Subsequent nuclear translocation of the transcription factor subunits from these pathways will lead to proinflammatory mediator expression, including increases in cytokines and chemokines, which trigger host cellular defense mechanisms. The complex molecular signaling will result in the recruitment of immune system cells targeted at combating the invading microbes; however, the trafficking and antibacterial activity of these cells can lead to collateral tissue damage. Recent evidence suggests that if inflammation is resolved relatively low levels of proinflammatory mediators may promote tissue repair, whereas if chronic inflammation ensues repair mechanisms become inhibited. Thus, the effects of mediators are temporal context dependent. Although containment and removal of the infection are keys to enable dental tissue repair, it is feasible that the development of anti-inflammatory and immunomodulatory approaches, based on molecular, epigenetic, and photobiomodulatory technologies, may also be beneficial for future endodontic treatments. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
van Rooyen, Beverley A; Schäfer, Georgia; Leaner, Virna D; Parker, M Iqbal
2013-10-03
Recent studies have revealed that interactions between tumour cells and the surrounding stroma play an important role in facilitating tumour growth and invasion. Stromal fibroblasts produce most of the extracellular matrix components found in the stroma. The aim of this study was to investigate mechanisms involved in tumour cell-mediated regulation of extracellular matrix and adhesion molecules in co-cultured fibroblasts. To this end, microarray analysis was performed on CCD-1068SK human fibroblast cells after direct co-culture with MDA-MB-231 human breast tumour cells. We found that the expression of both connective tissue growth factor (CTGF/CCN2) and type I collagen was negatively regulated in CCD-1068SK fibroblast cells under direct co-culture conditions. Further analysis revealed that Smad7, a known negative regulator of the Smad signalling pathway involved in CCN2 promoter regulation, was increased in directly co-cultured fibroblasts. Inhibition of Smad7 expression in CCD-1068SK fibroblasts resulted in increased CCN2 expression, while Smad7 overexpression had the opposite effect. Silencing CCN2 gene expression in fibroblasts led, in turn, to a decrease in type I collagen mRNA and protein levels. ERK signalling was also shown to be impaired in CCD-1068SK fibroblasts after direct co-culture with MDA-MB-231 tumour cells, with Smad7 overexpression in fibroblasts leading to a similar decrease in ERK activity. These effects were not, however, seen in fibroblasts that were indirectly co-cultured with tumour cells. We therefore conclude that breast cancer cells require close contact with fibroblasts in order to upregulate Smad7 which, in turn, leads to decreased ERK signalling resulting in diminished expression of the stromal proteins CCN2 and type I collagen.
Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology
Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L.
2013-01-01
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall. PMID:23783036
Motion of variable-length MreB filaments at the bacterial cell membrane influences cell morphology.
Reimold, Christian; Defeu Soufo, Herve Joel; Dempwolff, Felix; Graumann, Peter L
2013-08-01
The maintenance of rod-cell shape in many bacteria depends on actin-like MreB proteins and several membrane proteins that interact with MreB. Using superresolution microscopy, we show that at 50-nm resolution, Bacillus subtilis MreB forms filamentous structures of length up to 3.4 μm underneath the cell membrane, which run at angles diverging up to 40° relative to the cell circumference. MreB from Escherichia coli forms at least 1.4-μm-long filaments. MreB filaments move along various tracks with a maximal speed of 85 nm/s, and the loss of ATPase activity leads to the formation of extended and static filaments. Suboptimal growth conditions lead to formation of patch-like structures rather than extended filaments. Coexpression of wild-type MreB with MreB mutated in the subunit interface leads to formation of shorter MreB filaments and a strong effect on cell shape, revealing a link between filament length and cell morphology. Thus MreB has an extended-filament architecture with the potential to position membrane proteins over long distances, whose localization in turn may affect the shape of the cell wall.
TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease.
Wang, Tao; Lao, Uyen; Edgar, Bruce A
2009-09-07
Target of rapamycin (TOR) signaling is a regulator of cell growth. TOR activity can also enhance cell death, and the TOR inhibitor rapamycin protects cells against proapoptotic stimuli. Autophagy, which can protect against cell death, is negatively regulated by TOR, and disruption of autophagy by mutation of Atg5 or Atg7 can lead to neurodegeneration. However, the implied functional connection between TOR signaling, autophagy, and cell death or degeneration has not been rigorously tested. Using the Drosophila melanogaster visual system, we show in this study that hyperactivation of TOR leads to photoreceptor cell death in an age- and light-dependent manner and that this is because of TOR's ability to suppress autophagy. We also find that genetically inhibiting TOR or inducing autophagy suppresses cell death in Drosophila models of Huntington's disease and phospholipase C (norpA)-mediated retinal degeneration. Thus, our data indicate that TOR induces cell death by suppressing autophagy and provide direct genetic evidence that autophagy alleviates cell death in several common types of neurodegenerative disease.
Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto
2015-08-24
Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Scarpa, Elena; Szabó, András; Bibonne, Anne; Theveneau, Eric; Parsons, Maddy; Mayor, Roberto
2015-01-01
Summary Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. PMID:26235046
Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.
Soni, Shivani; Bala, Shashi; Hanspal, Manjit
2008-01-01
Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.
Evangelho, Karine; Mogilevskaya, Maria; Losada-Barragan, Monica; Vargas-Sanchez, Jeinny Karina
2017-12-30
Glaucoma is the leading cause of blindness in humans, affecting 2% of the population. This disorder can be classified into various types including primary, secondary, glaucoma with angle closure and with open angle. The prevalence of distinct types of glaucoma differs for each particular region of the world. One of the most common types of this disease is primary open-angle glaucoma (POAG), which is a complex inherited disorder characterized by progressive retinal ganglion cell death, optic nerve head excavation and visual field loss. Nowadays, POAG is considered an optic neuropathy, while intraocular pressure is proposed to play a fundamental role in its pathophysiology and especially in optic disk damage. However, the exact mechanism of optic nerve head damage remains a topic of debate. This literature review aims to bring together the information on the pathophysiology of primary open-angle glaucoma, particularly focusing on neuroinflammatory mechanisms leading to the death of the retinal ganglion cell. A literature search was done on PubMed using key words including primary open-angle glaucoma, retinal ganglion cells, Müller cells, glutamate, glial cells, ischemia, hypoxia, exitotoxicity, neuroinflammation, axotomy and neurotrophic factors. The literature was reviewed to collect the information published about the pathophysiologic mechanisms of RGC death in the POAG, from a neuroinflammatory and neurotoxicity perspective. Proposed mechanisms for glaucomatous damage are a result of pressure in RGC followed by ischemia, hypoxia of the ONH, and consequently death due to glutamate-induced excitotoxicity, deprivation of energy and oxygen, increase in levels of inflammatory mediators and alteration of trophic factors flow. These events lead to blockage of anterograde and retrograde axonal transport with ensuing axotomy and eventually blindness. The damage to ganglion cells and eventually glaucomatous injury can occur via various mechanisms including baric trauma, ischemia and impact of metabolic toxins, which triggers an inflammatory process and secondary degeneration in the ONH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Olov, E-mail: olov.andersson@ki.se
Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATPmore » have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.« less
Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y
2017-01-01
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.
More than apples and oranges - Detecting cancer with a fruit fly's antenna
NASA Astrophysics Data System (ADS)
Strauch, Martin; Lüdke, Alja; Münch, Daniel; Laudes, Thomas; Galizia, C. Giovanni; Martinelli, Eugenio; Lavra, Luca; Paolesse, Roberto; Ulivieri, Alessandra; Catini, Alexandro; Capuano, Rosamaria; di Natale, Corrado
2014-01-01
Cancer cells and non-cancer cells differ in their metabolism and they emit distinct volatile compound profiles, allowing to recognise cancer cells by their scent. Insect odorant receptors are excellent chemosensors with high sensitivity and a broad receptive range unmatched by current gas sensors. We thus investigated the potential of utilising the fruit fly's olfactory system to detect cancer cells. Using in vivo calcium imaging, we recorded an array of olfactory receptor neurons on the fruit fly's antenna. We performed multidimensional analysis of antenna responses, finding that cell volatiles from different cell types lead to characteristic response vectors. The distances between these response vectors are conserved across flies and can be used to discriminate healthy mammary epithelial cells from different types of breast cancer cells. This may expand the repertoire of clinical diagnostics, and it is the first step towards electronic noses equipped with biological sensors, integrating artificial and biological olfaction.
High-Throughput Single-Cell RNA Sequencing and Data Analysis.
Sagar; Herman, Josip Stefan; Pospisilik, John Andrew; Grün, Dominic
2018-01-01
Understanding biological systems at a single cell resolution may reveal several novel insights which remain masked by the conventional population-based techniques providing an average readout of the behavior of cells. Single-cell transcriptome sequencing holds the potential to identify novel cell types and characterize the cellular composition of any organ or tissue in health and disease. Here, we describe a customized high-throughput protocol for single-cell RNA-sequencing (scRNA-seq) combining flow cytometry and a nanoliter-scale robotic system. Since scRNA-seq requires amplification of a low amount of endogenous cellular RNA, leading to substantial technical noise in the dataset, downstream data filtering and analysis require special care. Therefore, we also briefly describe in-house state-of-the-art data analysis algorithms developed to identify cellular subpopulations including rare cell types as well as to derive lineage trees by ordering the identified subpopulations of cells along the inferred differentiation trajectories.
Vaas, Lea A I; Marheine, Maja; Seufert, Stephanie; Schumacher, Heinz Martin; Kiesecker, Heiko; Heine-Dobbernack, Elke
2012-06-01
Although many genes are supposed to be a part of plant cell tolerance mechanisms against osmotic or salt stress, their influence on tolerance towards stress during cryopreservation procedures has rarely been investigated. For instance, the overexpression of the pathogenesis-related gene 10a (pr-10a) leads to improved osmotic tolerance in a transgenic cell culture of Solanum tuberosum cv. Désirée. In this study, a cryopreservation method, consisting of osmotic pretreatment, cryoprotection with DMSO and controlled-rate freezing, was used to characterize the relation between cryopreservation success and pr-10a expression in suspension cultures of S. tuberosum wild-type cells and cells overexpressing pathogenesis-related protein 10a (Pr-10a). By varying the sorbitol concentration, thus modifying the strength of the osmotic stress during the pretreatment phase, it can be shown that the wild type can successfully be cryopreserved only in a relatively narrow range of sorbitol concentrations, while the pr-10a overexpression leads to an enhanced cryopreservation success over the whole range of applied sorbitol concentrations. Together with transcription data we show that the pr-10a overexpression causes an enhanced osmotic tolerance, which in turn leads to enhanced cryopreservability, but also indicates a role of pr-10a in signal transduction. An increased cryopreservability of the transgenic cell line occurs for pretreatments longer than 24 h. Since both genotypes, characterized by distinct baseline levels of expression, exhibited similar patterns of expression induction, the induction of pr-10a appears to be a key step in the stress signal transduction of plant cells under osmotic stress.
EFFECT OF PROFLAVINE ON THE SYNTHESIS OF ADENOVIRUS, TYPE 5, AND ASSOCIATED SOLUBLE ANTIGENS
Wilcox, Wesley C.; Ginsberg, Harold S.
1962-01-01
Wilcox, Wesley C. (University of Pennsylvania, Philadelphia) and Harold S. Ginsberg. Effect of proflavine on the synthesis of adenovirus, type 5, and associated soluble antigens. J. Bacteriol. 84:526–533. 1962.—The synthesis of type 5 adenovirus in HeLa cells was suppressed to a considerable extent by low concentrations of proflavine, an acridine dye. In comparison, the processes leading to the production of soluble complement-fixing antigens and toxin were less sensitive to the action of this chemical. Addition of proflavine to infected cells at different times during the virus growth cycle revealed that the processes leading to the synthesis of soluble antigens began prior to the first appearance of newly synthesized virus. This observation is compatible with the hypothesis that the soluble antigens may represent virus subunits or precursor materials. In addition, these data indicate that it is possible to interrupt the latter stages of the virus synthetic process by addition of proflavine late in the eclipse period. PMID:14000661
Marré, Meghan L.; Piganelli, Jon D.
2017-01-01
Type 1 diabetes (T1D) is an autoimmune disease in which immune-mediated targeting and destruction of insulin-producing pancreatic islet β cells leads to chronic hyperglycemia. There are many β cell proteins that are targeted by autoreactive T cells in their native state. However, recent studies have demonstrated that many β cell proteins are recognized as neo-antigens following posttranslational modification (PTM). Although modified neo-antigens are well-established targets of pathology in other autoimmune diseases, the effects of neo-antigens in T1D progression and the mechanisms by which they are generated are not well understood. We have demonstrated that PTM occurs during endoplasmic reticulum (ER) stress, a process to which β cells are uniquely susceptible due to the high rate of insulin production in response to dynamic glucose sensing. In the context of genetic susceptibility to autoimmunity, presentation of these modified neo-antigens may activate autoreactive T cells and cause pathology. However, inherent β cell ER stress and protein PTM do not cause T1D in every genetically susceptible individual, suggesting the contribution of additional factors. Indeed, many environmental factors, such as viral infection, chemicals, or inflammatory cytokines, are associated with T1D onset, but the mechanisms by which these factors lead to disease onset remain unknown. Since these environmental factors also cause ER stress, exposure to these factors may enhance production of neo-antigens, therefore boosting β cell recognition by autoreactive T cells and exacerbating T1D pathogenesis. Therefore, the combined effects of physiological ER stress and the stress that is induced by environmental factors may lead to breaks in peripheral tolerance, contribute to antigen spread, and hasten disease onset. This Hypothesis and Theory article summarizes what is currently known about ER stress and protein PTM in autoimmune diseases including T1D and proposes a role for environmental factors in breaking immune tolerance to β cell antigens through neo-antigen formation. PMID:29033899
Aravindhan, Vivekanandhan; Anand, Gowrishankar
2017-12-01
Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4 + ] cells, cytotoxic T [CD8 + ] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.
NASA Astrophysics Data System (ADS)
Marom, Rotem; Ziv, Baruch; Banerjee, Anjan; Cahana, Beni; Luski, Shalom; Aurbach, Doron
2015-11-01
Addition of various carbon materials into lead-acid battery electrodes was studied and examined in order to enhance the power density, improve cycle life and stability of both negative and positive electrodes in lead acid batteries. High electrical-conductivity, high-aspect ratio, good mechanical properties and chemical stability of multi-wall carbon nanotubes (MWCNT, unmodified and mofified with carboxylic groups) position them as viable additives to enhance the electrodes' electrical conductivity, to mitigate the well-known sulfation failure mechanism and improve the physical integration of the electrodes. In this study, we investigated the incorporation-effect of carbon nanotubes (CNT) to the positive and the negative active materials in lead-acid battery prototypes in a configuration of flooded cells, as well as gelled cells. The cells were tested at 25% and 30% depth-of-discharge (DOD). The positive effect of the carbon nanotubes (CNT) utilization as additives to both positive and negative electrodes of lead-acid batteries was clearly demonstrated and is explained herein based on microscopic studies.
MAP4K4 and IL-6+ Th17 cells play important roles in non-obese type 2 diabetes.
Chuang, Huai-Chia; Tan, Tse-Hua
2017-01-07
Obesity is a causal factor of type 2 diabetes (T2D); however, people without obesity (including lean, normal weight, or overweight) may still develop T2D. Non-obese T2D is prevalent in Asia and also frequently occurs in Europe. Recently, multiple evidences oppose the notion that either obesity or central obesity (visceral fat accumulation) promotes non-obese T2D. Several factors such as inflammation and environmental factors contribute to non-obese T2D. According to the data derived from gene knockout mice and T2D clinical samples in Asia and Europe, the pathogenesis of non-obese T2D has been unveiled recently. MAP4K4 downregulation in T cells results in enhancement of the IL-6 + Th17 cell population, leading to insulin resistance and T2D in both human and mice. Moreover, MAP4K4 single nucleotide polymorphisms and epigenetic changes are associated with T2D patients. Interactions between MAP4K4 gene variants and environmental factors may contribute to MAP4K4 attenuation in T cells, leading to non-obese T2D. Future investigations of the pathogenesis of non-obese T2D shall lead to development of precision medicine for non-obese T2D.
Type I interferons modulate methotrexate resistance in gestational trophoblastic neoplasia.
Elias, Kevin M; Harvey, Richard A; Hasselblatt, Kathleen T; Seckl, Michael J; Berkowitz, Ross S
2017-06-01
Resistance to methotrexate is a leading clinical problem in gestational trophoblastic neoplasia (GTN), but there are limited laboratory models for this condition. We created isogenic trophoblastic cell lines resistant to methotrexate and compared these to the parent cell lines using gene expression microarrays and qRT-PCR followed by mechanistic studies using recombinant cytokines, pathway inhibitors, and patient sera. Gene expression microarrays and focused analysis by qRT-PCR revealed methotrexate led to type I interferon upregulation, in particular interferon alpha 2 (IFNA2), and methotrexate resistance was associated with chronic low level increases in type I interferon expression. Recombinant IFNA2 imparted chemosensitive choriocarcinoma cells with partial resistance to methotrexate, while chemoresistant choriocarcinoma cells were uniquely sensitive to fludarabine, a STAT1 inhibitor. In pre-treatment patient sera, IFNA2 levels correlated with subsequent resistance to methotrexate chemotherapy. Methotrexate resistance is influenced by type I interferon signaling with prognostic and therapeutic implications for treating women with GTN. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Saito, Shigeo; Lin, Ying-Chu; Murayama, Yoshinobu; Nakamura, Yukio; Eckner, Richard; Niemann, Heiner; Yokoyama, Kazunari K
2015-12-01
Pluripotent stem cells (PSCs) are a unique type of cells because they exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to differentiate into any cell type, even male and female germ cells, suggesting their potential as novel cell-based therapeutic treatment for infertility problems. Spermatogenesis is an intricate biological process that starts from self-renewal of spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa. Errors at any stage in spermatogenesis may result in male infertility. During the past decade, much progress has been made in the derivation of male germ cells from various types of progenitor stem cells. Currently, there are two main approaches for the derivation of functional germ cells from PSCs, either the induction of in vitro differentiation to produce haploid cell products, or combination of in vitro differentiation and in vivo transplantation. The production of mature and fertile spermatozoa from stem cells might provide an unlimited source of autologous gametes for treatment of male infertility. Here, we discuss the current state of the art regarding the differentiation potential of SSCs, embryonic stem cells, and induced pluripotent stem cells to produce functional male germ cells. We also discuss the possible use of livestock-derived PSCs as a novel option for animal reproduction and infertility treatment.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2014-03-01
A novel mechanism of importance for the transfusion medicine[2] is proposed. The interaction of ultrashort wavelength multilaser beams with the flowing blood thin films can lead to a conversion of blood types A, B, and AB into O type.[3] The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation),[4] upon the antigen protein molecule must exceed its weight. Supported by Nikola Tesla Labs, La Jolla, CA.
Immune Interventions to Preserve Beta Cell Function in Type 1 Diabetes
Ehlers, Mario R.
2015-01-01
Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic beta cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual beta cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. Over the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off-therapy in the majority of treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T cell-directed therapies, including therapies that lead to partial depletion or modulation of effector T (Teff) cells and preservation or augmentation of regulatory T (Treg) cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: a Teff-depleting or modulating drug, a cytokine-based tolerogenic (Treg-promoting) agent, and an antigen-specific component. The long-term goal is to reestablish immunologic tolerance to beta cells, thereby preserving residual beta cells early after diagnosis or enabling restoration of beta cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763
Concise Review: Methods and Cell Types Used to Generate Down Syndrome Induced Pluripotent Stem Cells
Hibaoui, Youssef; Feki, Anis
2015-01-01
Down syndrome (DS, trisomy 21), is the most common viable chromosomal disorder, with an incidence of 1 in 800 live births. Its phenotypic characteristics include intellectual impairment and several other developmental abnormalities, for the majority of which the pathogenetic mechanisms remain unknown. Several models have been used to investigate the mechanisms by which the extra copy of chromosome 21 leads to the DS phenotype. In the last five years, several laboratories have been successful in reprogramming patient cells carrying the trisomy 21 anomaly into induced pluripotent stem cells, i.e., T21-iPSCs. In this review, we summarize the different T21-iPSCs that have been generated with a particular interest in the technical procedures and the somatic cell types used for the reprogramming. PMID:26239351
A micromachined carbon nanotube film cantilever-based energy cell
NASA Astrophysics Data System (ADS)
Gong, Zhongcheng; He, Yuan; Tseng, Yi-Hsuan; O'Neal, Chad; Que, Long
2012-08-01
This paper reports a new type of energy cell based on micromachined carbon nanotube film (CNF)-lead zirconate titanate cantilevers that is fabricated on silicon substrates. Measurements found that this type of micro-energy cell generates both AC voltages due to the self-reciprocation of the microcantilevers and DC voltages due to the thermoelectric effect upon exposure to light and thermal radiation, resulting from the unique optical and thermal properties of the CNF. Typically the measured power density of the micro-energy cell can be from 4 to 300 μW cm-2 when it is exposed to sunlight under different operational conditions. It is anticipated that hundreds of integrated micro-energy cells can generate power in the range of milliwatts, paving the way for the construction of self-powered micro- or nanosystems.
Russek, Natanya S; Jensen, Matthew B
2014-03-01
Ischemic stroke is a leading cause of death and disability, and current treatments to limit tissue injury and improve recovery are limited. Cerebral infarction is accompanied by intense brain tissue inflammation involving many inflammatory cell types that may cause both negative and positive effects on outcomes. Many potential neuroprotective and neurorestorative treatments may affect, and be affected by, this inflammatory cell infiltration, so that accurate quantification of this tissue response is needed. We performed a systematic review of histological methods to quantify brain tissue inflammatory cell infiltration after cerebral infarction. We found reports of multiple techniques to quantify different inflammatory cell types. We found no direct comparison studies and conclude that more research is needed to optimize the assessment of this important stroke outcome.
Fibroblasts Lead the Way: A Unified View of 3D Cell Motility.
Petrie, Ryan J; Yamada, Kenneth M
2015-11-01
Primary human fibroblasts are remarkably adaptable, able to migrate in differing types of physiological 3D tissue and on rigid 2D tissue culture surfaces. The crawling behavior of these and other vertebrate cells has been studied intensively, which has helped generate the concept of the cell motility cycle as a comprehensive model of 2D cell migration. However, this model fails to explain how cells force their large nuclei through the confines of a 3D matrix environment and why primary fibroblasts can use more than one mechanism to move in 3D. Recent work shows that the intracellular localization of myosin II activity is governed by cell-matrix interactions to both force the nucleus through the extracellular matrix (ECM) and dictate the type of protrusions used to migrate in 3D. Published by Elsevier Ltd.
Garrick, Michael D; Garrick, Laura M
2009-05-01
Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.
Self-organized, near-critical behavior during aggregation in Dictyostelium discoideum
NASA Astrophysics Data System (ADS)
de Palo, Giovanna; Yi, Darvin; Gregor, Thomas; Endres, Robert
During starvation, the social amoeba Dictyostelium discoideum aggregates artfully via pattern formation into a multicellular slug and finally spores. The aggregation process is mediated by the secretion and sensing of cyclic adenosine monophosphate, leading to the synchronized movement of cells. The whole process is a remarkable example of collective behavior, spontaneously emerging from single-cell chemotaxis. Despite this phenomenon being broadly studied, a precise characterization of the transition from single cells to multicellularity has been elusive. Here, using fluorescence imaging data of thousands of cells, we investigate the role of cell shape in aggregation, demonstrating remarkable transitions in cell behavior. To better understand their functional role, we analyze cell-cell correlations and provide evidence for self-organization at the onset of aggregation (as opposed to leader cells), with features of criticality in this finite system. To capture the mechanism of self-organization, we extend a detailed single-cell model of D.discoideum chemotaxis by adding cell-cell communication. We then use these results to extract a minimal set of rules leading to aggregation in the population model. If universal, similar rules may explain other types of collective cell behavior.
Staining of Tissue Sections for Electron Microscopy with Heavy Metals
Watson, Michael L.
1958-01-01
Descriptions of three heavy metal stains and methods of application to tissue sections for electron microscopy are presented. Lead hydroxide stains rather selectively two types of particles in liver: those associated with the endoplasmic reticulum and containing ribonucleic acid and other somewhat larger particles. Barium hydroxide emphasizes certain bodies within vesicles of the Golgi region of hepatic cells. Alkalized lead acetate is useful as a general stain, as are also lead and barium hydroxides. PMID:13610936
SLAP, a regulator of immunoreceptor ubiquitination, signaling, and trafficking.
Dragone, Leonard L; Shaw, Laura A; Myers, Margaret D; Weiss, Arthur
2009-11-01
Src-like adapter proteins (SLAP and SLAP-2) constitute a family of proteins that are expressed in a variety of cell types but are studied most extensively in lymphocytes. They have been shown to associate with proximal components of the T-cell receptor (TCR) and B-cell receptor (BCR) signaling complexes. An interaction of SLAP with c-Cbl leads to the ubiquitination and degradation of phosphorylated components of the TCR- and BCR-signaling complexes. The absence of this process in immature SLAP-deficient T and B cells leads to increased immunoreceptor levels due to decreased intracellular retention and degradation. We propose a model in which SLAP-dependent regulation of immunoreceptor levels allows for finer control of immunoreceptor signaling. Thus, SLAP functions to dampen immunoreceptor signaling, thereby influencing lymphocyte development and repertoire selection.
Wang, Ning; Feng, Yibin
2015-01-01
Autophagy is a homeostatic process that is highly conserved across different types of mammalian cells. Autophagy is able to relieve tumor cell from nutrient and oxidative stress during the rapid expansion of cancer. Excessive and sustained autophagy may lead to cell death and tumor shrinkage. It was shown in literature that many anticancer natural compounds and extracts could initiate autophagy in tumor cells. As summarized in this review, the tumor suppressive action of natural products-induced autophagy may lead to cell senescence, provoke apoptosis-independent cell death, and complement apoptotic cell death by robust or target-specific mechanisms. In some cases, natural products-induced autophagy could protect tumor cells from apoptotic death. Technical variations in detecting autophagy affect data quality, and study focus should be made on elaborating the role of autophagy in deciding cell fate. In vivo study monitoring of autophagy in cancer treatment is expected to be the future direction. The clinical-relevant action of autophagy-inducing natural products should be highlighted in future study. As natural products are an important resource in discovery of lead compound of anticancer drug, study on the role of autophagy in tumor suppressive effect of natural products continues to be necessary and emerging.
Analysis of the nutritional status of algae by Fourier transform infrared chemical imaging
NASA Astrophysics Data System (ADS)
Hirschmugl, Carol J.; Bayarri, Zuheir-El; Bunta, Maria; Holt, Justin B.; Giordano, Mario
2006-09-01
A new non-destructive method to study the nutritional status of algal cells and their environments is demonstrated. This approach allows rapid examination of whole cells without any or little pre-treatment providing a large amount of information on the biochemical composition of cells and growth medium. The method is based on the analysis of a collection of infrared (IR) spectra for individual cells; each spectrum describes the biochemical composition of a portion of a cell; a complete set of spectra is used to reconstruct an image of the entire cell. To obtain spatially resolved information synchrotron radiation was used as a bright IR source. We tested this method on the green flagellate Euglena gracilis; a comparison was conducted between cells grown in nutrient replete conditions (Type 1) and on cells allowed to deplete their medium (Type 2). Complete sets of spectra for individual cells of both types were analyzed with agglomerative hierarchical clustering, leading to distinct clusters representative of the two types of cells. The average spectra for the clusters confirmed the similarities between the clusters and the types of cells. The clustering analysis, therefore, allows the distinction of cells of the same species, but with different nutritional histories. In order to facilitate the application of the method and reduce manipulation (washing), we analyzed the cells in the presence of residual medium. The results obtained showed that even with residual medium the outcome of the clustering analysis is reliable. Our results demonstrate the applicability FTIR microspectroscopy for ecological and ecophysiological studies.
Clerc, Jérôme; Florea, Bogdan I; Kraus, Marianne; Groll, Michael; Huber, Robert; Bachmann, André S; Dudler, Robert; Driessen, Christoph; Overkleeft, Herman S; Kaiser, Markus
2009-11-02
The natural product syringolin A (SylA) is a potent proteasome inhibitor with promising anticancer activities. To further investigate its potential as a lead structure, selectivity profiling with cell lysates was performed. At therapeutic concentrations, a rhodamine-tagged SylA derivative selectively bound to the 20 S proteasome active sites without detectable off-target labelling. Additional profiling with lysates of wild-type and bortezomib-adapted leukaemic cell lines demonstrated the retention of this proteasome target and subsite selectivity as well as potency even in clinically relevant cell lines. Our studies, therefore, propose that further development of SylA might indeed result in an improved small molecule for the treatment of leukaemia.
Mediators and mechanisms of herpes simplex virus entry into ocular cells.
Farooq, Asim V; Valyi-Nagy, Tibor; Shukla, Deepak
2010-06-01
The entry of herpes simplex virus into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of herpes simplex virus into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis, and other ocular diseases.
Mediators and Mechanisms of Herpes Simplex Virus Entry into Ocular Cells
Farooq, Asim V.; Valyi-Nagy, Tibor; Shukla, Deepak
2010-01-01
The entry of herpes simplex virus (HSV) into cells was once thought to be a general process. It is now understood that the virus is able to use multiple mechanisms for entry and spread, including the use of receptors and co-receptors that have been determined to be cell-type specific. This is certainly true for ocular cell types, which is important as the virus may use different mechanisms to gain access to multiple anatomic structures in close proximity, leading to various ocular diseases. There are some patterns that may be utilized by the virus in the eye and elsewhere, including surfing along filopodia in moving from cell to cell. There are common themes as well as intriguing differences in the entry mechanisms of HSV into ocular cells. We discuss these issues in the context of conjunctivitis, keratitis, acute retinal necrosis and other ocular diseases. PMID:20465436
Lamp, Jessica; Keyser, Britta; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris
2011-05-20
The inherited neurodegenerative disorder glutaric aciduria type 1 (GA1) results from mutations in the gene for the mitochondrial matrix enzyme glutaryl-CoA dehydrogenase (GCDH), which leads to elevations of the dicarboxylates glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in brain and blood. The characteristic clinical presentation of GA1 is a sudden onset of dystonia during catabolic situations, resulting from acute striatal injury. The underlying mechanisms are poorly understood, but the high levels of GA and 3OHGA that accumulate during catabolic illnesses are believed to play a primary role. Both GA and 3OHGA are known to be substrates for Na(+)-coupled dicarboxylate transporters, which are required for the anaplerotic transfer of the tricarboxylic acid cycle (TCA) intermediate succinate between astrocytes and neurons. We hypothesized that GA and 3OHGA inhibit the transfer of succinate from astrocytes to neurons, leading to reduced TCA cycle activity and cellular injury. Here, we show that both GA and 3OHGA inhibit the uptake of [(14)C]succinate by Na(+)-coupled dicarboxylate transporters in cultured astrocytic and neuronal cells of wild-type and Gcdh(-/-) mice. In addition, we demonstrate that the efflux of [(14)C]succinate from Gcdh(-/-) astrocytic cells mediated by a not yet identified transporter is strongly reduced. This is the first experimental evidence that GA and 3OHGA interfere with two essential anaplerotic transport processes: astrocytic efflux and neuronal uptake of TCA cycle intermediates, which occur between neurons and astrocytes. These results suggest that elevated levels of GA and 3OHGA may lead to neuronal injury and cell death via disruption of TCA cycle activity. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu
2012-01-01
Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.
Modeling Niemann Pick type C1 using human embryonic and induced pluripotent stem cells.
Ordoñez, M Paulina; Steele, John W
2017-02-01
Data generated in Niemann Pick type C1 (NPC1) human embryonic and human induced pluripotent stem cell derived neurons complement on-going studies in animal models and provide the first example, in disease-relevant human cells, of processes that underlie preferential neuronal defects in a NPC1. Our work and that of other investigators in human neurons derived from stem cells highlight the importance of performing rigorous mechanistic studies in relevant cell types to guide drug discovery and therapeutic development, alongside of existing animal models. Through the use of human stem cell-derived models of disease, we can identify and discover or repurpose drugs that revert early events that lead to neuronal failure in NPC1. Together with the study of disease pathogenesis and efficacy of therapies in animal models, these strategies will fulfill the promise of stem cell technology in the development of new treatments for human diseases. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.
Cold plasma selectivity in the interaction with various types of the cells
NASA Astrophysics Data System (ADS)
Volotskova, Olga; Stepp, Mary Ann; Keidar, Michael
2011-10-01
Present research in the area of cold atmospheric plasma (CAP) demonstrates great potential in various areas including medicine and biology. Depending on their configuration they can be used for wound healing, sterilization, targeted cell/tissue removal, and cancer treatments. Here we explore potential mechanisms by which CAP alters cell migration and influences cell adhesion. The migration studies are focused on the CAP interaction with fibroblasts and corneal epithelial cells. Data show that various types of cells have different thresholds (treatment times) required to achieve maximum inhibition of cell migration which is around ~30-40%. Studies to assess the impact of CAP treatment on the activation state of integrins and focal adhesion size by immunofluorescence showed more active b1 integrin on the cell surface and large focal adhesions after CAP treatment. Based on these data, a thermodynamic model is presented to explain how CAP leads to integrin activation and focal adhesion assembly. Also responses of the various types of the cells to the cold plasma treatment on the example of the epithelial keratinocytes, papilloma and carcinoma cells are studied. Cell cycle, migration and cell vitality analysis were performed. The goal of this study is to understand the mechanism by which the CAP jet alters cell migration, influences adhesion and cell survival.
Langenbach, Fabian; Handschel, Jörg
2013-01-01
The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization.
Lowering Risk for Type 2 Diabetes in High-Risk Youth
ERIC Educational Resources Information Center
Bobo, Nichole; Schantz, Shirley; Kaufman, Francine R.; Kollipara, Sobha
2009-01-01
Among children and youth who develop type 2 diabetes (T2DM) there are a number of genetic and environmental factors that lead to a combination of insulin resistance and relative-cell secretory failure of the pancreas. These factors include ethnicity (highest in American Indian youth), obesity, sedentary behavior, family history of T2DM, puberty,…
Lnx2 ubiquitin ligase is essential for exocrine cell differentiation in the early zebrafish pancreas
Won, Minho; Ro, Hyunju; Dawid, Igor B.
2015-01-01
The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use. PMID:26392552
Won, Minho; Ro, Hyunju; Dawid, Igor B
2015-10-06
The gene encoding the E3 ubiquitin ligase Ligand of Numb protein-X (Lnx)2a is expressed in the ventral-anterior pancreatic bud of zebrafish embryos in addition to its expression in the brain. Knockdown of Lnx2a by using an exon 2/intron 2 splice morpholino resulted in specific inhibition of the differentiation of ventral bud derived exocrine cell types, with little effect on endocrine cell types. A frame shifting null mutation in lnx2a did not mimic this phenotype, but a mutation that removed the exon 2 splice donor site did. We found that Lnx2b functions in a redundant manner with its paralog Lnx2a. Inhibition of lnx2a exon 2/3 splicing causes exon 2 skipping and leads to the production of an N-truncated protein that acts as an interfering molecule. Thus, the phenotype characterized by inhibition of exocrine cell differentiation requires inactivation of both Lnx2a and Lnx2b. Human LNX1 is known to destabilize Numb, and we show that inhibition of Numb expression rescues the Lnx2a/b-deficient phenotype. Further, Lnx2a/b inhibition leads to a reduction in the number of Notch active cells in the pancreas. We suggest that Lnx2a/b function to fine tune the regulation of Notch through Numb in the differentiation of cell types in the early zebrafish pancreas. Further, the complex relationships among genotype, phenotype, and morpholino effect in this case may be instructive in the ongoing consideration of morpholino use.
Honjoh, Chisato; Chihara, Kazuyasu; Yoshiki, Hatsumi; Yamauchi, Shota; Takeuchi, Kenji; Kato, Yuji; Hida, Yukio; Ishizuka, Tamotsu; Sada, Kiyonao
2017-04-10
Macrophage-inducible C-type lectin (Mincle) interacts with the γ-subunit of high-affinity IgE receptor (FcεRIγ) and activates Syk by recognizing its specific ligand, trehalose-6,6'-dimycolate, a glycolipid produced by Mycobacterium tuberculosis. It has been suggested that mast cells participate in the immune defense against pathogenic microbes including M. tuberculosis, although the functions are still uncertain. In this study, we examined the Mincle-mediated signaling pathway and cellular responses using RBL-2H3 cells. Mincle formed a protein complex with not only FcεRIγ but also FcεRIβ in a stable cell line expressing myc-tagged Mincle. In addition, engagement of Mincle increased the levels of protein tyrosine phosphorylation and ERK phosphorylation. A pull-down assay demonstrated that cross-linking of Mincle induced binding of FcεRIβγ subunits to the Src homology 2 domain of Syk. Pharmacological and genetic studies indicated that activation of Syk was critical for Mincle-mediated activation of phospholipase Cγ2, leading to the activation of ERK and nuclear factor of activated T cells. Moreover, engagement of Mincle efficiently induced up-regulation of characteristic mast cell genes in addition to degranulation. Taken together, our present results suggest that mast cells contribute to Mincle-mediated immunity through Syk activation triggered by association with the FcεRIβγ complex.
Bour, S; Geleziunas, R; Wainberg, M A
1995-01-01
Interactions between the viral envelope glycoprotein gp120 and the cell surface receptor CD4 are responsible for the entry of human immunodeficiency virus type 1 (HIV-1) into host cells in the vast majority of cases. HIV-1 replication is commonly followed by the disappearance or receptor downmodulation of cell surface CD4. This potentially renders cells nonsusceptible to subsequent infection by HIV-1, as well as by other viruses that use CD4 as a portal of entry. Disappearance of CD4 from the cell surface is mediated by several different viral proteins that act at various stages through the course of the viral life cycle, and it occurs in T-cell lines, peripheral blood CD4+ lymphocytes, and monocytes of both primary and cell line origin. At the cell surface, gp120 itself and in the form of antigen-antibody complexes can trigger cellular pathways leading to CD4 internalization. Intracellularly, the mechanisms leading to CD4 downmodulation by HIV-1 are multiple and complex; these include degradation of CD4 by Vpu, formation of intracellular complexes between CD4 and the envelope precursor gp160, and internalization by the Nef protein. Each of the above doubtless contributes to the ultimate depletion of cell surface CD4, although the relative contribution of each mechanism and the manner in which they interact remain to be definitively established. PMID:7708013
Pluripotency of adult stem cells derived from human and rat pancreas
NASA Astrophysics Data System (ADS)
Kruse, C.; Birth, M.; Rohwedel, J.; Assmuth, K.; Goepel, A.; Wedel, T.
Adult stem cells are undifferentiated cells found within fully developed tissues or organs of an adult individuum. Until recently, these cells have been considered to bear less self-renewal ability and differentiation potency compared to embryonic stem cells. In recent studies an undifferentiated cell type was found in primary cultures of isolated acini from exocrine pancreas termed pancreatic stellate cells. Here we show that pancreatic stellate-like cells have the capacity of extended self-renewal and are able to differentiate spontaneously into cell types of all three germ layers expressing markers for smooth muscle cells, neurons, glial cells, epithelial cells, chondrocytes and secretory cells (insulin, amylase). Differentiation and subsequent formation of three-dimensional cellular aggregates (organoid bodies) were induced by merely culturing pancreatic stellate-like cells in hanging drops. These cells were developed into stable, long-term, in vitro cultures of both primary undifferentiated cell lines as well as organoid cultures. Thus, evidence is given that cell lineages of endodermal, mesodermal, and ectodermal origin arise spontaneously from a single adult undifferentiated cell type. Based on the present findings it is assumed that pancreatic stellate-like cells are a new class of lineage uncommitted pluripotent adult stem cells with a remarkable self-renewal ability and differentiation potency. The data emphasize the versatility of adult stem cells and may lead to a reappraisal of their use for the treatment of inherited disorders or acquired degenerative diseases.
Carbajosa, Guillermo; Malki, Karim; Lawless, Nathan; Wang, Hong; Ryder, John W; Wozniak, Eva; Wood, Kristie; Mein, Charles A; Dobson, Richard J B; Collier, David A; O'Neill, Michael J; Hodges, Angela K; Newhouse, Stephen J
2018-05-17
Rare heterozygous coding variants in the triggering receptor expressed in myeloid cells 2 (TREM2) gene, conferring increased risk of developing late-onset Alzheimer's disease, have been identified. We examined the transcriptional consequences of the loss of Trem2 in mouse brain to better understand its role in disease using differential expression and coexpression network analysis of Trem2 knockout and wild-type mice. We generated RNA-Seq data from cortex and hippocampus sampled at 4 and 8 months. Using brain cell-type markers and ontology enrichment, we found subnetworks with cell type and/or functional identity. We primarily discovered changes in an endothelial gene-enriched subnetwork at 4 months, including a shift toward a more central role for the amyloid precursor protein gene, coupled with widespread disruption of other cell-type subnetworks, including a subnetwork with neuronal identity. We reveal an unexpected potential role of Trem2 in the homeostasis of endothelial cells that goes beyond its known functions as a microglial receptor and signaling hub, suggesting an underlying link between immune response and vascular disease in dementia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Kalantari, Mina; Lee, Denis; Calleja-Macias, Itzel E; Lambert, Paul F; Bernard, Hans-Ulrich
2008-05-10
Human papillomavirus-16 (HPV-16) genomes in cell culture and in situ are affected by polymorphic methylation patterns, which can repress the viral transcription. In order to understand some of the underlying mechanisms, we investigated changes of the methylation of HPV-16 DNA in cell cultures in response to cellular differentiation, to recombination with cellular DNA, and to an inhibitor of methylation. Undifferentiated W12E cells, derived from a precancerous lesion, contained extrachromosomal HPV-16 DNA with a sporadically methylated enhancer-promoter segment. Upon W12E cell differentiation, the viral DNA was demethylated, suggesting a link between differentiation and the epigenetic state of HPV-16 DNA. The viral genomes present in two W12I clones, in which individual copies of the HPV-16 genome have integrated into cellular DNA (type 1 integrants), were unmethylated, akin to that seen in the cervical carcinoma cell line SiHa (also a type 1 integrant). This finding is consistent with hypomethylation being necessary for continued viral gene expression. In contrast, two of three type 2 integrant W12I clones, containing concatemers of HPV-16 genomes integrated into the cellular DNA contained hypermethylated viral DNA, as observed in the cervical carcinoma cell line CaSki (also a type 2 integrant). A third, type 2, W12I clone, interestingly with fewer copies of the viral genome, contained unmethylated HPV-16 genomes. Epithelial differentiation of W12I clones did not lead to demethylation of chromosomally integrated viral genomes as was seen for extrachromosomal HPV-16 DNA in W12E clones. Hypomethylation of CaSki cells in the presence of the DNA methylation inhibitor 5-aza-2'-deoxycytidine reduced the cellular viability, possibly as a consequence of toxic effects of an excess of HPV-16 gene products. Our data support a model wherein (i) the DNA methylation state of extrachromosomal HPV16 replicons and epithelial differentiation are inversely coupled during the viral life cycle, (ii) integration of the viral genome into the host chromosome events leads to an alteration in methylation patterns on the viral genome that is dependent upon the type of integration event and possibly copy number, and (iii) integration universally results in the viral DNA becoming refractory to changes in methylation state upon cellular differentiation that are observed with extrachromosomal HPV-16 genomes.
Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity.
Nguyen, Quy H; Pervolarakis, Nicholas; Blake, Kerrigan; Ma, Dennis; Davis, Ryan Tevia; James, Nathan; Phung, Anh T; Willey, Elizabeth; Kumar, Raj; Jabart, Eric; Driver, Ian; Rock, Jason; Goga, Andrei; Khan, Seema A; Lawson, Devon A; Werb, Zena; Kessenbrock, Kai
2018-05-23
Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.
Maier, Barbara B; Hladik, Anastasiya; Lakovits, Karin; Korosec, Ana; Martins, Rui; Kral, Julia B; Mesteri, Ildiko; Strobl, Birgit; Müller, Mathias; Kalinke, Ulrich; Merad, Miriam; Knapp, Sylvia
2016-09-01
Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-09-01
NREL has demonstrated a 45.7% conversion efficiency for a four-junction solar cell at 234 suns concentration. This achievement represents one of the highest photovoltaic research cell efficiencies ever achieved across all types of solar cells. NREL's new solar cell, which is designed for operation in a concentrator photovoltaic (CPV) system where it can receive more than 1,000 suns of concentrated sunlight, greatly improves earlier designs by adding an additional high quality absorber layer to achieve an ultra-high efficiency.
Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry.
Wan, Leo Q; Ronaldson, Kacey; Park, Miri; Taylor, Grace; Zhang, Yue; Gimble, Jeffrey M; Vunjak-Novakovic, Gordana
2011-07-26
Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.
Veenendaal, Andreas K J; Hodgkinson, Julie L; Schwarzer, Lynn; Stabat, David; Zenk, Sebastian F; Blocker, Ariel J
2007-03-01
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.
Badr, Badr Mohamed; Moustafa, Nadia Ahmed; Eldien, Heba M Saad; Mohamed, Amany O; Ibrahim, Hany M; El-Elaimy, Ibrahim A; Mahmoud, Mohamed H; Badr, Gamal
2015-01-01
The autoimmune disease type 1 diabetes mellitus (T1D) is associated with a defect in the immune response, which increases susceptibility to infection. We recently demonstrated that prolonged elevated levels of type 1 interferon (IFN) induce lymphocyte exhaustion during T1D. In the present study, we further investigated the effect of blocking the type I IFN receptor signaling pathway on diabetic dyslipidemia, in which an abnormal lipid profile leads to the exhaustion of B cells and alteration of their distribution and functions. T1D was induced in a mouse model by an intraperitoneal injection of a single dose (60 mg/kg) of streptozotocin (STZ). Three groups of mice were examined: a non-diabetic control group, a diabetic group and a diabetic group treated with an anti-IFN (alpha, beta and omega) receptor 1 (IFNAR1) blocking antibody to block type I IFN signaling. We observed that induction of T1D was accompanied by a marked destruction of β cells and a reduction in the insulin levels in the diabetic group. Diabetic mice exhibited many changes, including alterations in their lipid profiles, expansion of splenic B cells, increased caspase-3, -8 and -9 activity, and apoptosis in peripheral B cells. Blocking type 1 IFN signaling in diabetic mice significantly returned the insulin and lipid profiles to normal levels, subsequently restored the B cell distribution, and rescued the peripheral B cells from apoptosis. Our data suggest the potential role of type I IFN in mediating diabetic dyslipidemia and an exhausted state of B cells during T1D. © 2015 S. Karger AG, Basel.
Measurement of Reactive Oxygen Species in the Culture Media Using Acridan Lumigen PS-3 Assay
Uy, Benedict; McGlashan, Susan R.; Shaikh, Shamim B.
2011-01-01
Reactive oxygen species (ROS) are generated continuously during aerobic metabolism. ROS are highly reactive molecules and in excessive amounts, can lead to protein and DNA oxidation, protein cross-linking, and cell death. Cell-culture models provide a valuable tool in understanding the mechanisms that lead to cell death. Accumulation of ROS within cells and/or their release into the culture media are highly cell type-specific. The ability to estimate ROS levels in the culture media is an important step in understanding the mechanisms contributing to disease processes. In this paper, we describe the optimization of a simple method to estimate ROS levels in the culture media using the Acridan Lumigen PS-3 reagent provided in the Amersham ECL Plus kit (GE Healthcare, UK). We have shown that the Acridan Lumigen PS-3 assay generates ROS-specific chemiluminescence in fresh as well as media stored at −20°C, in as little as 10–20 μl of samples. The method was able to detect the dose (of stimulants)- and time (acute and chronic)-dependent changes in ROS levels in media collected from various cell types. Our results suggest that the kit reagents, PBS buffer, and various media did not contribute significantly to the overall chemiluminescence generated in the assay; however, we suggest that the unused medium specific for each cell type should be used as blanks and final readings of test samples normalized against these readings. As this method uses commonly available laboratory equipment and commercially available reagents, we believe this assay is convenient, economical, and specific in estimating ROS released extracellularly into the culture media. PMID:21966257
Measurement of reactive oxygen species in the culture media using Acridan Lumigen PS-3 assay.
Uy, Benedict; McGlashan, Susan R; Shaikh, Shamim B
2011-09-01
Reactive oxygen species (ROS) are generated continuously during aerobic metabolism. ROS are highly reactive molecules and in excessive amounts, can lead to protein and DNA oxidation, protein cross-linking, and cell death. Cell-culture models provide a valuable tool in understanding the mechanisms that lead to cell death. Accumulation of ROS within cells and/or their release into the culture media are highly cell type-specific. The ability to estimate ROS levels in the culture media is an important step in understanding the mechanisms contributing to disease processes. In this paper, we describe the optimization of a simple method to estimate ROS levels in the culture media using the Acridan Lumigen PS-3 reagent provided in the Amersham ECL Plus kit (GE Healthcare, UK). We have shown that the Acridan Lumigen PS-3 assay generates ROS-specific chemiluminescence in fresh as well as media stored at -20°C, in as little as 10-20 μl of samples. The method was able to detect the dose (of stimulants)- and time (acute and chronic)-dependent changes in ROS levels in media collected from various cell types. Our results suggest that the kit reagents, PBS buffer, and various media did not contribute significantly to the overall chemiluminescence generated in the assay; however, we suggest that the unused medium specific for each cell type should be used as blanks and final readings of test samples normalized against these readings. As this method uses commonly available laboratory equipment and commercially available reagents, we believe this assay is convenient, economical, and specific in estimating ROS released extracellularly into the culture media.
Survey of mercury, cadmium and lead content of household batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de; Radant, Hendrik; Kohlmeyer, Regina
2014-01-15
Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146more » different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.« less
In vitro differentiation of mouse embryonic stem (mES) cells using the hanging drop method.
Wang, Xiang; Yang, Phillip
2008-07-23
Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells.
Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi
2002-05-01
Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation.
Annalaura Mancia; Spyropoulos, Demetri D; McFee, Wayne E; Newton, Danforth A; Baatz, John E
2012-01-01
Current models for in vitro studies of tissue function and physiology, including responses to hypoxia or environmental toxins, are limited and rely heavily on standard 2-dimensional (2-D) cultures with immortalized murine or human cell lines. To develop a new more powerful model system, we have pursued methods to establish and expand cultures of primary lung cell types and reconstituted tissues from marine mammals. What little is known about the physiology of the deep-sea diving pygmy sperm whale (PSW), Kogia breviceps, comes primarily from stranding events that occur along the coast of the southeastern United States. Thus, development of a method for preserving live tissues and retrieving live cells from deceased stranded individuals was initiated. This report documents successful cryopreservation of PSW lung tissue. We established in vitro cultures of primary lung cell types from tissue fragments that had been cryopreserved several months earlier at the stranding event. Dissociation of cryopreserved lung tissues readily provides a variety of primary cell types that, to varying degrees, can be expanded and further studied/manipulated in cell culture. In addition, PSW-specific molecular markers have been developed that permitted the monitoring of fibroblast, alveolar type II, and vascular endothelial cell types. Reconstitution of 3-D cultures of lung tissues with these cell types is now underway. This novel system may facilitate the development of rare or disease-specific lung tissue models (e.g., to test causes of PSW stranding events and lead to improved treatments for pulmonary hypertension or reperfusion injury in humans). Also, the establishment of a "living" tissue bank biorepository for rare/endangered species could serve multiple purposes as surrogates for freshly isolated samples. Copyright © 2011 Elsevier Inc. All rights reserved.
Enhanced Heme Function and Mitochondrial Respiration Promote the Progression of Lung Cancer Cells
Alam, Md Maksudul; Shah, Ajit; Cao, Thai M.; Sullivan, Laura A.; Brekken, Rolf; Zhang, Li
2013-01-01
Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer biology and therapeutics. PMID:23704904
Constantin, Carolina; Neagu, Monica
2015-01-01
The intrinsic fluorescence of synthetic or natural porphyrins is regarded as an attractive characteristic exploited for assisting early cancer diagnosis and/or tumor localization. Single tumor cells circulating in the blood stream can be considered a major step in depicting dissemination of primary tumors, an event of clinical relevance for prognosis, staging or therapy monitoring of cancer. The third leading cause of cancer death in men is colorectal cancer and the hematogenous spreading of primary tumor cells is one of the main events in metastasis of this type of cancer. Hidden in the myriad of circulating blood cells, tumor cells need both a sensitive and affordable detection technique. 5- (3-methoxy)-4-methoxycarbonylphenyl)-10, 15, 20-tris-(4- methoxycarbonylphenyl) - 21, 23-H porphyne is a synthetic porphyrin with a noticeable preference of accumulation in peripheral blood mononuclear cells isolated from cancer patients as assessed by flow cytometry analysis. In addition, we found distinct accumulation of porphyrin depending on cancer type (cutaneous melanoma versus colorectal cancer). These data lead to the possibility of identifying circulating cells based on preferential accumulation of this new porphyrin in circulating tumor cells because, even accumulated in low percentage of cells the registered intensity of fluorescence was high. Selecting the genetic markers for circulating tumor cells is an option, but high costs and high level of know-how can be somewhat a hurdle for a rapid evaluation. Thus our approach with a new porphyrin can be developed in an accurate and innovative fast tracking method for circulating cancer cells, at least in colorectal cancer patients.
Buchholz, David E.; Pennington, Britney O.; Croze, Roxanne H.; Hinman, Cassidy R.
2013-01-01
Controlling the differentiation of human pluripotent stem cells is the goal of many laboratories, both to study normal human development and to generate cells for transplantation. One important cell type under investigation is the retinal pigmented epithelium (RPE). Age-related macular degeneration (AMD), the leading cause of blindness in the Western world, is caused by dysfunction and death of the RPE. Currently, RPE derived from human embryonic stem cells are in clinical trials for the treatment of AMD. Although protocols to generate RPE from human pluripotent stem cells have become more efficient since the first report in 2004, they are still time-consuming and relatively inefficient. We have found that the addition of defined factors at specific times leads to conversion of approximately 80% of the cells to an RPE phenotype in only 14 days. This protocol should be useful for rapidly generating RPE for transplantation as well as for studying RPE development in vitro. PMID:23599499
Su, Yuan; Shi, Yufang; Stolow, Melissa A.; Shi, Yun-Bo
1997-01-01
Thyroid hormone (T3 or 3,5,3′-triiodothyronine) plays a causative role during amphibian metamorphosis. To investigate how T3 induces some cells to die and others to proliferate and differentiate during this process, we have chosen the model system of intestinal remodeling, which involves apoptotic degeneration of larval epithelial cells and proliferation and differentiation of other cells, such as the fibroblasts and adult epithelial cells, to form the adult intestine. We have established in vitro culture conditions for intestinal epithelial cells and fibroblasts. With this system, we show that T3 can enhance the proliferation of both cell types. However, T3 also concurrently induces larval epithelial apoptosis, which can be inhibited by the extracellular matrix (ECM). Our studies with known inhibitors of mammalian cell death reveal both similarities and differences between amphibian and mammalian cell death. These, together with gene expression analysis, reveal that T3 appears to simultaneously induce different pathways that lead to specific gene regulation, proliferation, and apoptotic degeneration of the epithelial cells. Thus, our data provide an important molecular and cellular basis for the differential responses of different cell types to the endogenous T3 during metamorphosis and support a role of ECM during frog metamorphosis. PMID:9396758
High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell
NASA Technical Reports Server (NTRS)
Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville
2009-01-01
A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.
The ecology of cancer from an evolutionary game theory perspective.
Pacheco, Jorge M; Santos, Francisco C; Dingli, David
2014-08-06
The accumulation of somatic mutations, to which the cellular genome is permanently exposed, often leads to cancer. Analysis of any tumour shows that, besides the malignant cells, one finds other 'supporting' cells such as fibroblasts, immune cells of various types and even blood vessels. Together, these cells generate the microenvironment that enables the malignant cell population to grow and ultimately lead to disease. Therefore, understanding the dynamics of tumour growth and response to therapy is incomplete unless the interactions between the malignant cells and normal cells are investigated in the environment in which they take place. The complex interactions between cells in such an ecosystem result from the exchange of information in the form of cytokines- and adhesion-dependent interactions. Such processes impose costs and benefits to the participating cells that may be conveniently recast in the form of a game pay-off matrix. As a result, tumour progression and dynamics can be described in terms of evolutionary game theory (EGT), which provides a convenient framework in which to capture the frequency-dependent nature of ecosystem dynamics. Here, we provide a tutorial review of the central aspects of EGT, establishing a relation with the problem of cancer. Along the way, we also digress on fitness and of ways to compute it. Subsequently, we show how EGT can be applied to the study of the various manifestations and dynamics of multiple myeloma bone disease and its preceding condition known as monoclonal gammopathy of undetermined significance. We translate the complex biochemical signals into costs and benefits of different cell types, thus defining a game pay-off matrix. Then we use the well-known properties of the EGT equations to reduce the number of core parameters that characterize disease evolution. Finally, we provide an interpretation of these core parameters in terms of what their function is in the ecosystem we are describing and generate predictions on the type and timing of interventions that can alter the natural history of these two conditions.
Stopping Liver Cancer's Rogue COP | Center for Cancer Research
Liver cancer is the fourth most common cancer type and the third leading cause of cancer death worldwide. Many liver tumors are actually metastases, tumors seeded in the liver by cancer cells from another organ, but hepatocellular carcinomas (HCCs), the most common liver tumors, are a heterogeneous family of cancers that arise in hepatocytes, the functional cells of the liver.
González, J Antonio; Prehn, Jochen H M
2018-01-15
The mechanisms that link diet and body weight are not fully understood. A diet high in fat often leads to obesity, and this in part is the consequence of diet-induced injury to specific hypothalamic nuclei. It has been suggested that a diet high in fat leads to cell loss in the lateral hypothalamus, which contains specific populations of neurons that are essential for regulating energy homoeostasis; however, we do not know which cell types are affected by the diet. We studied the possibility that high-fat diet leads to a reduction in orexin-A/hypocretin-1 (Hcrt1) and/or melanin-concentrating hormone (MCH) immunoreactivity in the lateral hypothalamus. We quantified immuno-labeled Hcrt1 and MCH cells in brain sections of mice fed a diet high in fat for up to 12 weeks starting at 4 weeks of age and found that this diet did not modify the number of Hcrt1- or MCH-immunoreactive neurons. By contrast, there were fewer Hcrt1- (but not MCH-) immunoreactive cells in genetically obese db/db mice compared to wild-type mice. Non-obese, heterozygous db/+ mice also had fewer Hcrt1-immunoreactive cells. Differences in the number of Hcrt1-immunoreactive cells were only a function of the db genotype but not of diet or body weight. Our findings show that the lateral hypothalamus is affected differently in the db genotype and in diet-induced obesity, and support the idea that not all hypothalamic neurons involved in energy balance regulation are sensitive to the effects of diet. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Mutational Analysis of Cell Types in TSC
2008-01-01
disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure known as tubers in over 80% of TSC patients. Loss of...that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations lead to developmental alterations in brain structure...2000). Comorbid neuropsychological disorders such as autism , mental retardation (MR), pervasive developmental disorder, attention deficit disorder (ADD
EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS
Voss, J. G.
1963-01-01
Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942
Examining the Origins of Myeloid Leukemia | Center for Cancer Research
Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The cellular changes that lead to AML disease initiation and progression, however, are not clear. Because of the aging of the U.S. population and AML’s increasing incidence with age, cases of this disease are likely to rise significantly in the near future. Thus, understanding what causes AML should lead to the identification of novel targets and the enhanced treatment of patients.
Some observations on the three-dimensional growth of L5178Y cell colonies in soft agar culture.
NASA Technical Reports Server (NTRS)
Dalen, H.; Burki, H. J.
1971-01-01
The three-dimensional organization of spherical colonies formed by L5178Y cells grown in soft agar cultures was investigated by light and scanning electron microscopy. Visible colonies were formed after 7 days of incubation and increased in size for more than 2 weeks. At this time the colonies contained a central core of necrotic cells surrounded by an outer shell of normal-looking cells in loose contact with each other. Cross sectional radioautographs revealed that tritiated precursors were incorporated only into those cells in the ?viable cell' shell and not in the necrotic center of the colony. It is pointed out that increased knowledge of the factors leading to this type of three-dimensional organization is of particular interest, since it is similar to the conditions found in certain types of solid tumors (Thomlinson and Gray, 1955).
Macrophage Plasticity and the Role of Inflammation in Skeletal Muscle Repair
Kharraz, Yacine; Guerra, Joana; Mann, Christopher J.; Serrano, Antonio L.; Muñoz-Cánoves, Pura
2013-01-01
Effective repair of damaged tissues and organs requires the coordinated action of several cell types, including infiltrating inflammatory cells and resident cells. Recent findings have uncovered a central role for macrophages in the repair of skeletal muscle after acute damage. If damage persists, as in skeletal muscle pathologies such as Duchenne muscular dystrophy (DMD), macrophage infiltration perpetuates and leads to progressive fibrosis, thus exacerbating disease severity. Here we discuss how dynamic changes in macrophage populations and activation states in the damaged muscle tissue contribute to its efficient regeneration. We describe how ordered changes in macrophage polarization, from M1 to M2 subtypes, can differently affect muscle stem cell (satellite cell) functions. Finally, we also highlight some of the new mechanisms underlying macrophage plasticity and briefly discuss the emerging implications of lymphocytes and other inflammatory cell types in normal versus pathological muscle repair. PMID:23509419
Molecular mechanisms of induced pluripotency.
Kulcenty, Katarzyna; Wróblewska, Joanna; Mazurek, Sylwia; Liszewska, Ewa; Jaworski, Jacek
2015-01-01
Growing knowledge concerning transcriptional control of cellular pluripotency has led to the discovery that the fate of differentiated cells can be reversed, which has resulted in the generation, by means of genetic manipulation, of induced pluripotent stem cells. Overexpression of just four pluripotency-related transcription factors, namely Oct3/4, Sox2, Klf4, and c-Myc (Yamanaka factors, OKSM), in fibroblasts appears sufficient to produce this new cell type. Currently, we know that these factors induce several changes in genetic program of differentiated cells that can be divided in two general phases: the initial one is stochastic, and the subsequent one is highly hierarchical and organised. This review briefly discusses the molecular events leading to induction of pluripotency in response to forced presence of OKSM factors in somatic cells. We also discuss other reprogramming strategies used thus far as well as the advantages and disadvantages of laboratory approaches towards pluripotency induction in different cell types.
Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.
Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas
2013-12-01
Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.
Genetic Disruption of SOD1 Gene Causes Glucose Intolerance and Impairs β-Cell Function
Muscogiuri, Giovanna; Salmon, Adam B.; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L.; Reyna, Sara M.; Weir, Gordon; DeFronzo, Ralph A.; Van Remmen, Holly; Musi, Nicolas
2013-01-01
Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow–fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction. PMID:24009256
L-Dopa decarboxylase expression profile in human cancer cells.
Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido
2011-02-01
L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.
Immune-Mediated Inflammation in the Pathogenesis of Emphysema: Insights from Mouse Models
Craig, John M.; Scott, Alan L.; Mitzner, Wayne
2017-01-01
The cellular mechanisms that result in the initiation and progression of emphysema are clearly complex. A growing body of human data combined with discoveries from mouse models utilizing cigarette smoke exposure or protease administration have improved our understanding of emphysema development by implicating specific cell types that may be important for the pathophysiology of COPD. The most important aspects of emphysematous damage appear to be oxidative or protease stress and sustained macrophage activation and infiltration of other immune cells leading to epithelial damage and cell death. Despite the identification of these associated processes and cell types in many experimental studies, the reasons why cigarette smoke and other pollutants result in unremitting damage instead of injury resolution are still uncertain. We propose an important role for macrophages in the sequence of events that lead and maintain this chronic tissue pathologic process in emphysema. This model involves chronic activation of macrophage subtypes that precludes proper healing of the lung. Further elucidation of the cross-talk between epithelial cells that release damage-associated signals and the cellular immune effectors that respond to these cues is a critical step in the development of novel therapeutics that can restore proper lung structure and function to those afflicted with emphysema. PMID:28164246
Microcystin-LR and Cylindrospermopsin Induced Alterations in Chromatin Organization of Plant Cells
Máthé, Csaba; M-Hamvas, Márta; Vasas, Gábor
2013-01-01
Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization. PMID:24084787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blom, Magdalena; Reis, Katarina; Heldin, Johan
RhoD belongs to the Rho GTPases, a protein family responsible for the regulation and organization of the actin cytoskeleton, and, consequently, many cellular processes like cell migration, cell division and vesicle trafficking. Here, we demonstrate that the actin cytoskeleton is dynamically regulated by increased or decreased protein levels of RhoD. Ectopic expression of RhoD has previously been shown to give an intertwined weave of actin filaments. We show that this RhoD-dependent effect is detected in several cell types and results in a less dynamic actin filament system. In contrast, RhoD depletion leads to increased actin filament-containing structures, such as corticalmore » actin, stress fibers and edge ruffles. Moreover, vital cellular functions such as cell migration and proliferation are defective when RhoD is silenced. Taken together, we present data suggesting that RhoD is an important component in the control of actin dynamics and directed cell migration. - Highlights: • Increased RhoD expression leads to loss of actin structures, e.g. stress fibers and gives rise to decreased actin dynamics. • RhoD knockdown induces various actin-containing structures such as edge ruffles, stress fibers and cortical actin, in a cell-type specific manner. • RhoD induces specific actin rearrangements depending on its subcellular localization. • RhoD knockdown has effects on cellular processes, such as directed cell migration and proliferation.« less
Beers, Stephen A; French, Ruth R; Chan, H T Claude; Lim, Sean H; Jarrett, Timothy C; Vidal, Regina Mora; Wijayaweera, Sahan S; Dixon, Sandra V; Kim, Hyungjin; Cox, Kerry L; Kerr, Jonathan P; Johnston, David A; Johnson, Peter W M; Verbeek, J Sjef; Glennie, Martin J; Cragg, Mark S
2010-06-24
Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.
Corbett, James L; Tosh, David
2014-06-01
Metaplasia is the irreversible conversion of one differentiated cell or tissue type into another. Metaplasia usually occurs in tissues that undergo regeneration, and may, in a pathological context, predispose to an increased risk of disease. Studying the conditions leading to the development of metaplasia is therefore of significant clinical interest. In contrast, transdifferentiation (or cellular reprogramming) is a subset of metaplasia that describes the permanent conversion of one differentiated cell type into another, and generally occurs between cells that arise from neighbouring regions of the same germ layer. Transdifferentiation, although rare, has been shown to occur in Nature. New insights into the signalling pathways involved in normal tissue development may be obtained by investigating the cellular and molecular mechanisms in metaplasia and transdifferentiation, and additional identification of key molecular regulators in transdifferentiation and metaplasia could provide new targets for therapeutic treatment of diseases such as cancer, as well as generating cells for transplantation into patients with degenerative disorders. In the present review, we focus on the transdifferentiation of pancreatic cells into hepatocyte-like cells, the development of Barrett's metaplasia in the oesophagus, and the cellular and molecular mechanisms underlying both processes.
TenHave-Opbroek, A. A.; Hammond, W. G.; Benfield, J. R.; Teplitz, R. L.; Dijkman, J. H.
1993-01-01
The type II alveolar epithelial cell is one of two pluripotential stem cell phenotypes in normal mammalian lung morphogenesis; cells manifesting this phenotype have been found to constitute bronchioloalveolar regions of canine adenocarcinomas. We now studied type II cell expression in canine acinar adenocarcinomas and adenoid cystic (bronchial gland) carcinomas, using the same bronchogenic carcinoma model (subcutaneous bronchial autografts treated with 3-methylcholanthrene). Distinctive features of type II cells are the approximately cuboid cell shape, large and roundish nucleus, immunofluorescent staining of the cytoplasm for the surfactant protein SP-A, and presence of multilamellar bodies or their precursory forms. Cells with these type II cell characteristics were found in the basal epithelial layer of all tumor lesions and in upper layers as far as the lumen, singly or in clusters; they were also found in early invasive carcinomatous lesions but not in bronchial glands or bronchial epithelium before carcinogen exposure. Immunoblots of tumor homogenates showed reactive proteins within size classes of SP-A (28 to 36 kd) or its dimeric form (56 to 72 kd). These findings and those previously reported are consistent with the concept that chemical carcinogenesis in the adult bronchial epithelium may lead to type II cell carcinomas of varying glandular (acinar, adenoidcystic or bronchioloalveolar) growth patterns. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 PMID:8386445
Preparation of pancreatic β-cells from human iPS cells with small molecules
2012-01-01
Human induced pluripotent stem (iPS) cells obtained from patients are expected to be a useful source for cell transplantation therapy, because many patients (including those with type 1 diabetes and severe type 2 diabetes) are on waiting lists for transplantation for a long time due to the shortage of donors. At present, many concerns related to clinical application of human iPS cells have been raised, but rapid development of methods for the establishment, culture, and standardization of iPS cells will lead autologous cell therapy to be realistic sooner or later. However, establishment of a method for preparing some of desired cell types is still challenging. Regarding pancreatic β-cells, there have been many reports about differentiation of these cells from human embryonic stem (ES)/iPS cells, but a protocol for clinical application has still not been established. Since there is clear proof that cell transplantation therapy is effective for diabetes based on the results of clinical islet transplantation, pancreatic β-cells prepared from human iPS cells are considered likely to be effective for reducing the burden on patients. In this article, the current status of procedures for preparing pancreatic β-cells from human ES/iPS cells, including effective use of small molecules, is summarized, and some of the problems that still need to be overcome are discussed. PMID:22722666
Dual modes of motility at the leading edge of migrating epithelial cell sheets
Klarlund, Jes K.
2012-01-01
Purse-string healing is driven by contraction of actin/myosin cables that span cells at wound edges, and it is the predominant mode of closing small round wounds in embryonic and some adult epithelia. Wounds can also heal by cell crawling, and my colleagues and I have shown previously that the presence of unconstrained, straight edges in sheets of epithelial cells is a sufficient signal to induce healing by crawling. Here, it is reported that the presence of highly concave edges, which are free or physically constrained by an inert material (agarose), is sufficient to induce formation of purse strings. It was determined that neither of the two types of healing required cell damage or other potential stimuli by using the particularly gentle procedure of introducing gaps by digesting agarose blocks imbedded in the cell sheets. Movement by crawling depends on signaling by the EGF receptor (EGFR); however, this was not required for purse-string contraction. A migrating epithelial cell sheet usually produces finger-like projections of crawling cells. The cells between fingers contain continuous actin cables, which were also determined to contain myosin IIA and exhibit additional characteristics of purse strings. When crawling was blocked by inhibition of EGFR signaling, the concave regions continued to move, suggesting that both mechanisms contribute to propel the sheets forward. Wounding epithelial cell sheets causes activation of the EGFR, which triggers movement by crawling. The EGFR was found to be activated only at straight and convex edges, which explains how both types of movement can coexist at leading epithelial edges. PMID:23019364
Katz, Matthew L.; Viney, Tim J.; Nikolic, Konstantin
2016-01-01
Sensory stimuli are encoded by diverse kinds of neurons but the identities of the recorded neurons that are studied are often unknown. We explored in detail the firing patterns of eight previously defined genetically-identified retinal ganglion cell (RGC) types from a single transgenic mouse line. We first introduce a new technique of deriving receptive field vectors (RFVs) which utilises a modified form of mutual information (“Quadratic Mutual Information”). We analysed the firing patterns of RGCs during presentation of short duration (~10 second) complex visual scenes (natural movies). We probed the high dimensional space formed by the visual input for a much smaller dimensional subspace of RFVs that give the most information about the response of each cell. The new technique is very efficient and fast and the derivation of novel types of RFVs formed by the natural scene visual input was possible even with limited numbers of spikes per cell. This approach enabled us to estimate the 'visual memory' of each cell type and the corresponding receptive field area by calculating Mutual Information as a function of the number of frames and radius. Finally, we made predictions of biologically relevant functions based on the RFVs of each cell type. RGC class analysis was complemented with results for the cells’ response to simple visual input in the form of black and white spot stimulation, and their classification on several key physiological metrics. Thus RFVs lead to predictions of biological roles based on limited data and facilitate analysis of sensory-evoked spiking data from defined cell types. PMID:26845435
NASA Technical Reports Server (NTRS)
Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.; Brown, C. S. (Principal Investigator)
2002-01-01
To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP(3)) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP(3). The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP(3) compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP(3) in both wild-type and transgenic cells. However, even with stimulation, InsP(3) levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP(3) signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP(2)), the lipid precursor of InsP(3), was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP(2) metabolism showed that the activity of the PtdInsP(2)-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of (32)P into PtdInsP(2) in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP(2) synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP(2) synthesis as a regulatory step in this system.
Perera, Imara Y.; Love, John; Heilmann, Ingo; Thompson, William F.; Boss, Wendy F.
2002-01-01
To evaluate the impact of suppressing inositol 1,4,5-trisphosphate (InsP3) in plants, tobacco (Nicotiana tabacum) cells were transformed with the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), an enzyme which specifically hydrolyzes InsP3. The transgenic cell lines showed a 12- to 25-fold increase in InsP 5-ptase activity in vitro and a 60% to 80% reduction in basal InsP3 compared with wild-type cells. Stimulation with Mas-7, a synthetic analog of the wasp venom peptide mastoparan, resulted in an approximately 2-fold increase in InsP3 in both wild-type and transgenic cells. However, even with stimulation, InsP3 levels in the transgenic cells did not reach wild-type basal values, suggesting that InsP3 signaling is compromised. Analysis of whole-cell lipids indicated that phosphatidylinositol 4,5-bisphosphate (PtdInsP2), the lipid precursor of InsP3, was greatly reduced in the transgenic cells. In vitro assays of enzymes involved in PtdInsP2 metabolism showed that the activity of the PtdInsP2-hydrolyzing enzyme phospholipase C was not significantly altered in the transgenic cells. In contrast, the activity of the plasma membrane PtdInsP 5 kinase was increased by approximately 3-fold in the transgenic cells. In vivo labeling studies revealed a greater incorporation of 32P into PtdInsP2 in the transgenic cells compared with the wild type, indicating that the rate of PtdInsP2 synthesis was increased. These studies show that the constitutive expression of the human type I InsP 5-ptase in tobacco cells leads to an up-regulation of the phosphoinositide pathway and highlight the importance of PtdInsP2 synthesis as a regulatory step in this system. PMID:12177493
Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury
Overall, Christopher C.
2017-01-01
The meningeal space is occupied by a diverse repertoire of immune cells. Central nervous system (CNS) injury elicits a rapid immune response that affects neuronal survival and recovery, but the role of meningeal inflammation remains poorly understood. Here, we describe type 2 innate lymphocytes (ILC2s) as a novel cell type resident in the healthy meninges that are activated after CNS injury. ILC2s are present throughout the naive mouse meninges, though are concentrated around the dural sinuses, and have a unique transcriptional profile. After spinal cord injury (SCI), meningeal ILC2s are activated in an IL-33–dependent manner, producing type 2 cytokines. Using RNAseq, we characterized the gene programs that underlie the ILC2 activation state. Finally, addition of wild-type lung-derived ILC2s into the meningeal space of IL-33R−/− animals partially improves recovery after SCI. These data characterize ILC2s as a novel meningeal cell type that responds to SCI and could lead to new therapeutic insights for neuroinflammatory conditions. PMID:27994070
Cell Pattern in the Arabidopsis Root Epidermis Determined by Lateral Inhibition with Feedback
Lee, Myeong Min; Schiefelbein, John
2002-01-01
In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants. PMID:11910008
Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback.
Lee, Myeong Min; Schiefelbein, John
2002-03-01
In the root epidermis of Arabidopsis, hair and nonhair cell types are specified in a distinct position-dependent pattern. Here, we show that transcriptional feedback loops between the WEREWOLF (WER), CAPRICE (CPC), and GLABRA2 (GL2) genes help to establish this pattern. Positional cues bias the expression of the WER MYB gene, leading to the induction of CPC and GL2 in cells located in a particular position (N) and adoption of the nonhair fate. The truncated MYB encoded by CPC mediates a lateral inhibition mechanism to negatively regulate WER, GL2, and its own gene in the alternative position (H) to induce the hair fate. These results provide a molecular genetic framework for understanding the determination of a cell-type pattern in plants.
Uma Vanitha, Murugan; Natarajan, Muthusamy; Sridhar, Harikrishnamoorthy; Umamaheswari, Sankaran
2017-05-01
Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377 ± 18.85 mV (millivolts); whereas HT-MFC rendered only 237 ± 11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313 ± 15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.
Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion
Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.
2017-01-01
The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643
The long-time dynamics of two hydrodynamically-coupled swimming cells.
Michelin, Sébastien; Lauga, Eric
2010-05-01
Swimming microorganisms such as bacteria or spermatozoa are typically found in dense suspensions, and exhibit collective modes of locomotion qualitatively different from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions can be treated rigorously, the long-time hydrodynamics of a collection of cells result from interactions with many other cells, and as such typically eludes an analytical approach. Here, we consider the only case where such problem can be treated rigorously analytically, namely when the cells have spatially confined trajectories, such as the spermatozoa of some marine invertebrates. We consider two spherical cells swimming, when isolated, with arbitrary circular trajectories, and derive the long-time kinematics of their relative locomotion. We show that in the dilute limit where the cells are much further away than their size, and the size of their circular motion, a separation of time scale occurs between a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead to change in the relative position and orientation of the swimmers. We perform a multiple-scale analysis and derive the effective dynamical system--of dimension two--describing the long-time behavior of the pair of cells. We show that the system displays one type of equilibrium, and two types of rotational equilibrium, all of which are found to be unstable. A detailed mathematical analysis of the dynamical systems further allows us to show that only two cell-cell behaviors are possible in the limit of t-->infinity, either the cells are attracted to each other (possibly monotonically), or they are repelled (possibly monotonically as well), which we confirm with numerical computations. Our analysis shows therefore that, even in the dilute limit, hydrodynamic interactions lead to new modes of cell-cell locomotion.
Cardiorenal Syndrome Type 5 in Sepsis: Role of Endotoxin in Cell Death Pathways and Inflammation.
Virzì, Grazia Maria; Clementi, Anna; Brocca, Alessandra; de Cal, Massimo; Marcante, Stefano; Ronco, Claudio
2016-01-01
Cardiorenal Syndrome Type 5 (CRS Type 5) is characterized by concomitant cardiac and renal dysfunction in the setting of different systemic disorders, such as sepsis. In this study, we investigated the possible relationship between endotoxin levels, renal cell death and inflammation in septic patients with CRS Type 5. We enrolled 11 patients with CRS Type 5. CRS Type 5 was defined according to the current classification system. AKI was defined by Acute Kidney Injury Network (AKIN) criteria. Acute cardiac dysfunction was documented by echocardiography as acute left and/or right ventricular dysfunction leading to decreased ejection fraction. Endotoxin activity was measured by the Endotoxin Activity Assay (EAA). Plasma from CRS Type 5 patients was incubated with renal tubular cells (RTCs) and cell death levels were evaluated. Plasma cytokines levels were measured as well. Accordingly to EAA levels, patients were divided into two groups: 45.4% of patients had low endotoxin activity level (negative EAA), while 54.5% of patients showed high endotoxin activity (positive EAA). RTCs incubated with plasma from EAA positive patients showed significantly higher apoptosis levels and higher caspase-3 activation compared to cells incubated with plasma from EAA negative patients, and a significant positive correlation was observed between EAA levels and RTC apoptosis levels. Furthermore, IL-6 and IFN-γ levels were significantly higher in CRS Type 5 patients with positive EAA. Our data suggest a possible relationship between endotoxin levels and renal cell death in septic patients with CRS Type 5. Furthermore, this study highlights the presence of renal apoptosis, the immune deregulation and the strong inflammation in CRS Type 5 patients, especially in those with high endotoxin activity. © 2017 S. Karger AG, Basel.
Early Detection of Ovarian Cancer by Tumor Epithelium-Targeted Molecular Ultrasound
2014-10-01
successful pregnancy outcome. *PIF Proprietary G-12 IL-33-responsive group 2 innate lymphoid cells are present in mouse uterine tissue and may play roles in... innate lymphoid cells (ILC2s) that are responsive to IL-33 drive helminth immunity, type 2 immune responses, and tissue pathology and homeostasis in...16 (IL-16) secreted by immune cells . Inflammation of the ovary and tubal epithelium due to frequent ovulation leads to the development of oxidative
Overexpression of Shox2 Leads to Congenital Dysplasia of the Temporomandibular Joint in Mice
Li, Xihai; Liang, Wenna; Ye, Hongzhi; Weng, Xiaping; Liu, Fayuan; Liu, Xianxiang
2014-01-01
Our previous study reported that inactivation of Shox2 led to dysplasia and ankylosis of the temporomandibular joint (TMJ), and that replacing Shox2 with human Shox partially rescued the phenotype with a prematurely worn out articular disc. However, the mechanisms of Shox2 activity in TMJ development remain to be elucidated. In this study, we investigated the molecular and cellular basis for the congenital dysplasia of TMJ in Wnt1-Cre; pMes-stop Shox2 mice. We found that condyle and glenoid fossa dysplasia occurs primarily in the second week after the birth. The dysplastic TMJ of Wnt1-Cre; pMes-stop Shox2 mice exhibits a loss of Collagen type I, Collagen type II, Ihh and Gli2. In situ zymography and immunohistochemistry further demonstrate an up-regulation of matrix metalloproteinases (MMPs), MMP9 and MMP13, accompanied by a significantly increased cell apoptosis. In addition, the cell proliferation and expressions of Sox9, Runx2 and Ihh are no different in the embryonic TMJ between the wild type and mutant mice. Our results show that overexpression of Shox2 leads to the loss of extracellular matrix and the increase of cell apoptosis in TMJ dysplasia by up-regulating MMPs and down-regulating the Ihh signaling pathway. PMID:25062348
Sarkar, Sanjay; Balasuriya, Udeni B R; Horohov, David W; Chambers, Thomas M
2016-05-01
Equine herpesvirus-1 (EHV-1) is a major respiratory viral pathogen of horses, causing upper respiratory tract disease, abortion, neonatal death, and neurological disease that may lead to paralysis and death. EHV-1 replicates initially in the respiratory epithelium and then spreads systemically to endothelial cells lining the small blood vessels in the uterus and spinal cord leading to abortion and EHM in horses. Like other herpesviruses, EHV-1 employs a variety of mechanisms for immune evasion including suppression of type-I interferon (IFN) production in equine endothelial cells (EECs). Previously we have shown that the neuropathogenic T953 strain of EHV-1 inhibits type-I IFN production in EECs and this is mediated by a viral late gene product. But the mechanism of inhibition was not known. Here we show that T953 strain infection of EECs induced degradation of endogenous IRF-3 protein. This in turn interfered with the activation of IRF-3 signaling pathways. EHV-1 infection caused the activation of the NF-κB signaling pathways, suggesting that inhibition of type-I IFN production is probably due to interference in IRF-3 and not NF-κB signal transduction. Copyright © 2016 Elsevier B.V. All rights reserved.
Obernier, Kirsten; Simeonova, Ina; Fila, Tatiana; Mandl, Claudia; Hölzl-Wenig, Gabriele; Monaghan-Nichols, Paula; Ciccolini, Francesca
2011-09-01
Niche homeostasis in the postnatal subependymal zone of the lateral ventricle (lSEZ) requires coordinated proliferation and differentiation of neural progenitor cells. The mechanisms regulating this balance are scarcely known. Recent observations indicate that the orphan nuclear receptor Tlx is an intrinsic factor essential in maintaining this balance. However, the effect of Tlx on gene expression depends on age and cell-type cues. Therefore, it is essential to establish its expression pattern at different developmental ages. Here, we show for the first time that in the neonatal lSEZ activated neural stem cells (NSCs) and especially transit-amplifying progenitors (TAPs) express Tlx and that its expression may be regulated at the posttranscriptional level. We also provide evidence that in both cell types Tlx affects gene expression in a positive and negative manner. In activated NSCs, but not in TAPs, absence of Tlx leads to overexpression of negative cell cycle regulators and impairment of proliferation. Moreover, in both cell types, the homeobox transcription factor Dlx2 is downregulated in the absence of Tlx. This is paralleled by increased expression of Olig2 in activated NSCs and glial fibrillary acidic protein in TAPs, indicating that in both populations Tlx decreases gliogenesis. Consistent with this, we found a higher proportion of cells expressing glial makers in the neonatal lSEZ of mutant mice than in the wild type counterpart. Thus, Tlx playing a dual role affects the expression of distinct genes in these two lSEZ cell types. Copyright © 2011 AlphaMed Press.
Melo, Fabio Rabelo; Waern, Ida; Rönnberg, Elin; Åbrink, Magnus; Lee, David M.; Schlenner, Susan M.; Feyerabend, Thorsten B.; Rodewald, Hans-Reimer; Turk, Boris; Wernersson, Sara; Pejler, Gunnar
2011-01-01
Mast cell secretory granules (secretory lysosomes) contain large amounts of fully active proteases bound to serglycin proteoglycan. Damage to the granule membrane will thus lead to the release of serglycin and serglycin-bound proteases into the cytosol, which potentially could lead to proteolytic activation of cytosolic pro-apoptotic compounds. We therefore hypothesized that mast cells are susceptible to apoptosis induced by permeabilization of the granule membrane and that this process is serglycin-dependent. Indeed, we show that wild-type mast cells are highly sensitive to apoptosis induced by granule permeabilization, whereas serglycin-deficient cells are largely resistant. The reduced sensitivity of serglycin−/− cells to apoptosis was accompanied by reduced granule damage, reduced release of proteases into the cytosol, and defective caspase-3 activation. Mechanistically, the apoptosis-promoting effect of serglycin involved serglycin-dependent proteases, as indicated by reduced sensitivity to apoptosis and reduced caspase-3 activation in cells lacking individual mast cell-specific proteases. Together, these findings implicate serglycin proteoglycan as a novel player in mast cell apoptosis. PMID:21123167
Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation.
Weeden, Clare E; Asselin-Labat, Marie-Liesse
2018-01-01
Maintenance of genomic integrity in tissue-specific stem cells is critical for tissue homeostasis and the prevention of deleterious diseases such as cancer. Stem cells are subject to DNA damage induced by endogenous replication mishaps or exposure to exogenous agents. The type of DNA lesion and the cell cycle stage will invoke different DNA repair mechanisms depending on the intrinsic DNA repair machinery of a cell. Inappropriate DNA repair in stem cells can lead to cell death, or to the formation and accumulation of genetic alterations that can be transmitted to daughter cells and so is linked to cancer formation. DNA mutational signatures that are associated with DNA repair deficiencies or exposure to carcinogenic agents have been described in cancer. Here we review the most recent findings on DNA repair pathways activated in epithelial tissue stem and progenitor cells and their implications for cancer mutational signatures. We discuss how deep knowledge of early molecular events leading to carcinogenesis provides insights into DNA repair mechanisms operating in tumours and how these could be exploited therapeutically. Copyright © 2017 Elsevier B.V. All rights reserved.
Odenthal, Tim; Smeets, Bart; Van Liedekerke, Paul; Tijskens, Engelbert; Van Oosterwyck, Hans; Ramon, Herman
2013-01-01
Adhesion governs to a large extent the mechanical interaction between a cell and its microenvironment. As initial cell spreading is purely adhesion driven, understanding this phenomenon leads to profound insight in both cell adhesion and cell-substrate interaction. It has been found that across a wide variety of cell types, initial spreading behavior universally follows the same power laws. The simplest cell type providing this scaling of the radius of the spreading area with time are modified red blood cells (RBCs), whose elastic responses are well characterized. Using a mechanistic description of the contact interaction between a cell and its substrate in combination with a deformable RBC model, we are now able to investigate in detail the mechanisms behind this universal power law. The presented model suggests that the initial slope of the spreading curve with time results from a purely geometrical effect facilitated mainly by dissipation upon contact. Later on, the spreading rate decreases due to increasing tension and dissipation in the cell's cortex as the cell spreads more and more. To reproduce this observed initial spreading, no irreversible deformations are required. Since the model created in this effort is extensible to more complex cell types and can cope with arbitrarily shaped, smooth mechanical microenvironments of the cells, it can be useful for a wide range of investigations where forces at the cell boundary play a decisive role. PMID:24146605
Silva, Amanda K Andriola; Wilhelm, Claire; Kolosnjaj-Tabi, Jelena; Luciani, Nathalie; Gazeau, Florence
2012-05-01
Cell labeling with magnetic nanoparticles can be used to monitor the fate of transplanted cells in vivo by magnetic resonance imaging. However, nanoparticles initially internalized in administered cells might end up in other cells of the host organism. We investigated a mechanism of intercellular cross-transfer of magnetic nanoparticles to different types of recipient cells via cell microvesicles released under cellular stress. Three cell types (mesenchymal stem cells, endothelial cells and macrophages) were labeled with 8-nm iron oxide nanoparticles. Then cells underwent starvation stress, during which they produced microvesicles that were subsequently transferred to unlabeled recipient cells. The analysis of the magnetophoretic mobility of donor cells indicated that magnetic load was partially lost under cell stress. Microvesicles shed by stressed cells participated in the release of magnetic label. Moreover, such microvesicles were uptaken by naïve cells, resulting in cellular redistribution of nanoparticles. Iron load of recipient cells allowed their detection by MRI. Cell microvesicles released under stress may be disseminated throughout the organism, where they can be uptaken by host cells. The transferred cargo may be sufficient to allow MRI detection of these secondarily labeled cells, leading to misinterpretations of the effectiveness of transplanted cells.
Effect of the anti-neoplastic drug doxorubicin on XPD-mutated DNA repair-deficient human cells.
Saffi, Jenifer; Agnoletto, Mateus H; Guecheva, Temenouga N; Batista, Luís F Z; Carvalho, Helotonio; Henriques, João A P; Stary, Anne; Menck, Carlos F M; Sarasin, Alain
2010-01-02
Doxorubicin (DOX), a member of the anthracycline group, is a widely used drug in cancer therapy. The mechanisms of DOX action include topoisomerase II-poisoning, free radical release, DNA adducts and interstrand cross-link (ICL) formation. Nucleotide excision repair (NER) is involved in the removal of helix-distorting lesions and chemical adducts, however, little is known about the response of NER-deficient cell lines to anti-tumoral drugs like DOX. Wild type and XPD-mutated cells, harbouring mutations in different regions of this gene and leading to XP-D, XP/CS or TTD diseases, were treated with this drug and analyzed for cell cycle arrest and DNA damage by comet assay. The formation of DSBs was also investigated by determination of gammaH2AX foci. Our results indicate that all three NER-deficient cell lines tested are more sensitive to DOX treatment, when compared to wild type cells or XP cells complemented by the wild type XPD cDNA, suggesting that NER is involved in the removal of DOX-induced lesions. The cell cycle analysis showed the characteristic G2 arrest in repair-proficient MRC5 cell line after DOX treatment, whereas the repair-deficient cell lines presented significant increase in sub-G1 fraction. The NER-deficient cell lines do not show different patterns of DNA damage formation as assayed by comet assay and phosphorylated H2AX foci formation. Knock-down of topoisomerase IIalpha with siRNA leads to increased survival in both MRC5 and XP cells, however, XP cell line still remained significantly more sensitive to the treatment by DOX. Our study suggests that the enhanced sensitivity is due to DOX-induced DNA damage that is subject to NER, as we observed decreased unscheduled DNA synthesis in XP-deficient cells upon DOX treatment. Furthermore, the complementation of the XPD-function abolished the observed sensitivity at lower DOX concentrations, suggesting that the XPD helicase activity is involved in the repair of DOX-induced lesions. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Natural history of β-cell adaptation and failure in type 2 diabetes
Alejandro, Emilyn U.; Gregg, Brigid; Blandino-Rosano, Manuel; Cras-Méneur, Corentin; Bernal-Mizrachi, Ernesto
2014-01-01
Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure. PMID:25542976
High power bipolar lead-acid batteries
NASA Technical Reports Server (NTRS)
Halpert, Gerald; Attia, Alan
1991-01-01
The Jet Propulsion Laboratory (JPL), with interest in advanced energy storage systems, is involved in the development of a unique lead acid battery design. This battery utilizes the same combination of lead and lead dioxide active materials present in the automobile starting battery. However, it can provide 2 to 10 times the power while minimizing volume and weight. The typical starting battery is described as a monopolar type using one current collector for both the positive and negative plate of adjacent cells. Specific power as high as 2.5 kW/kg was projected for 30 second periods with as many as 2000 recharge cycles.
Immunotherapy using regulatory T cells in cancer suggests more flavors of hypersensitivity type IV.
Pakravan, Nafiseh; Hassan, Zuhair Mohammad
2018-03-01
Regulatory T cells (Tregs) profoundly affect tumor microenvironment and exert dominant suppression over antitumor immunity in response to self-antigen expressed by tumor. Immunotherapy targeting Tregs lead to a significant improvement in antitumor immunity. Intradermal injection of tumor antigen results in negative delayed-type hypersensitivity (DTH) type IV. However, anti-Tregs treatment/use of adjuvant along with tumor antigens turns DTH to positive. Considering Tregs as the earliest tumor sensor/responders, tumor can be regarded as Treg-mediated type IV hypersensitivity and negative DTH to tumor antigen is due to anti-inflammatory action of Tregs to tumor antigens at the injection site. Such a view would help us in basic and clinical situations to testify a candidate vaccine via dermal administration and evaluation of Treg proportion at injection site.
In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells.
Szaraz, Peter; Gratch, Yarden S; Iqbal, Farwah; Librach, Clifford L
2017-08-09
Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this differentiation strategy can effectively harness the cardiomyogenic potential of young MSCs, such as FTM HUCPVCs, and suggests that in vitro pre-differentiation could be a potential strategy to increase their regenerative efficacy in vivo.
Johansson, Tomas; Nilsson, Anki; Chatzissavidou, Nathalie; Sjöblom, Magnus; Rova, Ulrika; Holgersson, Jan
2012-01-01
Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented. OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays. Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect. Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses. PMID:23071675
Canela, Andrés; Martín-Caballero, Juan; Flores, Juana M; Blasco, María A
2004-05-01
Here we describe a new mouse model with constitutive expression of the catalytic subunit of telomerase (Tert) targeted to thymocytes and peripheral T cells (Lck-Tert mice). Two independent Lck-Tert mouse lines showed higher incidences of spontaneous T-cell lymphoma than the corresponding age-matched wild-type controls, indicating that constitutive expression of Tert promotes lymphoma. Interestingly, T-cell lymphomas in Lck-Tert mice were more disseminated than those in wild-type controls and affected both lymphoid and nonlymphoid tissues, while nonlymphoid tissues were never affected with lymphoma in age-matched wild-type controls. Importantly, these roles of Tert constitutive expression in promoting tumor progression and dissemination were independent of the role of telomerase in telomere length maintenance, since telomere length distributions on a single-cell basis were identical in Lck-Tert and wild-type thymocytes. Finally, Tert constitutive expression did not interfere with telomere capping in Lck-Tert primary thymocytes, although it resulted in greater chromosomal instability upon gamma irradiation in Lck-Tert primary lymphocytes than in controls, suggesting that Tert overexpression may interfere with the cellular response to DNA damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yea-Jin; Kim, Sung-Jo, E-mail: sungjo@hoseo.edu; Heo, Tae-Hwe, E-mail: thhur92@catholic.ac.kr
Highlights: {yields} Catechin reduces the expression level of ER stress marker protein in type I Gaucher disease cells. {yields} Catechin induces the proliferation rate of GD cells similar levels to normal cells. {yields} Catechin improves wound healing activity. {yields} Catechin-mediated reductions in ER stress may be associated with enhanced cell survival. {yields} We identified catechin as a protective agent against ER stress in GD cells. -- Abstract: Gaucher disease (GD) is the most common lysosomal storage disorder (LSD) and is divided into three phenotypes, I, II, and III. Type I is the most prevalent form and has its onset inmore » adulthood. The degree of endoplasmic reticulum (ER) stress is one of the factors that determine GD severity. It has recently been reported that antioxidants reduce ER stress and apoptosis by scavenging the oxidants that cause oxidative stress. For this report, we investigated the possibility that catechin can act on type I GD patient cells to alleviate the pathogenic conditions of GD. We treated GD cells with catechin and examined the expression level of GRP78/BiP (an ER stress marker) by western blots and fluorescence microscopy, the proliferation rate of GD cells, and scratch-induced wound healing activity. Our results show that catechin reduces the expression level of GRP78/BiP, leads to cell proliferation rates of GD cells similar levels to normal cells, and improves wound healing activity. We conclude that catechin protects against ER stress in GD cells and catechin-mediated reductions in ER stress may be associated with enhanced cell survival.« less
Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa
2017-07-06
Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.
Identifying the Cause of Rupture of Li-Ion Batteries during Thermal Runaway
Finegan, Donal P.; Darcy, Eric; Keyser, Matthew; ...
2017-10-27
As the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell designs can rupture and explode, presenting serious safety concerns. Here, ultra-high-speed synchrotron X-ray imaging is used at >20 000 frames per second to characterize the venting processes of six different 18650 cell designs undergoing thermal runaway. For the first time, the mechanisms that lead to the most catastrophic type of cell failure, rupture, and explosion are identified and elucidated in detail. The practical application ofmore » the technique is highlighted by evaluating a novel 18650 cell design with a second vent at the base, which is shown to avoid the critical stages that lead to rupture. The insights yielded in this study shed new light on battery failure and are expected to guide the development of safer commercial cell designs.« less
Identifying the Cause of Rupture of Li-Ion Batteries during Thermal Runaway
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finegan, Donal P.; Darcy, Eric; Keyser, Matthew
As the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell designs can rupture and explode, presenting serious safety concerns. Here, ultra-high-speed synchrotron X-ray imaging is used at >20 000 frames per second to characterize the venting processes of six different 18650 cell designs undergoing thermal runaway. For the first time, the mechanisms that lead to the most catastrophic type of cell failure, rupture, and explosion are identified and elucidated in detail. The practical application ofmore » the technique is highlighted by evaluating a novel 18650 cell design with a second vent at the base, which is shown to avoid the critical stages that lead to rupture. The insights yielded in this study shed new light on battery failure and are expected to guide the development of safer commercial cell designs.« less
Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase
Davids, Matthew S; Brown, Jennifer R
2015-01-01
Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton’s tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton’s tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin’s lymphoma, such as diffuse large B-cell lymphoma and Waldenström’s macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies. PMID:24941982
Identifying the Cause of Rupture of Li-Ion Batteries during Thermal Runaway.
Finegan, Donal P; Darcy, Eric; Keyser, Matthew; Tjaden, Bernhard; Heenan, Thomas M M; Jervis, Rhodri; Bailey, Josh J; Vo, Nghia T; Magdysyuk, Oxana V; Drakopoulos, Michael; Michiel, Marco Di; Rack, Alexander; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R
2018-01-01
As the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell designs can rupture and explode, presenting serious safety concerns. Here, ultra-high-speed synchrotron X-ray imaging is used at >20 000 frames per second to characterize the venting processes of six different 18650 cell designs undergoing thermal runaway. For the first time, the mechanisms that lead to the most catastrophic type of cell failure, rupture, and explosion are identified and elucidated in detail. The practical application of the technique is highlighted by evaluating a novel 18650 cell design with a second vent at the base, which is shown to avoid the critical stages that lead to rupture. The insights yielded in this study shed new light on battery failure and are expected to guide the development of safer commercial cell designs.
Ibrutinib: a first in class covalent inhibitor of Bruton's tyrosine kinase.
Davids, Matthew S; Brown, Jennifer R
2014-05-01
Ibrutinib (formerly PCI-32765) is a potent, covalent inhibitor of Bruton's tyrosine kinase, a kinase downstream of the B-cell receptor that is critical for B-cell survival and proliferation. In preclinical studies, ibrutinib bound to Bruton's tyrosine kinase with high affinity, leading to inhibition of B-cell receptor signaling, decreased B-cell activation and induction of apoptosis. In clinical studies, ibrutinib has been well-tolerated and has demonstrated profound anti-tumor activity in a variety of hematologic malignancies, most notably chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), leading to US FDA approval for relapsed CLL and MCL. Ongoing studies are evaluating ibrutinib in other types of non-Hodgkin's lymphoma, such as diffuse large B-cell lymphoma and Waldenström's macrogobulinemia, in larger Phase III studies in CLL and MCL, and in combination studies with monoclonal antibodies and chemotherapy. Future studies will combine ibrutinib with other promising novel agents currently in development in hematologic malignancies.
Eigenstrain as a mechanical set-point of cells.
Lin, Shengmao; Lampi, Marsha C; Reinhart-King, Cynthia A; Tsui, Gary; Wang, Jian; Nelson, Carl A; Gu, Linxia
2018-02-05
Cell contraction regulates how cells sense their mechanical environment. We sought to identify the set-point of cell contraction, also referred to as tensional homeostasis. In this work, bovine aortic endothelial cells (BAECs), cultured on substrates with different stiffness, were characterized using traction force microscopy (TFM). Numerical models were developed to provide insights into the mechanics of cell-substrate interactions. Cell contraction was modeled as eigenstrain which could induce isometric cell contraction without external forces. The predicted traction stresses matched well with TFM measurements. Furthermore, our numerical model provided cell stress and displacement maps for inspecting the fundamental regulating mechanism of cell mechanosensing. We showed that cell spread area, traction force on a substrate, as well as the average stress of a cell were increased in response to a stiffer substrate. However, the cell average strain, which is cell type-specific, was kept at the same level regardless of the substrate stiffness. This indicated that the cell average strain is the tensional homeostasis that each type of cell tries to maintain. Furthermore, cell contraction in terms of eigenstrain was found to be the same for both BAECs and fibroblast cells in different mechanical environments. This implied a potential mechanical set-point across different cell types. Our results suggest that additional measurements of contractility might be useful for monitoring cell mechanosensing as well as dynamic remodeling of the extracellular matrix (ECM). This work could help to advance the understanding of the cell-ECM relationship, leading to better regenerative strategies.
Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia
2015-12-01
3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.
NASA Astrophysics Data System (ADS)
Liu, Jianguo; Zhang, Xiaoli; Sun, Yanhong; Lin, Wei
2010-01-01
The antioxidative capacity of astaxanthin and enzyme activity of reactive oxygen eliminating enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were studied in three cell types of Haematococcus pluvialis exposed to high concentrations of a superoxide anion radical (O{2/-}). The results show that defensive enzymes and astaxanthin-related mechanisms were both active in H. pluvialis during exposure to reactive oxygen species (ROS) such as O{2/-}. Astaxanthin reacted with ROS much faster than did the protective enzymes, and had the strongest antioxidative capacity to protect against lipid peroxidation. The defensive mechanisms varied significantly between the three cell types and were related to the level of astaxanthin that had accumulated in those cells. Astaxanthin-enriched red cells had the strongest antioxidative capacity, followed by brown cells, and astaxanthin-deficient green cells. Although there was no significant increase in expression of protective enzymes, the malondialdehyde (MDA) content in red cells was sustained at a low level because of the antioxidative effect of astaxanthin, which quenched O{2/-} before the protective enzymes could act. In green cells, astaxanthin is very low or absent; therefore, scavenging of ROS is inevitably reliant on antioxidative enzymes. Accordingly, in green cells, these enzymes play the leading role in scavenging ROS, and the expression of these enzymes is rapidly increased to reduce excessive ROS. However, because ROS were constantly increased in this study, the enhance enzyme activity in the green cells was not able to repair the ROS damage, leading to elevated MDA content. Of the four defensive enzymes measured in astaxanthin-deficient green cells, SOD eliminates O{2/-}, POD eliminates H2O2, which is a by-product of SOD activity, and APX and CAT are then initiated to scavenge excessive ROS.
Oxygen depletion speeds and simplifies diffusion in HeLa cells.
Edwald, Elin; Stone, Matthew B; Gray, Erin M; Wu, Jing; Veatch, Sarah L
2014-10-21
Many cell types undergo a hypoxic response in the presence of low oxygen, which can lead to transcriptional, metabolic, and structural changes within the cell. Many biophysical studies to probe the localization and dynamics of single fluorescently labeled molecules in live cells either require or benefit from low-oxygen conditions. In this study, we examine how low-oxygen conditions alter the mobility of a series of plasma membrane proteins with a range of anchoring motifs in HeLa cells at 37°C. Under high-oxygen conditions, diffusion of all proteins is heterogeneous and confined. When oxygen is reduced with an enzymatic oxygen-scavenging system for ≥ 15 min, diffusion rates increase by > 2-fold, motion becomes unconfined on the timescales and distance scales investigated, and distributions of diffusion coefficients are remarkably consistent with those expected from Brownian motion. More subtle changes in protein mobility are observed in several other laboratory cell lines examined under both high- and low-oxygen conditions. Morphological changes and actin remodeling are observed in HeLa cells placed in a low-oxygen environment for 30 min, but changes are less apparent in the other cell types investigated. This suggests that changes in actin structure are responsible for increased diffusion in hypoxic HeLa cells, although superresolution localization measurements in chemically fixed cells indicate that membrane proteins do not colocalize with F-actin under either experimental condition. These studies emphasize the importance of controls in single-molecule imaging measurements, and indicate that acute response to low oxygen in HeLa cells leads to dramatic changes in plasma membrane structure. It is possible that these changes are either a cause or consequence of phenotypic changes in solid tumor cells associated with increased drug resistance and malignancy.
ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis.
Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal
2017-05-04
Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis.
ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis
Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal
2017-01-01
ABSTRACT Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis. PMID:27362366
Accelerated cycle life performance for ovonic nickel-metal hydride cells
NASA Technical Reports Server (NTRS)
Otzinger, Burton M.
1991-01-01
Nickel-Metal Hydride (Ni-MH) rechargeable batteries have emerged as the leading candidate for commercial replacement of nickel-cadmium (Ni-Cd) batteries. An important incentive is that the Ni-MH cell provides approximately twice the capacity of a Ni-Cd cell for a given size. A six-cell battery was committed to an accelerated cycle life test to determine the effect of separation type on performance. Results of the test may also show the Ni-MH battery to be a replacement candidate for the aerospace Ni-Cd battery.
Zhu, Haiming; Trinh, M Tuan; Wang, Jue; Fu, Yongping; Joshi, Prakriti P; Miyata, Kiyoshi; Jin, Song; Zhu, X-Y
2017-01-01
A charge carrier in a lead halide perovskite lattice is protected as a large polaron responsible for the remarkable photophysical properties, irrespective of the cation type. All-inorganic-based APbX 3 perovskites may mitigate the stability problem for their applications in solar cells and other optoelectronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
End of inevitability: programming and reprogramming.
Turksen, Kursad
2013-08-01
Stem cell commitment and differentiation leading to functional cell types and organs has generally been considered unidirectional and deterministic. Starting first with a landmark study 50 years ago, and now with more recent observations, this paradigm has been challenged, necessitating a rethink of what constitutes both programming and reprogramming processes, and how we can use this new understanding for new approaches to drug discovery and regenerative medicine.
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) causes clinical signs in cattle ranging from mild to severe acute infection which can lead to increased susceptibility to secondary bacteria. In this study we examined the effects of BVDV genotype 2 (BVDV2) infection on the ability of myeloid lineage cells derived...
Cataldo, L R; Mizgier, M L; Busso, D; Olmos, P; Galgani, J E; Valenzuela, R; Mezzano, D; Aranda, E; Cortés, V A; Santos, J L
2016-01-01
High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (-25%; p < 0.0001) and oleate (-43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.
Cho, Josalyn L; Ling, Morris F; Adams, David C; Faustino, Lucas; Islam, Sabina A; Afshar, Roshi; Griffith, Jason W; Harris, Robert S; Ng, Aylwin; Radicioni, Giorgia; Ford, Amina A; Han, Andre K; Xavier, Ramnik; Kwok, William W; Boucher, Richard; Moon, James J; Hamilos, Daniel L; Kesimer, Mehmet; Suter, Melissa J; Medoff, Benjamin D; Luster, Andrew D
2016-10-05
Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. We used segmental allergen challenge of allergic asthmatics (AA) and allergic nonasthmatic controls (AC) to determine whether there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4 + T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin, and increased mucin MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-resolved optical coherence tomography. Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4 + T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation. Copyright © 2016, American Association for the Advancement of Science.
Erythrocyte ion channels in regulation of apoptosis.
Lang, Florian; Birka, Christina; Myssina, Svetlana; Lang, Karl S; Lang, Philipp A; Tanneur, Valerie; Duranton, Christophe; Wieder, Thomas; Huber, Stephan M
2004-01-01
Erythrocytes lack mitochondria and nuclei, key organelles in the regulation of apoptosis. Until recently, erythrocytes were thus not considered subject to this type of cell death. However, exposure of erythrocytes to the Ca2+ ionophore ionomycin was shown to induce cell shrinkage, cell membrane blebbing and breakdown of phosphatidylserine asymmetry with subsequent phosphatidylserine exposure at the cell surface, all typical features of apoptosis. Further studies revealed the participation of ion channels in the regulation of erythrocyte "apoptosis." Osmotic shock, oxidative stress and energy depletion all activate a Ca2(+)-permeable non-selective cation channel in the erythrocyte cell membrane. The subsequent increase of Ca2+ concentration stimulates a scramblase leading to breakdown of cell membrane phosphatidylserine asymmetry and activates Ca2+ sensitive K+ (Gardos) channels leading to KCl loss and (further) cell shrinkage. Phosphatidylserine exposure and cell shrinkage are blunted in the nominal absence of extracellular Ca2+, in the presence of the cation channel inhibitors amiloride or ethylisopropylamiloride, at increased extracellular K+ or in the presence of the Gardos channel inhibitors clotrimazole or charybdotoxin. Thus, increase of cytosolic Ca2+ and cellular loss of K+ participate in the triggering of erythrocyte scramblase. Nevertheless, phosphatidylserine exposure is not completely abrogated in the nominal absence of Ca2+, pointing to additional Ca2(+)-independent pathways. One of those is activation of sphingomyelinase with subsequent formation of ceramide which in turn leads to stimulation of erythrocyte scramblase. The exposure of phosphatidylserine at the extracellular face of the cell membrane stimulates phagocytes to engulf the apoptotic erythrocytes. Thus, sustained activation of the cation channels eventually leads to clearance of affected erythrocytes from peripheral blood. Erythropoietin inhibits the non-selective cation channel and thus interferes with erythrocyte "apoptosis." Susceptibility to scramblase activation is enhanced in thalassemia, sickle cell disease and glucose-6-phosphate dehydrogenase deficiency. Infection with Plasmodium falciparum leads to activation of the cation channel eventually triggering erythrocyte "apoptosis."
FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus
Maiese, Kenneth
2015-01-01
Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under consideration for the development of new clinical entities to treat metabolic disorders and diabetes mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, can become a devastating disease that leads to cellular injury through oxidative stress pathways and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon signal transduction pathways that include silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, and require in-depth analysis of the epigenetic and post-translation protein modifications that drive FoxO protein activation and degradation. PMID:26256004
Changing practice: red blood cell typing by molecular methods for patients with sickle cell disease.
Casas, Jessica; Friedman, David F; Jackson, Tannoa; Vege, Sunitha; Westhoff, Connie M; Chou, Stella T
2015-06-01
Extended red blood cell (RBC) antigen matching is recommended to limit alloimmunization in patients with sickle cell disease (SCD). DNA-based testing to predict blood group phenotypes has enhanced availability of antigen-negative donor units and improved typing of transfused patients, but replacement of routine serologic typing for non-ABO antigens with molecular typing for patients has not been reported. This study compared the historical RBC antigen phenotypes obtained by hemagglutination methods with genotype predictions in 494 patients with SCD. For discrepant results, repeat serologic testing was performed and/or investigated by gene sequencing for silent or variant alleles. Seventy-one typing discrepancies were identified among 6360 antigen comparisons (1.1%). New specimens for repeat serologic testing were obtained for 66 discrepancies and retyping agreed with the genotype in 64 cases. One repeat Jk(b-) serologic phenotype, predicted Jk(b+) by genotype, was found by direct sequencing of JK to be a silenced allele, and one N typing discrepancy remains under investigation. Fifteen false-negative serologic results were associated with alleles encoding weak antigens or single-dose Fy(b) expression. DNA-based RBC typing provided improved accuracy and expanded information on RBC antigens compared to hemagglutination methods, leading to its implementation as the primary method for extended RBC typing for patients with SCD at our institution. © 2015 AABB.
Archetti, Marco; Ferraro, Daniela A; Christofori, Gerhard
2015-02-10
The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors.
Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W
2016-11-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.; ...
2016-11-04
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
Van Valen, David A.; Lane, Keara M.; Quach, Nicolas T.; Maayan, Inbal
2016-01-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems. PMID:27814364
Bonin, Christopher P; Freshour, Glenn; Hahn, Michael G; Vanzin, Gary F; Reiter, Wolf-Dieter
2003-06-01
l-Fucose (l-Fuc) is a monosaccharide constituent of plant cell wall polysaccharides and glycoproteins. The committing step in the de novo synthesis of l-Fuc is catalyzed by GDP-d-mannose 4,6-dehydratase, which, in Arabidopsis, is encoded by the GMD1 and GMD2 (MUR1) genes. To determine the functional significance of this genetic redundancy, the expression patterns of both genes were investigated via promoter-beta-glucuronidase fusions and immunolocalization of a Fuc-containing epitope. GMD2 is expressed in most cell types of the root, with the notable exception of the root tip where strong expression of GMD1 is observed. Within shoot organs, GMD1::GUS expression is confined to stipules and pollen grains leading to fucosylation of the walls of these cell types in the mur1 mutant. These results suggest that GMD2 represents the major housekeeping gene for the de novo synthesis of GDP-l-Fuc, whereas GMD1 expression is limited to a number of specialized cell types. We conclude that the synthesis of GDP-l-Fuc is controlled in a cell-autonomous manner by differential expression of two isoforms of the same enzyme.
Seemann, Gunnar; Panfilov, Alexander V.; Vandersickel, Nele
2017-01-01
Early Afterdepolarizations, EADs, are defined as the reversal of the action potential before completion of the repolarization phase, which can result in ectopic beats. However, the series of mechanisms of EADs leading to these ectopic beats and related cardiac arrhythmias are not well understood. Therefore, we aimed to investigate the influence of this single cell behavior on the whole heart level. For this study we used a modified version of the Ten Tusscher-Panfilov model of human ventricular cells (TP06) which we implemented in a 3D ventricle model including realistic fiber orientations. To increase the likelihood of EAD formation at the single cell level, we reduced the repolarization reserve (RR) by reducing the rapid delayed rectifier Potassium current and raising the L-type Calcium current. Varying these parameters defined a 2D parametric space where different excitation patterns could be classified. Depending on the initial conditions, by either exciting the ventricles with a spiral formation or burst pacing protocol, we found multiple different spatio-temporal excitation patterns. The spiral formation protocol resulted in the categorization of a stable spiral (S), a meandering spiral (MS), a spiral break-up regime (SB), spiral fibrillation type B (B), spiral fibrillation type A (A) and an oscillatory excitation type (O). The last three patterns are a 3D generalization of previously found patterns in 2D. First, the spiral fibrillation type B showed waves determined by a chaotic bi-excitable regime, i.e. mediated by both Sodium and Calcium waves at the same time and in same tissue settings. In the parameter region governed by the B pattern, single cells were able to repolarize completely and different (spiral) waves chaotically burst into each other without finishing a 360 degree rotation. Second, spiral fibrillation type A patterns consisted of multiple small rotating spirals. Single cells failed to repolarize to the resting membrane potential hence prohibiting the Sodium channel gates to recover. Accordingly, we found that Calcium waves mediated these patterns. Third, a further reduction of the RR resulted in a more exotic parameter regime whereby the individual cells behaved independently as oscillators. The patterns arose due to a phase-shift of different oscillators as disconnection of the cells resulted in continuation of the patterns. For all patterns, we computed realistic 9 lead ECGs by including a torso model. The B and A type pattern exposed the behavior of Ventricular Tachycardia (VT). We conclude that EADs at the single cell level can result in different types of cardiac fibrillation at the tissue and 3D ventricle level. PMID:29216239
D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V
2011-01-01
p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473
Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M
2015-06-05
The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells. Copyright © 2015 Gorrepati et al.
Xia, Guangbin; Gao, Yuanzheng; Jin, Shouguang; Subramony, SH.; Terada, Naohiro; Ranum, Laura P.W.; Swanson, Maurice S.; Ashizawa, Tetsuo
2015-01-01
Objective Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3’ UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step towards autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Methods Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 iPS cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci, the molecular hallmarks of DM1, using RNA fluorescence in situ hybridization (RNA-FISH). Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. Results The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1, 2 aberrant splicing in DM1 NSCs was reversed to normal pattern in genome-modified NSCs. Interpretation Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1. PMID:25702800
el-Amraoui, A; Sahly, I; Picaud, S; Sahel, J; Abitbol, M; Petit, C
1996-08-01
Usher syndrome type 1 (USH1) associates severe congenital deafness, vestibular dysfunction and progressive retinitis pigmentosa leading to blindness. The gene encoding myosin VIIA is responsible for USH1B. Mutations in the murine orthologous gene lead to the shaker-1 phenotype, which manifests cochlear and vestibular dysfunction, without any retinal defect. To address this phenotypic discrepancy, the expression of myosin VIIA in retinal cells was analyzed in human and mouse during embryonic development and adult life. In the human embryo, myosin VIIA was present first in the pigment epithelium cells, and later in these cells as well as in the photoreceptor cells. In the adult human retina, myosin VIIA was present in both cell types. In contrast, in mouse, only pigment epithelium cells expressed the protein throughout development and adult life. Myosin VIIA was also found to be absent in the photoreceptor cells of other rodents (rat and guinea-pig), whereas these cells expressed the protein in amphibians, avians and primates. These observations suggest that retinitis pigmentosa of USH1B results from a primary rod and cone defect. The USH1B/shaker-1 paradigm illustrates a species-specific cell pattern of gene expression as a possible cause for the discrepancy between phenotypes involving defective orthologous genes in man and mouse. Interestingly, in the photoreceptor cells, myosin VIIA is mainly localized in the inner and base of outer segments as well as in the synaptic ending region where it is co-localized with the synaptic vesicles. Therefore, we suggest that myosin VIIA might play a role in the trafficking of ribbon-synaptic vesicle complexes and the renewal processes of the outer photoreceptor disks.
Unique volatolomic signatures of TP53 and KRAS in lung cells
Davies, M P A; Barash, O; Jeries, R; Peled, N; Ilouze, M; Hyde, R; Marcus, M W; Field, J K; Haick, H
2014-01-01
Background: Volatile organic compounds (VOCs) are potential biomarkers for cancer detection in breath, but it is unclear if they reflect specific mutations. To test this, we have compared human bronchial epithelial cell (HBEC) cell lines carrying the KRASV12 mutation, knockdown of TP53 or both with parental HBEC cells. Methods: VOC from headspace above cultured cells were collected by passive sampling and analysed by thermal desorption gas chromatography mass spectrometry (TD-GC–MS) or sensor array with discriminant factor analysis (DFA). Results: In TD-GC–MS analysis, individual compounds had limited ability to discriminate between cell lines, but by applying DFA analysis combinations of 20 VOCs successfully discriminated between all cell types (accuracies 80–100%, with leave-one-out cross validation). Sensor array detection DFA demonstrated the ability to discriminate samples based on their cell type for all comparisons with accuracies varying between 77% and 93%. Conclusions: Our results demonstrate that minimal genetic changes in bronchial airway cells lead to detectable differences in levels of specific VOCs identified by TD-GC–MS or of patterns of VOCs identified by sensor array output. From the clinical aspect, these results suggest the possibility of breath analysis for detection of minimal genetic changes for earlier diagnosis or for genetic typing of lung cancers. PMID:25051409
Adjuvant-specific regulation of long-term antibody responses by ZBTB20
Wang, Yinan
2014-01-01
The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants. PMID:24711582
Hashemian, Seyed Jafar; Kouhnavard, Marjan; Nasli-Esfahani, Ensieh
2015-01-01
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder that leads to beta cell destruction and lowered insulin production. In recent years, stem cell therapies have opened up new horizons to treatment of diabetes mellitus. Among all kinds of stem cells, mesenchymal stem cells (MSCs) have been shown to be an interesting therapeutic option based on their immunomodulatory properties and differentiation potentials confirmed in various experimental and clinical trial studies. In this review, we discuss MSCs differential potentials in differentiation into insulin-producing cells (IPCs) from various sources and also have an overview on currently understood mechanisms through which MSCs exhibit their immunomodulatory effects. Other important issues that are provided in this review, due to their importance in the field of cell therapy, are genetic manipulations (as a new biotechnological method), routes of transplantation, combination of MSCs with other cell types, frequency of transplantation, and special considerations regarding diabetic patients' autologous MSCs transplantation. At the end, utilization of biomaterials either as encapsulation tools or as scaffolds to prevent immune rejection, preparation of tridimensional vascularized microenvironment, and completed or ongoing clinical trials using MSCs are discussed. Despite all unresolved concerns about clinical applications of MSCs, this group of stem cells still remains a promising therapeutic modality for treatment of diabetes. PMID:26576437
Neutrophils, dendritic cells and Toxoplasma.
Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya
2004-03-09
Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.
Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis.
Kasper, M; Haroske, G
1996-04-01
This review discusses current knowledge of the involvement of the alveolar epithelium in tissue remodelling during fibrogenesis. The purpose of the present paper is to give an overview, including the authors' own results, of knowledge of ultrastructural alterations, proliferation kinetics and phenotypic changes of pneumocytes in experimental and clinical pathology of pulmonary fibrosis. After lung injury, the alveolar epithelial cells show ultrastructural alterations, hypertrophy and hyperplasia, and a modulation of a series of structural and membrane proteins such as cytoskeletal changes, loss or de novo expression of epithelial adhesion molecules, and altered lectin binding. Furthermore, enhanced secretion of proteases, of cytokines and other soluble factors can be observed in the alveolar epithelium. These findings suggest the contribution of the epithelium in the remodelling process to be greater than expected. Estimations of the cell kinetics show that type II pneumocytes have the proliferative capacity to restore high proportions of damaged type I cells within few hours. In fibrosis this capacity also seems to be affected seriously, resulting in transitional phenotypes between type II and type I cells. Additionally, in the light of the detection of CD44 type of adhesion molecules at the foot processes of type II pneumocytes, some aspects of epithelial-fibroblast interaction are described.
SBR-Blood: systems biology repository for hematopoietic cells.
Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M
2016-01-04
Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles. Published by Oxford University Press on behalf of Nucleic Acids Research 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Malina, Halina Z
2011-01-19
The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases.
2011-01-01
Background The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Results Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. Conclusions The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules in disease development. In the knockout cells, incorrect interactions between proteins were observed without the protein modification by small molecules, indicating the abnormality of the protein network in the transgenic system. The irreversible protein-protein interactions lead to protein aggregation and cell degeneration, which are observed in all aging-associated diseases. PMID:21247434
Genetic and pharmacological intervention for treatment/prevention of hearing loss
Cotanche, Douglas A.
2008-01-01
Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. Learning outcomes The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea. PMID:18455177
Genetic and pharmacological intervention for treatment/prevention of hearing loss.
Cotanche, Douglas A
2008-01-01
Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea.
NASA Astrophysics Data System (ADS)
White, B. D.; Kesler, O.
Electronic short circuiting of the electrolyte in a solid oxide fuel cell (SOFC) arising from flaws in the plasma spray fabrication process has been found to have a significant effect on the perceived performance of the electrodes, as evaluated by electrochemical impedance spectroscopy (EIS). The presence of a short circuit has been found to lead to the underestimation of the electrode polarization resistance (R p) and hence an overestimation of electrode performance. The effect is particularly noticeable when electrolyte resistance is relatively high, for example during low to intermediate temperature operation, leading to an obvious deviation from the expected Arrhenius-type temperature dependence of R p. A method is developed for determining the real electrode performance from measurements of various cell properties, and strategies for eliminating the occurrence of short circuiting in plasma sprayed cells are identified.
The Role and Mechanism of Epithelial-to-Mesenchymal Transition in Prostate Cancer Progression
Lo, U-Ging; Lee, Cheng-Fan; Lee, Ming-Shyue; Hsieh, Jer-Tsong
2017-01-01
In prostate cancer (PCa), similar to many other cancers, distant organ metastasis symbolizes the beginning of the end disease, which eventually leads to cancer death. Many mechanisms have been identified in this process that can be rationalized into targeted therapy. Among them, epithelial-to-mesenchymal transition (EMT) is originally characterized as a critical step for cell trans-differentiation during embryo development and now recognized in promoting cancer cells invasiveness because of high mobility and migratory abilities of mesenchymal cells once converted from carcinoma cells. Nevertheless, the underlying pathways leading to EMT appear to be very diverse in different cancer types, which certainly represent a challenge for developing effective intervention. In this article, we have carefully reviewed the key factors involved in EMT of PCa with clinical correlation in hope to facilitate the development of new therapeutic strategy that is expected to reduce the disease mortality. PMID:28973968
Survey of mercury, cadmium and lead content of household batteries.
Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina
2014-01-01
The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
2013-01-01
The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization. PMID:24073831
Salopiata, Florian; Depner, Sofia; Wäsch, Marvin; Böhm, Martin E.; Mücke, Oliver; Plass, Christoph; Lehmann, Wolf D.; Kreutz, Clemens; Timmer, Jens; Klingmüller, Ursula
2016-01-01
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. PMID:27494133
Perzin, K H; Panyu, H; Wechter, S
1982-11-15
Twelve Schwann cell tumors (two neurilemomas, six neurofibromas, and four malignant schwannomas), arising in the nasal cavity, paranasal sinuses or nasopharynx, are described. Schwann cell neoplasms only rarely develop in this area. Clinically, these tumors lead to nonspecific symptoms including nasal obstruction epistaxis, facial pain and swellling, and proptosis, similar to those produced by other neoplasms that involve this area. On radiologic examination, a mass lesion may be identified. Benign Schwann cell tumors may lead to bone erosion, which thus is not necessarily a sign of malignancy. The correct diagnosis of Schwann cell tumor is usually made only when histologic sections are studied. The histologic differentiation between Schwann cell neoplasms and myxomas, fibroblastic tumors, fibrous histiocytomas and fibro-osseous lesions is discussed. Treatment depends upon the type of tumor. Neurilemomas, which usually are encapsulated neoplasms, can be treated by local excision. Neurofibromas may infiltrate extensively, and thus may require an extensive surgical resection; however, functional and cosmetic considerations should be taken into account because neurofibromas, even if incompletely excised, may recur clinically only after many years. Malignant schwannomas tend to be aggressive neoplasms, but because of the anatomy of the area, radical resections leading to complete removal of the tumor cannot always be carried out.
Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.
2012-01-01
An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470
Metabolic Stress and Compromised Identity of Pancreatic Beta Cells
Swisa, Avital; Glaser, Benjamin; Dor, Yuval
2017-01-01
Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834
Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.
Swisa, Avital; Glaser, Benjamin; Dor, Yuval
2017-01-01
Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.
β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells.
Lin, Rui; Choi, Yeon Ho; Zidar, David A; Walker, Julia K L
2018-06-01
Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4 + T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4 + T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4 + Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4 + Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.
Ylinen, Laura M. J.; Schaller, Torsten; Price, Amanda; Fletcher, Adam J.; Noursadeghi, Mahdad; James, Leo C.; Towers, Greg J.
2009-01-01
Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration. PMID:19073742
Intravascular large B-cell lymphoma presenting with anasarca-type edema and acute renal failure.
Bilgili, Serap Gunes; Yılmaz, Deniz; Soyoral, Yasemin Usul; Karadag, Ayse Serap; Bayram, Irfan
2013-09-01
Intravascular lymphoma (IVL) is a rare extra nodal subtype (usually of B-cell origin) presenting with infiltration of large neoplastic lymphocytes into lumina of blood vessels, leading to vascular occlusion. The early diagnosis is very crucial, however it is usually diagnosed postmortem investigation in most of the cases. A 56-year-old female presented with elevated creatinine level, and anasarca-type edema that superimposed with hard, indurated, erythematous plaques extending to inguinal region, abdomen, anterior aspect of chest, and face. B-cell IVL was confirmed with skin biopsy. The patient had some degree of clinical improvement following chemotherapy. B-cell IVL presenting with anasarca edema was not previously reported in the literature. Even if its rarity, IVL should be considered in the differential diagnosis of renal failure with anasarca edema.
Oxidative Stress, Nitric Oxide, and Diabetes
Pitocco, Dario; Zaccardi, Francesco; Di Stasio, Enrico; Romitelli, Federica; Santini, Stefano A.; Zuppi, Cecilia; Ghirlanda, Giovanni
2010-01-01
In the recent decades, oxidative stress has become focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence from research on several diseases show that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on this research, the emerging concept is that oxidative stress is the “final common pathway”, through which risk factors of several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell-cell homeostasis. In this review, we discuss the role of oxidative stress in the pathogenesis of insulin resistance and beta-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes, and in the pathogenesis of diabetic vascular complications, the leading cause of death in diabetic patients. PMID:20703435
Cell type-dependent ROS and mitophagy response leads to apoptosis or necroptosis in neuroblastoma.
Radogna, F; Cerella, C; Gaigneaux, A; Christov, C; Dicato, M; Diederich, M
2016-07-21
A limiting factor in the therapeutic outcome of children with high-risk neuroblastoma is the intrinsic and acquired resistance to common chemotherapeutic treatments. Here we investigated the molecular mechanisms by which the hemisynthetic cardiac glycoside UNBS1450 overcomes this limitation and induces differential cell death modalities in both neuroblastic and stromal neuroblastoma through stimulation of a cell-type-specific autophagic response eventually leading to apoptosis or necroptosis. In neuroblastic SH-SY5Y cells, we observed a time-dependent production of reactive oxygen species that affects lysosomal integrity inducing lysosome-associated membrane protein 2 degradation and cathepsin B and L activation. Subsequent mitochondrial membrane depolarization and accumulation of mitochondria in phagophores occurred after 8h of UNBS1450 treatment. Results were confirmed by mitochondrial mass analysis, electron microscopy and co-localization of mitochondria with GFP-LC3, suggesting the impaired clearance of damaged mitochondria. Thus, a stress-induced defective autophagic flux and the subsequent lack of clearance of damaged mitochondria sensitized SH-SY5Y cells to UNBS1450-induced apoptosis. Inhibition of autophagy with small inhibitory RNAs against ATG5, ATG7 and Beclin-1 protected SH-SY5Y cells against the cytotoxic effect of UNBS1450 by inhibiting apoptosis. In contrast, autophagy progression towards the catabolic state was observed in stromal SK-N-AS cells: here reactive oxygen species (ROS) generation remained undetectable preserving intact lysosomes and engulfing damaged mitochondria after UNBS1450 treatment. Moreover, autophagy inhibition determined sensitization of SK-N-AS to apoptosis. We identified efficient mitophagy as the key mechanism leading to failure of activation of the apoptotic pathway that increased resistance of SK-N-AS to UNBS1450, triggering rather necroptosis at higher doses. Altogether we characterize here the differential modulation of ROS and mitophagy as a main determinant of neuroblastoma resistance with potential relevance for personalized anticancer therapeutic approaches.
Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo
2009-11-01
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34+ hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34+ cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34(+) cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34+ cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34+ cells.
Cell Type-Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition
Brzostek, Joanna; Gascoigne, Nicholas R. J.; Rybakin, Vasily
2016-01-01
B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T cells (Tregs), and CD28-dependent signals are required for optimum activation of effector T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular patterns and induction of cytoskeletal rearrangements at the immunological synapse (IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T effector and Treg IS stability and cell motility. Due to their important roles in regulating T-cell-mediated responses, B7 receptors are emerging as important drug targets in oncology. In this review, we present an integrated summary of current knowledge about the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal IS dynamics in effector and Tregs. PMID:26870040
Hochstrasser, Tanja; Frank, Hans-Georg; Schmitz, Christoph
2016-01-01
Radial extracorporeal shock wave (rESW) therapy is widely used in musculoskeletal disorders and wound repair. However, the mechanisms of action are still largely unknown. The current study compared the effects of rESWs on two cell types. Human fetal foreskin fibroblasts (HFFF2) and human placental choriocarcinoma cell line JEG-3 were exposed to 0, 100, 200, 500 or 5000 rESWs generated with a Swiss DolorClast device (2.5 bar, 1 Hz). FACS analysis immediately after rESW exposure showed that initially, rESWs rather induced mechanical cell destruction than regulated or programmed cell death. Cell damage was nearly negated by reducing cavitation. Furthermore, cell viability decreased progressively with higher numbers of rESWs. Exposure to rESWs had no impact on growth potential of JEG-3 cells, but dose-dependently increased growth potential of HFFF2 cells. Cultivation of cells that were initially exposed to sham-rESWs in conditioned media increased the growth potential of HFFF2 cells, nevertheless, an even stronger effect was achieved by direct exposure to rESWs. Additionally, cell cycle distribution analysis demonstrated a shift in proportion from G0/G1 to G2/M phase in HFFF2 cells, but not in JEG-3 cells. These data demonstrate that rESWs leads to initial and subsequent dose-dependent and cell type-specific effects in vitro. PMID:27477873
Li, Jian; Zucker, Stanley; Pulkoski-Gross, Ashleigh; Kuscu, Cem; Karaayvaz, Mihriban; Ju, Jingfang; Yao, Herui; Song, Erwei; Cao, Jian
2012-01-01
Emerging evidence has implicated the role of tumor initiating cells (TICs) in the process of cancer metastasis. The mechanism underlying the conversion of TICs from stationary to invasive remains to be characterized. In this report, we employed less invasive breast cancer TICs, SK-3rd, that displays CD44high/CD24low with high mammosphere-forming and tumorigenic capacities, to investigate the mechanism by which stationary TICs are converted to invasive TICs. Invasive ability of SK-3rd TICs was markedly enhanced when the cells were cultured under hypoxic conditions. Given the role of membrane type 1-matrix metalloproteinase (MT1-MMP) in cancer invasion/metastasis, we explored a possible involvement of MT1-MMP in hypoxia-induced TIC invasion. Silencing of MT1-MMP by a shRNA approach resulted in diminution of hypoxia-induced cell invasion in vitro and metastasis in vivo. Under hypoxic conditions, MT1-MMP redistributed from cytoplasmic storage pools to the cell surface of TICs, which coincides with the increased cell invasion. In addition, CD44, a cancer stem-like cell marker, inversely correlated with increased cell surface MT1-MMP. Interestingly, cell surface MT1-MMP gradually disappeared when the hypoxia-treated cells were switched to normoxia, suggesting the plasticity of TICs in response to oxygen content. Furthermore, we dissected the pathways leading to upregulated MT1-MMP in cytoplasmic storage pools under normoxic conditions, by demonstrating a cascade involving Twist1-miR10b-HoxD10 leading to enhanced MT1-MMP expression in SK-3rd TICs. These observations suggest that MT1-MMP is a key molecule capable of executing conversion of stationary TICs to invasive TICs under hypoxic conditions and thereby controlling metastasis. PMID:22679501
NASA Astrophysics Data System (ADS)
Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.; Rotnicki, J.; Kopczyk, M.
Bare reticulated vitreous carbon (RVC) plated electrochemically with thin layer of lead was investigated as a negative plate carrier- and current-collector material for lead-acid batteries. Hybrid flooded single cell lead-acid batteries containing one negative plate based on a new type (RVC or Pb/RVC) of carrier/current-collector and two positive plates based on Pb-Ca grid collectors were assembled and subjected to charge/discharge tests (at 20-h and 1-h discharge rates) and Peukert's dependences determination. The promising results show that application of RVC as carrier- and current-collector in negative plate will significantly increase the specific capacity of lead-acid battery.
Hüser, Daniela; Gogol-Döring, Andreas; Chen, Wei
2014-01-01
ABSTRACT Genome-wide analysis of adeno-associated virus (AAV) type 2 integration in HeLa cells has shown that wild-type AAV integrates at numerous genomic sites, including AAVS1 on chromosome 19q13.42. Multiple GAGY/C repeats, resembling consensus AAV Rep-binding sites are preferred, whereas rep-deficient AAV vectors (rAAV) regularly show a random integration profile. This study is the first study to analyze wild-type AAV integration in diploid human fibroblasts. Applying high-throughput third-generation PacBio-based DNA sequencing, integration profiles of wild-type AAV and rAAV are compared side by side. Bioinformatic analysis reveals that both wild-type AAV and rAAV prefer open chromatin regions. Although genomic features of AAV integration largely reproduce previous findings, the pattern of integration hot spots differs from that described in HeLa cells before. DNase-Seq data for human fibroblasts and for HeLa cells reveal variant chromatin accessibility at preferred AAV integration hot spots that correlates with variant hot spot preferences. DNase-Seq patterns of these sites in human tissues, including liver, muscle, heart, brain, skin, and embryonic stem cells further underline variant chromatin accessibility. In summary, AAV integration is dependent on cell-type-specific, variant chromatin accessibility leading to random integration profiles for rAAV, whereas wild-type AAV integration sites cluster near GAGY/C repeats. IMPORTANCE Adeno-associated virus type 2 (AAV) is assumed to establish latency by chromosomal integration of its DNA. This is the first genome-wide analysis of wild-type AAV2 integration in diploid human cells and the first to compare wild-type to recombinant AAV vector integration side by side under identical experimental conditions. Major determinants of wild-type AAV integration represent open chromatin regions with accessible consensus AAV Rep-binding sites. The variant chromatin accessibility of different human tissues or cell types will have impact on vector targeting to be considered during gene therapy. PMID:25031342
Kehrmann, Jan; Tatura, Roman; Zeschnigk, Michael; Probst-Kepper, Michael; Geffers, Robert; Steinmann, Joerg; Buer, Jan
2014-07-01
The epigenetic regulation of transcription factor genes is critical for T-cell lineage specification. A specific methylation pattern within a conserved region of the lineage specifying transcription factor gene FOXP3, the Treg-specific demethylated region (TSDR), is restricted to regulatory T (Treg) cells and is required for stable expression of FOXP3 and suppressive function. We analysed the impact of hypomethylating agents 5-aza-2'-deoxycytidine and epigallocatechin-3-gallate on human CD4(+) CD25(-) T cells for generating demethylation within FOXP3-TSDR and inducing functional Treg cells. Gene expression, including lineage-specifying transcription factors of the major T-cell lineages and their leading cytokines, functional properties and global transcriptome changes were analysed. The FOXP3-TSDR methylation pattern was determined by using deep amplicon bisulphite sequencing. 5-aza-2'-deoxycytidine induced FOXP3-TSDR hypomethylation and expression of the Treg-cell-specific genes FOXP3 and LRRC32. Proliferation of 5-aza-2'-deoxycytidine-treated cells was reduced, but the cells did not show suppressive function. Hypomethylation was not restricted to FOXP3-TSDR and expression of master transcription factors and leading cytokines of T helper type 1 and type 17 cells were induced. Epigallocatechin-3-gallate induced global DNA hypomethylation to a lesser extent than 5-aza-2'-deoxycitidine, but no relevant hypomethylation within FOXP3-TSDR or expression of Treg-cell-specific genes. Neither of the DNA methyltransferase inhibitors induced fully functional human Treg cells. 5-aza-2'-deoxycitidine-treated cells resembled Treg cells, but they did not suppress proliferation of responder cells, which is an essential capability to be used for Treg cell transfer therapy. Using a recently developed targeted demethylation technology might be a more promising approach for the generation of functional Treg cells. © 2014 John Wiley & Sons Ltd.
Janssen, Riny; van Wengen, Annelies; Hoeve, Marieke A; ten Dam, Monique; van der Burg, Miriam; van Dongen, Jacques; van de Vosse, Esther; van Tol, Maarten; Bredius, Robbert; Ottenhoff, Tom H; Weemaes, Corry; van Dissel, Jaap T; Lankester, Arjan
2004-09-06
Both innate and adaptive immune responses are dependent on activation of nuclear factor kappaB (NF-kappaB), induced upon binding of pathogen-associated molecular patterns to Toll-like receptors (TLRs). In murine models, defects in NF-kappaB pathway are often lethal and viable knockout mice have severe immune defects. Similarly, defects in the human NF-kappaB pathway described to date lead to severe clinical disease. Here, we describe a patient with a hyper immunoglobulin M-like immunodeficiency syndrome and ectodermal dysplasia. Monocytes did not produce interleukin 12p40 upon stimulation with various TLR stimuli and nuclear translocation of NF-kappaB was impaired. T cell receptor-mediated proliferation was also impaired. A heterozygous mutation was found at serine 32 in IkappaBalpha. Interestingly, his father has the same mutation but displays complex mosaicism. He does not display features of ectodermal dysplasia and did not suffer from serious infections with the exception of a relapsing Salmonella typhimurium infection. His monocyte function was impaired, whereas T cell function was relatively normal. Consistent with this, his T cells almost exclusively displayed the wild-type allele, whereas both alleles were present in his monocytes. We propose that the T and B cell compartment of the mosaic father arose as a result of selection of wild-type cells and that this underlies the widely different clinical phenotype.
Non-small cell lung cancer (NSCLC), the most common type of lung cancer, is slow growing and can affect smokers and non-smokers alike. David S. Schrump, M.D., Surgical Chief of the Thoracic and Gastrointestinal Oncology Branch, is leading the NCI’s participation in a multicenter trial of a combination drug therapy in patients with NSCLC. Read more...
Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S; Marazzi, Giovanna; Sassoon, David A
2018-01-01
Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70-80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration.
Regulation of cell wall biosynthesis.
Zhong, Ruiqin; Ye, Zheng-Hua
2007-12-01
Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.
Modulation of caspases and their non-apoptotic functions by Legionella pneumophila.
Amer, Amal O
2010-02-01
Legionella pneumophila has become a model system to decipher the non-apoptotic functions of caspases and their role in immunity. In permissive cells, the L. pneumophila-containing vacuole evades endosomal traffic and is remodelled by the endoplasmic reticulum. Evasion of the endosomes is mediated by the Dot/Icm type IV secretion system. Upon L. pneumophila infection of genetically restrictive cells such as wild-type (WT) C57Bl/6J murine macrophages, flagellin is sensed by the NOD-like receptor Nlrc4 leading to caspase-1 activation by the inflammasome complex. Then, caspase-7 is activated downstream of the Nlrc4 inflammasome, promoting non-apoptotic functions such as L. pneumophila-containing phagosome maturation and bacterial degradation. Interestingly, caspase-3 is activated in permissive cells during early stages of infection. However, caspase-3 activation does not lead to apoptosis until late stages of infection because it is associated with potent Dot/Icm-mediated anti-apoptotic stimuli that render the infected cells resistant to external apoptotic inducers. Therefore, the role of caspase-1 and non-apoptotic functions of executioner caspases are temporally and spatially modulated during infection by L. pneumophila, which determine permissiveness to intracellular bacterial proliferation. This review will examine the novel activation pathways of caspases by L. pneumophila and discuss their role in genetic restriction and permissiveness to infection.
A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency
Caburet, Sandrine; Guigon, Celine; Mäkinen, Marika; Tanner, Laura; Hietala, Marja; Urbanska, Kaja; Bellutti, Laura; Legois, Bérangère; Bessieres, Bettina; Gougeon, Alain; Benachi, Alexandra; Livera, Gabriel; Rosselli, Filippo
2017-01-01
Primary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in FANCM, leading to a truncated protein (p.Gln1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients’ lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitination. FANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancm-/- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation. PMID:29231814
Daniel, Bareket; Green, Omer; Viskind, Olga; Gruzman, Arie
2013-09-01
Riluzole is the only approved ALS drug. Riluzole influences several cellular pathways, but its exact mechanism of action remains unclear. Our goal was to study the drug's influence on the glucose transport rate in two ALS relevant cell types, neurons and myotubes. Stably transfected wild-type or mutant G93A human SOD1 NSC-34 motor neuron-like cells and rat L6 myotubes were exposed to riluzole. The rate of glucose uptake, translocation of glucose transporters to the cell's plasma membrane and the main glucose transport regulatory proteins' phosphorylation levels were measured. We found that riluzole increases the glucose transport rate and up-regulates the translocation of glucose transporters to plasma membrane in both types of cells. Riluzole leads to AMPK phosphorylation and to the phosphorylation of its downstream target, AS-160. In conclusion, increasing the glucose transport rate in ALS affected cells might be one of the mechanisms of riluzole's therapeutic effect. These findings can be used to rationally design and synthesize novel anti-ALS drugs that modulate glucose transport in neurons and skeletal muscles.
Hunter, Chad S.; Stein, Roland W.
2017-01-01
The two main types of diabetes mellitus have distinct etiologies, yet a similar outcome: loss of islet β-cell function that is solely responsible for the secretion of the insulin hormone to reduce elevated plasma glucose toward euglycemic levels. Type 1 diabetes (T1D) has traditionally been characterized by autoimmune-mediated β-cell death leading to insulin-dependence, whereas type 2 diabetes (T2D) has hallmarks of peripheral insulin resistance, β-cell dysfunction, and cell death. However, a growing body of evidence suggests that, especially during T2D, key components of β-cell failure involves: (1) loss of cell identity, specifically proteins associated with mature cell function (e.g., insulin and transcription factors like MAFA, PDX1, and NKX6.1), as well as (2) de-differentiation, defined by regression to a progenitor or stem cell-like state. New technologies have allowed the field to compare islet cell characteristics from normal human donors to those under pathophysiological conditions by single cell RNA-Sequencing and through epigenetic analysis. This has revealed a remarkable level of heterogeneity among histologically defined “insulin-positive” β-cells. These results not only suggest that these β-cell subsets have different responses to insulin secretagogues, but that defining their unique gene expression and epigenetic modification profiles will offer opportunities to develop cellular therapeutics to enrich/maintain certain subsets for correcting pathological glucose levels. In this review, we will summarize the recent literature describing how β-cell heterogeneity and plasticity may be influenced in T2D, and various possible avenues of therapeutic intervention. PMID:28424732
Feasibility of Cell Therapy in Multiple Sclerosis: A Systematic Review of 83 Studies
Ardeshiry lajimi, Abdolreza; Hagh, Majid Farshdousti; Saki, Najmaldin; Mortaz, Esmaeil; Soleimani, Masoud; Rahim, Fakher
2013-01-01
Multiple Sclerosis is an inflammatory disease of the central nervous system in which T cells experience a second phase of activation, which ultimately leads to axonal demyelination and neurological disability. The recent advances in stem cell therapies may serve as potential treatments for neurological disorders. There are broad types of stem cells such as neural, embryonic, mesenchymal and hematopoietic stem cells with unprecedented hope in treating many debilitating diseases. In this paper we will review the substantial literature regarding experimental and clinical use of these stem cells and possible mechanisms in the treatment of MS. These results may pave the road for the utilization of stem cells for the treatment of MS. PMID:24505515
Low frequency noise as a control test for spacial solar panels
NASA Astrophysics Data System (ADS)
Orsal, B.; Alabedra, R.; Ruas, R.
1986-07-01
The present study of low frequency noise in a forward-biased dark solar cell, in order to develop an NDE test method for solar panels, notes that a single cell with a given defect is thus detectable under dark conditions. The test subject was a space solar panel consisting of five cells in parallel and five in series; these cells are of the n(+)-p monocrystalline Si junction type. It is demonstrated that the noise associated with the defective cell is 10-15 times higher than that of a good cell. Replacement of a good cell by a defective one leads to a 30-percent increase in the noise level of the panel as a whole.
Metastatic Growth from Dormant Cells Induced by a Col-I Enriched Fibrotic Environment
Barkan, Dalit; El Touny, Lara H.; Michalowski, Aleksandra M.; Smith, Jane Ann; Chu, Isabel; Davis, Anne Sally; Webster, Joshua D.; Hoover, Shelley; Simpson, R. Mark; Gauldie, Jack; Green, Jeffrey E.
2010-01-01
Breast cancer that recurs as metastatic disease many years after primary tumor resection and adjuvant therapy appears to arise from tumor cells that disseminated early in the course of disease but did not develop into clinically apparent lesions. These long-term surviving, disseminated tumor cells maintain a state of dormancy, but may be triggered to proliferate through largely unknown factors. We now demonstrate that the induction of fibrosis, associated with deposition of type I collagen (Col-I) in the in vivo metastatic microenvironment, induces dormant D2.0R cells to form proliferative metastatic lesions through β1-integrin signaling. In vitro studies using a 3D culture system modeling dormancy demonstrated that Col-I induces quiescent D2.0R cells to proliferate through β1-integrin activation of SRC and FAK, leading to ERK-dependent myosin light chain (MLC) phosphorylation by myosin light chain kinase (MLCK) and actin stress fiber formation. Blocking β1-integrin, Src, ERK or MLCK by shRNA or pharmacologic approaches inhibited Col-I-induced activation of this signaling cascade, cytoskeletal reorganization and proliferation. These findings demonstrate that fibrosis with type I collagen enrichment at the metastatic site may be a critical determinant of cytoskeletal reorganization in dormant tumor cells leading to their transition from dormancy to metastatic growth. Thus, inhibiting Col-I production, its interaction with β1-integrin and downstream signaling of β1-integrin may be important strategies for preventing or treating recurrent metastatic disease. PMID:20570886
Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).
Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi
2011-10-01
The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.
[Neuroendocrine differentiation in prostate adenocarcinoma].
Ramírez-Balderrama, Lázaro; López-Briones, Sergio; Daza-Benítez, Leonel; Macías, Maciste H; López-Gaytán, Teresa; Pérez-Vázquez, Victoriano
2013-01-01
The human prostate is a gland composed of many types of cells and extracellular components with specific functions. The stromal compartment includes nerve tissue, fibroblasts, lymphocytes, macrophages, endothelial cells, and smooth muscular cells. The epithelial compartment is composed of luminal epithelial cells, basal cells, and a lesser number of neuroendocrine cells, which are transcendental in growth regulation, differentiation, and secretory function. In prostate cancer, neuroendocrine cells replicate especially in high grade and advanced stage, and hormonally treated tumoral cells adopt characteristics that make them resistant to hormonal deprivation. Androgen receptors have a crucial role in tumorigenesis of prostate adenocarcinoma. Deprivation hormone therapy blocks the expression of androgen receptors in the prostatic epithelial cells. Neuroendocrine cells lack androgen receptors; their growth is hormonally independent and that is why deprivation hormonal therapy does not eliminate the neoplasic neuroendocrine cells. In contrast, these types of cells proliferate after therapy and make a paracrine network, stimulating the proliferation of androgen-independent neoplastic cells, which finally lead to tumoral recurrence. In this work we describe the neuroendocrine function in normal tissue and in prostatic adenocarcinoma, including neoplasic proliferation stimulation, invasion, apoptosis resistance, and angiogenesis, and describe some molecular pathways involved in this neuroendocrine differentiation.
Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas
Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther
2014-01-01
In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies. PMID:25153888
Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.
Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther
2014-01-01
In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.
Role of LRP-1 in cancer cell migration in 3-dimensional collagen matrix.
Appert-Collin, Aline; Bennasroune, Amar; Jeannesson, Pierre; Terryn, Christine; Fuhrmann, Guy; Morjani, Hamid; Dedieu, Stéphane
2017-07-04
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.
Connections matter: channeled hydrogels to improve vascularization.
Muehleder, Severin; Ovsianikov, Aleksandr; Zipperle, Johannes; Redl, Heinz; Holnthoner, Wolfgang
2014-01-01
The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.
Structural basis of human β-cell killing by CD8+ T cells in Type 1 diabetes
Bulek, Anna M.; Cole, David K.; Skowera, Ania; Dolton, Garry; Gras, Stephanie; Madura, Florian; Fuller, Anna; Miles, John J.; Gostick, Emma; Price, David A.; Drijfhout, Jan W.; Knight, Robin R.; Huang, Guo C.; Lissin, Nikolai; Molloy, Peter E.; Wooldridge, Linda; Jakobsen, Bent K.; Rossjohn, Jamie; Peakman, Mark; Rizkallah, Pierre J.; Sewell, Andrew K.
2011-01-01
The structural characteristics of autoreactive-T cell receptor (TCR) engagement of major histocompatability (MHC) class II-restricted self-antigens is established, but how autoimmune-TCRs interact with self-MHC class I has been unclear. We examined how CD8+ T cells kill human islet β-cells, in Type-1 diabetes, via autoreactive-TCR (1E6) recognition of an HLA-A*0201-restricted glucose-sensitive preproinsulin peptide. Rigid ‘lock-and-key’ binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHCI-restricted TCRs. However, this interaction was extraordinarily weak, due to limited contacts with MHCI. TCR binding was highly peptide-centric, dominated by two CDR3-loop-encoded residues, acting as an ‘aromatic-cap’, over the peptide MHCI (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8+ T cell-mediated autoreactivity. PMID:22245737
Younger, Susan; Huang, Yaling; Lee, Tzumin
2012-01-01
Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification. PMID:23056424
Origins and implications of pluripotent stem cell variability and heterogeneity
Cahan, Patrick; Daley, George Q.
2014-01-01
Pluripotent stem cells constitute a platform to model disease and developmental processes and can potentially be used in regenerative medicine. However, not all pluripotent cell lines are equal in their capacity to differentiate into desired cell types in vitro. Genetic and epigenetic variations contribute to functional variability between cell lines and heterogeneity within clones. These genetic and epigenetic variations could ‘lock’ the pluripotency network resulting in residual pluripotent cells or alter the signalling response of developmental pathways leading to lineage bias. The molecular contributors to functional variability and heterogeneity in both embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are only beginning to emerge, yet they are crucial to the future of the stem cell field. PMID:23673969
Zou, Jinfeng; Wang, Edwin
2017-04-01
With the technology development on detecting circulating tumor cells (CTCs) and cell-free DNAs (cfDNAs) in blood, serum, and plasma, non-invasive diagnosis of cancer becomes promising. A few studies reported good correlations between signals from tumor tissues and CTCs or cfDNAs, making it possible to detect cancers using CTCs and cfDNAs. However, the detection cannot tell which cancer types the person has. To meet these challenges, we developed an algorithm, eTumorType, to identify cancer types based on copy number variations (CNVs) of the cancer founding clone. eTumorType integrates cancer hallmark concepts and a few computational techniques such as stochastic gradient boosting, voting, centroid, and leading patterns. eTumorType has been trained and validated on a large dataset including 18 common cancer types and 5327 tumor samples. eTumorType produced high accuracies (0.86-0.96) and high recall rates (0.79-0.92) for predicting colon, brain, prostate, and kidney cancers. In addition, relatively high accuracies (0.78-0.92) and recall rates (0.58-0.95) have also been achieved for predicting ovarian, breast luminal, lung, endometrial, stomach, head and neck, leukemia, and skin cancers. These results suggest that eTumorType could be used for non-invasive diagnosis to determine cancer types based on CNVs of CTCs and cfDNAs. Copyright © 2017 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Production and hosting by Elsevier B.V. All rights reserved.
Generation of chondrocytes from embryonic stem cells.
Khillan, Jaspal Singh
2006-01-01
Pluripotent embryonic stem (ES) cells have complete potential for all the primary germ layers, such as ectoderm, mesoderm, and endoderm. However, the cellular and molecular mechanisms that control their lineage-restricted differentiation are not understood. Although embryoid bodies, which are formed because of the spontaneous differentiation of ES cells, have been used to study the differentiation into different cell types, including neurons, chondrocytes, insulin-producing cells, bone-forming cells, hematopoietic cells, and so on, this system has limitations for investigating the upstream events that lead to commitment of cells that occur during the inaccessible period of development. Recent developments in human ES cells have offered a challenge to develop strategies for understanding the basic mechanisms that play a key role in differentiation of stem cell into specific cell types for their applications in regenerative medicine and cell-based therapies. A micromass culture system was developed to induce the differentiation of ES cells into chondrocytes, the cartilage-producing cells, as a model to investigate the upstream events of stem cell differentiation. ES cells were co-cultured with limb bud progenitor cells. A high percentage of differentiated cells exhibit typical morphological characteristics of chondrocytes and express cartilage matrix genes such as collagen type II and proteoglycans, suggesting that signals from the progenitor cells are sufficient to induce ES cells into the chondrogenic lineage. Degeneration of cartilage in the joints is associated with osteoarthritis, which affects the quality of life of human patients. Therefore, the quantitative production of chondrocytes can be a powerful resource to alleviate the suffering of those patients.
A Novel ATM/TP53/p21-Mediated Checkpoint Only Activated by Chronic γ-Irradiation
Sasatani, Megumi; Iizuka, Daisuke; Masuda, Yuji; Inaba, Toshiya; Suzuki, Keiji; Ootsuyama, Akira; Umata, Toshiyuki; Kamiya, Kenji; Suzuki, Fumio
2014-01-01
Different levels or types of DNA damage activate distinct signaling pathways that elicit various cellular responses, including cell-cycle arrest, DNA repair, senescence, and apoptosis. Whereas a range of DNA-damage responses have been characterized, mechanisms underlying subsequent cell-fate decision remain elusive. Here we exposed cultured cells and mice to different doses and dose rates of γ-irradiation, which revealed cell-type-specific sensitivities to chronic, but not acute, γ-irradiation. Among tested cell types, human fibroblasts were associated with the highest levels of growth inhibition in response to chronic γ-irradiation. In this context, fibroblasts exhibited a reversible G1 cell-cycle arrest or an irreversible senescence-like growth arrest, depending on the irradiation dose rate or the rate of DNA damage. Remarkably, when the same dose of γ-irradiation was delivered chronically or acutely, chronic delivery induced considerably more cellular senescence. A similar effect was observed with primary cells isolated from irradiated mice. We demonstrate a critical role for the ataxia telangiectasia mutated (ATM)/tumor protein p53 (TP53)/p21 pathway in regulating DNA-damage-associated cell fate. Indeed, blocking the ATM/TP53/p21 pathway deregulated DNA damage responses, leading to micronucleus formation in chronically irradiated cells. Together these results provide insights into the mechanisms governing cell-fate determination in response to different rates of DNA damage. PMID:25093836
Camouflage and Misdirection: The Full-On Assault of Ebola Virus Disease
Misasi, John; Sullivan, Nancy J.
2014-01-01
Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and non-human primates. Ebola protein interactions with host cellular proteins disrupt Type I and Type II interferon responses, RNAi anti-viral responses, antigen presentation, T-cell mediated antibody responses, humoral antibodies and cell mediated immunity. This multifaceted approach to evasion and suppression of innate and adaptive immune responses in their target hosts leads to the severe immune dysregulation and “cytokine storm” that is characteristic of fatal ebolavirus infection. Here we highlight some of the processes by which Ebola interacts with its mammalian hosts to evade anti-viral defenses. PMID:25417101
Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C
2000-09-01
The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.
Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans.
Feng, Guoxin; Zhu, Zhiwen; Li, Wen-Jun; Lin, Qirong; Chai, Yongping; Dong, Meng-Qiu; Ou, Guangshuo
2017-02-01
Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2 S139 Live imaging analysis of genome-edited animals indicates that MIG-2 S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility. © 2016 The Authors.
Isolation and Characterization of Poliovirus in Cell Culture Systems.
Thorley, Bruce R; Roberts, Jason A
2016-01-01
The isolation and characterization of enteroviruses by cell culture was accepted as the "gold standard" by clinical virology laboratories. Methods for the direct detection of all enteroviruses by reverse transcription polymerase chain reaction, targeting a conserved region of the genome, have largely supplanted cell culture as the principal diagnostic procedure. However, the World Health Organization's Global Polio Eradication Initiative continues to rely upon cell culture to isolate poliovirus due to the lack of a reliable sensitive genetic test for direct typing of enteroviruses from clinical specimens. Poliovirus is able to infect a wide range of mammalian cell lines, with CD155 identified as the primary human receptor for all three seroytpes, and virus replication leads to an observable cytopathic effect. Inoculation of cell lines with extracts of clinical specimens and subsequent passaging of the cells leads to an increased virus titre. Cultured isolates of poliovirus are suitable for testing by a variety of methods and remain viable for years when stored at low temperature.This chapter describes general procedures for establishing a cell bank and routine passaging of cell lines. While the sections on specimen preparation and virus isolation focus on poliovirus, the protocols are suitable for other enteroviruses.
Cellular dynamics in the muscle satellite cell niche
Bentzinger, C Florian; Wang, Yu Xin; Dumont, Nicolas A; Rudnicki, Michael A
2013-01-01
Satellite cells, the quintessential skeletal muscle stem cells, reside in a specialized local environment whose anatomy changes dynamically during tissue regeneration. The plasticity of this niche is attributable to regulation by the stem cells themselves and to a multitude of functionally diverse cell types. In particular, immune cells, fibrogenic cells, vessel-associated cells and committed and differentiated cells of the myogenic lineage have emerged as important constituents of the satellite cell niche. Here, we discuss the cellular dynamics during muscle regeneration and how disease can lead to perturbation of these mechanisms. To define the role of cellular components in the muscle stem cell niche is imperative for the development of cell-based therapies, as well as to better understand the pathobiology of degenerative conditions of the skeletal musculature. PMID:24232182
Wiedenhoft, Heather; Hayashi, Lauren; Coffin, Allison B.
2017-01-01
Inner ear hair cell death leads to sensorineural hearing loss and can be a direct consequence of aminoglycoside antibiotic treatment. Aminoglycosides such as gentamicin are effective therapy for serious Gram-negative bacterial infections such as some forms of meningitis, pneumonia, and sepsis. Aminoglycosides enter hair cells through mechanotransduction channels at the apical end of hair bundles and initiate intrinsic cell death cascades, but the precise cell signaling that leads to hair cell death is incompletely understood. Here, we examine the cell death pathways involved in aminoglycoside damage using the zebrafish (Danio rerio). The zebrafish lateral line contains hair cell-bearing organs called neuromasts that are homologous to hair cells of the mammalian inner ear and represents an excellent model to study ototoxicity. Based on previous research demonstrating a role for p53, Bcl2 signaling, autophagy, and proteasomal degradation in aminoglycoside-damaged hair cells, we used the Cytoscape GeneMANIA Database to identify additional proteins that might play a role in neomycin or gentamicin ototoxicity. Our bioinformatics analysis identified the pro-survival proteins phosphoinositide-dependent kinase-1 (PDK1) and X-linked inhibitor of apoptosis protein (Xiap) as potential mediators of gentamicin-induced hair cell damage. Pharmacological inhibition of PDK1 or its downstream mediator protein kinase C facilitated gentamicin toxicity, as did Xiap mutation, suggesting that both PI3K and endogenous Xiap confer protection. Surprisingly, aminoglycoside-induced hair cell death was highly attenuated in wild type Tupfel long-fin (TL fish; the background strain for the Xiap mutant line) compared to wild type ∗AB zebrafish. Pharmacologic manipulation of p53 suggested that the strain difference might result from decreased p53 in TL hair cells, allowing for increased hair cell survival. Overall, our studies identified additional steps in the cell death cascade triggered by aminoglycoside damage, suggesting possible drug targets to combat hearing loss resulting from aminoglycoside exposure. PMID:29093665
Fortier, Guillaume Marceau; Gauvin, Robert; Proulx, Maryse; Vallée, Maud; Fradette, Julie
2013-04-01
Mesenchymal cells are central to connective tissue homeostasis and are widely used for tissue-engineering applications. Dermal fibroblasts and adipose-derived stromal cells (ASCs) allow successful tissue reconstruction by the self-assembly approach of tissue engineering. This method leads to the production of multilayered tissues, devoid of exogenous biomaterials, that can be used as stromal compartments for skin or vesical reconstruction. These tissues are formed by combining cell sheets, generated through cell stimulation with ascorbic acid, which favours the cell-derived production/organization of matrix components. Since media motion can impact on cell behaviour, we investigated the effect of dynamic culture on mesenchymal cells during tissue reconstruction, using the self-assembly method. Tissues produced using ASCs in the presence of a wave-like movement were nearly twice thicker than under standard conditions, while no difference was observed for tissues produced from dermal fibroblasts. The increased matrix deposition was not correlated with an increased proliferation of ASCs, or by higher transcript levels of fibronectin or collagens I and III. A 30% increase of type V collagen mRNA was observed. Interestingly, tissues engineered from dermal fibroblasts featured a four-fold higher level of MMP-1 transcripts under dynamic conditions. Mechanical properties were similar for tissues reconstructed using dynamic or static conditions. Finally, cell sheets produced using ASCs under dynamic conditions could readily be manipulated, resulting in a 2 week reduction of the production time (from 5 to 3 weeks). Our results describe a distinctive property of ASCs' response to media motion, indicating that their culture under dynamic conditions leads to optimized tissue engineering. Copyright © 2011 John Wiley & Sons, Ltd.
Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao
2016-01-01
This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.
Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao
2016-01-01
This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight. PMID:27780273
Swaminathan Iyer, K; Gaikwad, R M; Woodworth, C D; Volkov, D O; Sokolov, Igor
2012-06-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p < 0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, premalignant cells.
Iyer, K. Swaminathan; Gaikwad, R. M.; Woodworth, C. D.; Volkov, D. O.
2013-01-01
A significant change of surface features of malignant cervical epithelial cells compared to normal cells has been previously reported. Here, we are studying the question at which progressive stage leading to cervical cancer the surface alteration happens. A non-traditional method to identify malignant cervical epithelial cells in vitro, which is based on physical (in contrast to specific biochemical) labelling of cells with fluorescent silica micron-size beads, is used here to examine cells at progressive stages leading to cervical cancer which include normal epithelial cells, cells infected with human papillomavirus type-16 (HPV-16), cells immortalized by HPV-16, and carcinoma cells. The study shows a statistically significant (at p <0.01) difference between both immortal and cancer cells and a group consisting of normal and infected. There is no significant difference between normal and infected cells. Immortal cells demonstrate the signal which is closer to cancer cells than to either normal or infected cells. This implies that the cell surface, surface cellular brush changes substantially when cells become immortal. Physical labeling of the cell surface represents a substantial departure from the traditional biochemical labeling methods. The results presented show the potential significance of physical properties of the cell surface for development of clinical methods for early detection of cervical cancer, even at the stage of immortalized, pre-malignant cells. PMID:22351422
Isolation, characterization, and differentiation of stem cells for cartilage regeneration.
Beane, Olivia S; Darling, Eric M
2012-10-01
The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.
Transglutaminase induction by various cell death and apoptosis pathways.
Fesus, L; Madi, A; Balajthy, Z; Nemes, Z; Szondy, Z
1996-10-31
Clarification of the molecular details of forms of natural cell death, including apoptosis, has become one of the most challenging issues of contemporary biomedical sciences. One of the effector elements of various cell death pathways is the covalent cross-linking of cellular proteins by transglutaminases. This review will discuss the accumulating data related to the induction and regulation of these enzymes, particularly of tissue type transglutaminase, in the molecular program of cell death. A wide range of signalling pathways can lead to the parallel induction of apoptosis and transglutaminase, providing a handle for better understanding the exact molecular interactions responsible for the mechanism of regulated cell death.
Propagating Cell-Membrane Waves Driven by Curved Activators of Actin Polymerization
Peleg, Barak; Disanza, Andrea; Scita, Giorgio; Gov, Nir
2011-01-01
Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape. PMID:21533032
MyD88-dependent dendritic and epithelial cell crosstalk orchestrates immune responses to allergens.
Thomas, S Y; Whitehead, G S; Takaku, M; Ward, J M; Xu, X; Nakano, K; Lyons-Cohen, M R; Nakano, H; Gowdy, K M; Wade, P A; Cook, D N
2018-05-01
Sensitization to inhaled allergens is dependent on activation of conventional dendritic cells (cDCs) and on the adaptor molecule, MyD88. However, many cell types in the lung express Myd88, and it is unclear how signaling in these different cell types reprograms cDCs and leads to allergic inflammation of the airway. By combining ATAC-seq with RNA profiling, we found that MyD88 signaling in cDCs maintained open chromatin at select loci even at steady state, allowing genes to be rapidly induced during allergic sensitization. A distinct set of genes related to metabolism was indirectly controlled in cDCs through MyD88 signaling in airway epithelial cells (ECs). In mouse models of asthma, Myd88 expression in ECs was critical for eosinophilic inflammation, whereas Myd88 expression in cDCs was required for Th17 cell differentiation and consequent airway neutrophilia. Thus, both cell-intrinsic and cell-extrinsic MyD88 signaling controls gene expression in cDCs and orchestrates immune responses to inhaled allergens.
Recent Progress in CuInS2 Thin-Film Solar Cell Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Jin, M. H.-C.; Banger, K. K.; Kelly, C. V.; Scofield, J. H.; McNatt, J. S.; Dickman, J. E.; Hepp, A. F.
2005-01-01
The National Aeronautics and Space Administration (NASA) is interested in developing low-cost highly efficient solar cells on light-weight flexible substrates, which will ultimately lower the mass-specific power (W/kg) of the cell allowing extra payload for missions in space as well as cost reduction. In addition, thin film cells are anticipated to have greater resistance to radiation damage in space, prolonging their lifetime. The flexibility of the substrate has the added benefit of enabling roll-to-roll processing. The first major thin film solar cell was the "CdS solar cell" - a heterojunction between p-type CuxS and n-type CdS. The research on CdS cells started in the late 1950s and the efficiency in the laboratory was up to about 10 % in the 1980s. Today, three different thin film materials are leading the field. They include amorphous Si, CdTe, and Cu(In,Ga)Se2 (CIGS). The best thin film solar cell efficiency of 19.2 % was recently set by CIGS on glass. Typical module efficiencies, however, remain below 15 %.
Brown, Geoffrey; Hughes, Philip J; Ceredig, Rhodri; Michell, Robert H
2012-01-01
For many years there was a widely accepted picture of how a haematopoietic stem cell (HSC) gives rise to the multiple types of blood and immune cells. This described the general nature of stem and progenitor cells and the pathways of cell development. Recent years have seen many attempts to re-draw the map of haematopoiesis. These have become increasingly complex, and they often envisage multiples routes to some cell types. The 'established' view that self-renewal in haematopoiesis only occurs in HSCs has been challenged by the recognition of self-renewing HSC-derived progenitor cells that display at least some fate restriction. This evolution of how normal haematopoiesis is viewed has inevitable implications for understanding the origins, disease progression and classification of the leukaemias. In essence, some progenitor cells are now seen as possessing a larger repertoire of routes to end-fates than was previously thought. This leads one to ask whether leukaemia stem cells are equally or less versatile than their normal counterparts? Copyright © 2011 Elsevier Ltd. All rights reserved.
Modeling to Optimize Terminal Stem Cell Differentiation
Gallicano, G. Ian
2013-01-01
Embryonic stem cell (ESC), iPCs, and adult stem cells (ASCs) all are among the most promising potential treatments for heart failure, spinal cord injury, neurodegenerative diseases, and diabetes. However, considerable uncertainty in the production of ESC-derived terminally differentiated cell types has limited the efficiency of their development. To address this uncertainty, we and other investigators have begun to employ a comprehensive statistical model of ESC differentiation for determining the role of intracellular pathways (e.g., STAT3) in ESC differentiation and determination of germ layer fate. The approach discussed here applies the Baysian statistical model to cell/developmental biology combining traditional flow cytometry methodology and specific morphological observations with advanced statistical and probabilistic modeling and experimental design. The final result of this study is a unique tool and model that enhances the understanding of how and when specific cell fates are determined during differentiation. This model provides a guideline for increasing the production efficiency of therapeutically viable ESCs/iPSCs/ASC derived neurons or any other cell type and will eventually lead to advances in stem cell therapy. PMID:24278782
Tichy, Elisia D; Sidibe, David K; Tierney, Matthew T; Stec, Michael J; Sharifi-Sanjani, Maryam; Hosalkar, Harish; Mubarak, Scott; Johnson, F Brad; Sacco, Alessandra; Mourkioti, Foteini
2017-10-10
Muscle stem cells (MuSCs) contribute to muscle regeneration following injury. In many muscle disorders, the repeated cycles of damage and repair lead to stem cell dysfunction. While telomere attrition may contribute to aberrant stem cell functions, methods to accurately measure telomere length in stem cells from skeletal muscles have not been demonstrated. Here, we have optimized and validated such a method, named MuQ-FISH, for analyzing telomere length in MuSCs from either mice or humans. Our analysis showed no differences in telomere length between young and aged MuSCs from uninjured wild-type mice, but MuSCs isolated from young dystrophic mice exhibited significantly shortened telomeres. In corroboration, we demonstrated that telomere attrition is present in human dystrophic MuSCs, which underscores its importance in diseased regenerative failure. The robust technique described herein provides analysis at a single-cell resolution and may be utilized for other cell types, especially rare populations of cells. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Distinct prophase arrest mechanisms in human male meiosis.
Jan, Sabrina Z; Jongejan, Aldo; Korver, Cindy M; van Daalen, Saskia K M; van Pelt, Ans M M; Repping, Sjoerd; Hamer, Geert
2018-04-16
To prevent chromosomal aberrations being transmitted to the offspring, strict meiotic checkpoints are in place to remove aberrant spermatocytes. However, in about 1% of males these checkpoints cause complete meiotic arrest leading to azoospermia and subsequent infertility. Here, we unravel two clearly distinct meiotic arrest mechanisms that occur during prophase of human male meiosis. Type I arrested spermatocytes display severe asynapsis of the homologous chromosomes, disturbed XY-body formation and increased expression of the Y chromosome-encoded gene ZFY and seem to activate a DNA damage pathway leading to induction of p63, possibly causing spermatocyte apoptosis. Type II arrested spermatocytes display normal chromosome synapsis, normal XY-body morphology and meiotic crossover formation but have a lowered expression of several cell cycle regulating genes and fail to silence the X chromosome-encoded gene ZFX Discovery and understanding of these meiotic arrest mechanisms increases our knowledge of how genomic stability is guarded during human germ cell development. © 2018. Published by The Company of Biologists Ltd.
Trials in the prevention of type 1 diabetes: current and future.
Wherrett, Diane K
2014-08-01
A major thrust in type 1 diabetes research is stopping the destruction of beta cells that leads to type 1 diabetes. Research over the past 30 years has defined genetic factors and evidence of autoimmunity that have led to the development of robust prediction models in those at high risk for type 1 diabetes. The ability to identify those at risk and the development of new agents and of collaborative research networks has led to multiple trials aimed at preventing beta cell loss. Trials at all stages of beta cell loss have been conducted: primary prevention (prior to the development of autoimmunity); secondary prevention (after autoantibodies are found) and tertiary prevention (intervening after diagnosis to maintain remaining beta cells). Studies have shown mixed results; evidence of maintained insulin secretion after the time of diagnosis has been described in a number of studies, and primary and secondary prevention is proving to be elusive. Much has been learned from the increasing number of studies in the field in terms of network creation, study design and choice of intervention that will facilitate new avenues of investigation. Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.
TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth
Haricharan, Svasti; Brown, Powel
2015-01-01
Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30–50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types. PMID:26063617
TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.
Haricharan, Svasti; Brown, Powel
2015-06-23
Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.
Long-term ultrastructural indices of lead intoxication in pulmonary tissue of the rat.
Kaczyńska, Katarzyna; Walski, Michał; Szereda-Przestaszewska, Małgorzata
2013-12-01
In the present research long-term pulmonary toxicity of lead was investigated in rats treated by intraperitoneal administration of lead acetate for three consecutive days (25 mg/kg per day). Five weeks after treatment average lead content in the whole blood was 0.41 μg/dL ± 0.05, in the lung homogenates it measured 3.35 μg/g ± 0.54, as compared to the control values of 0.13 ± 0.07 μg/dL and 1.03 μg/g ± 0.59, respectively. X-ray microanalysis of lung specimens displayed lead localized mainly within type II pneumocytes and macrophages. At the ultrastructural level the effects of lead toxicity were found in lung capillaries, interstitium, epithelial cells, and alveolar lining. Alveolar septa showed intense fibrosis, consisting of collagen, elastin, and fibroblasts. Thinned alveolar septa had emphysematous tissue with some revealing signs of angiogenesis. Type II pneumocytes contained lamellar bodies with features of laminar destruction. Fragments of the surfactant layer were often detached from the alveolar epithelium. These findings indicate that 5 weeks after exposure, lead provokes reconstruction of the alveolar septa including fibrosis and emphysematous changes in the lung tissue.
Hole-Transport Materials for Perovskite Solar Cells.
Calió, Laura; Kazim, Samrana; Grätzel, Michael; Ahmad, Shahzada
2016-11-14
The pressure to move towards renewable energy has inspired researchers to look for ideas in photovoltaics that may lead to a major breakthrough. Recently the use of perovskites as a light harvester has lead to stunning progress. The power conversion efficiency of perovskite solar cells is now approaching parity (>22 %) with that of the established technology which took decades to reach this level of performance. The use of a hole transport material (HTM) remains indispensable in perovskite solar cells. Perovskites can conduct holes, but they are present at low levels, and for efficient charge extraction a HTM layer is a prerequisite. Herein we provide an overview of the diverse types of HTM available, from organic to inorganic, in the hope of encouraging further research and the optimization of these materials. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dorn, Isabel; Klich, Katharina; Arauzo-Bravo, Marcos J; Radstaak, Martina; Santourlidis, Simeon; Ghanjati, Foued; Radke, Teja F; Psathaki, Olympia E; Hargus, Gunnar; Kramer, Jan; Einhaus, Martin; Kim, Jeong Beom; Kögler, Gesine; Wernet, Peter; Schöler, Hans R; Schlenke, Peter; Zaehres, Holm
2015-01-01
Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34(+) hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex vivo expansion of induced pluripotent stem cells into erythroid cells, we compared induced pluripotent stem cells from human neural stem cells and human cord blood-derived CD34(+) hematopoietic stem cells and evaluated their potential for differentiation into hematopoietic progenitor and mature red blood cells. Although genome-wide DNA methylation profiling at all promoter regions demonstrates that the epigenetic memory of induced pluripotent stem cells is influenced by the somatic cell type of origin of the stem cells, we found a similar hematopoietic induction potential and erythroid differentiation pattern of induced pluripotent stem cells of different somatic cell origin. All human induced pluripotent stem cell lines showed terminal maturation into normoblasts and enucleated reticulocytes, producing predominantly fetal hemoglobin. Differences were only observed in the growth rate of erythroid cells, which was slightly higher in the induced pluripotent stem cells derived from CD34(+) hematopoietic stem cells. More detailed methylation analysis of the hematopoietic and erythroid promoters identified similar CpG methylation levels in the induced pluripotent stem cell lines derived from CD34(+) cells and those derived from neural stem cells, which confirms their comparable erythroid differentiation potential. Copyright© Ferrata Storti Foundation.
McKelvey, Shauna M; Horgan, Karina A; Murphy, Richard A
2015-01-01
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified. Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents. Copyright © 2014 Elsevier GmbH. All rights reserved.
Impairment of astrocytic glutaminolysis in glutaric aciduria type I.
Komatsuzaki, Shoko; Ediga, Raga Deepthi; Okun, Jürgen G; Kölker, Stefan; Sauer, Sven W
2018-01-01
Glutaric aciduria type I is a rare, autosomal recessive, inherited defect of glutaryl-CoA dehydrogenase. Deficiency of this protein in L-lysine degradation leads to the characteristic accumulation of nontoxic glutarylcarnitine and neurotoxic glutaric acid (GA), glutaryl-CoA, and 3-hydroxyglutaric acid. Untreated patients develop bilateral lesions of basal ganglia resulting in a complex movement disorder with predominant dystonia in infancy and early childhood. The current pathomechanistic concept strongly focuses on imbalanced neuronal energy metabolism due to accumulating metabolites, whereas little is known about the pathomechanistic role of astrocytes, which are thought to be in constant metabolic crosstalk with neurons. We found that glutaric acid (GA) causes astrocytic cell death under starvation cell culture conditions, i.e. low glucose, without glutamine and fetal calf serum. Glutamine completely abolished GA-induced toxicity, suggesting involvement of glutaminolysis. Increasing dependence on glutaminolysis by chemical induction of hypoxia signaling-potentiated GA-induced toxicity. We further show that GA disturbs glutamine degradation by specifically inhibiting glutamate dehydrogenase. Summarizing our study shows that pathologically relevant concentrations of GA block an important step in the metabolic crosstalk between neurons and astrocytes, ultimately leading to astrocytic cell death.
Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; ...
2015-07-09
Grain boundaries (GBs) as defects in the crystal lattice detrimentally impact the power conversion efficiency (PCE) of polycrystalline solar cells, particularly in recently emerging hybrid perovskites where non-radiative recombination processes lead to significant carrier losses. Here, the beneficial effects of activated vertical GBs are demonstrated by first growing large, vertically-oriented methylammonium lead tri-iodide (CH 3NH 3PbI 3) single-crystalline grains. We show that infiltration of p-type doped 2 -7,7 -tetrakis(N,Ndi-p-methoxyphenylamine)-9,9-spirobifluorene (Spiro-OMeTAD) into CH 3NH 3PbI 3 films along the GBs creates space charge regions to suppress non-radiative recombination and enhance carrier collection efficiency. Solar cells with such activated GBs yielded averagemore » PCE of 16.3 ± 0.9%, which are among the best solution-processed perovskite devices. As an important alternative to growing ideal CH 3NH 3PbI 3 single crystal films, which is difficult to achieve for such fast-crystallizing perovskites, activating GBs paves a way to design a new type of bulk heterojunction hybrid perovskite photovoltaics toward theoretical maximum PCE.« less
Scleroderma Related Lung Disease: Is There a Pathogenic Role for Adipokines?
Haley, Shannon; Shah, Dilip; Romero, Freddy; Summer, Ross
2013-01-01
Scleroderma is a systemic autoimmune disease of unknown etiology whose hallmark features include endothelial cell dysfunction, fibroblast proliferation and immune dysregulation. Although virtually any organ can be pathologically involved in scleroderma, lung complications including interstitial lung disease (ILD) and pulmonary arterial hypertension (PAH) are the leading cause of death in patients with this condition. Currently, the molecular mechanisms leading to development of scleroderma-related lung disease are poorly understood; however, the systemic nature of this condition has led many to implicate circulating factors in the pathogenesis of some of its organ impairment. In this article, we focus on a new class of circulating factors derived from adipose-tissue called adipokines, which are known to be altered in scleroderma. Recently, the adipokines adiponectin and leptin have been found to regulate biological activities in endothelial, fibroblast and immune cell types in lung and in many other tissues. The pleiotropic nature of these circulating factors and their functional activity on many cell types implicated in the pathogenesis of ILD and PAH suggest these hormones may play a mechanistic role in the onset and/or progression of scleroderma-related lung diseases. PMID:24173692
Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián
2015-01-01
Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735
Charif, N; Li, Y Y; Targa, L; Zhang, L; Ye, J S; Li, Y P; Stoltz, J F; Han, H Z; de Isla, N
2017-01-01
With their proliferation, differentiation into specific cell types, and secretion properties, mesenchymal stromal/stem cells (MSC) are very interesting tools to be used in regenerative medicine. Bone marrow (BM) was the first MSC source characterized. In the frame of autologous MSC therapy, it is important to detect donor's parameters affecting MSC potency. Age of the donors appears as one parameter that could greatly affect MSC properties. Moreover, in vitro cell expansion is needed to obtain the number of cells necessary for clinical developments. It will lead to in vitro cell aging that could modify cell properties. This review recapitulates several studies evaluating the effect of in vitro and in vivo MSC aging on cell properties.
Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs
Zanoni, Ivan; Granucci, Francesca; Broggi, Achille
2017-01-01
Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though they share little protein homology with type I IFN, both exhibit remarkable functional similarities: each can be induced in response to viral infections, and both lead to Janus kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. However, despite the similarities in their effector functions with type I IFNs, IFN-λ also has a non-redundant role in protecting barrier organs: epithelial cells preferentially produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral replication in epithelial cells and constitutes an added layer of protection at mucosal sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby configures itself less as a cytokine that is only specific to the epithelium, and more as a cytokine that directly controls the inflammatory response at mucosal sites. Here, we critically review the recent literature on immune modulatory roles for IFN-λ, and distinguish between the direct and indirect effects of this IFN on immune cell functions in different inflammatory settings. PMID:29234323
Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs.
Zanoni, Ivan; Granucci, Francesca; Broggi, Achille
2017-01-01
Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though they share little protein homology with type I IFN, both exhibit remarkable functional similarities: each can be induced in response to viral infections, and both lead to Janus kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. However, despite the similarities in their effector functions with type I IFNs, IFN-λ also has a non-redundant role in protecting barrier organs: epithelial cells preferentially produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral replication in epithelial cells and constitutes an added layer of protection at mucosal sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby configures itself less as a cytokine that is only specific to the epithelium, and more as a cytokine that directly controls the inflammatory response at mucosal sites. Here, we critically review the recent literature on immune modulatory roles for IFN-λ, and distinguish between the direct and indirect effects of this IFN on immune cell functions in different inflammatory settings.
Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.
2011-01-01
Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175
Electrical parameter changes in silicon solar cells induced by thermal donor formation
NASA Astrophysics Data System (ADS)
Ruiz, J. M.; Cid, M.
Statistical results of 450 C annealing experiments of variable duration, performed on n(+)pp(+), 10-ohm-cm Czochralski silicon (Cz silicon), bifacial solar cells are presented. The specific temperature used is known to favor the nucleation of interstitial oxygen, creating the thermal donors, with important effects on the electrical properties of Cz silicon. Two distinct behaviors are observed with solar cells. The annealing during moderate time (below 4-5 h) leads, on the average, to an improvement of the photovoltaic performances. Longer heat treatments (mainly above 8 h) induce an effective inversion of the base polarity (from p type to n type), with the net result of partially losing the precedent benefits. Both phenomena have been found to be permanent, provided further processes at higher temperatures are avoided.
Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cockley, K.D.
1988-01-01
The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2)more » replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of ({sup 3}H)-labeled HSV-1-superinfected cells.« less
van den Wollenberg, D J M; van den Hengel, S K; Dautzenberg, I J C; Cramer, S J; Kranenburg, O; Hoeben, R C
2008-12-01
Human Orthoreovirus Type 3 Dearing is not pathogenic to humans and has been evaluated clinically as an oncolytic agent. Its transduction efficiency and the tumor cell selectivity may be enhanced by incorporating ligands for alternative receptors. However, the genetic modification of reoviruses has been difficult, and genetic targeting of reoviruses has not been reported so far. Here we describe a technique for generating genetically targeted reoviruses. The propagation of wild-type reoviruses on cells expressing a modified sigma 1-encoding segment embedded in a conventional RNA polymerase II transcript leads to substitution of the wild-type genome segment by the modified version. This technique was used for generating reoviruses that are genetically targeted to an artificial receptor expressed on U118MG cells. These cells lack the junction adhesion molecule-1 and therefore resist infection by wild-type reoviruses. The targeted reoviruses were engineered to carry the ligand for this receptor at the C terminus of the sigma 1 spike protein. This demonstrates that the C terminus of the sigma 1 protein is a suitable locale for the insertion of oligopeptide ligands and that targeting of reoviruses is feasible. The genetically targeted viruses can be propagated using the modified U118MG cells as helper cells. This technique may be applicable for the improvement of human reoviruses as oncolytic agents.
Cancer cachexia: understanding the molecular basis.
Argilés, Josep M; Busquets, Sílvia; Stemmler, Britta; López-Soriano, Francisco J
2014-11-01
Cancer cachexia is a devastating, multifactorial and often irreversible syndrome that affects around 50-80% of cancer patients, depending on the tumour type, and that leads to substantial weight loss, primarily from loss of skeletal muscle and body fat. Since cachexia may account for up to 20% of cancer deaths, understanding the underlying molecular mechanisms is essential. The occurrence of cachexia in cancer patients is dependent on the patient response to tumour progression, including the activation of the inflammatory response and energetic inefficiency involving the mitochondria. Interestingly, crosstalk between different cell types ultimately seems to result in muscle wasting. Some of the recent progress in understanding the molecular mechanisms of cachexia may lead to new therapeutic approaches.
[Clinicopathological study of diffuse carcinoma of stomach (author's transl)].
Shimoda, T
1978-11-01
The biological behavior of ulcer type gastric carcinoma was studied on 114 cases of diffuse carcinoma (Borrmann's 4 type) and 262 cases of early like advanced carcinoma (including superficial spreading type). In both types of gastric carcinoma, the age distribution, location, ulcer with cancer focus and prognosis differed greatly. The early like carcinoma was speculated to have advanced maintaining the groos findings of early gastric carcinoma, and its location and associated ulcer were the same as the early ulcer type of carcinoma. The prognosis of this type of carcinoma was good, showing a figure of 70% in 3 year survival rate. On the other hand, diffuse carcinoma demonstrated diffuse extensive infiltration of tumor cells along the gastric wall, resulting in poor prognosis with a 3 year survival rate of almost 0%. Histologically, diffuse type of carcinoma showed lymphatic infiltration of tumor cells, and this is probably the main reason for the diffuse infiltration in this type of carcinoma. Diffuse carcinoma is, therefore, considered to be one special type of carcinoma having different biological behavior compared with the other ulcer type of carcinoma, and diffuse carcinoma is not the terminal stage of early like advanced carcinoma. There are three stages in diffuse carcinoma: 1. Infiltrative stage: wide spread infiltration of cancer cells through lymphatic channels (lymphangiosis carcinomatosa) 2. Edematous stage: soluble collagen appearing in gastric wall 3. Sclerosing stage: soluble collagen changing into insoluble collagen leading to marked thickening and stiffness of the gastric wall. This is the end stage of gastric diffuse carcinoma. It is difficult to explain that the marked fibrosis of gastric wall is a result to stromal reaction from tumor cell infiltration, since extensive fibrosis is found in areas without tumor cells and stiffness of the gastric wall occurs in a too short period of time. The production of abundunt soluble collagen is probably related to cancer cells.
Identification of senescence-associated genes in human bone marrow mesenchymal stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Eunsook; Hong, Su; Kang, Jaeku
2008-07-04
Human bone marrow mesenchymal stem cells (hBMMSCs) are multipotent stem cells that can differentiate into several specialized cell types, including bone, cartilage, and fat cells. The proliferative capacity of hBMMSCs paves the way for the development of regenerative medicine and tissue engineering. However, long-term in vitro culture of hBMMSCs leads to a reduced life span of the cells due to senescence, which leads eventually to growth arrest. To investigate the molecular mechanism behind the cellular senescence of hBMMSCs, microarray analysis was used to compare the expression profiles of early passage hBMMSCs, late passage hBMMSCs and hBMMSCs ectopically expressing human telomerasemore » reverse transcriptase (hTERT). Using an intersection analysis of 3892 differentially expressed genes (DEGs) out of 27,171 total genes analyzed, we identified 338 senescence-related DEGs. GO term categorization and pathway network analysis revealed that the identified genes are strongly related to known senescence pathways and mechanisms. The genes identified using this approach will facilitate future studies of the mechanisms underlying the cellular senescence of hBMMSCs.« less
Emanuele, Anthony A.; Adams, Nancy E.; Chen, Yi-Chen; Maurelli, Anthony T.; Garcia, George A.
2014-01-01
VirF is an AraC-type transcriptional regulator responsible for activating the transcription of virulence genes required for the intracellular invasion and cell-to-cell spread of Shigella flexneri. Gene disruption studies have validated VirF as a potential target for an anti-virulence therapy to treat shigellosis by determining that VirF is necessary for virulence, but not required for bacterial viability. Using a bacteria-based, β-galactosidase reporter assay we completed a high-throughput screening (HTS) campaign monitoring VirF activity in the presence of over 140,000 small molecules. From our screening campaign we identified five lead compounds to pursue in tissue-culture-based invasion and cell-to-cell spread assays and toxicity screens. Our observations of activity in these models for infection have validated our approach of targeting virulence regulation and have allowed us to identify a promising chemical scaffold from our HTS for hit-to-lead development. Interestingly, differential effects on invasion versus cell-to-cell spread suggest that the compounds’ efficacies may depend, in part, on the specific promoter that VirF is recognizing. PMID:24549153
Alternatively activated macrophages in helminth infections
Kreider, Timothy; Anthony, Robert M.; Urban, Joseph F.; Gause, William C.
2007-01-01
Summary Helminthic parasites can trigger highly polarized immune responses typically associated with increased numbers of CD4+ Th2 cells, eosinophils, mast cells, and basophils. These cell populations are thought to coordinate an effective response ultimately leading to parasite expulsion, but they also play a role in the regulation of associated pathologic inflammation. Recent studies suggest that macrophages, conventionally associated with IFNγ-dominant Th1-type responses to many bacteria and viruses, also play an essential role in the Th2-type inflammatory response. These macrophages are referred to as alternatively activated macrophages (AAMΦs) as they express a characteristic pattern of cell surface and secreted molecules distinct from that of classically activated macrophages (CAMΦs) associated with microbe infections. In this review, we will discuss recent findings regarding the role of AAMΦs in the development of disease and host protection following helminth infection. PMID:17702561
Weir, E K; Obreztchikova, M; Vargese, A; Cabrera, J A; Peterson, D A; Hong, Z
2008-01-01
Specialized tissues that sense acute changes in the local oxygen tension include type 1 cells of the carotid body, neuroepithelial bodies in the lungs, and smooth muscle cells of the resistance pulmonary arteries and the ductus arteriosus (DA). Hypoxia inhibits outward potassium current in carotid body type 1 cells, leading to depolarization and calcium entry through L-type calcium channels. Increased intracellular calcium concentration ([Ca++]i) leads to exocytosis of neurotransmitters, thus stimulating the carotid sinus nerve and respiration. The same K+ channel inhibition occurs with hypoxia in pulmonary artery smooth muscle cells (PASMCs), causing contraction and providing part of the mechanism of hypoxic pulmonary vasoconstriction (HPV). In the SMCs of the DA, the mechanism works in reverse. It is the shift from hypoxia to normoxia that inhibits K+ channels and causes normoxic ductal contraction. In both PA and DA, the contraction is augmented by release of Ca++ from the sarcoplasmic reticulum, entry of Ca++ through store-operated channels (SOC) and by Ca++ sensitization. The same three ‘executive' mechanisms are partly responsible for idiopathic pulmonary arterial hypertension (IPAH). While vasoconstrictor mediators constrict both PA and DA and vasodilators dilate both vessels, only redox changes mimic oxygen by having directly opposite effects on the K+ channels, membrane potential, [Ca++]i and tone in the PA and DA. There are several different hypotheses as to how redox might alter tone, which remain to be resolved. However, understanding the mechanism will facilitate drug development for pulmonary hypertension and patent DA. PMID:18641675
Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad
2014-11-01
Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Anion channels: master switches of stress responses.
Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar
2012-04-01
During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pathway to a Phenocopy: Heat Stress Effects in Early Embryogenesis
Crews, Sarah M.; McCleery, W. Tyler; Hutson, M. Shane
2015-01-01
Background Heat shocks applied at the onset of gastrulation in early Drosophila embryos frequently lead to phenocopies of U-shaped mutants – having characteristic failures in the late morphogenetic processes of germband retraction and dorsal closure. The pathway from non-specific heat stress to phenocopied abnormalities is unknown. Results Drosophila embryos subjected to 30-min, 38-°C heat shocks at gastrulation appear to recover and restart morphogenesis. Post-heat-shock development appears normal, albeit slower, until a large fraction of embryos develop amnioserosa holes (diameters > 100 μm). These holes are positively correlated with terminal U-shaped phenocopies. They initiate between amnioserosa cells and open over tens of minutes by evading normal wound healing responses. They are not caused by tissue-wide increases in mechanical stress or decreases in cell-cell adhesion, but instead appear to initiate from isolated apoptosis of amnioserosa cells. Conclusions The pathway from heat shock to U-shaped phenocopies involves the opening of one or more large holes in the amnioserosa that compromise its structural integrity and lead to failures in morphogenetic processes that rely on amnioserosa-generated tensile forces. The proposed mechanism by which heat shock leads to hole initiation and expansion is heterochonicity – i.e., disruption of morphogenetic coordination between embryonic and extra-embryonic cell types. PMID:26498920
Microfluidic Device for Studying Tumor Cell Extravasation in Cancer Metastasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Henry K; Thundat, Thomas George; Evans III, Boyd Mccutchen
Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer s progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body.more » Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.« less
An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival
Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri
2011-01-01
Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827
Concentration profiles of actin-binding molecules in lamellipodia
NASA Astrophysics Data System (ADS)
Falcke, Martin
2016-04-01
Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.
Sanchez, Erica L.; Carroll, Patrick A.; Thalhofer, Angel B.; Lagunoff, Michael
2015-01-01
Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells. Here we demonstrate that latent KSHV infection leads to increased levels of intracellular glutamine and enhanced glutamine uptake. Depletion of glutamine from the culture media leads to a significant increase in apoptotic cell death in latently infected endothelial cells, but not in their mock-infected counterparts. In cancer cells, glutamine is often required for glutaminolysis to provide intermediates for the tri-carboxylic acid (TCA) cycle and support for the production of biosynthetic and bioenergetic precursors. In the absence of glutamine, the TCA cycle intermediates alpha-ketoglutarate (αKG) and pyruvate prevent the death of latently infected cells. Targeted drug inhibition of glutaminolysis also induces increased cell death in latently infected cells. KSHV infection of endothelial cells induces protein expression of the glutamine transporter, SLC1A5. Chemical inhibition of SLC1A5, or knockdown by siRNA, leads to similar cell death rates as glutamine deprivation and, similarly, can be rescued by αKG. KSHV also induces expression of the heterodimeric transcription factors c-Myc-Max and related heterodimer MondoA-Mlx. Knockdown of MondoA inhibits expression of both Mlx and SLC1A5 and induces a significant increase in cell death of only cells latently infected with KSHV, again, fully rescued by the supplementation of αKG. Therefore, during latent infection of endothelial cells, KSHV activates and requires the Myc/MondoA-network to upregulate the glutamine transporter, SLC1A5, leading to increased glutamine uptake for glutaminolysis. These findings expand our understanding of the required metabolic pathways that are activated during latent KSHV infection of endothelial cells, and demonstrate a novel role for the extended Myc-regulatory network, specifically MondoA, during latent KSHV infection. PMID:26197457
Diagnostic examination of thermally abused high-power lithium-ion cells
NASA Astrophysics Data System (ADS)
Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H.
The inherent thermal instability of lithium-ion cells is a significant impediment to their widespread commercialization for hybrid-electric vehicle applications. Cells containing conventional organic electrolyte-based chemistries are prone to thermal runaway at temperatures around 180 °C. We conducted accelerating rate calorimetry measurements on high-power 18650-type lithium-ion cells in an effort to decipher the sequence of events leading to thermal runaway. In addition, electrode and separator samples harvested from a cell that was heated to 150 °C then air-quenched to room temperature were examined by microscopy, spectroscopy, and diffraction techniques. Self-heating of the cell began at 84 °C. The gases generated in the cell included CO 2 and CO, and smaller quantities of H 2, C 2H 4, CH 4, and C 2H 6. The main changes on cell heating to 150 °C were observed on the anode surface, which was covered by a thick layer of surface deposits that included LiF and inorganic and organo-phosphate compounds. The sources of gas generation and the mechanisms leading to the formation of compounds observed on the electrode surfaces are discussed.
Increasing role of the cancer chemotherapeutic doxorubicin in cellular metabolism.
Meredith, Ann-Marie; Dass, Crispin R
2016-06-01
The use of doxorubicin, a drug utilised for many years to treat a wide variety of cancers, has long been limited due to the significant toxicity that can occur not only during, but also years after treatment. It has multiple mechanisms of action including the intercalation of DNA, inhibition of topoisomerase II and the production of free radicals. We review the literature, with the aim of highlighting the role of drug concentration being an important determinant on the unfolding cell biological events that lead to cell stasis or death. The PubMed database was consulted to compile this review. It has been found that the various mechanisms of action at the disposal of doxorubicin culminate in either cell death or cell growth arrest through various cell biological events, such as apoptosis, autophagy, senescence and necrosis. Which of these events is the eventual cause of cell death or growth arrest appears to vary depending on factors such as the patient, cell and cancer type, doxorubicin concentration and the duration of treatment. Further understanding of doxorubicin's influence on cell biological events could lead to an improvement in the drug's efficacy and reduce toxicity. © 2016 Royal Pharmaceutical Society.
Carvalho, Diego Soares; de Almeida, Alexandre Aparecido; Borges, Aurélio Ferreira; Campos, Vannucci
2018-07-05
Diabetes mellitus (DM) is among the top ten causes of death worldwide. It is considered to be one of the major global epidemics of the 21st century, with a significant impact on public health budgets. DM is a metabolic disorder with multiple etiologies. Its pathophysiology is marked by dysfunction of pancreatic β-cells which compromises the synthesis and secretion of insulin along with resistance to insulin action in peripheral tissues (muscle and adipose). Subjects presenting insulin resistance in DM type 2 often also exhibit increased insulin secretion and hyperinsulinemia. Insulin secretion is controlled by several factors such as nutrients, hormones, and neural factors. Exocytosis of insulin granules has, as its main stimulus, increased intracellular calcium ([Ca +2 ]i) and it is further amplified by cyclic AMP (cAMP). In the event of this hyperfunction, it is very common for β-cells to go into exhaustion leading to failure or death. Several animal studies have demonstrated pleiotropic effects of L-type Ca 2+ channel blockers (CCBs). In animal models of obesity and diabetes, treatment with CCBs promoted restoration of insulin secretion, glycemic control, and reduction of pancreatic β-cell apoptosis. In addition, hypertensive individuals treated with CCBs presented a lower incidence of DM when compared with other antihypertensive agents. In this review, we propose that pharmacological manipulation of the Ca 2+ /cAMP interaction system could lead to important targets for pharmacological improvement of insulin secretion in DM type 2. Copyright © 2018 Elsevier B.V. All rights reserved.
Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor.
Youngstrom, Daniel W; LaDow, Jade E; Barrett, Jennifer G
2016-11-01
Tendons are frequently damaged and fail to regenerate, leading to pain, loss of function, and reduced quality of life. Mesenchymal stem cells (MSCs) possess clinically useful tissue-regenerative properties and have been exploited for use in tendon tissue engineering and cell therapy. However, MSCs exhibit phenotypic heterogeneity based on the donor tissue used, and the efficacy of cell-based treatment modalities may be improved by optimizing cell source based on relative differentiation capacity. Equine MSCs were isolated from bone marrow (BM), adipose (AD), and tendon (TN), expanded in monolayer prior to seeding on decellularized tendon scaffolds (DTS), and cell-laden constructs were placed in a bioreactor designed to mimic the biophysical environment of the tendon. It was hypothesized that TN MSCs would differentiate toward a tendon cell phenotype better than BM and AD MSCs in response to a conditioning period involving cyclic mechanical stimulation for 1 hour per day at 3% strain and 0.33 Hz. All cell types integrated into DTS adopted an elongated morphology similar to tenocytes, expressed tendon marker genes, and improved tissue mechanical properties after 11 days. TN MSCs expressed the greatest levels of scleraxis, collagen type-I, and cartilage oligomeric matrix protein. Major histocompatibility class-II protein mRNA expression was not detected in any of the MSC types, suggesting low immunogenicity for allogeneic transplantation. The results suggest that TN MSCs are the ideal cell type for regenerative medicine therapies for tendinopathies, exhibiting the most mature tendon-like phenotype in vitro. When TN MSCs are unavailable, BM or AD MSCs may serve as robust alternatives.
Wang, Bi-Dar; Kuo, Tsong-Teh
2001-01-01
Some foreign proteins are produced in yeast in a cell cycle-dependent manner, but the cause of the cell cycle dependency is unknown. In this study, we found that Saccharomyces cerevisiae cells secreting high levels of mouse α-amylase have elongated buds and are delayed in cell cycle completion in mitosis. The delayed cell mitosis suggests that critical events during exit from mitosis might be disturbed. We found that the activities of PP2A (protein phosphatase 2A) and MPF (maturation-promoting factor) were reduced in α-amylase-oversecreting cells and that these cells showed a reduced level of assembly checkpoint protein Cdc55, compared to the accumulation in wild-type cells. MPF inactivation is due to inhibitory phosphorylation on Cdc28, as a cdc28 mutant which lacks an inhibitory phosphorylation site on Cdc28 prevents MPF inactivation and prevents the defective bud morphology induced by overproduction of α-amylase. Our data also suggest that high levels of α-amylase may downregulate PPH22, leading to cell lysis. In conclusion, overproduction of heterologous α-amylase in S. cerevisiae results in a negative regulation of PP2A, which causes mitotic delay and leads to cell lysis. PMID:11472949
Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites.
Xiao, Zewen; Meng, Weiwei; Wang, Jianbo; Yan, Yanfa
2016-09-22
Bismuth- or antimony-based lead-free double perovskites represented by Cs 2 AgBiBr 6 have recently been considered promising alternatives to the emerging lead-based perovskites for solar cell applications. These new perovskites belong to the Fm3‾ m space group and consist of two types of octahedra alternating in a rock-salt face-centered cubic structure. We show, by density functional theory calculations, that the stable chemical potential region for pure Cs 2 AgBiBr 6 is narrow. Ag vacancies are a shallow accepters and can easily form, leading to intrinsic p-type conductivity. Bi vacancies and Ag Bi antisites are deep acceptors and should be the dominant defects under the Br-rich growth conditions. Our results suggest that the growth of Cs 2 AgBiBr 6 under Br-poor/Bi-rich conditions is preferred for suppressing the formation of the deep defects, which is beneficial for maximizing the photovoltaic performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Waite, Eleanor; Lafont, Chrystel; Carmignac, Danielle; Chauvet, Norbert; Coutry, Nathalie; Christian, Helen; Robinson, Iain; Mollard, Patrice; Le Tissier, Paul
2010-01-01
We have generated transgenic mice with somatotroph-specific expression of a modified influenza virus ion channel, (H37A)M2, leading to ablation of GH cells with three levels of severity, dependent on transgene copy number. GH-M2(low) mice grow normally and have normal-size pituitaries but 40-50% reduction in pituitary GH content in adult animals. GH-M2(med) mice have male-specific transient growth retardation and a reduction in pituitary GH content by 75% at 42 d and 97% by 100 d. GH-M2(high) mice are severely dwarfed with undetectable pituitary GH. The GH secretory response of GH-M2(low) and GH-M2(med) mice to GH-releasing peptide-6 and GHRH was markedly attenuated. The content of other pituitary hormones was affected depending on transgene copy number: no effect in GH-M2(low) mice, prolactin and TSH reduced in GH-M2(med) mice, and all hormones reduced in GH-M2(high) mice. The effect on non-GH hormone content was associated with increased macrophage invasion of the pituitary. Somatotroph ablation affected GH cell network organization with limited disruption in GH-M2(low) mice but more severe disruption in GH-M2(med) mice. The remaining somatotrophs formed tight clusters after puberty, which contrasts with GHRH-M2 mice with a secondary reduction in somatotrophs that do not form clusters. A reduction in pituitary beta-catenin staining was correlated with GH-M2 transgene copy number, suggesting M2 expression has an effect on cell-cell communication in somatotrophs and other pituitary cell types. GH-M2 transgenic mice demonstrate that differing degrees of somatotroph ablation lead to correlated secondary effects on cell populations and cellular network organization.
Denker, Hans-Werner
2016-01-01
“Organoids”, i.e., complex structures that can develop when pluripotent or multipotent stem cells are maintained in three-dimensional cultures, have become a new area of interest in stem cell research. Hopes have grown that when focussing experimentally on the mechanisms behind this type of in vitro morphogenesis, research aiming at tissue and organ replacements can be boosted. Processes leading to the formation of organoids in vitro are now often addressed as self-organization, a term referring to the formation of complex tissue architecture in groups of cells without depending on specific instruction provided by other cells or tissues. The present article focuses on recent reports using the term self-organization in the context of studies on embryogenesis, specifically addressing pattern formation processes in human blastocysts attaching in vitro, or in colonies of pluripotent stem cells (“gastruloids”). These morphogenetic processes are of particular interest because, during development in vivo, they lead to basic body plan formation and individuation. Since improved methodologies like those employed by the cited authors became available, early embryonic pattern formation/self-organization appears to evolve now as a research topic of its own. This review discusses concepts concerning the involved mechanisms, focussing on autonomy of basic body plan development vs. dependence on external signals, as possibly provided by implantation in the uterus, and it addresses biological differences between an early mammalian embryo, e.g., a morula, and a cluster of pluripotent stem cells. It is concluded that, apart from being of considerable biological interest, the described type of research needs to be contemplated carefully with regard to ethical implications when performed with human cells. PMID:27792143
Denker, Hans-Werner
2016-10-25
" Organoids ", i.e., complex structures that can develop when pluripotent or multipotent stem cells are maintained in three-dimensional cultures, have become a new area of interest in stem cell research. Hopes have grown that when focussing experimentally on the mechanisms behind this type of in vitro morphogenesis, research aiming at tissue and organ replacements can be boosted. Processes leading to the formation of organoids in vitro are now often addressed as self-organization , a term referring to the formation of complex tissue architecture in groups of cells without depending on specific instruction provided by other cells or tissues. The present article focuses on recent reports using the term self-organization in the context of studies on embryogenesis , specifically addressing pattern formation processes in human blastocysts attaching in vitro, or in colonies of pluripotent stem cells (" gastruloids "). These morphogenetic processes are of particular interest because, during development in vivo, they lead to basic body plan formation and individuation. Since improved methodologies like those employed by the cited authors became available, early embryonic pattern formation/self-organization appears to evolve now as a research topic of its own. This review discusses concepts concerning the involved mechanisms, focussing on autonomy of basic body plan development vs. dependence on external signals, as possibly provided by implantation in the uterus, and it addresses biological differences between an early mammalian embryo, e.g., a morula, and a cluster of pluripotent stem cells. It is concluded that, apart from being of considerable biological interest, the described type of research needs to be contemplated carefully with regard to ethical implications when performed with human cells.
Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei
2014-08-25
Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.
Fundamentals of pulmonary drug delivery.
Groneberg, D A; Witt, C; Wagner, U; Chung, K F; Fischer, A
2003-04-01
Aerosol administration of peptide-based drugs plays an important role in the treatment of pulmonary and systemic diseases and the unique cellular properties of airway epithelium offers a great potential to deliver new compounds. As the relative contributions from the large airways to the alveolar space are important to the local and systemic availability, the sites and mechanism of uptake and transport of different target compounds have to be characterized. Among the different respiratory cells, the ciliated epithelial cells of the larger and smaller airways and the type I and type II pneumocytes are the key players in pulmonary drug transport. With their diverse cellular characteristics, each of these cell types displays a unique uptake possibility. Next to the knowledge of these cellular aspects, the nature of aerosolized drugs, characteristics of delivery systems and the depositional and pulmonary clearance mechanisms display major targets to optimize pulmonary drug delivery. Based on the growing knowledge on pulmonary cell biology and pathophysiology due to modern methods of molecular biology, the future characterization of pulmonary drug transport pathways can lead to new strategies in aerosol drug therapy.
DNA damage in cells exhibiting radiation-induced genomic instability
Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.
2015-02-22
Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less
Krokowski, Dawid; Han, Jaeseok; Saikia, Mridusmita; Majumder, Mithu; Yuan, Celvie L; Guan, Bo-Jhih; Bevilacqua, Elena; Bussolati, Ovidio; Bröer, Stefan; Arvan, Peter; Tchórzewski, Marek; Snider, Martin D; Puchowicz, Michelle; Croniger, Colleen M; Kimball, Scot R; Pan, Tao; Koromilas, Antonis E; Kaufman, Randal J; Hatzoglou, Maria
2013-06-14
Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing β-cells in type 2 diabetes mellitus. β-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in β-cells in vivo. Paradoxically, chronic ER stress in β-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in β-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes.
Krokowski, Dawid; Han, Jaeseok; Saikia, Mridusmita; Majumder, Mithu; Yuan, Celvie L.; Guan, Bo-Jhih; Bevilacqua, Elena; Bussolati, Ovidio; Bröer, Stefan; Arvan, Peter; Tchórzewski, Marek; Snider, Martin D.; Puchowicz, Michelle; Croniger, Colleen M.; Kimball, Scot R.; Pan, Tao; Koromilas, Antonis E.; Kaufman, Randal J.; Hatzoglou, Maria
2013-01-01
Endoplasmic reticulum (ER) stress-induced responses are associated with the loss of insulin-producing β-cells in type 2 diabetes mellitus. β-Cell survival during ER stress is believed to depend on decreased protein synthesis rates that are mediated via phosphorylation of the translation initiation factor eIF2α. It is reported here that chronic ER stress correlated with increased islet protein synthesis and apoptosis in β-cells in vivo. Paradoxically, chronic ER stress in β-cells induced an anabolic transcription program to overcome translational repression by eIF2α phosphorylation. This program included expression of amino acid transporter and aminoacyl-tRNA synthetase genes downstream of the stress-induced ATF4-mediated transcription program. The anabolic response was associated with increased amino acid flux and charging of tRNAs for branched chain and aromatic amino acids (e.g. leucine and tryptophan), the levels of which are early serum indicators of diabetes. We conclude that regulation of amino acid transport in β-cells during ER stress involves responses leading to increased protein synthesis, which can be protective during acute stress but can lead to apoptosis during chronic stress. These studies suggest that the increased expression of amino acid transporters in islets can serve as early diagnostic biomarkers for the development of diabetes. PMID:23645676
Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.
Prochazka, Radek; Blaha, Milan
2015-01-01
In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.
Fournier, Emilie M.; Velez, Maria-Gabriela; Leahy, Katelyn; Swanson, Cristina L.; Rubtsov, Anatoly V.; Torres, Raul M.
2012-01-01
Rare dual-reactive B cells expressing two types of Ig light or heavy chains have been shown to participate in immune responses and differentiate into IgG+ cells in healthy mice. These cells are generated more often in autoreactive mice, leading us to hypothesize they might be relevant in autoimmunity. Using mice bearing Igk allotypic markers and a wild-type Ig repertoire, we demonstrate that the generation of dual-κ B cells increases with age and disease progression in autoimmune-prone MRL and MRL/lpr mice. These dual-reactive cells express markers of activation and are more frequently autoreactive than single-reactive B cells. Moreover, dual-κ B cells represent up to half of plasmablasts and memory B cells in autoimmune mice, whereas they remain infrequent in healthy mice. Differentiation of dual-κ B cells into plasmablasts is driven by MRL genes, whereas the maintenance of IgG+ cells is partly dependent on Fas inactivation. Furthermore, dual-κ B cells that differentiate into plasmablasts retain the capacity to secrete autoantibodies. Overall, our study indicates that dual-reactive B cells significantly contribute to the plasmablast and memory B cell populations of autoimmune-prone mice suggesting a role in autoimmunity. PMID:22927551
Carbonate substitution in lead hydroxyapatite Pb5(PO4)3OH
NASA Astrophysics Data System (ADS)
Kwaśniak-Kominek, M.; Manecki, M.; Matusik, J.; Lempart, M.
2017-11-01
Synthetic carbonate lead hydroxyapatite Pb5(PO4,CO3)3(OH,CO3) was precipitated from aqueous solution and characterized. The maximum content of CO32- ion in lead apatites does not exceed 2.25 wt%. For precipitation from aqueous solutions this is even lower and controlled by the solubility of cerussite PbCO3. Carbonate substitution occurs simultaneously in two structural positions: at OH- sites (A-type substitution) and at PO43- sites (B-type substitution). This is the most pronounced in FTIR (Fourier Transform Infrared Spectroscopy) spectra at 865 cm-1 and within the range of 1300-1500 cm-1. The substitution results in slight increase of the unit cell parameter a from 9.874 to 9.904 A. The presence of CO32- in two structural positions results in two stages of the release of CO2 upon heating: at 300-350 °C and at 400 °C. The presence of carbonates has little effect on thermal decomposition of lead hydroxyapatite which starts at about 450 °C resulting in the formation of lead pyrophosphate.
Postnatal Migration of Cerebellar Interneurons
Galas, Ludovic; Bénard, Magalie; Lebon, Alexis; Komuro, Yutaro; Schapman, Damien; Vaudry, Hubert; Vaudry, David; Komuro, Hitoshi
2017-01-01
Due to its continuing development after birth, the cerebellum represents a unique model for studying the postnatal orchestration of interneuron migration. The combination of fluorescent labeling and ex/in vivo imaging revealed a cellular highway network within cerebellar cortical layers (the external granular layer, the molecular layer, the Purkinje cell layer, and the internal granular layer). During the first two postnatal weeks, saltatory movements, transient stop phases, cell-cell interaction/contact, and degradation of the extracellular matrix mark out the route of cerebellar interneurons, notably granule cells and basket/stellate cells, to their final location. In addition, cortical-layer specific regulatory factors such as neuropeptides (pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin) or proteins (tissue-type plasminogen activator (tPA), insulin growth factor-1 (IGF-1)) have been shown to inhibit or stimulate the migratory process of interneurons. These factors show further complexity because somatostatin, PACAP, or tPA have opposite or no effect on interneuron migration depending on which layer or cell type they act upon. External factors originating from environmental conditions (light stimuli, pollutants), nutrients or drug of abuse (alcohol) also alter normal cell migration, leading to cerebellar disorders. PMID:28587295
Aichler, Michaela; Borgmann, Daniela; Krumsiek, Jan; Buck, Achim; MacDonald, Patrick E; Fox, Jocelyn E Manning; Lyon, James; Light, Peter E; Keipert, Susanne; Jastroch, Martin; Feuchtinger, Annette; Mueller, Nikola S; Sun, Na; Palmer, Andrew; Alexandrov, Theodore; Hrabe de Angelis, Martin; Neschen, Susanne; Tschöp, Matthias H; Walch, Axel
2017-06-06
The processes contributing to β cell dysfunction in type 2 diabetes (T2D) are uncertain, largely because it is difficult to access β cells in their intact immediate environment. We examined the pathophysiology of β cells under T2D progression directly in pancreatic tissues. We used MALDI imaging of Langerhans islets (LHIs) within mouse tissues or from human tissues to generate in situ-omics data, which we supported with in vitro experiments. Molecular interaction networks provided information on functional pathways and molecules. We found that stearoylcarnitine accumulated in β cells, leading to arrest of insulin synthesis and energy deficiency via excessive β-oxidation and depletion of TCA cycle and oxidative phosphorylation metabolites. Acetylcarnitine and an accumulation of N-acyl taurines, a group not previously detected in β cells, provoked insulin secretion. Thus, β cell dysfunction results from enhanced insulin secretion combined with an arrest of insulin synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Fernandes, Jolene S; Sternberg, Paul W
2007-01-01
Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF), each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2), lin-11 (LIM), and egl-38 (Pax2/5/8) to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types. PMID:17465684
Sprague, Lisa D; Tomaso, Herbert; Mengele, Karin; Schilling, Daniela; Bayer, Christine; Stadler, Peter; Schmitt, Manfred; Molls, Michael
2007-05-01
One aim during oncological radiation therapy is to induce reoxygenation in hypoxic tumours in order to enhance radiosensitivity and ultimately increase cell death. In squamous cell carcinomas of the head and neck (SCCHN), hypoxia is considered a pivotal physiological modulator for malignant progression, whereby the plasminogen activation system is involved in overlapping functions such as the shaping of the extracellular matrix, cell proliferation and signal transduction. Since little is known about reoxygenation and the plasminogen activation system in SCCHN, three human SCCHN cell lines (BHY, FaDu, and CAL27) and a non-transformed control cell line (VH7) were exposed to hypoxic (<0.5% O2) conditions for up to 72 h and subsequently reoxygenated for 24 h at normoxic conditions. The mRNA expression of the urokinase-type plasminogen activator (uPA), the plasminogen activator inhibitor type-1 (PAI-1) and the urokinase-type plasminogen activator receptor (uPAR) was assessed by means of real-time semi-quantitative RT-PCR, and the protein expression was determined by immunoenzymometric quantification (ELISA). Both hypoxia and reoxygenation induced statistically significant changes in uPA, PAI-1 and uPAR mRNA and protein levels in the various cell lines investigated, showing that oxygen tension is a strong modulator of the plasminogen activation system in vitro. However, no uniform correlation pattern was found between the mRNA and protein levels analysed over all three time-points (24, 48, and 72 h) and oxygen treatment variants (N, H, R) nor according to oxygen treatment conditions over all three time-points. Changes in oxygen tension could therefore be modulating the fragile balance between the various components of the plasminogen activation system in SSCHN ultimately leading to an increased tumour matrix disruption, alterations in cell invasiveness, and the dissemination of tumour cells to distant organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Eric; Hamel, Rodolphe; Neyret, Aymeric
Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virusmore » and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.« less
Sebastiano, Vittorio; Zhen, Hanson Hui; Haddad, Bahareh; Bashkirova, Elizaveta; Melo, Sandra P.; Wang, Pei; Leung, Thomas L.; Siprashvili, Zurab; Tichy, Andrea; Li, Jiang; Ameen, Mohammed; Hawkins, John; Lee, Susie; Li, Lingjie; Schwertschkow, Aaron; Bauer, Gerhard; Lisowski, Leszek; Kay, Mark A.; Kim, Seung K.; Lane, Alfred T.; Wernig, Marius; Oro, Anthony E.
2015-01-01
Patients with recessive dystrophic epidermolysis bullosa (RDEB) lack functional type VII collagen owing to mutations in the gene COL7A1 and suffer severe blistering and chronic wounds that ultimately lead to infection and development of lethal squamous cell carcinoma. The discovery of induced pluripotent stem cells (iPSCs) and the ability to edit the genome bring the possibility to provide definitive genetic therapy through corrected autologous tissues. We generated patient-derived COL7A1-corrected epithelial keratinocyte sheets for autologous grafting. We demonstrate the utility of sequential reprogramming and adenovirus-associated viral genome editing to generate corrected iPSC banks. iPSC-derived keratinocytes were produced with minimal heterogeneity, and these cells secreted wild-type type VII collagen, resulting in stratified epidermis in vitro in organotypic cultures and in vivo in mice. Sequencing of corrected cell lines before tissue formation revealed heterogeneity of cancer-predisposing mutations, allowing us to select COL7A1-corrected banks with minimal mutational burden for downstream epidermis production. Our results provide a clinical platform to use iPSCs in the treatment of debilitating genodermatoses, such as RDEB. PMID:25429056
Soto, Cristina; Canedo, Antonio
2011-01-01
Abstract Aδ- and/or C-fibre nociceptive inputs drive subnucleus reticularis dorsalis (SRD) neurones projecting to a variety of regions including the spinal cord and the nucleus reticularis gigantocellularis (NRGc), but their electrophysiological properties are largely unknown. Here we intracellularly recorded the SRD neuronal responses to injection of polarising current pulses as well as to electrical stimulation of the cervical spinal posterior quadrant (PQ) and the NRGc. Three different classes of neurones with distinct electrophysiological properties were found: type I were characterised by the absence of a fast postspike hyperpolarisation, type II by the presence of a postspike hyperpolarisation followed by a depolarisation resembling low threshold calcium spikes (LTSs), and type III (lacking LTSs) had a fast postspike hyperpolarisation deinactivating A-like potassium channels leading to enlarged interspike intervals. All three classes generated depolarising sags to hyperpolarising current pulses and showed 3–4.5 Hz subthreshold oscillatory activity leading to windup when intracellularly injecting low-frequency repetitive depolarising pulses as well as in response to 0.5–2 Hz NRGc and PQ electrical stimulation. About half of the 132 sampled neurones responded antidromically to NRGc stimulation with more than 65% of the NRGc-antidromic cells, pertaining to all three types, also responding antidromically to PQ stimulation. NRGc stimulation induced exclusively excitatory first-synaptic-responses whilst PQ stimulation induced first-response excitation in most cases, but inhibitory postsynaptic potentials in a few type II and type III neurones not projecting to the spinal cord that also displayed cumulative inhibitory effects (inverse windup). The results show that SRD cells (i) can actively regulate different temporal firing patterns due to their intrinsic electrophysiological properties, (ii) generate windup upon gradual membrane depolarisation produced by low-frequency intracellular current injection and by C-fibre tonic input, both processes leading subthreshold oscillations to threshold, and (iii) collateralise to the NRGc and the spinal cord, potentially providing simultaneous regulation of ascending noxious information and motor reactions to pain. PMID:21746779
Soto, Cristina; Canedo, Antonio
2011-09-01
Aδ- and/or C-fibre nociceptive inputs drive subnucleus reticularis dorsalis (SRD) neurones projecting to a variety of regions including the spinal cord and the nucleus reticularis gigantocellularis (NRGc), but their electrophysiological properties are largely unknown. Here we intracellularly recorded the SRD neuronal responses to injection of polarising current pulses as well as to electrical stimulation of the cervical spinal posterior quadrant (PQ) and the NRGc. Three different classes of neurones with distinct electrophysiological properties were found: type I were characterised by the absence of a fast postspike hyperpolarisation, type II by the presence of a postspike hyperpolarisation followed by a depolarisation resembling low threshold calcium spikes (LTSs), and type III (lacking LTSs) had a fast postspike hyperpolarisation deinactivating A-like potassium channels leading to enlarged interspike intervals. All three classes generated depolarising sags to hyperpolarising current pulses and showed 3-4.5 Hz subthreshold oscillatory activity leading to windup when intracellularly injecting low-frequency repetitive depolarising pulses as well as in response to 0.5-2 Hz NRGc and PQ electrical stimulation. About half of the 132 sampled neurones responded antidromically to NRGc stimulation with more than 65% of the NRGc-antidromic cells, pertaining to all three types, also responding antidromically to PQ stimulation. NRGc stimulation induced exclusively excitatory first-synaptic-responses whilst PQ stimulation induced first-response excitation in most cases, but inhibitory postsynaptic potentials in a few type II and type III neurones not projecting to the spinal cord that also displayed cumulative inhibitory effects (inverse windup). The results show that SRD cells (i) can actively regulate different temporal firing patterns due to their intrinsic electrophysiological properties, (ii) generate windup upon gradual membrane depolarisation produced by low-frequency intracellular current injection and by C-fibre tonic input, both processes leading subthreshold oscillations to threshold, and (iii) collateralise to the NRGc and the spinal cord, potentially providing simultaneous regulation of ascending noxious information and motor reactions to pain.
Salton, S R; Margolis, R U; Margolis, R K
1983-10-01
Cultured PC12 pheochromocytoma cells were labeled with [3H]glucosamine, and the glycoproteins and proteoglycans released following potassium-induced depolarization were fractionated and characterized. Exposure of PC12 cells for 20 min to a high concentration of potassium (51.5 mM in Krebs-Ringers-HEPES buffer) results in an approximately sixfold increase in the release of labeled glycoproteins and proteoglycans, compared to incubation in physiological levels of potassium (6 mM). The released complex carbohydrates include chromogranins, dopamine beta-hydroxylase, and two chondroitin sulfate/heparan sulfate proteoglycan fractions, which together account for 7.4% of the soluble cell radioactivity. The chromogranins contained galactosyl(beta 1 leads to 3)N-acetylgalactosamine, as well as several mono- and disialyl O-glycosidically-linked oligosaccharides, and the tetrasaccharide AcNeu(alpha 2 leads to 3)Gal(beta 1 leads to 3)[AcNeu(alpha 2 leads to 6)] GalNAcol, obtained by alkaline borohydride treatment of the chromogranin glycopeptides, accounted for almost half of the total chromogranin labeling. The proteoglycan fractions varied in their relative proportions of chondroitin sulfate (23-68%), heparan sulfate (16-23%), and glycoprotein oligosaccharides (16-54%), which are of the tri- and tetraantennary and O-glycosidic types. As previously found in the case of proteoglycans from bovine chromaffin granules, the more acidic species has a considerably higher proportion of carbohydrate in the form of sulfated glycosaminoglycans.
Treatment of Diabetes Mellitus Using iPS Cells and Spice Polyphenols
Chen, Liang
2017-01-01
Diabetes mellitus is a chronic disease that threatens human health. The disease is caused by a metabolic disorder of the endocrine system, and long-term illness can lead to tissue and organ damage to the cardiovascular, endocrine, nervous, and urinary systems. Currently, the disease prevalence is 11.4%, the treatment rate is 48.2%, and the mortality rate is 2.7% worldwide. Comprehensive and effective control of diabetes, as well as the use of insulin, requires further study to develop additional treatment options. Here, we reviewed the current reprogramming of somatic cells using specific factors to induced pluripotent stem (iPS) cells capable of repairing islet β cell damage in diabetes patients to treat patients with type 1 diabetes mellitus. We also discuss the shortcomings associated with clinical use of iPS cells. Additionally, certain polyphenols found in spices might improve glucose homeostasis and insulin resistance in diabetes patients, thereby constituting promising options for the treatment of type 2 diabetes. PMID:28758131
Bana, Emilie; Sibille, Estelle; Valente, Sergio; Cerella, Claudia; Chaimbault, Patrick; Kirsch, Gilbert; Dicato, Mario; Diederich, Marc; Bagrel, Denyse
2015-03-01
Cell division cycle (CDC) 25 proteins are key phosphatases regulating cell cycle transition and proliferation by regulating CDK/cyclin complexes. Overexpression of these enzymes is frequently observed in cancer and is related to aggressiveness, high-grade tumors and poor prognosis. Thus, targeting CDC25 by compounds, able to inhibit their activity, appears a good therapeutic approach. Here, we describe the synthesis of a new inhibitor (SV37) whose structure is based on both coumarin and quinone moieties. An analytical in vitro approach shows that this compound efficiently inhibits all three purified human CDC25 isoforms (IC50 1-9 µM) in a mixed-type mode. Moreover, SV37 inhibits growth of breast cancer cell lines. In MDA-MB-231 cells, reactive oxygen species generation is followed by pCDK accumulation, a mark of CDC25 dysfunction. Eventually, SV37 treatment leads to activation of apoptosis and DNA cleavage, underlining the potential of this new type of coumarin-quinone structure. © 2013 Wiley Periodicals, Inc.
Treatment of Diabetes Mellitus Using iPS Cells and Spice Polyphenols.
Ge, Qi; Chen, Liang; Chen, Keping
2017-01-01
Diabetes mellitus is a chronic disease that threatens human health. The disease is caused by a metabolic disorder of the endocrine system, and long-term illness can lead to tissue and organ damage to the cardiovascular, endocrine, nervous, and urinary systems. Currently, the disease prevalence is 11.4%, the treatment rate is 48.2%, and the mortality rate is 2.7% worldwide. Comprehensive and effective control of diabetes, as well as the use of insulin, requires further study to develop additional treatment options. Here, we reviewed the current reprogramming of somatic cells using specific factors to induced pluripotent stem (iPS) cells capable of repairing islet β cell damage in diabetes patients to treat patients with type 1 diabetes mellitus. We also discuss the shortcomings associated with clinical use of iPS cells. Additionally, certain polyphenols found in spices might improve glucose homeostasis and insulin resistance in diabetes patients, thereby constituting promising options for the treatment of type 2 diabetes.
Rap G protein signal in normal and disordered lymphohematopoiesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minato, Nagahiro, E-mail: minato@imm.med.kyoto-u.ac.jp
2013-09-10
Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the developmentmore » and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy.« less
Liu, Shiyu; Zou, Zhanming; Zhu, Linlin; Liu, Xinyu; Zhou, Shuanghai
2017-01-01
Porcine circovirus-associated disease is caused by porcine circovirus type 2 (PCV2) infection, which targets iliac artery endothelial cells (PIECs); it leads to severe immunopathologies and is associated with major economic losses in the porcine industry. Here, we report that in vitro PCV2 infection of PIECs causes cell injury, which affects DC function as well as adaptive immunity. Specifically, PCV2 infection downregulated PIEC antigen-presenting molecule expression, upregulated cytokines involved in the immune and inflammatory response causing cell damage and repair, and altered the migratory capacity of PIECs. In addition, PCV2-infected PIECs inhibited DC maturation, enhanced the endocytic ability of DCs, and weakened the stimulatory effect of DCs on T lymphocytes. Together, these findings indicate that profound functional impairment of DCs in the presence of PCV2-infected PIECs may be a potential pathogenic mechanism associated with PCV2-induced porcine disease. PMID:29073194
Fraser, Stuart T.
2013-01-01
One of the most critical stages in mammalian embryogenesis is the independent production of the embryo's own circulating, functional red blood cells. Correspondingly, erythrocytes are the first cell type to become functionally mature during embryogenesis. Failure to achieve this invariably leads to in utero lethality. The recent application of technologies such as transcriptome analysis, flow cytometry, mutant embryo analysis, and transgenic fluorescent gene expression reporter systems has shed new light on the distinct erythroid lineages that arise early in development. Here, I will describe the similarities and differences between the distinct erythroid populations that must form for the embryo to survive. While much of the focus of this review will be the poorly understood primitive erythroid lineage, a discussion of other erythroid and hematopoietic lineages, as well as the cell types making up the different niches that give rise to these lineages, is essential for presenting an appropriate developmental context of these cells. PMID:24222861
Treloar, Katrina K; Simpson, Matthew J; Haridas, Parvathi; Manton, Kerry J; Leavesley, David I; McElwain, D L Sean; Baker, Ruth E
2013-12-12
The expansion of cell colonies is driven by a delicate balance of several mechanisms including cell motility, cell-to-cell adhesion and cell proliferation. New approaches that can be used to independently identify and quantify the role of each mechanism will help us understand how each mechanism contributes to the expansion process. Standard mathematical modelling approaches to describe such cell colony expansion typically neglect cell-to-cell adhesion, despite the fact that cell-to-cell adhesion is thought to play an important role. We use a combined experimental and mathematical modelling approach to determine the cell diffusivity, D, cell-to-cell adhesion strength, q, and cell proliferation rate, λ, in an expanding colony of MM127 melanoma cells. Using a circular barrier assay, we extract several types of experimental data and use a mathematical model to independently estimate D, q and λ. In our first set of experiments, we suppress cell proliferation and analyse three different types of data to estimate D and q. We find that standard types of data, such as the area enclosed by the leading edge of the expanding colony and more detailed cell density profiles throughout the expanding colony, does not provide sufficient information to uniquely identify D and q. We find that additional data relating to the degree of cell-to-cell clustering is required to provide independent estimates of q, and in turn D. In our second set of experiments, where proliferation is not suppressed, we use data describing temporal changes in cell density to determine the cell proliferation rate. In summary, we find that our experiments are best described using the range D=161-243μm2 hour-1, q=0.3-0.5 (low to moderate strength) and λ=0.0305-0.0398 hour-1, and with these parameters we can accurately predict the temporal variations in the spatial extent and cell density profile throughout the expanding melanoma cell colony. Our systematic approach to identify the cell diffusivity, cell-to-cell adhesion strength and cell proliferation rate highlights the importance of integrating multiple types of data to accurately quantify the factors influencing the spatial expansion of melanoma cell colonies.
Global impact of Salmonella type III secretion effector SteA on host cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenal-Muñoz, Elena, E-mail: e_cardenal@us.es; Gutiérrez, Gabriel, E-mail: ggpozo@us.es; Ramos-Morales, Francisco, E-mail: framos@us.es
Highlights: • We analyzed HeLa cells transcriptome in response to Salmonella SteA. • Significant differential expression was detected for 58 human genes. • They are involved in ECM organization and regulation of some signaling pathways. • Cell death, cell adhesion and cell migration were decreased in SteA-expressing cells. • These results contribute to understand the role of SteA during infections. - Abstract: Salmonella enterica is a Gram-negative bacterium that causes gastroenteritis, bacteremia and typhoid fever in several animal species including humans. Its virulence is greatly dependent on two type III secretion systems, encoded in pathogenicity islands 1 and 2. Thesemore » systems translocate proteins called effectors into eukaryotic host cell. Effectors interfere with host signal transduction pathways to allow the internalization of pathogens and their survival and proliferation inside vacuoles. SteA is one of the few Salmonella effectors that are substrates of both type III secretion systems. Here, we used gene arrays and bioinformatics analysis to study the genetic response of human epithelial cells to SteA. We found that constitutive synthesis of SteA in HeLa cells leads to induction of genes related to extracellular matrix organization and regulation of cell proliferation and serine/threonine kinase signaling pathways. SteA also causes repression of genes related to immune processes and regulation of purine nucleotide synthesis and pathway-restricted SMAD protein phosphorylation. In addition, a cell biology approach revealed that epithelial cells expressing steA show altered cell morphology, and decreased cytotoxicity, cell–cell adhesion and migration.« less
Discovery of piragliatin--first glucokinase activator studied in type 2 diabetic patients.
Sarabu, Ramakanth; Bizzarro, Fred T; Corbett, Wendy L; Dvorozniak, Mark T; Geng, Wanping; Grippo, Joseph F; Haynes, Nancy-Ellen; Hutchings, Stanley; Garofalo, Lisa; Guertin, Kevin R; Hilliard, Darryl W; Kabat, Marek; Kester, Robert F; Ka, Wang; Liang, Zhenmin; Mahaney, Paige E; Marcus, Linda; Matschinsky, Franz M; Moore, David; Racha, Jagdish; Radinov, Roumen; Ren, Yi; Qi, Lida; Pignatello, Michael; Spence, Cheryl L; Steele, Thomas; Tengi, John; Grimsby, Joseph
2012-08-23
Glucokinase (GK) activation as a potential strategy to treat type 2 diabetes (T2D) is well recognized. Compound 1, a glucokinase activator (GKA) lead that we have previously disclosed, caused reversible hepatic lipidosis in repeat-dose toxicology studies. We hypothesized that the hepatic lipidosis was due to the structure-based toxicity and later established that it was due to the formation of a thiourea metabolite, 2. Subsequent SAR studies of 1 led to the identification of a pyrazine-based lead analogue 3, lacking the thiazole moiety. In vivo metabolite identification studies, followed by the independent synthesis and profiling of the cyclopentyl keto- and hydroxyl- metabolites of 3, led to the selection of piragliatin, 4, as the clinical lead. Piragliatin was found to lower pre- and postprandial glucose levels, improve the insulin secretory profile, increase β-cell sensitivity to glucose, and decrease hepatic glucose output in patients with T2D.
De Novo Chromosome Structure Prediction
NASA Astrophysics Data System (ADS)
di Pierro, Michele; Cheng, Ryan R.; Lieberman-Aiden, Erez; Wolynes, Peter G.; Onuchic, Jose'n.
Chromatin consists of DNA and hundreds of proteins that interact with the genetic material. In vivo, chromatin folds into nonrandom structures. The physical mechanism leading to these characteristic conformations, however, remains poorly understood. We recently introduced MiChroM, a model that generates chromosome conformations by using the idea that chromatin can be subdivided into types based on its biochemical interactions. Here we extend and complete our previous finding by showing that structural chromatin types can be inferred from ChIP-Seq data. Chromatin types, which are distinct from DNA sequence, are partially epigenetically controlled and change during cell differentiation, thus constituting a link between epigenetics, chromosomal organization, and cell development. We show that, for GM12878 lymphoblastoid cells we are able to predict accurate chromosome structures with the only input of genomic data. The degree of accuracy achieved by our prediction supports the viability of the proposed physical mechanism of chromatin folding and makes the computational model a powerful tool for future investigations.
Understanding chemically processed solar cells based on quantum dots
NASA Astrophysics Data System (ADS)
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-12-01
Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.
Understanding chemically processed solar cells based on quantum dots.
Malgras, Victor; Nattestad, Andrew; Kim, Jung Ho; Dou, Shi Xue; Yamauchi, Yusuke
2017-01-01
Photovoltaic energy conversion is one of the best alternatives to fossil fuel combustion. Petroleum resources are now close to depletion and their combustion is known to be responsible for the release of a considerable amount of greenhouse gases and carcinogenic airborne particles. Novel third-generation solar cells include a vast range of device designs and materials aiming to overcome the factors limiting the current technologies. Among them, quantum dot-based devices showed promising potential both as sensitizers and as colloidal nanoparticle films. A good example is the p-type PbS colloidal quantum dots (CQDs) forming a heterojunction with a n-type wide-band-gap semiconductor such as TiO 2 or ZnO. The confinement in these nanostructures is also expected to result in marginal mechanisms, such as the collection of hot carriers and generation of multiple excitons, which would increase the theoretical conversion efficiency limit. Ultimately, this technology could also lead to the assembly of a tandem-type cell with CQD films absorbing in different regions of the solar spectrum.
Regulation Involved in Colonization of Intercellular Spaces of Host Plants in Ralstonia solanacearum
Hikichi, Yasufumi; Mori, Yuka; Ishikawa, Shiho; Hayashi, Kazusa; Ohnishi, Kouhei; Kiba, Akinori; Kai, Kenji
2017-01-01
A soil-borne bacterium Ralstonia solanacearum invading plant roots first colonizes the intercellular spaces of the root, and eventually enters xylem vessels, where it replicates at high levels leading to wilting symptoms. After invasion into intercellular spaces, R. solanacearum strain OE1-1 attaches to host cells and expression of the hrp genes encoding components of the type III secretion system (T3SS). OE1-1 then constructs T3SS and secrets effectors into host cells, inducing expression of the host gene encoding phosphatidic acid phosphatase. This leads to suppressing plant innate immunity. Then, OE1-1 grows on host cells, inducing quorum sensing (QS). The QS contributes to regulation of OE1-1 colonization of intercellular spaces including mushroom-type biofilm formation on host cells, leading to its virulence. R. solanacearum strains AW1 and K60 produce methyl 3-hydroxypalmitate (3-OH PAME) as a QS signal. The methyltransferase PhcB synthesizes 3-OH PAME. When 3-OH PAME reaches a threshold level, it increases the ability of the histidine kinase PhcS to phosphorylate the response regulator PhcR. This results in elevated levels of functional PhcA, the global virulence regulator. On the other hand, strains OE1-1 and GMI1000 produce methyl 3-hydroxymyristate (3-OH MAME) as a QS signal. Among R. solanacearum strains, the deduced PhcB and PhcS amino acid sequences are related to the production of QS signals. R. solanacearum produces aryl-furanone secondary metabolites, ralfuranones, which are extracellularly secreted and required for its virulence, dependent on the QS. Interestingly, ralfuranones affect the QS feedback loop. Taken together, integrated signaling via ralfuranones influences the QS, contributing to pathogen virulence. PMID:28642776
Landolph, J R
1994-01-01
Carcinogenic arsenic, nickel, and chromium compounds induced morphological and neoplastic transformation but no mutation to ouabain resistance in 10T1/2 mouse embryo cells; lead chromate also did not induce mutation to ouabain or 6-thioguanine resistance in Chinese hamster ovary cells. The mechanism of metal-induced morphological transformation was likely not due to the specific base substitution mutations measured in ouabain resistance mutation assays, and for lead chromate, likely not due to this type of base substitution mutation or to frameshift mutations. Preliminary data indicate increases in steady-state levels of c-myc RNA in arsenic-, nickel-, and chromium-transformed cell lines. We also showed that carcinogenic nickel, chromium, and arsenic compounds and N-methyl-N-nitro-N-nitrosoguanidine (MNNG) induced stable anchorage independence (Al) in diploid human fibroblasts (DHF) but no focus formation or immortality. Nickel subsulfide and lead chromate induced Al but not mutation to 6-thioguanine resistance. The mechanism of induction of Al by metal salts in DHF was likely not by the type of base substitution or frameshift mutations measured in these assays. MNNG induced Al, mutation to 6-thioguanine resistance, and mutation to ouabain resistance, and might induce Al by base substitution or frameshift mutations. Dexamethasone, aspirin, and salicylic acid inhibited nickel subsulfide, MNNG, and 12-O-tetrade-canoylphorbol-13-acetate (TPA)-induced Al in DHF, suggesting that arachidonic acid metabolism and oxygen radical generation play a role in induction of Al. We propose that nickel compounds stimulate arachidonic acid metabolism, consequent oxygen radical generation, and oxygen radical attack upon DNA.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7843085
Evolution of β-Cell Replacement Therapy in Diabetes Mellitus: Islet Cell Transplantation
Jahansouz, Cyrus; Jahansouz, Cameron; Kumer, Sean C.; Brayman, Kenneth L.
2011-01-01
Diabetes mellitus remains one of the leading causes of morbidity and mortality worldwide. According to the Centers for Disease Control and Prevention, approximately 23.6 million people in the United States are affected. Of these individuals, 5 to 10% have been diagnosed with Type 1 diabetes mellitus (T1DM), an autoimmune disease. Although it often appears in childhood, T1DM may manifest at any age, leading to significant morbidity and decreased quality of life. Since the 1960s, the surgical treatment for diabetes mellitus has evolved to become a viable alternative to insulin administration, beginning with pancreatic transplantation. While islet cell transplantation has emerged as another potential alternative, its role in the treatment of T1DM remains to be solidified as research continues to establish it as a truly viable alternative for achieving insulin independence. In this paper, the historical evolution, procurement, current status, benefits, risks, and ongoing research of islet cell transplantation are explored. PMID:22013505
Decentralized solar photovoltaic energy systems
NASA Astrophysics Data System (ADS)
Krupka, M. C.
1980-09-01
Emphasis was placed upon the selection and use of a model residential photovoltaic system to develop and quantify the necessary data. The model consists of a reference home located in Phoenix, AZ utilizing a unique solar cell array roof shingle combination. Silicon solar cells, rated at 13.5 percent efficiency at 28 C and 100 mW/sq cm insolation are used to generate 10 kW (peak). An all electric home is considered with lead acid battery storage, DC AC inversion and utility backup. The reference home is compared to others in regions of different insolation. It is suggested that solar cell materials production and fabrication may have the major environmental impact when comparing all facets of photovoltaic system usage. Fabrication of the various types of solar cell systems involves the need, handling, and transportation of many toxic and hazardous chemicals with attendant health and safety impacts. Increases in production of such materials as lead, antimony, sulfuric acid, copper, plastics, cadmium and gallium will be required should large scale usage of photovoltaic systems be implemented.
Estrada-Bernal, Adriana; Palanichamy, Kamalakannan; Ray Chaudhury, Abhik; Van Brocklyn, James R
2012-04-01
FTY720 is a sphingosine analogue that down regulates expression of sphingosine-1-phosphate receptors and causes apoptosis of multiple tumor cell types, including glioma cells. This study examined the effect of FTY720 on brain tumor stem cells (BTSCs) derived from human glioblastoma (GBM) tissue. FTY720 treatment of BTSCs led to rapid inactivation of ERK MAP kinase, leading to upregulation of the BH3-only protein Bim and apoptosis. In combination with temozolomide (TMZ), the current standard chemotherapeutic agent for GBM, FTY720 synergistically induced BTSC apoptosis. FTY720 also slowed growth of intracranial xenograft tumors in nude mice and augmented the therapeutic effect of TMZ, leading to enhanced survival. Furthermore, the combination of FTY720 and TMZ decreased the invasiveness of BTSCs in mouse brains. FTY720 is known to cross the blood-brain barrier and recently received Food and Drug Administration approval for treatment of relapsing multiple sclerosis. Thus, FTY720 is an excellent potential therapeutic agent for treatment of GBM.
Feasibility analysis of a hydrogen backup power system for Russian telecom market
NASA Astrophysics Data System (ADS)
Borzenko, V. I.; Dunikov, D. O.
2017-11-01
We performed feasibility analysis of 10 kW hydrogen backup power system (H2BS) consisting of a water electrolyzer, a metal hydride hydrogen storage and a fuel cell. Capital investments in H2BS are mostly determined by the costs of the PEM electrolyzer, the fuel cell and solid state hydrogen storage materials, for single unit or small series manufacture the cost of AB5-type intermetallic compound can reach 50% of total system cost. Today the capital investments in H2BS are 3 times higher than in conventional lead-acid system of the same capacity. Wide distribution of fuel cell hydrogen vehicles, development of hydrogen infrastructure, and mass production of hydrogen power systems will for sure lower capital investments in fuel cell backup power. Operational expenditures for H2BS is only 15% from the expenditures for lead acid systems, and after 4-5 years of exploitation the total cost of ownership will become lower than for batteries.
Mutational Analysis of Cell Types in Tuberous Sclerosis Complex (TSC)
2009-01-01
from mutations in the TSC1 or TSC2 genes that is associated with epilepsy, cognitive disability, and autism . TSC1/TSC2 gene mutations lead to...gene inactivation and leads to activation of the mTOR cascade as evidenced by phosphorylation of ribosomal S6 protein (P-S6). We demonstrate that...phosphorylation of the ribosomal S6 protein (phospho-S6 or P-S6), a marker for enhanced mTOR signaling. We find P-S6 expression in cortex as well as
Transferrin receptors and the targeted delivery of therapeutic agents against cancer
Daniels, Tracy R.; Bernabeu, Ezequiel; Rodríguez, José A.; Patel, Shabnum; Kozman, Maggie; Chiappetta, Diego A.; Holler, Eggehard; Ljubimova, Julia Y.; Helguera, Gustavo; Penichet, Manuel L.
2012-01-01
Background Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. Scope of review In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. Major conclusions Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. General significance The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. PMID:21851850
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakayasu, Ernesto S.; Tempel, Rebecca; Cambronne, Xiaolu A.
2013-09-22
Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared to the wild type parent strain. To elucidate the cellularmore » signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin (TTP), a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of TTP, leading to the production of cytokines such as IL-1beta and TNF-alpha which may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that controls infection by this pathogen.« less
Estrogen prevents bone loss through transforming growth factor β signaling in T cells
Gao, Yuhao; Qian, Wei-Ping; Dark, Kimberly; Toraldo, Gianluca; Lin, Angela S. P.; Guldberg, Robert E.; Flavell, Richard A.; Weitzmann, M. Neale; Pacifici, Roberto
2004-01-01
Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-γ-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-γ production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type β transforming growth factor (TGFβ) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-γ production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFβ levels in the bone marrow, and overexpression of TGFβ in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFβ-dependent mechanism, and that TGFβ signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFβ production in the bone marrow is a critical “upstream” mechanism by which E prevents bone loss, and enhancement of TGFβ levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss. PMID:15531637
Nolz, Jeffrey C; Gomez, Timothy S; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B; Shimizu, Yoji; Burkhardt, Janis K; Freedman, Bruce D; Billadeau, Daniel D
2006-01-10
The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.
Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response.
Witteveldt, Jeroen; Ivens, Alasdair; Macias, Sara
2018-06-12
Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Thurberg, Beth L.; Wasserstein, Melissa P.; Schiano, Thomas; O’Brien, Fanny; Richards, Susan; Cox, Gerald F.; McGovern, Margaret M.
2012-01-01
Acid sphingomyelinase deficiency (ASMD) is a lysosomal storage disorder characterized by the pathologic accumulation of sphingomyelin in multiple cells types, and occurs most prominently within the liver, spleen and lungs, leading to significant clinical disease. Seventeen ASMD patients underwent a liver biopsy during baseline screening for a Phase 1 trial of recombinant human acid sphingomyelinase (rhASM) in adults with Niemann-Pick disease type B. Eleven of the 17 were enrolled in the trial and each received a single dose of rhASM and underwent a repeat liver biopsy on Day 14. Biopsies were evaluated for fibrosis, sphingomyelin accumulation and macrophage infiltration by light and electron microscopy. When present, fibrosis was periportal and pericellular, predominantly surrounding affected Kupffer cells. Two baseline biopsies exhibited frank cirrhosis. Sphingomyelin was localized to isolated Kupffer cells in mildly affected biopsies and was present in both Kupffer cells and hepatocytes in more severely affected cases. Morphometric quantification of sphingomyelin storage in liver biopsies ranged from 4–44% of the microscopic field. Skin biopsies were also performed at baseline and Day 14 in order to compare the sphingomyelin distribution in a peripheral tissue to that of liver. Sphingomyelin storage was present at lower levels in multiple cell types of the skin, including dermal fibroblasts, macrophages, vascular endothelial cells, vascular smooth muscle cells and Schwann cells. This Phase 1 trial of rhASM in adults with ASMD provided a unique opportunity for a prospective assessment of hepatic and skin pathology in this rare disease and their potential usage as pharmacodynamic biomarkers. PMID:22613999
Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter
2017-02-10
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S.; Marazzi, Giovanna; Sassoon, David A.
2018-01-01
Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70–80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration. PMID:29881353
Hao, Xiao-Xia; Chen, Su-Ren; Tang, Ji-Xin; Li, Jian; Cheng, Jin-Mei; Jin, Cheng; Wang, Xiu-Xia; Liu, Yi-Xun
2016-07-01
SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Border cell release: Cell separation without cell wall degradation?
Mravec, Jozef
2017-07-03
Plant border cells are specialized cells derived from the root cap with roles in the biomechanics of root growth and in forming a barrier against pathogens. The mechanism of highly localized cell separation which is essential for their release to the environment is little understood. Here I present in situ analysis of Brachypodium distachyon, a model organism for grasses which possess type II primary cell walls poor in pectin content. Results suggest similarity in spatial dynamics of pectic homogalacturonan during dicot and monocot border cell release. Integration of observations from different species leads to the hypothesis that this process most likely does not involve degradation of cell wall material but rather uses unique cell wall structural and compositional means enabling both the rigidity of the root cap as well as detachability of given cells on its surface.
Modulation of Pathogenic B Cells through Inhibition of Phosphatidylinositol 3-Kinases
2015-10-01
SF298] Note: An abstract is required to be provided in Block 14 This proposal addresses the FY12 PRMRP topic area on lupus . Lupus is a life...threatening disease that primarily affects women. Lupus patients develop antibodies that recognize proteins made by the body. This leads to tissue damage and...susceptible to other types of infections. Lupus treatment could be improved by specifically targeting the B cells involved in making the “self” antibodies
Modulation of Pathogenic B Cells through Inhibition of Phosphatidylinositol 3-Kinases
2014-10-01
SF298] Note: An abstract is required to be provided in Block 14 This proposal will address the FY12 PRMRP topic area on lupus . Lupus is a life...threatening disease that primarily affects women. Lupus patients develop antibodies that recognize proteins made by the body. This leads to tissue...susceptible to other types of infections. Lupus treatment could be improved by specifically targeting the B cells involved in making the “self
[The participation of ethanol in induction of carbohydrates metabolism disturbances].
Orywal, Karolina; Jelski, Wojciech; Szmitkowski, Maciej
2009-07-01
Alcohol and products of its metabolism lead to impairment of many organs functions, what cause systemic and local carbohydrates metabolism disturbances. Abusing of alcohol induces changes in pancreatic digestive enzymes secretion, what contributes to development of chronic alcoholic pancreatitis. Alcohol can cause secondary diabetes, what is result of pancreatic beta-cells damage and is a risk factor for type 2 diabetes. Alcohol cause liver cells degeneration and induction of many metabolic disturbances especially carbohydrates.
Skin manifestations of growth hormone-induced diseases.
Kanaka-Gantenbein, Christina; Kogia, Christina; Abdel-Naser, Mohamed Badawy; Chrousos, George P
2016-09-01
The human skin is a well-organized organ bearing different types of cells in a well-structured interference to each other including epidermal and follicular keratinocytes, sebocytes, melanocytes, dermal papilla cells and fibroblasts, endothelial cells, sweat gland cells as well as nerves. Several hormones act on different cell types of the skin, while it is also considered an endocrine organ secreting hormones that act at several sites of the organism. GH receptors are found in almost all cell types forming the skin, while IGF-1 receptors' expression is restricted to the epidermal keratinocytes. Both Growth Hormone (GH) excess, as in the case of Acromegaly in adults, or Gigantism in growing children, and GH deficiency states lead to skin manifestations. In case of GH excess the main dermatological findings are skin thickening, coarsening of facial features, acrochordons, puffy hands and feet, oily skin and hyperhidrosis, while GH deficiency, on the contrary, is characterized by thin, dry skin and disorder of normal sweating. Moreover, special disorders associated with GH excess may have specific characteristics, as is the case of café-au-lait spots in Neurofibromatosis, or big café-au-lait skin hyperpigmented regions with irregular margins, as is the case in McCune-Albright syndrome. Meticulous examination of the skin may therefore contribute to the final diagnosis in cases of GH-induced disorders.
Multiproteomic and Transcriptomic Analysis of Oncogenic β-Catenin Molecular Networks.
Ewing, Rob M; Song, Jing; Gokulrangan, Giridharan; Bai, Sheldon; Bowler, Emily H; Bolton, Rachel; Skipp, Paul; Wang, Yihua; Wang, Zhenghe
2018-06-01
The dysregulation of Wnt signaling is a frequent occurrence in many different cancers. Oncogenic mutations of CTNNB1/β-catenin, the key nuclear effector of canonical Wnt signaling, lead to the accumulation and stabilization of β-catenin protein with diverse effects in cancer cells. Although the transcriptional response to Wnt/β-catenin signaling activation has been widely studied, an integrated understanding of the effects of oncogenic β-catenin on molecular networks is lacking. We used affinity-purification mass spectrometry (AP-MS), label-free liquid chromatography-tandem mass spectrometry, and RNA-Seq to compare protein-protein interactions, protein expression, and gene expression in colorectal cancer cells expressing mutant (oncogenic) or wild-type β-catenin. We generate an integrated molecular network and use it to identify novel protein modules that are associated with mutant or wild-type β-catenin. We identify a DNA methyltransferase I associated subnetwork that is enriched in cells with mutant β-catenin and a subnetwork enriched in wild-type cells associated with the CDKN2A tumor suppressor, linking these processes to the transformation of colorectal cancer cells through oncogenic β-catenin signaling. In summary, multiomics analysis of a defined colorectal cancer cell model provides a significantly more comprehensive identification of functional molecular networks associated with oncogenic β-catenin signaling.
FACT is a sensor of DNA torsional stress in eukaryotic cells
Safina, Alfiya; Cheney, Peter; Pal, Mahadeb; Brodsky, Leonid; Ivanov, Alexander; Kirsanov, Kirill; Lesovaya, Ekaterina; Naberezhnov, Denis; Nesher, Elimelech; Koman, Igor; Wang, Dan; Wang, Jianming; Yakubovskaya, Marianna; Winkler, Duane
2017-01-01
Abstract Transitions of B-DNA to alternative DNA structures (ADS) can be triggered by negative torsional strain, which occurs during replication and transcription, and may lead to genomic instability. However, how ADS are recognized in cells is unclear. We found that the binding of candidate anticancer drug, curaxin, to cellular DNA results in uncoiling of nucleosomal DNA, accumulation of negative supercoiling and conversion of multiple regions of genomic DNA into left-handed Z-form. Histone chaperone FACT binds rapidly to the same regions via the SSRP1 subunit in curaxin-treated cells. In vitro binding of purified SSRP1 or its isolated CID domain to a methylated DNA fragment containing alternating purine/pyrimidines, which is prone to Z-DNA transition, is much stronger than to other types of DNA. We propose that FACT can recognize and bind Z-DNA or DNA in transition from a B to Z form. Binding of FACT to these genomic regions triggers a p53 response. Furthermore, FACT has been shown to bind to other types of ADS through a different structural domain, which also leads to p53 activation. Thus, we propose that FACT acts as a sensor of ADS formation in cells. Recognition of ADS by FACT followed by a p53 response may explain the role of FACT in DNA damage prevention. PMID:28082391
Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector
NASA Astrophysics Data System (ADS)
Melnyk, Roman; DiBianca, Frank A.
2003-06-01
A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.
Angiotensin receptors and β-catenin regulate brain endothelial integrity in malaria
Basu-Roy, Upal; Ty, Maureen; Alique, Matilde; Fernandez-Arias, Cristina; Movila, Alexandru; Gomes, Pollyanna; Edagha, Innocent; Wassmer, Samuel C.; Walther, Thomas
2016-01-01
Cerebral malaria is characterized by cytoadhesion of Plasmodium falciparum–infected red blood cells (Pf-iRBCs) to endothelial cells in the brain, disruption of the blood-brain barrier, and cerebral microhemorrhages. No available antimalarial drugs specifically target the endothelial disruptions underlying this complication, which is responsible for the majority of malaria-associated deaths. Here, we have demonstrated that ruptured Pf-iRBCs induce activation of β-catenin, leading to disruption of inter–endothelial cell junctions in human brain microvascular endothelial cells (HBMECs). Inhibition of β-catenin–induced TCF/LEF transcription in the nucleus of HBMECs prevented the disruption of endothelial junctions, confirming that β-catenin is a key mediator of P. falciparum adverse effects on endothelial integrity. Blockade of the angiotensin II type 1 receptor (AT1) or stimulation of the type 2 receptor (AT2) abrogated Pf-iRBC–induced activation of β-catenin and prevented the disruption of HBMEC monolayers. In a mouse model of cerebral malaria, modulation of angiotensin II receptors produced similar effects, leading to protection against cerebral malaria, reduced cerebral hemorrhages, and increased survival. In contrast, AT2-deficient mice were more susceptible to cerebral malaria. The interrelation of the β-catenin and the angiotensin II signaling pathways opens immediate host-targeted therapeutic possibilities for cerebral malaria and other diseases in which brain endothelial integrity is compromised. PMID:27643439
The internal head protein Gp16 controls DNA ejection from the bacteriophage T7 virion.
Struthers-Schlinke, J S; Robins, W P; Kemp, P; Molineux, I J
2000-08-04
A wild-type T7 virion ejects about 850 bp of the 40 kb genome into the bacterial cell by a transcription-independent process. Internalization of the remainder of the genome normally requires transcription. Inhibition of transcription-independent DNA translocation beyond the leading 850 bp is not absolute but the time taken by a population of phage genomes in overcoming the block averages about 20 minutes at 30 degrees C. There are additional blocks to transcription-independent translocation and less than 20 % of infecting DNA molecules completely penetrate the cell cytoplasm after four hours of infection. Mutant virions containing an altered gene 16 protein either prevent the blocks to transcription-independent DNA translocation or effect rapid release from blocking sites and allow the entire phage DNA molecule to enter the cell at a constant rate of about 75 bp per second. This rate is likely the same at which the leading 850 bp is ejected into the cell from a wild-type virion. All mutations fall into two clusters contained within 380 bp of the 4 kb gene 16, suggesting that a 127 residue segment of gp16 controls DNA ejection from the phage particle. We suggest that this segment of gp16 acts as a clamp to prevent transcription-independent DNA translocation. Copyright 2000 Academic Press.
Long, Xiaoru; Xie, Jun; Zhao, Keting; Li, Wei; Tang, Wei; Chen, Sisi; Zang, Na; Ren, Luo; Deng, Yu; Xie, Xiaohong; Wang, Lijia; Fu, Zhou; Liu, Enmei
2016-10-01
RSV can lead to persistent airway inflammation and AHR and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. There are high numbers of NK cells in the lung, which not only play important roles in the acute stage of RSV infection, but also are pivotal in regulating the pathogenesis of asthma. Therefore, in this study, we assumed that NK cells might contribute to persistent airway disease during the later stage of RSV infection. Mice were killed at serial time points after RSV infection to collect samples. Leukocytes in bronchoalveolar lavage fluid (BALF) were counted, lung histopathology was examined, and airway hyperresponsiveness (AHR) was measured by whole-body plethysmography. Cytokines were detected by ELISA, and NK cells were determined by flow cytometry. Rabbit anti-mouse asialo-GM-1 antibodies and resveratrol were used to deplete or suppress NK cells. Inflammatory cells in BALF, lung tissue damage and AHR were persistent for 60 days post-RSV infection. Type 2 cytokines and NK cells were significantly increased during the later stage of infection. When NK cells were decreased by the antibodies or resveratrol, type 2 cytokines, the persistent airway inflammation and AHR were all markedly reduced. NK cells can contribute to the RSV-associated persistent airway inflammation and AHR at least partially by promoting type 2 cytokines. Therefore, therapeutic targeting of NK cells may provide a novel approach to alleviating the recurrent wheezing subsequent to RSV infection.
Computational Modeling of Tissue Self-Assembly
NASA Astrophysics Data System (ADS)
Neagu, Adrian; Kosztin, Ioan; Jakab, Karoly; Barz, Bogdan; Neagu, Monica; Jamison, Richard; Forgacs, Gabor
As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. Experimental and theoretical efforts of four decades turned the DAH into a fundamental principle of developmental biology that has been validated both in vitro and in vivo. Based on computational models of cell sorting, we have developed a DAH-based lattice model for tissues in interaction with their environment and simulated biological self-assembly using the Monte Carlo method. The present brief review highlights results on specific morphogenetic processes with relevance to tissue engineering applications. Our own work is presented on the background of several decades of theoretical efforts aimed to model morphogenesis in living tissues. Simulations of systems involving about 105 cells have been performed on high-end personal computers with CPU times of the order of days. Studied processes include cell sorting, cell sheet formation, and the development of endothelialized tubes from rings made of spheroids of two randomly intermixed cell types, when the medium in the interior of the tube was different from the external one. We conclude by noting that computer simulations based on mathematical models of living tissues yield useful guidelines for laboratory work and can catalyze the emergence of innovative technologies in tissue engineering.
Impact of environmental conditions and chemicals on the neuronal epigenome.
Del Blanco, Beatriz; Barco, Angel
2018-06-15
During development, chromatin changes contribute to establishing and maintaining the distinct gene-expression profiles of each individual cell type in a multicellular organism. This feat is especially remarkable in the human brain considering the sheer number of distinct cell types that make up this organ. This epigenetic programing is sensitive to environmental influences such as the presence of toxicants, diet, temperature, maternal behavior and many other external factors that can lead to sustained differences in neuronal gene expression. Here, we review a number of studies that demonstrate the existence of these environmental fingerprints in the neuronal epigenome and discuss the current challenges and prospects of environmental neuroepigenetics research. Copyright © 2018 Elsevier Ltd. All rights reserved.
[Insulitis in type 1 diabetes].
In't Veld, P; Klöppel, G
2016-05-01
Insulitis is considered to be the key morphological lesion of type 1 diabetes mellitus (T1DM) for which the diagnostic criteria were recently defined. From the immunophenotype of the lymphocytic infiltration, its frequency and extent during the course of T1DM and the presence of autoantibodies against beta cell proteins, it has been deduced that T1DM is a chronic autoimmune disease leading to gradual destruction of the insulin-producing cells of the islets of Langerhans in the pancreas, profound insulin deficiency and chronic hyperglycemia. This review article presents the morphological findings that support this hypothesis and addresses questions that need to be answered in order to further clarify the pathogenesis and to develop specific treatment options.
Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.
Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy
2012-12-07
Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.
Recognition and classification of colon cells applying the ensemble of classifiers.
Kruk, M; Osowski, S; Koktysz, R
2009-02-01
The paper presents the application of an ensemble of classifiers for the recognition of colon cells on the basis of the microscope colon image. The solved task include: segmentation of the individual cells from the image using the morphological operations, the preprocessing stages, leading to the extraction of features, selection of the most important features, and the classification stage applying the classifiers arranged in the form of ensemble. The paper presents and discusses the results concerning the recognition of four most important colon cell types: eosinophylic granulocyte, neutrophilic granulocyte, lymphocyte and plasmocyte. The proposed system is able to recognize the cells with the accuracy comparable to the human expert (around 5% of discrepancy of both results).
Innate lymphoid cells and asthma.
Yu, Sanhong; Kim, Hye Young; Chang, Ya-Jen; DeKruyff, Rosemarie H; Umetsu, Dale T
2014-04-01
Asthma is a complex and heterogeneous disease with several phenotypes, including an allergic asthma phenotype characterized by TH2 cytokine production and associated with allergen sensitization and adaptive immunity. Asthma also includes nonallergic asthma phenotypes, such as asthma associated with exposure to air pollution, infection, or obesity, that require innate rather than adaptive immunity. These innate pathways that lead to asthma involve macrophages, neutrophils, natural killer T cells, and innate lymphoid cells, newly described cell types that produce a variety of cytokines, including IL-5 and IL-13. We review the recent data regarding innate lymphoid cells and their role in asthma. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
SIMULTANEOUS PRODUCTION OF TWO CAPSULAR POLYSACCHARIDES BY PNEUMOCOCCUS
Austrian, Robert; Bernheimer, Harriet P.; Smith, Evelyn E. B.; Mills, George T.
1959-01-01
Study of the capsular genome of pneumococcus has shown that it controls a multiplicity of biochemical reactions essential to the synthesis of capsular polysaccharide. Mutation affecting any one of several biochemical reactions concerned with capsular synthesis may result in loss of capsulation without alteration of other biochemical functions similarly concerned. Mutations affecting the synthesis of uronic acids are an important cause of loss of capsulation and of virulence by strains of pneumococcus Type I and Type III. The capsular genome appears to have a specific location in the total genome of the cell, this locus being occupied by the capsular genome of whatever capsular type is expressed by the cell. Transformation of capsulated or of non-capsulated pneumococci to heterologous capsular type results probably from a genetic exchange followed by the development of a new biosynthetic pathway in the transformed cell. The new capsular genome is transferred to the transformed cell as a single particle of DNA. Binary capsulation results from the simultaneous presence within the pneumococcal cell of two capsular genomes, one mutated, the other normal. Interaction between the biochemical pathways controlled by the two capsular genomes leads to augmentation of the phenotypic expression of the product controlled by one and to partial suppression of the product determined by the other. Knowledge of the biochemical basis of binary capsulation can be used to indicate the presence of uronic acid in the capsular polysaccharide of a pneurnococcal type the composition of the capsule of which is unknown. PMID:13795197
NASA Technical Reports Server (NTRS)
White, B. S.; Castleman, K. R.
1981-01-01
An important step in the diagnosis of a cervical cytology specimen is estimating the proportions of the various cell types present. This is usually done with a cell classifier, the error rates of which can be expressed as a confusion matrix. We show how to use the confusion matrix to obtain an unbiased estimate of the desired proportions. We show that the mean square error of this estimate depends on a 'befuddlement matrix' derived from the confusion matrix, and how this, in turn, leads to a figure of merit for cell classifiers. Finally, we work out the two-class problem in detail and present examples to illustrate the theory.
Mechanical strain induces involution-associated events in mammary epithelial cells
Quaglino, Ana; Salierno, Marcelo; Pellegrotti, Jesica; Rubinstein, Natalia; Kordon, Edith C
2009-01-01
Background Shortly after weaning, a complex multi-step process that leads to massive epithelial apoptosis is triggered by tissue local factors in the mouse mammary gland. Several reports have demonstrated the relevance of mechanical stress to induce adaptive responses in different cell types. Interestingly, these signaling pathways also participate in mammary gland involution. Then, it has been suggested that cell stretching caused by milk accumulation after weaning might be the first stimulus that initiates the complete remodeling of the mammary gland. However, no previous report has demonstrated the impact of mechanical stress on mammary cell physiology. To address this issue, we have designed a new practical device that allowed us to evaluate the effects of radial stretching on mammary epithelial cells in culture. Results We have designed and built a new device to analyze the biological consequences of applying mechanical stress to cells cultured on flexible silicone membranes. Subsequently, a geometrical model that predicted the percentage of radial strain applied to the elastic substrate was developed. By microscopic image analysis, the adjustment of these calculations to the actual strain exerted on the attached cells was verified. The studies described herein were all performed in the HC11 non-tumorigenic mammary epithelial cell line, which was originated from a pregnant BALB/c mouse. In these cells, as previously observed in other tissue types, mechanical stress induced ERK1/2 phosphorylation and c-Fos mRNA and protein expression. In addition, we found that mammary cell stretching triggered involution associated cellular events as Leukemia Inhibitory Factor (LIF) expression induction, STAT3 activation and AKT phosphorylation inhibition. Conclusion Here, we show for the first time, that mechanical strain is able to induce weaning-associated events in cultured mammary epithelial cells. These results were obtained using a new practical and affordable device specifically designed for such a purpose. We believe that our results indicate the relevance of mechanical stress among the early post-lactation events that lead to mammary gland involution. PMID:19615079
Oxidative Stress in Diabetes: Implications for Vascular and Other Complications
Pitocco, Dario; Tesauro, Manfredi; Alessandro, Rizzi; Ghirlanda, Giovanni; Cardillo, Carmine
2013-01-01
In recent decades, oxidative stress has become a focus of interest in most biomedical disciplines and many types of clinical research. Increasing evidence shows that oxidative stress is associated with the pathogenesis of diabetes, obesity, cancer, ageing, inflammation, neurodegenerative disorders, hypertension, apoptosis, cardiovascular diseases, and heart failure. Based on these studies, an emerging concept is that oxidative stress is the “final common pathway” through which the risk factors for several diseases exert their deleterious effects. Oxidative stress causes a complex dysregulation of cell metabolism and cell–cell homeostasis; in particular, oxidative stress plays a key role in the pathogenesis of insulin resistance and β-cell dysfunction. These are the two most relevant mechanisms in the pathophysiology of type 2 diabetes and its vascular complications, the leading cause of death in diabetic patients. PMID:24177571
Susceptibility and immunity to helminth parasites
Maizels, Rick M; Hewitson, James P; Smith, Katherine A
2012-01-01
Parasitic helminth infection remains a global health problem, whilst the ability of worms to manipulate and dampen the host immune system is attracting interest in the fields of allergy and autoimmunity. Much progress has been made in the last two years in determining the cells and cytokines involved in induction of Type 2 immunity, which is generally protective against helminth infection. Innate cells respond to ‘alarmin’ cytokines (IL-25, IL-33, TSLP) by producing IL-4, IL-5 and IL-13, and this sets the stage for a more potent subsequent adaptive Th2 response. CD4+ Th2 cells then drive a suite of type 2 anti-parasite mechanisms, including class-switched antibodies, activated leukocytes and innate defence molecules; the concerted effects of these multiple pathways disable, degrade and dislodge parasites, leading to their destruction or expulsion. PMID:22795966
Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis
2017-02-01
Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.
Cutsuridis, Vassilis; Hasselmo, Michael
2012-07-01
Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum. Copyright © 2011 Wiley Periodicals, Inc.
Ammonium Accumulation and Cell Death in a Rat 3D Brain Cell Model of Glutaric Aciduria Type I
Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana
2013-01-01
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I. PMID:23326493
Ammonium accumulation and cell death in a rat 3D brain cell model of glutaric aciduria type I.
Jafari, Paris; Braissant, Olivier; Zavadakova, Petra; Henry, Hugues; Bonafé, Luisa; Ballhausen, Diana
2013-01-01
Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.
Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle
2017-06-01
Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.
[The fundamental mechanisms of metastatic spread and chemotherapy resistance in lung cancer].
Tomuleasa, Ciprian; Kacso, Gabriel; Soritau, Olga; Susman, Sergiu; Petrushev, Bobe; Aldea, Mihaela; Buiga, Rareş; Irimie, Alexandru
2011-01-01
Lung cancer is the leading cause of cancer-related death in the European Union and the United States, accounting for about one third of all cancer deaths. Primary lung cancer may arise from the central (bronchial) or peripheral (bronchiolo-alveolar) compartment of the lung, but the origins of the different histological types of primary lung tumours are not well understood and described in medical literature. Current investigation in the field of cancer research have focused on the "cancer stem cell" hypothesis as stem cells are belived to be crucial players in the homeostasis of all adult tissues. Even if the role of stem cells in lung carcinogenesis is not clear yet, numerous studies indicate that lung cancer is not the result of a sudden transforming event, but of a multistep process of molecular changes of the primordial stem cell niche, leading to the development of noeplasia. In the current review, we present state-of-the-art research in the field of lung stem cell biology, with a special emphasis on lung cancer emergence, development, metastasis and multidrug resistance.
Biodegradable Polymers Influence the Effect of Atorvastatin on Human Coronary Artery Cells
Strohbach, Anne; Begunk, Robert; Petersen, Svea; Felix, Stephan B.; Sternberg, Katrin; Busch, Raila
2016-01-01
Drug-eluting stents (DES) have reduced in-stent-restenosis drastically. Yet, the stent surface material directly interacts with cascades of biological processes leading to an activation of cellular defense mechanisms. To prevent adverse clinical implications, to date almost every patient with a coronary artery disease is treated with statins. Besides their clinical benefit, statins exert a number of pleiotropic effects on endothelial cells (ECs). Since maintenance of EC function and reduction of uncontrolled smooth muscle cell (SMC) proliferation represents a challenge for new generation DES, we investigated the effect of atorvastatin (ATOR) on human coronary artery cells grown on biodegradable polymers. Our results show a cell type-dependent effect of ATOR on ECs and SMCs. We observed polymer-dependent changes in IC50 values and an altered ATOR-uptake leading to an attenuation of statin-mediated effects on SMC growth. We conclude that the selected biodegradable polymers negatively influence the anti-proliferative effect of ATOR on SMCs. Hence, the process of developing new polymers for DES coating should involve the characterization of material-related changes in mechanisms of drug actions. PMID:26805825
Sprokholt, Joris K.; Kaptein, Tanja M.; van Hamme, John L.; Overmars, Ronald J.; Gringhuis, Sonja I.
2017-01-01
Follicular T helper cells (TFH) are fundamental in orchestrating effective antibody-mediated responses critical for immunity against viral infections and effective vaccines. However, it is unclear how virus infection leads to TFH induction. We here show that dengue virus (DENV) infection of human dendritic cells (DCs) drives TFH formation via crosstalk of RIG-I-like receptor (RLR) RIG-I and MDA5 with type I Interferon (IFN) signaling. DENV infection leads to RLR-dependent IKKε activation, which phosphorylates IFNα/β receptor-induced STAT1 to drive IL-27 production via the transcriptional complex ISGF3. Inhibiting RLR activation as well as neutralizing antibodies against IL-27 prevented TFH formation. DENV-induced CXCR5+PD-1+Bcl-6+ TFH cells secreted IL-21 and activated B cells to produce IgM and IgG. Notably, RLR activation by synthetic ligands also induced IL-27 secretion and TFH polarization. These results identify an innate mechanism by which antibodies develop during viral disease and identify RLR ligands as potent adjuvants for TFH-promoting vaccination strategies. PMID:29186193
Zhang, Jing; Kan, Shu; Huang, Brian; Hao, Zhenyue; Mak, Tak W.; Zhong, Qing
2011-01-01
Histone deacetylases (HDACs) are major epigenetic modulators involved in a broad spectrum of human diseases including cancers. Administration of HDAC inhibitors (HDACis) leads to growth inhibition, differentiation, and apoptosis of cancer cells. Understanding the regulatory mechanism of HDACs is imperative to harness the therapeutic potentials of HDACis. Here we show that HDACi- and DNA damage-induced apoptosis are severely compromised in mouse embryonic fibroblasts lacking a HECT domain ubiquitin ligase, Mule (Mcl-1 ubiquitin ligase E3). Mule specifically targets HDAC2 for ubiquitination and degradation. Accumulation of HDAC2 in Mule-deficient cells leads to compromised p53 acetylation as well as crippled p53 transcriptional activation, accumulation, and apoptotic response upon DNA damage and Nutlin-3 treatments. These defects in Mule-null cells can be partially reversed by HDACis and fully rescued by lowering the elevated HDAC2 in Mule-null cells to the normal levels as in wild-type cells. Taken together, our results reveal a critical regulatory mechanism of HDAC2 by Mule and suggest this pathway determines the cellular response to HDACis and DNA damage. PMID:22016339
Host response to bovine respiratory pathogens.
Czuprynski, Charles J
2009-12-01
Bovine respiratory disease (BRD) involves complex interactions amongst viral and bacterial pathogens that can lead to intense pulmonary inflammation (fibrinous pleuropneumonia). Viral infection greatly increases the susceptibility of cattle to secondary infection of the lung with bacterial pathogens like Mannheimia haemolytica and Histophilus somni. The underlying reason for this viral/bacterial synergism, and the manner in which cattle respond to the virulence strategies of the bacterial pathogens, is incompletely understood. Bovine herpesvirus type 1 (BHV-1) infection of bronchial epithelial cells in vitro enhances the binding of M. haemolytica and triggers release of inflammatory mediators that attract and enhance binding of neutrophils. An exotoxin (leukotoxin) released from M. haemolytica further stimulates release of inflammatory mediators and causes leukocyte death. Cattle infected with H. somni frequently display vasculitis. Exposure of bovine endothelial cells to H. somnii or its lipooligosaccharide (LOS) increases endothelium permeability, and makes the surface of the endothelial cells pro-coagulant. These processes are amplified in the presence of platelets. The above findings demonstrate that bovine respiratory pathogens (BHV-1, M. haemolytica and H. somni) interact with leukocytes and other cells (epithelial and endothelial cells) leading to the inflammation that characterizes BRD.
Haka, Abigail S.; Barbosa-Lorenzi, Valéria C.; Lee, Hyuek Jong; Falcone, Domenick J.; Hudis, Clifford A.; Dannenberg, Andrew J.
2016-01-01
Many types of apoptotic cells are phagocytosed and digested by macrophages. Adipocytes can be hundreds of times larger than macrophages, so they are too large to be digested by conventional phagocytic processes. The nature of the interaction between macrophages and apoptotic adipocytes has not been studied in detail. We describe a cellular process, termed exophagy, that is important for macrophage clearance of dead adipocytes and adipose tissue homeostasis. Using mouse models of obesity, human tissue, and a cell culture model, we show that macrophages form hydrolytic extracellular compartments at points of contact with dead adipocytes using local actin polymerization. These compartments are acidic and contain lysosomal enzymes delivered by exocytosis. Uptake and complete degradation of adipocyte fragments, which are released by extracellular hydrolysis, leads to macrophage foam cell formation. Exophagy-mediated foam cell formation is a highly efficient means by which macrophages internalize large amounts of lipid, which may ultimately overwhelm the metabolic capacity of the macrophage. This process provides a mechanism for degradation of objects, such as dead adipocytes, that are too large to be phagocytosed by macrophages. PMID:27044658
La Padula, Veronica; Staszewski, Ori; Nestel, Sigrun; Busch, Hauke; Boerries, Melanie; Roussa, Eleni; Prinz, Marco; Krieglstein, Kerstin
2016-12-01
The human small heat shock proteins (HSPBs) form a family of molecular chaperones comprising ten members (HSPB1-HSPB10), whose functions span from protein quality control to cytoskeletal dynamics and cell death control. Mutations in HSPBs can lead to human disease and particularly point mutations in HSPB1 and HSPB8 are known to lead to peripheral neuropathies. Recently, a missense mutation (R7S) in yet another member of this family, HSPB3, was found to cause an axonal motor neuropathy (distal hereditary motor neuropathy type 2C, dHMN2C). Until now, HSPB3 protein localization and function in motoneurons (MNs) have not yet been characterized. Therefore, we studied the endogenous HSPB3 protein distribution in the spinal cords of chicken and mouse embryos and in the postnatal nervous system (central and peripheral) of chicken, mouse and human. We further investigated the impact of wild-type and mutated HSPB3 on MN cell death via overexpressing these genes in ovo in an avian model of MN degeneration, the limb-bud removal. Altogether, our findings represent a first step for a better understanding of the cellular and molecular mechanisms leading to dHMN2C. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Regulation of Insulin Synthesis and Secretion and Pancreatic Beta-Cell Dysfunction in Diabetes
Fu, Zhuo; Gilbert, Elizabeth R.; Liu, Dongmin
2014-01-01
Pancreatic β-cell dysfunction plays an important role in the pathogenesis of both type 1 and type 2 diabetes. Insulin, which is produced in β-cells, is a critical regulator of metabolism. Insulin is synthesized as preproinsulin and processed to proinsulin. Proinsulin is then converted to insulin and C-peptide and stored in secretary granules awaiting release on demand. Insulin synthesis is regulated at both the transcriptional and translational level. The cis-acting sequences within the 5′ flanking region and trans-activators including paired box gene 6 (PAX6), pancreatic and duodenal homeobox-1(PDX-1), MafA, and B-2/Neurogenic differentiation 1 (NeuroD1) regulate insulin transcription, while the stability of preproinsulin mRNA and its untranslated regions control protein translation. Insulin secretion involves a sequence of events in β-cells that lead to fusion of secretory granules with the plasma membrane. Insulin is secreted primarily in response to glucose, while other nutrients such as free fatty acids and amino acids can augment glucose-induced insulin secretion. In addition, various hormones, such as melatonin, estrogen, leptin, growth hormone, and glucagon like peptide-1 also regulate insulin secretion. Thus, the β-cell is a metabolic hub in the body, connecting nutrient metabolism and the endocrine system. Although an increase in intracellular [Ca2+] is the primary insulin secretary signal, cAMP signaling-dependent mechanisms are also critical in the regulation of insulin secretion. This article reviews current knowledge on how β-cells synthesize and secrete insulin. In addition, this review presents evidence that genetic and environmental factors can lead to hyperglycemia, dyslipidemia, inflammation, and autoimmunity, resulting in β-cell dysfunction, thereby triggering the pathogenesis of diabetes. PMID:22974359