Sample records for cell types loss

  1. Loss of Nrf2 promotes alveolar type 2 cell loss in irradiated, fibrotic lung.

    PubMed

    Traver, Geri; Mont, Stacey; Gius, David; Lawson, William E; Ding, George X; Sekhar, Konjeti R; Freeman, Michael L

    2017-11-01

    The development of radiation-induced pulmonary fibrosis represents a critical clinical issue limiting delivery of therapeutic doses of radiation to non-small cell lung cancer. Identification of the cell types whose injury initiates a fibrotic response and the underlying biological factors that govern that response are needed for developing strategies that prevent or mitigate fibrosis. C57BL/6 mice (wild type, Nrf2 null, Nrf2 flox/flox , and Nrf2 Δ/Δ ; SPC-Cre) were administered a thoracic dose of 12Gy and allowed to recover for 250 days. Whole slide digital and confocal microscopy imaging of H&E, Masson's trichrome and immunostaining were used to assess tissue remodeling, collagen deposition and cell renewal/mobilization during the regenerative process. Histological assessment of irradiated, fibrotic wild type lung revealed significant loss of alveolar type 2 cells 250 days after irradiation. Type 2 cell loss and the corresponding development of fibrosis were enhanced in the Nrf2 null mouse. Yet, conditional deletion of Nrf2 in alveolar type 2 cells in irradiated lung did not impair type 2 cell survival nor yield an increased fibrotic phenotype. Instead, radiation-induced ΔNp63 stem/progenitor cell mobilization was inhibited in the Nrf2 null mouse while the propensity for radiation-induced myofibroblasts derived from alveolar type 2 cells was magnified. In summary, these results indicate that Nrf2 is an important regulator of irradiated lung's capacity to maintain alveolar type 2 cells, whose injury can initiate a fibrotic phenotype. Loss of Nrf2 inhibits ΔNp63 stem/progenitor mobilization, a key event for reconstitution of injured lung, while promoting a myofibroblast phenotype that is central for fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Paul, Neelima; Wandt, Johannes; Seidlmayer, Stefan; Schebesta, Sebastian; Mühlbauer, Martin J.; Dolotko, Oleksandr; Gasteiger, Hubert A.; Gilles, Ralph

    2017-03-01

    The aging behavior of commercially produced 18650-type Li-ion cells consisting of a lithium iron phosphate (LFP) based cathode and a graphite anode based on either mesocarbon microbeads (MCMB) or needle coke (NC) is studied by in situ neutron diffraction and standard electrochemical techniques. While the MCMB cells showed an excellent cycle life with only 8% relative capacity loss (i.e., referenced to the capacity after formation) after 4750 cycles and showed no capacity loss on storage for two years, the needle coke cells suffered a 23% relative capacity loss after cycling and a 11% loss after storage. Based on a combination of neutron diffraction and electrochemical characterization, it is shown that the entire capacity loss for both cell types is dominated by the loss of active lithium; no other aging mechanisms like structural degradation of anode or cathode active materials or deactivation of active material could be found, highlighting the high structural stability of the active material and the excellent quality of the investigated cells.

  3. The electrical losses induced by silver paste in n-type silicon solar cells

    NASA Astrophysics Data System (ADS)

    Aoyama, Takayuki; Aoki, Mari; Sumita, Isao; Yoshino, Yasushi; Ohshita, Yoshio; Ogura, Atsushi

    2017-10-01

    Aluminum-added silver paste (Ag/Al paste) has been used for p+ emitter of n-type solar cells. The electrical losses due to shunting and recombination caused by the paste in the cells have been reported to originate from huge metallic spikes due to the aluminum. However, whether the aluminum actually induces the losses has not been clarified yet. In this study, the “floating contact method” is applied to aluminum-free silver (Al-free Ag) paste to investigate the effects of aluminum extraction from the Ag/Al paste and to understand how the aluminum principally induces the losses for the p+ emitter. Furthermore, the interfacial morphology between the Al-free Ag paste and p-type silicon is investigated. The Ag paste itself creates tiny crystallites for the p+ emitter, resulting in shunting and recombination. The result indicates that the aluminum addition to Ag paste is not the main reason for the electrical losses in the n-type solar cells.

  4. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type.

    PubMed

    Jelinic, Petar; Schlappe, Brooke A; Conlon, Niamh; Tseng, Jill; Olvera, Narciso; Dao, Fanny; Mueller, Jennifer J; Hussein, Yaser; Soslow, Robert A; Levine, Douglas A

    2016-01-01

    Small cell carcinoma of the ovary, hypercalcemic type is an aggressive tumor generally affecting young women with limited treatment options. Mutations in SMARCA4, a catalytic subunit of the SWI/SNF chromatin remodeling complex, have recently been identified in nearly all small cell carcinoma of the ovary, hypercalcemic type cases and represent a signature molecular feature for this disease. Additional biological dependencies associated with small cell carcinoma of the ovary, hypercalcemic type have not been identified. SMARCA2, another catalytic subunit of the SWI/SNF complex mutually exclusive with SMARCA4, is thought to be post-translationally silenced in various cancer types. We analyzed 10 archival small cell carcinoma of the ovary, hypercalcemic type cases for SMARCA2 protein expression by immunohistochemistry and found that SMARCA2 expression was lost in all but one case. None of the 50 other tumors that primarily or secondarily involved the ovary demonstrated concomitant loss of SMARCA2 and SMARCA4. Deep sequencing revealed that this loss of SMARCA2 expression is not the result of mutational inactivation. In addition, we established a small cell carcinoma of the ovary, hypercalcemic type patient-derived xenograft and confirmed the loss of SMARCA2 in this in vitro model. This patient-derived xenograft model, established from a recurrent tumor, also had unexpected mutational features for this disease, including functional mutations in TP53 and POLE. Taken together, our data suggest that concomitant loss of SMARCA2 and SMARCA4 is another hallmark of small cell carcinoma of the ovary, hypercalcemic type-a finding that offers new opportunities for therapeutic interventions.

  5. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type

    PubMed Central

    Jelinic, Petar; Schlappe, Brooke A; Conlon, Niamh; Tseng, Jill; Olvera, Narciso; Dao, Fanny; Mueller, Jennifer J; Hussein, Yaser; Soslow, Robert A; Levine, Douglas A

    2016-01-01

    Small cell carcinoma of the ovary, hypercalcemic type is an aggressive tumor generally affecting young women with limited treatment options. Mutations in SMARCA4, a catalytic subunit of the SWI/SNF chromatin remodeling complex, have recently been identified in nearly all small cell carcinoma of the ovary, hypercalcemic type cases and represent a signature molecular feature for this disease. Additional biological dependencies associated with small cell carcinoma of the ovary, hypercalcemic type have not been identified. SMARCA2, another catalytic subunit of the SWI/SNF complex mutually exclusive with SMARCA4, is thought to be post-translationally silenced in various cancer types. We analyzed 10 archival small cell carcinoma of the ovary, hypercalcemic type cases for SMARCA2 protein expression by immunohistochemistry and found that SMARCA2 expression was lost in all but one case. None of the 50 other tumors that primarily or secondarily involved the ovary demonstrated concomitant loss of SMARCA2 and SMARCA4. Deep sequencing revealed that this loss of SMARCA2 expression is not the result of mutational inactivation. In addition, we established a small cell carcinoma of the ovary, hypercalcemic type patient-derived xenograft and confirmed the loss of SMARCA2 in this in vitro model. This patient-derived xenograft model, established from a recurrent tumor, also had unexpected mutational features for this disease, including functional mutations in TP53 and POLE. Taken together, our data suggest that concomitant loss of SMARCA2 and SMARCA4 is another hallmark of small cell carcinoma of the ovary, hypercalcemic type—a finding that offers new opportunities for therapeutic interventions. PMID:26564006

  6. Loss and gain of cone types in vertebrate ciliary photoreceptor evolution.

    PubMed

    Musser, Jacob M; Arendt, Detlev

    2017-11-01

    Ciliary photoreceptors are a diverse cell type family that comprises the rods and cones of the retina and other related cell types such as pineal photoreceptors. Ciliary photoreceptor evolution has been dynamic during vertebrate evolution with numerous gains and losses of opsin and phototransduction genes, and changes in their expression. For example, early mammals lost all but two cone opsins, indicating loss of cone receptor types in response to nocturnal lifestyle. Our review focuses on the comparison of specifying transcription factors and cell type-specific transcriptome data in vertebrate retinae to build and test hypotheses on ciliary photoreceptor evolution. Regarding cones, recent data reveal that a combination of factors specific for long-wavelength sensitive opsin (Lws)- cones in non-mammalian vertebrates (Thrb and Rxrg) is found across all differentiating cone photoreceptors in mice. This suggests that mammalian ancestors lost all but one ancestral cone type, the Lws-cone. We test this hypothesis by a correlation analysis of cone transcriptomes in mouse and chick, and find that, indeed, transcriptomes of all mouse cones are most highly correlated to avian Lws-cones. These findings underscore the importance of specifying transcription factors in tracking cell type evolution, and shed new light on the mechanisms of cell type loss and gain in retina evolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  8. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    PubMed Central

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  9. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    PubMed

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  10. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells

    NASA Astrophysics Data System (ADS)

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-11-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.

  11. Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation

    PubMed Central

    Fujioka, Masato; Tokano, Hisashi; Fujioka, Keiko Shiina; Okano, Hideyuki; Edge, Albert S.B.

    2011-01-01

    Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies. PMID:21576819

  12. Neurodegenerative Models in Drosophila: Polyglutamine Disorders, Parkinson Disease, and Amyotrophic Lateral Sclerosis

    PubMed Central

    Ambegaokar, Surendra S.; Roy, Bidisha; Jackson, George R.

    2010-01-01

    Neurodegenerative diseases encompass a large group of neurological disorders. Clinical symptoms can include memory loss, cognitive impairment, loss of movement or loss of control of movement, and loss of sensation. Symptoms are typically adult onset (although severe cases can occur in adolescents) and are reflective of neuronal and glial cell loss in the central nervous system. Neurodegenerative diseases also are considered progressive, with increased severity of symptoms over time, also reflective of increased neuronal cell death. However, various neurodegenerative diseases differentially affect certain brain regions or neuronal or glial cell types. As an example, Alzheimer disease (AD) primarily affects the temporal lobe, whereas neuronal loss in Parkinson disease (PD) is largely (although not exclusively) confined to the nigrostriatal system. Neuronal loss is almost invariably accompanied by abnormal insoluble aggregates, either intra- or extracellular. Thus, neurodegenerative diseases are categorized by (a) the composite of clinical symptoms, (b) the brain regions or types of brain cells primarily affected, and (c) the types of protein aggregates found in the brain. Here we review the methods by which Drosophila melanogaster has been used to model aspects of polyglutamine diseases, Parkinson disease, and amyotrophic lateral sclerosis and key insights into that have been gained from these models; Alzheimer disease and the tauopathies are covered elsewhere in this special issue. PMID:20561920

  13. Why do hair cells and spiral ganglion neurons in the cochlea die during aging?

    PubMed Central

    Perez, Philip; Bao, Jianxin

    2011-01-01

    Age-related decline of cochlear function is mainly due to the loss of hair cells and spiral ganglion neurons (SGNs). Recent findings clearly indicate that survival of these two cell types during aging depends on genetic and environmental interactions, and this relationship is seen at the systemic, tissue, cellular, and molecular levels. At cellular and molecular levels, age-related loss of hair cells and SGNs can occur independently, suggesting distinct mechanisms for the death of each during aging. This mechanistic independence is also observed in the loss of medial olivocochlear efferent innervation and outer hair cells during aging, pointing to a universal independent cellular mechanism for age-related neuronal death in the peripheral auditory system. While several molecular signaling pathways are implicated in the age-related loss of hair cells and SGNs, studies with the ability to locally modify gene expression in these cell types are needed to address whether these signaling pathways have direct effects on hair cells and SGNs during aging. Finally, the issue of whether age-related loss of these cells occurs via typical apoptotic pathways requires further examination. As new studies in the field of aging reshape the framework for exploring these underpinnings, understanding of the loss of hair cells and SGNs associated with age and the interventions that can treat and prevent these changes will result in dramatic benefits for an aging population. PMID:22396875

  14. Comparison of Types of Cell Death: Apoptosis and Necrosis.

    ERIC Educational Resources Information Center

    Manning, Francis; Zuzel, Katherine

    2003-01-01

    Cell death is an essential factor in many biological processes including development. Discusses two types of cell death: (1) necrosis (induced by sodium azide); and (2) apoptosis (induced by sodium chromate). Illustrates key features that differ between these two types of cells death including loss of membrane integrity and internucleosomal DNA…

  15. Osteocyte-derived RANKL is a critical mediator of the increased bone resorption caused by dietary calcium deficiency

    PubMed Central

    Xiong, Jinhu; Piemontese, Marilina; Thostenson, Jeff D.; Weinstein, Robert S.; Manolagas, Stavros C.; O’Brien, Charles A.

    2014-01-01

    Parathyroid hormone (PTH) excess stimulates bone resorption. This effect is associated with increased expression of the osteoclastogenic cytokine receptor activator of nuclear factor кB ligand (RANKL) in bone. However, several different cell types, including bone marrow stromal cells, osteocytes, and T lymphocytes, express both RANKL and the PTH receptor and it is unclear whether RANKL expression by any of these cell types is required for PTH-induced bone loss. Here we have used mice lacking the RANKL gene in osteocytes to determine whether RANKL produced by this cell type is required for the bone loss caused by secondary hyperparathyroidism induced by dietary calcium deficiency in adult mice. Thirty days of dietary calcium deficiency caused bone loss in control mice, but this effect was blunted in mice lacking RANKL in osteocytes. The increase in RANKL expression in bone and the increase in osteoclast number caused by dietary calcium deficiency were also blunted in mice lacking RANKL in osteocytes. These results demonstrate that RANKL produced by osteocytes contributes to the increased bone resorption and the bone loss caused by secondary hyperparathyroidism, strengthening the evidence that osteocytes are an important target cell for hormonal control of bone remodeling. PMID:24933342

  16. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    PubMed

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  17. Molecular Genetic Evidence for a Common Clonal Origin of Urinary Bladder Small Cell Carcinoma and Coexisting Urothelial Carcinoma

    PubMed Central

    Cheng, Liang; Jones, Timothy D.; McCarthy, Ryan P.; Eble, John N.; Wang, Mingsheng; MacLennan, Gregory T.; Lopez-Beltran, Antonio; Yang, Ximing J.; Koch, Michael O.; Zhang, Shaobo; Pan, Chong-Xian; Baldridge, Lee Ann

    2005-01-01

    In most cases, small-cell carcinoma of the urinary bladder is admixed with other histological types of bladder carcinoma. To understand the pathogenetic relationship between the two tumor types, we analyzed histologically distinct tumor cell populations from the same patient for loss of heterozygosity (LOH) and X chromosome inactivation (in female patients). We examined five polymorphic microsatellite markers located on chromosome 3p25-26 (D3S3050), chromosome 9p21 (IFNA and D9S171), chromosome 9q32-33 (D9S177), and chromosome 17p13 (TP53) in 20 patients with small-cell carcinoma of the urinary bladder and concurrent urothelial carcinoma. DNA samples were prepared from formalin-fixed, paraffin-embedded tissue sections using laser-assisted microdissection. A nearly identical pattern of allelic loss was observed in the two tumor types in all cases, with an overall frequency of allelic loss of 90% (18 of 20 cases). Three patients showed different allelic loss patterns in the two tumor types at a single locus; however, the LOH patterns at the remaining loci were identical. Similarly, the same pattern of nonrandom X chromosome inactivation was present in both carcinoma components in the four cases analyzed. Concordant genetic alterations and X chromosome inactivation between small-cell carcinoma and coexisting urothelial carcinoma suggest that both tumor components originate from the same cells in the urothelium. PMID:15855652

  18. Genetics Home Reference: autosomal recessive cerebellar ataxia type 1

    MedlinePlus

    ... defective protein is thought to impair Purkinje cell function and disrupt signaling between neurons in the cerebellum. The loss of brain cells in the cerebellum causes the movement problems characteristic of ARCA1 , but it is unclear how this cell loss is ... Learn more about the gene associated with ARCA1 ...

  19. Curcumin reverses T cell-mediated adaptive immune dysfunctions in tumor-bearing hosts.

    PubMed

    Bhattacharyya, Sankar; Md Sakib Hossain, Dewan; Mohanty, Suchismita; Sankar Sen, Gouri; Chattopadhyay, Sreya; Banerjee, Shuvomoy; Chakraborty, Juni; Das, Kaushik; Sarkar, Diptendra; Das, Tanya; Sa, Gaurisankar

    2010-07-01

    Immune dysfunction is well documented during tumor progression and likely contributes to tumor immune evasion. CD8(+) cytotoxic T lymphocytes (CTLs) are involved in antigen-specific tumor destruction and CD4(+) T cells are essential for helping this CD8(+) T cell-dependent tumor eradication. Tumors often target and inhibit T-cell function to escape from immune surveillance. This dysfunction includes loss of effector and memory T cells, bias towards type 2 cytokines and expansion of T regulatory (Treg) cells. Curcumin has previously been shown to have antitumor activity and some research has addressed the immunoprotective potential of this plant-derived polyphenol in tumor-bearing hosts. Here we examined the role of curcumin in the prevention of tumor-induced dysfunction of T cell-based immune responses. We observed severe loss of both effector and memory T-cell populations, downregulation of type 1 and upregulation of type 2 immune responses and decreased proliferation of effector T cells in the presence of tumors. Curcumin, in turn, prevented this loss of T cells, expanded central memory T cell (T(CM))/effector memory T cell (T(EM)) populations, reversed the type 2 immune bias and attenuated the tumor-induced inhibition of T-cell proliferation in tumor-bearing hosts. Further investigation revealed that tumor burden upregulated Treg cell populations and stimulated the production of the immunosuppressive cytokines transforming growth factor (TGF)-beta and IL-10 in these cells. Curcumin, however, inhibited the suppressive activity of Treg cells by downregulating the production of TGF-beta and IL-10 in these cells. More importantly, curcumin treatment enhanced the ability of effector T cells to kill cancer cells. Overall, our observations suggest that the unique properties of curcumin may be exploited for successful attenuation of tumor-induced suppression of cell-mediated immune responses.

  20. Targeted deletion of MKK4 in cancer cells: a detrimental phenotype manifests as decreased experimental metastasis and suggests a counterweight to the evolution of tumor-suppressor loss.

    PubMed

    Cunningham, Steven C; Gallmeier, Eike; Hucl, Tomas; Dezentje, David A; Calhoun, Eric S; Falco, Geppino; Abdelmohsen, Kotb; Gorospe, Myriam; Kern, Scott E

    2006-06-01

    Tumor-suppressors have commanded attention due to the selection for their inactivating mutations in human tumors. However, relatively little is understood about the inverse, namely, that tumors do not select for a large proportion of seemingly favorable mutations in tumor-suppressor genes. This could be explained by a detrimental phenotype accruing in a cell type-specific manner to most cells experiencing a biallelic loss. For example, MKK4, a tumor suppressor gene distinguished by a remarkably consistent mutational rate across diverse tumor types and an unusually high rate of loss of heterozygosity, has the surprisingly low rate of genetic inactivation of only approximately 5%. To explore this incongruity, we engineered a somatic gene knockout of MKK4 in human cancer cells. Although the null cells resembled the wild-type cells regarding in vitro viability and proliferation in plastic dishes, there was a marked difference in a more relevant in vivo model of experimental metastasis and tumorigenesis. MKK4(-/-) clones injected i.v. produced fewer lung metastases than syngeneic MKK4-competent cells (P = 0.0034). These findings show how cell type-specific detrimental phenotypes can offer a paradoxical and yet key counterweight to the selective advantage attained by cells as they experiment with genetic null states during tumorigenesis, the resultant balance then determining the observed biallelic mutation rate for a given tumor-suppressor gene.

  1. Toll-Like Receptor 4 Is a Regulator of Monocyte and Electroencephalographic Responses to Sleep Loss

    PubMed Central

    Wisor, Jonathan P.; Clegern, William C.; Schmidt, Michelle A.

    2011-01-01

    Study Objectives: Sleep loss triggers changes in inflammatory signaling pathways in the brain and periphery. The mechanisms that underlie these changes are ill-defined. The Toll-like receptor 4 (TLR4) activates inflammatory signaling cascades in response to endogenous and pathogen-associated ligands known to be elevated in association with sleep loss. TLR4 is therefore a possible mediator of some of the inflammation-related effects of sleep loss. Here we describe the baseline electroencephalographic sleep phenotype and the biochemical and electroencephalographic responses to sleep loss in TLR4-deficient mice. Design, Measurements and Results: TLR4-deficient mice and wild type controls were subjected to electroencephalographic and electromyographic recordings during spontaneous sleep/wake cycles and during and after sleep restriction sessions of 3, 6, and 24-h duration, during which sleep was disrupted by an automated sleep restriction system. Relative to wild type control mice, TLR4-deficient mice exhibited an increase in the duration of the primary daily waking bout occurring at dark onset in a light/dark cycle. The amount of time spent in non-rapid eye movement sleep by TLR4-deficient mice was reduced in proportion to increased wakefulness in the hours immediately after dark onset. Subsequent to sleep restriction, EEG measures of increased sleep drive were attenuated in TLR4-deficient mice relative to wild-type mice. TLR4 was enriched 10-fold in brain cells positive for the cell surface marker CD11b (cells of the monocyte lineage) relative to CD11b-negative cells in wild type mouse brains. To assess whether this population was affected selectively by TLR4 knockout, flow cytometry was used to count F4/80- and CD45-positive cells in the brains of sleep deprived and time of day control mice. While wild-type mice exhibited a significant reduction in the number of CD11b-positive cells in the brain after 24-h sleep restriction, TLR4-deficient mice did not. Conclusion: These data demonstrate that innate immune signaling pathways active in the monocyte lineage, including presumably microglia, detect and mediate in part the cerebral reaction to sleep loss. Citation: Wisor JP; Clegern WC; Schmidt MA. Toll-like receptor 4 is a regulator of monocyte and electroencephalographic responses to sleep loss. SLEEP 2011;34(10):1335–1345. PMID:21966065

  2. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  3. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  4. Evidence for Loss in Identity, De-Differentiation, and Trans-Differentiation of Islet β-Cells in Type 2 Diabetes

    PubMed Central

    Hunter, Chad S.; Stein, Roland W.

    2017-01-01

    The two main types of diabetes mellitus have distinct etiologies, yet a similar outcome: loss of islet β-cell function that is solely responsible for the secretion of the insulin hormone to reduce elevated plasma glucose toward euglycemic levels. Type 1 diabetes (T1D) has traditionally been characterized by autoimmune-mediated β-cell death leading to insulin-dependence, whereas type 2 diabetes (T2D) has hallmarks of peripheral insulin resistance, β-cell dysfunction, and cell death. However, a growing body of evidence suggests that, especially during T2D, key components of β-cell failure involves: (1) loss of cell identity, specifically proteins associated with mature cell function (e.g., insulin and transcription factors like MAFA, PDX1, and NKX6.1), as well as (2) de-differentiation, defined by regression to a progenitor or stem cell-like state. New technologies have allowed the field to compare islet cell characteristics from normal human donors to those under pathophysiological conditions by single cell RNA-Sequencing and through epigenetic analysis. This has revealed a remarkable level of heterogeneity among histologically defined “insulin-positive” β-cells. These results not only suggest that these β-cell subsets have different responses to insulin secretagogues, but that defining their unique gene expression and epigenetic modification profiles will offer opportunities to develop cellular therapeutics to enrich/maintain certain subsets for correcting pathological glucose levels. In this review, we will summarize the recent literature describing how β-cell heterogeneity and plasticity may be influenced in T2D, and various possible avenues of therapeutic intervention. PMID:28424732

  5. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency

    PubMed Central

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels. PMID:28095507

  6. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    PubMed

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  7. Towards a Molecular Understanding of Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-10-01

    gene expression following different types of noise exposure and their treatments, in the inner ear. To this end, we have (a) Established the hair ...in hair cells, support cells and whole inner ears, 6 and 24 hours after noise exposure; (c) Collected and processed most of the tissue for TTS...SUBJECT TERMS Permanent threshold shift, Temporary threshold shift, Noise induced hearing loss, Ribotag, RNA-seq, hair cell, supporting cell, SAHA

  8. Loss of Drosophila A-type lamin C initially causes tendon abnormality including disintegration of cytoskeleton and nuclear lamina in muscular defects.

    PubMed

    Uchino, Ryo; Nonaka, Yu-Ki; Horigome, Tuneyoshi; Sugiyama, Shin; Furukawa, Kazuhiro

    2013-01-01

    Lamins are the major components of nuclear envelope architecture, being required for both the structural and informational roles of the nuclei. Mutations of lamins cause a spectrum of diseases in humans, including muscular dystrophy. We report here that the loss of the A-type lamin gene, lamin C in Drosophila resulted in pupal metamorphic lethality caused by tendon defects, matching the characteristics of human A-type lamin revealed by Emery-Dreifuss muscular dystrophy (EDMD). In tendon cells lacking lamin C activity, overall cell morphology was affected and organization of the spectraplakin family cytoskeletal protein Shortstop which is prominently expressed in tendon cells gradually disintegrated, notably around the nucleus and in a manner correlating well with the degradation of musculature. Furthermore, lamin C null mutants were efficiently rescued by restoring lamin C expression to shortstop-expressing cells, which include tendon cells but exclude skeletal muscle cells. Thus the critical function of A-type lamin C proteins in Drosophila musculature is to maintain proper function and morphology of tendon cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Peripheral vestibular pathology in Mondini dysplasia.

    PubMed

    Kaya, Serdar; Hızlı, Ömer; Kaya, Fatıma Kübra; Monsanto, Rafael DaCosta; Paparella, Michael M; Cureoglu, Sebahattin

    2017-01-01

    In this study, our objective was to histopathologically analyze the peripheral vestibular system in patients with Mondini dysplasia. Comparative human temporal bone study. We assessed the sensory epithelium of the human vestibular system with a focus on the number of type I and type II hair cells, as well as the total number of hair cells. We compared those numbers in our Mondini dysplasia group versus our control group. The loss of type I and type II hair cells in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, was significantly higher in our Mondini dysplasia group than in our control group. The total number of hair cells significantly decreased in the cristae of the superior, lateral, and posterior semicircular canals, as well as in the saccular and utricular macula, in our Mondini dysplasia group. Loss of vestibular hair cells can lead to vestibular dysfunction in patients with Mondini dysplasia. NA Laryngoscope, 127:206-209, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  10. Loss of Smad4 in Sertoli and Leydig Cells Leads to Testicular Dysgenesis and Hemorrhagic Tumor Formation in Mice1

    PubMed Central

    Archambeault, Denise R.; Yao, Humphrey Hung-Chang

    2014-01-01

    ABSTRACT As the central component of canonical TGFbeta superfamily signaling, SMAD4 is a critical regulator of organ development, patterning, tumorigenesis, and many other biological processes. Because numerous TGFbeta superfamily ligands are expressed in developing testes, there may exist specific requirements for SMAD4 in individual testicular cell types. Previously, we reported that expansion of the fetal testis cords requires expression of SMAD4 by the Sertoli cell lineage. To further uncover the role of Smad4 in murine testes, we produced conditional knockout mice lacking Smad4 in either Leydig cells or in both Sertoli and Leydig cells simultaneously. Loss of Smad4 concomitantly in Sertoli and Leydig cells led to underdevelopment of the testis cords during fetal life and mild testicular dysgenesis in young adulthood (decreased testis size, partially dysgenic seminiferous tubules, and low sperm production). When the Sertoli/Leydig cell Smad4 conditional knockout mice aged (56- to 62-wk old), the testis phenotypes became exacerbated with the appearance of hemorrhagic tumors, Leydig cell adenomas, and a complete loss of spermatogenesis. In contrast, loss of Smad4 in Leydig cells alone did not appreciably alter fetal and adult testis development. Our findings support a cell type-specific requirement of Smad4 in testis development and suppression of testicular tumors. PMID:24501173

  11. Influence of the Cell Wall on Intracellular Delivery to Algal Cells by Electroporation and Sonication

    PubMed Central

    Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.

    2007-01-01

    To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827

  12. Dnmt1 activity is dispensable in δ-cells but is essential for α-cell homeostasis.

    PubMed

    Damond, Nicolas; Thorel, Fabrizio; Kim, Seung K; Herrera, Pedro L

    2017-07-01

    In addition to β-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive β-cell ablation in mice, may help restoring a functional β-cell mass in type 1 diabetes. Yet, the spontaneous α-to-β and δ-to-β conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a β-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in β-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Inner ear changes in mucopolysaccharidosis type I/Hurler syndrome.

    PubMed

    Kariya, Shin; Schachern, Patricia A; Nishizaki, Kazunori; Paparella, Michael M; Cureoglu, Sebahattin

    2012-10-01

    Mucopolysaccharidosis type I/Hurler syndrome is an autosomal recessive disease caused by a deficiency of α-L-iduronidase activity. Recurrent middle ear infections and hearing loss are common complications in Hurler syndrome. Although sensorineural and conductive components occur, the mechanism of sensorineural hearing loss has not been determined. The purpose of this study is to evaluate the quantitative inner ear histopathology of the temporal bones of patients with Hurler syndrome. Eleven temporal bones from 6 patients with Hurler syndrome were examined. Age-matched healthy control samples consisted of 14 temporal bones from 7 cases. Temporal bones were serially sectioned in the horizontal plane and stained with hematoxylin and eosin. The number of spiral ganglion cells, loss of cochlear hair cells, area of stria vascularis, and cell density of spiral ligament were evaluated using light microscopy. There was no significant difference between Hurler syndrome and healthy controls in the number of spiral ganglion cells, area of stria vascularis, or cell density of spiral ligament. The number of cochlear hair cells in Hurler syndrome was significantly decreased compared with healthy controls. Auditory pathophysiology in the central nerve system in Hurler syndrome remains unknown; however, decreased cochlear hair cells may be one of the important factors for the sensorineural component of hearing loss.

  14. Identification of Adeno-Associated Viral Vectors That Target Neonatal and Adult Mammalian Inner Ear Cell Subtypes

    PubMed Central

    Shu, Yilai; Tao, Yong; Wang, Zhengmin; Tang, Yong; Li, Huawei; Dai, Pu; Gao, Guangping; Chen, Zheng-Yi

    2016-01-01

    The mammalian inner ear consists of diverse cell types with important functions. Gene mutations in these diverse cell types have been found to underlie different forms of genetic hearing loss. Targeting these mutations for gene therapy development represents a future therapeutic strategy to treat hearing loss. Adeno-associated viral (AAV) vectors have become the vector of choice for gene delivery in animal models in vivo. To identify AAV vectors that target inner ear cell subtypes, we systemically screened 12 AAV vectors with different serotypes (AAV1, 2, 5, 6, 6.2, 7, 8, 9, rh.8, rh.10, rh.39, and rh.43) that carry a reporter gene GFP in neonatal and adult mice by microinjection in vivo. We found that most AAVs infect both neonatal and adult inner ear, with different specificities and expression levels. The inner ear cochlear sensory epithelial region, which includes auditory hair cells and supporting cells, is most frequently targeted for gene delivery. Expression of the transgene is sustained, and neonatal inner ear delivery does not adversely affect hearing. Adult inner ear injection of AAV has a similar infection pattern as the younger inner ear, with the exception that outer hair cell death caused by the injection procedure can lead to hearing loss. In the adult, more so than in the neonatal mice, cell types infected and efficiency of infection are correlated with the site of injection. Most infected cells survive in neonatal and adult inner ears. The study adds to the list of AAV vectors that transduce the mammalian inner ear efficiently, providing the tools that are important to study inner ear gene function and for the development of gene therapy to treat hearing loss. PMID:27342665

  15. Senescent changes in the ribosomes of animal cells in vivo and in vitro

    NASA Technical Reports Server (NTRS)

    Miquel, J.; Johnson, J. E., Jr.

    1979-01-01

    The paper examines RNA-ribosomal changes observed in protozoa and fixed postmitotic cells, as well as the characteristics of intermitotic cells. Attention is given to a discussion of the implications of the reported ribosomal changes as to the senescent deterioration of protein synthesis and physiological functions. A survey of the literature suggests that, while the data on ribosomal change in dividing cells both in vivo and in vitro are inconclusive, there is strong histological and biochemical evidence in favor of some degree of quantitative ribosomal loss in fixed postmitotic cells. Since these decreases in ribosomes are demonstrated in differential cells from nematodes, insects and mammals, they may represent a universal manifestation of cytoplasmic senescence in certain types of fixed postmitotic animal cells. The observed variability in ribosomal loss for cells belonging to the same type suggests that this involution phenomenon is rather related to the wear and tear suffered by a particular cell.

  16. Blood Type 0 is not associated with increased blood loss in extensive spine surgery✩

    PubMed Central

    Komatsu, Ryu; Dalton, Jarrod E.; Ghobrial, Michael; Fu, Alexander Y.; Lee, Jae H.; Egan, Cameron; Sessler, Daniel I.; Kasuya, Yusuke; Turan, Alparslan

    2016-01-01

    Study Objective To investigate whether Type O blood group status is associated with increased intraoperative blood loss and requirement of blood transfusion in extensive spine surgery. Design Retrospective comparative study. Setting University-affiliated, non-profit teaching hospital. Measurements Data from 1,050 ASA physical status 1, 2, 3, 4, and 5 patients who underwent spine surgeries involving 4 or more vertebral levels were analyzed. Patients with Type O blood were matched to similar patients with other blood types using propensity scores, which were estimated via demographic and morphometric data, medical history variables, and extent of surgery. Intraoperative estimated blood loss (EBL) was compared among matched patients using a linear regression model; intraoperative transfusion requirement in volume of red blood cells, fresh frozen plasma, platelet, cryoprecipitate, cell salvaged blood, volume of intraoperative infusion of hetastarch, 5% albumin, crystalloids, and hospital length of hospital (LOS) were compared using Wilcoxon rank-sum tests. Main Results Intraoperative EBL and requirement of blood product transfusion were similar in patients with Type O blood group and those with other blood groups. Conclusion There was no association between Type O blood and increased intraoperative blood loss or blood transfusion requirement during extensive spine surgery, with similar hospital LOS in Type O and non-O patients. PMID:25172503

  17. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  18. Serial corneal endothelial cell loss with lathe-cut and injection-molded posterior chamber intraocular lenses.

    PubMed

    Kraff, M C; Sanders, D R; Lieberman, H L

    1983-01-01

    We compared endothelial cell loss of patients implanted with lathe-cut posterior chamber lenses and those implanted with injection-molded lenses over a three-year postoperative period. Results were based on more than 2,500 measurements of corneal endothelial density. Although the technique of cataract extraction (anterior chamber phacoemulsification, posterior chamber phacoemulsification, or planned extracapsular extraction) significantly affected cell loss (P less than .01), the type of implant (lathe-cut or injection-molded) did not. Significant continuing endothelial cell loss did not occur during the first three postoperative years with injection-molded lenses. There was, however, a statistically significant 7% to 15% additional cell loss after surgery over the first two to three postoperative years with lathe-cut implants. There have been no cases of corneal endothelial decompensation developing after implantation of injection-molded or lathe-cut lenses. Because a standard field clinical specular microscope was used in this study, cell counting errors cannot be ruled out as a cause of these findings.

  19. Synthesis of mannosylinositol phosphorylceramides is involved in maintenance of cell integrity of yeast Saccharomyces cerevisiae.

    PubMed

    Morimoto, Yuji; Tani, Motohiro

    2015-02-01

    Complex sphingolipids play important roles in many physiologically important events in yeast Saccharomyces cerevisiae. In this study, we screened yeast mutant strains showing a synthetic lethal interaction with loss of mannosylinositol phosphorylceramide (MIPC) synthesis and found that a specific group of glycosyltransferases involved in the synthesis of mannan-type N-glycans is essential for the growth of cells lacking MIPC synthases (Sur1 and Csh1). The genetic interaction was also confirmed by repression of MNN2, which encodes alpha-1,2-mannosyltransferase that synthesizes mannan-type N-glycans, by a tetracycline-regulatable system. MNN2-repressed sur1Δ csh1Δ cells exhibited high sensitivity to zymolyase treatment, and caffeine and sodium dodecyl sulfate (SDS) strongly inhibited the growth of sur1Δ csh1Δ cells, suggesting impairment of cell integrity due to the loss of MIPC synthesis. The phosphorylated form of Slt2, a mitogen-activated protein (MAP) kinase activated by impaired cell integrity, increased in sur1Δ csh1Δ cells, and this increase was dramatically enhanced by the repression of Mnn2. Moreover, the growth defect of MNN2-repressed sur1Δ csh1Δ cells was enhanced by the deletion of SLT2 or RLM1 encoding a downstream target of Slt2. These results indicated that loss of MIPC synthesis causes impairment of cell integrity, and this effect is enhanced by impaired synthesis of mannan-type N-glycans. © 2014 John Wiley & Sons Ltd.

  20. Congenital Nystagmus Gene FRMD7 Is Necessary for Establishing a Neuronal Circuit Asymmetry for Direction Selectivity

    PubMed Central

    Yonehara, Keisuke; Fiscella, Michele; Drinnenberg, Antonia; Esposti, Federico; Trenholm, Stuart; Krol, Jacek; Franke, Felix; Scherf, Brigitte Gross; Kusnyerik, Akos; Müller, Jan; Szabo, Arnold; Jüttner, Josephine; Cordoba, Francisco; Reddy, Ashrithpal Police; Németh, János; Nagy, Zoltán Zsolt; Munier, Francis; Hierlemann, Andreas; Roska, Botond

    2016-01-01

    Summary Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. Video Abstract PMID:26711119

  1. The Genome Landscape of the African Green Monkey Kidney-Derived Vero Cell Line

    PubMed Central

    Osada, Naoki; Kohara, Arihiro; Yamaji, Toshiyuki; Hirayama, Noriko; Kasai, Fumio; Sekizuka, Tsuyoshi; Kuroda, Makoto; Hanada, Kentaro

    2014-01-01

    Continuous cell lines that originate from mammalian tissues serve as not only invaluable tools for life sciences, but also important animal cell substrates for the production of various types of biological pharmaceuticals. Vero cells are susceptible to various types of microbes and toxins and have widely contributed to not only microbiology, but also the production of vaccines for human use. We here showed the genome landscape of a Vero cell line, in which 25,877 putative protein-coding genes were identified in the 2.97-Gb genome sequence. A homozygous ∼9-Mb deletion on chromosome 12 caused the loss of the type I interferon gene cluster and cyclin-dependent kinase inhibitor genes in Vero cells. In addition, an ∼59-Mb loss of heterozygosity around this deleted region suggested that the homozygosity of the deletion was established by a large-scale conversion. Moreover, a genomic analysis of Vero cells revealed a female Chlorocebus sabaeus origin and proviral variations of the endogenous simian type D retrovirus. These results revealed the genomic basis for the non-tumourigenic permanent Vero cell lineage susceptible to various pathogens and will be useful for generating new sub-lines and developing new tools in the quality control of Vero cells. PMID:25267831

  2. Sox10 Expressing Cells in the Lateral Wall of the Aged Mouse and Human Cochlea

    PubMed Central

    Hao, Xinping; Xing, Yazhi; Moore, Michael W.; Zhang, Jianning; Han, Demin; Schulte, Bradley A.; Dubno, Judy R.; Lang, Hainan

    2014-01-01

    Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear. PMID:24887110

  3. Type 1 papillary renal cell carcinoma in a patient with schwannomatosis: Mosaic versus loss of SMARCB1 expression in respectively schwannoma and renal tumor cells.

    PubMed

    Hulsebos, Theo J M; Kenter, Susan; Baas, Frank; Nannenberg, Eline A; Bleeker, Fonnet E; van Minkelen, Rick; van den Ouweland, Ans M W; Wesseling, Pieter; Flucke, Uta

    2016-04-01

    In schwannomatosis, germline SMARCB1 or LZTR1 mutations predispose to the development of multiple benign schwannomas. Besides these, other tumors may occur in schwannomatosis patients. We present a 45-year-old male patient who developed multiple schwannomas and in addition a malignant type 1 papillary renal cell carcinoma (pRCC1). We identified a duplication of exon 7 of SMARCB1 on chromosome 22 in the constitutional DNA of the patient (c.796-2246_986 + 5250dup7686), resulting in the generation of a premature stop codon in the second exon 7 copy (p.Glu330*). The mutant SMARCB1 allele proved to be retained in three schwannomas and in the pRCC1 of the patient. Loss of heterozygosity analysis demonstrated partial loss of the wild-type SMARCB1 allele containing chromosome 22, suggesting loss of that chromosome in only a subset of tumor cells, in all four tumors. Immunohistochemical staining with a SMARCB1 antibody revealed a mosaic SMARCB1 expression pattern in the three benign schwannomas, but absence of expression in the malignant tumor cells of the pRCC1. To our knowledge, this difference in SMARCB1 protein expression has not been reported before. We conclude that a germline SMARCB1 mutation may predispose to the development of pRCC1, thereby further widening the spectrum of tumors that can develop in the context of schwannomatosis. © 2016 Wiley Periodicals, Inc.

  4. The bHLH Repressor Deadpan Regulates the Self-renewal and Specification of Drosophila Larval Neural Stem Cells Independently of Notch

    PubMed Central

    Younger, Susan; Huang, Yaling; Lee, Tzumin

    2012-01-01

    Neural stem cells (NSCs) are able to self-renew while giving rise to neurons and glia that comprise a functional nervous system. However, how NSC self-renewal is maintained is not well understood. Using the Drosophila larval NSCs called neuroblasts (NBs) as a model, we demonstrate that the Hairy and Enhancer-of-Split (Hes) family protein Deadpan (Dpn) plays important roles in NB self-renewal and specification. The loss of Dpn leads to the premature loss of NBs and truncated NB lineages, a process likely mediated by the homeobox protein Prospero (Pros). Conversely, ectopic/over-expression of Dpn promotes ectopic self-renewing divisions and maintains NB self-renewal into adulthood. In type II NBs, which generate transit amplifying intermediate neural progenitors (INPs) like mammalian NSCs, the loss of Dpn results in ectopic expression of type I NB markers Asense (Ase) and Pros before these type II NBs are lost at early larval stages. Our results also show that knockdown of Notch leads to ectopic Ase expression in type II NBs and the premature loss of type II NBs. Significantly, dpn expression is unchanged in these transformed NBs. Furthermore, the loss of Dpn does not inhibit the over-proliferation of type II NBs and immature INPs caused by over-expression of activated Notch. Our data suggest that Dpn plays important roles in maintaining NB self-renewal and specification of type II NBs in larval brains and that Dpn and Notch function independently in regulating type II NB proliferation and specification. PMID:23056424

  5. Islet-specific monoamine oxidase A and B expression depends on MafA transcriptional activity and is compromised in type 2 diabetes.

    PubMed

    Ganic, Elvira; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Artner, Isabella

    2015-12-25

    Lack or dysfunction of insulin producing β cells results in the development of type 1 and type 2 diabetes mellitus, respectively. Insulin secretion is controlled by metabolic stimuli (glucose, fatty acids), but also by monoamine neurotransmitters, like dopamine, serotonin, and norepinephrine. Intracellular monoamine levels are controlled by monoamine oxidases (Mao) A and B. Here we show that MaoA and MaoB are expressed in mouse islet β cells and that inhibition of Mao activity reduces insulin secretion in response to metabolic stimuli. Moreover, analysis of MaoA and MaoB protein expression in mouse and human type 2 diabetic islets shows a significant reduction of MaoB in type 2 diabetic β cells suggesting that loss of Mao contributes to β cell dysfunction. MaoB expression was also reduced in β cells of MafA-deficient mice, a mouse model for β cell dysfunction, and biochemical studies showed that MafA directly binds to and activates MaoA and MaoB transcriptional control sequences. Taken together, our results show that MaoA and MaoB expression in pancreatic islets is required for physiological insulin secretion and lost in type 2 diabetic mouse and human β cells. These findings demonstrate that regulation of monoamine levels by Mao activity in β cells is pivotal for physiological insulin secretion and that loss of MaoB expression may contribute to the β cell dysfunction in type 2 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Islet transplantation in patients with autoimmune diabetes induces homeostatic cytokines that expand autoreactive memory T cells

    PubMed Central

    Monti, Paolo; Scirpoli, Miriam; Maffi, Paola; Ghidoli, Nadia; De Taddeo, Francesca; Bertuzzi, Federico; Piemonti, Lorenzo; Falcone, Marika; Secchi, Antonio; Bonifacio, Ezio

    2008-01-01

    Successful transplantation requires the prevention of allograft rejection and, in the case of transplantation to treat autoimmune disease, the suppression of autoimmune responses. The standard immunosuppressive treatment regimen given to patients with autoimmune type 1 diabetes who have received an islet transplant results in the loss of T cells. In many other situations, the immune system responds to T cell loss through cytokine-dependant homeostatic proliferation of any remaining T cells. Here we show that T cell loss after islet transplantation in patients with autoimmune type 1 diabetes was associated with both increased serum concentrations of IL-7 and IL-15 and in vivo proliferation of memory CD45RO+ T cells, highly enriched in autoreactive glutamic acid decarboxylase 65–specific T cell clones. Immunosuppression with FK506 and rapamycin after transplantation resulted in a chronic homeostatic expansion of T cells, which acquired effector function after immunosuppression was removed. In contrast, the cytostatic drug mycophenolate mofetil efficiently blocked homeostatic T cell expansion. We propose that the increased production of cytokines that induce homeostatic expansion could contribute to recurrent autoimmunity in transplanted patients with autoimmune disease and that therapy that prevents the expansion of autoreactive T cells will improve the outcome of islet transplantation. PMID:18431516

  7. c-Jun activation in Schwann cells protects against loss of sensory axons in inherited neuropathy

    PubMed Central

    Hantke, Janina; Carty, Lucy; Wagstaff, Laura J.; Turmaine, Mark; Wilton, Daniel K.; Quintes, Susanne; Koltzenburg, Martin; Baas, Frank; Mirsky, Rhona

    2014-01-01

    Charcot–Marie–Tooth disease type 1A is the most frequent inherited peripheral neuropathy. It is generally due to heterozygous inheritance of a partial chromosomal duplication resulting in over-expression of PMP22. A key feature of Charcot–Marie–Tooth disease type 1A is secondary death of axons. Prevention of axonal loss is therefore an important target of clinical intervention. We have previously identified a signalling mechanism that promotes axon survival and prevents neuron death in mechanically injured peripheral nerves. This work suggested that Schwann cells respond to injury by activating/enhancing trophic support for axons through a mechanism that depends on upregulation of the transcription factor c-Jun in Schwann cells, resulting in the sparing of axons that would otherwise die. As c-Jun orchestrates Schwann cell support for distressed neurons after mechanical injury, we have now asked: do Schwann cells also activate a c-Jun dependent neuron-supportive programme in inherited demyelinating disease? We tested this by using the C3 mouse model of Charcot–Marie–Tooth disease type 1A. In line with our previous findings in humans with Charcot–Marie–Tooth disease type 1A, we found that Schwann cell c-Jun was elevated in (uninjured) nerves of C3 mice. We determined the impact of this c-Jun activation by comparing C3 mice with double mutant mice, namely C3 mice in which c-Jun had been conditionally inactivated in Schwann cells (C3/Schwann cell-c-Jun−/− mice), using sensory-motor tests and electrophysiological measurements, and by counting axons in proximal and distal nerves. The results indicate that c-Jun elevation in the Schwann cells of C3 nerves serves to prevent loss of myelinated sensory axons, particularly in distal nerves, improve behavioural symptoms, and preserve F-wave persistence. This suggests that Schwann cells have two contrasting functions in Charcot–Marie–Tooth disease type 1A: on the one hand they are the genetic source of the disease, on the other, they respond to it by mounting a c-Jun-dependent response that significantly reduces its impact. Because axonal death is a central feature of much nerve pathology it will be important to establish whether an axon-supportive Schwann cell response also takes place in other conditions. Amplification of this axon-supportive mechanism constitutes a novel target for clinical intervention that might be useful in Charcot–Marie–Tooth disease type 1A and other neuropathies that involve axon loss. PMID:25216747

  8. iNOS-Derived Nitric Oxide Stimulates Osteoclast Activity and Alveolar Bone Loss in Ligature-Induced Periodontitis in Rats

    PubMed Central

    Herrera, Bruno S.; Martins-Porto, Rodrigo; Maia-Dantas, Aline; Campi, Paula; Spolidorio, Luis C.; Costa, Soraia K.P.; Van Dyke, Thomas E.; Gyurko, Robert; Muscara, Marcelo N.

    2012-01-01

    Background Inflammatory stimuli activate inducible nitric oxide synthase (iNOS) in a variety of cell types, including osteoclasts (OC) and osteoblasts, resulting in sustained NO production. In this study, we evaluate the alveolar bone loss in rats with periodontitis under long-term iNOS inhibition, and the differentiation and activity of OC from iNOS-knockout (KO) mice in vitro. Methods Oral aminoguanidine (an iNOS inhibitor) or water treatment was started 2 weeks before induction of periodontitis. Rats were sacrificed 3, 7, or 14 days after ligature placement, and alveolar bone loss was evaluated. In vitro OC culture experiments were also performed to study the differentiation of freshly isolated bone marrow cells from both iNOS KO and wild-type C57BL/6 mice. OC were counted 6 days later after tartrate-resistant acid phosphatase staining (a marker of osteoclast identity), and bone resorption activity was assessed by counting the number of resorption pits on dentin disks. Results Rats with ligature showed progressive and significant alveolar bone loss compared to sham animals, and aminoguanidine treatment significantly inhibited ligature-induced bone loss at 7 and 14 days after the induction. In comparison to bone marrow cells from wild-type mice, cells from iNOS KO mice showed decreased OC growth and the resulting OC covered a smaller culture dish area and generated fewer resorption pit counts. Conclusion Our results demonstrate that iNOS inhibition prevents alveolar bone loss in a rat model of ligature-induced periodontitis, thus confirming that iNOS-derived NO plays a crucial role in the pathogenesis of periodontitis, probably by stimulating OC differentiation and activity. PMID:21417589

  9. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas.

    PubMed

    Furukawa, Toru; Sakamoto, Hitomi; Takeuchi, Shoko; Ameri, Mitra; Kuboki, Yuko; Yamamoto, Toshiyuki; Hatori, Takashi; Yamamoto, Masakazu; Sugiyama, Masanori; Ohike, Nobuyuki; Yamaguchi, Hiroshi; Shimizu, Michio; Shibata, Noriyuki; Shimizu, Kyoko; Shiratori, Keiko

    2015-03-06

    Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we identified recurrent mutations of BRCA2 and FAT genes. BRCA2 showed somatic or germline premature termination mutations, with loss of the wild-type allele in 3 of 7 tumors. FAT1, FAT3, and FAT4 showed somatic or germline missense mutations in 4 of 7 tumors. The germline FAT mutations were with loss of the wild-type allele. Loss of BRCA2 expression was observed in 5 of 11 tumors. One patient with a BRCA2-mutated tumor experienced complete remission of liver metastasis following cisplatinum chemotherapy. In conclusion, acinar cell carcinomas show a distinct mutation pattern and often harbor somatic or germline mutations of BRCA2 and FAT genes. This result may warrant assessment of BRCA2 abrogation in patients with the carcinoma to determine their sensitivity to chemotherapy.

  10. Cytogenetic and morphologic typing of 58 papillary renal cell carcinomas: evidence for a cytogenetic evolution of type 2 from type 1 tumors.

    PubMed

    Gunawan, Bastian; von Heydebreck, Anja; Fritsch, Thekla; Huber, Wolfgang; Ringert, Rolf-Hermann; Jakse, Gerhard; Füzesi, László

    2003-10-01

    We evaluated clinical characteristics, patient outcome (mean follow-up, 47 months), and cytogenetic abnormalities in the largest as yet reported cytogenetic series of 47 primary and 11 secondary papillary renal cell carcinomas for differences between the recently proposed type 1 and type 2 subtypes. Secondary tumors were more often of type 2 morphology (P = 0.02), whereas primary type 2 tumors were associated with higher clinical stage (P = 0.001) and worse patient outcome (P = 0.02). Although both subtypes had at least one of the primary chromosomal gains at 17q, 7, and 16q, type 2 tumors had moderately lower frequencies of primary gains at 17p (61 versus 94%; P = 0.007) and 17q (72 versus 97%; P = 0.02). On the other hand, type 2 tumors overall had more chromosomal alterations than type 1 tumors (P = 0.01), particularly gains of 1q (28 versus 3%; P = 0.02) and losses of 8p (33 versus 0%; P = 0.001), 11 (28 versus 3%; P = 0.02), and 18 (44 versus 9%; P = 0.01). Hierarchical clustering suggested cytogenetic patterns common but not restricted to type 2 morphology, one characterized by multiple additional gains, and another predominantly showing additional losses. These findings provide genetic evidence that type 1 and type 2 tumors arise from common cytogenetic pathways and that type 2 tumors evolve from type 1 tumors. Independently of type, losses of 9p were statistically correlated with advanced disease (P = 0.0008) and may serve as a potential adverse prognostic marker in papillary renal cell carcinomas.

  11. Estrogen prevents bone loss through transforming growth factor β signaling in T cells

    PubMed Central

    Gao, Yuhao; Qian, Wei-Ping; Dark, Kimberly; Toraldo, Gianluca; Lin, Angela S. P.; Guldberg, Robert E.; Flavell, Richard A.; Weitzmann, M. Neale; Pacifici, Roberto

    2004-01-01

    Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-γ-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-γ production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type β transforming growth factor (TGFβ) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-γ production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFβ levels in the bone marrow, and overexpression of TGFβ in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFβ-dependent mechanism, and that TGFβ signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFβ production in the bone marrow is a critical “upstream” mechanism by which E prevents bone loss, and enhancement of TGFβ levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss. PMID:15531637

  12. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    PubMed Central

    Joiner, C H; Platt, O S; Lux, S E

    1986-01-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation. PMID:2430999

  13. Cation depletion by the sodium pump in red cells with pathologic cation leaks. Sickle cells and xerocytes.

    PubMed

    Joiner, C H; Platt, O S; Lux, S E

    1986-12-01

    The mechanism by which sickle cells and xerocytic red cells become depleted of cations in vivo has not been identified previously. Both types of cells exhibit elevated permeabilities to sodium and potassium, in the case of sickle cells, when deoxygenated. The ouabain-insensitive fluxes of sodium and potassium were equivalent, however, in both cell types under these conditions. When incubated 18 hours in vitro, sickle cells lost cations but only when deoxygenated. This cation depletion was blocked by ouabain, removal of external potassium, or pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonate, which blocks the increase in cation permeability induced by deoxygenation. The loss of cation exhibited by oxygenated xerocytes similarly incubated was also blocked by ouabain. These data support the hypothesis that the elevated "passive" cation fluxes of xerocytes and deoxygenated sickle cells are not directly responsible for cation depletion of these cells; rather, these pathologic leaks interact with the sodium pump to produce a net loss of cellular cation.

  14. Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process?

    PubMed

    Kolb, Hubert; von Herrath, Matthias

    2017-02-07

    T cell-directed immunosuppression only transiently delays the loss of β cell function in recent-onset type 1 diabetes. We argue here that the underlying disease process is carried by innate immune reactivity. Inducing a non-polarized functional state of local innate immunity will support regulatory T cell development and β cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Loss of Trem2 in microglia leads to widespread disruption of cell coexpression networks in mouse brain.

    PubMed

    Carbajosa, Guillermo; Malki, Karim; Lawless, Nathan; Wang, Hong; Ryder, John W; Wozniak, Eva; Wood, Kristie; Mein, Charles A; Dobson, Richard J B; Collier, David A; O'Neill, Michael J; Hodges, Angela K; Newhouse, Stephen J

    2018-05-17

    Rare heterozygous coding variants in the triggering receptor expressed in myeloid cells 2 (TREM2) gene, conferring increased risk of developing late-onset Alzheimer's disease, have been identified. We examined the transcriptional consequences of the loss of Trem2 in mouse brain to better understand its role in disease using differential expression and coexpression network analysis of Trem2 knockout and wild-type mice. We generated RNA-Seq data from cortex and hippocampus sampled at 4 and 8 months. Using brain cell-type markers and ontology enrichment, we found subnetworks with cell type and/or functional identity. We primarily discovered changes in an endothelial gene-enriched subnetwork at 4 months, including a shift toward a more central role for the amyloid precursor protein gene, coupled with widespread disruption of other cell-type subnetworks, including a subnetwork with neuronal identity. We reveal an unexpected potential role of Trem2 in the homeostasis of endothelial cells that goes beyond its known functions as a microglial receptor and signaling hub, suggesting an underlying link between immune response and vascular disease in dementia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Design and optimization of membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  17. [Effect of chronic sensorineural hearing loss on several indicators of immune and endocrine systems of 7-11 year-old children].

    PubMed

    Beschasnyĭ, S P

    2013-01-01

    We investigated the effects of chronic bilateral sensorineural hearing loss of III-IV degree on the performance of interleukins, immunoglobulins serum and saliva, the functional activity of granulocyte-monocyte cell immunity, evaluated the activity of the hypothalamic-pituitary-adrenal system in children aged 7-11 years. It was found that due to stress activation of the sympathetic-adrenal system the function of granulocytes and monocytes is suppressed, with a predominance of production of anti-inflammatory interleukins. This leads to the dominance of T-helper type 2. Products granulocytes and T-helper type-2 anti-inflammatory interleukins IL-4, IL-5, IL-10, IL-13 leads to the activation of B-cells. Thus, in children 7-11 years of age with congenital bilateral sensorineural hearing loss is a decrease of non-specific humoral immunity dominated type of immune response to increased levels of IgG.

  18. SWI/SNF Protein Expression Status in Fumarate Hydratase-deficient Renal Cell Carcinoma: Immunohistochemical Analysis of 32 Tumors from 28 Patients.

    PubMed

    Agaimy, Abbas; Amin, Mahul B; Gill, Anthony J; Popp, Bernt; Reis, André; Berney, Daniel M; Magi-Galluzzi, Cristina; Sibony, Mathilde; Smith, Steven C; Suster, Saul; Trpkov, Kiril; Hes, Ondřej; Hartmann, Arndt

    2018-04-21

    Fumarate hydratase-deficient renal cell carcinoma (FH-RCC) is a rare, aggressive RCC type, originally described in the setting of hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome which is defined by germline FH gene inactivation. Inactivation of components of the SWI/SNF chromatin remodelling complex is involved in renal medullary carcinoma (SMARCB1/INI1 loss), clear cell RCC (PBRM1 loss) and in subsets of dedifferentiated RCC of clear cell, chromophobe and papillary types (loss of different SWI/SNF components). FH-RCC and SWI/SNF-deficient RCC share anaplastic nuclear features and highly aggressive course. We analysed 32 FH-RCCs from 28 patients using seven commercially available SWI/SNF antibodies (SMARCB1/INI1, SMARCA2, SMARCA4, SMARCC1, SMARCC2, PBRM1 and ARID1A). Variable loss of SMARCB1, ARID1A and SMARCC1 was observed in 1/31, 2/31 and 1/29 evaluable cases, respectively; three of these four SWI/SNF-deficient tumors had confirmed FH mutations. No correlation of SWI/SNF loss with solid or sarcomatoid features was observed. Two tumors with SMARCB1 and ARID1A deficiency had available SWI/SNF molecular data; both lacked SMARCB1 and ARID1A mutations. The remaining five SWI/SNF components were intact in all cases. Especially PBRM1 seems not to be involved in the pathogenesis or progression of FH-deficient RCC. Our data showed that, a subset of FH-RCC (12%) have a variable loss of SWI/SNF complex subunits, likely as secondary genetic events. This should not be confused with SWI/SNF-deficient RCC of other types. Evaluation of FH and SWI/SNF together with comprehensive molecular-genetic profiling is needed to explore possible prognostic implications of FH/SWI-SNF double deficiency and to better understand the somatic mutation landscape in high-grade RCC. Copyright © 2018. Published by Elsevier Inc.

  19. Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B

    PubMed Central

    Shen, Wei-Bin; Plachez, Celine; Chan, Amanda; Yarnell, Deborah; Puche, Adam C; Fishman, Paul S; Yarowsky, Paul

    2013-01-01

    Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy. PMID:24348036

  20. Effect of the nuclear-donor cell lineage, type, and cell donor on development of somatic cell nuclear transfer embryos in cattle.

    PubMed

    Batchelder, Cynthia A; Hoffert, Kara A; Bertolini, Marcelo; Moyer, Alice L; Mason, Jeffery B; Petkov, Stoyan G; Famula, Thomas R; Anderson, Gary B

    2005-01-01

    Potential applications of somatic cell nuclear transfer to agriculture and medicine are currently constrained by low efficiency and high rates of embryonic, fetal, and neonatal loss. Nuclear transfer efficiency in cattle was compared between three donor-cell treatments from a single animal, between four donor-cell treatments in sequential stages of differentiation from a single cell lineage and genotype, and between the same cell type in two donors. Cumulus and granulosa donor cells resulted in a greater proportion of viable day-7 embryos than ear-skin cells; pregnancy rate and losses were not different among treatments. The least differentiated cell type in the follicular cell lineage, preantral follicle cells, resulted in fewer cloned blastocysts (11%) than cumulus (30%), granulosa (23%), and luteal (25%) donor cells. Cloned blastocysts that did develop from preantral follicle cells (75%) were more likely to progress through implantation into later stages of pregnancy than cloned blastocysts from cumulus (10%), granulosa (9%), and luteal (11%) donor cells (p < 0.05). Day-7 embryo development from granulosa cells was similar between two donors (19 vs. 24%) and proved to be a poor indicator of further development as day-30 pregnancy rates varied threefold between donors (48 vs. 15%, p < 0.05). Results reported here emphasize the crucial role of the nuclear donor cell in the outcome of the nuclear-transfer process.

  1. Tuberin haploinsufficiency is associated with the loss of OGG1 in rat kidney tumors

    PubMed Central

    Habib, Samy L; Simone, Simona; Barnes, Jeff J; Abboud, Hanna E

    2008-01-01

    Background Tuberous sclerosis complex (TSC) is caused by defects in one of two tumor suppressor genes, TSC-1 or TSC-2. TSC-2 gene encodes tuberin, a protein involved in the pathogenesis of kidney tumors. Loss of heterozygosity (LOH) at the TSC2 locus has been detected in TSC-associated renal cell carcinoma (RCC) and in RCC in the Eker rat. Tuberin downregulates the DNA repair enzyme 8-oxoguanine DNA-glycosylase (OGG1) with important functional consequences, compromising the ability of cells to repair damaged DNA resulting in the accumulation of the mutagenic oxidized DNA, 8-oxo-dG. Loss of function mutations of OGG1 also occurs in human kidney clear cell carcinoma and may contribute to tumorgenesis. We investigated the distribution of protein expression and the activity of OGG1 and 8-oxo-dG and correlated it with the expression of tuberin in kidneys of wild type and Eker rats and tumor from Eker rat. Results Tuberin expression, OGG1 protein expression and activity were higher in kidney cortex than in medulla or papilla in both wild type and Eker rats. On the other hand, 8-oxo-dG levels were highest in the medulla, which expressed the lowest levels of OGG1. The basal levels of 8-oxo-dG were also higher in both cortex and medulla of Eker rats compared to wild type rats. In kidney tumors from Eker rats, the loss of the second TSC2 allele is associated with loss of OGG1 expression. Immunostaining of kidney tissue shows localization of tuberin and OGG1 mainly in the cortex. Conclusion These results demonstrate that OGG1 localizes with tuberin preferentially in kidney cortex. Loss of tuberin is accompanied by the loss of OGG1 contributing to tumorgenesis. In addition, the predominant expression of OGG1 in the cortex and its decreased expression and activity in the Eker rat may account for the predominant cortical localization of renal cell carcinoma. PMID:18218111

  2. Rapid CD4(+) T-cell loss induced by human immunodeficiency virus type 1(NC) in uninfected and previously infected chimpanzees.

    PubMed

    Novembre, F J; de Rosayro, J; Nidtha, S; O'Neil, S P; Gibson, T R; Evans-Strickfaden, T; Hart, C E; McClure, H M

    2001-02-01

    To investigate the pathogenicity of a virus originating in a chimpanzee with AIDS (C499), two chimpanzees were inoculated with a plasma-derived isolate termed human immunodeficiency virus type 1(NC) (HIV-1(NC)). A previously uninfected chimpanzee, C534, experienced rapid peripheral CD4(+) T-cell loss to fewer than 26 cells/microl by 14 weeks after infection. CD4(+) T-cell depletion was associated with high plasma HIV-1 loads but a low virus burden in the peripheral lymph node. The second chimpanzee, C459, infected 13 years previously with HIV-1(LAV), experienced a more protracted course of peripheral CD4(+) T-cell loss after HIV-1(NC) inoculation, resulting in fewer than 200 cells/microl by 96 weeks postinoculation. The quantities of viral RNA in the plasma and peripheral lymph node from C459 were below the lower limits of detection prior to inoculation with HIV-1(NC) but were significantly and persistently increased after superinfection, with HIV-1(NC) representing the predominant viral genotype. These results show that viruses derived from C499 are more pathogenic for chimpanzees than any other HIV-1 isolates described to date.

  3. Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.

    PubMed

    Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M

    2018-03-01

    Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. The journey of islet cell transplantation and future development.

    PubMed

    Gamble, Anissa; Pepper, Andrew R; Bruni, Antonio; Shapiro, A M James

    2018-03-04

    Intraportal islet transplantation has proven to be efficacious in preventing severe hypoglycemia and restoring insulin independence in selected patients with type 1 diabetes. Multiple islet infusions are often required to achieve and maintain insulin independence. Many challenges remain in clinical islet transplantation, including substantial islet cell loss early and late after islet infusion. Contributions to graft loss include the instant blood-mediated inflammatory reaction, potent host auto- and alloimmune responses, and beta cell toxicity from immunosuppressive agents. Protective strategies are being tested to circumvent several of these events including exploration of alternative transplantation sites, stem cell-derived insulin producing cell therapies, co-transplantation with mesenchymal stem cells or exploration of novel immune protective agents. Herein, we provide a brief introduction and history of islet cell transplantation, limitations associated with this procedure and methods to alleviate islet cell loss as a means to improve engraftment outcomes.

  5. The fate of mitochondrial loci in rho minus mutants induced by ultraviolet irradiation of Saccharomyces cerevisiae: effects of different post-irradiation treatments.

    PubMed

    Heude, M; Moustacchi, E

    1979-09-01

    Three main features regarding the loss of mitochondrial genetic markers among rho- mutants induced by ultraviolet irradiation are reported: (a) the frequency of loss of six loci examined increases with UV dose; (b) preferential loss of one region of the mitochondrial genome observed in spontaneous rho- mutants is enhanced by UV; and (c) the loss of each marker results from large deletions. Marker loss in rho- mutants was also investigated under conditions that modulate rho- induction. Liquid holding of irradiated exponential or stationary phase cells, as well as a split-dose regime applied to stationary phase cells, results in rho- mutants in which the loss of markers is correlated with rho- induction: the more sensitive the cells are to rho- induction, the more frequent are the marker losses among rho- clones derived from these cells. This correlation is not found in exponential-phase cells submitted to a split-dose treatment, suggesting that a different mechanism is involved in the latter case. It is known that UV-induced pyrimidine dimers are not excised in a controlled manner in mitochondrial DNA. However, our studies indicate that an accurate repair mechanism (of the recombinational type ?) can lead to the restoration of mitochondrial genetic information in growing cells.

  6. Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy.

    PubMed

    Coras, Roland; Pauli, Elisabeth; Li, Jinmei; Schwarz, Michael; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo; Stefan, Hermann; Blumcke, Ingmar

    2014-07-01

    To clarify the anatomical organization of human memory remains a major challenge in clinical neuroscience. Experimental data suggest dentate gyrus granule cells play a major role in memory acquisition, i.e. pattern separation and rapid pattern completion, whereas hippocampal CA1 neurons are implicated in place memory and autobiographical memory retrieval. Patients with temporal lobe epilepsy present with a broad spectrum of memory impairment, which can be assessed during clinical examination. Although long seizure histories may contribute to a pathophysiological reorganization of functional connectivity, surgical resection of the epileptic hippocampus offers a unique possibility to anatomically study the differential contribution of hippocampal subfields to compromised learning and memory in humans. Herein, we tested the hypothesis of hippocampal subfield specialization in a series of 100 consecutive patients with temporal lobe epilepsy submitted to epilepsy surgery. Memory profiles were obtained from intracarotid amobarbital testing and non-invasive verbal memory assessment before surgery, and correlated with histopathologically quantified cell loss pattern in hippocampal subfields obtained from the same patients using the new international consensus classification for hippocampal sclerosis proposed by the International League against Epilepsy (HS ILAE). Interestingly, patients with CA1 predominant cell loss (HS ILAE Type 2; n = 13) did not show declarative memory impairment and were indistinguishable from patients without any hippocampal cell loss (n = 19). In contrast, 63 patients with neuronal loss affecting all hippocampal subfields including CA1, CA4 and dentate gyrus (HS ILAE Type 1), or predominant cell loss in CA4 and partially affecting also CA3 and dentate gyrus (HS ILAE Type 3, n = 5) showed significantly reduced declarative memory capacities (intracarotid amobarbital testing: P < 0.001; verbal memory: P < 0.05). Our results suggested an alternative model of how memory processing can be organized amongst hippocampal subfields, and that CA1 pyramidal cells are less critically involved in declarative human memory acquisition compared to dentate gyrus granule cells or CA4/CA3 pyramidal cells. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Genetics Home Reference: hereditary sensory and autonomic neuropathy type IE

    MedlinePlus

    ... loss of sensation in the feet and legs (peripheral neuropathy). People with HSAN IE develop hearing loss that ... control, become apparent before problems with thinking skills. Peripheral neuropathy is caused by impaired function of nerve cells ...

  8. Hair Cell Loss, Spiral Ganglion Degeneration, and Progressive Sensorineural Hearing Loss in Mice with Targeted Deletion of Slc44a2/Ctl2.

    PubMed

    Kommareddi, Pavan; Nair, Thankam; Kakaraparthi, Bala Naveen; Galano, Maria M; Miller, Danielle; Laczkovich, Irina; Thomas, Trey; Lu, Lillian; Rule, Kelli; Kabara, Lisa; Kanicki, Ariane; Hughes, Elizabeth D; Jones, Julie M; Hoenerhoff, Mark; Fisher, Susan G; Altschuler, Richard A; Dolan, David; Kohrman, David C; Saunders, Thomas L; Carey, Thomas E

    2015-12-01

    SLC44A2 (solute carrier 44a2), also known as CTL2 (choline transporter-like protein 2), is expressed in many supporting cell types in the cochlea and is implicated in hair cell survival and antibody-induced hearing loss. In mice with the mixed C57BL/6-129 background, homozygous deletion of Slc44a2 exons 3–10 (Slc44a2(Δ/Δ)resulted in high-frequency hearing loss and hair cell death. To reduce effects associated with age-related hearing loss (ARHL) in these strains, mice carrying the Slc44a2Δ allele were backcrossed to the ARHL-resistant FVB/NJ strain and evaluated after backcross seven(N7) (99 % FVB). Slc44a2(Δ/Δ) mice produced abnormally spliced Slc44a2 transcripts that contain a frame shift and premature stop codons. Neither full-length SLC44A2 nor a putative truncated protein could be detected in Slc44a2(Δ/Δ) mice, suggesting a likely null allele. Auditory brain stem responses (ABRs) of mice carrying the Slc44a2Δ allele on an FVB/NJ genetic background were tested longitudinally between the ages of 2 and 10 months. By 6 months of age,Slc44a2(Δ/Δ) mice exhibited hearing loss at 32 kHz,but at 12 and 24 kHz had sound thresholds similar to those of wild-type Slc44a2(+/+) and heterozygous +/Slc44a2Δ mice. After 6 months of age, Slc44a2(Δ/Δ) mutants exhibited progressive hearing loss at all frequencies and +/Slc44a2(Δ) mice exhibited moderate threshold elevations at high frequency. Histologic evaluation of Slc44a2(Δ/Δ) mice revealed extensive hair cell and spiral ganglion cell loss, especially in the basal turn of the cochlea. We conclude that Slc44a2 function is required for long-term hair cell survival and maintenance of hearing.

  9. Factors affecting the loss of MED12-mutated leiomyoma cells during in vitro growth.

    PubMed

    Bloch, Jeannine; Holzmann, Carsten; Koczan, Dirk; Helmke, Burkhard Maria; Bullerdiek, Jörn

    2017-05-23

    Uterine leiomyomas (UL) are the most prevalent symptomatic human tumors at all and somatic mutations of the gene encoding mediator subcomplex 12 (MED12) constitute the most frequent driver mutations in UL. Recently, a rapid loss of mutated cells during in vitro growth of UL-derived cell cultures was reported, resulting in doubts about the benefits of UL-derived cell cultures. To evaluate if the rapid loss of MED12-mutated cells in UL cell cultures depends on in vitro passaging, we set up cell cultures from nine UL from 40-50 year old Caucasian patients with at least one UL. Cultured UL cells were investigated for loss of MED12-mutated cells. Genetic characterization of native tumor samples and adjacent myometrium was done by array analysis. "Aged" primary cultures without passaging were compared to cells of three subsequent passages. Comparative analyses of the mutated/non-mutated ratios between native tissue, primary cells, and cultured tumor cells revealed a clear decrease of MED12-mutated cells. None of the tumors showed gross alterations of the array profiles, excluding the presence of gross genomic imbalances besides the MED12 mutations as a reason for the intertumoral variation in the loss of MED12-mutated cells. Albeit at a lesser rate, loss of MED12-mutated cells from cell cultures of UL occurs even without passaging thus indicating the requirement of soluble factors or matrix components lacking in vitro. Identification of these factors can help to understand the mechanisms of the growth of the most frequent type of uterine leiomyomas and to decipher novel drug targets.

  10. Engraftment of Human Pluripotent Stem Cell-derived Progenitors in the Inner Ear of Prenatal Mice.

    PubMed

    Takeda, Hiroki; Hosoya, Makoto; Fujioka, Masato; Saegusa, Chika; Saeki, Tsubasa; Miwa, Toru; Okano, Hideyuki; Minoda, Ryosei

    2018-01-31

    There is, at present, no curative treatment for genetic hearing loss. We have previously reported that transuterine gene transfer of wild type CONNEXIN30 (CX30) genes into otocysts in CX30-deleted mice could restore hearing. Cell transplantation therapy might be another therapeutic option, although it is still unknown whether stem cell-derived progenitor cells could migrate into mouse otocysts. Here, we show successful cell transplantation of progenitors of outer sulcus cell-like cells derived from human-derived induced pluripotent stem cells into mouse otocysts on embryonic day 11.5. The delivered cells engrafted more frequently in the non-sensory region in the inner ear of CX30-deleted mice than in wild type mice and survived for up to 1 week after transplantation. Some of the engrafted cells expressed CX30 proteins in the non-sensory region. This is the first report that demonstrates successful engraftment of exogenous cells in prenatal developing otocysts in mice. Future studies using this mouse otocystic injection model in vivo will provide further clues for developing treatment modalities for congenital hearing loss in humans.

  11. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation.

    PubMed

    Holmes, Amie L; Joyce, Kellie; Xie, Hong; Falank, Carolyne; Hinz, John M; Wise, John Pierce

    2014-04-01

    Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Loss of gastric gland mucin-specific O-glycan is associated with progression of differentiated-type adenocarcinoma of the stomach.

    PubMed

    Shiratsu, Kazuo; Higuchi, Kayoko; Nakayama, Jun

    2014-01-01

    Gastric gland mucin secreted from the lower portion of the gastric mucosa contains unique O-linked oligosaccharides having terminal α1,4-linked N-acetylglucosamine (αGlcNAc) residues largely attached to a MUC6 scaffold. Previously, we generated A4gnt-deficient mice, which totally lack αGlcNAc, and showed that αGlcNAc functions as a tumor suppressor for gastric cancer. Here, to determine the clinicopathological significance of αGlcNAc in gastric carcinomas, we examined immunohistochemical expression of αGlcNAc and mucin phenotypic markers including MUC5AC, MUC6, MUC2, and CD10 in 214 gastric adenocarcinomas and compared those expression patterns with clinicopathological parameters and cancer-specific survival. The αGlcNAc loss was evaluated in MUC6-positive gastric carcinoma. Thirty-three (61.1%) of 54 differentiated-type gastric adenocarcinomas exhibiting MUC6 in cancer cells lacked αGlcNAc expression. Loss of αGlcNAc was significantly correlated with depth of invasion, stage, and venous invasion by differentiated-type adenocarcinoma. Loss of αGlcNAc was also significantly associated with poorer patient prognosis in MUC6-positive differentiated-type adenocarcinoma. By contrast, no significant correlation between αGlcNAc loss and any clinicopathologic variable was observed in undifferentiated-type adenocarcinoma. Expression of MUC6 was also significantly correlated with several clinicopathological variables in differentiated-type adenocarcinoma. However, unlike the case with αGlcNAc, its expression showed no correlation with cancer-specific survival in patients. In undifferentiated-type adenocarcinoma, we observed no significant correlation between mucin phenotypic marker expression, including MUC6, and any clinicopathologic variable. These results together indicate that loss of αGlcNAc in MUC6-positive cancer cells is associated with progression and poor prognosis in differentiated, but not undifferentiated, types of gastric adenocarcinoma. © 2013 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  13. Heat Shock Protein Beta-1 Modifies Anterior to Posterior Purkinje Cell Vulnerability in a Mouse Model of Niemann-Pick Type C Disease.

    PubMed

    Chung, Chan; Elrick, Matthew J; Dell'Orco, James M; Qin, Zhaohui S; Kalyana-Sundaram, Shanker; Chinnaiyan, Arul M; Shakkottai, Vikram G; Lieberman, Andrew P

    2016-05-01

    Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.

  14. Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans.

    PubMed

    Simeonovic, Charmaine J; Popp, Sarah K; Starrs, Lora M; Brown, Debra J; Ziolkowski, Andrew F; Ludwig, Barbara; Bornstein, Stefan R; Wilson, J Dennis; Pugliese, Alberto; Kay, Thomas W H; Thomas, Helen E; Loudovaris, Thomas; Choong, Fui Jiun; Freeman, Craig; Parish, Christopher R

    2018-01-01

    Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstrated that heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shown to be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intra-islet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxide-induced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.

  15. Cardiac-specific deletion of the microtubule-binding protein CENP-F causes dilated cardiomyopathy

    PubMed Central

    Dees, Ellen; Miller, Paul M.; Moynihan, Katherine L.; Pooley, Ryan D.; Hunt, R. Pierre; Galindo, Cristi L.; Rottman, Jeffrey N.; Bader, David M.

    2012-01-01

    SUMMARY CENP-F is a large multifunctional protein with demonstrated regulatory roles in cell proliferation, vesicular transport and cell shape through its association with the microtubule (MT) network. Until now, analysis of CENP-F has been limited to in vitro analysis. Here, using a Cre-loxP system, we report the in vivo disruption of CENP-F gene function in murine cardiomyocytes, a cell type displaying high levels of CENP-F expression. Loss of CENP-F function in developing myocytes leads to decreased cell division, blunting of trabeculation and an initially smaller, thin-walled heart. Still, embryos are born at predicted mendelian ratios on an outbred background. After birth, hearts lacking CENP-F display disruption of their intercalated discs and loss of MT integrity particularly at the costamere; these two structures are essential for cell coupling/electrical conduction and force transduction in the heart. Inhibition of myocyte proliferation and cell coupling as well as loss of MT maintenance is consistent with previous reports of generalized CENP-F function in isolated cells. One hundred percent of these animals develop progressive dilated cardiomyopathy with heart block and scarring, and there is a 20% mortality rate. Importantly, although it has long been postulated that the MT cytoskeleton plays a role in the development of heart disease, this study is the first to reveal a direct genetic link between disruption of this network and cardiomyopathy. Finally, this study has broad implications for development and disease because CENP-F loss of function affects a diverse array of cell-type-specific activities in other organs. PMID:22563055

  16. Converting adult pancreatic islet α-cells into β-cells by targeting both Dnmt1 and Arx

    PubMed Central

    Chakravarthy, Harini; Gu, Xueying; Enge, Martin; Dai, Xiaoqing; Wang, Yong; Damond, Nicolas; Downie, Carolina; Liu, Kathy; Wang, Jing; Xing, Yuan; Chera, Simona; Thorel, Fabrizio; Quake, Stephen; Oberholzer, Jose; MacDonald, Patrick E.; Herrera, Pedro L.; Kim, Seung K.

    2017-01-01

    Summary Insulin-producing pancreatic β-cells in mice can slowly regenerate from glucagon-producing α-cells in settings like β-cell loss, but the basis of this conversion is unknown. Moreover it remains unclear if this intra-islet cell conversion is relevant to diseases like type 1 diabetes (T1D). We show that the α-cell regulators Aristaless-related homeobox (Arx) and DNA methyltransferase 1 (Dnmt1) maintain α-cell identity in mice. Within 3 months of Dnmt1 and Arx loss, lineage tracing and single cell RNA sequencing revealed extensive α-cell conversion into progeny resembling native β-cells. Physiological studies demonstrated that converted α-cells acquire hallmark β-cell electrophysiology, and show glucose-stimulated insulin secretion. In T1D patients, subsets of Glucagon-expressing cells show loss of DNMT1 and ARX, and produce Insulin and other β-cell factors, suggesting that DNMT1 and ARX maintain α-cell identity in humans. Our work reveals pathways regulated by Arx and Dnmt1 sufficient for achieving targeted generation of β-cells from adult pancreatic α-cells. PMID:28215845

  17. Loss of Wild-Type ATRX Expression in Somatic Cell Hybrids Segregates with Activation of Alternative Lengthening of Telomeres

    PubMed Central

    Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L.; Moy, Elsa L.; Reddel, Roger R.

    2012-01-01

    Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT. PMID:23185534

  18. Defining the extent of cables loss in endometrial cancer subtypes and its effectiveness as an inhibitor of cell proliferation in malignant endometrial cells in vitro and in vivo.

    PubMed

    DeBernardo, Robert L; Littell, Ramey D; Luo, Hongwei; Duska, Linda R; Oliva, Esther; Kirley, Sandra D; Lynch, Maureen P; Zukerberg, Lawrence R; Rueda, Bo R

    2005-01-01

    Loss of Cables expression is associated with a high incidence of endometrial hyperplasia and endometrial adenocarcinoma in humans. The Cables mutant mouse develops endometrial hyperplasia and following exposure to chronic estrogen develops early endometrial adenocarcinoma. The objectives of the current study were to determine if: (1) loss of Cables expression occurred in high grade endometrioid adenocarcinoma, uterine serous and clear cell carcinoma as observed in endometrial hyperplasia and low grade endometrial adenocarcinoma; (2) overexpression of Cables inhibited cell proliferation in endometrial cancer (EC) cells in vitro and in vivo; and (3) progesterone could regulate the expression of Cables mRNA. Hyperplastic endometrium and low and high grade endometrioid adenocarcinoma showed loss of Cables expression when compared to benign control secretory endometrium. Loss of Cables expression in serous and clear cell tumors was similar to that observed in endometrioid adenocarcinomas with greater than 80% showing loss of protein expression. Treatment of EC lines with progesterone increased cables expression in low-grade EC whereas it had no effect on cables expression in cells derived from high-grade EC. The progesterone-induced increase in cables was abrogated in the presence of a progesterone receptor (PR) antagonist, suggesting the PR mediates the increase. Cables overexpression inhibited cell proliferation of well differentiated EC cells and had no effect on the poorly differentiated EC cells. The capacity to form tumors was dramatically reduced in the Cables overexpressing cell lines compared to those cells containing the control vector. Collectively these results suggest that Cables is an important regulator of cell proliferation and loss of Cables expression contributes to the development of all types of EC.

  19. Loss of Desmocollin 3 in Skin Tumor Development and Progression

    PubMed Central

    Chen, Jiangli; O’Shea, Charlene; Fitzpatrick, James E.; Koster, Maranke I.; Koch, Peter J.

    2011-01-01

    Desmocollin 3 (DSC3) is a desmosomal cadherin that is required for maintaining cell adhesion in the epidermis as demonstrated by the intra-epidermal blistering observed in Dsc3 null skin. Recently, it has been suggested that deregulated expression of DSC3 occurs in certain human tumor types. It is not clear whether DSC3 plays a role in the development or progression of cancers arising in stratified epithelia such as the epidermis. To address this issue, we generated a mouse model in which Dsc3 expression is ablated in K-Ras oncogene-induced skin tumors. Our results demonstrate that loss of Dsc3 leads to an increase in K-Ras induced skin tumors. We hypothesize that acantholysis-induced epidermal hyperplasia in the Dsc3 null epidermis facilitates Ras-induced tumor development. Further, we demonstrate that spontaneous loss of DSC3 expression is a common occurrence during human and mouse skin tumor progression. This loss occurs in tumor cells invading the dermis. Interestingly, other desmosomal proteins are still expressed in tumor cells that lack DSC3, suggesting a specific function of DSC3 loss in tumor progression. While loss of DSC3 on the skin surface leads to epidermal blistering, it does not appear to induce loss of cell-cell adhesion in tumor cells invading the dermis, most likely due to a protection of these cells within the dermis from mechanical stress. We thus hypothesize that DSC3 can contribute to the progression of tumors both by cell adhesion-dependent (skin surface) and likely by cell adhesion-independent (invading tumor cells) mechanisms. PMID:21681825

  20. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage.

    PubMed

    Lu, Chenggang; Fuller, Margaret T

    2015-12-01

    Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages.

  1. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells

    PubMed Central

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834

  2. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells.

    PubMed

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D.

  3. Hyperplasia of type 2 pneumocytes following 0. 34 ppm nitrogen dioxide exposure: quantitation by image analysis. [Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherwin, R.P.; Richters, V.

    1982-09-01

    Swiss Webster male mice were exposed to intermittent 0.34 ppm nitrogen dioxide for 6 wk. Quantitative image analysis showed increased Type 2 cell numbers in each of the three lobes measured, with and without adjustment to alveolar wall measurements for lung volume normalization (e.g., P < .037 for Type 2 cell number adjusted to alveolar wall perimeters, combined lobe analysis of variance). The exposed animals dominated the upper quartile ranking of the cell number/alveolar area ratio computations (P < .025), which implied the presence of an especially susceptible subpopulation of animals. The Type 2 cell increase is believed to resultmore » from damage and loss of Type 1 cells, the reversibility and progression of which are presently unknown. The data also suggest an increased size of the Type 2 cell, and possibly slight atelectasis and/or edema of the alveolar walls.« less

  4. Characterization of TLX expression in neural stem cells and progenitor cells in adult brains.

    PubMed

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression. Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells.

  5. Characterization of TLX Expression in Neural Stem Cells and Progenitor Cells in Adult Brains

    PubMed Central

    Li, Shengxiu; Sun, Guoqiang; Murai, Kiyohito; Ye, Peng; Shi, Yanhong

    2012-01-01

    TLX has been shown to play an important role in regulating the self-renewal and proliferation of neural stem cells in adult brains. However, the cellular distribution of endogenous TLX protein in adult brains remains to be elucidated. In this study, we used immunostaining with a TLX-specific antibody to show that TLX is expressed in both neural stem cells and transit-amplifying neural progenitor cells in the subventricular zone (SVZ) of adult mouse brains. Then, using a double thymidine analog labeling approach, we showed that almost all of the self-renewing neural stem cells expressed TLX. Interestingly, most of the TLX-positive cells in the SVZ represented the thymidine analog-negative, relatively quiescent neural stem cell population. Using cell type markers and short-term BrdU labeling, we demonstrated that TLX was also expressed in the Mash1+ rapidly dividing type C cells. Furthermore, loss of TLX expression dramatically reduced BrdU label-retaining neural stem cells and the actively dividing neural progenitor cells in the SVZ, but substantially increased GFAP staining and extended GFAP processes. These results suggest that TLX is essential to maintain the self-renewing neural stem cells in the SVZ and that the GFAP+ cells in the SVZ lose neural stem cell property upon loss of TLX expression.Understanding the cellular distribution of TLX and its function in specific cell types may provide insights into the development of therapeutic tools for neurodegenerative diseases by targeting TLX in neural stem/progenitors cells. PMID:22952666

  6. Rapid CD4+ T-Cell Loss Induced by Human Immunodeficiency Virus Type 1NC in Uninfected and Previously Infected Chimpanzees

    PubMed Central

    Novembre, Francis J.; de Rosayro, Juliette; Nidtha, Soumya; O'Neil, Shawn P.; Gibson, Terri R.; Evans-Strickfaden, Tammy; Hart, Clyde E.; McClure, Harold M.

    2001-01-01

    To investigate the pathogenicity of a virus originating in a chimpanzee with AIDS (C499), two chimpanzees were inoculated with a plasma-derived isolate termed human immunodeficiency virus type 1NC (HIV-1NC). A previously uninfected chimpanzee, C534, experienced rapid peripheral CD4+ T-cell loss to fewer than 26 cells/μl by 14 weeks after infection. CD4+ T-cell depletion was associated with high plasma HIV-1 loads but a low virus burden in the peripheral lymph node. The second chimpanzee, C459, infected 13 years previously with HIV-1LAV, experienced a more protracted course of peripheral CD4+ T-cell loss after HIV-1NC inoculation, resulting in fewer than 200 cells/μl by 96 weeks postinoculation. The quantities of viral RNA in the plasma and peripheral lymph node from C459 were below the lower limits of detection prior to inoculation with HIV-1NC but were significantly and persistently increased after superinfection, with HIV-1NC representing the predominant viral genotype. These results show that viruses derived from C499 are more pathogenic for chimpanzees than any other HIV-1 isolates described to date. PMID:11152525

  7. Importance of genetics in fetal alcohol effects: null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits

    PubMed Central

    Bonthius, Daniel J.; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J.

    2014-01-01

    The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS−/− mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS−/− mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS−/− mice and their wild type controls received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days 4–9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS−/− and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS−/− mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS−/− mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS−/− mice, but not in wild type. Thus, homozygous mutation of the nNOS gene increases vulnerability to alcohol-induced cerebellar dysfunction and neuronal loss. nNOS is the first gene identified whose mutation worsens alcohol-induced cerebellar behavioral deficits. PMID:25511929

  8. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish

    PubMed Central

    Nagao, Yusuke; Takada, Hiroyuki; Miyadai, Motohiro; Adachi, Tomoko; Kamei, Yasuhiro; Hara, Ikuyo; Naruse, Kiyoshi; Hibi, Masahiko

    2018-01-01

    Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. PMID:29621239

  9. Slit2 promotes tumor growth and invasion in chemically induced skin carcinogenesis.

    PubMed

    Qi, Cuiling; Lan, Haimei; Ye, Jie; Li, Weidong; Wei, Ping; Yang, Yang; Guo, Simei; Lan, Tian; Li, Jiangchao; Zhang, Qianqian; He, Xiaodong; Wang, Lijing

    2014-07-01

    Slit, a neuronal guidance cue, binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit has been reported to have an important effect on tumor growth and metastasis. In the current study, we evaluated the role of Slit2 in skin tumor growth and invasion in mice using a two-step chemical carcinogenesis protocol. We found that Slit2 expression correlated with the loss of basement membrane in the samples of human skin squamous cell carcinoma at different stages of disease progression. Slit2-Tg mice developed significantly more skin tumors than wild-type mice. Furthermore, the skin tumors that occurred in Slit2-Tg mice were significantly larger than those in the wild-type mice 10 weeks after 7,12-dimethylbenz[a]anthracene initiation until the end of the experiment. We also found that pathological development of the wild-type mice was delayed compared with that of Slit2-Tg mice. To further investigate the mechanism of increasing tumors in Slit2-Tg mice, we analyzed the expression of 5-bromo-2'-deoxyuridine (BrdU) in mouse skin lesions and found that the number of BrdU-positive cells and microvessel density in skin lesions were significantly higher in Slit2-Tg mice than in wild-type mice. Histological staining of PAS and type IV collagen and the colocalization of Slit2 and type IV collagen demonstrated varying degrees of loss of the basement membrane in the skin lesions from Slit2-Tg mice that were at the stage of carcinoma in situ. However, the basement membrane was well defined in the wild-type mice. In addition, MMP2, but not MMP9, was upregulated in the skin tissue of Slit2-Tg mice. Interruption of Slit2-Robo1 signaling by the antibody R5 significantly repressed the invasive capability of the squamous cell carcinoma cell line A431. Taken together, our findings reveal that Slit2 promotes DMBA/TPA-induced skin tumorigenesis by increasing cell proliferation, microvessel density, and invasive behavior of cutaneous squamous cell carcinoma, along with loss of basement membrane, by upregulation of MMP2 expression.

  10. Trials in the prevention of type 1 diabetes: current and future.

    PubMed

    Wherrett, Diane K

    2014-08-01

    A major thrust in type 1 diabetes research is stopping the destruction of beta cells that leads to type 1 diabetes. Research over the past 30 years has defined genetic factors and evidence of autoimmunity that have led to the development of robust prediction models in those at high risk for type 1 diabetes. The ability to identify those at risk and the development of new agents and of collaborative research networks has led to multiple trials aimed at preventing beta cell loss. Trials at all stages of beta cell loss have been conducted: primary prevention (prior to the development of autoimmunity); secondary prevention (after autoantibodies are found) and tertiary prevention (intervening after diagnosis to maintain remaining beta cells). Studies have shown mixed results; evidence of maintained insulin secretion after the time of diagnosis has been described in a number of studies, and primary and secondary prevention is proving to be elusive. Much has been learned from the increasing number of studies in the field in terms of network creation, study design and choice of intervention that will facilitate new avenues of investigation. Copyright © 2014 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  11. Bmi1 regulates auditory hair cell survival by maintaining redox balance.

    PubMed

    Chen, Y; Li, L; Ni, W; Zhang, Y; Sun, S; Miao, D; Chai, R; Li, H

    2015-01-22

    Reactive oxygen species (ROS) accumulation are involved in noise- and ototoxic drug-induced hair cell loss, which is the major cause of hearing loss. Bmi1 is a member of the Polycomb protein family and has been reported to regulate mitochondrial function and ROS level in thymocytes and neurons. In this study, we reported the expression of Bmi1 in mouse cochlea and investigated the role of Bmi1 in hair cell survival. Bmi1 expressed in hair cells and supporting cells in mouse cochlea. Bmi1(-/-) mice displayed severe hearing loss and patched outer hair cell loss from postnatal day 22. Ototoxic drug-induced hair cells loss dramatically increased in Bmi1(-/-) mice compared with that in wild-type controls both in vivo and in vitro, indicating Bmi1(-/-) hair cells were significantly more sensitive to ototoxic drug-induced damage. Cleaved caspase-3 and TUNEL staining demonstrated that apoptosis was involved in the increased hair cell loss of Bmi1(-/-) mice. Aminophenyl fluorescein and MitoSOX Red staining showed the level of free radicals and mitochondrial ROS increased in Bmi1(-/-) hair cells due to the aggravated disequilibrium of antioxidant-prooxidant balance. Furthermore, the antioxidant N-acetylcysteine rescued Bmi1(-/-) hair cells from neomycin injury both in vitro and in vivo, suggesting that ROS accumulation was mainly responsible for the increased aminoglycosides sensitivity in Bmi1(-/-) hair cells. Our findings demonstrate that Bmi1 has an important role in hair cell survival by controlling redox balance and ROS level, thus suggesting that Bmi1 may work as a new therapeutic target for the prevention of hair cell death.

  12. An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels

    NASA Astrophysics Data System (ADS)

    Langfeldt, F.; Gleine, W.; von Estorff, O.

    2018-03-01

    A new analytical model for the oblique incidence sound transmission loss prediction of baffled panels with multiple subwavelength sized membrane-type acoustic metamaterial (MAM) unit cells is proposed. The model employs a novel approach via the concept of the effective surface mass density and approximates the unit cell vibrations in the form of piston-like displacements. This yields a coupled system of linear equations that can be solved efficiently using well-known solution procedures. A comparison with results from finite element model simulations for both normal and diffuse field incidence shows that the analytical model delivers accurate results as long as the edge length of the MAM unit cells is smaller than half the acoustic wavelength. The computation times for the analytical calculations are 100 times smaller than for the numerical simulations. In addition to that, the effect of flexible MAM unit cell edges compared to the fixed edges assumed in the analytical model is studied numerically. It is shown that the compliance of the edges has only a small impact on the transmission loss of the panel, except at very low frequencies in the stiffness-controlled regime. The proposed analytical model is applied to investigate the effect of variations of the membrane prestress, added mass, and mass eccentricity on the diffuse transmission loss of a MAM panel with 120 unit cells. Unlike most previous investigations of MAMs, these results provide a better understanding of the acoustic performance of MAMs under more realistic conditions. For example, it is shown that by varying these parameters deliberately in a checkerboard pattern, a new anti-resonance with large transmission loss values can be introduced. A random variation of these parameters, on the other hand, is shown to have only little influence on the diffuse transmission loss, as long as the standard deviation is not too large. For very large random variations, it is shown that the peak transmission loss value can be greatly diminished.

  13. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.

    2006-02-01

    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  14. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.

    PubMed

    Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P

    2017-05-02

    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.

  15. Quantification and Patterns of Endothelial Cell Loss Due to Eye Bank Preparation and Injector Method in Descemet Membrane Endothelial Keratoplasty Tissues.

    PubMed

    Schallhorn, Julie M; Holiman, Jeffrey D; Stoeger, Christopher G; Chamberlain, Winston

    2016-03-01

    To evaluate endothelial cell damage after eye bank preparation and passage through 1 of 2 different injectors for Descemet membrane endothelial keratoplasty grafts. Eighteen Descemet membrane endothelial keratoplasty grafts were prepared by Lions VisionGift with the standard partial prepeel technique and placement of an S-stamp for orientation. The grafts were randomly assigned to injection with either a glass-modified Jones tube injector (Gunther Weiss Scientific Glass) or a closed-system intraocular lens injector (Viscoject 2.2; Medicel). After injection, the grafts were stained with the vital fluorescent dye Calcein AM and digitally imaged. The percentage of cell loss was calculated by measuring the area of nonfluorescent pixels and dividing it by the total graft area pixels. Grafts injected using the modified Jones tube injector had an overall cell loss of 27% ± 5% [95% confidence interval, 21%-35%]. Grafts injected using the closed-system intraocular lens injector had a cell loss of 32% ± 8% (95% confidence interval, 21%-45%). This difference was not statistically significant (P = 0.3). Several damage patterns including damage due to S-stamp placement were observed, but they did not correlate with injector type. In this in vitro study, there was no difference in the cell loss associated with the injector method. Grafts in both groups sustained significant cell loss and displayed evidence of graft preparation and S-stamp placement. Improvement in graft preparation and injection methods may improve cell retention.

  16. Aberrant adhesion impacts early development in a Dictyostelium model for juvenile neuronal ceroid lipofuscinosis

    PubMed Central

    Huber, Robert J.; Myre, Michael A.; Cotman, Susan L.

    2017-01-01

    ABSTRACT Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, refers to a group of severe neurodegenerative disorders that primarily affect children. The most common subtype of the disease is caused by loss-of-function mutations in CLN3, which is conserved across model species from yeast to human. The precise function of the CLN3 protein is not known, which has made targeted therapy development challenging. In the social amoeba Dictyostelium discoideum, loss of Cln3 causes aberrant mid-to-late stage multicellular development. In this study, we show that Cln3-deficiency causes aberrant adhesion and aggregation during the early stages of Dictyostelium development. cln3− cells form ∼30% more multicellular aggregates that are comparatively smaller than those formed by wild-type cells. Loss of Cln3 delays aggregation, but has no significant effect on cell speed or cAMP-mediated chemotaxis. The aberrant aggregation of cln3− cells cannot be corrected by manually pulsing cells with cAMP. Moreover, there are no significant differences between wild-type and cln3− cells in the expression of genes linked to cAMP chemotaxis (e.g., adenylyl cyclase, acaA; the cAMP receptor, carA; cAMP phosphodiesterase, pdsA; g-protein α 9 subunit, gpaI). However, during this time in development, cln3− cells show reduced cell-substrate and cell-cell adhesion, which correlate with changes in the levels of the cell adhesion proteins CadA and CsaA. Specifically, loss of Cln3 decreases the intracellular level of CsaA and increases the amount of soluble CadA in conditioned media. Together, these results suggest that the aberrant aggregation of cln3− cells is due to reduced adhesion during the early stages of development. Revealing the molecular basis underlying this phenotype may provide fresh new insight into CLN3 function. PMID:27669405

  17. Alveolar macrophage–derived type I interferons orchestrate innate immunity to RSV through recruitment of antiviral monocytes

    PubMed Central

    Goritzka, Michelle; Makris, Spyridon; Kausar, Fahima; Durant, Lydia R.; Pereira, Catherine; Kumagai, Yutaro; Culley, Fiona J.; Mack, Matthias; Akira, Shizuo

    2015-01-01

    Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)–coupled retinoic acid–inducible gene 1 (RIG-I)–like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN–dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN–mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation. PMID:25897172

  18. Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins.

    PubMed

    Corne, Tobias D J; Sieprath, Tom; Vandenbussche, Jonathan; Mohammed, Danahe; Te Lindert, Mariska; Gevaert, Kris; Gabriele, Sylvain; Wolf, Katarina; De Vos, Winnok H

    2017-09-03

    The nuclear lamina mechanically integrates the nucleus with the cytoskeleton and extracellular environment and regulates gene expression. These functions are exerted through direct and indirect interactions with the lamina's major constituent proteins, the A-type lamins, which are encoded by the LMNA gene. Using quantitative stable isotope labeling-based shotgun proteomics we have analyzed the proteome of human dermal fibroblasts in which we have depleted A-type lamins by means of a sustained siRNA-mediated LMNA knockdown. Gene ontology analysis revealed that the largest fraction of differentially produced proteins was involved in actin cytoskeleton organization, in particular proteins involved in focal adhesion dynamics, such as actin-related protein 2 and 3 (ACTR2/3), subunits of the ARP2/3 complex, and fascin actin-bundling protein 1 (FSCN1). Functional validation using quantitative immunofluorescence showed a significant reduction in the size of focal adhesion points in A-type lamin depleted cells, which correlated with a reduction in early cell adhesion capacity and an increased cell motility. At the same time, loss of A-type lamins led to more pronounced stress fibers and higher traction forces. This phenotype could not be mimicked or reversed by experimental modulation of the STAT3-IL6 pathway, but it was partly recapitulated by chemical inhibition of the ARP2/3 complex. Thus, our data suggest that the loss of A-type lamins perturbs the balance between focal adhesions and cytoskeletal tension. This imbalance may contribute to mechanosensing defects observed in certain laminopathies.

  19. Regulation of the Hippocampal Network by VGLUT3-Positive CCK- GABAergic Basket Cells

    PubMed Central

    Fasano, Caroline; Rocchetti, Jill; Pietrajtis, Katarzyna; Zander, Johannes-Friedrich; Manseau, Frédéric; Sakae, Diana Y.; Marcus-Sells, Maya; Ramet, Lauriane; Morel, Lydie J.; Carrel, Damien; Dumas, Sylvie; Bolte, Susanne; Bernard, Véronique; Vigneault, Erika; Goutagny, Romain; Ahnert-Hilger, Gudrun; Giros, Bruno; Daumas, Stéphanie; Williams, Sylvain; El Mestikawy, Salah

    2017-01-01

    Hippocampal interneurons release the inhibitory transmitter GABA to regulate excitation, rhythm generation and synaptic plasticity. A subpopulation of GABAergic basket cells co-expresses the GABA/glycine vesicular transporters (VIAAT) and the atypical type III vesicular glutamate transporter (VGLUT3); therefore, these cells have the ability to signal with both GABA and glutamate. GABAergic transmission by basket cells has been extensively characterized but nothing is known about the functional implications of VGLUT3-dependent glutamate released by these cells. Here, using VGLUT3-null mice we observed that the loss of VGLUT3 results in a metaplastic shift in synaptic plasticity at Shaeffer’s collaterals – CA1 synapses and an altered theta oscillation. These changes were paralleled by the loss of a VGLUT3-dependent inhibition of GABAergic current in CA1 pyramidal layer. Therefore presynaptic type III metabotropic could be activated by glutamate released from VGLUT3-positive interneurons. This putative presynaptic heterologous feedback mechanism inhibits local GABAergic tone and regulates the hippocampal neuronal network. PMID:28559797

  20. Creutzfeldt-Jakob disease with severe involvement of cerebral white matter and cerebellum.

    PubMed

    Berciano, J; Berciano, M T; Polo, J M; Figols, J; Ciudad, J; Lafarga, M

    1990-01-01

    We describe a patient with Creutzfeldt-Jakob disease (CJD) of the ataxic and panencephalopathic type. Postmortem examination revealed the characteristic lesions of CJD in the grey matter and profound white matter involvement was seen with immunocytochemical techniques. Ultrastructural white matter lesions were identical to those described in experimentally transmitted CJD. There was marked loss of cerebellar granule cells with virtual disappearance of parallel fibres, but Purkinje cells were only slightly reduced. Electron microscopic studies revealed extensive degenerative changes including cytoplasmic vacuoles in both cell types. Silver methods disclosed massive impregnation of white matter and striking abnormalities of Purkinje cells consisting of hypertrophy and flattening of thick dendritic branches, reduction in the number of terminal branchlets, segmentary loss of spines and polymorphic spines. These findings show the extensive involvement of all three cerebellar cortical layers and the reactive plasticity of Purkinje cells to deafferentiation. They favour the hypothesis that demyelination represents a primary lesion of the white matter.

  1. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells.

    PubMed

    Tang, Y B; Chen, Z H; Song, H S; Lee, C S; Cong, H T; Cheng, H M; Zhang, W J; Bello, I; Lee, S T

    2008-12-01

    Vertically aligned Mg-doped GaN nanorods have been epitaxially grown on n-type Si substrate to form a heterostructure for fabricating p-n heterojunction photovoltaic cells. The p-type GaN nanorod/n-Si heterojunction cell shows a well-defined rectifying behavior with a rectification ratio larger than 10(4) in dark. The cell has a high short-circuit photocurrent density of 7.6 mAlcm2 and energy conversion efficiency of 2.73% under AM 1.5G illumination at 100 mW/cm2. Moreover, the nanorod array may be used as an antireflection coating for solar cell applications to effectively reduce light loss due to reflection. This study provides an experimental demonstration for integrating one-dimensional nanostructure arrays with the substrate to directly fabricate heterojunction photovoltaic cells.

  2. Deletion of SLC19A2, the high affinity thiamine transporter, causes selective inner hair cell loss and an auditory neuropathy phenotype.

    PubMed

    Liberman, M C; Tartaglini, E; Fleming, J C; Neufeld, E J

    2006-09-01

    Mutations in the gene coding for the high-affinity thiamine transporter Slc19a2 underlie the clinical syndrome known as thiamine-responsive megaloblastic anemia (TRMA) characterized by anemia, diabetes, and sensorineural hearing loss. To create a mouse model of this disease, a mutant line was created with targeted disruption of the gene. Cochlear function is normal in these mutants when maintained on a high-thiamine diet. When challenged with a low-thiamine diet, Slc19a2-null mice showed 40-60 dB threshold elevations by auditory brainstem response (ABR), but only 10-20 dB elevation by otoacoustic emission (OAE) measures. Wild-type mice retain normal hearing on either diet. Cochlear histological analysis showed a pattern uncommon for sensorineural hearing loss: selective loss of inner hair cells after 1-2 weeks on low thiamine and significantly greater inner than outer hair cell loss after longer low-thiamine challenges. Such a pattern is consistent with the observed discrepancy between ABR and OAE threshold shifts. The possible role of thiamine transport in other reported cases of selective inner hair cell loss is considered.

  3. Genetic and pharmacological intervention for treatment/prevention of hearing loss

    PubMed Central

    Cotanche, Douglas A.

    2008-01-01

    Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. Learning outcomes The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea. PMID:18455177

  4. Genetic and pharmacological intervention for treatment/prevention of hearing loss.

    PubMed

    Cotanche, Douglas A

    2008-01-01

    Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea.

  5. Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp

    2011-02-25

    Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3{sup -/-} mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a 'proliferative zone' at the bottom of colonic crypts in the normal colon.« less

  6. Loss of tight junction barrier function and its role in cancer metastasis.

    PubMed

    Martin, Tracey A; Jiang, Wen G

    2009-04-01

    As the most apical structure between epithelial and endothelial cells, tight junctions (TJ) are well known as functioning as a control for the paracellular diffusion of ions and certain molecules. It has however, become increasingly apparent that the TJ has a vital role in maintaining cell to cell integrity and that the loss of cohesion of the structure can lead to invasion and thus metastasis of cancer cells. This article will present data showing how modulation of expression of TJ molecules results in key changes in TJ barrier function leading to the successful metastasis of a number of different cancer types.

  7. Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex.

    PubMed Central

    Ferrer, I; Roig, C; Espino, A; Peiro, G; Matias Guiu, X

    1991-01-01

    Neuropathological findings in a 38 year old patient with dementia of frontal lobe type and motor neuron disease included pyramidal tracts, myelin pallor and neuron loss, gliosis and chromatolysis in the hypoglossal nucleus, together with frontal atrophy, neuron loss, gliosis and spongiosis in the upper cortical layers of the frontal (and temporal) lobes. Most remaining pyramidal and non-pyramidal neurons (multipolar, bitufted and bipolar cells) in the upper layers (layers II and III) of the frontal cortex (area B) had reduced dendritic arbors, proximal dendritic varicosities and amputation of dendrites as revealed in optimally stained rapid Golgi sections. Pyramidal cells in these layers also showed depletion of dendritic spines. Neurons in the inner layers were preserved. Loss of receptive surfaces in neurons of the upper cortical layers in the frontal cortex are indicative of neuronal disconnection, and are "hidden" contributory morphological substrates for the development of dementia. Images PMID:1744652

  8. AGE-RELATED FUNCTIONAL AND HISTOPATHOLOGICAL CHANGES OF THE EAR IN THE MPS I MOUSE

    PubMed Central

    Schachern, Patricia A.; Cureoglu, Sebahattin; Tsuprun, Vladimir; Paparella, Michael M.; Whitley, Chester

    2007-01-01

    Objective Mucopolysaccharidosis type I (MPS I) is an autosomal recessive disorder caused by a mutation in the gene encoding the enzyme α-L-iduronidase. This enzyme is responsible for degradation of dermatan and heparan sulfates. Enzyme deficiency results in their accumulation in lysosomes of virtually all organs, resulting in severe somatic and neurological changes. Clinical findings of otitis media with mixed hearing loss are common. Cellular and molecular mechanisms of ear pathology and hearing loss are not understood. The purpose of this study is to describe the age-related audiologic and histopathologic changes of the ear in the mouse model of MPS I. Methods Auditory brainstemresponses (ABR) were obtained to clicks and tone bursts at 1-32 kHz, and pathological changes to middle and inner ears were studied with light and electron microscopy in fifty-three mice that included: 1) wild type (+/+) - five at 2 months, five at 4 to 6 months, and five at 13 to 19 months; 2) heterozygotes (+/−) - four at 2 months; five at 4 to 6 months; and eight at 13 to 19 months; and 3) homozygotes (−/−); five at 2 months; six at 4 to 6 months; and five at 13 to 19 months. Histopathology was also done on five newborn −/− mice. Results In newborns no lysosomal storage was observed and the ear appeared age appropriately normal. In all other −/− mice, cells with lysosomal storage vacuoles were observed in spiral ligament, spiral prominence, spiral limbus, basilar membrane, epithelial and mesothelial cells of Reissner’s membrane, endothelial cells of vessels, and some ganglion cells; their number increased with aging. Hair cell loss was not observed at 2 or 6 months, but there was total loss of the organ of Corti in year-old mice. Hearing of −/− mice was significantly decreased at all ages compared to +/+ and +/−. Hearing loss progressed from mild to moderate loss at 2 months to profound at 6 months and total deafness by one year of age. Conclusions Progressive age-related changes suggest early therapeutic intervention to prevent sensory cell damage and hearing loss. PMID:17101178

  9. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut.

    PubMed

    Howitt, Michael R; Lavoie, Sydney; Michaud, Monia; Blum, Arthur M; Tran, Sara V; Weinstock, Joel V; Gallini, Carey Ann; Redding, Kevin; Margolskee, Robert F; Osborne, Lisa C; Artis, David; Garrett, Wendy S

    2016-03-18

    The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites. Copyright © 2016, American Association for the Advancement of Science.

  10. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  12. The Ron Receptor Regulates Kupffer Cell-Dependent Cytokine Production and Hepatocyte Survival Following Endotoxin Exposure in Mice

    PubMed Central

    Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.

    2011-01-01

    Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175

  13. Selective deletion of Smad4 in postnatal germ cells does not affect spermatogenesis or fertility in mice.

    PubMed

    Hao, Xiao-Xia; Chen, Su-Ren; Tang, Ji-Xin; Li, Jian; Cheng, Jin-Mei; Jin, Cheng; Wang, Xiu-Xia; Liu, Yi-Xun

    2016-07-01

    SMAD4 is the central component of canonical signaling in the transforming growth factor beta (TGFβ) superfamily. Loss of Smad4 in Sertoli cells affects the expansion of the fetal testis cords, whereas selective deletion of Smad4 in Leydig cells alone does not appreciably alter fetal or adult testis development. Loss of Smad4 in Sertoli and Leydig cells, on the other hand, leads to testicular dysgenesis, and tumor formation in mice. Within the murine testes, Smad4 is also expressed in germ cells of the seminiferous tubules. We therefore, crossed Ngn3-Cre or Stra8-Cre transgenic mice with Smad4-flox mice to generate conditional knockout animals in which Smad4 was specifically deleted in postnatal germ cells to further uncover cell type-specific requirement of Smad4. Unexpectedly, these germ-cell-knockout mice were fertile and did not exhibit any detectable abnormalities in spermatogenesis, indicating that Smad4 is not required for the production of sperm; instead, these data indicate a cell type-specific requirement of Smad4 primarily during testis development. Mol. Reprod. Dev. 83: 615-623, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis

    PubMed Central

    Collins, Carl; Maruthi, N. M.; Jahn, Courtney E.

    2015-01-01

    A major proportion of plant biomass is derived from the activity of the cambium, a lateral meristem responsible for vascular tissue formation and radial organ enlargement in a process termed secondary growth. In contrast to our relatively good understanding of the regulation of primary meristems, remarkably little is known concerning the mechanisms controlling secondary growth, particularly how cambial cell divisions are regulated and integrated with vascular differentiation. A genetic loss-of-function approach was used here to reveal a rate-limiting role for the Arabidopsis CYCLIN D3 (CYCD3) subgroup of cell-cycle genes in the control of cambial cell proliferation and secondary growth, providing conclusive evidence of a direct link between the cell cycle and vascular development. It is shown that all three CYCD3 genes are specifically expressed in the cambium throughout vascular development. Analysis of a triple loss-of-function CYCD3 mutant revealed a requirement for CYCD3 in promoting the cambial cell cycle since mutant stems and hypocotyls showed a marked reduction in diameter linked to reduced mitotic activity in the cambium. Conversely, loss of CYCD3 provoked an increase in xylem cell size and the expression of differentiation markers, showing that CYCD3 is required to restrain the differentiation of xylem precursor cells. Together, our data show that tight control of cambial cell division through developmental- and cell type-specific regulation of CYCD3 is required for normal vascular development, constituting part of a novel mechanism controlling organ growth in higher plants. PMID:26022252

  15. Loss of Atrx Sensitizes Cells to DNA Damaging Agents through p53-Mediated Death Pathways

    PubMed Central

    Conte, Damiano; Huh, Michael; Goodall, Emma; Delorme, Marilyne; Parks, Robin J.; Picketts, David J.

    2012-01-01

    Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx f/f mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres) were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors. PMID:23284920

  16. Loss of Atrx sensitizes cells to DNA damaging agents through p53-mediated death pathways.

    PubMed

    Conte, Damiano; Huh, Michael; Goodall, Emma; Delorme, Marilyne; Parks, Robin J; Picketts, David J

    2012-01-01

    Prevalent cell death in forebrain- and Sertoli cell-specific Atrx knockout mice suggest that Atrx is important for cell survival. However, conditional ablation in other tissues is not associated with increased death indicating that diverse cell types respond differently to the loss of this chromatin remodeling protein. Here, primary macrophages isolated from Atrx(f/f) mice were infected with adenovirus expressing Cre recombinase or β-galactosidase, and assayed for cell survival under different experimental conditions. Macrophages survive without Atrx but undergo rapid apoptosis upon lipopolysaccharide (LPS) activation suggesting that chromatin reorganization in response to external stimuli is compromised. Using this system we next tested the effect of different apoptotic stimuli on cell survival. We observed that survival of Atrx-null cells were similar to wild type cells in response to serum withdrawal, anti-Fas antibody, C2 ceramide or dexamethasone treatment but were more sensitive to 5-fluorouracil (5-FU). Cell survival could be rescued by re-introducing Atrx or by removal of p53 demonstrating the cell autonomous nature of the effect and its p53-dependence. Finally, we demonstrate that multiple primary cell types (myoblasts, embryonic fibroblasts and neurospheres) were sensitive to 5-FU, cisplatin, and UV light treatment. Together, our results suggest that cells lacking Atrx are more sensitive to DNA damaging agents and that this may result in enhanced death during development when cells are at their proliferative peak. Moreover, it identifies potential treatment options for cancers associated with ATRX mutations, including glioblastoma and pancreatic neuroendocrine tumors.

  17. SIMULTANEOUS PRODUCTION OF TWO CAPSULAR POLYSACCHARIDES BY PNEUMOCOCCUS

    PubMed Central

    Austrian, Robert; Bernheimer, Harriet P.; Smith, Evelyn E. B.; Mills, George T.

    1959-01-01

    Study of the capsular genome of pneumococcus has shown that it controls a multiplicity of biochemical reactions essential to the synthesis of capsular polysaccharide. Mutation affecting any one of several biochemical reactions concerned with capsular synthesis may result in loss of capsulation without alteration of other biochemical functions similarly concerned. Mutations affecting the synthesis of uronic acids are an important cause of loss of capsulation and of virulence by strains of pneumococcus Type I and Type III. The capsular genome appears to have a specific location in the total genome of the cell, this locus being occupied by the capsular genome of whatever capsular type is expressed by the cell. Transformation of capsulated or of non-capsulated pneumococci to heterologous capsular type results probably from a genetic exchange followed by the development of a new biosynthetic pathway in the transformed cell. The new capsular genome is transferred to the transformed cell as a single particle of DNA. Binary capsulation results from the simultaneous presence within the pneumococcal cell of two capsular genomes, one mutated, the other normal. Interaction between the biochemical pathways controlled by the two capsular genomes leads to augmentation of the phenotypic expression of the product controlled by one and to partial suppression of the product determined by the other. Knowledge of the biochemical basis of binary capsulation can be used to indicate the presence of uronic acid in the capsular polysaccharide of a pneurnococcal type the composition of the capsule of which is unknown. PMID:13795197

  18. Effects of Liraglutide on Weight Loss, Fat Distribution, and β-Cell Function in Obese Subjects With Prediabetes or Early Type 2 Diabetes.

    PubMed

    Santilli, Francesca; Simeone, Paola G; Guagnano, Maria T; Leo, Marika; Maccarone, Marica T; Di Castelnuovo, Augusto; Sborgia, Cristina; Bonadonna, Riccardo C; Angelucci, Ermanno; Federico, Virginia; Cianfarani, Stefano; Manzoli, Lamberto; Davì, Giovanni; Tartaro, Armando; Consoli, Agostino

    2017-11-01

    Obesity is associated with an increased risk of type 2 diabetes and cardiovascular complications. The risk depends significantly on adipose tissue distribution. Liraglutide, a glucagon-like peptide 1 analog, is associated with weight loss, improved glycemic control, and reduced cardiovascular risk. We determined whether an equal degree of weight loss by liraglutide or lifestyle changes has a different impact on subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in obese subjects with prediabetes or early type 2 diabetes. Sixty-two metformin-treated obese subjects with prediabetes or newly diagnosed type 2 diabetes, were randomized to liraglutide (1.8 mg/day) or lifestyle counseling. Changes in SAT and VAT levels (determined by abdominal MRI), insulin sensitivity (according to the Matsuda index), and β-cell function (β-index) were assessed during a multiple-sampling oral glucose tolerance test; and circulating levels of IGF-I and IGF-II were assessed before and after a comparable weight loss (7% of initial body weight). After comparable weight loss, achieved by 20 patients per arm, and superimposable glycemic control, as reflected by HbA 1c level ( P = 0.60), reduction in VAT was significantly higher in the liraglutide arm than in the lifestyle arm ( P = 0.028), in parallel with a greater improvement in β-index ( P = 0.021). No differences were observed in SAT reduction ( P = 0.64). IGF-II serum levels were significantly increased ( P = 0.024) only with liraglutide administration, and the increase in IGF-II levels correlated with both a decrease in VAT (ρ = -0.435, P = 0.056) and an increase in the β-index (ρ = 0.55, P = 0.012). Liraglutide effects on visceral obesity and β-cell function might provide a rationale for using this molecule in obese subjects in an early phase of glucose metabolism dysregulation natural history. © 2017 by the American Diabetes Association.

  19. Loss of T cells influences sex differences in behavior and brain structure.

    PubMed

    Rilett, Kelly C; Friedel, Miriam; Ellegood, Jacob; MacKenzie, Robyn N; Lerch, Jason P; Foster, Jane A

    2015-05-01

    Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Mutation screening of USH3 gene (clarin-1) in Spanish patients with Usher syndrome: low prevalence and phenotypic variability.

    PubMed

    Aller, E; Jaijo, T; Oltra, S; Alió, J; Galán, F; Nájera, C; Beneyto, M; Millán, J M

    2004-12-01

    Usher syndrome type III is an autosomal recessive disorder clinically characterized by the association of retinitis pigmentosa (RP), variable presence of vestibular dysfunction and progressive hearing loss, being the progression of the hearing impairment the critical parameter classically used to distinguish this form from Usher syndrome type I and Usher syndrome type II. Usher syndrome type III clinical subtype is the rarest form of Usher syndrome in Spain, accounting only for 6% of all Usher syndrome Spanish cases. The gene responsible for Usher syndrome type III is named clarin-1 and it is thought to be involved in hair cell and photoreceptor cell synapses. Here, we report a screening for mutations in clarin-1 gene among our series of Usher syndrome Spanish patients. Clarin-1 has been found to be responsible for the disease in only two families: the first one is a previously reported family homozygous for Y63X mutation and the second one, described here, is homozygous for C40G. This accounts for 1.7% of Usher syndrome Spanish families. It is noticeable that, whereas C40G family is clinically compatible with Usher syndrome type III due to the progression of the hearing loss, Y63X family could be diagnosed as Usher syndrome type I because the hearing impairment is profound and stable. Thus, we consider that the progression of hearing loss is not the definitive key parameter to distinguish Usher syndrome type III from Usher syndrome type I and Usher syndrome type II.

  1. Increased T cell proliferative responses to islet antigens identify clinical responders to anti-CD20 monoclonal antibody (rituximab) therapy in type 1 diabetes.

    PubMed

    Herold, Kevan C; Pescovitz, Mark D; McGee, Paula; Krause-Steinrauf, Heidi; Spain, Lisa M; Bourcier, Kasia; Asare, Adam; Liu, Zhugong; Lachin, John M; Dosch, H Michael

    2011-08-15

    Type 1 diabetes mellitus is believed to be due to the autoimmune destruction of β-cells by T lymphocytes, but a single course of rituximab, a monoclonal anti-CD20 B lymphocyte Ab, can attenuate C-peptide loss over the first year of disease. The effects of B cell depletion on disease-associated T cell responses have not been studied. We compare changes in lymphocyte subsets, T cell proliferative responses to disease-associated target Ags, and C-peptide levels of participants who did (responders) or did not (nonresponders) show signs of β-cell preservation 1 y after rituximab therapy in a placebo-controlled TrialNet trial. Rituximab decreased B lymphocyte levels after four weekly doses of mAb. T cell proliferative responses to diabetes-associated Ags were present at baseline in 75% of anti-CD20- and 82% of placebo-treated subjects and were not different over time. However, in rituximab-treated subjects with significant C-peptide preservation at 6 mo (58%), the proliferative responses to diabetes-associated total (p = 0.032), islet-specific (p = 0.048), and neuronal autoantigens (p = 0.005) increased over the 12-mo observation period. This relationship was not seen in placebo-treated patients. We conclude that in patients with type 1 diabetes mellitus, anti-B cell mAb causes increased proliferative responses to diabetes Ags and attenuated β-cell loss. The way in which these responses affect the disease course remains unknown.

  2. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes

    PubMed Central

    Shields, Emily J.; Lam, Carol J.; Cox, Aaron R.; Rankin, Matthew M.; Van Winkle, Thomas J.; Hess, Rebecka S.; Kushner, Jake A.

    2015-01-01

    The pathophysiology of canine diabetes remains poorly understood, in part due to enigmatic clinical features and the lack of detailed histopathology studies. Canine diabetes, similar to human type 1 diabetes, is frequently associated with diabetic ketoacidosis at onset or after insulin omission. However, notable differences exist. Whereas human type 1 diabetes often occurs in children, canine diabetes is typically described in middle age to elderly dogs. Many competing theories have been proposed regarding the underlying cause of canine diabetes, from pancreatic atrophy to chronic pancreatitis to autoimmune mediated β-cell destruction. It remains unclear to what extent β-cell loss contributes to canine diabetes, as precise quantifications of islet morphometry have not been performed. We used high-throughput microscopy and automated image processing to characterize islet histology in a large collection of pancreata of diabetic dogs. Diabetic pancreata displayed a profound reduction in β-cells and islet endocrine cells. Unlike humans, canine non-diabetic islets are largely comprised of β-cells. Very few β-cells remained in islets of diabetic dogs, even in pancreata from new onset cases. Similarly, total islet endocrine cell number was sharply reduced in diabetic dogs. No compensatory proliferation or lymphocyte infiltration was detected. The majority of pancreata had no evidence of pancreatitis. Thus, canine diabetes is associated with extreme β-cell deficiency in both new and longstanding disease. The β-cell predominant composition of canine islets and the near-total absence of β-cells in new onset elderly diabetic dogs strongly implies that similar to human type 1 diabetes, β-cell loss underlies the pathophysiology of canine diabetes. PMID:26057531

  3. Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes12

    PubMed Central

    Martínez, J. Alfredo; Milagro, Fermín I.; Claycombe, Kate J.; Schalinske, Kevin L.

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them. PMID:24425725

  4. Epigenetics in adipose tissue, obesity, weight loss, and diabetes.

    PubMed

    Martínez, J Alfredo; Milagro, Fermín I; Claycombe, Kate J; Schalinske, Kevin L

    2014-01-01

    Given the role that diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that external factors can cause cell type-dependent epigenetic changes, including DNA methylation, histone tail modifications, and chromatin remodeling, the regulation of these processes, the magnitude of the changes and the cell types in which they occur, the individuals more predisposed, and the more crucial stages of life remain to be elucidated. There is evidence that obese and diabetic people have a pattern of epigenetic marks different from nonobese and nondiabetic individuals. The main long-term goals in this field are the identification and understanding of the role of epigenetic marks that could be used as early predictors of metabolic risk and the development of drugs or diet-related treatments able to delay these epigenetic changes and even reverse them. But weight gain and insulin resistance/diabetes are influenced not only by epigenetic factors; different epigenetic biomarkers have also been identified as early predictors of weight loss and the maintenance of body weight after weight loss. The characterization of all the factors that are able to modify the epigenetic signatures and the determination of their real importance are hindered by the following factors: the magnitude of change produced by dietary and environmental factors is small and cumulative; there are great differences among cell types; and there are many factors involved, including age, with multiple interactions between them.

  5. Global loss of Leucine Carboxyl Methyltransferase-1 causes severe defects in fetal liver hematopoiesis.

    PubMed

    Lee, Jocelyn A; Wang, Zhengqi; Sambo, Danielle; Bunting, Kevin D; Pallas, David C

    2018-05-07

    Leucine Carboxyl Methyltransferase-1 (LCMT-1) 3 methylates the carboxy-terminal leucine α-carboxyl group of the catalytic subunits of the protein phosphatase 2A (PP2A) subfamily of protein phosphatases, PP2Ac, PP4c, and PP6c. LCMT-1 differentially regulates the formation and function of a subset of the heterotrimeric complexes that PP2A and PP4 form with their regulatory subunits. Global LCMT-1 knockout causes embryonic lethality in mice, but LCMT-1 function in development is unknown. In the current study, we analyzed the effects of global LCMT-1 loss on embryonic development. LCMT-1 knockout causes loss of PP2Ac methylation, indicating that LCMT-1 is the sole PP2Ac methyltransferase. PP2A heterotrimers containing the Bα and Bδ B-type subunits are dramatically reduced in whole embryos, and the steady-state levels of PP2Ac and the PP2A structural A subunit are also down ~30%. Strikingly, global loss of LCMT-1 causes severe defects in fetal hematopoiesis and death by embryonic day 16.5 (E16.5). Fetal livers of homozygous lcmt-1 knockout embryos display hypocellularity, elevated apoptosis, and greatly reduced numbers of hematopoietic stem and progenitor cell-enriched Kit + Lin - Sca1 + (KLS) cells. The percent cycling cells and mitotic indexes of wild-type and lcmt-1 knockout fetal liver cells are similar, suggesting that hypocellularity may be due to a combination of apoptosis and/or defects in specification, self-renewal, or survival of stem cells. Indicative of a possible intrinsic defect in stem cells, non-competitive and competitive transplantation experiments reveal that lcmt-1 loss causes a severe multi-lineage hematopoietic repopulating defect. Therefore, this study reveals a novel role for LCMT-1 as a key player in fetal liver hematopoiesis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  6. ATM traffic experiments: A laboratory study of service interaction, loss fairness and loss characteristics

    NASA Astrophysics Data System (ADS)

    Helvik, B. E.; Stol, N.

    1995-04-01

    A reference measurement scenario is defined, where an ATM switch (OCTOPUS) is offered traffic from three source types representing the traffic resulting from typical services to be carried by an ATM network. These are high quality video (HQTV), high speed data (HSD) and constant bitrate transfer (CBR). In addition to be typical, these have widely different characteristics. Detailed definitions for these, and other actual source types, are made and entered into the Synthetic Traffic Generator (STG) database. Recommended traffic mixes of these sources are also made. Based on the above, laboratory measurements are carried out to study how the various kinds of traffic influence each other, how fairly the loss is distributed over services and connections, and what are the loss characteristics experienced. (Due to a software error detected in the measurement equipment after the work was concluded, the measurements are carried out with a HSD source with a load less 'aggressive' than intended.) The main findings are: Cell loss is very unfairly distributed among the various connections. During a loss burst, which occurs less frequently than the duration of a typical connection, affects mainly one or a few connections; Cell loss is unfairly distributed among the services. The ratios in the range from HSD: HQTV: CBR = 5 : 1 : 0.85 are observed, and unfairness increases with decreasing load burstiness; The loss characteristics vary during a loss burst, from one burst to the next and between services. Hence, it does not seem feasible to use 'typical-loss-statistics' to study the impairments on various services. In addition some supplementing work is reported.

  7. The TAM family receptor tyrosine kinase TYRO3 is a negative regulator of type 2 immunity

    PubMed Central

    Chan, Pamela Y.; Carrera Silva, Eugenio A.; De Kouchkovsky, Dimitri; Joannas, Leonel D.; Hao, Liming; Hu, Donglei; Huntsman, Scott; Eng, Celeste; Licona-Limón, Paula; Weinstein, Jason S.; Herbert, De’Broski R.; Craft, Joseph E.; Flavell, Richard A.; Repetto, Silvia; Correale, Jorge; Burchard, Esteban G.; Torgerson, Dara G.; Ghosh, Sourav; Rothlin, Carla V.

    2016-01-01

    Host responses against metazoan parasites or an array of environmental substances elicit type 2 immunity. Despite its protective function, type 2 immunity also drives allergic diseases. The mechanisms that regulate the magnitude of the type 2 response remain largely unknown. Here, we show that genetic ablation of a receptor tyrosine kinase encoded by Tyro3 in mice or the functional neutralization of its ortholog in human dendritic cells resulted in enhanced type 2 immunity. Furthermore, the TYRO3 agonist PROS1 was induced in T cells by the quintessential type 2 cytokine, interleukin-4. T cell–specific Pros1 knockouts phenocopied the loss of Tyro3. Thus, a PROS1-mediated feedback from adaptive immunity engages a rheostat, TYRO3, on innate immune cells to limit the intensity of type 2 responses. PMID:27034374

  8. Treatment of prediabetes

    PubMed Central

    Kanat, Mustafa; DeFronzo, Ralph A; Abdul-Ghani, Muhammad A

    2015-01-01

    Progression of normal glucose tolerance (NGT) to overt diabetes is mediated by a transition state called impaired glucose tolerance (IGT). Beta cell dysfunction and insulin resistance are the main defects in type 2 diabetes mellitus (type 2 DM) and even normoglycemic IGT patients manifest these defects. Beta cell dysfunction and insulin resistance also contribute to the progression of IGT to type 2 DM. Improving insulin sensitivity and/or preserving functions of beta-cells can be a rational way to normalize the GT and to control transition of IGT to type 2 DM. Loosing weight, for example, improves whole body insulin sensitivity and preserves beta-cell function and its inhibitory effect on progression of IGT to type 2 DM had been proven. But interventions aiming weight loss usually not applicable in real life. Pharmacotherapy is another option to gain better insulin sensitivity and to maintain beta-cell function. In this review, two potential treatment options (lifestyle modification and pharmacologic agents) that limits the IGT-type 2 DM conversion in prediabetic subjects are discussed. PMID:26464759

  9. Studies of formation and efflux of methotrexate polyglutamates with cultured hepatic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galivan, J.; Balinska, M.

    1983-01-01

    Methotrexate polyglutamates are extensively synthesized when cultured hepatocytes and H35 hepatoma cells are exposed to micromolar concentrations of methotrexate. The predominant species found within the cell have from two to four additional gamma-linked glutamate residues. When either cell type containing a mixture of methotrexate and its polyglutamate derivatives is exposed to medium lacking methotrexate, there is a rapid release of methotrexate. This release has a T/sub 1/2/ of 2 to 4 min and is apparently complete within 30 to 60 min. Methotrexate polyglutamates leave the cells much more slowly and appear to do so by two mechanisms. Although cleavage tomore » methotrexate and subsequent efflux appears to be quantitatively the more important pathway, there is also a slow, finite loss of intact methotrexate polyglutamates from cells which exclude trypan blue. The T/sub 1/2/ for the loss of methotrexate polyglutamates by both cell types, when placed in medium lacking methotrexate, is approximately 6 to 8 hr. These results suggest that the polyglutamate derivatives are forms of methotrexate which are as cytotoxic as methotrexate but which offer a potentially greater capacity for cellular destruction because they are retained longer in the tissue.« less

  10. Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot.

    PubMed

    Kornum, Birgitte Rahbek; Burgdorf, Kristoffer Sølvsten; Holm, Anja; Ullum, Henrik; Jennum, Poul; Knudsen, Stine

    2017-08-15

    Narcolepsy type 1, a neurological sleep disorder strongly associated with Human Leukocyte Antigen (HLA-)DQB1*06:02, is caused by the loss of hypothalamic neurons producing the wake-promoting neuropeptide hypocretin (hcrt, also known as orexin). This loss is believed to be caused by an autoimmune reaction. To test whether hcrt itself could be a possible target in the autoimmune attack, CD4 + T-cell reactivity towards six different 15-mer peptides from prepro-hypocretin with high predicted affinity to the DQA1*01:02/DQB1*06:02 MHC class II dimer was tested using EliSpot in a cohort of 22 narcolepsy patients with low CSF hcrt levels, and 23 DQB1*06:02 positive healthy controls. Our ELISpot assay had a detection limit of 1:10,000 cells. We present data showing that autoreactive CD4 + T-cells targeting epitopes from the hcrt precursor in the context of MHC-DQA1*01:02/DQB1*06:02 are either not present or present in a frequency is <1:10,000 among peripheral CD4 + T-cells from narcolepsy type 1 patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Risk for Sporadic Breast Cancer in Ataxia Telangiectasia Heterozygotes

    DTIC Science & Technology

    2002-08-01

    gene, due to a loss of function mutation in one of the 2 alleles and found in about 1% of the general population, confers a significant increase in... loss of wild type ATM expression rather than mutational inactivation could be expected. With this rationale, we undertook a comprehensive ATM expression...deficient tumor cells with activated oncogenic pathways, clonal outgrowth favors loss of p73 function. Taken together, this data shows that oncogenes can

  12. Pathophysiology and laboratory diagnosis of pernicious anemia.

    PubMed

    Toh, Ban-Hock

    2017-02-01

    Pernicious anemia is the hematologic manifestation of chronic atrophic gastritis affecting the corpus of the stomach that denudes the gastric mucosa of gastric parietal cells. Asymptomatic autoimmune gastritis, a chronic inflammatory disease of the gastric mucosa, precedes the onset of corpus atrophy by 10-20 years. The gastritis arises from activation of pathologic Th1 CD4 T cells to gastric H/K ATPase that is normally resident on gastric mucosal secretory membranes. The onset of autoimmune gastritis is marked by circulating parietal cell antibody to gastric H/K ATPase. Gastric parietal cells produce two essential biologics: intrinsic factor and HCl acid. Pernicious anemia is a consequence of intrinsic factor loss and neutralizing intrinsic factor antibody that impairs cobalamin absorption. Acid loss leads to iron deficiency anemia that precedes cobalamin-deficient pernicious anemia by 20 years. Laboratory diagnosis rests on parietal cell antibody with or without intrinsic factor antibody, cobalamin-deficient megaloblastic anemia and elevated serum gastrin from loss of acid secretion. Autoimmune gastritis is associated with autoimmune thyroiditis and type 1 diabetes mellitus.

  13. The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities.

    PubMed

    O'Neill, M; Chen, A; Murray, N E

    1997-12-23

    Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the deletion of chromosomal genes rather than loss of plasmid vector. If EcoKI were to behave in the same way as the plasmid-encoded type II R-M systems, the loss of the relevant chromosomal genes by mutation or recombination should lead to cell death because the cell would become deficient in modification enzyme and the bacterial chromosome would be vulnerable to the restriction endonuclease. Our data contradict this prediction; they reveal that functional type I R-M genes in the chromosome are readily replaced by mutant alleles and by alleles encoding a type I R-M system of different specificity. The acquisition of allelic genes conferring a new sequence specificity, but not the loss of the resident genes, is dependent on the product of an unlinked gene, one predicted [Prakash-Cheng, A., Chung, S. S. & Ryu, J. (1993) Mol. Gen. Genet. 241, 491-496] to be relevant to control of expression of the genes that encode EcoKI. Our evidence suggests that not all R-M systems are evolving as "selfish" units; rather, the diversity and distribution of the family of type I enzymes we have investigated require an alternative selective pressure.

  14. Loss of Virus-Specific Memory T. cells in Coxsackievirus B3 and B4 Infected Mice

    EPA Science Inventory

    There are two major types of enteroviruses: polioviruses and non-polio enteroviruses. While vaccines have effectively eliminated poliovirus infections, no vaccine is currently available for the non-polio enteroviruses. Generation of long-term pathogen specific memory cells is cri...

  15. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    PubMed

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  16. Loss of Cyclin-dependent Kinase 2 in the Pancreas Links Primary β-Cell Dysfunction to Progressive Depletion of β-Cell Mass and Diabetes*

    PubMed Central

    Kim, So Yoon; Lee, Ji-Hyeon; Merrins, Matthew J.; Gavrilova, Oksana; Bisteau, Xavier; Kaldis, Philipp; Satin, Leslie S.; Rane, Sushil G.

    2017-01-01

    The failure of pancreatic islet β-cells is a major contributor to the etiology of type 2 diabetes. β-Cell dysfunction and declining β-cell mass are two mechanisms that contribute to this failure, although it is unclear whether they are molecularly linked. Here, we show that the cell cycle regulator, cyclin-dependent kinase 2 (CDK2), couples primary β-cell dysfunction to the progressive deterioration of β-cell mass in diabetes. Mice with pancreas-specific deletion of Cdk2 are glucose-intolerant, primarily due to defects in glucose-stimulated insulin secretion. Accompanying this loss of secretion are defects in β-cell metabolism and perturbed mitochondrial structure. Persistent insulin secretion defects culminate in progressive deficits in β-cell proliferation, reduced β-cell mass, and diabetes. These outcomes may be mediated directly by the loss of CDK2, which binds to and phosphorylates the transcription factor FOXO1 in a glucose-dependent manner. Further, we identified a requirement for CDK2 in the compensatory increases in β-cell mass that occur in response to age- and diet-induced stress. Thus, CDK2 serves as an important nexus linking primary β-cell dysfunction to progressive β-cell mass deterioration in diabetes. PMID:28100774

  17. Increase in Pancreatic Proinsulin and Preservation of β-Cell Mass in Autoantibody-Positive Donors Prior to Type 1 Diabetes Onset

    PubMed Central

    Rodriguez-Calvo, Teresa; Zapardiel-Gonzalo, Jose; Amirian, Natalie; Castillo, Ericka; Lajevardi, Yasaman; Krogvold, Lars; Dahl-Jørgensen, Knut

    2017-01-01

    Type 1 diabetes is characterized by the loss of insulin production caused by β-cell dysfunction and/or destruction. The hypothesis that β-cell loss occurs early during the prediabetic phase has recently been challenged. Here we show, for the first time in situ, that in pancreas sections from autoantibody-positive (Ab+) donors, insulin area and β-cell mass are maintained before disease onset and that production of proinsulin increases. This suggests that β-cell destruction occurs more precipitously than previously assumed. Indeed, the pancreatic proinsulin-to-insulin area ratio was also increased in these donors with prediabetes. Using high-resolution confocal microscopy, we found a high accumulation of vesicles containing proinsulin in β-cells from Ab+ donors, suggesting a defect in proinsulin conversion or an accumulation of immature vesicles caused by an increase in insulin demand and/or a dysfunction in vesicular trafficking. In addition, islets from Ab+ donors were larger and contained a higher number of β-cells per islet. Our data indicate that β-cell mass (and function) is maintained until shortly before diagnosis and declines rapidly at the time of clinical onset of disease. This suggests that secondary prevention before onset, when β-cell mass is still intact, could be a successful therapeutic strategy. PMID:28137793

  18. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance

    PubMed Central

    Lee, Jonah D.; Fry, Christopher S.; Mula, Jyothi; Kirby, Tyler J.; Jackson, Janna R.; Liu, Fujun; Yang, Lin; Dupont-Versteegden, Esther E.; McCarthy, John J.

    2016-01-01

    Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7CreER-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response. PMID:25878030

  19. Epigenetics in adipose tissue, obesity, weight loss and diabetes

    USDA-ARS?s Scientific Manuscript database

    Given the role that the diet and other environmental factors play in the development of obesity and type 2 diabetes, the implication of different epigenetic processes is being investigated. Although it is well known that the environmental factors can cause cell type-dependent epigenetic changes, inc...

  20. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    PubMed

    Hollenbach, Jessica P; Resch, Alissa M; Palakodeti, Dasaradhi; Graveley, Brenton R; Heinen, Christopher D

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  1. Loss of DNA Mismatch Repair Imparts a Selective Advantage in Planarian Adult Stem Cells

    PubMed Central

    Hollenbach, Jessica P.; Resch, Alissa M.; Palakodeti, Dasaradhi; Graveley, Brenton R.; Heinen, Christopher D.

    2011-01-01

    Lynch syndrome (LS) leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR) genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis. PMID:21747960

  2. T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis.

    PubMed

    Zimmermann, J; Kühl, A A; Weber, M; Grün, J R; Löffler, J; Haftmann, C; Riedel, R; Maschmeyer, P; Lehmann, K; Westendorf, K; Mashreghi, M-F; Löhning, M; Mack, M; Radbruch, A; Chang, H D

    2016-11-01

    The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.

  3. Biomaterial-based delivery for skeletal muscle repair

    PubMed Central

    Cezar, Christine A.; Mooney, David J.

    2015-01-01

    Skeletal muscle possesses a remarkable capacity for regeneration in response to minor damage, but severe injury resulting in a volumetric muscle loss can lead to extensive and irreversible fibrosis, scarring, and loss of muscle function. In early clinical trials, the intramuscular injection of cultured myoblasts was proven to be a safe but ineffective cell therapy, likely due to rapid death, poor migration, and immune rejection of the injected cells. In recent years, appropriate therapeutic cell types and culturing techniques have improved progenitor cell engraftment upon transplantation. Importantly, the identification of several key biophysical and biochemical cues that synergistically regulate satellite cell fate has paved the way for the development of cell-instructive biomaterials that serve as delivery vehicles for cells to promote in vivo regeneration. Material carriers designed to spatially and temporally mimic the satellite cell niche may be of particular importance for the complete regeneration of severely damaged skeletal muscle. PMID:25271446

  4. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  5. Risk for Sporadic Breast Cancer in Ataxia Telangiectasia Heterozygotes

    DTIC Science & Technology

    2001-08-01

    assess whether heterozygosity for the ATM gene, due to a loss of function mutation in one of the 2 alleles and found in about 1% of the general population...suppressor role in breast cancer, a loss of wild type ATM expression rather than mutational inactivation could be expected. With this rationale, we...genes. The latter indicates that in p53-deficient tumor cells with activated oncogenic pathways, clonal outgrowth favors loss of p73 function. Taken

  6. Ultrasound Stimulation of Insulin Release from Pancreatic Beta Cells as a Potential Novel Treatment for Type 2 Diabetes.

    PubMed

    Suarez Castellanos, Ivan; Jeremic, Aleksandar; Cohen, Joshua; Zderic, Vesna

    2017-06-01

    Type 2 diabetes mellitus is a complex metabolic disease that has reached epidemic proportions in the United States and around the world. This disease is characterized by loss of insulin secretion and, eventually, destruction of insulin-producing pancreatic beta cells. Controlling type 2 diabetes is often difficult as pharmacological management routinely requires complex therapy with multiple medications, and loses its effectiveness over time. The objective of this study was to explore the effectiveness of a novel, non-pharmacological approach that uses the application of ultrasound energy to augment insulin release from rat INS 832/13 beta cells. The cells were exposed to unfocused ultrasound for 5 min at a peak intensity of 1 W/cm 2 and frequencies of 400 kHz, 600 kHz, 800 kHz and 1 MHz. Insulin release was measured with enzyme-linked immunosorbent assay and cell viability was assessed via the trypan blue dye exclusion test. A marked release (approximately 150 ng/10 6  cells, p < 0.05) of insulin was observed when beta cells were exposed to ultrasound at 400 and 600 kHz as compared with their initial control values; however, this release was accompanied by a substantial loss in cell viability. Ultrasound application at frequencies of 800 kHz resulted in 24 ng/10 6  cells released insulin (p < 0.05) as compared with its unstimulated base level, while retaining cell viability. Insulin release from beta cells caused by application of 800-kHz ultrasound was comparable to that reported by the secretagogue glucose, thus operating within physiological secretory capacity of these cells. Ultrasound has potential as a novel and alternative method to current approaches aimed at correcting secretory deficiencies in patients with type 2 diabetes. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Epstein-Barr virus latent membrane protein-1 (LMP-1) 30-bp deletion and Xho I-loss is associated with type III nasopharyngeal carcinoma in Malaysia

    PubMed Central

    See, Hui Shien; Yap, Yoke Yeow; Yip, Wai Kien; Seow, Heng Fong

    2008-01-01

    Background Nasopharyngeal carcinoma (NPC) is a human epithelial tumour with high prevalence amongst Chinese in Southern China and South East Asia and is associated with the Epstein-Barr virus (EBV). The viral genome harbours an oncogene, namely, the latent membrane protein 1 (LMP1) gene and known variants such as the 30-bp deletion and loss of XhoI restriction site have been found. Less is known about the relationship between these variants and the population characteristics and histological type. Methods In this study, the EBV LMP1 gene variants from 42 NPC and 10 non-malignant archived formalin fixed, paraffin-embedded tissues, as well as plasma from another 35 patients with nasopharyngeal carcinoma were determined by using Polymerase Chain Reaction (PCR). Statistical analysis was performed by using SPSS programme. Results LMP1 30-bp deletion was detected in 19/34 (55.9%) of NPC tissues, 7/29 (24.1%) of plasma but absent in non-malignant tissues (8/8). Coexistence of variants with and without 30bp deletion was found only in 5/29 (17.2%) plasma samples but not in NPC tissues. The loss of XhoI restriction site in LMP1 gene was found in 34/39 (87.2%) of the NPC tissues and 11/30 (36.7%) of plasma samples. None of the non-malignant nasopharyngeal tissues (8/8) harbour XhoI-loss variants. LMP1 30-bp deletion was detected in 16/18 Chinese versus 3/15 Malays and 13/16 type III (undifferentiated carcinoma) versus 1/6 type I (keratinizing squamous cell carcinoma). XhoI-loss was found in 19/19 Chinese versus 14/19 Malays and 18/18 type III (undifferentiated) versus 2/5 type I (keratinizing squamous cell carcinoma). Statistical analysis showed that these variants were associated with ethnic race (30-bp deletion, p < 0.05; XhoI-loss, p = 0.046) and histological type of NPC (30-bp deletion, p = 0.011; XhoI-loss, p = 0.006). Nineteen out of 32 NPC tissues (19/32; 59.4%) and 6/24 (25%) of plasma samples showed the coexistence of both the 30-bp deletion and the loss of XhoI restriction site. A significant relationship was found with the Chinese race but not histological type. Conclusion The incidence rate of 56% for LMP1 30-bp deletion was lower compared to previously reported rates of 75–100% in NPC tissues. Coexistence of variants with and without 30-bp deletion was found only in 5/29 plasma samples. The incidence rate of XhoI restriction site loss in NPC was comparable to other studies from endemic regions such as Southern China. For the first time, the presence of LMP1 30-bp deletion or XhoI-loss was associated with the Chinese race and type III NPC. Both these variants were not found in non-malignant tissues. The influence of these variants on disease progression and outcome in Chinese and type III NPC requires further investigation. PMID:18275617

  8. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice1

    PubMed Central

    Selvaratnam, Johanna S.; Robaire, Bernard

    2016-01-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat−/−) and SOD1-null (Sod−/−) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod−/− mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod−/− mice, while aged Cat−/− mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat−/− mice but was consistently low in young and aged Sod−/− mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod−/− and Cat−/− mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat−/− and in Sod−/− mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod−/− mice and with age in all mice. These studies show that aged Sod−/− mice display severe redox dysfunction, while wild-type and Cat−/− mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. PMID:27465136

  9. Effects of Aging and Oxidative Stress on Spermatozoa of Superoxide-Dismutase 1- and Catalase-Null Mice.

    PubMed

    Selvaratnam, Johanna S; Robaire, Bernard

    2016-09-01

    Advanced paternal age is linked to complications in pregnancy and genetic diseases in offspring. Aging results in excess reactive oxygen species (ROS) and DNA damage in spermatozoa; this damage can be transmitted to progeny with detrimental consequences. Although there is a loss of antioxidants with aging, the impact on aging male germ cells of the complete absence of either catalase (CAT) or superoxide dismutase 1 (SOD1) has not been investigated. We used CAT-null (Cat(-/-)) and SOD1-null (Sod(-/-)) mice to determine whether loss of these antioxidants increases germ cell susceptibility to redox dysfunction with aging. Aging reduced fertility and the numbers of Sertoli and germ cells in all mice. Aged Sod(-/-) mice displayed an increased loss of fertility compared to aged wild-type mice. Treatment with the pro-oxidant SIN-10 increased ROS in spermatocytes of aged wild-type and Sod(-/-) mice, while aged Cat(-/-) mice were able to neutralize this ROS. The antioxidant peroxiredoxin 1 (PRDX1) increased with age in wild-type and Cat(-/-) mice but was consistently low in young and aged Sod(-/-) mice. DNA damage and repair markers (γ-H2AX and 53BP1) were reduced with aging and lower in young Sod(-/-) and Cat(-/-) mice. Colocalization of γ-H2AX and 53BP1 suggested active repair in young wild-type mice but reduced in young Cat(-/-) and in Sod(-/-) mice and with age. Oxidative DNA damage (8-oxodG) increased in young Sod(-/-) mice and with age in all mice. These studies show that aged Sod(-/-) mice display severe redox dysfunction, while wild-type and Cat(-/-) mice have compensatory mechanisms to partially alleviate oxidative stress and reduce age-related DNA damage in spermatozoa. Thus, SOD1 but not CAT is critical to the maintenance of germ cell quality with aging. © 2016 by the Society for the Study of Reproduction, Inc.

  10. Tissue–selective effects of nucleolar stress and rDNA damage in developmental disorders

    PubMed Central

    Calo, Eliezer; Gu, Bo; Bowen, Margot E.; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A.; Swigut, Tomek; Chang, Howard Y.; Attardi, Laura D.; Wysocka, Joanna

    2018-01-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis1,2. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis3,4, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis5, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations. PMID:29364875

  11. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders.

    PubMed

    Calo, Eliezer; Gu, Bo; Bowen, Margot E; Aryan, Fardin; Zalc, Antoine; Liang, Jialiang; Flynn, Ryan A; Swigut, Tomek; Chang, Howard Y; Attardi, Laura D; Wysocka, Joanna

    2018-02-01

    Many craniofacial disorders are caused by heterozygous mutations in general regulators of housekeeping cellular functions such as transcription or ribosome biogenesis. Although it is understood that many of these malformations are a consequence of defects in cranial neural crest cells, a cell type that gives rise to most of the facial structures during embryogenesis, the mechanism underlying cell-type selectivity of these defects remains largely unknown. By exploring molecular functions of DDX21, a DEAD-box RNA helicase involved in control of both RNA polymerase (Pol) I- and II-dependent transcriptional arms of ribosome biogenesis, we uncovered a previously unappreciated mechanism linking nucleolar dysfunction, ribosomal DNA (rDNA) damage, and craniofacial malformations. Here we demonstrate that genetic perturbations associated with Treacher Collins syndrome, a craniofacial disorder caused by heterozygous mutations in components of the Pol I transcriptional machinery or its cofactor TCOF1 (ref. 1), lead to relocalization of DDX21 from the nucleolus to the nucleoplasm, its loss from the chromatin targets, as well as inhibition of rRNA processing and downregulation of ribosomal protein gene transcription. These effects are cell-type-selective, cell-autonomous, and involve activation of p53 tumour-suppressor protein. We further show that cranial neural crest cells are sensitized to p53-mediated apoptosis, but blocking DDX21 loss from the nucleolus and chromatin rescues both the susceptibility to apoptosis and the craniofacial phenotypes associated with Treacher Collins syndrome. This mechanism is not restricted to cranial neural crest cells, as blood formation is also hypersensitive to loss of DDX21 functions. Accordingly, ribosomal gene perturbations associated with Diamond-Blackfan anaemia disrupt DDX21 localization. At the molecular level, we demonstrate that impaired rRNA synthesis elicits a DNA damage response, and that rDNA damage results in tissue-selective and dosage-dependent effects on craniofacial development. Taken together, our findings illustrate how disruption in general regulators that compromise nucleolar homeostasis can result in tissue-selective malformations.

  12. Hepatocyte growth factor activator inhibitor type-2 (HAI-2)/SPINT2 contributes to invasive growth of oral squamous cell carcinoma cells.

    PubMed

    Yamamoto, Koji; Kawaguchi, Makiko; Shimomura, Takeshi; Izumi, Aya; Konari, Kazuomi; Honda, Arata; Lin, Chen-Yong; Johnson, Michael D; Yamashita, Yoshihiro; Fukushima, Tsuyoshi; Kataoka, Hiroaki

    2018-02-20

    Hepatocyte growth factor activator inhibitor (HAI)-1/ SPINT1 and HAI-2/ SPINT2 are membrane-anchored protease inhibitors having homologous Kunitz-type inhibitor domains. They regulate membrane-anchored serine proteases, such as matriptase and prostasin. Whereas HAI-1 suppresses the neoplastic progression of keratinocytes to invasive squamous cell carcinoma (SCC) through matriptase inhibition, the role of HAI-2 in keratinocytes is poorly understood. In vitro homozygous knockout of the SPINT2 gene suppressed the proliferation of two oral SCC (OSCC) lines (SAS and HSC3) but not the growth of a non-tumorigenic keratinocyte line (HaCaT). Reversion of HAI-2 abrogated the growth suppression. Matrigel invasion of both OSCC lines was also suppressed by the loss of HAI-2. The levels of prostasin protein were markedly increased in HAI-2-deficient cells, and knockdown of prostasin alleviated the HAI-2 loss-induced suppression of OSCC cell invasion. Therefore, HAI-2 has a pro-invasive role in OSCC cells through suppression of prostasin. In surgically resected OSCC tissues, HAI-2 immunoreactivity increased along with neoplastic progression, showing intense immunoreactivities in invasive OSCC cells. In summary, HAI-2 is required for invasive growth of OSCC cells and may contribute to OSCC progression.

  13. Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell

    NASA Astrophysics Data System (ADS)

    Balasundaram, Manikandan; Ramar, Vishwanathan; Yap, Christopher; Lu, Li; Tay, Andrew A. O.; Palani, Balaya

    2016-10-01

    We report here thermal behaviour and various components of heat loss of 18650-type LiFePO4/graphite cell at different testing conditions. In this regard, the total heat generated during charging and discharging processes at various current rates (C) has been quantified in an Accelerating Rate Calorimeter experiment. Irreversible heat generation, which depends on applied current and internal cell resistance, is measured under corresponding charge/discharge conditions using intermittent pulse techniques. On the other hand, reversible heat generation which depends on entropy changes of the electrode materials during the cell reaction is measured from the determination of entropic coefficient at various states of charge/discharge. The contributions of irreversible and reversible heat generation to the total heat generation at both high and low current rates are evaluated. At every state of charge/discharge, the nature of the cell reaction is found to be either exothermic or endothermic which is especially evident at low C rates. In addition, electrochemical impedance spectroscopy measurements are performed on above 18650 cells at various states of charge to determine the components of internal resistance. The findings from the impedance and thermal loss analysis are helpful for understanding the favourable states of charge/discharge for battery operation, and designing better thermal management systems.

  14. Roles of CONSTITUTIVE PHOTOMORPHOGENIC 10 in Arabidopsis stomata development

    PubMed Central

    Delgado, Dolores; Ballesteros, Isabel; Mena, Montaña; Fenoll, Carmen

    2012-01-01

    Stomata are epidermal bi-celled structures that differentiate within special cell lineages initiated by a subset of protodermal cells. Recently, we showed that the Arabidopsis photomorphogenic repressor COP10 controls specific cell-lineage and cell-signaling developmental mechanisms in stomatal lineages. Loss-of-function cop10-1 mutant cotyledons and leaves produced (in the light and in the dark) abundant stomatal clusters, but nonlineage epidermal cells were not affected. Here we examine COP10 role in hypocotyls, cylindrical organs displaying a distinct epidermal organization with alternate files of protruding and non-protruding cells, with the latter producing a limited number of stomata. COP10 prevents stomatal clusters and restricts stomata production in hypocotyls; these roles are specific to lineage cells as in cotyledons, since COP10 loss of function does not elicit stomatal fate in nonlineage cells; COP10 also sustains the directional cell expansion of all hypocotyl epidermal cell types, and seems necessary for the differentiation between protruding and non-protruding cell files. PMID:22836493

  15. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    PubMed Central

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  16. Botulinum neurotoxin type C protease induces apoptosis in differentiated human neuroblastoma cells.

    PubMed

    Rust, Aleksander; Leese, Charlotte; Binz, Thomas; Davletov, Bazbek

    2016-05-31

    Neuroblastomas constitute a major cause of cancer-related deaths in young children. In recent years, a number of translation-inhibiting enzymes have been evaluated for killing neuroblastoma cells. Here we investigated the potential vulnerability of human neuroblastoma cells to protease activity derived from botulinum neurotoxin type C. We show that following retinoic acid treatment, human neuroblastoma cells, SiMa and SH-SY5Y, acquire a neuronal phenotype evidenced by axonal growth and expression of neuronal markers. Botulinum neurotoxin type C which cleaves neuron-specific SNAP25 and syntaxin1 caused apoptotic death only in differentiated neuroblastoma cells. Direct comparison of translation-inhibiting enzymes and the type C botulinum protease revealed one order higher cytotoxic potency of the latter suggesting a novel neuroblastoma-targeting pathway. Our mechanistic insights revealed that loss of ubiquitous SNAP23 due to differentiation coupled to SNAP25 cleavage due to botulinum activity may underlie the apoptotic death of human neuroblastoma cells.

  17. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials

    PubMed Central

    Shang, Yunfei; Hao, Shuwei; Yang, Chunhui; Chen, Guanying

    2015-01-01

    Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed. PMID:28347095

  18. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques

    PubMed Central

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A.; Veazey, Ronald S.

    2015-01-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit+IL-7Rα+ (CD117+CD127+) cells. These ILC3 cells highly expressed CD90 (∼63%) and aryl hydrocarbon receptor and produced IL-17 (∼63%), IL-22 (∼36%), and TNF-α (∼72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4+ T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P < 0.001). Notably, ILC3 could be induced to undergo apoptosis by microbial products through the TLR2 (lipoteichoic acid) and/or TLR4 (LPS) pathway. These findings indicated that persistent microbial translocation may result in loss of ILC3 in lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues.—Xu, H., Wang, X., Lackner, A. A., Veazey, R. S. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus–infected macaques. PMID:26283536

  19. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing

    PubMed Central

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L.

    2016-01-01

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1, an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from −938 to −337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1. We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34+ selected hematopoietic stem and progenitor cells. PMID:27570841

  20. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing.

    PubMed

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1 , an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from -938 to -337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1 . We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34 + selected hematopoietic stem and progenitor cells.

  1. The primary culture of mirror carp snout and caudal fin tissues and the isolation of Koi herpesvirus.

    PubMed

    Zhou, Jingxiang; Wang, Hao; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming

    2013-10-01

    The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types.

  2. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yong, E-mail: yongzhao@uic.edu; Guo, Chengshan; Hwang, David

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model inmore » NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.« less

  3. Ascorbic Acid Repletion: A Possible Therapy for Diabetic Macular Edema?

    PubMed Central

    May, James M.

    2016-01-01

    Macular edema poses a significant risk for visual loss in persons with diabetic retinopathy. It occurs when plasma constituents and fluid leak out of damaged retinal microvasculature in the area of the macula, causing loss of central vision. Apoptotic loss of pericytes surrounding capillaries is perhaps the earliest feature of diabetic vascular damage in the macula, which is also associated with dysfunction of the endothelium and loss of the otherwise very tight endothelial permeability barrier. Increased oxidative stress is a key feature of damage to both cell types, mediated by excess superoxide from glucose-induced increases in mitochondrial metabolism, as well as by activation of the receptor for advanced glycation end products (RAGE). The latter in turn activates multiple pathways, some of which lead to increased oxidative stress, such as those involving NF-κB, NADPH oxidase, and endothelial nitric oxide synthase. Such cellular oxidative stress is associated with low cellular and plasma ascorbic acid levels in many subjects with diabetes in poor glycemic control. Whether repletion of low ascorbate in retinal endothelium and pericytes might help to prevent diabetic macular edema is unknown. However, cell culture studies show that the vitamin prevents high-glucose and RAGE-induced apoptosis in both cell types, that it preserves nitric oxide generated by endothelial cells, and that it tightens the leaky endothelial permeability barrier. Although these findings need to be confirmed in pre-clinical animal studies, it is worth considering clinical trials to determine whether adequate ascorbate repletion is possible and whether it might help to delay or even reverse early diabetic macular edema. PMID:26898503

  4. Chir99021 and Valproic acid reduce the proliferative advantage of Apc mutant cells.

    PubMed

    Langlands, Alistair J; Carroll, Thomas D; Chen, Yu; Näthke, Inke

    2018-02-15

    More than 90% of colorectal cancers carry mutations in Apc that drive tumourigenesis. A 'just-right' signalling model proposes that Apc mutations stimulate optimal, but not excessive Wnt signalling, resulting in a growth advantage of Apc mutant over wild-type cells. Reversal of this growth advantage constitutes a potential therapeutic approach. We utilised intestinal organoids to compare the growth of Apc mutant and wild-type cells. Organoids derived from Apc Min/+ mice recapitulate stages of intestinal polyposis in culture. They eventually form spherical cysts that reflect the competitive growth advantage of cells that have undergone loss of heterozygosity (LOH). We discovered that this emergence of cysts was inhibited by Chiron99021 and Valproic acid, which potentiates Wnt signalling. Chiron99021 and Valproic acid restrict the growth advantage of Apc mutant cells while stimulating that of wild-type cells, suggesting that excessive Wnt signalling reduces the relative fitness of Apc mutant cells. As a proof of concept, we demonstrated that Chiron99021-treated Apc mutant organoids were rendered susceptible to TSA-induced apoptosis, while wild-type cells were protected.

  5. Loss of p53 protein during radiation transformation of primary human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazer, D.E.; Chu, Qiuming; Liu, Xiao Long

    1994-04-01

    The causative factors leading to breast cancer are largely unknown. Increased incidence of breast cancer following diagnostic or therapeutic radiation suggests that radiation may contribute to mammary oncogenesis. This report describes the in vitro neoplastic transformation of a normal human mammary epithelial cell strain, 76N, by fractionated [gamma]-irradiation at a clinically used dose (30 Gy). The transformed cells (76R-30) were immortal, had reduced growth factor requirements, and produced tumors in nude mice. Remarkably, the 76R-30 cells completely lacked the p53 tumor suppressor protein. Loss of p53 was due to deletion of the gene on one allele and a 26-bp deletionmore » within the third intron on the second allele which resulted in abnormal splicing out of either the third or fourth exon from the mRNA. PCR with a mutation-specific primer showed that intron 3 mutation was present in irradiated cells before selection for immortal phenotype. 76R-30 cells did not exhibit G[sub 1] arrest in response to radiation, indicating a loss of p53-mediated function. Expression of the wild-type p53 gene in 76R-30 cells led to their growth inhibition. Thus, loss of p53 protein appears to have contributed to neoplastic transformation of these cells. This unique model should facilitate analyses of molecular mechanisms of radiation-induced breast cancer and allow identification of p53-regulated cellular genes in breast cells. 44 refs., 8 figs., 1 tab.« less

  6. Three dimensional culture of the murine osteoblastic cell line OCT-1 on collagen coated microcarriers

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Kirchner, S.; Baumstark-Khan, C.

    2005-08-01

    During long-term space missions, astronauts suffer from the loss of minerals especially from weightbearing bones due to prolonged sojourn under microgravity. Bone loss during space flight is about 1-2% per month. Bone is continually being remodelled under the influence of three types of highly specialized cells. Osteoblasts, the bone forming cells, osteoclasts, the bone resorbing cells and finally osteocytes preserve the homeostasis of bone formation and resorption. In vitro 3- dimensional cell culture of osteoblastic cell lines on microcarrier beads might be a better model to evaluate changes in bone cell morphology, function and differentiation under influence of spaceflight related factors than the conventional 2-D monolayer culture technique. Furthermore, it allows production of a greater amount of cells compared to the monolayer culture. Aim of this study is to examine the effects of culturing the immortalized murine osteoblastic cell line OCT-1 in a 3- dimensional environment on cell morphology and proliferation rate.

  7. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes?

    PubMed

    Dayeh, Tasnim; Ling, Charlotte

    2015-10-01

    β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.

  8. High-efficiency silicon heterojunction solar cells: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Wolf, S.; Geissbuehler, J.; Loper, P.

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups aremore » reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.« less

  9. The cell biology of lignification in higher plants

    PubMed Central

    Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard

    2015-01-01

    Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140

  10. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming.

    PubMed

    Armstrong, Laura C; Westlake, Grant; Snow, John P; Cawthon, Bryan; Armour, Eric; Bowman, Aaron B; Ess, Kevin C

    2017-12-01

    Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Annexin A2 in Proliferative Vitreoretinopathy

    DTIC Science & Technology

    2017-10-01

    cells , leading to formation of an epiretinal membrane, retinal detachment, and loss of vision. At present, there are no reliable means of...type versus annexin A2- deficient mice, [2] define the role of A2 in the function of activated macrophages and RPE cells in PVR, and [3] examine the...expression is needed in both macrophages and RPE cells , and that A2 is extensively expressed within cells of epiretinal membranes in human PVR. Our

  12. Investigations of the toxic effects of glycans-based silver nanoparticles on different types of human cells

    NASA Astrophysics Data System (ADS)

    Panzarini, E.; Mariano, S.; Dini, L.

    2017-08-01

    The effects of glycans-capped AgNPs (30±5 nm average diameter, spherical shape) on biocompatibility and uptake was studied in relation to the glycan capping (glucose AgNPs-G, glucose/sucrose AgNPs-GS, glucose/fructose AgNPs-GF), and to the cell types (HeLa cells, lymphocytes, and HepG2 cells). Glycan capping and type of cells drive morphological changes, viability loss and type and extent of cell death induction; in addition cells response is largely influenced by the AgNPs amount. The MTT photometric method to determine cell metabolism and the analysis of the membrane integrity by Annexin V-Propidium Iodide labelling were used to quantify cell viability and cell death with different concentrations of NPs. It turns out that i) AgNPs-GF are the most toxic, whereas ii) AgNPs-GS are the less toxic NPs, probably due to the stability of glucose/sucrose capping up to 5 days in culture medium; iii) HepG2 cells are the most sensitive to the presence of NPs. A deeper investigation is necessary to explain the interesting PBLs proliferation increase observed in the presence of AgNPs-GS.

  13. Loss of neurofibromatosis type 1 (NF1) gene expression in pheochromocytomas from patients without NF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, R.T.; Gutmann, D.H.; Moley, J.F.

    The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, termed neurofibromin. Loss of NF1 gene expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 as well as malignant and neuroblastomas from patients without NF1. Previously, we demonstrated the lack of neurofibromin expression in six pheochromocytomas from patients with NF1, suggesting that neurofibromin loss is associated with the progression to neoplasia in pheochromocytomas in these patients. The lack of NF1 gene expression in NF1 patient pheochromocytomas supports the notion that neurofibromin might be an essential regulator of cell growth in these cells. To determine whethermore » NF1 gene expression is similarly altered in pheochromocytomas from patients without NF1, twenty pheochromocytomas were examined for the presence of NF1 RNA by reverse-transcribed PCR (RT-PCR). Lack of NF1 gene expression was documented in four of these twenty tumors (20%) which corresponds to previously reported numbers for malignant melanomas and neuroblastomas in non-NF1 patients. Of these twenty pheochromocytomas, one of four sporadic tumors, one of ten tumors from patients with MEN2A, one of four tumors from patients with MEN2B, and one of two tumors from patients with von Hippel-Lindau syndrome demonstrated loss of NF1 gene expression. In all cases, the quality and quantity of tumor RNA was determined by RT-PCR amplification using primers which amplify cyclophilin RNA. We previously demonstrated that these tumors do not harbor activating mutations of the N-ras, K-ras or H-ras proto-oncogenes. These results suggest that loss of NF1 gene expression is frequently associated with the progression to neoplasia in tumors derived from adrenal medullary tissue in patients without clinical manifestations of neurofibromatosis and supports the notion that neurofibromin is a tumor suppressor gene product involved in the pathogenesis of a wide variety of tumor types.« less

  14. KRAS Protein Stability Is Regulated through SMURF2: UBCH5 Complex-Mediated β-TrCP1 Degradation12

    PubMed Central

    Shukla, Shirish; SankarAllam, Uday; Ahsan, Aarif; Chen, Guoan; Krishnamurthy, Pranathi Meda; Marsh, Katherine; Rumschlag, Matthew; Shankar, Sunita; Whitehead, Christopher; Schipper, Matthew; Basrur, Venkatesha; Southworth, Daniel R; Chinnaiyan, Arul M; Rehemtulla, Alnawaz; Beer, David G; Lawrence, Theodore S; Nyati, Mukesh K; Ray, Dipankar

    2014-01-01

    Attempts to target mutant KRAS have been unsuccessful. Here, we report the identification of Smad ubiquitination regulatory factor 2 (SMURF2) and UBCH5 as a critical E3:E2 complex maintaining KRAS protein stability. Loss of SMURF2 either by small interfering RNA/short hairpin RNA (siRNA/shRNA) or by overexpression of a catalytically inactive mutant causes KRAS degradation, whereas overexpression of wild-type SMURF2 enhances KRAS stability. Importantly, mutant KRAS is more susceptible to SMURF2 loss where protein half-life decreases from >12 hours in control siRNA-treated cells to <3 hours on Smurf2 silencing, whereas only marginal differences were noted for wild-type protein. This loss of mutant KRAS could be rescued by overexpressing a siRNA-resistant wild-type SMURF2. Our data further show that SMURF2 monoubiquitinates UBCH5 at lysine 144 to form an active complex required for efficient degradation of a RAS-family E3, β-transducing repeat containing protein 1 (β-TrCP1). Conversely, β-TrCP1 is accumulated on SMURF2 loss, leading to increased KRAS degradation. Therefore, as expected, β-TrCP1 knockdown following Smurf2 siRNA treatment rescues mutant KRAS loss. Further, we identify two conserved proline (P) residues in UBCH5 critical for SMURF2 interaction; mutant of either of these P to alanine also destabilizes KRAS. As a proof of principle, we demonstrate that Smurf2 silencing reduces the clonogenic survival in vitro and prolongs tumor latency in vivo in cancer cells including mutant KRAS-driven tumors. Taken together, we show that SMURF2:UBCH5 complex is critical in maintaining KRAS protein stability and propose that targeting such complex may be a unique strategy to degrade mutant KRAS to kill cancer cells. PMID:24709419

  15. A survey of cellulose microfibril patterns in dividing, expanding, and differentiating cells of Arabidopsis thaliana.

    PubMed

    Fujita, Miki; Wasteneys, Geoffrey O

    2014-05-01

    Cellulose microfibrils are critical for plant cell specialization and function. Recent advances in live cell imaging of fluorescently tagged cellulose synthases to track cellulose synthesis have greatly advanced our understanding of cellulose biosynthesis. Nevertheless, cellulose deposition patterns remain poorly described in many cell types, including those in the process of division or differentiation. In this study, we used field emission scanning electron microscopy analysis of cryo-planed tissues to determine the arrangement of cellulose microfibrils in various faces of cells undergoing cytokinesis or specialized development, including cell types in which cellulose cannot be imaged by conventional approaches. In dividing cells, we detected microfibrillar meshworks in the cell plates, consistent with the concentration at the cell plate of cellulose synthase complexes, as detected by fluorescently tagged CesA6. We also observed a loss of parallel cellulose microfibril orientation in walls of the mother cell during cytokinesis, which corresponded with the loss of fluorescently tagged cellulose synthase complexes from these surfaces. In recently formed guard cells, microfibrils were randomly organized and only formed a highly ordered circumferential pattern after pore formation. In pit fields, cellulose microfibrils were arranged in circular patterns around plasmodesmata. Microfibrils were random in most cotyledon cells except the epidermis and were parallel to the growth axis in trichomes. Deposition of cellulose microfibrils was spatially delineated in metaxylem and protoxylem cells of the inflorescence stem, supporting recent studies on microtubule exclusion mechanisms.

  16. Progress toward the maintenance and repair of degenerating retinal circuitry.

    PubMed

    Vugler, Anthony A

    2010-01-01

    Retinal diseases such as age-related macular degeneration and retinitis pigmentosa remain major causes of severe vision loss in humans. Clinical trials for treatment of retinal degenerations are underway and advancements in our understanding of retinal biology in health/disease have implications for novel therapies. A review of retinal biology is used to inform a discussion of current strategies to maintain/repair neural circuitry in age-related macular degeneration, retinitis pigmentosa, and Type 2 Leber congenital amaurosis. In age-related macular degeneration/retinitis pigmentosa, a progressive loss of rods/cones results in corruption of bipolar cell circuitry, although retinal output neurons/photoreceptive melanopsin cells survive. Visual function can be stabilized/enhanced after treatment in age-related macular degeneration, but in advanced degenerations, reorganization of retinal circuitry may preclude attempts to restore cone function. In Type 2 Leber congenital amaurosis, useful vision can be restored by gene therapy where central cones survive. Remarkable progress has been made in restoring vision to rodents using light-responsive ion channels inserted into bipolar cells/retinal ganglion cells. Advances in genetic, cellular, and prosthetic therapies show varying degrees of promise for treating retinal degenerations. While functional benefits can be obtained after early therapeutic interventions, efforts should be made to minimize circuitry changes as soon as possible after rod/cone loss. Advances in retinal anatomy/physiology and genetic technologies should allow refinement of future reparative strategies.

  17. Neurons other than motor neurons in motor neuron disease.

    PubMed

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  18. Agrobacterium tumefaciens mutants affected in attachment to plant cells.

    PubMed Central

    Douglas, C J; Halperin, W; Nester, E W

    1982-01-01

    An analysis of Agrobacterium tumefaciens mutants with Tn5 insertions in chromosomal DNA showed that the chromosome of A. tumefaciens codes for a specific ability of this bacterium to attach to plant cells. This ability is associated with tumorigenesis by A. tumefaciens, the ability of avirulent A. tumefaciens to inhibit tumorigenesis, and the ability to adsorb certain phages. A second class of chromosomal mutations affects tumorigenesis without altering the ability to attach to plant cells. The attachment of A. tumefaciens to plant cells was assayed by mixing radiolabeled bacteria with suspensions of tobacco tissue culture cells or freshly isolated Zinnia leaf mesophyll cells. Under the conditions of this assay, an avirulent Ti plasmid-cured strain attached to the same extent as the same strain containing pTiB6806. Six of eight avirulent mutants with Tn5 insertions in chromosomal DNA showed defective attachment, whereas two retained wild-type attachment ability. In contrast to the strains showing wild-type attachment, the attachment-defective mutants failed to inhibit tumorigenesis when inoculated onto Jerusalem artichoke slices before inoculation of a virulent strain and also showed a loss of sensitivity to two Agrobacterium phages. The loss of phage sensitivity appeared to be due to a loss of ability to adsorb the phages. Staining with Calcofluor indicated that the mutants retained the ability to synthesize cellulose fibrils, which have been implicated in the attachment process. Southern filter hybridizations demonstrated that each mutant contained a single Tn5 insertion, and genetic linkage between the Tn5 insertion in one mutant and the attachment phenotype has also been demonstrated. Images PMID:6292165

  19. Attenuation of endocrine-exocrine pancreatic communication in type 2 diabetes: pancreatic extracellular matrix ultrastructural abnormalities.

    PubMed

    Hayden, Melvin R; Patel, Kamlesh; Habibi, Javad; Gupta, Deepa; Tekwani, Seema S; Whaley-Connell, Adam; Sowers, James R

    2008-01-01

    Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet-exocrine interface appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts-pancreatic stellate cells. Of importance, some pericyte cellular processes traverse both the connecting islet-exocrine interface and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal-incretin gut hormone axis, resulting in pancreatic insufficiency and glucagon-like peptide deficiency, which are known to exist in prediabetes and overt T2DM in humans.

  20. Attenuation of Endocrine-Exocrine Pancreatic Communication in Type 2 Diabetes: Pancreatic Extracellular Matrix Ultrastructural Abnormalities

    PubMed Central

    Hayden, Melvin R; Patel, Kamlesh; Habibi, Javad; Gupta, Deepa; Tekwani, Seema S.; Whaley-Connell, Adam; Sowers, James R.

    2009-01-01

    Ultrastructural observations reveal a continuous interstitial matrix connection between the endocrine and exocrine pancreas, which is lost due to fibrosis in rodent models and humans with type 2 diabetes mellitus (T2DM). Widening of the islet exocrine interface (IEI) appears to result in loss of desmosomes and adherens junctions between islet and acinar cells and is associated with hypercellularity consisting of pericytes and inflammatory cells in T2DM pancreatic tissue. Organized fibrillar collagen was closely associated with pericytes, which are known to differentiate into myofibroblasts – pancreatic stellate cells. Importantly, some pericyte cellular processes traverse both the connecting IEI and the endoacinar interstitium of the exocrine pancreas. Loss of cellular paracrine communication and extracellular matrix remodeling fibrosis in young animal models and humans may result in a dysfunctional insulino-acinar-ductal – incretin gut hormone axis resulting in pancreatic insufficiency and glucagon like peptide deficiency known to exist in prediabetes and overt T2DM in humans. PMID:19040593

  1. Differential expression of extracellular matrix molecules and the alpha 6-integrins in the normal and neoplastic prostate.

    PubMed Central

    Knox, J. D.; Cress, A. E.; Clark, V.; Manriquez, L.; Affinito, K. S.; Dalkin, B. L.; Nagle, R. B.

    1994-01-01

    The epithelial basal lamina composition and integrin expression profile of normal and neoplastic human prostate was characterized using immunohistochemical analysis of frozen samples. The major components of the basal lamina surrounding normal acini were laminin, type IV collagen, entactin, and type VII collagen with variable amounts of tenascin. The basal lamina of neoplastic acini had a similar composition, except for the loss of type VII collagen, which was observed in all grades of carcinoma. The basal cells of the normal prostate express the alpha 6-, beta 1-, and beta 4-integrin subunits, suggesting that both the alpha 6 beta 1- and alpha 6 beta 4-integrin complexes are formed. In prostate carcinoma there is a complete loss of beta 4 expression and the alpha 6- and beta 1-integrin subunits, which are restricted to the basal and basal lateral surfaces of basal cells, are distributed diffusely throughout the cytoplasmic membrane. The differential expression of type VII collagen and beta 4 are discussed in relationship to their possible role in tumor progression. Images Figure 1 Figure 2 Figure 3 PMID:8030747

  2. Characterization of an in vitro system for the synthesis of mRNA from human parainfluenza virus type 3.

    PubMed

    De, B P; Galinski, M S; Banerjee, A K

    1990-03-01

    A cell extract derived from human parainfluenza virus type 3-infected human lung carcinoma (HLC) cells synthesized mRNA in vitro. Under optimal conditions, the extract was able to support transcription of all virus-encoded genes as determined by hybridization analyses. The RNA products contained full-length poly(A)-containing mRNA species similar to those observed in acutely infected cells. Further purification of the viral nucleocapsids from the infected HLC cell extract resulted in total loss of the capacity of the extract to synthesize mRNA in vitro. However, the addition of cytoplasmic extracts from uninfected HLC cells to the nucleocapsid preparations restored transcription to levels observed in the infected cell lysates, indicating requirement of a host factor(s) in the human parainfluenza virus type 3 transcription process. In distinction to the abundant transcription observed in the cell extract from HLC cells, cell extract prepared from CV-1 cells failed to support transcription in vitro. High levels of RNase activity in the cell extract from CV-1 cells appears to be the principal reason for this difference.

  3. Neural Stem Cells Injected into the Sound-Damaged Cochlea Migrate Throughout the Cochlea and Express Markers of Hair Cells, Supporting Cells, and Spiral Ganglion Cells

    PubMed Central

    Corliss, Deborah A.; Gray, Brianna; Anderson, Julia K.; Bobbin, Richard P.; Snyder, Evan Y.; Cotanche, Douglas A.

    2007-01-01

    Most cases of hearing loss are caused by the death or dysfunction of one of the many cochlear cell types. We examined whether cells from a neural stem cell line could replace cochlear cell types lost after exposure to intense noise. For this purpose, we transplanted a clonal stem cell line into the scala tympani of sound damaged mice and guinea pigs. Utilizing morphological, protein expression and genetic criteria, stem cells were found with characteristics of both neural tissues (satellite, spiral ganglion and Schwann cells) and cells of the organ of Corti (hair cells, supporting cells). Additionally, noise-exposed, stem cell-injected animals exhibited a small but significant increase in the number of satellite cells and Type I spiral ganglion neurons compared to non-injected noise-exposed animals. These results indicate that cells of this neural stem cell line migrate from the scala tympani to Rosenthal's canal and the organ of Corti. Moreover, it suggests that cells of this neural stem cell line may derive some information needed from the microenvironment of the cochlea to differentiate into replacement cells in the cochlea. PMID:17659854

  4. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    PubMed

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase*

    PubMed Central

    Baumann, Stephan

    2016-01-01

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1–2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. PMID:27402836

  6. High-efficiency silicon heterojunction solar cells: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Wolf, S.

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups aremore » reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The validity of this approach was convincingly demonstrated by Panasonic, Japan in 2014, reporting on an interdigitated back-contacted HJT cell with an efficiency of 25.6%, setting the new single-junction c-Si record. Finally, given the virtually perfect surface passivation and excellent red response of HJT solar cells, we anticipate these devices will also become the preferred bottom cell in ultra-high efficiency c-Si-based tandem devices, exploiting better the solar spectrum. Such tandem cells have the potential to overcome the fundamental single-junction limit of silicon solar cells (29.4%). Combining HJT cells with perovskite solar cells as top cell appears to be particularly appealing.« less

  7. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma.

    PubMed

    Linehan, W Marston; Spellman, Paul T; Ricketts, Christopher J; Creighton, Chad J; Fei, Suzanne S; Davis, Caleb; Wheeler, David A; Murray, Bradley A; Schmidt, Laura; Vocke, Cathy D; Peto, Myron; Al Mamun, Abu Amar M; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W Kimryn; Brooks, Angela N; Hoadley, Katherine A; Robertson, A Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J; Bootwalla, Moiz; Baylin, Stephen B; Laird, Peter W; Cherniack, Andrew D; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B; Akbani, Rehan; Leiserson, Mark D M; Raphael, Benjamin J; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K; Czerniak, Bogdan; Godwin, Andrew K; Hakimi, A Ari; Ho, Thai H; Hsieh, James; Ittmann, Michael; Kim, William Y; Krishnan, Bhavani; Merino, Maria J; Mills Shaw, Kenna R; Reuter, Victor E; Reznik, Ed; Shelley, Carl S; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D; Penny, Robert J; Shelton, Candace; Shelton, W Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T; Bowen, Jay; Gastier-Foster, Julie M; Gerken, Mark; Leraas, Kristen M; Lichtenberg, Tara M; Ramirez, Nilsa C; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A; Felau, Ina; Hutter, Carolyn M; Sheth, Margi; Sofia, Heidi J; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C; Zhang, Jiashan; Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S N; Carlsen, Rebecca; Carter, Scott L; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, Harsha V; Drummond, Jennifer A; Gabriel, Stacey B; Gibbs, Richard A; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D Neil; Holt, Robert A; Hoyle, Alan P; Jefferys, Stuart R; Jones, Steven J M; Jones, Corbin D; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A; Moore, Richard A; Morton, Donna; Mose, Lisle E; Mungall, Andrew J; Muzny, Donna; Parker, Joel S; Perou, Charles M; Roach, Jeffrey; Schein, Jacqueline E; Schumacher, Steven E; Shi, Yan; Simons, Janae V; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L; Boice, Lori; Bollag, Roni J; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L; Slaton, Joel; Stanton, Melissa; Thompson, R Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M; Winemiller, Cynthia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-14

    Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).

  8. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye.

    PubMed

    Kang, Jongkyun; Yeom, Eunbyul; Lim, Janghoo; Choi, Kwang-Wook

    2014-01-01

    The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.

  9. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177–187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN{sup +/−} mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN{sup −/−} mice exhibited progressive sensorineural hearing loss as reflected bymore » auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN{sup −/−} mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. - Highlights: • TPRN{sup −/−} mice were generated using TALEN technique. • TPRN{sup −/−} mice presented progressive hearing loss. • WT and TPRN{sup −/−} mice showed no difference in hair cell numbers. • TPRN{sup −/−} mice showed progressive degeneration of hair cell stereocilia.« less

  10. Changes in the Excitability of Neocortical Neurons in a Mouse Model of Amyotrophic Lateral Sclerosis Are Not Specific to Corticospinal Neurons and Are Modulated by Advancing Disease.

    PubMed

    Kim, Juhyun; Hughes, Ethan G; Shetty, Ashwin S; Arlotta, Paola; Goff, Loyal A; Bergles, Dwight E; Brown, Solange P

    2017-09-13

    Cell type-specific changes in neuronal excitability have been proposed to contribute to the selective degeneration of corticospinal neurons in amyotrophic lateral sclerosis (ALS) and to neocortical hyperexcitability, a prominent feature of both inherited and sporadic variants of the disease, but the mechanisms underlying selective loss of specific cell types in ALS are not known. We analyzed the physiological properties of distinct classes of cortical neurons in the motor cortex of hSOD1 G93A mice of both sexes and found that they all exhibit increases in intrinsic excitability that depend on disease stage. Targeted recordings and in vivo calcium imaging further revealed that neurons adapt their functional properties to normalize cortical excitability as the disease progresses. Although different neuron classes all exhibited increases in intrinsic excitability, transcriptional profiling indicated that the molecular mechanisms underlying these changes are cell type specific. The increases in excitability in both excitatory and inhibitory cortical neurons show that selective dysfunction of neuronal cell types cannot account for the specific vulnerability of corticospinal motor neurons in ALS. Furthermore, the stage-dependent alterations in neuronal function highlight the ability of cortical circuits to adapt as disease progresses. These findings show that both disease stage and cell type must be considered when developing therapeutic strategies for treating ALS. SIGNIFICANCE STATEMENT It is not known why certain classes of neurons preferentially die in different neurodegenerative diseases. It has been proposed that the enhanced excitability of affected neurons is a major contributor to their selective loss. We show using a mouse model of amyotrophic lateral sclerosis (ALS), a disease in which corticospinal neurons exhibit selective vulnerability, that changes in excitability are not restricted to this neuronal class and that excitability does not increase monotonically with disease progression. Moreover, although all neuronal cell types tested exhibited abnormal functional properties, analysis of their gene expression demonstrated cell type-specific responses to the ALS-causing mutation. These findings suggest that therapies for ALS may need to be tailored for different cell types and stages of disease. Copyright © 2017 the authors 0270-6474/17/379038-17$15.00/0.

  11. Plasma membrane repair in plants.

    PubMed

    Schapire, Arnaldo L; Valpuesta, Victoriano; Botella, Miguel A

    2009-12-01

    Resealing is the membrane-repair process that enables cells to survive disruption, preventing the loss of irreplaceable cell types and eliminating the cost of replacing injured cells. Given that failure in the resealing process in animal cells causes diverse types of muscular dystrophy, plasma membrane repair has been extensively studied in these systems. Animal proteins with Ca(2+)-binding domains such as synaptotagmins and dysferlin mediate Ca(2+)-dependent exocytosis to repair plasma membranes after mechanical damage. Until recently, no components or proof for membrane repair mechanisms have been discovered in plants. However, Arabidopsis SYT1 is now the first plant synaptotagmin demonstrated to participate in Ca(2+)-dependent repair of membranes. This suggests a conservation of membrane repair mechanisms between animal and plant cells.

  12. CHOP Contributes to, But Is Not the Only Mediator of, IAPP Induced β-Cell Apoptosis.

    PubMed

    Gurlo, T; Rivera, J F; Butler, A E; Cory, M; Hoang, J; Costes, S; Butler, Peter C

    2016-04-01

    The islet in type 2 diabetes is characterized by β-cell loss, increased β-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). When protein misfolding protective mechanisms are overcome, human IAPP (h-IAPP) forms membrane permeant toxic oligomers that induce β-cell dysfunction and apoptosis. In humans with type 2 diabetes (T2D) and mice transgenic for h-IAPP, endoplasmic reticulum (ER) stress has been inferred from nuclear translocation of CCAAT/enhancer-binding protein homologous protein (CHOP), an established mediator of ER stress. To establish whether h-IAPP toxicity is mediated by ER stress, we evaluated diabetes onset and β-cell mass in h-IAPP transgenic (h-TG) mice with and without deletion of CHOP in comparison with wild-type controls. Diabetes was delayed in h-TG CHOP(-/-) mice, with relatively preserved β-cell mass and decreased β-cell apoptosis. Deletion of CHOP attenuates dysfunction of the autophagy/lysosomal pathway in β-cells of h-TG mice, uncovering a role for CHOP in mediating h-IAPP-induced dysfunction of autophagy. As deletion of CHOP delayed but did not prevent h-IAPP-induced β-cell loss and diabetes, we examined CHOP-independent stress pathways. JNK, a target of the IRE-1pTRAF2 complex, and the Bcl-2 family proapoptotic mediator BIM, a target of ATF4, were comparably activated by h-IAPP expression in the presence and absence of CHOP. Therefore, although these studies affirm that CHOP is a mediator of h-IAPP-induced ER stress, it is not the only one. Therefore, suppression of CHOP alone is unlikely to be a durable therapeutic strategy to protect against h-IAPP toxicity because multiple stress pathways are activated.

  13. Cell-type specific role of the RNA-binding protein, NONO, in the DNA double-strand break response in the mouse testes.

    PubMed

    Li, Shuyi; Shu, Feng-Jue; Li, Zhentian; Jaafar, Lahcen; Zhao, Shourong; Dynan, William S

    2017-03-01

    The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono gt ). In wild-type mice, NONO protein was present in Sertoli, peritubular myoid, and interstitial cells, with an increase in expression following induction of DNA damage. As expected for the product of an X-linked gene, NONO was not detected in germ cells. The Nono gt/0 mice had at most a mild testis developmental phenotype in the absence of genotoxic stress. However, following irradiation at sublethal, 2-4 Gy doses, Nono gt/0 mice displayed a number of indicators of radiosensitivity as compared to their wild-type counterparts. These included higher levels of persistent DSB repair foci, increased numbers of apoptotic cells in the seminiferous tubules, and partial degeneration of the blood-testis barrier. There was also an almost complete loss of germ cells at later times following irradiation, evidently arising as an indirect effect reflecting loss of stromal support. Results demonstrate a role for NONO protein in protection against direct and indirect biological effects of ionizing radiation in the whole animal. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy.

    PubMed

    Liu, Han; Du, Li; Wang, Ru; Wei, Chao; Liu, Bo; Zhu, Lei; Liu, Pixu; Liu, Qiang; Li, Jiang; Lu, Shi-Long; Xiao, Jing

    2015-05-10

    Salivary gland tumor (SGT) is one of the least studied cancers due to its rarity and heterogeneous histological types. Here, we reported that loss of PTEN expression was most frequently found in the poorly differentiated, high grade solid adenoid cystic carcinomas. Loss of PTEN expression correlated with activation of mTOR by increased phosphorylated S6 ribosome protein. We further functionally studied the role of PTEN in a pair of human SACC cell lines, SACC-83 and SACC-LM. Reduced PTEN level was correlated with the metastasis potential. When we knocked down PTEN in the SACC-83 cell line, we observed increased proliferation and enhanced migration/invasion in vitro, and increased tumor size in vivo. We further tested the therapeutical effect by applying a PI3K/mTOR inhibitor NVP-BEZ235 to both SACC cell lines. Decreased cell proliferation, increased apoptosis, as well as reduced cell migration/invasion were observed in both cell lines upon the NVP-BEZ235 treatment. Moreover, the NVP-BEZ235 treatment in a SGT xenograft mouse model significantly reduced primary tumor size and lung metastasis. Taken together, our results demonstrated that PTEN is a potent tumor suppressor in human SGTs, and targeting PI3K/mTOR pathway may be effective in the targeted therapy for human SGT patients with loss of PTEN expression.

  15. Circadian Disruption and Diet-Induced Obesity Synergize to Promote Development of β-Cell Failure and Diabetes in Male Rats

    PubMed Central

    Qian, Jingyi; Yeh, Bonnie; Rakshit, Kuntol; Colwell, Christopher S.

    2015-01-01

    There are clear epidemiological associations between circadian disruption, obesity, and pathogenesis of type 2 diabetes. The mechanisms driving these associations are unclear. In the current study, we hypothesized that continuous exposure to constant light (LL) compromises pancreatic β-cell functional and morphological adaption to diet-induced obesity leading to development of type 2 diabetes. To address this hypothesis, we studied wild type Sprague Dawley as well as Period-1 luciferase reporter transgenic rats (Per1-Luc) for 10 weeks under standard light-dark cycle (LD) or LL with concomitant ad libitum access to either standard chow or 60% high-fat diet (HFD). Exposure to HFD led to a comparable increase in food intake, body weight, and adiposity in both LD- and LL-treated rats. However, LL rats displayed profound loss of behavioral circadian rhythms as well as disrupted pancreatic islet clock function characterized by the impairment in the amplitude and the phase islet clock oscillations. Under LD cycle, HFD did not adversely alter diurnal glycemia, diurnal insulinemia, β-cell secretory function as well as β-cell survival, indicating successful adaptation to increased metabolic demand. In contrast, concomitant exposure to LL and HFD resulted in development of hyperglycemia characterized by loss of diurnal changes in insulin secretion, compromised β-cell function, and induction of β-cell apoptosis. This study suggests that circadian disruption and diet-induced obesity synergize to promote development of β-cell failure, likely mediated as a consequence of impaired islet clock function. PMID:26348474

  16. Identifying the Target Cell in Primary Simian Immunodeficiency Virus (SIV) Infection: Highly Activated Memory CD4+ T Cells Are Rapidly Eliminated in Early SIV Infection In Vivo

    PubMed Central

    Veazey, Ronald S.; Tham, Irene C.; Mansfield, Keith G.; DeMaria, MaryAnn; Forand, Amy E.; Shvetz, Daniel E.; Chalifoux, Laura V.; Sehgal, Prabhat K.; Lackner, Andrew A.

    2000-01-01

    It has recently been shown that rapid and profound CD4+ T-cell depletion occurs almost exclusively within the intestinal tract of simian immunodeficiency virus (SIV)-infected macaques within days of infection. Here we demonstrate (by three- and four-color flow cytometry) that this depletion is specific to a definable subset of CD4+ T cells, namely, those having both a highly and/or acutely activated (CD69+ CD38+ HLA-DR+) and memory (CD45RA− Leu8−) phenotype. Moreover, we demonstrate that this subset of helper T cells is found primarily within the intestinal lamina propria. Viral tropism for this particular cell type (which has been previously suggested by various studies in vitro) could explain why profound CD4+ T-cell depletion occurs in the intestine and not in peripheral lymphoid tissues in early SIV infection. Furthermore, we demonstrate that an acute loss of this specific subset of activated memory CD4+ T cells may also be detected in peripheral blood and lymph nodes in early SIV infection. However, since this particular cell type is present in such small numbers in circulation, its loss does not significantly affect total CD4+ T cell counts. This finding suggests that SIV and, presumably, human immunodeficiency virus specifically infect, replicate in, and eliminate definable subsets of CD4+ T cells in vivo. PMID:10590091

  17. Acquired RhD mosaicism identifies fibrotic transformation of thrombopoietin receptor-mutated essential thrombocythemia.

    PubMed

    Montemayor-Garcia, Celina; Coward, Rebecca; Albitar, Maher; Udani, Rupa; Jain, Prachi; Koklanaris, Eleftheria; Battiwalla, Minoo; Keel, Siobán; Klein, Harvey G; Barrett, A John; Ito, Sawa

    2017-09-01

    Acquired copy-neutral loss of heterozygosity has been described in myeloid malignant progression with an otherwise normal karyotype. A 65-year-old woman with MPL-mutated essential thrombocythemia and progression to myelofibrosis was noted upon routine pretransplant testing to have mixed field reactivity with anti-D and an historic discrepancy in RhD type. The patient had never received transfusions or transplantation. Gel immunoagglutination revealed group A red blood cells and a mixed-field reaction for the D phenotype, with a predominant D-negative population and a small subset of circulating red blood cells carrying the D antigen. Subsequent genomic microarray single nucleotide polymorphism profiling revealed copy-neutral loss of heterozygosity of chromosome 1 p36.33-p34.2, a known molecular mechanism underlying fibrotic progression of MPL-mutated essential thrombocythemia. The chromosomal region affected by this copy-neutral loss of heterozygosity encompassed the RHD, RHCE, and MPL genes. We propose a model of chronological molecular events that is supported by RHD zygosity assays in peripheral lymphoid and myeloid-derived cells. Copy-neutral loss of heterozygosity events that lead to clonal selection and myeloid malignant progression may also affect the expression of adjacent unrelated genes, including those encoding for blood group antigens. Detection of mixed-field reactions and investigation of discrepant blood typing results are important for proper transfusion support of these patients and can provide useful surrogate markers of myeloproliferative disease progression. © 2017 AABB.

  18. Telocytes in Crohn’s disease

    PubMed Central

    Milia, Anna Franca; Ruffo, Martina; Manetti, Mirko; Rosa, Irene; Conte, Dalila; Fazi, Marilena; Messerini, Luca; Ibba-Manneschi, Lidia

    2013-01-01

    Crohn’s disease (CD) is a relapsing chronic inflammatory disorder that may involve all the gastrointestinal tract with a prevalence of terminal ileum. Intestinal lesions have a characteristic discontinuous and segmental distribution and may affect all layers of the gut wall. Telocytes (TC), a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including gastrointestinal tract of humans and mammals. Several roles have been proposed for TC, including mechanical support, spatial relationships with different cell types, intercellular signalling and modulation of intestinal motility. The aim of our study was to investigate the presence and distribution of TC in disease-affected and -unaffected ileal specimens from CD patients compared with controls. TC were identified by CD34/PDGFRα immunohistochemistry. In affected CD specimens TC disappeared, particularly where fibrosis and architectural derangement of the intestinal wall were observed. In the thickened muscularis mucosae and submucosa, few TC entrapped in the fibrotic extracellular matrix were found. A discontinuous network of TC was present around smooth muscle bundles, ganglia and enteric strands in the altered muscularis propria. At the myenteric plexus, the loss of TC network was paralleled by the loss of interstitial cells of Cajal network. In the unaffected CD specimens, TC were preserved in their distribution. Our results suggest that in CD the loss of TC might have important pathophysiological implications contributing to the architectural derangement of the intestinal wall and gut dysmotility. Further functional studies are necessary to better clarify the role of TC loss in CD pathophysiology. PMID:24251911

  19. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression

    PubMed Central

    Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2014-01-01

    Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy. PMID:24709905

  20. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression.

    PubMed

    Liberati, Sonia; Morelli, Maria Beatrice; Amantini, Consuelo; Farfariello, Valerio; Santoni, Matteo; Conti, Alessandro; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2014-02-19

    Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.

  1. Stem cell therapy for treatment of epilepsy.

    PubMed

    Goodarzi, Parisa; Aghayan, Hamid Reza; Soleimani, Masoud; Norouzi-Javidan, Abbas; Mohamadi-Jahani, Fereshteh; Jahangiri, Sharareh; Emami-Razavi, Seyed Hasan; Larijani, Bagher; Arjmand, Babak

    2014-01-01

    Epilepsy as one of the most common neurological disorders affects more than 50 million people worldwide with a higher prevalence rate in low-income countries. Excessive electrical discharges in neurons following neural cell damage or loss cause recurrent seizures. One of the most common and difficult to treat types of epilepsy is temporal lobe epilepsy (TLE) which results from hippocampal sclerosis. Nowadays, similar to other diseases, epilepsy also is a candidate for treatment with different types of stem cells. Various stem cell types were used for treatment of epilepsy in basic and experimental researches. Two major roles of stem cell therapy in epilepsy are prophylaxis against chronic epilepsy and amelioration cognitive function after the occurrence of TLE. Several animal studies have supported the use of these cells for treating drug-resistant TLE. Although stem cell therapy seems like a promising approach for treatment of epilepsy in the future however, there are some serious safety and ethical concerns that are needed to be eliminated before clinical application.

  2. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells.

    PubMed

    Nagarkar-Jaiswal, Sonal; Manivannan, Sathiya N; Zuo, Zhongyuan; Bellen, Hugo J

    2017-05-31

    Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila . Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase -dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ , encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail.

  3. Tandem screening of toxic compounds on GFP-labeled bacteria and cancer cells in microtiter plates.

    PubMed

    Montoya, Jessica; Varela-Ramirez, Armando; Shanmugasundram, Muthian; Martinez, Luis E; Primm, Todd P; Aguilera, Renato J

    2005-09-23

    A 96-well fluorescence-based assay has been developed for the rapid screening of potential cytotoxic and bacteriocidal compounds. The assay is based on detection of green fluorescent protein (GFP) in HeLa human carcinoma cells as well as gram negative (Escherichia coli) and gram positive bacteria (Mycobacterium avium). Addition of a toxic compound to the GFP marked cells resulted in the loss of the GFP fluorescence which was readily detected by fluorometry. Thirty-nine distinct naphthoquinone derivatives were screened and several of these compounds were found to be toxic to all cell types. Apart from differences in overall toxicity, two general types of toxic compounds were detected, those that exhibited toxicity to two or all three of the cell types and those that were primarily toxic to the HeLa cells. Our results demonstrate that the parallel screening of both eukaryotic and prokaryotic cells is not only feasible and reproducible but also cost effective.

  4. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors.

    PubMed

    Rosu-Myles, Michael; Taylor, Barbara J; Wolff, Linda

    2007-03-01

    The tumor suppressor p15Ink4b (Ink4b) is a cell-cycle inhibitor that is inactivated in a high percentage of acute myeloid leukemia and myeloid dysplasia syndrome cases. Despite this, the role of Ink4b in hematopoiesis remains unclear. Here we examined the role of Ink4b in blood cell formation using Ink4b-deficient (Ink4b(-/-)) mice. We compared the bone marrow (BM) of Ink4b(-/-) and wild-type mice using flow cytometric, colony-forming unit and competitive repopulating assays (CRA). The proliferation, differentiation, self-renewal, and apoptosis of progenitor cells were further compared by in vitro and in vivo methods. BM from Ink4b(-/-) mice contained increased numbers of granulocyte-monocyte progenitors and Gr-1(+) cells and showed a competitive advantage over wild-type cells in myeloid cell formation by CRA. Ink4b(-/-) progenitors did not demonstrate increased proliferation, self-renewing potential, or reduced apoptosis. Instead, Ink4b(-/-) common myeloid progenitors (CMPs) showed increased myeloid progenitor formation concomitant with reduced erythroid potential. This work establishes a role for Ink4b in regulating the differentiation of CMPs and indicates that loss of Ink4b enhances the formation of myeloid progenitors.

  5. Genetic and Molecular Analysis of the X Chromosomal Region 14b17-14c4 in Drosophila Melanogaster: Loss of Function in Nona, a Nuclear Protein Common to Many Cell Types, Results in Specific Physiological and Behavioral Defects

    PubMed Central

    Stanewsky, R.; Rendahl, K. G.; Dill, M.; Saumweber, H.

    1993-01-01

    We have performed a genetic analysis of the 14C region of the X chromosome of Drosophila melanogaster to isolate loss of function alleles of no-on-transient A (nonA; 14C1-2; 1-52.3). NONA is a nuclear protein common to many cell types, which is present in many puffs on polytene chromosomes. Sequence data suggest that the protein contains a pair of RNA binding motifs (RRM) found in many single-strand nucleic acid binding proteins. Hypomorphic alleles of this gene, which lead to aberrant visual and courtship song behavior, still contain normally distributed nonA RNA and NONA protein in embryos, and in all available alleles NONA protein is present in puffs of third instar larval polytene chromosomes. We find that complete loss of this general nuclear protein is semilethal in hemizygous males and homozygous cell lethal in the female germline. Surviving males show more extreme defects in nervous system function than have been described for the hypomorphic alleles. Five other essential genes that reside within this region have been partially characterized. PMID:8244005

  6. Molecular characterization of chronic-type adult T-cell leukemia/lymphoma.

    PubMed

    Yoshida, Noriaki; Karube, Kennosuke; Utsunomiya, Atae; Tsukasaki, Kunihiro; Imaizumi, Yoshitaka; Taira, Naoya; Uike, Naokuni; Umino, Akira; Arita, Kotaro; Suguro, Miyuki; Tsuzuki, Shinobu; Kinoshita, Tomohiro; Ohshima, Koichi; Seto, Masao

    2014-11-01

    Adult T-cell leukemia/lymphoma (ATL) is a human T-cell leukemia virus type-1-induced neoplasm with four clinical subtypes: acute, lymphoma, chronic, and smoldering. Although the chronic type is regarded as indolent ATL, about half of the cases progress to acute-type ATL. The molecular pathogenesis of acute transformation in chronic-type ATL is only partially understood. In an effort to determine the molecular pathogeneses of ATL, and especially the molecular mechanism of acute transformation, oligo-array comparative genomic hybridization and comprehensive gene expression profiling were applied to 27 and 35 cases of chronic and acute type ATL, respectively. The genomic profile of the chronic type was nearly identical to that of acute-type ATL, although more genomic alterations characteristic of acute-type ATL were observed. Among the genomic alterations frequently observed in acute-type ATL, the loss of CDKN2A, which is involved in cell-cycle deregulation, was especially characteristic of acute-type ATL compared with chronic-type ATL. Furthermore, we found that genomic alteration of CD58, which is implicated in escape from the immunosurveillance mechanism, is more frequently observed in acute-type ATL than in the chronic-type. Interestingly, the chronic-type cases with cell-cycle deregulation and disruption of immunosurveillance mechanism were associated with earlier progression to acute-type ATL. These findings suggested that cell-cycle deregulation and the immune escape mechanism play important roles in acute transformation of the chronic type and indicated that these alterations are good predictive markers for chronic-type ATL. ©2014 American Association for Cancer Research.

  7. The Hematopoietic Stem Cell Therapy for Exploration of Space

    NASA Technical Reports Server (NTRS)

    Roach, Allana Nicole; Brezo, Jelena

    2002-01-01

    Astronauts experience severe/invasive disorders caused by space environments. These include hematological/cardiac abnormalities, bone and muscle losses, immunodeficiency, neurological disorders and cancer. While the cause of these symptoms are not yet fully delineated, one possible explanation could be the inhibition of hematopoietic stem cell (HSC) growth and hematopoiesis in space. HSCs differentiate into all types of blood cells, and growing evidence indicates that the HSCs also have the ability to transdifferentiate to various tissues, including muscle, skin, liver, neuronal cells and possibly bone. Therefore, a hypothesis was advanced in this laboratory that the hematopoietic stem cell-based therapy, herein called the hematopoietic stem cell therapy (HSCT), could mitigate some of the disorders described above. Due to the magnitude of this project our laboratory has subdivided it into 3 sections: a) HSCT for space anemia; b) HSCT for muscle and bone losses; and c) HSCT for immunodeficiency. Toward developing the HSCT protocol for space anemia, the HSC transplantation procedure was established using a mouse model of beta thalassemia. In addition, the NASA Rotating Wall Vessel (RWV) culture system was used to grow HSCs in space condition. To investigate the HSCT for muscle loss and bone loss, donor HSCs were genetically marked either by transfecting the beta-galactosidase-containing plasmid, pCMV.SPORT-beta-gal or by preparing from b-galactosidase transgenic mice. The transdifferentiation of HSCs to muscle is traced by the reporter gene expression in the hindlimb suspended mice with some positive outcome, as studied by the X-gal staining procedure. The possible structural contribution of HSCs against muscle loss is being investigated histochemically.

  8. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.

    PubMed

    Nissan, Moriah H; Pratilas, Christine A; Jones, Alexis M; Ramirez, Ricardo; Won, Helen; Liu, Cailian; Tiwari, Shakuntala; Kong, Li; Hanrahan, Aphrothiti J; Yao, Zhan; Merghoub, Taha; Ribas, Antoni; Chapman, Paul B; Yaeger, Rona; Taylor, Barry S; Schultz, Nikolaus; Berger, Michael F; Rosen, Neal; Solit, David B

    2014-04-15

    Melanoma is a disease characterized by lesions that activate ERK. Although 70% of cutaneous melanomas harbor activating mutations in the BRAF and NRAS genes, the alterations that drive tumor progression in the remaining 30% are largely undefined. Vemurafenib, a selective inhibitor of RAF kinases, has clinical utility restricted to BRAF-mutant tumors. MEK inhibitors, which have shown clinical activity in NRAS-mutant melanoma, may be effective in other ERK pathway-dependent settings. Here, we investigated a panel of melanoma cell lines wild type for BRAF and NRAS to determine the genetic alteration driving their transformation and their dependence on ERK signaling in order to elucidate a candidate set for MEK inhibitor treatment. A cohort of the BRAF/RAS wild type cell lines with high levels of RAS-GTP had loss of NF1, a RAS GTPase activating protein. In these cell lines, the MEK inhibitor PD0325901 inhibited ERK phosphorylation, but also relieved feedback inhibition of RAS, resulting in induction of pMEK and a rapid rebound in ERK signaling. In contrast, the MEK inhibitor trametinib impaired the adaptive response of cells to ERK inhibition, leading to sustained suppression of ERK signaling and significant antitumor effects. Notably, alterations in NF1 frequently co-occurred with RAS and BRAF alterations in melanoma. In the setting of BRAF(V600E), NF1 loss abrogated negative feedback on RAS activation, resulting in elevated activation of RAS-GTP and resistance to RAF, but not MEK, inhibitors. We conclude that loss of NF1 is common in cutaneous melanoma and is associated with RAS activation, MEK-dependence, and resistance to RAF inhibition. ©2014 AACR.

  9. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility

    PubMed Central

    Roach, Gillian; Wallace, Rachel Heath; Cameron, Amy; Ozel, Rifat Emrah; Hongay, Cintia F.; Baral, Reshica; Andreescu, Silvana; Wallace, Kenneth N.

    2013-01-01

    The vertebrate intestinal epithelium is renewed continuously from stem cells at the base of the crypt in mammals or base of the fold in fish over the life of the organism. As stem cells divide, newly formed epithelial cells make an initial choice between a secretory or enterocyte fate. This choice has previously been demonstrated to involve Notch signaling as well as Atonal and Her transcription factors in both embryogenesis and adults. Here, we demonstrate that in contrast to the atoh1 in mammals, ascl1a is responsible for formation of secretory cells in zebrafish. ascl1a−/− embryos lack all intestinal epithelial secretory cells and instead differentiate into enterocytes. ascl1a−/− embryos also fail to induce intestinal epithelial expression of deltaD suggesting that ascl1a plays a role in initiation of Notch signaling. Inhibition of Notch signaling increases the number of ascl1a and deltaD expressing intestinal epithelial cells as well as the number of developing secretory cells during two specific time periods: between 30 and 34 hpf and again between 64 and 74 hpf. Loss of enteroendocrine products results in loss of anterograde motility in ascl1a−/− embryos. 5HT produced by enterochromaffin cells is critical in motility and secretion within the intestine. We find that addition of exogenous 5HT to ascl1a−/− embryos at near physiological levels (measured by differential pulse voltammetry) induce anterograde motility at similar levels to wild type velocity, distance, and frequency. Removal or doubling the concentration of 5HT in WT embryos does not significantly affect anterograde motility, suggesting that the loss of additional enteroendocrine products in ascl1a−/− embryos also contributes to intestinal motility. Thus, zebrafish intestinal epithelial cells appear to have a common secretory progenitor from which all subtypes form. Loss of enteroendocrine cells reveals the critical need for enteroendocrine products in maintenance of normal intestinal motility. PMID:23353550

  10. Development of iPS (induced pluripotent stem cells) using natural product from extract of fish oocyte to provide stem cell for regenerative therapy

    NASA Astrophysics Data System (ADS)

    Meilany, Sofy; Firdausiyah, Qonitha S.; Naroeni, Aroem

    2017-02-01

    In this study, we developed a method to induce pluripotency of adult cells (fibroblast) into stem cells using a natural product, extract of fish oocyte, by comparing the extract concentration, 1 mg/ml and 2 mg/ml. The analyses were done by measuring the Nanog gene expression in cells using qPCR and detecting fibroblast marker anti H2-KK. The results revealed existence of a colony of stem cells in the cell that was induced with 2mg/ml concentration of oocytes. Nanoggene expression was analyzed by qPCR and the results showed expression of Nanog gene compared to the control. Analysis of result of fibroblast using Tali Cytometer and anti H2KK antibody showed loss of expression of Anti H2KK meaning there was transformation from fibroblast type cell to pluripotent cell type.

  11. Impact of the Hayflick Limit on T cell responses to infection: lessons from aging and HIV disease.

    PubMed

    Effros, Rita B

    2004-02-01

    Aging and HIV disease show certain immunological similarities. In both situations, control over viral infection is diminished, and there is an increase in certain types of cancer. The immune cell type responsible for controlling viral infections and cancer is the so-called CD8 or cytotoxic T cell. In elderly persons and individuals chronically infected with HIV, there are high proportions of CD8 T cells that resemble cells that reach the end stage of replicative senescence in cell culture after repeated rounds of antigen-driven proliferation. Senescent cultures are characterized by irreversible cell cycle arrest, shortened telomeres, inability to upregulate telomerase, loss of CD28 expression, and apoptosis resistance. Strategies that retard replicative senescence may, therefore, provide novel approaches to enhancing immune function during aging and HIV disease.

  12. Role of Natural Killer Cells in the Innate Immune System After Intraportal Islet Transplantation in Mice.

    PubMed

    Saeki, Y; Ishiyama, K; Ishida, N; Tanaka, Y; Ohdan, H

    Both liver natural killer (NK) and NK T cells of the innate immune system play a crucial role in islet graft loss after intraportal islet transplantation, although a relationship between NK and NK T cells in islet loss has not been proven. In this study, we investigated the role of NK cells in the innate immune system in islet graft loss after intraportal islet transplantation. To investigate the involvement of liver NK cells in islet destruction, we assessed the differences in graft survival after intraportal islet transplantation between CD1d -/- diabetic mice and NK cell-depleted CD1d -/- diabetic mice. The transplantation of 400 islets into the liver was sufficient to reverse hyperglycemia in wild-type diabetic mice (100%, 4/4). However, normoglycemia could not be achieved when 200 islets were transplanted (0%, 0/4). In contrast, intraportal transplantation of 200 islets in NK cell-depleted CD1d -/- diabetic mice ameliorated hyperglycemia in 71% of cases (5/7), whereas transplantation of the same number of islets in CD1d -/- diabetic mice did not (0%, 0/4). Histologic findings also confirmed that intact islets were observed in NK cell-depleted CD1d -/- diabetic mice, but were difficult to observe in CD1d -/- diabetic mice. The involvement of liver NK cells in the innate immune system related to islet graft loss after intraportal islet transplantation is revealed by improved graft survival and function in NK cell-depleted CD1d -/- diabetic mice. Our data reveal that regulation of NK cell activity is particularly important when insufficient islet numbers are used for transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Streptococcus pneumoniae-induced ototoxicity in organ of Corti explant cultures.

    PubMed

    Perny, Michael; Solyga, Magdalena; Grandgirard, Denis; Roccio, Marta; Leib, Stephen L; Senn, Pascal

    2017-07-01

    Hearing loss remains the most common long-term complication of pneumococcal meningitis (PM) reported in up to 30% of survivors. Streptococcus pneumoniae have been shown to possess different ototoxic properties. Here we present a novel ex vivo experimental setup to examine in detail the pattern of hair cell loss upon exposure to different S. pneumoniae strains, therefore recapitulating pathogen derived aspects of PM-induced hearing loss. Our results show a higher susceptibility towards S. pneumoniae-induced cochlear damage for outer hair cells (OHC) compared to inner hair cells (IHC), which is consistent with in vivo data. S. pneumoniae-induced hair cell loss was both time and dose-dependent. Moreover, we have found significant differences in the level of cell damage between tissue from the basal and the apical turns. This shows that the higher vulnerability of hair cells located at high frequency regions observed in vivo cannot be explained solely by the spatial organisation and bacterial infiltration from the basal portion of the cochlea. Using a wild type D39 strain and a mutant defective for the pneumolysin (PLY) gene, we also have shown that the toxin PLY is an important factor involved in ototoxic damages. The obtained results indicate that PLY can cause both IHC and OHC loss. Finally, we are reporting here for the first time a higher vulnerability of HC located at the basal and middle cochlear region to pneumolysin-induced damage. The detailed description of the susceptibility of hair cells to Streptococcus pneumoniae provided in this report can in the future determine the choice and the development of novel otoprotective therapies during pneumococcal meningitis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Effect of retinal impulse blockage on cytochrome oxidase-poor interpuffs in the macaque striate cortex: quantitative EM analysis of neurons.

    PubMed

    Wong-Riley, M T; Trusk, T C; Kaboord, W; Huang, Z

    1994-09-01

    One of the hallmarks of the primate striate cortex is the presence of cytochrome oxidase-rich puffs in its supragranular layers. Neurons in puffs have been classified as type A, B, and C in ascending order of cytochrome oxidase content, with type C cells being the most vulnerable to retinal impulse blockade. The present study aimed at analysing cytochrome oxidase-poor interpuffs with reference to their metabolic cell types and the effect of intraretinal tetrodotoxin treatment. The same three metabolic types were found in interpuffs, except that type B and C neurons were smaller and less cytochrome oxidase-reactive in interpuffs than in puffs. Type A neurons had small perikarya, low levels of cytochrome oxidase, and received exclusively symmetric axosomatic synapses. The largest neurons were pyramidal, type B cells with moderate cytochrome oxidase activity and were also contacted exclusively by symmetric axosomatic synapses. Type C cells medium-sized with a rich supply of large, darkly reactive mitochondria and possessed all the characteristics of GABAergic neurons. They were the only cell type that received both symmetric and asymmetric axosomatic synapses. Two weeks of monocular tetrodotoxin blockade in adult monkeys caused all three major cell types in deprived interpuffs to suffer a significant downward shift in the size and cytochrome oxidase reactivity of their mitochondria, but the effects were more severe in type B and C neurons. In nondeprived interpuffs, all three cell types gained both in size and absolute number of mitochondria, and type A cells also had an elevated level of cytochrome oxidase, indicating that they might be functioning at a competitive advantage over cells in deprived columns. However, type B and C neurons showed a net loss of darkly reactive mitochondria, indicating that these cells became less active. Thus, mature interpuff neurons remained vulnerable to retinal impulse blockade and the metabolic capacity of these cells remains tightly regulated by neuronal activity.

  15. Zinc finger X-chromosomal protein (ZFX) promotes solid agar colony growth of osteosarcoma cells.

    PubMed

    Jiang, Rui; Wang, Jin-cheng; Sun, Mei; Zhang, Xing-yi; Wu, Han

    2012-01-01

    Zinc finger X-chromosomal protein (ZFX) is a member of the zinc finger family of proteins. The importance of ZFX in several cancer types, including prostate cancer, laryngeal squamous cell carcinoma, and glioma, has been addressed. However, the role of ZFX in human osteosarcoma remains unknown. Here we investigated the phenotype of ZFX knockdown on cell proliferation and in vitro tumorigenesis using lentivirus-mediated loss-of-function strategy. The results demonstrated that the proliferation and colony formation ability of human osteosarcoma Saos-2 and MG63 cells was impaired by ZFX small interfering RNA (siRNA)-expressing lentivirus. Moreover, loss of ZFX led to G0/G1 phase cell cycle arrest and a significant increase of cells in the sub-G1 fraction, indicating that ZFX functions as an oncogene in the malignant proliferation process in osteosarcoma. Furthermore, ZFX siRNA may have an antitumorigenic effect on osteosarcoma cells. Our findings hold important significance for RNA interference-mediated cancer gene therapy for human osteosarcoma.

  16. Tissue engineering, stem cells and cloning: current concepts and changing trends.

    PubMed

    Atala, Anthony

    2005-07-01

    Organ damage or loss can occur from congenital disorders, cancer, trauma, infection, inflammation, iatrogenic injuries or other conditions and often necessitates reconstruction or replacement. Replacement may take the form of organ transplant. At present, there is a severe shortage of donor organs that is worsening with the aging of the population. Tissue engineering follows the principles of cell transplantation, materials science and engineering towards the development of biological substitutes that can restore and maintain normal tissue function. Therapeutic cloning involves the introduction of a nucleus from a donor cell into an enucleated oocyte to generate embryonic stem cell lines whose genetic material is identical to that of its source. These autologous stem cells have the potential to become almost any type of cell in the adult body, and thus would be useful in tissue and organ replacement applications. This paper reviews recent advances in stem cell research and regenerative medicine, and describes the clinical applications of these technologies as novel therapies for tissue or organ loss.

  17. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    PubMed

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  18. Minireview: Thioredoxin-interacting protein: regulation and function in the pancreatic β-cell.

    PubMed

    Shalev, Anath

    2014-08-01

    Pancreatic β-cells are responsible for insulin production, and loss of functional β-cell mass is now recognized as a critical step in the pathogenesis of both type 1 and type 2 diabetes. However, the factors controlling the life and death of the pancreatic β-cell have only started to be elucidated. Discovered as the top glucose-induced gene in a human islet microarray study 12 years ago, thioredoxin-interacting protein (TXNIP) has now emerged as such a key player in pancreatic β-cell biology. Since then, β-cell expression of TXNIP has been found to be tightly regulated by multiple factors and to be dramatically increased in diabetic islets. Elevated TXNIP levels induce β-cell apoptosis, whereas TXNIP deficiency protects against type 1 and type 2 diabetes by promoting β-cell survival. TXNIP interacts with and inhibits thioredoxin and thereby controls the cellular redox state, but it also belongs to the α-arrestin family of proteins and regulates a variety of metabolic processes. Most recently, TXNIP has been discovered to control β-cell microRNA expression, β-cell function, and insulin production. In this review, the current state of knowledge regarding regulation and function of TXNIP in the pancreatic β-cell and the implications for drug development are discussed.

  19. Hydroxychavicol, a Piper betle leaf component, induces apoptosis of CML cells through mitochondrial reactive oxygen species-dependent JNK and endothelial nitric oxide synthase activation and overrides imatinib resistance.

    PubMed

    Chakraborty, Jayashree B; Mahato, Sanjit K; Joshi, Kalpana; Shinde, Vaibhav; Rakshit, Srabanti; Biswas, Nabendu; Choudhury Mukherjee, Indrani; Mandal, Labanya; Ganguly, Dipyaman; Chowdhury, Avik A; Chaudhuri, Jaydeep; Paul, Kausik; Pal, Bikas C; Vinayagam, Jayaraman; Pal, Churala; Manna, Anirban; Jaisankar, Parasuraman; Chaudhuri, Utpal; Konar, Aditya; Roy, Siddhartha; Bandyopadhyay, Santu

    2012-01-01

    Alcoholic extract of Piper betle (Piper betle L.) leaves was recently found to induce apoptosis of CML cells expressing wild type and mutated Bcr-Abl with imatinib resistance phenotype. Hydroxy-chavicol (HCH), a constituent of the alcoholic extract of Piper betle leaves, was evaluated for anti-CML activity. Here, we report that HCH and its analogues induce killing of primary cells in CML patients and leukemic cell lines expressing wild type and mutated Bcr-Abl, including the T315I mutation, with minimal toxicity to normal human peripheral blood mononuclear cells. HCH causes early but transient increase of mitochondria-derived reactive oxygen species. Reactive oxygen species-dependent persistent activation of JNK leads to an increase in endothelial nitric oxide synthase-mediated nitric oxide generation. This causes loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, cleavage of caspase 9, 3 and poly-adenosine diphosphate-ribose polymerase leading to apoptosis. One HCH analogue was also effective in vivo in SCID mice against grafts expressing the T315I mutation, although to a lesser extent than grafts expressing wild type Bcr-Abl, without showing significant bodyweight loss. Our data describe the role of JNK-dependent endothelial nitric oxide synthase-mediated nitric oxide for anti-CML activity of HCH and this molecule merits further testing in pre-clinical and clinical settings. © 2011 Japanese Cancer Association.

  20. Comparative anatomy of the electrosensory lateral line lobe of mormyrids: the mystery of the missing map in the genus Stomatorhinus (family: Mormyridae).

    PubMed

    McNamara, Ann Marie; Denizot, Jean-Pierre; Hopkins, Carl D

    2005-01-01

    Fish in the family Mormyridae produce weak electric organ discharges that are used in orientation and communication. The peripheral and central anatomy of the electrosensory system has been well studied in the species Gnathonemus petersii, but comparative studies in other species are scarce. Here we report on one genus of mormyrid that displays a remarkable change in the electrosensory lateral line lobe (ELL), the hypertrophied rhombencephalic structure that receives primary electroreceptor input. Although all other mormyrids studied have three distinct zones on each side of the ELL, fish of the genus Stomatorhinus exhibit only two. Therefore, the two-zone ELL is a unique derived characteristic shared by Stomatorhinus. We examined the cutaneous electroreceptors that project to the ELL in Stomatorhinus. All three types of electroreceptors previously described for G. petersii were present, but there was a significant change in one type, the mormyromast. Both mormyromast sensory cell types (A- and B-cells) are present, but the B-cell is not innervated in Stomatorhinus. We conclude that, although all cutaneous sensory cells are present, the missing B-cell afferents account for the loss of the dorsolateral zone of the ELL, and therefore the loss of an entire sensory map. Because mormyromasts are involved in electrolocation behavior, this anatomical difference is probably related to differences in electrolocation abilities. Stomatorhinus could prove to be an excellent system for linking evolutionary changes in behavior with modifications in their neural substrates.

  1. Improvements in Cz silicon PV module manufacturing

    NASA Astrophysics Data System (ADS)

    King, Richard R.; Mitchell, Kim W.; Jester, Theresa L.

    1997-02-01

    Work focused on reducing the cost per watt of Cz Si photovoltaic modules under Phase I of Siemens Solar Industries' DOE/NREL PVMaT 4A subcontract is described. Module cost components are analyzed and solutions to high-cost items are discussed in terms of specific module designs. The approaches of using larger cells and modules to reduce per-part processing cost, and of minimizing yield loss are particularly leveraging. Yield components for various parts of the fabrication process and various types of defects are shown, and measurements of the force required to break wafers throughout the cell fabrication sequence are given. The most significant type of yield loss is mechanical breakage. The implementation of statistical process control on key manufacturing processes at Siemens Solar Industries is described. Module configurations prototyped during Phase I of this project and scheduled to begin production in Phase II have a projected cost per watt reduction of 19%.

  2. NASA Redox cell stack shunt current, pumping power, and cell performance tradeoffs

    NASA Technical Reports Server (NTRS)

    Hagedorn, N.; Hoberecht, M. A.; Thaller, L. H.

    1982-01-01

    The NASA Redox energy storage system is under active technology development. The hardware undergoing laboratory testing is either 310 sq. cm. or 929 sq. cm. (0.33 sq. ft. or 1.0 sq. ft. per cell active area with up to 40 individual cells connected to make up a modular cell stack. This size of hardware allows rather accurate projections to be made of the shunt power/pump power tradeoffs. The modeling studies that were completed on the system concept are reviewed along with the approach of mapping the performance of Redox cells over a wide range of flow rates and depths of discharge of the Redox solutions. Methods are outlined for estimating the pumping and shunt current losses for any type of cell and stack combination. These methods are applicable to a variety of pumping options that are present with Redox systems. The results show that a fully developed Redox system has acceptable parasitic losses when using a fixed flow rate adequate to meet the worst conditions of current density and depth of discharge. These losses are reduced by about 65 percent if variable flow schedules are used. The exact value of the overall parasitics will depend on the specific system requirements of current density, voltage limits, charge, discharge time, etc.

  3. Loss of Function of TET2 Cooperates with Constitutively Active KIT in Murine and Human Models of Mastocytosis

    PubMed Central

    De Vita, Serena; Schneider, Rebekka K.; Garcia, Michael; Wood, Jenna; Gavillet, Mathilde; Ebert, Benjamin L.; Gerbaulet, Alexander; Roers, Axel; Levine, Ross L.; Mullally, Ann; Williams, David A.

    2014-01-01

    Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM. PMID:24788138

  4. Lens lipids.

    PubMed

    Zelenka, P S

    1984-11-01

    Lens cells can synthesize, degrade, and remodel lipids. Endogenous lipid synthesis, in conjunction with uptake of exogenous cholesterol and certain fatty acids, leads to the formation of a plasma membrane that is especially rich in sphingomyelin, cholesterol, and long-chain saturated fatty acids. As a result of this unusual lipid composition, lens membranes have very low fluidity, which is restricted even further by lipid-protein interactions. The composition and metabolism of membrane lipids may affect the formation of various types of cataracts. Diets rich in vegetable oils offer some protection against the formation of osmotic cataracts and the hereditary cataract of the RCS rat, although the mechanism of this effect is not clear. Vitamin E also protects against the formation of several types of cataract in vivo and in vitro, suggesting that lipid peroxidation may play a role in cataractogenesis. Certain drugs which inhibit lipid synthesis or degradation are cataractogenic, and a deficiency in cataractogenic, and a deficiency in phosphatidylserine is associated with a loss of Na+/K+ ATPase activity in several types of cataract. Human senile cataracts show a marked loss of protein-lipid interactions, although the overall lipid composition is normal. This loss of protein-lipid interactions may be related to oxidative damage to membrane-associated proteins. Interestingly, the decrease in the fluidity of lens membranes with age would counteract the formation of aqueous pores in the membrane, which can result from the oxidative cross-linking of membrane-associated proteins. Certain pathways of lipid metabolism seem to have regulatory functions. Among these are phosphatidylinositol turnover, phosphatidylethanolamine methylation, and arachidonic acid metabolism. All of these pathways function in the lens. Phosphatidylinositol turnover is correlated with the rate of lens epithelial cell division, while phosphatidylethanolamine methylation seems to be related to the initiation of lens fiber cell formation. Both pathways are associated with the release and metabolism of arachidonic acid in other cell types. While it is not known whether phosphatidylinositol turnover or phosphatidylethanolamine methylation result in the release of arachidonic acid in the lens, recent work has shown that lens cells from a variety of species can metabolize arachidonic acid by both the cyclooxygenase and lipoxygenase pathways. The possible physiological significance of these metabolites to the lens is yet to be determined.

  5. Impaired removal of Vβ8(+) lymphocytes aggravates colitis in mice deficient for B cell lymphoma-2-interacting mediator of cell death (Bim).

    PubMed

    Leucht, K; Caj, M; Fried, M; Rogler, G; Hausmann, M

    2013-09-01

    We investigated the role of B cell lymphoma (BCL)-2-interacting mediator of cell death (Bim) for lymphocyte homeostasis in intestinal mucosa. Lymphocytes lacking Bim are refractory to apoptosis. Chronic colitis was induced in Bim-deficient mice (Bim(-/-) ) with dextran sulphate sodium (DSS). Weight loss and colonoscopic score were increased significantly in Bim(-/-) mice compared to wild-type mice. As Bim is induced for the killing of autoreactive cells we determined the role of Bim in the regulation of lymphocyte survival at mucosal sites. Upon chronic dextran sulphate sodium (DSS)-induced colitis, Bim(-/-) animals exhibited an increased infiltrate of lymphocytes into the mucosa compared to wild-type mice. The number of autoreactive T cell receptor (TCR) Vβ8(+) lymphocytes was significantly higher in Bim(-/-) mice compared to wild-type controls. Impaired removal of autoreactive lymphocytes in Bim(-/-) mice upon chronic DSS-induced colitis may therefore contribute to aggravated mucosal inflammation. © 2013 British Society for Immunology.

  6. Loss of intercellular adhesion activates a transition from low- to high-grade human squamous cell carcinoma.

    PubMed

    Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Pawagi, Sujata; Prabhu, Padmaja; Cao, Jian; Zucker, Stanley; Pfeiffer, Laurence; Garfield, Jacqueline; Fusenig, Norbert E; Garlick, Jonathan A

    2006-02-15

    The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad). Three-dimensional human tissue constructs harboring either H-2Kd-Ecad-expressing or control II-4 cells (pBabe, H-2Kd-EcadDeltaC25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd-Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 gamma2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease.

  7. Spatial-Resolution Cell Type Proteome Profiling of Cancer Tissue by Fully Integrated Proteomics Technology.

    PubMed

    Xu, Ruilian; Tang, Jun; Deng, Quantong; He, Wan; Sun, Xiujie; Xia, Ligang; Cheng, Zhiqiang; He, Lisheng; You, Shuyuan; Hu, Jintao; Fu, Yuxiang; Zhu, Jian; Chen, Yixin; Gao, Weina; He, An; Guo, Zhengyu; Lin, Lin; Li, Hua; Hu, Chaofeng; Tian, Ruijun

    2018-05-01

    Increasing attention has been focused on cell type proteome profiling for understanding the heterogeneous multicellular microenvironment in tissue samples. However, current cell type proteome profiling methods need large amounts of starting materials which preclude their application to clinical tumor specimens with limited access. Here, by seamlessly combining laser capture microdissection and integrated proteomics sample preparation technology SISPROT, specific cell types in tumor samples could be precisely dissected with single cell resolution and processed for high-sensitivity proteome profiling. Sample loss and contamination due to the multiple transfer steps are significantly reduced by the full integration and noncontact design. H&E staining dyes which are necessary for cell type investigation could be selectively removed by the unique two-stage design of the spintip device. This easy-to-use proteome profiling technology achieved high sensitivity with the identification of more than 500 proteins from only 0.1 mm 2 and 10 μm thickness colon cancer tissue section. The first cell type proteome profiling of four cell types from one colon tumor and surrounding normal tissue, including cancer cells, enterocytes, lymphocytes, and smooth muscle cells, was obtained. 5271, 4691, 4876, and 2140 protein groups were identified, respectively, from tissue section of only 5 mm 2 and 10 μm thickness. Furthermore, spatially resolved proteome distribution profiles of enterocytes, lymphocytes, and smooth muscle cells on the same tissue slices and across four consecutive sections with micrometer distance were successfully achieved. This fully integrated proteomics technology, termed LCM-SISPROT, is therefore promising for spatial-resolution cell type proteome profiling of tumor microenvironment with a minute amount of clinical starting materials.

  8. Characterization of slow-cycling cells in the mouse cochlear lateral wall

    PubMed Central

    Ogawa, Kaoru

    2017-01-01

    Cochlear spiral ligament fibrocytes (SLFs) play essential roles in the physiology of hearing including ion recycling and the generation of endocochlear potential. In adult animals, SLFs can repopulate after damages, yet little is known about the characteristics of proliferating cells that support SLFs’ self-renewal. Here we report in detail about the characteristics of cycling cells in the spiral ligament (SL). Fifteen P6 mice and six noise-exposed P28 mice were injected with 5-bromo-2′-deoxyuridine (BrdU) for 7 days and we chased BrdU retaining cells for as long as 60 days. Immunohistochemistry revealed that the BrdU positive IB4 (an endotherial marker) negative cells expressed an early SLF marker Pou3f4 but negative for cleaved-Caspase 3. Marker studies revealed that type 3 SLFs displayed significantly higher percentage of BrdU+ cells compared to other subtypes. Notably, the cells retained BrdU until P72, demonstrating they were dividing slowly. In the noise-damaged mice, in contrast to the loss of the other types, the number of type 3 SLFs did not altered and the BrdU incorporating- phosphorylated Histone H3 positive type 3 cells were increased from day 1 to 14 after noise exposure. Furthermore, the cells repopulating type 1 area, where the cells diminished profoundly after damage, were positive for the type 3 SLF markers. Collectively, in the latral wall of the cochlea, type 3 SLFs have the stem cell capacity and may contribute to the endogenous regeneration of lateral wall spiral ligament. Manipulating type 3 cells may be employed for potential regenerative therapies. PMID:28632772

  9. Regulation of gonadotropin receptors on cultured porcine Leydig and Sertoli cells: effect of potassium depletion.

    PubMed

    Bernier, M; Laferrere, B; Jaillard, C; Clerget, M; Saez, J M

    1986-06-01

    We have examined the role of the NaK-ATPase pump activity on the ligand-induced down-regulation of gonadotropin receptors in cultured porcine Leydig and Sertoli cells. In both cells, inhibition of the NaK pump by ouabain produced a depletion of intracellular K+ levels (ID50, 10(-7) M) after a lag period of about 8 h. In the absence of ligand, the number of FSH receptors in ouabain-treated Sertoli cells was unaffected or slightly reduced, whereas a 2-fold increase in the number of human CG (hCG)/LH receptors with small changes in the binding affinity was observed in Leydig cells treated by ouabain. The effect of ouabain was dose dependent. Differences were also observed in the down-regulation process of gonadotropin receptors in ouabain-treated cells. The hCG-induced receptor loss in Leydig cells was completely reversed by ouabain whereas the drug had no effect on ligand-induced loss of FSH receptors in Sertoli cells. Similar results were observed when the cells were incubated in K+-free medium. Kinetics studies with labeled hCG have shown that ouabain treatment slows down significantly the rate of [125I]iodo-hCG internalization (t 1/2, 18 h; control cells, t 1/2, 6 h), but had no effect on the degradation of internalized hormone. The internalization of receptor-bound [125I]iodo-hCG was also reduced when Leydig cells were incubated in K+-free medium, but was restored when this medium was supplemented with rubidium. The influence of the NaK pump on the receptor regulation of a ligand common to both types of cells, such as epidermal growth factor, was studied under the same experimental conditions. Neither ouabain nor K+-free medium were able to prevent the epidermal growth factor-induced reduction of receptor levels in Leydig and Sertoli cells. Thus, it appears that modulation of ligand-induced receptor loss by depletion of cellular K+ levels is not dependent on the cell type, but on the ligand-receptor complex. The data also show a striking difference in the dynamics of gonadotropin-receptor interaction of two structurally related hormones.

  10. Clinical utility of insulin and insulin analogs

    PubMed Central

    Sanlioglu, Ahter D.; Altunbas, Hasan Ali; Balci, Mustafa Kemal; Griffith, Thomas S.; Sanlioglu, Salih

    2013-01-01

    Diabetes is a pandemic disease characterized by autoimmune, genetic and metabolic abnormalities. While insulin deficiency manifested as hyperglycemia is a common sequel of both Type-1 and Type-2 diabetes (T1DM and T2DM), it does not result from a single genetic defect—rather insulin deficiency results from the functional loss of pancreatic β cells due to multifactorial mechanisms. Since pancreatic β cells of patients with T1DM are destroyed by autoimmune reaction, these patients require daily insulin injections. Insulin resistance followed by β cell dysfunction and β cell loss is the characteristics of T2DM. Therefore, most patients with T2DM will require insulin treatment due to eventual loss of insulin secretion. Despite the evidence of early insulin treatment lowering macrovascular (coronary artery disease, peripheral arterial disease and stroke) and microvascular (diabetic nephropathy, neuropathy and retinopathy) complications of T2DM, controversy exists among physicians on how to initiate and intensify insulin therapy. The slow acting nature of regular human insulin makes its use ineffective in counteracting postprandial hyperglycemia. Instead, recombinant insulin analogs have been generated with a variable degree of specificity and action. Due to the metabolic variability among individuals, optimum blood glucose management is a formidable task to accomplish despite the presence of novel insulin analogs. In this article, we present a recent update on insulin analog structure and function with an overview of the evidence on the various insulin regimens clinically used to treat diabetes. PMID:23584214

  11. Slits Affect the Timely Migration of Neural Crest Cells via Robo Receptor

    PubMed Central

    Giovannone, Dion; Reyes, Michelle; Reyes, Rachel; Correa, Lisa; Martinez, Darwin; Ra, Hannah; Gomez, Gustavo; Kaiser, Josh; Ma, Le; Stein, Mary-Pat; de Bellard, Maria Elena

    2013-01-01

    SUMMARY Background Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results We found that Slit gain-of-function significantly impaired neural crest cell migration while Slit loss-of-function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migration and transitioning to a mesenchymal type. PMID:22689303

  12. Loss of Parafollicular Cells during Gravitational Changes (Microgravity, Hypergravity) and the Secret Effect of Pleiotrophin

    PubMed Central

    Albi, Elisabetta; Curcio, Francesco; Spelat, Renza; Lazzarini, Andrea; Lazzarini, Remo; Cataldi, Samuela; Loreti, Elisabetta; Ferri, Ivana; Ambesi-Impiombato, Francesco Saverio

    2012-01-01

    It is generally known that bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space. Changes in blood flow, systemic hormones, and locally produced factors were indicated as important elements contributing to the response of osteoblastic cells to loading, but research in this field still has many questions. Here, the possible biological involvement of thyroid C cells is being investigated. The paper is a comparison between a case of a wild type single mouse and a over-expressing pleiotrophin single mouse exposed to hypogravity conditions during the first animal experiment of long stay in International Space Station (91 days) and three similar mice exposed to hypergravity (2Gs) conditions. We provide evidence that both microgravity and hypergravity induce similar loss of C cells with reduction of calcitonin production. Pleiotrophin over-expression result in some protection against negative effects of gravity change. Potential implication of the gravity mechanic forces in the regulation of bone homeostasis via thyroid equilibrium is discussed. PMID:23284618

  13. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells

    PubMed Central

    2016-01-01

    Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory–motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution. PMID:26598723

  14. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells.

    PubMed

    Wenger, Y; Buzgariu, W; Galliot, B

    2016-01-05

    Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory-motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution. © 2015 The Authors.

  15. Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline

    PubMed Central

    Chi, Woo; Wu, Eleanor; Morgan, Bruce A.

    2013-01-01

    Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss. PMID:23487317

  16. Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing.

    PubMed

    Lin, Hsi-Hui; Lin, Hsiu-Kuan; Lin, I-Hsuan; Chiou, Yu-Wei; Chen, Horn-Wei; Liu, Ching-Yi; Harn, Hans I-Chen; Chiu, Wen-Tai; Wang, Yang-Kao; Shen, Meng-Ru; Tang, Ming-Jer

    2015-08-28

    The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.

  17. Isolation of sphere-forming stem cells from the mouse inner ear.

    PubMed

    Oshima, Kazuo; Senn, Pascal; Heller, Stefan

    2009-01-01

    The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.

  18. Phenylbutyrate inhibits homologous recombination induced by camptothecin and methyl methanesulfonate.

    PubMed

    Kaiser, Gitte S; Germann, Susanne M; Westergaard, Tine; Lisby, Michael

    2011-08-01

    Homologous recombination is accompanied by extensive changes to chromatin organization at the site of DNA damage. Some of these changes are mediated through acetylation/deacetylation of histones. Here, we show that recombinational repair of DNA damage induced by the anti-cancer drug camptothecin (CPT) and the alkylating agent methyl methanesulfonate (MMS) is blocked by sodium phenylbutyrate (PBA) in the budding yeast Saccharomyces cerevisiae. In particular, PBA suppresses CPT- and MMS-induced genetic recombination as well as DNA double-strand break repair during mating-type interconversion. Treatment with PBA is accompanied by a dramatic reduction in histone H4 lysine 8 acetylation. Live cell imaging of homologous recombination proteins indicates that repair of CPT-induced DNA damage is redirected to a non-recombinogenic pathway in the presence of PBA without loss in cell viability. In contrast, the suppression of MMS-induced recombination by PBA is accompanied by a dramatic loss in cell viability. Taken together, our results demonstrate that PBA inhibits DNA damage-induced homologous recombination likely by mediating changes in chromatin acetylation. Moreover, the combination of PBA with genotoxic agents can lead to different cell fates depending on the type of DNA damage inflicted. 2011 Elsevier B.V. All rights reserved.

  19. Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.

    PubMed

    Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry

    2018-03-01

    Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia normally act to mitigate neurodegeneration in ALS/FTLD? To what extent do cellular signaling pathways mediate non-cell autonomous communications between distinct central nervous system (CNS) cell types during disease? Is it possible to therapeutically target specific cell types in the CNS?

  20. Comparison of ``AA`` nickel metal hydride cells with ``AA`` Ni-Cd cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alminauskas, V.; Johnson, W.

    1996-12-31

    This paper compares ``AA`` size nickel metal hydride (Ni-HM) cells with comparable ``AA;; nickel cadmium (Ni-Cd) cells both of which were obtained in 1993. The Ni-MH cells were found to be a suitable substitute for conventional Ni-Cd cells. Both these cell types have similar voltages and discharge characteristics. The Ni-MH cells, though had nearly twice the capacity as comparable Ni-Cd cells. There was no significant difference in self discharge between the two types of cells. The Ni-MH cells also performed as well as Ni-Cd cells at rates lower than 5 amperes and at temperatures higher than 0 C (32 F).more » The most interesting finding is that the Ni-MH cells showed an irreversible decay of the discharge voltage with each cycle which was more noticeable during pulses. Eventually the Ni-MH packs fail, not because of loss of capacity, but because of low voltage during the pulse.« less

  1. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    PubMed

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  2. Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss.

    PubMed

    Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera; Wong, Wendy Wei-Lynn; Kaufmann, Thomas

    2018-02-28

    Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID.

  3. Loss of BID Delays FASL-Induced Cell Death of Mouse Neutrophils and Aggravates DSS-Induced Weight Loss

    PubMed Central

    Wicki, Simone; Gurzeler, Ursina; Corazza, Nadia; Genitsch, Vera

    2018-01-01

    Neutrophils are key players in the early defense against invading pathogens. Due to their potent effector functions, programmed cell death of activated neutrophils has to be tightly controlled; however, its underlying mechanisms remain unclear. Fas ligand (FASL/CD95L) has been shown to induce neutrophil apoptosis, which is accelerated by the processing of the BH3-only protein BH3 interacting domain death agonist (BID) to trigger mitochondrial apoptotic events, and been attributed a regulatory role during viral and bacterial infections. Here, we show that, in accordance with previous works, mouse neutrophils underwent caspase-dependent apoptosis in response to FASL, and that this cell death was significantly delayed upon loss of BID. However, pan-caspase inhibition failed to protect mouse neutrophils from FASL-induced apoptosis and caused a switch to RIPK3-dependent necroptotic cell death. Intriguingly, such a switch was less evident in the absence of BID, particularly under inflammatory conditions. Delayed neutrophil apoptosis has been implicated in several auto-inflammatory diseases, including inflammatory bowel disease. We show that neutrophil and macrophage driven acute dextran sulfate sodium (DSS) induced colitis was slightly more aggravated in BID-deficient mice, based on significantly increased weight loss compared to wild-type controls. Taken together, our data support a central role for FASL > FAS and BID in mouse neutrophil cell death and further underline the anti-inflammatory role of BID. PMID:29495595

  4. The E3 ubiquitin ligase NEDD4 induces endocytosis and lysosomal sorting of connexin 43 to promote loss of gap junctions.

    PubMed

    Totland, Max Z; Bergsland, Christian H; Fykerud, Tone A; Knudsen, Lars M; Rasmussen, Nikoline L; Eide, Peter W; Yohannes, Zeremariam; Sørensen, Vigdis; Brech, Andreas; Lothe, Ragnhild A; Leithe, Edward

    2017-09-01

    Intercellular communication via gap junctions has an important role in controlling cell growth and in maintaining tissue homeostasis. Connexin 43 (Cx43; also known as GJA1) is the most abundantly expressed gap junction channel protein in humans and acts as a tumor suppressor in multiple tissue types. Cx43 is often dysregulated at the post-translational level during cancer development, resulting in loss of gap junctions. However, the molecular basis underlying the aberrant regulation of Cx43 in cancer cells has remained elusive. Here, we demonstrate that the oncogenic E3 ubiquitin ligase NEDD4 regulates the Cx43 protein level in HeLa cells, both under basal conditions and in response to protein kinase C activation. Furthermore, overexpression of NEDD4, but not a catalytically inactive form of NEDD4, was found to result in nearly complete loss of gap junctions and increased lysosomal degradation of Cx43 in both HeLa and C33A cervical carcinoma cells. Collectively, the data provide new insights into the molecular basis underlying the regulation of gap junction size and represent the first evidence that an oncogenic E3 ubiquitin ligase promotes loss of gap junctions and Cx43 degradation in human carcinoma cells. © 2017. Published by The Company of Biologists Ltd.

  5. ABC Transporter Genes and Risk of Type 2 Diabetes

    PubMed Central

    Schou, Jesper; Tybjærg-Hansen, Anne; Møller, Holger J.; Nordestgaard, Børge G.; Frikke-Schmidt, Ruth

    2012-01-01

    OBJECTIVE Alterations of pancreatic β-cell cholesterol content may contribute to β-cell dysfunction. Two important determinants of intracellular cholesterol content are the ATP-binding cassette (ABC) transporters A1 (ABCA1) and -G1 (ABCG1). Whether genetic variation in ABCA1 and ABCG1 predicts risk of type 2 diabetes in the general population is unknown. RESEARCH DESIGN AND METHODS We tested whether genetic variation in the promoter and coding regions of ABCA1 and ABCG1 predicted risk of type 2 diabetes in the general population. Twenty-seven variants, identified by previous resequencing of both genes, were genotyped in the Copenhagen City Heart Study (CCHS) (n = 10,185). Two loss-of-function mutations (ABCA1 N1800H and ABCG1 g.-376C>T) (n = 322) and a common variant (ABCG1 g.-530A>G) were further genotyped in the Copenhagen General Population Study (CGPS) (n = 30,415). RESULTS Only one of the variants examined, ABCG1 g.-530A>G, predicted a decreased risk of type 2 diabetes in the CCHS (P for trend = 0.05). Furthermore, when validated in the CGPS or in the CCHS and CGPS combined (n = 40,600), neither the two loss-of-function mutations (ABCA1 N1800H, ABCG1 g.-376C>T) nor ABCG1 g.-530A>G were associated with type 2 diabetes (P values >0.57 and >0.30, respectively). CONCLUSIONS Genetic variations in ABCA1 and ABCG1 were not associated with increased risk of type 2 diabetes in the general population. These data were obtained in general population samples harboring the largest number of heterozygotes for loss-of-function mutations in ABCA1 and ABCG1. PMID:23139370

  6. Cellular and molecular mechanisms of autosomal dominant form of progressive hearing loss, DFNA2.

    PubMed

    Kim, Hyo Jeong; Lv, Ping; Sihn, Choong-Ryoul; Yamoah, Ebenezer N

    2011-01-14

    Despite advances in identifying deafness genes, determination of the underlying cellular and functional mechanisms for auditory diseases remains a challenge. Mutations of the human K(+) channel hKv7.4 lead to post-lingual progressive hearing loss (DFNA2), which affects world-wide population with diverse racial backgrounds. Here, we have generated the spectrum of point mutations in the hKv7.4 that have been identified as diseased mutants. We report that expression of five point mutations in the pore region, namely L274H, W276S, L281S, G285C, and G296S, as well as the C-terminal mutant G321S in the heterologous expression system, yielded non-functional channels because of endoplasmic reticulum retention of the mutant channels. We mimicked the dominant diseased conditions by co-expressing the wild-type and mutant channels. As compared with expression of wild-type channel alone, the blend of wild-type and mutant channel subunits resulted in reduced currents. Moreover, the combinatorial ratios of wild type:mutant and the ensuing current magnitude could not be explained by the predictions of a tetrameric channel and a dominant negative effect of the mutant subunits. The results can be explained by the dependence of cell surface expression of the mutant on the wild-type subunit. Surprisingly, a transmembrane mutation F182L, which has been identified in a pre-lingual progressive hearing loss patient in Taiwan, yielded cell surface expression and functional features that were similar to that of the wild type, suggesting that this mutation may represent redundant polymorphism. Collectively, these findings provide traces of the cellular mechanisms for DFNA2.

  7. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    PubMed Central

    Chi, Shen; Weiss, Arthur; Wang, Haopeng

    2016-01-01

    CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens. PMID:27057542

  8. Emitter/absorber interface of CdTe solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tao; Kanevce, Ana; Sites, James R.

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and leadmore » to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.« less

  9. Modeling the Etiology of p53-mutated Cancer Cells*

    PubMed Central

    Perez, Ricardo E.; Shen, Hong; Duan, Lei; Kim, Reuben H.; Kim, Terresa; Park, No-Hee; Maki, Carl G.

    2016-01-01

    p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds. PMID:27022024

  10. Lrp5 Has a Wnt-Independent Role in Glucose Uptake and Growth for Mammary Epithelial Cells

    PubMed Central

    Chin, Emily N.; Martin, Joshua A.; Kim, Soyoung; Fakhraldeen, Saja A.

    2015-01-01

    Lrp5 is typically described as a Wnt signaling receptor, albeit a less effective Wnt signaling receptor than the better-studied sister isoform, Lrp6. Here we show that Lrp5 is only a minor player in the response to Wnt3a-type ligands in mammary epithelial cells; instead, Lrp5 is required for glucose uptake, and glucose uptake regulates the growth rate of mammary epithelial cells in culture. Thus, a loss of Lrp5 leads to profound growth suppression, whether growth is induced by serum or by specific growth factors, and this inhibition is not due to a loss of Wnt signaling. Depletion of Lrp5 decreases glucose uptake, lactate secretion, and oxygen consumption rates; inhibition of glucose consumption phenocopies the loss of Lrp5 function. Both Lrp5 knockdown and low external glucose induce mitochondrial stress, as revealed by the accumulation of reactive oxygen species (ROS) and the activation of the ROS-sensitive checkpoint, p38α. In contrast, loss of function of Lrp6 reduces Wnt responsiveness but has little impact on growth. This highlights the distinct functions of these two Lrp receptors and an important Wnt ligand-independent role of Lrp5 in glucose uptake in mammary epithelial cells. PMID:26711269

  11. High expression of A-type lamin in the leading front is required for Drosophila thorax closure.

    PubMed

    Kosakamoto, Hina; Fujisawa, Yuya; Obata, Fumiaki; Miura, Masayuki

    2018-05-05

    Tissue closure involves the coordinated unidirectional movement of a group of cells without loss of cell-cell contact. However, the molecular mechanisms controlling the tissue closure are not fully understood. Here, we demonstrate that Lamin C, the sole A-type lamin in Drosophila, contributes to the process of thorax closure in pupa. High expression of Lamin C was observed at the leading front of the migrating wing imaginal discs. Live imaging analysis revealed that knockdown of Lamin C in the thorax region affected the coordinated movement of the leading front, resulting in incomplete tissue fusion required for formation of the adult thorax. The closure defect due to knockdown of Lamin C correlated with insufficient accumulation of F-actin at the front. Our study indicates a link between A-type lamin and the cell migration behavior during tissue closure. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. InAlAs photovoltaic cell design for high device efficiency

    DOE PAGES

    Smith, Brittany L.; Bittner, Zachary S.; Hellstroem, Staffan D.; ...

    2017-04-17

    This study presents a new design for a single-junction InAlAs solar cell, which reduces parasitic absorption losses from the low band-gap contact layer while maintaining a functional window layer by integrating a selective etch stop. The etch stop is then removed prior to depositing an anti-reflective coating. The final cell had a 17.9% efficiency under 1-sun AM1.5 with an anti-reflective coating. Minority carrier diffusion lengths were extracted from external quantum efficiency data using physics-based device simulation software yielding 170 nm in the n-type emitter and 4.6 um in the p-type base, which is more than four times the diffusion lengthmore » previously reported for a p-type InAlAs base. In conclusion, this report represents significant progress towards a high-performance InAlAs top cell for a triple-junction design lattice-matched to InP.« less

  13. Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells

    PubMed Central

    Rekittke, Nadine E.; Ang, Meidjie; Rawat, Divya; Khatri, Rahul

    2016-01-01

    Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy. PMID:27047547

  14. Unique cell-type-specific patterns of DNA methylation in the root meristem.

    PubMed

    Kawakatsu, Taiji; Stuart, Tim; Valdes, Manuel; Breakfield, Natalie; Schmitz, Robert J; Nery, Joseph R; Urich, Mark A; Han, Xinwei; Lister, Ryan; Benfey, Philip N; Ecker, Joseph R

    2016-04-29

    DNA methylation is an epigenetic modification that differs between plant organs and tissues, but the extent of variation between cell types is not known. Here, we report single-base-resolution whole-genome DNA methylomes, mRNA transcriptomes and small RNA transcriptomes for six cell populations covering the major cell types of the Arabidopsis root meristem. We identify widespread cell-type-specific patterns of DNA methylation, especially in the CHH sequence context, where H is A, C or T. The genome of the columella root cap is the most highly methylated Arabidopsis cell characterized so far. It is hypermethylated within transposable elements (TEs), accompanied by increased abundance of transcripts encoding RNA-directed DNA methylation (RdDM) pathway components and 24-nt small RNAs (smRNAs). The absence of the nucleosome remodeller DECREASED DNA METHYLATION 1 (DDM1), required for maintenance of DNA methylation, and low abundance of histone transcripts involved in heterochromatin formation suggests that a loss of heterochromatin may occur in the columella, thus allowing access of RdDM factors to the whole genome, and producing an excess of 24-nt smRNAs in this tissue. Together, these maps provide new insights into the epigenomic diversity that exists between distinct plant somatic cell types.

  15. Regulation of T-type Ca2+ channel expression by herpes simplex virus-1 infection in sensory-like ND7 cells

    PubMed Central

    Zhang, Qiaojuan; Hsia, Shao-Chung

    2017-01-01

    Infection of sensory neurons by herpes simplex virus (HSV)-1 disrupts electrical excitability, altering pain sensory transmission. Because of their low threshold for activation, functional expression of T-type Ca2+ channels regulates various cell functions, including neuronal excitability and neuronal communication. In this study, we have tested the effect of HSV-1 infection on the functional expression of T-type Ca2+ channels in differentiated ND7-23 sensory-like neurons. Voltage-gated Ca2+ currents were measured using whole cell patch clamp recordings in differentiated ND7-23 neurons under various culture conditions. Differentiation of ND7-23 cells evokes a significant increase in T-type Ca2+ current densities. Increased T-type Ca2+ channel expression promotes the morphological differentiation of ND7-23 cells and triggers a rebound depolarization. HSV-1 infection of differentiated ND7-23 cells causes a significant loss of T-type Ca2+ channels from the membrane. HSV-1 evoked reduction in the functional expression of T-type Ca2+ channels is mediated by several factors, including decreased expression of Cav3.2 T-type Ca2+ channel subunits and disruption of endocytic transport. Decreased functional expression of T-type Ca2+ channels by HSV-1 infection requires protein synthesis and viral replication, but occurs independently of Egr-1 expression. These findings suggest that infection of neuron-like cells by HSV-1 causes a significant disruption in the expression of T-type Ca2+ channels, which can results in morphological and functional changes in electrical excitability. PMID:28639215

  16. Loss of Notch2 and Notch3 in vascular smooth muscle causes patent ductus arteriosus.

    PubMed

    Baeten, Jeremy T; Jackson, Ashley R; McHugh, Kirk M; Lilly, Brenda

    2015-12-01

    The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle-specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild-type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle-expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle-Notch2 and only one wild-type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA. © 2015 Wiley Periodicals, Inc.

  17. Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.

    PubMed

    Soni, Shivani; Bala, Shashi; Hanspal, Manjit

    2008-01-01

    Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.

  18. Flat-plate solar array project. Volume 4: High-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)

    1986-01-01

    The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.

  19. Stem cell therapy emerging as the key player in treating type 1 diabetes mellitus.

    PubMed

    Vanikar, Aruna V; Trivedi, Hargovind L; Thakkar, Umang G

    2016-09-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune disease causing progressive destruction of pancreatic β cells, ultimately resulting in loss of insulin secretion producing hyperglycemia usually affecting children. Replacement of damaged β cells by cell therapy can treat it. Currently available strategies are insulin replacement and islet/pancreas transplantation. Unfortunately these offer rescue for variable duration due to development of autoantibodies. For pancreas/islet transplantation a deceased donor is required and various shortfalls of treatment include quantum, cumbersome technique, immune rejection and limited availability of donors. Stem cell therapy with assistance of cellular reprogramming and β-cell regeneration can open up new therapeutic modalities. The present review describes the history and current knowledge of T1DM, evolution of cell therapies and different cellular therapies to cure this condition. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Rice Stomatal Closure Requires Guard Cell Plasma Membrane ATP-Binding Cassette Transporter RCN1/OsABCG5.

    PubMed

    Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki

    2016-03-07

    Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  1. Zebrafish grainyhead-like1 is a common marker of different non-keratinocyte epidermal cell lineages, which segregate from each other in a Foxi3-dependent manner

    PubMed Central

    JÄNICKE, MARTINA; RENISCH, BJÖRN; HAMMERSCHMIDT, MATTHIAS

    2012-01-01

    Grainyhead/CP2 transcription factor family members are widely conserved among the animal kingdom and have been implicated in different developmental processes. Thus far, nothing has been known about their roles in zebrafish. Here we identify seven zebrafish grainyhead-like (grhl) / cp2 genes, with focus on grhl1, which is expressed in the periderm and in epidermal ionocyte progenitors, but downregulated when ionocytes differentiate. In addition, expression was detected in other “non-keratinocyte” cell types of the epidermis, such as pvalb8-expressing cells, which according to our lineage tracing experiments are derived from the same pool of progenitor cells like keratinocytes and ionocytes. Antisense morpholino oligonucleotide-based loss-of-function analysis revealed that grhl1 is dispensable for the development and function of all investigated epidermal cell types, but required as a negative regulator of its own transcription during ionocyte differentiation. Knockdown of the transcription factor Foxi3a, which is expressed in a subset of the grhl1 population, caused a loss of ionocytes and a corresponding increase in the number of pvalb8-expressing cells, while leaving the number of grhl1-positive cells unaltered. We propose that grhl1 is a novel common marker of all or most “non-keratinocyte” epidermal progenitors, and that the sub-functionalisation of these cells is regulated by differential positive and negative effects of Foxi3 factors. PMID:19757382

  2. Failure to preserve beta-cell function with mycophenolate mofetil and daclizumab combined therapy in patients with new- onset type 1 diabetes.

    PubMed

    Gottlieb, Peter A; Quinlan, Scott; Krause-Steinrauf, Heidi; Greenbaum, Carla J; Wilson, Darrell M; Rodriguez, Henry; Schatz, Desmond A; Moran, Antoinette M; Lachin, John M; Skyler, Jay S

    2010-04-01

    This trial tested whether mycophenolate mofetil (MMF) alone or with daclizumab (DZB) could arrest the loss of insulin-producing beta-cells in subjects with new-onset type 1 diabetes. A multi-center, randomized, placebo-controlled, double-masked trial was initiated by Type 1 Diabetes TrialNet at 13 sites in North America and Europe. Subjects diagnosed with type 1 diabetes and with sufficient C-peptide within 3 months of diagnosis were randomized to either MMF alone, MMF plus DZB, or placebo, and then followed for 2 years. The primary outcome was the geometric mean area under the curve (AUC) C-peptide from the 2-h mixed meal tolerance test. One hundred and twenty-six subjects were randomized and treated during the trial. The geometric mean C-peptide AUC at 2 years was unaffected by MMF alone or MMF plus DZB versus placebo. Adverse events were more frequent in the active therapy groups relative to the control group, but not significantly. Neither MMF alone nor MMF in combination with DZB had an effect on the loss of C-peptide in subjects with new-onset type 1 diabetes. Higher doses or more targeted immunotherapies may be needed to affect the autoimmune process.

  3. Failure to Preserve β-Cell Function With Mycophenolate Mofetil and Daclizumab Combined Therapy in Patients With New- Onset Type 1 Diabetes

    PubMed Central

    Gottlieb, Peter A.; Quinlan, Scott; Krause-Steinrauf, Heidi; Greenbaum, Carla J.; Wilson, Darrell M.; Rodriguez, Henry; Schatz, Desmond A.; Moran, Antoinette M.; Lachin, John M.; Skyler, Jay S.

    2010-01-01

    OBJECTIVE This trial tested whether mycophenolate mofetil (MMF) alone or with daclizumab (DZB) could arrest the loss of insulin-producing β-cells in subjects with new-onset type 1 diabetes. RESEARCH DESIGN AND METHODS A multi-center, randomized, placebo-controlled, double-masked trial was initiated by Type 1 Diabetes TrialNet at 13 sites in North America and Europe. Subjects diagnosed with type 1 diabetes and with sufficient C-peptide within 3 months of diagnosis were randomized to either MMF alone, MMF plus DZB, or placebo, and then followed for 2 years. The primary outcome was the geometric mean area under the curve (AUC) C-peptide from the 2-h mixed meal tolerance test. RESULTS One hundred and twenty-six subjects were randomized and treated during the trial. The geometric mean C-peptide AUC at 2 years was unaffected by MMF alone or MMF plus DZB versus placebo. Adverse events were more frequent in the active therapy groups relative to the control group, but not significantly. CONCLUSIONS Neither MMF alone nor MMF in combination with DZB had an effect on the loss of C-peptide in subjects with new-onset type 1 diabetes. Higher doses or more targeted immunotherapies may be needed to affect the autoimmune process. PMID:20067954

  4. Attenuated improvements in adiponectin and fat loss characterize type 2 diabetes non-remission status after bariatric surgery.

    PubMed

    Malin, S K; Bena, J; Abood, B; Pothier, C E; Bhatt, D L; Nissen, S; Brethauer, S A; Schauer, P R; Kirwan, J P; Kashyap, S R

    2014-12-01

    To identify the metabolic determinants of type 2 diabetes non-remission status after bariatric surgery at 12 and 24 months. A total of 40 adults [mean ± sd body mass index 36 ± 3 kg/m(2) , age 48 ± 9 years, glycated haemoglobin (HbA1c) 9.7 ± 2%) undergoing bariatric surgery [Roux-en-Y gastric bypass (RYGB) or sleeve gastrectomy (SG)] were enrolled in the present study, the Surgical Treatment and Medication Potentially Eradicate Diabetes Efficiently (STAMPEDE) trial. Type 2 diabetes remission was defined as HbA1c <6.5% and fasting glucose <126 mg/dl (i.e. <7 mmol/l) without antidiabetic medication. Indices of insulin secretion and sensitivity were calculated from plasma glucose, insulin and C-peptide values during a 120-min mixed-meal tolerance test. Body fat, incretins (glucagon-like polypeptide-1, gastric inhibitory peptide, ghrelin) and adipokines [adiponectin, leptin, tumour necrosis factor-α, high-sensitivity C-reactive protein (hs-CRP)] were also assessed. At 24 months, 37 patients had available follow-up data (RYGB, n = 18; SG, n = 19). Bariatric surgery induced type 2 diabetes remission rates of 40 and 27% at 12 and 24 months, respectively. Total fat/abdominal fat loss, insulin secretion, insulin sensitivity and β-cell function (C-peptide0-120 /glucose0-120 × Matsuda index) improved more in those with remission at 12 and 24 months than in those without remission. Incretin levels were unrelated to type 2 diabetes remission, but, compared with those without remission, hs-CRP decreased and adiponectin increased more in those with remission. Only baseline adiponectin level predicted lower HbA1c levels at 12 and 24 months, and elevated adiponectin correlated with enhanced β-cell function, lower triglyceride levels and fat loss. Smaller rises in adiponectin level, a mediator of insulin action and adipose mass, characterize type 2 diabetes non-remission up to 2 years after bariatric surgery. Adjunctive strategies promoting greater fat loss and/or raising adiponectin may be key to achieving higher type 2 diabetes remission rates after bariatric surgery. © 2014 John Wiley & Sons Ltd.

  5. NOTCH pathway inactivation promotes bladder cancer progression

    PubMed Central

    Maraver, Antonio; Fernandez-Marcos, Pablo J.; Cash, Timothy P.; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L.; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M.; Real, Francisco X.; Serrano, Manuel

    2015-01-01

    NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features. PMID:25574842

  6. Recovery of deficient homologous recombination in Brca2-depleted mouse cells by wild-type Rad51 expression.

    PubMed

    Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D

    2009-02-01

    The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.

  7. Overexpression of Shox2 Leads to Congenital Dysplasia of the Temporomandibular Joint in Mice

    PubMed Central

    Li, Xihai; Liang, Wenna; Ye, Hongzhi; Weng, Xiaping; Liu, Fayuan; Liu, Xianxiang

    2014-01-01

    Our previous study reported that inactivation of Shox2 led to dysplasia and ankylosis of the temporomandibular joint (TMJ), and that replacing Shox2 with human Shox partially rescued the phenotype with a prematurely worn out articular disc. However, the mechanisms of Shox2 activity in TMJ development remain to be elucidated. In this study, we investigated the molecular and cellular basis for the congenital dysplasia of TMJ in Wnt1-Cre; pMes-stop Shox2 mice. We found that condyle and glenoid fossa dysplasia occurs primarily in the second week after the birth. The dysplastic TMJ of Wnt1-Cre; pMes-stop Shox2 mice exhibits a loss of Collagen type I, Collagen type II, Ihh and Gli2. In situ zymography and immunohistochemistry further demonstrate an up-regulation of matrix metalloproteinases (MMPs), MMP9 and MMP13, accompanied by a significantly increased cell apoptosis. In addition, the cell proliferation and expressions of Sox9, Runx2 and Ihh are no different in the embryonic TMJ between the wild type and mutant mice. Our results show that overexpression of Shox2 leads to the loss of extracellular matrix and the increase of cell apoptosis in TMJ dysplasia by up-regulating MMPs and down-regulating the Ihh signaling pathway. PMID:25062348

  8. A Synopsis of Factors Regulating Beta Cell Development and Beta Cell Mass

    PubMed Central

    Prasadan, Krishna; Shiota, Chiyo; Xiangwei, Xiao; Ricks, David; Fusco, Joseph; Gittes, George

    2016-01-01

    The insulin-secreting beta cells in the endocrine pancreas regulate blood glucose levels, and loss of functional beta cells leads to insulin deficiency, hyperglycemia (high blood glucose) and diabetes mellitus. Current treatment strategies for type-1 (autoimmune) diabetes are islet transplantation, which has significant risks and limitations, or normalization of blood glucose with insulin injections, which is clearly not ideal. The type-1 patients can lack insulin counter-regulatory mechanism; therefore, hypoglycemia is a potential risk. Hence, a cell-based therapy offers a better alternative for the treatment of diabetes. Past research was focused on attempting to generate replacement beta cells from stem cells, however, recently there has been an increasing interest in identifying mechanisms that will lead to the conversion of pre-existing differentiated endocrine cells into beta cells. The goal of this review is to provide an overview of several of the key factors that regulate new beta cell formation (neogenesis) and beta cell proliferation. PMID:27105622

  9. Functional recovery in the avian ear after hair cell regeneration.

    PubMed

    Smolders, J W

    1999-01-01

    Trauma to the inner ear in birds, due to acoustic overstimulation or ototoxic aminoglycosides, can lead to hair cell loss which is followed by regeneration of new hair cells. These processes are paralleled by hearing loss followed by significant functional recovery. After acoustic trauma, functional recovery is rapid and nearly complete. The early and major part of functional recovery after sound trauma occurs before regenerated hair cells become functional. Even very intense sound trauma causes loss of only a proportion of the hair cell population, mainly so-called short hair cells residing on the abneural mobile part of the avian basilar membrane. Uncoupling of the tectorial membrane from the hair cells during sound overexposure may serve as a protection mechanism. The rapid functional recovery after sound trauma appears not to be associated with regeneration of the lost hair cells, but with repair processes involving the surviving hair cells. Small residual functional deficits after recovery are most likely associated with the missing upper fibrous layer of the tectorial membrane which fails to regenerate after sound trauma. After aminoglycoside trauma, functional recovery is slower and parallels the structural regeneration more closely. Aminoglycosides cause damage to both types of hair cells, starting at the basal (high frequency) part of the basilar papilla. However, functional hearing loss and recovery also occur at lower frequencies, associated with areas of the papilla where hair cells survive. Functional recovery in these low frequency areas is complete, whereas functional recovery in high frequency areas with complete hair cell loss is incomplete, despite regeneration of the hair cells. Permanent residual functional deficits remain. This indicates that in low frequency regions functional recovery after aminoglycosides involves repair of nonlethal injury to hair cells and/or hair cell-neural synapses. In the high frequency regions functional recovery involves regenerated hair cells. The permanent functional deficits after the regeneration process in these areas are most likely associated with functional deficits in the regenerated hair cells or shortcomings in the synaptic reconnections of nerve fibers with the regenerated hair cells. In conclusion, the avian inner ear appears to be much more resistant to trauma than the mammalian ear and possesses a considerable capacity for functional recovery based on repair processes along with its capacity to regenerate hair cells. The functional recovery in areas with regenerated hair cells is considerable but incomplete.

  10. Breast Cancer Research Program (BCRP) - Predoctoral Traineeship - Elucidating the Role of the Type III Transforming Growth Factor-beta Receptor in Bone Morphogenetic Signaling in Breast Cancer

    DTIC Science & Technology

    2008-03-01

    phosphorylation in the pancreatic cancer cell model, Panc -1 (data not shown). This data emphasize that TβRIII’s role in BMP signaling is likely to be cell... Panc -1 cells were adenovirally infected with TβRIII, followed by BMP-4-induced EMT. The cells were then plated in Matrigel invasion chambers. A...BMP-2, while loss of TβRIII in Panc -1 (pancreatic cancer cells) increased cell sensitivity to BMP-2 and had no effect on MDA-MB-231 (breast cancer

  11. Chronic activation of wild-type epidermal growth factor receptor and loss of Cdkn2a cause mouse glioblastoma formation.

    PubMed

    Acquaviva, Jaime; Jun, Hyun Jung; Lessard, Julie; Ruiz, Rolando; Zhu, Haihao; Donovan, Melissa; Woolfenden, Steve; Boskovitz, Abraham; Raval, Ami; Bronson, Roderick T; Pfannl, Rolf; Whittaker, Charles A; Housman, David E; Charest, Al

    2011-12-01

    Glioblastoma multiforme (GBM) is characterized by overexpression of epidermal growth factor receptor (EGFR) and loss of the tumor suppressors Ink4a/Arf. Efforts at modeling GBM using wild-type EGFR in mice have proven unsuccessful. Here, we present a unique mouse model of wild-type EGFR-driven gliomagenesis. We used a combination of somatic conditional overexpression and ligand-mediated chronic activation of EGFR in cooperation with Ink4a/Arf loss in the central nervous system of adult mice to generate tumors with the histopathologic and molecular characteristics of human GBMs. Sustained, ligand-mediated activation of EGFR was necessary for gliomagenesis, functionally substantiating the clinical observation that EGFR-positive GBMs from patients express EGFR ligands. To gain a better understanding of the clinically disappointing EGFR-targeted therapies for GBM, we investigated the molecular responses to EGFR tyrosine kinase inhibitor (TKI) treatment in this model. Gefitinib treatment of primary GBM cells resulted in a robust apoptotic response, partially conveyed by mitogen-activated protein kinase (MAPK) signaling attenuation and accompanied by BIM(EL) expression. In human GBMs, loss-of-function mutations in the tumor suppressor PTEN are a common occurrence. Elimination of PTEN expression in GBM cells posttumor formation did not confer resistance to TKI treatment, showing that PTEN status in our model is not predictive. Together, these findings offer important mechanistic insights into the genetic determinants of EGFR gliomagenesis and sensitivity to TKIs and provide a robust discovery platform to better understand the molecular events that are associated with predictive markers of TKI therapy.

  12. Cell Therapy for Stress Urinary Incontinence.

    PubMed

    Hart, Melanie L; Izeta, Ander; Herrera-Imbroda, Bernardo; Amend, Bastian; Brinchmann, Jan E

    2015-08-01

    Urinary incontinence (UI) is the involuntary loss of urine and is a common condition in middle-aged and elderly women and men. Stress urinary incontinence (SUI) is caused by leakage of urine when coughing, sneezing, laughing, lifting, and exercise, even standing leads to increased intra-abdominal pressure. Other types of UI also exist such as urge incontinence (also called overactive bladder), which is a strong and unexpected sudden urge to urinate, mixed forms of UI that result in symptoms of both urge and stress incontinence, and functional incontinence caused by reduced mobility, cognitive impairment, or neuromuscular limitations that impair mobility or dexterity. However, for many SUI patients, there is significant loss of urethral sphincter muscle due to degeneration of tissue, the strain and trauma of pregnancy and childbirth, or injury acquired during surgery. Hence, for individuals with SUI, a cell-based therapeutic approach to regenerate the sphincter muscle offers the advantage of treating the cause rather than the symptoms. We discuss current clinically relevant cell therapy approaches for regeneration of the external urethral sphincter (striated muscle), internal urethral sphincter (smooth muscle), the neuromuscular synapse, and blood supply. The use of mesenchymal stromal/stem cells is a major step in the right direction, but they may not be enough for regeneration of all components of the urethral sphincter. Inclusion of other cell types or biomaterials may also be necessary to enhance integration and survival of the transplanted cells.

  13. High-fat, carbohydrate-free diet markedly aggravates obesity but prevents beta-cell loss and diabetes in the obese, diabetes-susceptible db/db strain.

    PubMed

    Mirhashemi, Farshad; Kluth, Oliver; Scherneck, Stephan; Vogel, Heike; Kluge, Reinhart; Schurmann, Annette; Joost, Hans-Georg; Neschen, Susanne

    2008-01-01

    We have previously reported that a high-fat, carbohydrate-free diet prevents diabetes and beta-cell destruction in the New Zealand Obese (NZO) mouse strain. Here we investigated the effect of diets with and without carbohydrates on obesity and development of beta-cell failure in a second mouse model of type 2 diabetes, the db/db mouse. When kept on a carbohydrate-containing standard (SD; with (w/w) 5.1, 58.3, and 17.6% fat, carbohydrates and protein, respectively) or high-fat diet (HFD; 14.6, 46.7 and 17.1%), db/db mice developed severe diabetes (blood glucose >20 mmol/l, weight loss, polydipsia and polyurea) associated with a selective loss of pancreatic beta-cells, reduced GLUT2 expression in the remaining beta-cells, and reduced plasma insulin levels. In contrast, db/db mice kept on a high-fat, carbohydrate-free diet (CFD; with 30.2 and 26.4% (w/w) fat or protein) did not develop diabetes and exhibited near-normal, hyperplastic islets in spite of a morbid obesity (fat content >60%) associated with hyperinsulinaemia. These data indicate that in genetically different mouse models of obesity-associated diabetes, obesity and dietary fat are not sufficient, and dietary carbohydrates are required, for beta-cell destruction.

  14. Natural killer cells and regulatory T cells in early pregnancy loss

    PubMed Central

    SHARMA, SURENDRA

    2015-01-01

    Survival of the allogeneic embryo in the uterus depends on the maintenance of immune tolerance at the maternal-fetal interface. The pregnant uterus is replete with activated maternal immune cells. How this immune tolerance is acquired and maintained has been a topic of intense investigation. The key immune cells that predominantly populate the pregnant uterus are natural killer (NK) cells. In normal pregnancy, these cells are not killers, but rather provide a microenvironment that is pregnancy compatible and supports healthy placentation. In placental mammals, an array of highly orchestrated immune elements to support successful pregnancy outcome has been incorporated. This includes active cooperation between maternal immune cells, particularly NK cells, and trophoblast cells. This intricate process is required for placentation, immune regulation and to remodel the blood supply to the fetus. During the past decade, various types of maternal immune cells have been thought to be involved in cross-talk with trophoblasts and in programming immune tolerance. RegulatoryT cells (Tregs) have attracted a great deal of attention in promoting implantation and immune tolerance beyond implantation. However, what has not been fully addressed is how this immune-trophoblast axis breaks down during adverse pregnancy outcomes, particularly early pregnancy loss, and in response to unscheduled inflammation. Intense research efforts have begun to shed light on the roles of NK cells and Tregs in early pregnancy loss, although much remains to be unraveled in order to fully characterize the mechanisms underlying their detrimental activity. An increased understanding of host-environment interactions that lead to the cytotoxic phenotype of these otherwise pregnancy compatible maternal immune cells is important for prediction, prevention and treatment of pregnancy maladies, particularly recurrent pregnancy loss. In this review, we discuss relevant information from experimental and human models that may explain the pregnancy disrupting roles of these pivotal sentinel cells at the maternal-fetal interface. PMID:25023688

  15. Type 3 innate lymphoid cell depletion is mediated by TLRs in lymphoid tissues of simian immunodeficiency virus-infected macaques.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2015-12-01

    Innate lymphoid cells (ILCs) type 3, also known as lymphoid tissue inducer cells, plays a major role in both the development and remodeling of organized lymphoid tissues and the maintenance of adaptive immune responses. HIV/simian immunodeficiency virus (SIV) infection causes breakdown of intestinal barriers resulting in microbial translocation, leading to systemic immune activation and disease progression. However, the effects of HIV/SIV infection on ILC3 are unknown. Here, we analyzed ILC3 from mucosal and systemic lymphoid tissues in chronically SIV-infected macaques and uninfected controls. ILC3 cells were defined and identified in macaque lymphoid tissues as non-T, non-B (lineage-negative), c-Kit(+)IL-7Rα(+) (CD117(+)CD127(+)) cells. These ILC3 cells highly expressed CD90 (∼ 63%) and aryl hydrocarbon receptor and produced IL-17 (∼ 63%), IL-22 (∼ 36%), and TNF-α (∼ 72%) but did not coexpress CD4 or NK cell markers. The intestinal ILC3 cell loss correlated with the reduction of total CD4(+) T cells and T helper (Th)17 and Th22 cells in the gut during SIV infection (P < 0.001). Notably, ILC3 could be induced to undergo apoptosis by microbial products through the TLR2 (lipoteichoic acid) and/or TLR4 (LPS) pathway. These findings indicated that persistent microbial translocation may result in loss of ILC3 in lymphoid tissues in SIV-infected macaques, further contributing to the HIV-induced impairment of gut-associated lymphoid tissue structure and function, especially in mucosal tissues. © FASEB.

  16. 1,25-Dihydroxyvitamin D deficiency accelerates alveolar bone loss independent of aging and extracellular calcium and phosphorus.

    PubMed

    Gong, Aixiu; Chen, Jie; Wu, Jun; Li, Jing; Wang, Lin; Goltzman, David; Miao, Dengshun

    2018-04-10

    Vitamin D is critical for bone homeostasis and immunomodulation. We therefore assessed whether 1,25-dihydroxyvitamin D (1,25(OH) 2 D) deficiency in mice with targeted deletion of the gene encoding 25-hydroxyvitaminD-1αhydroxylase [1α(OH)ase] (1αOH)ase -/- mice) results in alveolar bone loss and periodontal inflammation in vivo. 10-week-old and 12-month-old 1α(OH)ase -/- mice and wild-type littermates were fed a normal diet or a rescue diet, and the phenotype of the periodontium was then analyzed using micro-computed tomography, histology, immunohistochemistry and real-time RT-PCR. Alveolar bone loss was increased and maxillary bone mineral density (BMD), osteoblast numbers and the number of osterix-positive cells were decreased significantly in 1α(OH)ase -/- mice compared with wild-type mice. Although aging from 10 weeks to 12 months accentuated these changes, and a rescue diet reduced them, the alterations in the 1α(OH)ase -/- mice exceeded the effects of aging and diet change. Nuclear factor kappa light-chain-enhancer of activated B cells (NF-кB) p65 and CD3 positive cells, and the gene expression levels of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), matrix metalloproteinase (MMP) -3 and -8 were all increased significantly in periodontal tissues of 1α(OH)ase -/- mice compared with wild-type mice. Aging from 10 weeks to 12 months also accentuated these changes, and a rescue diet reduced them, however, the alterations in the 1α(OH)ase -/- mice exceeded the effects of aging and diet change. 1,25(OH) 2 D deficiency in the 1α(OH)ase -/- mice accelerated alveolar bone loss by inhibiting osteoblastic bone formation and enhancing periodontal tissue degeneration in a calcium and phosphorus as well as age independent manner. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.

  17. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    PubMed Central

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2–associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2–associated mutations increased cell sensitivity. CONCLUSIONS Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2. (Funded by the United Kingdom Medical Research Council and others.) PMID:23802516

  18. Regenerative Medicine: Solution in Sight.

    PubMed

    Wang, Qingjie; Stern, Jeffrey H; Temple, Sally

    2016-01-01

    The retina, like other central nervous system tissues, has poor regenerative properties in humans. Therefore, diseases that cause retinal cell loss, such as Age-related macular degeneration (AMD), retinitis pigmentosa (RP), Leber congenital amaurosis, Usher syndrome, glaucoma, and diabetic retinopathy, typically result in permanent visual impairment. Stem cell technologies have revolutionized our ability to produce neural cells in abundant supply. Much stem cell research effort is focused on producing the required cell types for cell replacement, or to generate disease-in-a-dish models to elucidate novel disease mechanisms for therapeutic development. Here we review the recent advances in stem cell studies relevant to producing RPE and retinal cells, and highlight future directions.

  19. Therapy-induced selective loss of leukemia-initiating activity in murine adult T cell leukemia

    PubMed Central

    El Hajj, Hiba; El-Sabban, Marwan; Hasegawa, Hideki; Zaatari, Ghazi; Ablain, Julien; Saab, Shahrazad T.; Janin, Anne; Mahfouz, Rami; Nasr, Rihab; Kfoury, Youmna; Nicot, Christophe; Hermine, Olivier; Hall, William

    2010-01-01

    Chronic HTLV-I (human T cell lymphotropic virus type I) infection may cause adult T cell leukemia/lymphoma (ATL), a disease with dismal long-term prognosis. The HTLV-I transactivator, Tax, initiates ATL in transgenic mice. In this study, we demonstrate that an As2O3 and IFN-α combination, known to trigger Tax proteolysis, cures Tax-driven ATL in mice. Unexpectedly, this combination therapy abrogated initial leukemia engraftment into secondary recipients, whereas the primary tumor bulk still grew in the primary hosts, only to ultimately abate later on. This loss of initial transplantability required proteasome function. A similar regimen recently yielded unprecedented disease control in human ATL. Our demonstration that this drug combination targeting Tax stability abrogates tumor cell immortality but not short-term growth may foretell a favorable long-term efficiency of this regimen in patients. PMID:21135137

  20. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    NASA Technical Reports Server (NTRS)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  1. Type 1 and type 2 cytokines in HIV infection -- a possible role in apoptosis and disease progression.

    PubMed

    Clerici, M; Fusi, M L; Ruzzante, S; Piconi, S; Biasin, M; Arienti, D; Trabattoni, D; Villa, M L

    1997-06-01

    The progression of HIV-infected subjects to AIDS was recently postulated to be controlled by the balance between type 1 cytokines (mainly enhancing cell-mediated immunity) and type 2 cytokines (mainly augmenting antibody production). Thus, progression of HIV infection was suggested to be accompanied by a decline of in vitro production of interleukin-2 (IL-2), IL-12 and interferon gamma (IFN-gamma) (type 1 cytokines) and an increase in the production of IL-4, IL-5, IL-6 and IL-10 (type 2 cytokines) by peripheral blood mononuclear cells of HIV-seropositive patients. According to this hypothesis, clinical markers of progression would be considered the loss of the ability to elicit a delayed-type hypersensitivity reaction to ubiquitous antigens (secondary to defective IL-2 production), hyper-IgE (secondary to increased IL-4 production) and hypereosynophilia (secondary to increased IL-5 production). The type 1 to type 2 shift was suggested to be predictive for the following events: (i) reduction in CD4 counts; (ii) time to AIDS diagnosis; (iii) time to death. Support for this hypothesis stems from the recent observation that a strong type 1/weak type 2 cytokine production profile was observed in HIV-seropositive patients with delayed or absent disease progression, whereas progression of HIV infection was characterized by a weak type 1/strong type 2 cytokine production profile. PBMC of HIV-seropositive individuals are susceptible to antigen-induced cell death (AICD) after antigen recognition via T-cell receptor (TcR). While TcR-induced AICD is seen in CD4+ and CD8+ cells programmed cell death induced by recall antigens is preferentially observed in CD4+ cells, a situation more closely resembling the CD4 depletion of HIV infection. Because type 1 cytokines reduce, whereas type 2 cytokines augment T-lymphocyte AICD, an increase in the concentration of type 2 cytokines could result in the decline in CD4+ cells seen in HIV infection.

  2. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity.

    PubMed

    Nguyen, Quy H; Pervolarakis, Nicholas; Blake, Kerrigan; Ma, Dennis; Davis, Ryan Tevia; James, Nathan; Phung, Anh T; Willey, Elizabeth; Kumar, Raj; Jabart, Eric; Driver, Ian; Rock, Jason; Goga, Andrei; Khan, Seema A; Lawson, Devon A; Werb, Zena; Kessenbrock, Kai

    2018-05-23

    Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.

  3. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Coutts, T. J.

    1988-01-01

    The radiation resistance of ITO/InP cells processed by dc magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistances significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectrosocpy, and determinations of surface conductivity type are used to investigate the configuration of the ITO/InP cells. It is concluded that these latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor.

  4. Radiation resistance and comparative performance of ITO/InP and n/p InP homojunction solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Coutts, T. J.

    1988-01-01

    The radiation resistance of ITO/InP cells processed by DC magnetron sputtering is compared to that of standard n/p InP and GaAs homojunction cells. After 20 MeV proton irradiations, it is found that the radiation resistance of the present ITO/InP cell is comparable to that of the n/p homojunction InP cell and that both InP cell types have radiation resistance significantly greater than GaAs. The relatively lower radiation resistance, observed at higher fluence, for the InP cell with the deepest junction depth, is attributed to losses in the cells emitter region. Diode parameters obtained from I sub sc - V sub oc plots, data from surface Raman spectroscopy, and determinations of surface conductivity types are used to investigate the configuration of the ITO/InP cells. It is concluded that thesee latter cells are n/p homojunctions, the n-region consisting of a disordered layer at the oxide semiconductor.

  5. ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D.

    PubMed

    Komura, Kazumasa; Yoshikawa, Yuki; Shimamura, Teppei; Chakraborty, Goutam; Gerke, Travis A; Hinohara, Kunihiko; Chadalavada, Kalyani; Jeong, Seong Ho; Armenia, Joshua; Du, Shin-Yi; Mazzu, Ying Z; Taniguchi, Kohei; Ibuki, Naokazu; Meyer, Clifford A; Nanjangud, Gouri J; Inamoto, Teruo; Lee, Gwo-Shu Mary; Mucci, Lorelei A; Azuma, Haruhito; Sweeney, Christopher J; Kantoff, Philip W

    2018-06-04

    Epigenetic modifications control cancer development and clonal evolution in various cancer types. Here, we show that loss of the male-specific histone demethylase lysine-specific demethylase 5D (KDM5D) encoded on the Y chromosome epigenetically modifies histone methylation marks and alters gene expression, resulting in aggressive prostate cancer. Fluorescent in situ hybridization demonstrated that segmental or total deletion of the Y chromosome in prostate cancer cells is one of the causes of decreased KDM5D mRNA expression. The result of ChIP-sequencing analysis revealed that KDM5D preferably binds to promoter regions with coenrichment of the motifs of crucial transcription factors that regulate the cell cycle. Loss of KDM5D expression with dysregulated H3K4me3 transcriptional marks was associated with acceleration of the cell cycle and mitotic entry, leading to increased DNA-replication stress. Analysis of multiple clinical data sets reproducibly showed that loss of expression of KDM5D confers a poorer prognosis. Notably, we also found stress-induced DNA damage on the serine/threonine protein kinase ATR with loss of KDM5D. In KDM5D-deficient cells, blocking ATR activity with an ATR inhibitor enhanced DNA damage, which led to subsequent apoptosis. These data start to elucidate the biological characteristics resulting from loss of KDM5D and also provide clues for a potential novel therapeutic approach for this subset of aggressive prostate cancer.

  6. Estrogen-Related Receptors and the control of bone cell fate.

    PubMed

    Carnesecchi, Julie; Vanacker, Jean-Marc

    2016-09-05

    Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Absence of ERRα in Female Mice Confers Resistance to Bone Loss Induced by Age or Estrogen-Deficiency

    PubMed Central

    Rabier, Bénédicte; Monfoulet, Laurent; Dine, Julien; Macari, Claire; Espallergues, Julie; Horard, Béatrice; Giguère, Vincent; Cohen-Solal, Martine; Chassande, Olivier; Vanacker, Jean-Marc

    2009-01-01

    Background ERRα is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRα is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRα may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. Methods/Principal Findings In this report, we have determined the in vivo effect of ERRα on bone, using knock-out mice. Relative to wild type animals, female ERRαKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRαKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRαKO bone marrow, we also show that ERRα acts as an inhibitor of osteoblast differentiation. Conclusion/Significance Down-regulating ERRα could thus be beneficial against osteoporosis. PMID:19936213

  8. Cyclodextrins and Iatrogenic Hearing Loss: New Drugs with Significant Risk

    PubMed Central

    Crumling, Mark A.; King, Kelly A.; Duncan, R. Keith

    2017-01-01

    Cyclodextrins are a family of cyclic oligosaccharides with widespread usage in medicine, industry and basic sciences owing to their ability to solubilize and stabilize guest compounds. In medicine, cyclodextrins primarily act as a complexing vehicle and consequently serve as powerful drug delivery agents. Recently, uncomplexed cyclodextrins have emerged as potent therapeutic compounds in their own right, based on their ability to sequester and mobilize cellular lipids. In particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD) has garnered attention because of its cholesterol chelating properties, which appear to treat a rare neurodegenerative disorder and to promote atherosclerosis regression related to stroke and heart disease. Despite the potential health benefits, use of HPβCD has been linked to significant hearing loss in several species, including humans. Evidence in mice supports a rapid onset of hearing loss that is dose-dependent. Ototoxicity can occur following central or peripheral drug delivery, with either route resulting in the preferential loss of cochlear outer hair cells (OHCs) within hours of dosing. Inner hair cells and spiral ganglion cells are spared at doses that cause ~85% OHC loss; additionally, no other major organ systems appear adversely affected. Evidence from a first-to-human phase 1 clinical trial mirrors animal studies to a large extent, indicating rapid onset and involvement of OHCs. All patients in the trial experienced some permanent hearing loss, although a temporary loss of function can be observed acutely following drug delivery. The long-term impact of HPβCD use as a maintenance drug, and the mechanism(s) of ototoxicity, are unknown. β-cyclodextrins preferentially target membrane cholesterol, but other lipid species and proteins may be directly or indirectly involved. Moreover, as cholesterol is ubiquitous in cell membranes, it remains unclear why OHCs are preferentially susceptible to HPβCD. It is possible that HPβCD acts upon several targets—for example, ion channels, tight junctions (TJ), membrane integrity, and bioenergetics—that collectively increase the sensitivity of OHCs over other cell types. PMID:29163061

  9. Dynamics of β-cell turnover: evidence for β-cell turnover and regeneration from sources of β-cells other than β-cell replication in the HIP rat

    PubMed Central

    Manesso, Erica; Toffolo, Gianna M.; Saisho, Yoshifumi; Butler, Alexandra E.; Matveyenko, Aleksey V.; Cobelli, Claudio; Butler, Peter C.

    2009-01-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in β-cells, increased β-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify β-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether β-cell formation is derived exclusively from β-cell replication, or whether other sources of β-cells (OSB) are present, and 2) to what extent, if any, there is attempted β-cell regeneration in the HIP rat and if this is through β-cell replication or OSB. We conclude that formation and maintenance of adult β-cells depends largely (∼80%) on formation of β-cells independent from β-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted β-cell regeneration that substantially slows loss of β-cell mass. PMID:19470833

  10. Dynamics of beta-cell turnover: evidence for beta-cell turnover and regeneration from sources of beta-cells other than beta-cell replication in the HIP rat.

    PubMed

    Manesso, Erica; Toffolo, Gianna M; Saisho, Yoshifumi; Butler, Alexandra E; Matveyenko, Aleksey V; Cobelli, Claudio; Butler, Peter C

    2009-08-01

    Type 2 diabetes is characterized by hyperglycemia, a deficit in beta-cells, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). These characteristics are recapitulated in the human IAPP transgenic (HIP) rat. We developed a mathematical model to quantify beta-cell turnover and applied it to nondiabetic wild type (WT) vs. HIP rats from age 2 days to 10 mo to establish 1) whether beta-cell formation is derived exclusively from beta-cell replication, or whether other sources of beta-cells (OSB) are present, and 2) to what extent, if any, there is attempted beta-cell regeneration in the HIP rat and if this is through beta-cell replication or OSB. We conclude that formation and maintenance of adult beta-cells depends largely ( approximately 80%) on formation of beta-cells independent from beta-cell duplication. Moreover, this source adaptively increases in the HIP rat, implying attempted beta-cell regeneration that substantially slows loss of beta-cell mass.

  11. New hybrid frequency reuse method for packet loss minimization in LTE network.

    PubMed

    Ali, Nora A; El-Dakroury, Mohamed A; El-Soudani, Magdi; ElSayed, Hany M; Daoud, Ramez M; Amer, Hassanein H

    2015-11-01

    This paper investigates the problem of inter-cell interference (ICI) in Long Term Evolution (LTE) mobile systems, which is one of the main problems that causes loss of packets between the base station and the mobile station. Recently, different frequency reuse methods, such as soft and fractional frequency reuse, have been introduced in order to mitigate this type of interference. In this paper, minimizing the packet loss between the base station and the mobile station is the main concern. Soft Frequency Reuse (SFR), which is the most popular frequency reuse method, is examined and the amount of packet loss is measured. In order to reduce packet loss, a new hybrid frequency reuse method is implemented. In this method, each cell occupies the same bandwidth of the SFR, but the total system bandwidth is greater than in SFR. This will provide the new method with a lot of new sub-carriers from the neighboring cells to reduce the ICI which represents a big problem in many applications and causes a lot of packets loss. It is found that the new hybrid frequency reuse method has noticeable improvement in the amount of packet loss compared to SFR method in the different frequency bands. Traffic congestion management in Intelligent Transportation system (ITS) is one of the important applications that is affected by the packet loss due to the large amount of traffic that is exchanged between the base station and the mobile node. Therefore, it is used as a studied application for the proposed frequency reuse method and the improvement in the amount of packet loss reached 49.4% in some frequency bands using the new hybrid frequency reuse method.

  12. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells.

    PubMed

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-04-01

    Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors due to their conversion into postmitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SCs), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiologic ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Transgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ER(T2)). Notch1 signaling was found to be activated in intestinal SCs. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into postmitotic goblet cells, concomitant with loss of SCs (Olfm4(+), Lgr5(+), and Ascl2(+)). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Notch signaling in SCs and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SCs. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Dll1- and Dll4-mediated Notch signaling is required for homeostasis of intestinal stem cells

    PubMed Central

    Pellegrinet, Luca; Rodilla, Veronica; Liu, Zhenyi; Chen, Shuang; Koch, Ute; Espinosa, Lluis; Kaestner, Klaus H.; Kopan, Raphael; Lewis, Julian; Radtke, Freddy

    2011-01-01

    Background & Aims Ablation of Notch signaling within the intestinal epithelium results in loss of proliferating crypt progenitors, due to their conversion into post-mitotic secretory cells. We aimed to confirm that Notch was active in stem cells (SC), investigate consequences of loss of Notch signaling within the intestinal SC compartment, and identify the physiological ligands of Notch in mouse intestine. Furthermore, we investigated whether the induction of goblet cell differentiation that results from loss of Notch requires the transcription factor Krüppel-like factor 4 (Klf4). Methods Trasgenic mice that carried a reporter of Notch1 activation were used for lineage tracing experiments. The in vivo functions of the Notch ligands Jagged1 (Jag1), Delta-like1 (Dll1), Delta-like4 (Dll4), and the transcription factor Klf4 were assessed in mice with inducible, gut-specific gene targeting (Vil-Cre-ERT2). Results Notch1 signaling was found to be activated in intestinal SC. Although deletion of Jag1 or Dll4 did not perturb the intestinal epithelium, inactivation of Dll1 resulted in a moderate increase in number of goblet cells without noticeable effects of progenitor proliferation. However, simultaneous inactivation of Dll1 and Dll4 resulted in the complete conversion of proliferating progenitors into post-mitotic goblet cells, concomitant with loss of SC (Olfm4+, Lgr5+ and Ascl2+). Klf4 inactivation did not interfere with goblet cell differentiation in adult wild-type or in Notch pathway-deficient gut. Conclusions Notch signaling in SC and progenitors is activated by Dll1 and Dll4 ligands and is required for maintenance of intestinal progenitor and SC. Klf4 is dispensable for goblet cell differentiation in intestines of adult Notch-deficient mice. PMID:21238454

  14. Final Report for DE-FG02-04ER15626: P-type ATPases in Plants – Role of Lipid Flippases in Membrane Biogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jeffrey F.

    The long-range goal of the research is to understand the structure and biological functions of different P-type ATPases (ion pumps) in plant cells, and to use that knowledge to enhance the production of bioenergy from plants, or plant-research inspired technologies. Ptype ATPases include ion pumps that specifically transport H +, Ca 2+, Zn 2+, Cu 2+, K +, or Na +, as well as at least one unusual subfamily that appears to function as lipid flippases, flipping specific lipids from one side of a membrane bilayer to the other. As a group, P-type ATPases are thought to consume more thanmore » 1/3 of the cellular ATP in typical eukaryotic cells. Recent research in the Harper lab focused on understanding the biochemical and biological functions of P-type ATPases that flip lipids. These flippases belong to the P4 subfamily of P-type ATPases. The activity of lipid flippases is thought to induce membrane curvature and/or create an asymmetry in which certain lipid head groups are preferential exposed to one surface or the other. In Arabidopsis thaliana there are 12 members of this family referred to as Aminophospholipid ATPase (ALA) 1 to ALA12. Using genetic knockouts, the Harper lab has established that this unusual subfamily of P-type ATPases are critical for plants to cope with even modest changes in temperature (e.g., down to 15°C, or up to 30°C). In addition, members of one subclade are critical for cell expansion, and loss of function mutants result in severe dwarfism. Other members of this same sub-clade are critical for pollen tube growth, and loss of function mutants are sterile under conditions of hot days and cold nights. While the cellular processes that depend on lipid flippases are still unclear, the genetic analysis of loss of function mutants clearly show they are of fundamental importance to plant growth and response to the environment.« less

  15. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  16. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE PAGES

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang; ...

    2017-03-06

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  17. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    PubMed

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and RANKL production in T cells, thus enhancing osteoclastogenesis and accelerating bone loss. This study clarifies a novel mechanism regulating estrogen deficiency-induced bone loss. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  18. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo.

    PubMed

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-03-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues.

  19. Effect of fatigue/ageing on the lithium distribution in cylinder-type Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Mühlbauer, M. J.; Dolotko, O.; Hofmann, M.; Ehrenberg, H.; Senyshyn, A.

    2017-04-01

    The lithium concentration in the graphite anode of fatigued (cycled 1000 times at 25 °C) Li-ion cell of 18650-type has been probed non-destructively by spatially resolved neutron diffraction. The amount x of Li in LixC6 has been determined in a central plane of a cylinder-type Li-ion cell. A radial mesh with a gauge volume of 2 × 2 × 20 mm3 was used. Besides the evidently lower lithiation grade, caused by a lack of free movable lithium and a loss of electrolyte, a development of fatigue-driven spatial lithium inhomogeneities has been observed in radial direction. Observed changes have been discussed in light of their correlations to an increase of the internal cell resistance and to a change of the electrolyte concentration.

  20. Persistent hyperplastic primary vitreous due to somatic mosaic deletion of the arf tumor suppressor.

    PubMed

    Thornton, J Derek; Swanson, Doug J; Mary, Michelle N; Pei, Deqing; Martin, Amy C; Pounds, Stanley; Goldowitz, Dan; Skapek, Stephen X

    2007-02-01

    Mice lacking the Arf tumor-suppressor gene develop eye disease reminiscent of persistent hyperplastic primary vitreous (PHPV). The current work explores mechanisms by which Arf promotes eye development, and its absence causes a PHPV-like disease. Chimeric mice were made by fusing wild-type and Arf(-/-) morulae. In these experiments, wild-type cells are identified by transgenic expression of GFP from a constitutive promoter. PCR-based genotyping and quantitative analyses after immunofluorescence staining of tissue and cultured cells documented the relative contribution of wild-type and Arf(-/-) cells to different tissues in the eye and different types of cells in the vitreous. The contributions of the Arf(-/-) lineage to the tail DNA, cornea, retina, and retina pigment epithelium (RPE) correlated with each other in wild-type<-->Arf(-/-) chimeric mice. Newborn chimeras had primary vitreous hyperplasia, evident as a retrolental mass. The mass was usually present when the proportion of Arf(-/-) cells was relatively high and absent when the Arf(-/-) proportion was low. The Pdgfrbeta- and Sma-expressing cells within the mass arose predominantly from the Arf(-/-) population. Ectopic Arf expression induced smooth muscle proteins in cultured pericyte-like cells, and Arf and Sma expression overlapped in hyaloid vessels. In the mouse model, loss of Arf in only a subset of cells causes a PHPV-like disease. The data indicate that both cell autonomous and non-cell autonomous effects of Arf may contribute to its role in vitreous development.

  1. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1.

    PubMed

    Ramberger, Melanie; Högl, Birgit; Stefani, Ambra; Mitterling, Thomas; Reindl, Markus; Lutterotti, Andreas

    2017-03-01

    Narcolepsy type 1 is accompanied by a selective loss of orexin/hypocretin (hcrt) neurons in the lateral hypothalamus caused by yet unknown mechanisms. Epidemiologic and genetic associations strongly suggest an immune-mediated pathogenesis of the disease. We compared specific T-cell reactivity to orexin/hcrt peptides in peripheral blood mononuclear cells of narcolepsy type 1 patients to healthy controls by a carboxyfluorescein succinimidyl ester proliferation assay. Orexin/hcrt-specific T-cell reactivity was also determined by cytokine (interferon gamma and granulocyte-macrophage colony-stimulating factor) analysis. Individuals were considered as responders if the cell division index of CD3+CD4+ T cells and both stimulation indices of cytokine secretion exceeded the cutoff 3. Additionally, T-cell reactivity to orexin/hcrt had to be confirmed by showing reactivity to single peptides present in different peptide pools. Using these criteria, 3/15 patients (20%) and 0/13 controls (0%) showed orexin/hcrt-specific CD4+ T-cell proliferation (p = .2262). The heterogeneous reactivity pattern did not allow the identification of a preferential target epitope. A significant role of orexin/hcrt-specific T cells in narcolepsy type 1 patients could not be confirmed in this study. Further studies are needed to assess the exact role of CD4+ T cells and possible target antigens in narcolepsy type 1 patients. © Sleep Research Society 2016. Published by Oxford University Press [on behalf of the Sleep Research Society].

  2. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes

    NASA Astrophysics Data System (ADS)

    Stamper, I. J.; Jackson, Elais; Wang, Xujing

    2014-01-01

    In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.

  3. Adenovirus Vectors Target Several Cell Subtypes of Mammalian Inner Ear In Vivo

    PubMed Central

    Li, Wenyan; Shen, Jun

    2016-01-01

    Mammalian inner ear harbors diverse cell types that are essential for hearing and balance. Adenovirus is one of the major vectors to deliver genes into the inner ear for functional studies and hair cell regeneration. To identify adenovirus vectors that target specific cell subtypes in the inner ear, we studied three adenovirus vectors, carrying a reporter gene encoding green fluorescent protein (GFP) from two vendors or with a genome editing gene Cre recombinase (Cre), by injection into postnatal days 0 (P0) and 4 (P4) mouse cochlea through scala media by cochleostomy in vivo. We found three adenovirus vectors transduced mouse inner ear cells with different specificities and expression levels, depending on the type of adenoviral vectors and the age of mice. The most frequently targeted region was the cochlear sensory epithelium, including auditory hair cells and supporting cells. Adenovirus with GFP transduced utricular supporting cells as well. This study shows that adenovirus vectors are capable of efficiently and specifically transducing different cell types in the mammalian inner ear and provides useful tools to study inner ear gene function and to evaluate gene therapy to treat hearing loss and vestibular dysfunction. PMID:28116172

  4. Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakane, Akihiro; Tamakoshi, Masato; Fujimoto, Shohei

    2016-08-14

    In developing photovoltaic devices with high efficiencies, quantitative determination of the carrier loss is crucial. In conventional solar-cell characterization techniques, however, photocurrent reduction originating from parasitic light absorption and carrier recombination within the light absorber cannot be assessed easily. Here, we develop a general analysis scheme in which the optical and recombination losses in submicron-textured solar cells are evaluated systematically from external quantum efficiency (EQE) spectra. In this method, the optical absorption in solar cells is first deduced by imposing the anti-reflection condition in the calculation of the absorptance spectrum, and the carrier extraction from the light absorber layer ismore » then modeled by considering a carrier collection length from the absorber interface. Our analysis method is appropriate for a wide variety of photovoltaic devices, including kesterite solar cells [Cu{sub 2}ZnSnSe{sub 4}, Cu{sub 2}ZnSnS{sub 4}, and Cu{sub 2}ZnSn(S,Se){sub 4}], zincblende CdTe solar cells, and hybrid perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells, and provides excellent fitting to numerous EQE spectra reported earlier. Based on the results obtained from our EQE analyses, we discuss the effects of parasitic absorption and carrier recombination in different types of solar cells.« less

  5. Transplantation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells or Their Conditioned Medium Prevents Bone Loss in Ovariectomized Nude Mice

    PubMed Central

    An, Jee Hyun; Park, Hyojung; Song, Jung Ah; Ki, Kyung Ho; Yang, Jae-Yeon; Choi, Hyung Jin; Cho, Sun Wook; Kim, Sang Wan; Kim, Seong Yeon; Yoo, Jeong Joon; Baek, Wook-Young; Kim, Jung-Eun; Choi, Soo Jin; Oh, Wonil

    2013-01-01

    Umbilical cord blood (UCB) has recently been recognized as a new source of mesenchymal stem cells (MSCs) for use in stem cell therapy. We studied the effects of systemic injection of human UCB-MSCs and their conditioned medium (CM) on ovariectomy (OVX)-induced bone loss in nude mice. Ten-week-old female nude mice were divided into six groups: Sham-operated mice treated with vehicle (Sham-Vehicle), OVX mice subjected to UCB-MSCs (OVX-MSC), or human dermal fibroblast (OVX-DFB) transplantation, OVX mice treated with UCB-MSC CM (OVX-CM), zoledronate (OVX-Zol), or vehicle (OVX-Vehicle). Although the OVX-Vehicle group exhibited significantly less bone mineral density (BMD) gain compared with the Sham-Vehicle group, transplantation of hUCB-MSCs (OVX-MSC group) has effectively prevented OVX-induced bone mass attenuation. Notably, the OVX-CM group also showed BMD preservation comparable to the OVX-MSC group. In addition, microcomputed tomography analysis demonstrated improved trabecular parameters in both the OVX-MSC and OVX-CM groups compared to the OVX-Vehicle or OVX-DFB group. Histomorphometric analysis showed increased bone formation parameters, accompanied by increased serum procollagen type-I N-telopeptide levels in OVX-MSC and OVX-CM mice. However, cell-trafficking analysis failed to demonstrate engraftment of MSCs in bone tissue 48 h after cell infusion. In vitro, hUCB-MSC CM increased alkaline phosphatase (ALP) activity in human bone marrow-derived MSCs and mRNA expression of collagen type 1, Runx2, osterix, and ALP in C3H10T1/2 cells. Furthermore, hUCB-MSC CM significantly increased survival of osteocyte-like MLO-Y4 cells, while it inhibited osteoclastic differentiation. To summarize, transplantation of hUCB-MSCs could effectively prevent OVX-mediated bone loss in nude mice, which appears to be mediated by a paracrine mechanism rather than direct engraftment of the MSCs. PMID:23215868

  6. Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils.

    PubMed

    Wicki, Simone; Gurzeler, Ursina; Wei-Lynn Wong, W; Jost, Philipp J; Bachmann, Daniel; Kaufmann, Thomas

    2016-10-13

    Neutrophils are essential players in the first-line defense against invading bacteria and fungi. Besides its antiapoptotic role, the inhibitor of apoptosis protein (IAP) family member X-linked IAP (XIAP) has been shown to regulate innate immune signaling. Whereas the role of XIAP in innate signaling pathways is derived mostly from work in macrophages and dendritic cells, it is not known if and how XIAP contributes to these pathways in neutrophils. Here we show that in response to bacterial lipopolysaccharides (LPS), mouse neutrophils secreted considerable amounts of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β) and, in accordance with earlier reports, XIAP prevented LPS-induced hypersecretion of IL-1β also in neutrophils. Interestingly, and in contrast to macrophages or dendritic cells, Xiap-deficient neutrophils were insensitive to LPS-induced cell death. However, combined loss of function of XIAP and cIAP1/-2 resulted in rapid neutrophil cell death in response to LPS. This cell death occurred by classical apoptosis initiated by a TNFα- and RIPK1-dependent, but RIPK3- and MLKL-independent, pathway. Inhibition of caspases under the same experimental conditions caused a shift to RIPK3-dependent cell death. Accordingly, we demonstrate that treatment of neutrophils with high concentrations of TNFα induced apoptotic cell death, which was fully blockable by pancaspase inhibition in wild-type neutrophils. However, in the absence of XIAP, caspase inhibition resulted in a shift from apoptosis to RIPK3- and MLKL-dependent necroptosis. Loss of XIAP further sensitized granulocyte-macrophage colony-stimulating factor (GM-CSF)-primed neutrophils to TNFα-induced killing. These data suggest that XIAP antagonizes the switch from TNFα-induced apoptosis to necroptosis in mouse neutrophils. Moreover, our data may implicate an important role of neutrophils in the development of hyperinflammation and disease progression of patients diagnosed with X-linked lymphoproliferative syndrome type 2, which are deficient in XIAP.

  7. Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition

    PubMed Central

    Hao, Zhangying; Avci, Utku; Tan, Li; Zhu, Xiang; Glushka, John; Pattathil, Sivakumar; Eberhard, Stefan; Sholes, Tipton; Rothstein, Grace E.; Lukowitz, Wolfgang; Orlando, Ron; Hahn, Michael G.; Mohnen, Debra

    2014-01-01

    GAlactUronosylTransferase12 (GAUT12)/IRregular Xylem8 (IRX8) is a putative glycosyltransferase involved in Arabidopsis secondary cell wall biosynthesis. Previous work showed that Arabidopsis irregular xylem8 (irx8) mutants have collapsed xylem due to a reduction in xylan and a lesser reduction in a subfraction of homogalacturonan (HG). We now show that male sterility in the irx8 mutant is due to indehiscent anthers caused by reduced deposition of xylan and lignin in the endothecium cell layer. The reduced lignin content was demonstrated by histochemical lignin staining and pyrolysis Molecular Beam Mass Spectrometry (pyMBMS) and is associated with reduced lignin biosynthesis in irx8 stems. Examination of sequential chemical extracts of stem walls using 2D 13C-1H Heteronuclear Single-Quantum Correlation (HSQC) NMR spectroscopy and antibody-based glycome profiling revealed a reduction in G lignin in the 1 M KOH extract and a concomitant loss of xylan, arabinogalactan and pectin epitopes in the ammonium oxalate, sodium carbonate, and 1 M KOH extracts from the irx8 walls compared with wild-type walls. Immunolabeling of stem sections using the monoclonal antibody CCRC-M138 reactive against an unsubstituted xylopentaose epitope revealed a bi-lamellate pattern in wild-type fiber cells and a collapsed bi-layer in irx8 cells, suggesting that at least in fiber cells, GAUT12 participates in the synthesis of a specific layer or type of xylan or helps to provide an architecture framework required for the native xylan deposition pattern. The results support the hypothesis that GAUT12 functions in the synthesis of a structure required for xylan and lignin deposition during secondary cell wall formation. PMID:25120548

  8. Role of Fas and Treg Cells in Fracture Healing as Characterized in the Fas-Deficient (lpr) Mouse Model of Lupus†

    PubMed Central

    Al-Sebaei, Maisa O; Daukss, Dana M; Belkina, Anna C; Kakar, Sanjeev; Wigner, Nathan A; Cusher, Daniel; Graves, Dana; Einhorn, Thomas; Morgan, Elise; Gerstenfeld, Louis C

    2014-01-01

    Previous studies showed that loss of tumor necrosis factor α (TNFα) signaling delayed fracture healing by delaying chondrocyte apoptosis and cartilage resorption. Mechanistic studies showed that TNFα induced Fas expression within chondrocytes; however, the degree to which chondrocyte apoptosis is mediated by TNFα alone or dependent on the induction of Fas is unclear. This question was addressed by assessing fracture healing in Fas-deficient B6.MRL/Faslpr/J mice. Loss of Fas delayed cartilage resorption but also lowered bone fraction in the calluses. The reduced bone fraction was related to elevated rates of coupled bone turnover in the B6.MRL/Faslpr/J calluses, as evidenced by higher osteoclast numbers and increased osteogenesis. Analysis of the apoptotic marker caspase 3 showed fewer positive chondrocytes and osteoclasts in calluses of B6.MRL/Faslpr/J mice. To determine if an active autoimmune state contributed to increased bone turnover, the levels of activated T cells and Treg cells were assessed. B6.MRL/Faslpr/J mice had elevated Treg cells in both spleens and bones of B6.MRL/Faslpr/J but decreased percentage of activated T cells in bone tissues. Fracture led to ∼30% to 60% systemic increase in Treg cells in both wild-type and B6.MRL/Faslpr/J bone tissues during the period of cartilage formation and resorption but either decreased (wild type) or left unchanged (B6.MRL/Faslpr/J) the numbers of activated T cells in bone. These results show that an active autoimmune state is inhibited during the period of cartilage resorption and suggest that iTreg cells play a functional role in this process. These data show that loss of Fas activity specifically in chondrocytes prolonged the life span of chondrocytes and that Fas synergized with TNFα signaling to mediate chondrocyte apoptosis. Conversely, loss of Fas systemically led to increased osteoclast numbers during later periods of fracture healing and increased osteogenesis. These findings suggest that retention of viable chondrocytes locally inhibits osteoclast activity or matrix proteolysis during cartilage resorption. © 2014 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research. PMID:24677136

  9. Sourcing of an alternative pericyte-like cell type from peripheral blood in clinically relevant numbers for therapeutic angiogenic applications.

    PubMed

    Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael

    2015-03-01

    Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10-40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies.

  10. Sourcing of an Alternative Pericyte-Like Cell Type from Peripheral Blood in Clinically Relevant Numbers for Therapeutic Angiogenic Applications

    PubMed Central

    Blocki, Anna; Wang, Yingting; Koch, Maria; Goralczyk, Anna; Beyer, Sebastian; Agarwal, Nikita; Lee, Michelle; Moonshi, Shehzahdi; Dewavrin, Jean-Yves; Peh, Priscilla; Schwarz, Herbert; Bhakoo, Kishore; Raghunath, Michael

    2015-01-01

    Autologous cells hold great potential for personalized cell therapy, reducing immunological and risk of infections. However, low cell counts at harvest with subsequently long expansion times with associated cell function loss currently impede the advancement of autologous cell therapy approaches. Here, we aimed to source clinically relevant numbers of proangiogenic cells from an easy accessible cell source, namely peripheral blood. Using macromolecular crowding (MMC) as a biotechnological platform, we derived a novel cell type from peripheral blood that is generated within 5 days in large numbers (10–40 million cells per 100 ml of blood). This blood-derived angiogenic cell (BDAC) type is of monocytic origin, but exhibits pericyte markers PDGFR-β and NG2 and demonstrates strong angiogenic activity, hitherto ascribed only to MSC-like pericytes. Our findings suggest that BDACs represent an alternative pericyte-like cell population of hematopoietic origin that is involved in promoting early stages of microvasculature formation. As a proof of principle of BDAC efficacy in an ischemic disease model, BDAC injection rescued affected tissues in a murine hind limb ischemia model by accelerating and enhancing revascularization. Derived from a renewable tissue that is easy to collect, BDACs overcome current short-comings of autologous cell therapy, in particular for tissue repair strategies. PMID:25582709

  11. Generation of male differentiated germ cells from various types of stem cells.

    PubMed

    Hou, Jingmei; Yang, Shi; Yang, Hao; Liu, Yang; Liu, Yun; Hai, Yanan; Chen, Zheng; Guo, Ying; Gong, Yuehua; Gao, Wei-Qiang; Li, Zheng; He, Zuping

    2014-06-01

    Infertility is a major and largely incurable disease caused by disruption and loss of germ cells. It affects 10-15% of couples, and male factor accounts for half of the cases. To obtain human male germ cells 'especially functional spermatids' is essential for treating male infertility. Currently, much progress has been made on generating male germ cells, including spermatogonia, spermatocytes, and spermatids, from various types of stem cells. These germ cells can also be used in investigation of the pathology of male infertility. In this review, we focused on advances on obtaining male differentiated germ cells from different kinds of stem cells, with an emphasis on the embryonic stem (ES) cells, the induced pluripotent stem (iPS) cells, and spermatogonial stem cells (SSCs). We illustrated the generation of male differentiated germ cells from ES cells, iPS cells and SSCs, and we summarized the phenotype for these stem cells, spermatocytes and spermatids. Moreover, we address the differentiation potentials of ES cells, iPS cells and SSCs. We also highlight the advantages, disadvantages and concerns on derivation of the differentiated male germ cells from several types of stem cells. The ability of generating mature and functional male gametes from stem cells could enable us to understand the precise etiology of male infertility and offer an invaluable source of autologous male gametes for treating male infertility of azoospermia patients. © 2014 Society for Reproduction and Fertility.

  12. Hair loss and regeneration performed on animal models

    PubMed Central

    ORASAN, MEDA SANDRA; ROMAN, IULIA IOANA; CONEAC, ANDREI; MURESAN, ADRIANA; ORASAN, REMUS IOAN

    2016-01-01

    Research in the field of reversal hair loss remains a challenging subject. As Minoxidil 2% or 5% and Finasteride are so far the only FDA approved topical treatments for inducing hair regrowth, research is necessary in order to improve therapeutical approach in alopecia. In vitro studies have focused on cultures of a cell type - dermal papilla or organ culture of isolated cell follicles. In vivo research on this topic was performed on mice, rats, hamsters, rabbits, sheep and monkeys, taking into consideration the advantages and disadvantages of each animal model and the depilation options. Further studies are required not only to compare the efficiency of different therapies but more importantly to establish their long term safety. PMID:27547051

  13. Rapid Onset of Motor Deficits in a Mouse Model of Spinocerebellar Ataxia Type 6 Precedes Late Cerebellar Degeneration1,2,3

    PubMed Central

    Ljungberg, Lovisa; Cormier, Alexander; Quilez, Sabrina

    2015-01-01

    Abstract Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant cerebellar ataxia that has been associated with loss of cerebellar Purkinje cells. Disease onset is typically at midlife, although it can vary widely from late teens to old age in SCA6 patients. Our study focused on an SCA6 knock-in mouse model with a hyper-expanded (84X) CAG repeat expansion that displays midlife-onset motor deficits at ∼7 months old, reminiscent of midlife-onset symptoms in SCA6 patients, although a detailed phenotypic analysis of these mice has not yet been reported. Here, we characterize the onset of motor deficits in SCA684Q mice using a battery of behavioral assays to test for impairments in motor coordination, balance, and gait. We found that these mice performed normally on these assays up to and including at 6 months, but motor impairment was detected at 7 months with all motor coordination assays used, suggesting that motor deficits emerge rapidly during a narrow age window in SCA684Q mice. In contrast to what is seen in SCA6 patients, the decrease in motor coordination was observed without alterations in gait. No loss of cerebellar Purkinje cells or striatal neurons were observed at 7 months, the age at which motor deficits were first detected, but significant Purkinje cell loss was observed in 2-year-old SCA684Q mice, arguing that Purkinje cell death does not significantly contribute to the early stages of SCA6. PMID:26730403

  14. How to Get Hearing Aids

    MedlinePlus

    ... batteries and hearing aids away from children and pets. We recommend visiting a hearing healthcare professional on a regular basis to have your hearing aids inspected. More in Hearing Aids Hearing Loss Types of Hearing Aids Benefits and Safety Issues Hearing Aids and Cell Phones ...

  15. Lack of NF1 gene expression in a sporadic schwannoma from a patient without neurofibromatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, K.K.; Dowton, B.; Silow-Santiago, I.

    The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, neurofibromin, which is expressed at high levels in Schwann cells and other adult tissues. Loss of NF1 gene expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 and its loss is associated with increased proliferation of these cells. We examined one spinal schwannoma from a patient without clinical features of neurofibromatosis type 1 or 2. The tumor was a typical schwannoma confirmed by standard neuropathologic criteria and expressed S100 by immunocytochemistry. NF1 gene expression in this tumor was examined by in situ hybridization using anmore » NF1-specific riboprobe, Northern blot analysis and reverse-transcribed (RT) PCR. Little or no expression of NF1 RNA could be detected using these methods whereas abundant expression of S100, cyclophilin and beta-action RNA was found in the tumor. Fibroblast and Schwann cells were then individually cultured from this schwannoma and the RNA extracted for Northern blot and RT-PCR analysis. In these cultured Schwann cells both from early and late passages, abundant expression of NF1 RNA could be detected. It is unlikely that our culture technique preferentially expanded {open_quotes}normal{close_quotes} Schwann cells, since NF1 acts as a tumor suppressor gene and its presence would not confer any growth advantage over the tumor-derived, neurofibromin-negative Schwann cells which presumably have an increased proliferation rate. Similarly, the conditions used to expand these Schwann cells do not result in increased NF1 gene expression as shown in previous studies. These results suggest that, in some tumors, expression of the NF1 gene can be downregulated by factors produced within the tumor and that this type of tumor suppressor gene downregulation may represent another mechanism other than mutation for turning off the expression of these growth-suppressing genes and allowing for cell proliferation in tumors.« less

  16. Method of making quasi-grain boundary-free polycrystalline solar cell structure and solar cell structure obtained thereby

    DOEpatents

    Gonzalez, Franklin N.; Neugroschel, Arnost

    1984-02-14

    A new solar cell structure is provided which will increase the efficiency of polycrystalline solar cells by suppressing or completely eliminating the recombination losses due to the presence of grain boundaries. This is achieved by avoiding the formation of the p-n junction (or other types of junctions) in the grain boundaries and by eliminating the grain boundaries from the active area of the cell. This basic concept can be applied to any polycrystalline material; however, it will be most beneficial for cost-effective materials having small grains, including thin film materials.

  17. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos

    PubMed Central

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-01-01

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei. PMID:28038458

  18. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos.

    PubMed

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-02-14

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.

  19. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  20. Type I interferon promotes alveolar epithelial type II cell survival during pulmonary Streptococcus pneumoniae infection and sterile lung injury in mice.

    PubMed

    Maier, Barbara B; Hladik, Anastasiya; Lakovits, Karin; Korosec, Ana; Martins, Rui; Kral, Julia B; Mesteri, Ildiko; Strobl, Birgit; Müller, Mathias; Kalinke, Ulrich; Merad, Miriam; Knapp, Sylvia

    2016-09-01

    Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  2. Genetic Ablation of Parietal Cells in Transgenic Mice: A New Model for Analyzing Cell Lineage Relationships in the Gastric Mucosa

    NASA Astrophysics Data System (ADS)

    Canfield, Victor; West, A. Brian; Goldenring, James R.; Levenson, Robert

    1996-03-01

    The gastric mucosa of mammalian stomach contains several differentiated cell types specialized for the secretion of acid, digestive enzymes, mucus, and hormones. Understanding whether each of these cell lineages is derived from a common stem cell has been a challenging problem. We have used a genetic approach to analyze the ontogeny of progenitor cells within mouse stomach. Herpes simplex virus 1 thymidine kinase was targeted to parietal cells within the gastric mucosa of transgenic mice, and parietal cells were ablated by treatment of animals with the antiherpetic drug ganciclovir. Ganciclovir treatment produced complete ablation of parietal cells, dissolution of gastric glands, and loss of chief and mucus-producing cells. Termination of drug treatment led to the reemergence of all major gastric epithelial cell types and restoration of glandular architecture. Our results imply the existence of a pluripotent stem cell for the gastric mucosa. Parietal cell ablation should provide a model for analyzing cell lineage relationships within the stomach as well as mechanisms underlying gastric injury and repair.

  3. Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry.

    PubMed

    Jan, Taha A; Chai, Renjie; Sayyid, Zahra N; Cheng, Alan G

    2011-12-23

    Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.

  4. The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses.

    PubMed

    Azouz, Nurit P; Ynga-Durand, Mario A; Caldwell, Julie M; Jain, Ayushi; Rochman, Mark; Fischesser, Demetria M; Ray, Leanne M; Bedard, Mary C; Mingler, Melissa K; Forney, Carmy; Eilerman, Matthew; Kuhl, Jonathan T; He, Hua; Biagini Myers, Jocelyn M; Mukkada, Vincent A; Putnam, Philip E; Khurana Hershey, Gurjit K; Kottyan, Leah C; Wen, Ting; Martin, Lisa J; Rothenberg, Marc E

    2018-06-06

    Loss of barrier integrity has an important role in eliciting type 2 immune responses, yet the molecular events that initiate and connect this with allergic inflammation remain unclear. We reveal an endogenous, homeostatic mechanism that controls barrier function and inflammatory responses in esophageal allergic inflammation. We show that a serine protease inhibitor, SPINK7 (serine peptidase inhibitor, kazal type 7), is part of the differentiation program of human esophageal epithelium and that SPINK7 depletion occurs in a human allergic, esophageal condition termed eosinophilic esophagitis. Experimental manipulation strategies reducing SPINK7 in an esophageal epithelial progenitor cell line and primary esophageal epithelial cells were sufficient to induce barrier dysfunction and transcriptional changes characterized by loss of cellular differentiation and altered gene expression known to stimulate allergic responses (for example, FLG and SPINK5 ). Epithelial silencing of SPINK7 promoted production of proinflammatory cytokines including thymic stromal lymphopoietin (TSLP). Loss of SPINK7 increased the activity of urokinase plasminogen-type activator (uPA), which in turn had the capacity to promote uPA receptor-dependent eosinophil activation. Treatment of epithelial cells with the broad-spectrum antiserine protease, α1 antitrypsin, reversed the pathologic features associated with SPINK7 silencing. The relevance of this pathway in vivo was supported by finding genetic epistasis between variants in TSLP and the uPA-encoding gene, PLAU We propose that the endogenous balance between SPINK7 and its target proteases is a key checkpoint in regulating mucosal differentiation, barrier function, and inflammatory responses and that protein replacement with antiproteases may be therapeutic for select allergic diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. New clinicopathological associations and histoprognostic markers in ILAE types of hippocampal sclerosis.

    PubMed

    Calderon-Garcidueñas, Ana Laura; Mathon, Bertrand; Lévy, Pierre; Bertrand, Anne; Mokhtari, Karima; Samson, Véronique; Thuriès, Valérie; Lambrecq, Virginie; Nguyen, Vi-Huong Michel; Dupont, Sophie; Adam, Claude; Baulac, Michel; Clémenceau, Stéphane; Duyckaerts, Charles; Navarro, Vincent; Bielle, Franck

    2018-02-24

    Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is a heterogeneous syndrome. Surgery results in seizure freedom for most pharmacoresistant patients, but the epileptic and cognitive prognosis remains variable. The 2013 International League Against Epilepsy (ILAE) histopathological classification of hippocampal sclerosis (HS) has fostered research to understand MTLE-HS heterogeneity. We investigated the associations between histopathological features (ILAE types, hypertrophic CA4 neurons, granule cell layer alterations, CD34 immunopositive cells) and clinical features (presurgical history, postsurgical outcome) in a monocentric series of 247 MTLE-HS patients treated by surgery. NeuN, GFAP and CD34 immunostainings and a double independent pathological examination were performed. 186 samples were type 1, 47 type 2, 7 type 3 and 7 samples were gliosis only but no neuronal loss (noHS). In the type 1, hypertrophic CA4 neurons were associated with a worse postsurgical outcome and granule cell layer duplication was associated with generalized seizures and episodes of status epilepticus. In the type 2, granule cell layer duplication was associated with generalized seizures. CD34+ stellate cells were more frequent in the type 2, type 3 and in noHS. These cells had a Nestin and SOX2 positive, immature neural immunophenotype. Patients with nodules of CD34+ cells had more frequent dysmnesic auras. CD34+ stellate cells in scarce pattern were associated with higher ratio of normal MRI and of stereo-electroencephalographic studies. CD34+ cells were associated with a trend for a better postsurgical outcome. Among CD34+ cases, we proposed a new entity of BRAF V600E positive HS and we described three hippocampal multinodular and vacuolating neuronal tumors. To conclude, our data identified new clinicopathological associations with ILAE types. They showed the prognostic value of CA4 hypertrophic neurons. They highlighted CD34+ stellate cells and BRAF V600E as biomarkers to further decipher MTLE-HS heterogeneity. © 2018 International Society of Neuropathology.

  6. Cancer cachexia: understanding the molecular basis.

    PubMed

    Argilés, Josep M; Busquets, Sílvia; Stemmler, Britta; López-Soriano, Francisco J

    2014-11-01

    Cancer cachexia is a devastating, multifactorial and often irreversible syndrome that affects around 50-80% of cancer patients, depending on the tumour type, and that leads to substantial weight loss, primarily from loss of skeletal muscle and body fat. Since cachexia may account for up to 20% of cancer deaths, understanding the underlying molecular mechanisms is essential. The occurrence of cachexia in cancer patients is dependent on the patient response to tumour progression, including the activation of the inflammatory response and energetic inefficiency involving the mitochondria. Interestingly, crosstalk between different cell types ultimately seems to result in muscle wasting. Some of the recent progress in understanding the molecular mechanisms of cachexia may lead to new therapeutic approaches.

  7. Germline Mutation of INI1/SMARCB1 in Familial Schwannomatosis

    PubMed Central

    Hulsebos, Theo J. M.; Plomp, Astrid S.; Wolterman, Ruud A.; Robanus-Maandag, Els C.; Baas, Frank; Wesseling, Pieter

    2007-01-01

    Patients with schwannomatosis develop multiple schwannomas but no vestibular schwannomas diagnostic of neurofibromatosis type 2. We report an inactivating germline mutation in exon 1 of the tumor-suppressor gene INI1 in a father and daughter who both had schwannomatosis. Inactivation of the wild-type INI1 allele, by a second mutation in exon 5 or by clear loss, was found in two of four investigated schwannomas from these patients. All four schwannomas displayed complete loss of nuclear INI1 protein expression in part of the cells. Although the exact oncogenetic mechanism in these schwannomas remains to be elucidated, our findings suggest that INI1 is the predisposing gene in familial schwannomatosis. PMID:17357086

  8. Deletion of FoxO1, 3, and 4 in Osteoblast Progenitors Attenuates the Loss of Cancellous Bone Mass in a Mouse Model of Type 1 Diabetes

    PubMed Central

    Iyer, Srividhya; Han, Li; Ambrogini, Elena; Yavropoulou, Maria; Fowlkes, John; Manolagas, Stavros C; Almeida, Maria

    2017-01-01

    Type 1 diabetes is associated with osteopenia and increased fragility fractures, attributed to reduced bone formation. However, the molecular mechanisms mediating these effects remain unknown. Insulin promotes osteoblast formation and inhibits the activity of the FoxO transcription factors. FoxOs, on the other hand, inhibit osteoprogenitor proliferation and bone formation. Here, we investigated whether FoxOs play a role in the low bone mass associated with type 1 diabetes, using mice lacking FoxO1, 3, and 4 in osteoprogenitor cells (FoxO1,3,4ΔOsx1-Cre). Streptozotocin-induced diabetes caused a reduction in bone mass and strength in FoxO-intact mice. In contrast, cancellous bone was unaffected in diabetic FoxO1,3,4ΔOsx1-Cre mice. The low bone mass in the FoxO-intact diabetic mice was associated with decreased osteoblast number and bone formation, as well as decreased expression of the anti-osteoclastogenic cytokine osteoprotegerin (OPG) and increased osteoclast number. FoxO deficiency did not alter the effects of diabetes on bone formation; however, it did prevent the decrease in OPG and the increase in osteoclast number. Addition of high glucose to osteoblastic cell cultures decreased OPG mRNA, indicating that hyperglycemia in and of itself contributes to diabetic bone loss. Taken together, these results suggest that FoxOs exacerbate the loss of cancellous bone mass associated with type 1 diabetes and that inactivation of FoxOs might ameliorate the adverse effects of insulin deficiency. PMID:27491024

  9. Acute loss of TET function results in aggressive myeloid cancer in mice

    PubMed Central

    An, Jungeun; González-Avalos, Edahí; Chawla, Ashu; Jeong, Mira; López-Moyado, Isaac F.; Li, Wei; Goodell, Margaret A.; Chavez, Lukas; Ko, Myunggon; Rao, Anjana

    2015-01-01

    TET-family dioxygenases oxidize 5-methylcytosine (5mC) in DNA, and exert tumour suppressor activity in many types of cancers. Even in the absence of TET coding region mutations, TET loss-of-function is strongly associated with cancer. Here we show that acute elimination of TET function induces the rapid development of an aggressive, fully-penetrant and cell-autonomous myeloid leukaemia in mice, pointing to a causative role for TET loss-of-function in this myeloid malignancy. Phenotypic and transcriptional profiling shows aberrant differentiation of haematopoietic stem/progenitor cells, impaired erythroid and lymphoid differentiation and strong skewing to the myeloid lineage, with only a mild relation to changes in DNA modification. We also observe progressive accumulation of phospho-H2AX and strong impairment of DNA damage repair pathways, suggesting a key role for TET proteins in maintaining genome integrity. PMID:26607761

  10. The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons

    PubMed Central

    Lawal, Hakeem O.; Chang, Hui-Yun; Terrell, Ashley N.; Brooks, Elizabeth S.; Pulido, Dianne; Simon, Anne F.; Krantz, David E.

    2010-01-01

    Dopamine is cytotoxic and may play a role in the development of Parkinson’s disease. However, its interaction with environmental risk factors such as pesticides remains poorly understood. The vesicular monoamine transporter (VMAT) regulates intracellular dopamine content, and we have tested the neuroprotective effects of VMAT in vivo using the model organism Drosophila melanogaster. We find that Drosophila VMAT (dVMAT) mutants contain fewer dopaminergic neurons than wild type, consistent with a developmental effect, and that dopaminergic cell loss in the mutant is exacerbated by the pesticides rotenone and paraquat. Over-expression of DVMAT protein does not increase the survival of animals exposed to rotenone, but blocks the loss of dopaminergic neurons caused by this pesticide. These results are the first to demonstrate an interaction between a VMAT and pesticides in vivo, and provide an important model to investigate the mechanisms by which pesticides and cellular DA may interact to kill dopaminergic cells. PMID:20472063

  11. Enhanced Cell-Specific Ablation in Zebrafish Using a Triple Mutant of Escherichia Coli Nitroreductase

    PubMed Central

    Mathias, Jonathan R.; Zhang, Zhanying; Saxena, Meera T.

    2014-01-01

    Abstract Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology. PMID:24428354

  12. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase.

    PubMed

    Mathias, Jonathan R; Zhang, Zhanying; Saxena, Meera T; Mumm, Jeff S

    2014-04-01

    Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.

  13. Generation of diverse neural cell types through direct conversion

    PubMed Central

    Petersen, Gayle F; Strappe, Padraig M

    2016-01-01

    A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications. PMID:26981169

  14. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    NASA Technical Reports Server (NTRS)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  15. The clinicopathologic significance of the loss of BAF250a (ARID1A) expression in endometrial carcinoma.

    PubMed

    Zhang, Zheng-mao; Xiao, Shuang; Sun, Guang-yu; Liu, Yue-ping; Zhang, Feng-hua; Yang, Hong-fang; Li, Jia; Qiu, Hong-bing; Liu, Yang; Zhang, Chao; Kang, Shan; Shan, Bao-en

    2014-03-01

    AT-rich interactive domain 1A (ARID1A) is a tumor suppressor gene that encodes the BAF250a protein. Recent studies have shown the loss of ARID1A expression in several types of tumors. We aimed to investigate the clinical and pathologic role of BAF250a in endometrial carcinoma. We examined the expression of BAF250a and its correlation with the expression of p53, estrogen receptor, progesterone receptor, glucocorticoid receptor, hypoxiainduciblefactor-1α, and vascular endothelial growth factor in normal and various malignant endometrial tissues. The expression of BAF250 was significantly down-regulated in endometrial carcinoma when compared with normal endometrial tissues. The loss of BAF250a expression was found in 25% of endometrial carcinoma samples but not in normal endometrial tissues, complex endometrial hyperplasia, and atypical endometrial hyperplasia samples. Subtypes of endometrial carcinoma, especially uterine endometrioid carcinoma and uterine clear cell carcinoma, had higher frequency of loss of BAF250a expression. In addition, the expression of BAF250a was positively correlated with estrogen receptor and negatively correlated with p53 in poorly differentiated endometrial adenocarcinoma. Moreover, the expression of BAF250a was significantly associated with the differentiation status of endometrial carcinoma but not associated with clinical stage, the depth of myometrial invasion, lymph node metastasis, and overall survival of patients with endometrial carcinoma. Our data showed that loss of BAF250a is frequently found in high-grade endometrioid and clear cell carcinomas but not in other types of endometrial carcinoma. The loss of BAF250a expression does not have prognostic value for endometrial carcinoma.

  16. Leber hereditary optic neuropathy: current perspectives

    PubMed Central

    Meyerson, Cherise; Van Stavern, Greg; McClelland, Collin

    2015-01-01

    Leber hereditary optic neuropathy (LHON) is one of the most common inherited optic neuropathies causing bilateral central vision loss. The disorder results from point mutations in mitochondrial DNA and subsequent mitochondrial dysfunction. The primary cell type that is lost in LHON is the retinal ganglion cell, which is highly susceptible to disrupted ATP production and oxidative stress. Inheritance of LHON follows that of mitochondrial genetics, and it has a highly variable clinical phenotype, as other genetic and environmental factors also play a role. Although LHON usually presents with isolated vision loss, some patients suffer other neurological sequelae. For ill-defined reasons, male LHON mutation carriers are more affected than females. Most LHON patients remain legally blind, but a small proportion can experience spontaneous partial recovery, often within the first year of symptom onset. Unfortunately, at this time there are no established curative interventions and treatment is largely supportive. Patients should be offered low vision services and counseled on mitigating risk factors for additional vision loss, such as smoking and consuming alcohol. Encouraging treatments currently undergoing investigation includes ubiquinone analogs, such as idebenone, as well as gene therapy and stem cells to restore ATP synthesis and provide neuroprotection to surviving retinal ganglion cells. PMID:26170609

  17. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner.

    PubMed

    Liu, Rui; King, Ashleigh; Bouillet, Philippe; Tarlinton, David M; Strasser, Andreas; Heierhorst, Jörg

    2018-01-01

    The proapoptotic BH3-only protein BIM ( Bcl2l11 ) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre ) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre ) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim -deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro , conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc -driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions.

  18. Proapoptotic BIM Impacts B Lymphoid Homeostasis by Limiting the Survival of Mature B Cells in a Cell-Autonomous Manner

    PubMed Central

    Liu, Rui; King, Ashleigh; Bouillet, Philippe; Tarlinton, David M.; Strasser, Andreas; Heierhorst, Jörg

    2018-01-01

    The proapoptotic BH3-only protein BIM (Bcl2l11) plays key roles in the maintenance of multiple hematopoietic cell types. In mice, germline knockout or conditional pan-hematopoietic deletion of Bim results in marked splenomegaly and significantly increased numbers of B cells. However, it has remained unclear whether these abnormalities reflect the loss of cell-intrinsic functions of BIM within the B lymphoid lineage and, if so, which stages in the lifecycle of B cells are most impacted by the loss of BIM. Here, we show that B lymphoid-specific conditional deletion of Bim during early development (i.e., in pro-B cells using Mb1-Cre) or during the final differentiation steps (i.e., in transitional B cells using Cd23-Cre) led to a similar >2-fold expansion of the mature follicular B cell pool. Notably, while the expansion of mature B cells was quantitatively similar in conditional and germline Bim-deficient mice, the splenomegaly was significantly attenuated after B lymphoid-specific compared to global Bim deletion. In vitro, conditional loss of Bim substantially increased the survival of mature B cells that were refractory to activation by lipopolysaccharide. Finally, we also found that conditional deletion of just one Bim allele by Mb1-Cre dramatically accelerated the development of Myc-driven B cell lymphoma, in a manner that was comparable to the effect of germline Bim heterozygosity. These data indicate that, under physiological conditions, BIM regulates B cell homeostasis predominantly by limiting the life span of non-activated mature B cells, and that it can have additional effects on developing B cells under pathological conditions. PMID:29623080

  19. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    PubMed

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  20. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    PubMed Central

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  1. Dicer Cooperates with p53 to Suppress DNA Damage and Skin Carcinogenesis in Mice

    PubMed Central

    Lyle, Stephen; Hoover, Kathleen; Colpan, Cansu; Zhu, Zhiqing; Matijasevic, Zdenka; Jones, Stephen N.

    2014-01-01

    Dicer is required for the maturation of microRNA, and loss of Dicer and miRNA processing has been found to alter numerous biological events during embryogenesis, including the development of mammalian skin and hair. We have previously examined the role of miRNA biogenesis in mouse embryonic fibroblasts and found that deletion of Dicer induces cell senescence regulated, in part, by the p53 tumor suppressor. Although Dicer and miRNA molecules are thought to have either oncogenic or tumor suppressing roles in various types of cancer, a role for Dicer and miRNAs in skin carcinogenesis has not been established. Here we show that perinatal ablation of Dicer in the skin of mice leads to loss of fur in adult mice, increased epidermal cell proliferation and apoptosis, and the accumulation of widespread DNA damage in epidermal cells. Co-ablation of Dicer and p53 did not alter the timing or extent of fur loss, but greatly reduced survival of Dicer-skin ablated mice, as these mice developed multiple and highly aggressive skin carcinomas. Our results describe a new mouse model for spontaneous basal and squamous cell tumorigenesis. Furthermore, our findings reveal that loss of Dicer in the epidermis induces extensive DNA damage, activation of the DNA damage response and p53-dependent apoptosis, and that Dicer and p53 cooperate to suppress mammalian skin carcinogenesis. PMID:24979267

  2. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  3. Chromosomal Gains at 9q Characterize Enteropathy-Type T-Cell Lymphoma

    PubMed Central

    Zettl, Andreas; Ott, German; Makulik, Angela; Katzenberger, Tiemo; Starostik, Petr; Eichler, Thorsten; Puppe, Bernhard; Bentz, Martin; Müller-Hermelink, Hans Konrad; Chott, Andreas

    2002-01-01

    Genetic alterations in enteropathy-type T-cell lymphoma (ETL) are unknown so far. In this series, 38 cases of ETL were analyzed by comparative genomic hybridization (CGH). CGH revealed chromosomal imbalances in 87% of cases analyzed, with recurrent gains of genetic material involving chromosomes 9q (in 58% of cases), 7q (24%), 5q (18%), and 1q (16%). Recurrent losses of genetic material occurred on chromosomes 8p and 13q (24% each), and 9p (18%). In this first systematic genetic study on ETL, chromosomal gains on 9q (minimal overlapping region 9q33-q34) were found to be highly characteristic of ETL. Fluorescence in situ hybridization analysis on four cases of ETL, using a probe for 9q34, indicated frequent and multiple gains of chromosomal material at 9q34 (up to nine signals per case). Among 16 patients with ETL who survived initial disease presentation, patients with more than three chromosomal gains or losses (n = 11) followed a worse clinical course than those with three or less imbalances (n = 5). The observation of similar genetic alterations in ETL and in primary gastric (n = 4) and colonic (n = 1) T-cell lymphoma, not otherwise specified, is suggestive of a genetic relationship of gastrointestinal T-cell lymphomas at either localization. PMID:12414511

  4. Cell Injury and Repair Resulting from Sleep Loss and Sleep Recovery in Laboratory Rats

    PubMed Central

    Everson, Carol A.; Henchen, Christopher J.; Szabo, Aniko; Hogg, Neil

    2014-01-01

    Study Objectives: Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Design: Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Measurements and Results: Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Two days of recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. Conclusions: These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. Citation: Everson CA, Henchen CJ, Szabo A, Hogg N. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. SLEEP 2014;37(12):1929-1940. PMID:25325492

  5. Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice.

    PubMed

    Herold, M J; Stuchbery, R; Mérino, D; Willson, T; Strasser, A; Hildeman, D; Bouillet, P

    2014-10-09

    The pro-apoptotic BH3-only BCL-2 family member BIM is a critical determinant of hematopoietic cell development and homeostasis. It has been argued that the striking hematopoietic abnormalities of BIM-deficient mice (accumulation of lymphocytes and granulocytes) may be the result of the loss of the protein throughout the whole animal rather than a consequence intrinsic to the loss of BIM in hematopoietic cells. To address this issue and allow the deletion of BIM in specific cell types in future studies, we have developed a mouse strain with a conditional Bim allele as well as a new Cre transgenic strain, Vav-CreER, in which the tamoxifen-inducible CreER recombinase (fusion protein) is predominantly expressed in the hematopoietic system. We show that acute loss of BIM in the adult mouse rapidly results in the hematopoietic phenotypes previously observed in mice lacking BIM in all tissues. This includes changes in thymocyte subpopulations, increased white blood cell counts and resistance of lymphocytes to BIM-dependent apoptotic stimuli, such as cytokine deprivation. We have validated this novel conditional Bim knockout mouse model using established and newly developed CreER strains (Rosa26-CreER and Vav-CreER) and will make these exciting new tools for studies on cell death and cancer available.

  6. Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer.

    PubMed

    Ahn, Jinwoo; Kim, Kwang Hyun; Park, Sanghui; Ahn, Young-Ho; Kim, Ha Young; Yoon, Hana; Lee, Ji Hyun; Bang, Duhee; Lee, Dong Hyeon

    2016-09-27

    UTX is a histone demethylase gene located on the X chromosome and is a frequently mutated gene in urothelial bladder cancer (UBC). UTY is a paralog of UTX located on the Y chromosome. We performed target capture sequencing on 128 genes in 40 non-metastatic UBC patients. UTX was the most frequently mutated gene (30%, 12/40). Of the genetic alterations identified, 75% were truncating mutations. UTY copy number loss was detected in 8 male patients (22.8%, 8/35). Of the 9 male patients with UTX mutations, 6 also had copy number loss (66.7%). To evaluate the functional roles of UTX and UTY in tumor progression, we designed UTX and UTY single knockout and UTX-UTY double knockout experiments using a CRISPR/Cas9 lentiviral system, and compared the proliferative capacities of two UBC cell lines in vitro. Single UTX or UTY knockout increased cell proliferation as compared to UTX-UTY wild-type cells. UTX-UTY double knockout cells exhibited greater proliferation than single knockout cells. These findings suggest both UTX and UTY function as dose-dependent suppressors of UBC development. While UTX escapes X chromosome inactivation in females, UTY may function as a male homologue of UTX, which could compensate for dosage imbalances.

  7. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    PubMed Central

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  8. PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1.

    PubMed

    Gont, Alexander; Hanson, Jennifer E L; Lavictoire, Sylvie J; Parolin, Doris A; Daneshmand, Manijeh; Restall, Ian J; Soucie, Mathieu; Nicholas, Garth; Woulfe, John; Kassam, Amin; Da Silva, Vasco F; Lorimer, Ian A J

    2013-08-01

    Glioblastoma multiforme is an aggressive and incurable type of brain tumor. A subset of undifferentiated glioblastoma cells, known as glioblastoma tumor initiating cells (GTICs), has an essential role in the malignancy of this disease and also appears to mediate resistance to radiation therapy and chemotherapy. GTICs retain the ability to differentiate into cells with reduced malignant potential, but the signaling pathways controlling differentiation are not fully understood at this time. PTEN loss is a very common in glioblastoma multiforme and leads to aberrant activation of the phosphoinositide 3-kinase pathway. Increased signalling through this pathway leads to activation of multiple protein kinases, including atypical protein kinase C. In Drosophila, active atypical protein kinase C has been shown to promote the self-renewal of neuroblasts, inhibiting their differentiation along a neuronal lineage. This effect is mediated by atypical protein kinase c-mediated phosphorylation and inactivation of Lgl, a protein that was first characterized as a tumour suppressor in Drosophila. The effects of the atypical protein kinase C/Lgl pathway on the differentiation status of GTICs, and its potential link to PTEN loss, have not been assessed previously. Here we show that PTEN loss leads to the phosphorylation and inactivation of Lgl by atypical protein kinase C in glioblastoma cells. Re-expression of PTEN in GTICs promoted their differentiation along a neuronal lineage. This effect was also seen when atypical protein kinase C was knocked down using RNA interference, and when a non-phosphorylatable, constitutively active form of Lgl was expressed in GTICs. Thus PTEN loss, acting via atypical protein kinase C activation and Lgl inactivation, helps to maintain GTICs in an undifferentiated state.

  9. Rapid disinhibition by adjustment of PV intrinsic excitability during whisker map plasticity in mouse S1.

    PubMed

    Gainey, Melanie A; Aman, Joseph W; Feldman, Daniel E

    2018-04-20

    Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 day whisker deprivation drives rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing E-I conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, associated with an increase in low-threshold, voltage activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation were precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex. SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1-day) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex. Copyright © 2018 the authors.

  10. High expression of SALL4 and fascin, and loss of E-cadherin expression in undifferentiated/dedifferentiated carcinomas of the endometrium

    PubMed Central

    Onder, Semen; Taskin, Orhun Cig; Sen, Fatma; Topuz, Samet; Kucucuk, Seden; Sozen, Hamdullah; Ilhan, Ridvan; Tuzlali, Sitki; Yavuz, Ekrem

    2017-01-01

    Abstract Undifferentiated/dedifferentiated endometrial carcinomas (UCE/DCEs) of the endometrium are rare tumors with poor prognosis. There are few clinicopathologic studies with detailed immunohistochemical analysis regarding UCE/DCEs. We evaluated the diagnostic value of a selected tumor stem-cell marker and epithelial-mesenchymal transition (EMT) markers, in addition to previously studied markers in identifying UCE/DCEs from other types of high-grade endometrial carcinomas. Eleven cases of UCE/DCEs with complete clinical follow-up that were diagnosed between 2006 and 2015 were included in the study. For immunohistochemical comparison, 11 clinically matched cases for each type of other high-grade endometrial carcinomas (high-grade endometrioid (F3-EC), serous [SC], and clear cell carcinoma [CCC]) were used as a control group. An immunohistochemical analysis including fascin, SALL4, E-cadherin, and β-catenin, in addition to epithelial and neuroendocrine markers was performed in each case. The majority of UCE/DCEs displayed diffuse expression of fascin (81.9%) and loss of E-cadherin expression (54.5%). SALL4 expression was detected in 36.3% of the UCE/DCE cases. SALL4 expression was significantly more frequent in UCE/DCEs than all other high-grade carcinomas (P < 0.001). Loss of E-cadherin and fascin expression was significantly more frequent in UCE/DCEs than high-grade endometrioid and clear cell adenocarcinomas (P = 0.012, 0.014 and P = 0.01, 0.003, respectively). We suggest that loss of E-cadherin expression together with fascin and SALL4 immunopositivity in addition to morphologic features have an impact in differential diagnosis of UCE/DCEs from other high-grade endometrial carcinomas. PMID:28272224

  11. Type I γ Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6*

    PubMed Central

    Sun, Ming; Cai, Jinyang; Anderson, Richard A.; Sun, Yue

    2016-01-01

    Mitogen-inducible gene 6 (Mig6) is a tumor suppressor, and the disruption of Mig6 expression is associated with cancer development. Mig6 directly interacts with epidermal growth factor receptor (EGFR) to suppress the activation and downstream signaling of EGFR. Therefore, loss of Mig6 enhances EGFR-mediated signaling and promotes EGFR-dependent carcinogenesis. The molecular mechanism modulating Mig6 expression in cancer remains unclear. Here we demonstrate that type I γ phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme producing phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), stabilizes Mig6 expression. Knockdown of PIPKIγi5 leads to the loss of Mig6 expression, which dramatically enhances and prolongs EGFR-mediated cell signaling. Loss of PIPKIγi5 significantly promotes Mig6 protein degradation via proteasomes, but it does not affect the Mig6 mRNA level. PIPKIγi5 directly interacts with the E3 ubiquitin ligase neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1). The C-terminal domain of PIPKIγi5 and the WW1 and WW2 domains of NEDD4-1 are required for their interaction. The C2 domain of NEDD4-1 is required for its interaction with PtdIns(4,5)P2. By binding with NEDD4-1 and producing PtdIns(4,5)P2, PIPKIγi5 perturbs NEDD4-1-mediated Mig6 ubiquitination and the subsequent proteasomal degradation. Thus, loss of NEDD4-1 can rescue Mig6 expression in PIPKIγi5 knockdown cells. In this way, PIPKIγi5, NEDD4-1, and Mig6 form a novel molecular nexus that controls EGFR activation and downstream signaling. PMID:27557663

  12. Telocytes in Crohn's disease.

    PubMed

    Milia, Anna Franca; Ruffo, Martina; Manetti, Mirko; Rosa, Irene; Conte, Dalila; Fazi, Marilena; Messerini, Luca; Ibba-Manneschi, Lidia

    2013-12-01

    Crohn's disease (CD) is a relapsing chronic inflammatory disorder that may involve all the gastrointestinal tract with a prevalence of terminal ileum. Intestinal lesions have a characteristic discontinuous and segmental distribution and may affect all layers of the gut wall. Telocytes (TC), a peculiar type of stromal cells, have been recently identified in a variety of tissues and organs, including gastrointestinal tract of humans and mammals. Several roles have been proposed for TC, including mechanical support, spatial relationships with different cell types, intercellular signalling and modulation of intestinal motility. The aim of our study was to investigate the presence and distribution of TC in disease-affected and -unaffected ileal specimens from CD patients compared with controls. TC were identified by CD34/PDGFRα immunohistochemistry. In affected CD specimens TC disappeared, particularly where fibrosis and architectural derangement of the intestinal wall were observed. In the thickened muscularis mucosae and submucosa, few TC entrapped in the fibrotic extracellular matrix were found. A discontinuous network of TC was present around smooth muscle bundles, ganglia and enteric strands in the altered muscularis propria. At the myenteric plexus, the loss of TC network was paralleled by the loss of interstitial cells of Cajal network. In the unaffected CD specimens, TC were preserved in their distribution. Our results suggest that in CD the loss of TC might have important pathophysiological implications contributing to the architectural derangement of the intestinal wall and gut dysmotility. Further functional studies are necessary to better clarify the role of TC loss in CD pathophysiology. © 2013 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. High Beginning-of-Life Efficiency p/n InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Weizer, Victor G.; Jenkins, Phillip P.; Ringel, Steven A.; Scheiman, David A.; Wilt, David M.; Brinker, David J.

    2004-01-01

    We have achieved a new record efficiency of 17.6%, (AM0) for a p/n InP homo-epitaxy solar cell. In addition, we have eliminated a previously observed photo-degradation of cell performance, which was due to losses in J(sub sc). Cells soaked in AM0 spectrum at one-sun intensity for an hour showed no significant change in cell performance. We have discovered carrier passivation effects when using Zn as the p-type dopant in the OMVPE growth of InP and have found a method to avoid the unexpected effects which result from typical operation of OMVPE cell growth.

  14. Successful reversal of streptozotocin-induced diabetes with stable allogeneic islet function in a preclinical model of type 1 diabetes.

    PubMed

    Thomas, J M; Contreras, J L; Smyth, C A; Lobashevsky, A; Jenkins, S; Hubbard, W J; Eckhoff, D E; Stavrou, S; Neville, D M; Thomas, F T

    2001-06-01

    The recent focus on islet transplantation as primary therapy for type 1 diabetes has heightened interest in the reversal of type 1 diabetes in preclinical models using minimal immunosuppression. Here, we demonstrated in a preclinical rhesus model a consistent reversal of all measured glycemic patterns of streptozotocin-induced type 1 diabetes. The model used single-donor islet transplantation with induction of operational tolerance. The term "operational tolerance" is used to indicate durable survival of single-donor major histocompatibility complex (MHC)-mismatched islet allografts without maintenance immunosuppressive therapy and without rejection or loss of functional islet mass or insulin secretory reserve. In this operational tolerance model, all immunosuppression was discontinued after day 14 posttransplant, and recipients recovered with excellent health. The operational tolerance induction protocol combined peritransplant anti-CD3 immunotoxin to deplete T-cells and 15-deoxyspergualin to arrest proinflammatory cytokine production and maturation of dendritic cells. T-cell deficiency was specific but temporary, in that T-cell-dependent responses in long-term survivors recovered to normal, and there was no evidence of increased susceptibility to infection. Anti-donor mixed lymphocyte reaction responses were positive in the long-term survivors, but all showed clear evidence of systemic T-helper 2 deviation, suggesting that an immunoregulatory rather than a deletional process underlies this operational tolerance model. This study provides the first evidence that operational tolerance can protect MHC nonhuman primate islets from rejection as well as loss of functional islet mass. Such an approach has potential to optimize individual recipient recovery from diabetes as well as permitting more widespread islet transplantation with the limited supply of donor islets.

  15. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  16. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2‐interacting mediator knock‐out mice

    PubMed Central

    Wang, Y. M.; Zhang, G. Y.; Wang, Y.; Hu, M.; Zhou, J. J.; Sawyer, A.; Cao, Q.; Wang, Y.; Zheng, G.; Lee, V. W. S.; Harris, D. C. H.

    2017-01-01

    Summary Regulatory T cells (Tregs) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of Tregs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of Tregs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of Tregs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2‐interacting mediator (Bim) knock‐out mice by transient depleting Tregs. Bim is a pro‐apoptotic member of the B cell lymphoma 2 (Bcl‐2) family. Bim knock‐out (Bim–/–) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that Treg depletion in Bim–/– mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild‐type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)−2, IL‐4, IL‐6, IL‐10, IL‐17α, interferon (IFN)‐γ and tumour necrosis factor (TNF)‐α were increased significantly after Treg depletion in Bim–/– mice. This study demonstrates that transient depletion of Tregs leads to enhanced self‐reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim‐deficient mice. PMID:28152566

  17. Association of Epsilon-Aminocaproic Acid With Blood Loss and Risk of Transfusion After Periacetabular Osteotomy: A Retrospective Cohort Study.

    PubMed

    McLawhorn, Alexander S; Levack, Ashley E; Fields, Kara G; Sheha, Evan D; DelPizzo, Kathryn R; Sink, Ernest L

    2016-03-01

    Periacetabular osteotomy (PAO) reorients the acetabular cartilage through a complex series of pelvic osteotomies, which risks significant blood loss often necessitating blood transfusion. Therefore, it is important to identify effective strategies to manage blood loss and decrease morbidity after PAO. The purpose of this study was to determine the association of epsilon-aminocaproic acid (EACA), an antifibrinolytic agent, with blood loss from PAO. Ninety-three patients out of 110 consecutive patients that underwent unilateral PAO for acetabular dysplasia met inclusion criteria. Fifty patients received EACA intraoperatively. Demographics, autologous blood predonation, anesthetic type, intraoperative estimated blood loss (EBL), cell-saver utilization, and transfusions were recorded. Total blood loss was calculated. Two-sample t-test and chi-square or Fisher's exact test were used as appropriate. The associations between EACA administration and calculated EBL, cell-saver utilization, intraoperative EBL, and maximum difference in postoperative hemoglobin were assessed via multiple regression, adjusting for confounders. Post hoc power analysis demonstrated sufficient power to detect a 250-mL difference in calculated EBL between groups. Alpha level was 0.05 for all tests. No demographic differences existed between groups. Mean blood loss and allogeneic transfusion rates were not statistically significant between groups (P = .093 and .170, respectively). There were no differences in cell-saver utilization, intraoperative EBL, and/or postoperative hemoglobin. There was a higher rate of autologous blood utilization in the group not receiving EACA because of a clinical practice change. EACA administration was not associated with a statistically significant reduction in blood loss or allogeneic transfusion in patients undergoing PAO. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Where is the lithium? Quantitative determination of the lithium distribution in lithium ion battery cells: Investigations on the influence of the temperature, the C-rate and the cell type

    NASA Astrophysics Data System (ADS)

    Vortmann-Westhoven, Britta; Winter, Martin; Nowak, Sascha

    2017-04-01

    With lithium being the capacity determining species in lithium-ion battery (LIB) cells, the local quantification is of enormous importance for understanding of the cell performance. The investigation of the lithium distribution in LIB full cells is performed with two different cell types, T-cells of the Swagelok® type and pouch bag cells with lithium nickel cobalt manganese oxide and mesocarbon microbead graphite as the active materials as well as a lithium hexafluorophosphate based organic carbonate solvent electrolyte. The lithium content of/at the individual components of the cells is analyzed for different states of charge (SOCs) by inductively coupled plasma-optical emission spectrometry (ICP-OES) and the lithium distribution as well as the loss of active lithium within the cells is calculated after cycling. With increasing the SOC, the lithium contents decrease in the cathodes and simultaneously increase in the anodes. The temperature increase shows a clear shift of the lithium content in the direction of the anode for the T-cells. The comparison of the C-rate influence shows that the lower the C-rate, the more the lithium content on the electrodes is shifted into the direction of the anode.

  19. Enhanced efficacy of AKT and FAK kinase combined inhibition in squamous cell lung carcinomas with stable reduction in PTEN

    PubMed Central

    Cavazzoni, Andrea; La Monica, Silvia; Alfieri, Roberta; Ravelli, Andrea; Van Der Steen, Nele; Sciarrillo, Rocco; Madeddu, Denise; Lagrasta, Costanza Anna Maria; Quaini, Federico; Bonelli, Mara; Fumarola, Claudia; Cretella, Daniele; Digiacomo, Graziana; Tiseo, Marcello; Peters, Godefridus J.; Ardizzoni, Andrea; Petronini, Pier Giorgio; Giovannetti, Elisa

    2017-01-01

    Squamous cell lung carcinoma (SCC) accounts for 30% of patients with NSCLC and to date, no molecular targeted agents are approved for this type of tumor. However, recent studies have revealed several oncogenic mutations in SCC patients, including an alteration of the PI3K/AKT pathway, i.e. PI3K point mutations and amplification, AKT mutations and loss or reduced PTEN expression. Prompted by our observation of a correlation between PTEN loss and FAK phosphorylation in a cohort of patients with stage IV SCC, we evaluated the relevance of PTEN loss in cancer progression as well as the efficacy of a new combined treatment with the pan PI3K inhibitor buparlisip and the FAK inhibitor defactinib. An increase in AKT and FAK phosphorylation, associated with increased proliferation and invasiveness, paralleled by the acquisition of mesenchymal markers, and overexpression of the oncomir miR-21 were observed in SKMES-1-derived cell clones with a stable reduction of PTEN. Notably, the combined treatment induced a synergistic inhibition of cell proliferation, and a significant reduction in cell migration and invasion only in cells with reduced PTEN. The molecular mechanisms underlying these findings were unraveled using a specific RTK array that showed a reduction in phosphorylation of key kinases such as JNK, GSK-3 α/β, and AMPK-α2, due to the concomitant decrease in AKT and FAK activation. In conclusion, the combination of buparlisib and defactinib was effective against cells with reduced PTEN and warrants further studies as a novel therapeutic strategy for stage IV SCC patients with loss of PTEN expression. PMID:28881794

  20. Nanomaterial Solutions for the Protection of Insulin Producing Beta Cells

    NASA Astrophysics Data System (ADS)

    Atchison, Nicole Ann

    Islet transplantation is a promising treatment for type 1 diabetes. However, even with the many successes, islet transplantation has yet to reach its full potential. Limited islet sources, loss of cell viability during isolation and culture, and post-transplant graft loss are a few of the issues preventing extensive use of islet transplantation. The application of biomaterial systems to alleviate some of the stresses affecting islet viability has led to improvements in isolation and transplantation outcomes, but problems persist. In this work we approach two distinct issues affecting islet viability; ischemic conditions and immunological attack post-transplant. Ischemic conditions have been linked to a loss of islet graft function and occur during organ preservation, islet isolation and culture, and after islets are transplanted. We show that liposomal delivery of adenosine triphosphate (ATP) to beta cells can limit cell death and loss of function in ischemic conditions. We demonstrate that by functionalizing liposomes with the fibronectin-mimetic peptide PR_b, delivery of liposomes to porcine islets and rat beta cells is increased compared to nontargeted controls. Additionally, liposomes are shown to protect by providing both ATP and lipids to the ischemic cells. The delivery of ATP was investigated here but application of PR_b functionalized liposomes could be extended to other interesting cargos as well. The second area of investigation involves encapsulation of islets with silica nanoparticles to create a permselective barrier. Silica nanoparticles are an interesting material for encapsulation given their ability to be fine-tuned and further functionalized. We demonstrate that size-tunable, fluorescent silica nanoparticles can be assembled layer-by-layer on the surface of cells and that silica nanoparticle encapsulated islets are able to secrete insulin in response to a glucose challenge.

  1. Transforming growth factor-beta regulates mammary carcinoma cell survival and interaction with the adjacent microenvironment.

    PubMed

    Bierie, Brian; Stover, Daniel G; Abel, Ty W; Chytil, Anna; Gorska, Agnieszka E; Aakre, Mary; Forrester, Elizabeth; Yang, Li; Wagner, Kay-Uwe; Moses, Harold L

    2008-03-15

    Transforming growth factor (TGF)-beta signaling has been associated with early tumor suppression and late tumor progression; however, many of the mechanisms that mediate these processes are not known. Using Cre/LoxP technology, with the whey acidic protein promoter driving transgenic expression of Cre recombinase (WAP-Cre), we have now ablated the type II TGF-beta receptor (T beta RII) expression specifically within mouse mammary alveolar progenitors. Transgenic expression of the polyoma virus middle T antigen, under control of the mouse mammary tumor virus enhancer/promoter, was used to produce mammary tumors in the absence or presence of Cre (T beta RII((fl/fl);PY) and T beta RII((fl/fl);PY;WC), respectively). The loss of TGF-beta signaling significantly decreased tumor latency and increased the rate of pulmonary metastasis. The loss of TGF-beta signaling was significantly correlated with increased tumor size and enhanced carcinoma cell survival. In addition, we observed significant differences in stromal fibrovascular abundance and composition accompanied by increased recruitment of F4/80(+) cell populations in T beta RII((fl/fl);PY;WC) mice when compared with T beta RII((fl/fl);PY) controls. The recruitment of F4/80(+) cells correlated with increased expression of known inflammatory genes including Cxcl1, Cxcl5, and Ptgs2 (cyclooxygenase-2). Notably, we also identified an enriched K5(+) dNp63(+) cell population in primary T beta RII((fl/fl);PY;WC) tumors and corresponding pulmonary metastases, suggesting that loss of TGF-beta signaling in this subset of carcinoma cells can contribute to metastasis. Together, our current results indicate that loss of TGF-beta signaling in mammary alveolar progenitors may affect tumor initiation, progression, and metastasis through regulation of both intrinsic cell signaling and adjacent stromal-epithelial interactions in vivo.

  2. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection.

    PubMed

    Beers, Stephen A; French, Ruth R; Chan, H T Claude; Lim, Sean H; Jarrett, Timothy C; Vidal, Regina Mora; Wijayaweera, Sahan S; Dixon, Sandra V; Kim, Hyungjin; Cox, Kerry L; Kerr, Jonathan P; Johnston, David A; Johnson, Peter W M; Verbeek, J Sjef; Glennie, Martin J; Cragg, Mark S

    2010-06-24

    Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.

  3. Xanthine oxidoreductase mediates membrane docking of milk-fat droplets but is not essential for apocrine lipid secretion.

    PubMed

    Monks, Jenifer; Dzieciatkowska, Monika; Bales, Elise S; Orlicky, David J; Wright, Richard M; McManaman, James L

    2016-10-15

    Xanthine oxidoreductase (XOR) modulates milk lipid secretion and lactation initiation. XOR is required for butyrophilin1a1 clustering in the membrane during milk lipid secretion. XOR mediates apical membrane reorganization during milk lipid secretion. Loss of XOR delays milk fat globule secretion. XOR loss alters the proteome of milk fat globules. Apocrine secretion is utilized by epithelial cells of exocrine glands. These cells bud off membrane-bound particles into the lumen of the gland, losing a portion of the cytoplasm in the secretion product. The lactating mammary gland secretes milk lipid by this mechanism, and xanthine oxidoreductase (XOR) has long been thought to be functionally important. We generated mammary-specific XOR knockout (MGKO) mice, expecting lactation to fail. Histology of the knockout glands showed very large lipid droplets enclosed in the mammary alveolar cells, but milk analysis showed that these large globules were secreted. Butyrophilin, a membrane protein known to bind to XOR, was clustered at the point of contact of the cytoplasmic lipid droplet with the apical plasma membrane, in the wild-type gland but not in the knockout, suggesting that XOR mediates 'docking' to this membrane. Secreted milk fat globules were isolated from mouse milk of wild-type and XOR MGKO dams, and subjected to LC-MS/MS for analysis of protein component. Proteomic results showed that loss of XOR leads to an increase in cytoplasmic, cytoskeletal, Golgi apparatus and lipid metabolism proteins associated with the secreted milk fat globule. Association of XOR with the lipid droplet results in membrane docking and more efficient retention of cytoplasmic components by the secretory cell. Loss of XOR then results in a reversion to a more rudimentary, less efficient, apocrine secretion mechanism, but does not prevent milk fat globule secretion. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  4. Reversal of β cell de-differentiation by a small molecule inhibitor of the TGFβ pathway

    PubMed Central

    Blum, Barak; Roose, Adam N; Barrandon, Ornella; Maehr, René; Arvanites, Anthony C; Davidow, Lance S; Davis, Jeffrey C; Peterson, Quinn P; Rubin, Lee L; Melton, Douglas A

    2014-01-01

    Dysfunction or death of pancreatic β cells underlies both types of diabetes. This functional decline begins with β cell stress and de-differentiation. Current drugs for type 2 diabetes (T2D) lower blood glucose levels but they do not directly alleviate β cell stress nor prevent, let alone reverse, β cell de-differentiation. We show here that Urocortin 3 (Ucn3), a marker for mature β cells, is down-regulated in the early stages of T2D in mice and when β cells are stressed in vitro. Using an insulin expression-coupled lineage tracer, with Ucn3 as a reporter for the mature β cell state, we screen for factors that reverse β cell de-differentiation. We find that a small molecule inhibitor of TGFβ receptor I (Alk5) protects cells from the loss of key β cell transcription factors and restores a mature β cell identity even after exposure to prolonged and severe diabetes. DOI: http://dx.doi.org/10.7554/eLife.02809.001 PMID:25233132

  5. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    NASA Technical Reports Server (NTRS)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from <1 cM to 64 cM, while mutations that arose by allelic recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  6. Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II.

    PubMed

    Shekarabi, Masoud; Girard, Nathalie; Rivière, Jean-Baptiste; Dion, Patrick; Houle, Martin; Toulouse, André; Lafrenière, Ronald G; Vercauteren, Freya; Hince, Pascale; Laganiere, Janet; Rochefort, Daniel; Faivre, Laurence; Samuels, Mark; Rouleau, Guy A

    2008-07-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.

  7. Mutations in the nervous system–specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II

    PubMed Central

    Shekarabi, Masoud; Girard, Nathalie; Rivière, Jean-Baptiste; Dion, Patrick; Houle, Martin; Toulouse, André; Lafrenière, Ronald G.; Vercauteren, Freya; Hince, Pascale; Laganiere, Janet; Rochefort, Daniel; Faivre, Laurence; Samuels, Mark; Rouleau, Guy A.

    2008-01-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system–specific exon of the with-no-lysine(K)–1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII. PMID:18521183

  8. Endocochlear potential depends on Cl− channels: mechanism underlying deafness in Bartter syndrome IV

    PubMed Central

    Rickheit, Gesa; Maier, Hannes; Strenzke, Nicola; Andreescu, Corina E; De Zeeuw, Chris I; Muenscher, Adrian; Zdebik, Anselm A; Jentsch, Thomas J

    2008-01-01

    Human Bartter syndrome IV is an autosomal recessive disorder characterized by congenital deafness and severe renal salt and fluid loss. It is caused by mutations in BSND, which encodes barttin, a β-subunit of ClC-Ka and ClC-Kb chloride channels. Inner-ear-specific disruption of Bsnd in mice now reveals that the positive potential, but not the high potassium concentration, of the scala media depends on the presence of these channels in the epithelium of the stria vascularis. The reduced driving force for K+-entry through mechanosensitive channels into sensory hair cells entails a profound congenital hearing loss and subtle vestibular symptoms. Although retaining all cell types and intact tight junctions, the thickness of the stria is reduced early on. Cochlear outer hair cells degenerate over several months. A collapse of endolymphatic space was seen when mice had additionally renal salt and fluid loss due to partial barttin deletion in the kidney. Bsnd−/− mice thus demonstrate a novel function of Cl− channels in generating the endocochlear potential and reveal the mechanism leading to deafness in human Bartter syndrome IV. PMID:18833191

  9. Nutrient-Enhanced Diet Reduces Noise-Induced Damage to the Inner Ear and Hearing Loss

    PubMed Central

    Le Prell, C. G.; Gagnon, P. M; Bennett, D. C.; Ohlemiller, K. K.

    2011-01-01

    Oxidative stress has been broadly implicated as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared to PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of Type II fibrocytes in the lateral wall was significantly reduced (p<0.05), and there was a trend towards less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that pre-noise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. Demonstration of functional and morphological preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients, and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology. PMID:21708355

  10. Mycoplasma pneumoniae Protein P30 Is Required for Cytadherence and Associated with Proper Cell Development

    PubMed Central

    Romero-Arroyo, Cynthia E.; Jordan, Jarrat; Peacock, Susan J.; Willby, Melisa J.; Farmer, Mark A.; Krause, Duncan C.

    1999-01-01

    The attachment organelle of Mycoplasma pneumoniae is a polar, tapered cell extension containing an intracytoplasmic, electron-dense core. This terminal structure is the leading end in gliding motility, and its duplication is thought to precede cell division, raising the possibility that mutations affecting cytadherence also confer a defect in motility or cell development. Mycoplasma surface protein P30 is associated with the attachment organelle, and P30 mutants II-3 and II-7 do not cytadhere. In this study, the recombinant wild-type but not the mutant II-3 p30 allele restored cytadherence when transformed into P30 mutants by recombinant transposon delivery. The mutations associated with loss of P30 in mutant II-3 and reacquisition of P30 in cytadhering revertants thereof were identified by nucleotide sequencing of the p30 gene. Morphological abnormalities that included ovoid or multilobed cells having a poorly defined tip structure were associated with loss of P30. Digital image analysis confirmed quantitatively the morphological differences noted visually. Transformation of the P30 mutants with the wild-type p30 allele restored a normal morphology, as determined both visually and by digital image analysis, suggesting that P30 plays a role in mycoplasma cell development. Finally, the P30 mutants localized the adhesin protein P1 to the terminal organelle, indicating that P30 is not involved in P1 trafficking but may be required for its receptor-binding function. PMID:9973332

  11. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy.

    PubMed

    Dinculescu, Astra; Stupay, Rachel M; Deng, Wen-Tao; Dyka, Frank M; Min, Seok-Hong; Boye, Sanford L; Chiodo, Vince A; Abrahan, Carolina E; Zhu, Ping; Li, Qiuhong; Strettoi, Enrica; Novelli, Elena; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Smith, W Clay; Hauswirth, William W

    2016-01-01

    Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.

  12. Quantitative analysis by next generation sequencing of hematopoietic stem and progenitor cells (LSK) and of splenic B cells transcriptomes from wild-type and Usp3-knockout mice.

    PubMed

    Lancini, Cesare; Gargiulo, Gaetano; van den Berk, Paul C M; Citterio, Elisabetta

    2016-03-01

    The data described here provide genome-wide expression profiles of murine primitive hematopoietic stem and progenitor cells (LSK) and of B cell populations, obtained by high throughput sequencing. Cells are derived from wild-type mice and from mice deficient for the ubiquitin-specific protease 3 (USP3; Usp3Δ/Δ). Modification of histone proteins by ubiquitin plays a crucial role in the cellular response to DNA damage (DDR) (Jackson and Durocher, 2013) [1]. USP3 is a histone H2A deubiquitinating enzyme (DUB) that regulates ubiquitin-dependent DDR in response to DNA double-strand breaks (Nicassio et al., 2007; Doil et al., 2008) [2], [3]. Deletion of USP3 in mice increases the incidence of spontaneous tumors and affects hematopoiesis [4]. In particular, Usp3-knockout mice show progressive loss of B and T cells and decreased functional potential of hematopoietic stem cells (HSCs) during aging. USP3-deficient cells, including HSCs, display enhanced histone ubiquitination, accumulate spontaneous DNA damage and are hypersensitive to ionizing radiation (Lancini et al., 2014) [4]. To address whether USP3 loss leads to deregulation of specific molecular pathways relevant to HSC homeostasis and/or B cell development, we have employed the RNA-sequencing technology and investigated transcriptional differences between wild-type and Usp3Δ/Δ LSK, naïve B cells or in vitro activated B cells. The data relate to the research article "Tight regulation of ubiquitin-mediated DNA damage response by USP3 preserves the functional integrity of hematopoietic stem cells" (Lancini et al., 2014) [4]. The RNA-sequencing and analysis data sets have been deposited in NCBI׳s Gene Expression Omnibus (Edgar et al., 2002) [5] and are accessible through GEO Series accession number GSE58495 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE58495). With this article, we present validation of the RNA-seq data set through quantitative real-time PCR and comparative analysis.

  13. Sleep loss and structural plasticity.

    PubMed

    Areal, Cassandra C; Warby, Simon C; Mongrain, Valérie

    2017-06-01

    Wakefulness and sleep are dynamic states during which brain functioning is modified and shaped. Sleep loss is detrimental to many brain functions and results in structural changes localized at synapses in the nervous system. In this review, we present and discuss some of the latest observations of structural changes following sleep loss in some vertebrates and insects. We also emphasize that these changes are region-specific and cell type-specific and that, most importantly, these structural modifications have functional roles in sleep regulation and brain functions. Selected mechanisms driving structural modifications occurring with sleep loss are also discussed. Overall, recent research highlights that extending wakefulness impacts synapse number and shape, which in turn regulate sleep need and sleep-dependent learning/memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts

    NASA Technical Reports Server (NTRS)

    Eckes, B.; Dogic, D.; Colucci-Guyon, E.; Wang, N.; Maniotis, A.; Ingber, D.; Merckling, A.; Langa, F.; Aumailley, M.; Delouvee, A.; hide

    1998-01-01

    Loss of a vimentin network due to gene disruption created viable mice that did not differ overtly from wild-type littermates. Here, primary fibroblasts derived from vimentin-deficient (-/-) and wild-type (+/+) mouse embryos were cultured, and biological functions were studied in in vitro systems resembling stress situations. Stiffness of -/- fibroblasts was reduced by 40% in comparison to wild-type cells. Vimentin-deficient cells also displayed reduced mechanical stability, motility and directional migration towards different chemo-attractive stimuli. Reorganization of collagen fibrils and contraction of collagen lattices were severely impaired. The spatial organization of focal contact proteins, as well as actin microfilament organization was disturbed. Thus, absence of a vimentin filament network does not impair basic cellular functions needed for growth in culture, but cells are mechanically less stable, and we propose that therefore they are impaired in all functions depending upon mechanical stability.

  15. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo

    PubMed Central

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-01-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues. PMID:27007137

  16. Specificity, cross-talk and adaptation in Interferon signaling

    NASA Astrophysics Data System (ADS)

    Zilman, Anton

    Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.

  17. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    PubMed

    Rusan, Zeid M; Kingsford, Olivia A; Tanouye, Mark A

    2014-01-01

    Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi) of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  18. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmen Herranz, Ma; Sanchez-Navarro, Jesus-Angel; Sauri, Ana

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutantsmore » and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.« less

  19. Mutational analysis of the RNA-binding domain of the Prunus necrotic ringspot virus (PNRSV) movement protein reveals its requirement for cell-to-cell movement.

    PubMed

    Carmen Herranz, Ma; Sanchez-Navarro, Jesús-Angel; Saurí, Ana; Mingarro, Ismael; Pallás, Vicente

    2005-08-15

    The movement protein (MP) of Prunus necrotic ringspot virus (PNRSV) is required for cell-to-cell movement. MP subcellular localization studies using a GFP fusion protein revealed highly punctate structures between neighboring cells, believed to represent plasmodesmata. Deletion of the RNA-binding domain (RBD) of PNRSV MP abolishes the cell-to-cell movement. A mutational analysis on this RBD was performed in order to identify in vivo the features that govern viral transport. Loss of positive charges prevented the cell-to-cell movement even though all mutants showed a similar accumulation level in protoplasts to those observed with the wild-type (wt) MP. Synthetic peptides representing the mutants and wild-type RBDs were used to study RNA-binding affinities by EMSA assays being approximately 20-fold lower in the mutants. Circular dichroism analyses revealed that the secondary structure of the peptides was not significantly affected by mutations. The involvement of the affinity changes between the viral RNA and the MP in the viral cell-to-cell movement is discussed.

  20. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    PubMed Central

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  1. α3 Chains of type V collagen regulate breast tumour growth via glypican-1

    PubMed Central

    Huang, Guorui; Ge, Gaoxiang; Izzi, Valerio; Greenspan, Daniel S.

    2017-01-01

    Pericellular α3(V) collagen can affect the functioning of cells, such as adipocytes and pancreatic β cells. Here we show that α3(V) chains are an abundant product of normal mammary gland basal cells, and that α3(V) ablation in a mouse mammary tumour model inhibits mammary tumour progression by reducing the proliferative potential of tumour cells. These effects are shown to be primarily cell autonomous, from loss of α3(V) chains normally produced by tumour cells, in which they affect growth by enhancing the ability of cell surface proteoglycan glypican-1 to act as a co-receptor for FGF2. Thus, a mechanism is presented for microenvironmental influence on tumour growth. α3(V) chains are produced in both basal-like and luminal human breast tumours, and its expression levels are tightly coupled with those of glypican-1 across breast cancer types. Evidence indicates α3(V) chains as potential targets for inhibiting tumour growth and as markers of oncogenic transformation. PMID:28102194

  2. Wasabi 6-(methylsulfinyl)hexyl isothiocyanate induces apoptosis in human colorectal cancer cells through p53-independent mitochondrial dysfunction pathway.

    PubMed

    Yano, Satoshi; Wu, Shusong; Sakao, Kozue; Hou, De-Xing

    2018-05-14

    6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC), a major bioactive compound in Wasabi [Wasabia japonica (Miq.) Matsum.], has revealed the inhibitory effect on colon carcinogenesis in rat cancer model although the underlying mechanism is unclear. In this study, we used two types of human colorectal cancer cells (HCT116 p53 +/+ and HCT116 p53 -/- ) to investigate the anticancer activity and molecular mechanisms of 6-MSITC. Interestingly, 6-MSITC inhibited the cell proliferation in both types of cells with similar IC 50 value although a light increase in the phosphorylation and accumulation of P53 protein was observed in HCT116 p53 +/+ cells at 24 h after treatment. In addition, 6-MSITC increased the ratio of proapoptotic cells in both types of cells with the same fashion in a p53-independent manner. The data from mitochondrial analysis revealed that 6-MSITC enhanced the ratio of proapoptotic B-cell lymphoma-2-associated X protein/antiapoptotic myeloid cell leukemia 1, and sequentially caused mitochondrial membrane potential (ΔΨ m ) loss, cytochrome c release, and caspase-3 activation in both types of cells. Taken together, Wasabi 6-MSITC induced apoptosis of human colorectal cancer cells in p53-independent mitochondrial dysfunction pathway. These findings suggest that 6-MSITC might be a potential agent for colon cancer chemoprevention although with p53 mutation. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  3. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    PubMed

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of Biologists Ltd.

  4. Genome wide association of white blood cell types during vaccination

    USDA-ARS?s Scientific Manuscript database

    Infectious disease of livestock continues to be a cause of substantial economic loss and adverse welfare. Breeding for disease resistant livestock could improve both the economic burden and animal welfare. We aim to identify key genes and pathways that control variation in immune response; knowled...

  5. THE POTENTIAL ROLE OF ENDOGENOUS STEM CELLS IN REGENERATION OF THE INNER EAR

    PubMed Central

    Martinez-Monedero, Rodrigo; Oshima, Kazuo; Heller, Stefan; Edge, Albert S.B.

    2007-01-01

    Stem cells in various mammalian tissues retain the capacity to renew themselves and may be able to restore damaged tissue. Their existence has been proven by genetic tracer studies that demonstrate their differentiation into multiple tissue types and by their ability to self-renew through proliferation. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the cochlea in addition to the vestibular system and the auditory ganglia, indicating that these tissues contain cells with stem cell properties. The presence of stem cells in the inner ear raises the hope of regeneration of mammalian inner ear cells but is difficult to correlate with the lack spontaneous regeneration seen in the inner ear after tissue damage. Loss of stem cells postnatally in the cochlea may correlate with the loss of regenerative capacity and may limit our ability to stimulate regeneration. Retention of sphere forming capacity in adult vestibular tissues suggests that the limited capacity for repair may be attributed to the continued presence of progenitor cells. Future strategies for regeneration must consider the distribution of endogenous stem cells in the inner ear and whether cells with the capacity for regeneration are retained. PMID:17321086

  6. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss.

    PubMed

    Scekic-Zahirovic, Jelena; Sendscheid, Oliver; El Oussini, Hajer; Jambeau, Mélanie; Sun, Ying; Mersmann, Sina; Wagner, Marina; Dieterlé, Stéphane; Sinniger, Jérome; Dirrig-Grosch, Sylvie; Drenner, Kevin; Birling, Marie-Christine; Qiu, Jinsong; Zhou, Yu; Li, Hairi; Fu, Xiang-Dong; Rouaux, Caroline; Shelkovnikova, Tatyana; Witting, Anke; Ludolph, Albert C; Kiefer, Friedemann; Storkebaum, Erik; Lagier-Tourenne, Clotilde; Dupuis, Luc

    2016-05-17

    FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  7. Nitric oxide inhibits calpain-mediated proteolysis of talin in skeletal muscle cells

    NASA Technical Reports Server (NTRS)

    Koh, T. J.; Tidball, J. G.

    2000-01-01

    We tested the hypothesis that nitric oxide can inhibit cytoskeletal breakdown in skeletal muscle cells by inhibiting calpain cleavage of talin. The nitric oxide donor sodium nitroprusside prevented many of the effects of calcium ionophore on C(2)C(12) muscle cells, including preventing talin proteolysis and release into the cytosol and reducing loss of vinculin, cell detachment, and loss of cellular protein. These results indicate that nitric oxide inhibition of calpain protected the cells from ionophore-induced proteolysis. Calpain inhibitor I and a cell-permeable calpastatin peptide also protected the cells from proteolysis, confirming that ionophore-induced proteolysis was primarily calpain mediated. The activity of m-calpain in a casein zymogram was inhibited by sodium nitroprusside, and this inhibition was reversed by dithiothreitol. Previous incubation with the active site-targeted calpain inhibitor I prevented most of the sodium nitroprusside-induced inhibition of m-calpain activity. These data suggest that nitric oxide inhibited m-calpain activity via S-nitrosylation of the active site cysteine. The results of this study indicate that nitric oxide produced endogenously by skeletal muscle and other cell types has the potential to inhibit m-calpain activity and cytoskeletal proteolysis.

  8. Nanolaser Spectroscopy of Genetically Engineered Yeast: New Tool for a Better Brew?

    NASA Astrophysics Data System (ADS)

    Gourley, Paul L.; Hendricks, Judy K.; Naviaux, Robert K.; Yaffe, Michael P.

    2006-03-01

    A basic function of the cell membrane is to selectively uptake ions or molecules from its environment to concentrate them into the interior. This concentration difference results in an osmostic pressure difference across the membrane. Ultimately, this pressure and its fluctuation from cell to cell will be limited by the availability and fluctuations of the solute concentrations in solution, the extent of inter-cell communication, and the state of respiring intracellular mitochondria that fuel the process. To measure these fluctuations, we have employed a high-speed nanolaser technique that samples the osmotic pressure in individual yeast cells and isolated mitochondria. We analyzed 2 yeast cell strains, normal baker’s yeast and a genetically-altered version, that differ only by the presence of mitochondrial DNA. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes. These cells have mitochondria, but the mitochondria lack most normal respiratory chain complexes. The frequency distributions in the nanolaser spectra produced by wild-type and modified cells and mitochondria show a striking shift from Gaussian to Poissonian distributions, revealing a powerful novel method for studying statistical physics of yeast.

  9. Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells.

    PubMed

    Petit, Laetitia; Gibert, Maryse; Gourch, Abdelkader; Bens, Marcelle; Vandewalle, Alain; Popoff, Michel R

    2003-03-01

    Epsilon toxin is produced by Clostridium perfringens types B and D which are responsible for fatal intestinal diseases in animals. The main biological activity of epsilon toxin is the production of oedema in various organs. We have previously found that epsilon toxin forms a large membrane complex in MDCK cells which is not internalized into cell, and induces cell volume enlargement and loss of cell viability (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., Popoff, M. R. (1997) J Bacteriol 179, 6480-6487). Here, we show that epsilon toxin is very potent to decrease the trans-epithelial electrical resistance of polarized MDCK cells grown on filters without altering the organization of the junctional complexes. The dose-dependent decrease in trans-epithelial electrical resistance, more marked when the toxin was applied to the apical side than to the basal side of MDCK cells, was associated with a moderate increase of the paracellular permeability to low-molecular-weight compounds but not to macromolecules. Epsilon toxin probably acts by forming large membrane pores which permit the flux of ions and other molecules such as the entry of propidium iodide and finally to the loss of cell viability.

  10. Sox2 and Jagged1 Expression in Normal and Drug-Damaged Adult Mouse Inner Ear

    PubMed Central

    Campbell, Sean; Taylor, Ruth R.; Forge, Andrew; Hume, Clifford R.

    2007-01-01

    Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear. PMID:18157569

  11. Production of reactive oxygen species by withaferin A causes loss of type collagen expression and COX-2 expression through the PI3K/Akt, p38, and JNK pathways in rabbit articular chondrocytes.

    PubMed

    Yu, Seon-Mi; Kim, Song-Ja

    2013-11-01

    Withaferin A (WFA) is a major chemical constituent of Withania somnifera, also known as Indian ginseng. Many recent reports have provided evidence of its anti-tumor, anti-inflammation, anti-oxidant, and immune modulatory activities. Although the compound appears to have a large number of effects, its defined mechanisms of action have not yet been determined. We investigated the effects of WFA on loss of type collagen expression and inflammation in rabbit articular chondrocytes. WFA increased the production of reactive oxygen species, suggesting the induction of oxidative stress, in a dose-dependent manner. Also, we confirmed that WFA causes loss of type collagen expression and inflammation as determined by a decrease of type II collagen expression and an increase of cyclooxygenase-2 (COX-2) expression via western blot analysis in a dose- and time- dependent manner. WFA also reduced the synthesis of sulfated proteoglycan via Alcian blue staining and caused the synthesis of prostaglandin E2 (PGE2) via assay kit in dose- and time-dependent manners. Treatment with N-acetyl-L-cysteine (NAC), an antioxidant, inhibited WFA-induced loss of type II collagen expression and increase in COX-2 expression, accompanied by inhibition of reactive oxygen species production. WFA increased phosphorylation of both Akt and p38. Inhibition of PI3K/Akt, p38, and JNK with LY294002 (LY), SB203580 (SB), or SP600125 (SP) in WFA-treated cells rescued the expression of type II collagen and suppressed the expression of COX-2. These results demonstrate that WFA induces loss of type collagen expression and inflammation via PI3K/Akt, p38, and JNK by generating reactive oxygen species in rabbit articular chondrocytes. © 2013 Published by Elsevier Inc.

  12. Decrease in Numbers of Naive and Resting B Cells in HIV-Infected Kenyan Adults Leads to a Proportional Increase in Total and Plasmodium falciparum-Specific Atypical Memory B Cells.

    PubMed

    Frosch, Anne E; Odumade, Oludare A; Taylor, Justin J; Ireland, Kathleen; Ayodo, George; Ondigo, Bartholomew; Narum, David L; Vulule, John; John, Chandy C

    2017-06-15

    Human immunodeficiency virus type 1 (HIV-1) infection is associated with B cell activation and exhaustion, and hypergammaglobulinemia. How these changes influence B cell responses to coinfections such as malaria is poorly understood. To address this, we compared B cell phenotypes and Abs specific for the Plasmodium falciparum vaccine candidate apical membrane Ag-1 (AMA1) in HIV-infected and uninfected adults living in Kenya. Surprisingly, HIV-1 infection was not associated with a difference in serum AMA1-specific Ab levels. HIV-infected individuals had a higher proportion of total atypical and total activated memory B cells (MBCs). Using an AMA1 tetramer to detect AMA1-specific B cells, HIV-infected individuals were also shown to have a higher proportion of AMA1-specific atypical MBCs. However, this proportional increase resulted in large part from a loss in the number of naive and resting MBCs rather than an increase in the number of atypical and activated cells. The loss of resting MBCs and naive B cells was mirrored in a population of cells specific for an Ag to which these individuals were unlikely to have been chronically exposed. Together, the data show that changes in P. falciparum Ag-specific B cell subsets in HIV-infected individuals mirror those in the overall B cell population, and suggest that the increased proportion of atypical MBC phenotypes found in HIV-1-infected individuals results from the loss of naive and resting MBCs. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Solar energy conversion in a photoelectrochemical biofuel cell.

    PubMed

    Hambourger, Michael; Kodis, Gerdenis; Vaughn, Michael D; Moore, Gary F; Gust, Devens; Moore, Ana L; Moore, Thomas A

    2009-12-07

    A photoelectrochemical biofuel cell has been developed which incorporates aspects of both an enzymatic biofuel cell and a dye-sensitized solar cell. Photon absorption at a porphyrin-sensitized n-type semiconductor electrode gives rise to a charge-separated state. Electrons and holes are shuttled to appropriate cathodic and anodic catalysts, respectively, allowing the production of electricity, or a reduced fuel, via the photochemical oxidation of a biomass-derived substrate. The operation of this device is reviewed. The use of alternate anodic redox mediators provides insight regarding loss mechanisms in the device. Design strategies for enhanced performance are discussed.

  14. Giant cell arteritis of fallopian tube.

    PubMed

    Azzena, A; Altavilla, G; Salmaso, R; Vasoin, F; Pellizzari, P; Doria, A

    1994-01-01

    One case of giant cells arteritis involving tubaric arteries in a postmenopausal woman is described. The patient was 59 years old and presented with asthenia, anemia, fever, weight loss, an abdominal palpable mass and elevated erythrocyte sedimentation rate. Exploratory laparotomy revealed a large ovarian cyst of 14 cm in diameter. Extensive giant cell arteritis, Horton's type, of the small-sizes arteries was found unexpectedly in the fallopian tube of the patient who had had a prior ovariectomy. Giant cell arteritis of the female genital tract is a rare finding in elderly women and may occur as an isolated finding or as part of generalised arteritis.

  15. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  16. Random Surface Texturing of Silicon Dioxide Using Gold Agglomerates

    DTIC Science & Technology

    2016-07-01

    Approved for public release; distribution unlimited. 1 1. Introduction The US Army has been developing new types of photovoltaic ( PV ) devices— solar ...light falling onto the surface of a solar cell is a major optical loss mechanism, which limits the efficiency of the PV .1,2 One method of reducing...in an AR coating on solar cells. 15. SUBJECT TERMS anti-reflective, AR coatings, textured surface structures, silicon dioxide, SiO2 16. SECURITY

  17. Defect States Emerging from a Non-Hermitian Flatband of Photonic Zero Modes

    NASA Astrophysics Data System (ADS)

    Qi, Bingkun; Zhang, Lingxuan; Ge, Li

    2018-03-01

    We show the existence of a flatband consisting of photonic zero modes in a gain and loss modulated lattice system as a result of the underlying non-Hermitian particle-hole symmetry. This general finding explains the previous observation in parity-time symmetric systems where non-Hermitian particle-hole symmetry is hidden. We further discuss the defect states in these systems, whose emergence can be viewed as an unconventional alignment of a pseudospin under the influence of a complex-valued pseudomagnetic field. These defect states also behave as a chain with two types of links, one rigid in a unit cell and one soft between unit cells, as the defect states become increasingly localized with the gain and loss strength.

  18. Performance characteristics of lithium primary cells after controlled storage. [on-orbit for energy power supply

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Shen, D. H.; Halpert, G.; Ang, V.; Donley, S.

    1991-01-01

    A program was initiated to investigate the effects of storage on the performance of lithium primary cells. Two types of liquid cathode cells were chosen to investigate these effects. The cell types included Li-SOCl2/BCX cells, Li-SO2 cells from two different manufacturers, and a small sample size of 8-year-old Li-SO2 cells. The following measurements are performed at each test interval: open circuit voltage, resistance and weight, microcalorimetry, ac impedance, capacity, and voltage delay. The authors examine the performance characteristics of these cells after one year of controlled storage at two temperatures (10 and 30 C). The Li-SO2 cells experienced little to no voltage and capacity degradation after one year storage. The Li-SOCl2/BCX cells exhibited significant voltage and capacity degradation after 30 C storage. Predischarging shortly prior to use appears to be an effective method of reducing the initial voltage drop. Studies are in progress to correlate ac impedance and microcalorimetry measurements with capacity losses and voltage delay.

  19. Proper coding of the Abbreviated Injury Scale: can clinical parameters help as surrogates in estimating blood loss?

    PubMed

    Burkhardt, M; Holstein, J H; Moersdorf, P; Kristen, A; Lefering, R; Pohlemann, T; Pizanis, A

    2014-08-01

    The Abbreviated Injury Scale (AIS) requires the estimation of the lost blood volume for some severity assignments. This study aimed to develop a rule of thumb for facilitating AIS coding by using objective clinical parameters as surrogate markers of blood loss. Using the example of pelvic ring fractures, a retrospective analysis of TraumaRegister DGU(®) data from 2002 to 2011 was performed. As potential surrogate markers of blood loss, we recorded the hemoglobin (Hb) level, systolic blood pressure (SBP), base excess (BE), Quick's value, units of packed red blood cells (PRBCs) transfused before intensive care unit (ICU) admission, and mortality within 24 h. We identified 11,574 patients with pelvic ring fractures (Tile/OTA classification: 39 % type A, 40 % type B, 21 % type C). Type C fractures were 73.1 % AISpelvis 4 and 26.9 % AISpelvis 5. Type B fractures were 47 % AISpelvis 3, 47 % AISpelvis 4, and 6 % AISpelvis 5. In type C fractures, cut-off values of <7 g/dL Hb, <90 mmHg SBP, <-9 mmol/L BE, <35 % Quick's value, >15 units PRBCs, and death within 24 h had a positive predictive value of 47 % and a sensitivity of 62 % for AISpelvis 5. In type B fractures, these cut-off values had poor sensitivity (48 %) and positive predictive value (11 %) for AISpelvis 5. We failed to develop a rule of thumb for facilitating a proper future AIS coding using the example of pelvic ring fractures. The estimation of blood loss for severity assignment still remains a noteworthy weakness in the AIS coding of traumatic injuries.

  20. Fasting-induced apoptosis in rat liver is blocked by cycloheximide.

    PubMed

    Tessitore, L; Tomasi, C; Greco, M

    1999-08-01

    The effect of cycloheximide (CH) on the fasting-induced changes of rat liver cell and protein turnover has been investigated. Late starvation phase (3-4-day-fasting period) was characterised by a decrease in liver weight and protein and DNA content. The loss of DNA was not related to liver cell necrosis but due not only to depression of cell proliferation as shown by the drop in the labelling index but also induction of apoptosis. This type of apoptosis was documented by the increase in the apoptotic index (cells labelled by TUNEL) and transglutaminase activity as well as by DNA fragmentation. The liver cells of fasted rats appeared smaller as shown by the higher cell density and DNA/protein ratio than in controls. Females were more resistant to fasting-induced apoptosis than males. A single dose of CH, a drug primary known as inhibitor of protein synthesis, induced or enhanced apoptosis in fed and 2-days fasted male rats, respectively, without any sign of cell necrosis. On the contrary, the administration of repeated doses of CH blocked apoptosis induced by fasting. CH "froze" protein and DNA content as well as apoptotic process at the level of 2 days-fasted rats. While fasting-induced liver protein loss resulted from a marked reduction in protein synthesis with a slight decrease in degradation, repeated treatment with CH virtually blocked protein loss by abolishing protein catabolism. These data suggest a direct relationship between the catabolic side of protein turnover and the apoptotic process.

  1. Analyzing Study of Path loss Propagation Models in Wireless Communications at 0.8 GHz

    NASA Astrophysics Data System (ADS)

    Kadhim Hoomod, Haider; Al-Mejibli, Intisar; Issa Jabboory, Abbas

    2018-05-01

    The paths loss propagation model is an important tool in wireless network planning, allowing network planner to optimize the cell towers distribution and meet expected service level requirements. However, each type of path loss propagation model is designed to predict path loss in a particular environment that may be inaccurate in other different environment. In this research different propagation models (Hata Model, ICC-33 Model, Ericson Model and Coast-231 Model) have been analyzed and compared based on the measured data. The measured data represent signal strength of two cell towers placed in two different environments which obtained by a drive test of them. First one in AL-Habebea represents an urban environment (high-density region) and the second in AL-Hindea district represents a rural environment (low-density region) with operating frequency 0.8 GHz. The results of performing the analysis and comparison conclude that Hata model and Ericsson model shows small deviation from real measurements in urban environment and Hata model generally gives better prediction in the rural environment.

  2. Telomeres and mechanisms of Robertsonian fusion.

    PubMed

    Slijepcevic, P

    1998-05-01

    The Robertsonian (Rb) fusion, a chromosome rearrangement involving centric fusion of two acro-(telo)centric chromosomes to form a single metacentric, is one of the most frequent events in mammalian karyotype evolution. Since one of the functions of telomeres is to preserve chromosome integrity, a prerequisite for the formation of Rb fusions should be either telomere loss or telomere inactivation. Possible mechanisms underlying the formation of various types of Rb fusion are discussed here. For example, Rb fusion in wild mice involves complete loss of p-arm telomeres by chromosome breakage within minor satellite sequences. By contrast, interstitial telomeric sites are found in the pericentromeric regions of chromosomes originating from a number of vertebrate species, suggesting the occurrence of Rb-like fusion without loss of telomeres, a possibility consistent with some form of telomere inactivation. Finally, a recent study suggests that telomere shortening induced by the deletion of the telomerase RNA gene in the mouse germ-line leads to telomere loss and high frequencies of Rb fusion in mouse somatic cells. Thus, at least three mechanisms in mammalian cells lead to the formation of Rb fusions.

  3. Preparation of serum and plasma samples for determination of tricyclic antidepressants: effects of blood collection tubes and storage.

    PubMed

    Nyberg, G; Mårtensson, E

    1986-01-01

    The effects were tested of eight common types of blood collection tubes and two types of "plasma separators" on the stability of the tricyclic antidepressants amitriptyline, imipramine, clomipramine, and their monodemethylated metabolites in venous blood samples. Although EDTA-containing Venoject lavender and Vacutainer lavender tubes seemed to give the most stable plasma samples, and Venoject red the most stable serum samples, the differences were too small to have practical consequences. Vacutainer royal blue collection tubes gave significant losses of greater than 20% of some of the substances. The tubes with serum separator gel or filter proved unsuitable, since they were responsible for losses of greater than 40%. The losses were not caused by redistribution between blood cells and plasma but occurred mainly as a result of contact between the contents and the caps of the tubes. Experiments with freezing, thawing, and storage of samples showed that freshly sampled blood could be stored at room temperature for 24 h in Venoject green tubes without significant losses. Serum samples could be stored at refrigerator temperature for 4 weeks without important losses. Freezing, thawing, and storage at -20 degrees C did not influence the serum or plasma concentrations.

  4. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa.

    PubMed

    Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent

    2013-06-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.

  5. Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    PubMed Central

    Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.

    2013-01-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619

  6. Adjuvant-specific regulation of long-term antibody responses by ZBTB20

    PubMed Central

    Wang, Yinan

    2014-01-01

    The duration of antibody production by long-lived plasma cells varies with the type of immunization, but the basis for these differences is unknown. We demonstrate that plasma cells formed in response to the same immunogen engage distinct survival programs depending on the adjuvant. After alum-adjuvanted immunization, antigen-specific bone marrow plasma cells deficient in the transcription factor ZBTB20 failed to accumulate over time, leading to a progressive loss of antibody production relative to wild-type controls. Fetal liver reconstitution experiments demonstrated that the requirement for ZBTB20 was B cell intrinsic. No defects were observed in germinal center numbers, affinity maturation, or plasma cell formation or proliferation in ZBTB20-deficient chimeras. However, ZBTB20-deficient plasma cells expressed reduced levels of MCL1 relative to wild-type controls, and transgenic expression of BCL2 increased serum antibody titers. These data indicate a role for ZBTB20 in promoting survival in plasma cells. Strikingly, adjuvants that activate TLR2 and TLR4 restored long-term antibody production in ZBTB20-deficient chimeras through the induction of compensatory survival programs in plasma cells. Thus, distinct lifespans are imprinted in plasma cells as they are formed, depending on the primary activation conditions. The durability of vaccines may accordingly be improved through the selection of appropriate adjuvants. PMID:24711582

  7. Silicification in Grasses: Variation between Different Cell Types

    PubMed Central

    Kumar, Santosh; Soukup, Milan; Elbaum, Rivka

    2017-01-01

    Plants take up silicon as mono-silicic acid, which is released to soil by the weathering of silicate minerals. Silicic acid can be taken up by plant roots passively or actively, and later it is deposited in its polymerized form as amorphous hydrated silica. Major silica depositions in grasses occur in root endodermis, leaf epidermal cells, and outer epidermal cells of inflorescence bracts. Debates are rife about the mechanism of silica deposition, and two contrasting scenarios are often proposed to explain it. According to the passive mode of silicification, silica deposition is a result of silicic acid condensation due to dehydration, such as during transpirational loss of water from the aboveground organs. In general, silicification and transpiration are positively correlated, and continued silicification is sometimes observed after cell and tissue maturity. The other mode of silicification proposes the involvement of some biological factors, and is based on observations that silicification is not necessarily coupled with transpiration. Here, we review evidence for both mechanisms of silicification, and propose that the deposition mechanism is specific to the cell type. Considering all the cell types together, our conclusion is that grass silica deposition can be divided into three modes: spontaneous cell wall silicification, directed cell wall silicification, and directed paramural silicification in silica cells. PMID:28400787

  8. Alterations in the alveolar epithelium after injury leading to pulmonary fibrosis.

    PubMed

    Kasper, M; Haroske, G

    1996-04-01

    This review discusses current knowledge of the involvement of the alveolar epithelium in tissue remodelling during fibrogenesis. The purpose of the present paper is to give an overview, including the authors' own results, of knowledge of ultrastructural alterations, proliferation kinetics and phenotypic changes of pneumocytes in experimental and clinical pathology of pulmonary fibrosis. After lung injury, the alveolar epithelial cells show ultrastructural alterations, hypertrophy and hyperplasia, and a modulation of a series of structural and membrane proteins such as cytoskeletal changes, loss or de novo expression of epithelial adhesion molecules, and altered lectin binding. Furthermore, enhanced secretion of proteases, of cytokines and other soluble factors can be observed in the alveolar epithelium. These findings suggest the contribution of the epithelium in the remodelling process to be greater than expected. Estimations of the cell kinetics show that type II pneumocytes have the proliferative capacity to restore high proportions of damaged type I cells within few hours. In fibrosis this capacity also seems to be affected seriously, resulting in transitional phenotypes between type II and type I cells. Additionally, in the light of the detection of CD44 type of adhesion molecules at the foot processes of type II pneumocytes, some aspects of epithelial-fibroblast interaction are described.

  9. The Estrogen Receptor-α in Osteoclasts Mediates the Protective Effects of Estrogens on Cancellous But Not Cortical Bone

    PubMed Central

    Martin-Millan, Marta; Almeida, Maria; Ambrogini, Elena; Han, Li; Zhao, Haibo; Weinstein, Robert S.; Jilka, Robert L.; O'Brien, Charles A.; Manolagas, Stavros C.

    2010-01-01

    Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)α from the monocyte/macrophage cell lineage in mice (ERαLysM−/−) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERαLysM−/− were resistant to the proapoptotic effect of 17β-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERα knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERα was as effective as 17β-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERα. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERα. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton. PMID:20053716

  10. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis

    PubMed Central

    Wang, Feifei; Chen, Zhong-Hua; Liu, Xiaohui; Colmer, Timothy David; Zhou, Meixue; Shabala, Sergey

    2016-01-01

    Waterlogging is a major abiotic stress that limits the growth of plants. The crucial role of Ca2+ as a second messenger in response to abiotic and biotic stimuli has been widely recognized in plants. However, the physiological and molecular mechanisms of Ca2+ distribution within specific cell types in different root zones under hypoxia is poorly understood. In this work, whole-plant physiological and tissue-specific Ca2+ changes were studied using several ACA (Ca2+-ATPase) and CAX (Ca2+/proton exchanger) knock-out Arabidopsis mutants subjected to waterlogging treatment. In the wild-type (WT) plants, several days of hypoxia decreased the expression of ACA8, CAX4, and CAX11 by 33% and 50% compared with the control. The hypoxic treatment also resulted in an up to 11-fold tissue-dependent increase in Ca2+ accumulation in root tissues as revealed by confocal microscopy. The increase was much higher in stelar cells in the mature zone of Arabidopsis mutants with loss of function for ACA8, ACA11, CAX4, and CAX11. In addition, a significantly increased Ca2+ concentration was found in the cytosol of stelar cells in the mature zone after hypoxic treatment. Three weeks of waterlogging resulted in dramatic loss of shoot biomass in cax11 plants (67% loss in shoot dry weight), while in the WT and other transport mutants this decline was only 14–22%. These results were also consistent with a decline in leaf chlorophyll fluorescence (F v/F m). It is suggested that CAX11 plays a key role in maintaining cytosolic Ca2+ homeostasis and/or signalling in root cells under hypoxic conditions. PMID:26889007

  11. T-type Ca2+ channels regulate the exit of cardiac myocytes from the cell cycle after birth

    PubMed Central

    Wang, Fang; Gao, Hui; Kubo, Hajime; Fan, Xiaoxuan; Zhang, Hongyu; Berretta, Remus; Chen, Xiongwen; Sharp, Thomas; Starosta, Timothy; Makarewich, Catherine; Li, Ying; Molkentin, Jeffrey D.; Houser, Steven R.

    2013-01-01

    T-type Ca2+ channels (TTCCs) are expressed in the fetal heart and then disappear from ventricular myocytes after birth. The hypothesis examined in this study was the α1G TTCCs' influence in myocyte maturation and their rapid withdrawal from the cell cycle after birth. Methods Cardiac myocytes were isolated from neonatal and adult wild type (WT), α1G−/− and α1G over expressing (α1GDT) mice. Bromodeoxyuridine (BrdU) uptake, myocyte nucleation, cell cycle analysis, and T-type Ca2+ currents were measured. Results All myocytes were mono-nucleated at birth and 35% of WT myocytes expressed functional TTCCs. Very few neonatal myocytes had functional TTCCs in α1G−/− hearts. By the end of the first week after birth no WT or α1G−/− had functional TTCCs. During the first week after birth about 25% of WT myocytes were BrdU+ and became bi-nucleated. Significantly fewer α1G−/− myocytes became bi-nucleated and fewer of these myocytes were BrdU+. Neonatal α1G−/− myocytes were also smaller than WT. Adult WT and α1G−/− hearts were similar in size, but α1G−/− myocytes were smaller and a greater % were mono-nucleated. α1G over expressing hearts were smaller than WT but their myocytes were larger. Conclusions The studies performed show that loss of functional TTCCs is associated with bi-nucleation and myocyte withdrawal from the cell cycle. Loss of α1G TTCCs slowed the transition from mono- to bi-nucleation and resulted in an adult heart with a greater number of small cardiac myocytes. These results suggest that TTCCs are involved in the regulation of myocyte size and the exit of myocytes from the cell cycle during the first week after birth. PMID:23743021

  12. PI3K and Inhibitor of Apoptosis Proteins Modulate Gentamicin- Induced Hair Cell Death in the Zebrafish Lateral Line

    PubMed Central

    Wiedenhoft, Heather; Hayashi, Lauren; Coffin, Allison B.

    2017-01-01

    Inner ear hair cell death leads to sensorineural hearing loss and can be a direct consequence of aminoglycoside antibiotic treatment. Aminoglycosides such as gentamicin are effective therapy for serious Gram-negative bacterial infections such as some forms of meningitis, pneumonia, and sepsis. Aminoglycosides enter hair cells through mechanotransduction channels at the apical end of hair bundles and initiate intrinsic cell death cascades, but the precise cell signaling that leads to hair cell death is incompletely understood. Here, we examine the cell death pathways involved in aminoglycoside damage using the zebrafish (Danio rerio). The zebrafish lateral line contains hair cell-bearing organs called neuromasts that are homologous to hair cells of the mammalian inner ear and represents an excellent model to study ototoxicity. Based on previous research demonstrating a role for p53, Bcl2 signaling, autophagy, and proteasomal degradation in aminoglycoside-damaged hair cells, we used the Cytoscape GeneMANIA Database to identify additional proteins that might play a role in neomycin or gentamicin ototoxicity. Our bioinformatics analysis identified the pro-survival proteins phosphoinositide-dependent kinase-1 (PDK1) and X-linked inhibitor of apoptosis protein (Xiap) as potential mediators of gentamicin-induced hair cell damage. Pharmacological inhibition of PDK1 or its downstream mediator protein kinase C facilitated gentamicin toxicity, as did Xiap mutation, suggesting that both PI3K and endogenous Xiap confer protection. Surprisingly, aminoglycoside-induced hair cell death was highly attenuated in wild type Tupfel long-fin (TL fish; the background strain for the Xiap mutant line) compared to wild type ∗AB zebrafish. Pharmacologic manipulation of p53 suggested that the strain difference might result from decreased p53 in TL hair cells, allowing for increased hair cell survival. Overall, our studies identified additional steps in the cell death cascade triggered by aminoglycoside damage, suggesting possible drug targets to combat hearing loss resulting from aminoglycoside exposure. PMID:29093665

  13. Mesenchymal Stem Cells Sense Three Dimensional Type I Collagen through Discoidin Domain Receptor 1.

    PubMed

    Lund, A W; Stegemann, J P; Plopper, G E

    2009-01-01

    The extracellular matrix provides structural and organizational cues for tissue development and defines and maintains cellular phenotype during cell fate determination. Multipotent mesenchymal stem cells use this matrix to tightly regulate the balance between their differentiation potential and self-renewal in the native niche. When understood, the mechanisms that govern cell-matrix crosstalk during differentiation will allow for efficient engineering of natural and synthetic matrices to specifically direct and maintain stem cell phenotype. This work identifies the discoidin domain receptor 1 (DDR1), a collagen activated receptor tyrosine kinase, as a potential link through which stem cells sense and respond to the 3D organization of their extracellular matrix microenvironment. DDR1 is dependent upon both the structure and proteolytic state of its collagen ligand and is specifically expressed and localized in three dimensional type I collagen culture. Inhibition of DDR1 expression results in decreased osteogenic potential, increased cell spreading, stress fiber formation and ERK1/2 phosphorylation. Additionally, loss of DDR1 activity alters the cell-mediated organization of the naïve type I collagen matrix. Taken together, these results demonstrate a role for DDR1 in the stem cell response to and interaction with three dimensional type I collagen. Dynamic changes in cell shape in 3D culture and the tuning of the local ECM microstructure, directs crosstalk between DDR1 and two dimensional mechanisms of osteogenesis that can alter their traditional roles.

  14. Functional conservation of atonal and Math1 in the CNS and PNS

    NASA Technical Reports Server (NTRS)

    Ben-Arie, N.; Hassan, B. A.; Bermingham, N. A.; Malicki, D. M.; Armstrong, D.; Matzuk, M.; Bellen, H. J.; Zoghbi, H. Y.

    2000-01-01

    To determine the extent to which atonal and its mouse homolog Math1 exhibit functional conservation, we inserted (beta)-galactosidase (lacZ) into the Math1 locus and analyzed its expression, evaluated consequences of loss of Math1 function, and expressed Math1 in atonal mutant flies. lacZ under the control of Math1 regulatory elements duplicated the previously known expression pattern of Math1 in the CNS (i.e., the neural tube, dorsal spinal cord, brainstem, and cerebellar external granule neurons) but also revealed new sites of expression: PNS mechanoreceptors (inner ear hair cells and Merkel cells) and articular chondrocytes. Expressing Math1 induced ectopic chordotonal organs (CHOs) in wild-type flies and partially rescued CHO loss in atonal mutant embryos. These data demonstrate that both the mouse and fly homologs encode lineage identity information and, more interestingly, that some of the cells dependent on this information serve similar mechanoreceptor functions.

  15. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity.

    PubMed

    Wang, Yanshu; Rattner, Amir; Zhou, Yulian; Williams, John; Smallwood, Philip M; Nathans, Jeremy

    2012-12-07

    Norrin/Frizzled4 (Fz4) signaling activates the canonical Wnt pathway to control retinal vascular development. Using genetically engineered mice, we show that precocious Norrin production leads to premature retinal vascular invasion and delayed Norrin production leads to characteristic defects in intraretinal vascular architecture. In genetic mosaics, wild-type endothelial cells (ECs) instruct neighboring Fz4(-/-) ECs to produce an architecturally normal mosaic vasculature, a cell nonautonomous effect. However, over the ensuing weeks, Fz4(-/-) ECs are selectively eliminated from the mosaic vasculature, implying the existence of a quality control program that targets defective ECs. In the adult retina and cerebellum, gain or loss of Norrin/Fz4 signaling results in a cell-autonomous gain or loss, respectively, of blood retina barrier and blood brain barrier function, indicating an ongoing requirement for Frizzled signaling in barrier maintenance and substantial plasticity in mature CNS vascular structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Molecular architecture underlying fluid absorption by the developing inner ear

    PubMed Central

    Honda, Keiji; Kim, Sung Huhn; Kelly, Michael C; Burns, Joseph C; Constance, Laura; Li, Xiangming; Zhou, Fei; Hoa, Michael; Kelley, Matthew W; Morell, Robert J

    2017-01-01

    Mutations of SLC26A4 are a common cause of hearing loss associated with enlargement of the endolymphatic sac (EES). Slc26a4 expression in the developing mouse endolymphatic sac is required for acquisition of normal inner ear structure and function. Here, we show that the mouse endolymphatic sac absorbs fluid in an SLC26A4-dependent fashion. Fluid absorption was sensitive to ouabain and gadolinium but insensitive to benzamil, bafilomycin and S3226. Single-cell RNA-seq analysis of pre- and postnatal endolymphatic sacs demonstrates two types of differentiated cells. Early ribosome-rich cells (RRCs) have a transcriptomic signature suggesting expression and secretion of extracellular proteins, while mature RRCs express genes implicated in innate immunity. The transcriptomic signature of mitochondria-rich cells (MRCs) indicates that they mediate vectorial ion transport. We propose a molecular mechanism for resorption of NaCl by MRCs during development, and conclude that disruption of this mechanism is the root cause of hearing loss associated with EES. PMID:28994389

  17. A Quantitative Chemotherapy Genetic Interaction Map Reveals Factors Associated with PARP Inhibitor Resistance.

    PubMed

    Hu, Hsien-Ming; Zhao, Xin; Kaushik, Swati; Robillard, Lilliane; Barthelet, Antoine; Lin, Kevin K; Shah, Khyati N; Simmons, Andy D; Raponi, Mitch; Harding, Thomas C; Bandyopadhyay, Sourav

    2018-04-17

    Chemotherapy is used to treat most cancer patients, yet our understanding of factors that dictate response and resistance to such drugs remains limited. We report the generation of a quantitative chemical-genetic interaction map in human mammary epithelial cells charting the impact of the knockdown of 625 genes related to cancer and DNA repair on sensitivity to 29 drugs, covering all classes of chemotherapy. This quantitative map is predictive of interactions maintained in other cell lines, identifies DNA-repair factors, predicts cancer cell line responses to therapy, and prioritizes synergistic drug combinations. We identify that ARID1A loss confers resistance to PARP inhibitors in cells and ovarian cancer patients and that loss of GPBP1 causes resistance to cisplatin and PARP inhibitors through the regulation of genes involved in homologous recombination. This map helps navigate patient genomic data and optimize chemotherapeutic regimens by delineating factors involved in the response to specific types of DNA damage. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Loss of anchorage primarily induces non-apoptotic cell death in a human mammary epithelial cell line under atypical focal adhesion kinase signaling.

    PubMed

    Ishikawa, F; Ushida, K; Mori, K; Shibanuma, M

    2015-01-22

    Anchorage dependence of cellular growth and survival prevents inappropriate cell growth or survival in ectopic environments, and serves as a potential barrier to metastasis of cancer cells. Therefore, obtaining a better understanding of anchorage-dependent responses in normal cells is the first step to understand and impede anchorage independence of growth and survival in cancer cells and finally to eradicate cancer cells during metastasis. Anoikis, a type of apoptosis specifically induced by lack of appropriate cell-extracellular matrix adhesion, has been established as the dominant response of normal epithelial cells to anchorage loss. For example, under detached conditions, the untransformed mammary epithelial cell (MEC) line MCF-10 A, which exhibits myoepithelial characteristics, underwent anoikis dependent on classical ERK signaling. On the other hand, recent studies have revealed a variety of phenotypes resulting in cell death modalities distinct from anoikis, such as autophagy, necrosis, and cornification, in detached epithelial cells. In the present study, we characterized detachment-induced cell death (DICD) in primary human MECs immortalized with hTERT ((Tert)HMECs), which are bipotent progenitor-like cells with a differentiating phenotype to luminal cells. In contrast to MCF-10 A cells, apoptosis was not observed in detached (Tert)HMECs; instead, non-apoptotic cell death marked by features of entosis, cornification, and necrosis was observed along with downregulation of focal adhesion kinase (FAK) signaling. Cell death was overcome by anchorage-independent activities of FAK but not PI3K/AKT, SRC, and MEK/ERK, suggesting critical roles of atypical FAK signaling pathways in the regulation of non-apoptotic cell death. Further analysis revealed an important role of TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand) as a mediator of FAK signaling in regulation of entosis and necrosis and a role of p38 MAPK in the induction of necrosis. Overall, the present study highlighted outstanding cell subtype or differentiation stage specificity in cell death phenotypes induced upon anchorage loss in human MECs.

  19. Functional characterisation of the type 1 von Willebrand disease candidate VWF gene variants: p.M771I, p.L881R and p.P1413L

    PubMed Central

    Berber, Ergul; Ozbil, Mehmet; Brown, Christine; Baslar, Zafer; Caglayan, S. Hande; Lillicrap, David

    2017-01-01

    Background Abnormalities in the biosynthetic pathway or increased clearance of plasma von Willebrand factor (VWF) are likely to contribute to decreased plasma VWF levels in inherited type 1 von Willebrand disease (VWD). Recent studies demonstrated that 65% of type 1 VWD patients have candidate VWF mutations, the majority of which are missense variants. The purpose of this study was to explore the effects of three VWF missense mutations (p.M771I, p.L881R and p.P1413L) located in different functional domains of VWF, reported as candidate mutations in type 1 VWD patients in the course of the MCMDM-1VWD study. Materials and methods The focus of these studies was on the intracellular biosynthetic processing and localisation of VWF in a heterologous cell system. Molecular dynamic simulation for p.M771I and p.P1413L was also performed to analyse the conformational effects of the changes. Results As determined by immunofluorescence antibody staining and confocal microscopy of HEK293 cells, the intracellular localisation of recombinant VWF with the p.M771I variation was impaired. Transient transfection studies and phorbol myristate acetate stimulation in COS-7 cells revealed significant intracellular retention. In addition, major loss of VWF multimers was observed for only the p.M771I mutation. Molecular dynamic simulations on p.M771I mutant VWF revealed distinct structural rearrangements including a large deviation in the E’ domain, and significant loss of β-sheet secondary structure. Discussion The pathogenic effects of candidate VWF gene mutations were explored in this study. In vitro expression studies in heterologous cell systems revealed impaired secretion of VWF and a dominant negative effect on the processing of the wild-type protein for only the p.M771I mutation and none of the mutations affected the regulated secretion. PMID:27483487

  20. Functional characterisation of the type 1 von Willebrand disease candidate VWF gene variants: p.M771I, p.L881R and p.P1413L.

    PubMed

    Berber, Ergul; Ozbil, Mehmet; Brown, Christine; Baslar, Zafer; Caglayan, S Hande; Lillicrap, David

    2017-10-01

    Abnormalities in the biosynthetic pathway or increased clearance of plasma von Willebrand factor (VWF) are likely to contribute to decreased plasma VWF levels in inherited type 1 von Willebrand disease (VWD). Recent studies demonstrated that 65% of type 1 VWD patients have candidate VWF mutations, the majority of which are missense variants. The purpose of this study was to explore the effects of three VWF missense mutations (p.M771I, p.L881R and p.P1413L) located in different functional domains of VWF, reported as candidate mutations in type 1 VWD patients in the course of the MCMDM-1VWD study. The focus of these studies was on the intracellular biosynthetic processing and localisation of VWF in a heterologous cell system. Molecular dynamic simulation for p.M771I and p.P1413L was also performed to analyse the conformational effects of the changes. As determined by immunofluorescence antibody staining and confocal microscopy of HEK293 cells, the intracellular localisation of recombinant VWF with the p.M771I variation was impaired. Transient transfection studies and phorbol myristate acetate stimulation in COS-7 cells revealed significant intracellular retention. In addition, major loss of VWF multimers was observed for only the p.M771I mutation. Molecular dynamic simulations on p.M771I mutant VWF revealed distinct structural rearrangements including a large deviation in the E' domain, and significant loss of β-sheet secondary structure. The pathogenic effects of candidate VWF gene mutations were explored in this study. In vitro expression studies in heterologous cell systems revealed impaired secretion of VWF and a dominant negative effect on the processing of the wild-type protein for only the p.M771I mutation and none of the mutations affected the regulated secretion.

  1. Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2.

    PubMed

    Ler, Lian Dee; Ghosh, Sujoy; Chai, Xiaoran; Thike, Aye Aye; Heng, Hong Lee; Siew, Ee Yan; Dey, Sucharita; Koh, Liang Kai; Lim, Jing Quan; Lim, Weng Khong; Myint, Swe Swe; Loh, Jia Liang; Ong, Pauline; Sam, Xin Xiu; Huang, Dachuan; Lim, Tony; Tan, Puay Hoon; Nagarajan, Sanjanaa; Cheng, Christopher Wai Sam; Ho, Henry; Ng, Lay Guat; Yuen, John; Lin, Po-Hung; Chuang, Cheng-Keng; Chang, Ying-Hsu; Weng, Wen-Hui; Rozen, Steven G; Tan, Patrick; Creasy, Caretha L; Pang, See-Tong; McCabe, Michael T; Poon, Song Ling; Teh, Bin Tean

    2017-02-22

    Trithorax-like group complex containing KDM6A acts antagonistically to Polycomb-repressive complex 2 (PRC2) containing EZH2 in maintaining the dynamics of the repression and activation of gene expression through H3K27 methylation. In urothelial bladder carcinoma, KDM6A (a H3K27 demethylase) is frequently mutated, but its functional consequences and therapeutic targetability remain unknown. About 70% of KDM6A mutations resulted in a total loss of expression and a consequent loss of demethylase function in this cancer type. Further transcriptome analysis found multiple deregulated pathways, especially PRC2/EZH2, in KDM6A -mutated urothelial bladder carcinoma. Chromatin immunoprecipitation sequencing analysis revealed enrichment of H3K27me3 at specific loci in KDM6A -null cells, including PRC2/EZH2 and their downstream targets. Consequently, we targeted EZH2 (an H3K27 methylase) and demonstrated that KDM6A -null urothelial bladder carcinoma cell lines were sensitive to EZH2 inhibition. Loss- and gain-of-function assays confirmed that cells with loss of KDM6A are vulnerable to EZH2. IGFBP3, a direct KDM6A/EZH2/H3K27me3 target, was up-regulated by EZH2 inhibition and contributed to the observed EZH2-dependent growth suppression in KDM6A -null cell lines. EZH2 inhibition delayed tumor onset in KDM6A -null cells and caused regression of KDM6A -null bladder tumors in both patient-derived and cell line xenograft models. In summary, our study demonstrates that inactivating mutations of KDM6A , which are common in urothelial bladder carcinoma, are potentially targetable by inhibiting EZH2. Copyright © 2017, American Association for the Advancement of Science.

  2. PAX6 maintains β cell identity by repressing genes of alternative islet cell types.

    PubMed

    Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H; Glaser, Benjamin; Ashery-Padan, Ruth; Dor, Yuval

    2017-01-03

    Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.

  3. PAX6 maintains β cell identity by repressing genes of alternative islet cell types

    PubMed Central

    Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H.; Glaser, Benjamin; Ashery-Padan, Ruth

    2016-01-01

    Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes. PMID:27941241

  4. One year of sitagliptin treatment protects against islet amyloid-associated β-cell loss and does not induce pancreatitis or pancreatic neoplasia in mice

    PubMed Central

    Aston-Mourney, Kathryn; Subramanian, Shoba L.; Zraika, Sakeneh; Samarasekera, Thanya; Meier, Daniel T.; Goldstein, Lynn C.

    2013-01-01

    The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin is an attractive therapy for diabetes, as it increases insulin release and may preserve β-cell mass. However, sitagliptin also increases β-cell release of human islet amyloid polypeptide (hIAPP), the peptide component of islet amyloid, which is cosecreted with insulin. Thus, sitagliptin treatment may promote islet amyloid formation and its associated β-cell toxicity. Conversely, metformin treatment decreases islet amyloid formation by decreasing β-cell secretory demand and could therefore offset sitagliptin's potential proamyloidogenic effects. Sitagliptin treatment has also been reported to be detrimental to the exocrine pancreas. We investigated whether long-term sitagliptin treatment, alone or with metformin, increased islet amyloid deposition and β-cell toxicity and induced pancreatic ductal proliferation, pancreatitis, and/or pancreatic metaplasia/neoplasia. hIAPP transgenic and nontransgenic littermates were followed for 1 yr on no treatment, sitagliptin, metformin, or the combination. Islet amyloid deposition, β-cell mass, insulin release, and measures of exocrine pancreas pathology were determined. Relative to untreated mice, sitagliptin treatment did not increase amyloid deposition, despite increasing hIAPP release, and prevented amyloid-induced β-cell loss. Metformin treatment alone or with sitagliptin decreased islet amyloid deposition to a similar extent vs untreated mice. Ductal proliferation was not altered among treatment groups, and no evidence of pancreatitis, ductal metaplasia, or neoplasia were observed. Therefore, long-term sitagliptin treatment stimulates β-cell secretion without increasing amyloid formation and protects against amyloid-induced β-cell loss. This suggests a novel effect of sitagliptin to protect the β-cell in type 2 diabetes that appears to occur without adverse effects on the exocrine pancreas. PMID:23736544

  5. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    PubMed

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  6. Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle.

    PubMed

    Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S; Marazzi, Giovanna; Sassoon, David A

    2018-01-01

    Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70-80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration.

  7. Design of Polymeric Culture Substrates to Promote Proangiogenic Potential of Stem Cells.

    PubMed

    Kwon, Byeong-Ju; Wang, Xintong; Kang, Mi-Lan; You, Jin; Lee, Shin-Jeong; Kim, Won Shik; Yoon, Young-Sup; Park, Jong-Chul; Sung, Hak-Joon

    2018-02-01

    Stem cells are a promising cell source for regenerative medicine due to their differentiation and self-renewal capacities. In the field of regenerative medicine and tissue engineering, a variety of biomedical technologies have been tested to improve proangiogenic activities of stem cells. However, their therapeutic effect is found to be limited in the clinic because of cell loss, senescence, and insufficient therapeutic activities. To address this type of issue, advanced techniques for biomaterial synthesis and fabrication have been approached to mimic proangiogenic microenvironment and to direct proangiogenic activities. This review highlights the types of polymers and design strategies that have been studied to promote proangiogenic activities of stem cells. In particular, scaffolds, hydrogels, and surface topographies, as well as insight into their underlying mechanisms to improve proangiogenic activities are the focuses. The strategy to promote angiogenic activities of hMSCs by controlling substrate repellency is introduced, and the future direction is proposed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Middle ear application of a sodium hyaluronate gel loaded with neomycin in a Guinea pig model.

    PubMed

    Saber, Amanj; Laurell, Göran; Bramer, Tobias; Edsman, Katarina; Engmér, Cecilia; Ulfendahl, Mats

    2009-02-01

    Establishing methods for topical administration of drugs to the inner ear have great clinical relevance and potential even in a relatively short perspective. To evaluate the efficacy of sodium hyaluronate (HYA) as a vehicle for drugs that could be used for treatment of inner ear disorders. The cochlear hair cell loss and round window membrane (RWM) morphology were investigated after topical application of neomycin and HYA into the middle ear. Sixty-five albino guinea pigs were used and divided into groups depending on the type of the treatment. Neomycin was chosen as tracer for drug release and pharmacodynamic effect. HYA loaded with 3 different concentrations of neomycin was injected to the middle ear cavity of guinea pigs. Phalloidin stained surface preparations of the organ of Corti were used to estimate hair cell loss induced by neomycin. The thickness of the midportion of the RWM was measured and compared with that of controls using light and electron microscopy. All animal procedures were pe rformed in accordance with the ethical standards of Karolinska Institutet. Neomycin induced a considerable hair cell loss in guinea pigs receiving a middle ear injection of HYA loaded with the drug, demonstrating that neomycin was released from the gel and delivered to the inner ear. The resulting hair cell loss showed a clear dose-dependence. Only small differences in hair cell loss were noted between animals receiving neomycin solution and animals exposed to neomycin in HYA suggesting that the vehicle neither facilitated nor hindered drug transport between the middle ear cavity and the inner ear. One week after topical application, the thickness of the RWM had increased and was dependent upon the concentration of neomycin administered to the middle ear. At 4 weeks the thickness of the RWM had returned to normal. HYA is a safe vehicle for drugs aimed to pass into the inner ear through the RWM. Neomycin was released from HYA and transported into the inner ear as evidenced by hair cell loss.

  9. Frequent deletion of 3p21.1 region carrying semaphorin 3G and aberrant expression of the genes participating in semaphorin signaling in the epithelioid type of malignant mesothelioma cells.

    PubMed

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Morinaga, Tomonori; Fukuoka, Kazuya; Yamada, Shusai; Murakami, Aki; Kondo, Nobuyuki; Matsumoto, Seiji; Okumura, Yoshitomo; Tanaka, Fumihiro; Hasegawa, Seiki; Hashimoto-Tamaoki, Tomoko; Nakano, Takashi

    2011-12-01

    Array-based comparative genomic hybridization analysis was performed on 21 malignant mesothelioma (MM) samples (16 primary cell cultures and 5 cell lines) and two reactive mesothelial hyperplasia (RM) primary cell cultures. The RM samples did not have any genomic losses or gains. In MM samples, deletions in 1p, 3p21, 4q, 9p21, 16p13 and 22q were detected frequently. We focused on 3p21 because this deletion was specific to the epithelioid type. Especially, a deletion in 3p21.1 region carrying seven genes including SEMA3G was found in 52% of MM samples (11 of 14 epithelioid samples). The allele loss of 3p21.1 might be a good marker for the epithelioid MM. A homozygous deletion in this region was detected in two MM primary cell cultures. A heterozygous deletion detected in nine samples contained the 3p21.1 region and 3p21.31 one carrying the candidate tumor suppressor genes such as semaphorin 3F (SEMA3F), SEMA3B and Ras association (RalGDS/AF-6) domain family member 1 (RASSF1A). SEMA3B, 3F and 3G are class 3 semaphorins and inhibit growth by competing with vascular endothelial growth factor (VEGF) through binding to neuropilin. All MM samples downregulated the expression of more than one gene for SEMA3B, 3F and 3G when compared with Met5a, a normal pleura-derived cell line. Moreover, in 12 of 14 epithelioid MM samples the expression level of SEMA3A was lower than that in Met5a and the two RM samples. An augmented expression of VEGFA was detected in half of the MM samples. The expression ratio of VEGFA/SEMA3A was significantly higher in the epithelioid MMs than in Met5a, RMs and the non-epithelioid MMs. Our data suggest that the downregulated expression of SEMA3A and several SEMA3s results in a loss of inhibitory activities in tumor angiogenesis and tumor growth of VEGFA; therefore, it may play an important role on the pathogenesis of the epithelioid type of MM.

  10. Bone density loss after allogeneic hematopoietic stem cell transplantation: a prospective study.

    PubMed

    Stern, J M; Sullivan, K M; Ott, S M; Seidel, K; Fink, J C; Longton, G; Sherrard, D J

    2001-01-01

    The incidence and course of bone density abnormalities following hematopoietic stem cell transplantation are poorly understood and complicated by the impact of multiple factors. Hip, spine, and wrist bone mineral densities (BMDs) were measured in 104 adults (54 women, 54 men; mean age, 40 years [range, 18-64 years]) at 3 and 12 months after allogeneic transplantation. Clinical and laboratory variables were evaluated using univariate and multivariate analyses to determine risk factors for osteoporosis, fracture, and avascular necrosis. At 3 months posttransplantation, combined (male and female) hip, spine, and wrist z scores were -0.35, -0.42, and +0.04 standard deviations, respectively. At 12 months both men and women experienced significant loss of hip BMD (4.2%, P < .0001); changes in the spine and wrist were minimal. The cumulative dose and number of days of glucocorticoid therapy and the number of days of cyclosporine or tacrolimus therapy showed significant associations with loss of BMD; age, total body irradiation, diagnosis, and donor type did not. Nontraumatic fractures occurred in 10.6% of patients and avascular necrosis in 9.6% within 3 years posttransplantation. The decrease in height between pretransplantation and 12 months posttransplantation was significant (P = .0001). Results indicate that loss of BMD after allogeneic stem cell transplantation is common and accelerated by the length of immunosuppressive therapy and cumulative dose of glucocorticoid. An increased incidence of fracture and avascular necrosis may adversely impact long-term quality of life. Prevention of bone demineralization appears warranted after stem cell transplantation.

  11. Minireview: Directed Differentiation and Encapsulation of Islet β-Cells—Recent Advances and Future Considerations

    PubMed Central

    Tse, Hubert M.; Kozlovskaya, Veronika; Kharlampieva, Eugenia

    2015-01-01

    Diabetes mellitus has rapidly become a 21st century epidemic with the promise to create vast economic and health burdens, if left unchecked. The 2 major forms of diabetes arise from unique causes, with outcomes being an absolute (type 1) or relative (type 2) loss of functional pancreatic islet β-cell mass. Currently, patients rely on exogenous insulin and/or other pharmacologies that restore glucose homeostasis. Although these therapies have prolonged countless lives over the decades, the striking increases in both type 1 and type 2 diabetic diagnoses worldwide suggest a need for improved treatments. To this end, islet biologists are developing cell-based therapies by which a patient's lost insulin-producing β-cell mass is replenished. Pancreatic or islet transplantation from cadaveric donors into diabetic patients has been successful, yet the functional islet demand far surpasses supply. Thus, the field has been striving toward transplantation of renewable in vitro-derived β-cells that can restore euglycemia. Challenges have been numerous, but progress over the past decade has generated much excitement. In this review we will summarize recent findings that have placed us closer than ever to β-cell replacement therapies. With the promise of cell-based diabetes therapies on the horizon, we will also provide an overview of cellular encapsulation technologies that will deliver critical protection of newly implanted cells. PMID:26340406

  12. Chemerin C9 peptide induces receptor internalization through a clathrin-independent pathway

    PubMed Central

    Zhou, Jun-xian; Liao, Dan; Zhang, Shuo; Cheng, Ni; He, Hui-qiong; Ye, Richard D

    2014-01-01

    Aim: The chemerin receptor CMKLR1 is one type of G protein-coupled receptors abundant in monocyte-derived dendritic cells and macrophages, which plays a key role in the entry of a subset of immunodeficiency viruses including HIV/SIV into lymphocytes and macrophages. The aim of this work was to investigate how CMKLR1 was internalized and whether its internalization affected cell signaling in vitro. Methods: Rat basophilic leukemia RBL-2H3 cells, HEK 293 cells, and HeLa cells were used. CMKLR1 internalization was visualized by confocal microscopy imaging or using a FACScan flow cytometer. Six potential phosphorylation sites (Ser337, Ser343, Thr352, Ser344, Ser347, and Ser350) in CMKLR1 were substituted with alanine using site-directed mutagenesis. Heterologous expression of wild type and mutant CMKLR1 allowed for functional characterization of endocytosis, Ca2+ flux and extracellular signal-regulated kinase (ERK) phosphorylation. Results: Chemerin and the chemerin-derived nonapeptide (C9) induced dose-dependent loss of cell surface CMKLR1-GFP fusion protein and increased its intracellular accumulation in HEK 293 cells and RBL-2H3 cells stably expressing CMKLR1. Up to 90% of CMKLR1 was internalized after treatment with C9 (1 μmol/L). By using different agents, it was demonstrated that clathrin-independent mechanism was involved in CMKLR1 internalization. Mutations in Ser343 for G protein-coupled receptor kinase phosphorylation and in Ser347 for PKC phosphorylation abrogated CMKLR1 internalization. Loss of CMKLR1 internalization partially enhanced the receptor signaling, as shown by increased Ca2+ flux and a shorter latency to peak level of ERK phosphorylation. Conclusion: CMKLR1 internalization occurs in a clathrin-independent manner, which negatively regulated the receptor-mediated Ca2+ flux and ERK phosphorylation. PMID:24658352

  13. Peripheral nerve pathology, including aberrant Schwann cell differentiation, is ameliorated by doxycycline in a laminin-α2-deficient mouse model of congenital muscular dystrophy

    PubMed Central

    Homma, Sachiko; Beermann, Mary Lou; Miller, Jeffrey Boone

    2011-01-01

    The most common form of childhood congenital muscular dystrophy, Type 1A (MDC1A), is caused by mutations in the human LAMA2 gene that encodes the laminin-α2 subunit. In addition to skeletal muscle deficits, MDC1A patients typically show a loss of peripheral nerve function. To identify the mechanisms underlying this loss of nerve function, we have examined pathology and cell differentiation in sciatic nerves and ventral roots of the laminin-α2-deficient (Lama2−/−) mice, which are models for MDC1A. We found that, compared with wild-type, sciatic nerves of Lama2−/− mice had a significant increase in both proliferating (Ki67+) cells and premyelinating (Oct6+) Schwann cells, but also had a significant decrease in both immature/non-myelinating [glial fibrillary acidic protein (GFAP)+] and myelinating (Krox20+) Schwann cells. To extend our previous work in which we found that doxycycline, which has multiple effects on mammalian cells, improves motor behavior and more than doubles the median life-span of Lama2−/− mice, we also determined how nerve pathology was affected by doxycycline treatment. We found that myelinating (Krox20+) Schwann cells were significantly increased in doxycycline-treated compared with untreated sciatic nerves. In addition, doxycycline-treated peripheral nerves had significantly less pathology as measured by assays such as amount of unmyelinated or disorganized axons. This study thus identified aberrant proliferation and differentiation of Schwann cells as key components of pathogenesis in peripheral nerves and provided proof-of-concept that pharmaceutical therapy can be of potential benefit for peripheral nerve dysfunction in MDC1A. PMID:21505075

  14. CRISPR/Cas9 Editing of Murine Induced Pluripotent Stem Cells for Engineering Inflammation-Resistant Tissues.

    PubMed

    Brunger, Jonathan M; Zutshi, Ananya; Willard, Vincent P; Gersbach, Charles A; Guilak, Farshid

    2017-05-01

    Proinflammatory cytokines such as interleukin-1 (IL-1) are found in elevated levels in diseased or injured tissues and promote rapid tissue degradation while preventing stem cell differentiation. This study was undertaken to engineer inflammation-resistant murine induced pluripotent stem cells (iPSCs) through deletion of the IL-1 signaling pathway and to demonstrate the utility of these cells for engineering replacements for diseased or damaged tissues. Targeted deletion of the IL-1 receptor type I (IL-1RI) gene in murine iPSCs was achieved using the RNA-guided, site-specific clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome engineering system. Clonal cell populations with homozygous and heterozygous deletions were isolated, and loss of receptor expression and cytokine signaling was confirmed by flow cytometry and transcriptional reporter assays, respectively. Cartilage was engineered from edited iPSCs and tested for its ability to resist IL-1-mediated degradation in gene expression, histologic, and biomechanical assays after a 3-day treatment with 1 ng/ml of IL-1α. Three of 41 clones isolated possessed the IL-1RI +/- genotype. Four clones possessed the IL-1RI -/- genotype, and flow cytometry confirmed loss of IL-1RI on the surface of these cells, which led to an absence of NF-κB transcription activation after IL-1α treatment. Cartilage engineered from homozygous null clones was resistant to cytokine-mediated tissue degradation. In contrast, cartilage derived from wild-type and heterozygous clones exhibited significant degradative responses, highlighting the need for complete IL-1 blockade. This work demonstrates proof-of-concept of the ability to engineer custom-designed stem cells that are immune to proinflammatory cytokines (i.e., IL-1) as a potential cell source for cartilage tissue engineering. © 2016, American College of Rheumatology.

  15. Phenformin enhances the therapeutic effect of selumetinib in KRAS-mutant non-small cell lung cancer irrespective of LKB1 status.

    PubMed

    Zhang, Jun; Nannapaneni, Sreenivas; Wang, Dongsheng; Liu, Fakeng; Wang, Xu; Jin, Rui; Liu, Xiuju; Rahman, Mohammad Aminur; Peng, Xianghong; Qian, Guoqing; Chen, Zhuo G; Wong, Kwok-Kin; Khuri, Fadlo R; Zhou, Wei; Shin, Dong M

    2017-08-29

    MEK inhibition is potentially valuable in targeting KRAS-mutant non-small cell lung cancer (NSCLC). Here, we analyzed whether concomitant LKB1 mutation alters sensitivity to the MEK inhibitor selumetinib, and whether the metabolism drug phenformin can enhance the therapeutic effect of selumetinib in isogenic cell lines with different LKB1 status. Isogenic pairs of KRAS-mutant NSCLC cell lines A549, H460 and H157, each with wild-type and null LKB1, as well as genetically engineered mouse-derived cell lines 634 ( kras G12D/wt /p53 -/- /lkb1 wt/wt ) and t2 ( kras G12D/wt /p53 -/- / lkb1 -/- ) were used in vitro to analyze the activities of selumetinib, phenformin and their combination. Synergy was measured and potential mechanisms investigated. The in vitro findings were then confirmed in vivo using xenograft models. The re-expression of wild type LKB1 increased phospho-ERK level, suggesting that restored dependency on MEK->ERK->MAPK signaling might have contributed to the enhanced sensitivity to selumetinib. In contrast, the loss of LKB1 sensitized cells to phenformin. At certain combination ratios, phenformin and selumetinib showed synergistic activity regardless of LKB1 status. Their combination reduced phospho-ERK and S6 levels and induced potent apoptosis, but was likely through different mechanisms in cells with different LKB1 status. Finally, in xenograft models bearing isogenic A549 cells, we confirmed that loss of LKB1 confers resistance to selumetinib, and phenformin significantly enhances the therapeutic effect of selumetinib. Irrespective of LKB1 status, phenformin may enhance the anti-tumor effect of selumetinib in KRAS-mutant NSCLC. The dual targeting of MEK and cancer metabolism may provide a useful strategy to treat this subset of lung cancer.

  16. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    PubMed

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  17. Basic Biology of Skeletal Aging: Role of Stress Response Pathways

    PubMed Central

    2013-01-01

    Although a decline in bone formation and loss of bone mass are common features of human aging, the molecular mechanisms mediating these effects have remained unclear. Evidence from pharmacological and genetic studies in mice has provided support for a deleterious effect of oxidative stress in bone and has strengthened the idea that an increase in reactive oxygen species (ROS) with advancing age represents a pathophysiological mechanism underlying age-related bone loss. Mesenchymal stem cells and osteocytes are long-lived cells and, therefore, are more susceptible than other types of bone cells to the molecular changes caused by aging, including increased levels of ROS and decreased autophagy. However, short-lived cells like osteoblast progenitors and mature osteoblasts and osteoclasts are also affected by the altered aged environment characterized by lower levels of sex steroids, increased endogenous glucocorticoids, and higher oxidized lipids. This article reviews current knowledge on the effects of the aging process on bone, with particular emphasis on the role of ROS and autophagy in cells of the osteoblast lineage in mice. PMID:23825036

  18. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.

    PubMed

    Bertozzi, Cara C; Schmaier, Alec A; Mericko, Patricia; Hess, Paul R; Zou, Zhiying; Chen, Mei; Chen, Chiu-Yu; Xu, Bin; Lu, Min-min; Zhou, Diane; Sebzda, Eric; Santore, Matthew T; Merianos, Demetri J; Stadtfeld, Matthias; Flake, Alan W; Graf, Thomas; Skoda, Radek; Maltzman, Jonathan S; Koretzky, Gary A; Kahn, Mark L

    2010-07-29

    Although platelets appear by embryonic day 10.5 in the developing mouse, an embryonic role for these cells has not been identified. The SYK-SLP-76 signaling pathway is required in blood cells to regulate embryonic blood-lymphatic vascular separation, but the cell type and molecular mechanism underlying this regulatory pathway are not known. In the present study we demonstrate that platelets regulate lymphatic vascular development by directly interacting with lymphatic endothelial cells through C-type lectin-like receptor 2 (CLEC-2) receptors. PODOPLANIN (PDPN), a transmembrane protein expressed on the surface of lymphatic endothelial cells, is required in nonhematopoietic cells for blood-lymphatic separation. Genetic loss of the PDPN receptor CLEC-2 ablates PDPN binding by platelets and confers embryonic lymphatic vascular defects like those seen in animals lacking PDPN or SLP-76. Platelet factor 4-Cre-mediated deletion of Slp-76 is sufficient to confer lymphatic vascular defects, identifying platelets as the cell type in which SLP-76 signaling is required to regulate lymphatic vascular development. Consistent with these genetic findings, we observe SLP-76-dependent platelet aggregate formation on the surface of lymphatic endothelial cells in vivo and ex vivo. These studies identify a nonhemostatic pathway in which platelet CLEC-2 receptors bind lymphatic endothelial PDPN and activate SLP-76 signaling to regulate embryonic vascular development.

  19. Live imaging of the Drosophila spermatogonial stem cell niche reveals novel mechanisms regulating germline stem cell output

    PubMed Central

    Sheng, X. Rebecca; Matunis, Erika

    2011-01-01

    Adult stem cells modulate their output by varying between symmetric and asymmetric divisions, but have rarely been observed in living intact tissues. Germline stem cells (GSCs) in the Drosophila testis are anchored to somatic hub cells and were thought to exclusively undergo oriented asymmetric divisions, producing one stem cell that remains hub-anchored and one daughter cell displaced out of the stem cell-maintaining micro-environment (niche). We developed extended live imaging of the Drosophila testis niche, allowing us to track individual germline cells. Surprisingly, new wild-type GSCs are generated in the niche during steady-state tissue maintenance by a previously undetected event we term `symmetric renewal', where interconnected GSC-daughter cell pairs swivel such that both cells contact the hub. We also captured GSCs undergoing direct differentiation by detaching from the hub. Following starvation-induced GSC loss, GSC numbers are restored by symmetric renewals. Furthermore, upon more severe (genetically induced) GSC loss, both symmetric renewal and de-differentiation (where interconnected spermatogonia fragment into pairs while moving towards then establishing contact with the hub) occur simultaneously to replenish the GSC pool. Thus, stereotypically oriented stem cell divisions are not always correlated with an asymmetric outcome in cell fate, and changes in stem cell output are governed by altered signals in response to tissue requirements. PMID:21752931

  20. Prevention of type 2 Diabetes Mellitus: Potential of pharmacological agents.

    PubMed

    Samson, Susan L; Garber, Alan J

    2016-06-01

    People with impaired glucose tolerance or impaired fasting glucose, or "pre-diabetes", are at high risk for progression to type 2 diabetes, as are those with metabolic syndrome or a history of gestational diabetes. Both glucose-lowering and anti-obesity pharmacotherapies have been studied to determine if the onset of type 2 diabetes can be delayed or prevented. Here we review the available data in the field. The most common theme is the reduction in insulin resistance, such as with weight loss, decreasing demands on the beta cell to improve insulin secretion and prolong its function. Overall, therapies which decrease diabetes incidence in high-risk populations delay the onset of diabetes but do not correct the underlying beta cell defect. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Loss of imprinting of IGF2 and the epigenetic progenitor model of cancer

    PubMed Central

    Leick, Mark B; Shoff, Christopher J; Wang, Erwin C; Congress, Jaclyn L; Gallicano, G Ian

    2012-01-01

    Among the hypotheses discussing cancer formation, the cancer stem cell (CSC) theory is one receiving widespread support. One version of this theory states that changes in otherwise healthy cells can cause formation of tumor- initiating cells (TICs), which have the potential to create precancerous stem cells that can lead to CSC formation. These CSCs can be rare, in contrast to their differentiated progeny, which give rise to the vast majority of the tumor mass in most cancers. Loss of imprinting (LOI) of the insulin-like growth factor-2 (IGF2) gene is one change that can produce these TICs via an epigenetic progenitor model of tumorigenesis. While IGF2 usually supports normal cellular growth, LOI of IGF2 may lead to overexpression of the gene and moreover global chromatin instability. This modification has been observed in many forms of cancer, and given the effect of LOI of IGF2 and its role in cancer, detecting a loss of imprinting in this gene could serve as a valuable diagnostic tool. Preclinical data has shown some progress in identifying therapeutic approaches seeking to exploit this relationship. Thus, further research surrounding LOI of IGF2 could lead to increased understanding of several cancer types and enhance therapies against these diseases. PMID:23671798

  2. Beyond generalized hair cells: Molecular cues for hair cell types

    PubMed Central

    Jahan, Israt; Pan, Ning; Kersigo, Jennifer; Fritzsch, Bernd

    2012-01-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial for inner ear neurosensory development. The proneural TF Atoh1 regulates the differentiation of hair cells (HCs) whereas Neurog1 and Neurod1 regulate specification and differentiation of neurons, respectively, but also affect HC development. Expression of Delta and Jagged ligands in nascent HCs and Notch receptors in supporting cells induce supporting cell differentiation through the regulation of neurogenic bHLH TFs (such as Hes1, Hes5) and suppression of limited Atoh1 expression. In sensorineural hearing loss, HCs are lost followed by supporting cells and progressive degeneration of neurons, at least in rodents. Regaining complete hearing may require reconstituting the organ of Corti (OC) from scratch, including the two types of HCs, inner (IHC) and outer (OHC) hair cells with the precise sorting of two types of afferent (type I and II) and efferent (lateral, LOC and medial, MOC olivo-cochlear) innervation. We review effects of bHLH TF dosage and their cross-regulation to differentiate HC types in the OC. We categorize findings of specific gene expressions in HCs: 1. as markers without meaning for the regeneration task, 2. as stabilizers who are needed to maintain or complete differentiation, and 3. as decision making genes, expressed and acting early enough to be useful in this process. Only one TF has been characterized that fits the last aspect: Atoh1. We propose that temporal and intensity variations of Atoh1 are naturally modulated to differentiate specific types of HCs. Importantly, the molecular means to modify the Atoh1 expression are at least partially understood and can be readily implemented in the attempts to regenerate specific types of HCs. PMID:23201032

  3. Oxytocin signaling in mouse taste buds.

    PubMed

    Sinclair, Michael S; Perea-Martinez, Isabel; Dvoryanchikov, Gennady; Yoshida, Masahide; Nishimori, Katsuhiko; Roper, Stephen D; Chaudhari, Nirupa

    2010-08-05

    The neuropeptide, oxytocin (OXT), acts on brain circuits to inhibit food intake. Mutant mice lacking OXT (OXT knockout) overconsume salty and sweet (i.e. sucrose, saccharin) solutions. We asked if OXT might also act on taste buds via its receptor, OXTR. Using RT-PCR, we detected the expression of OXTR in taste buds throughout the oral cavity, but not in adjacent non-taste lingual epithelium. By immunostaining tissues from OXTR-YFP knock-in mice, we found that OXTR is expressed in a subset of Glial-like (Type I) taste cells, and also in cells on the periphery of taste buds. Single-cell RT-PCR confirmed this cell-type assignment. Using Ca2+ imaging, we observed that physiologically appropriate concentrations of OXT evoked [Ca2+]i mobilization in a subset of taste cells (EC50 approximately 33 nM). OXT-evoked responses were significantly inhibited by the OXTR antagonist, L-371,257. Isolated OXT-responsive taste cells were neither Receptor (Type II) nor Presynaptic (Type III) cells, consistent with our immunofluorescence observations. We also investigated the source of OXT peptide that may act on taste cells. Both RT-PCR and immunostaining suggest that the OXT peptide is not produced in taste buds or in their associated nerves. Finally, we also examined the morphology of taste buds from mice that lack OXTR. Taste buds and their constituent cell types appeared very similar in mice with two, one or no copies of the OXTR gene. We conclude that OXT elicits Ca2+ signals via OXTR in murine taste buds. OXT-responsive cells are most likely a subset of Glial-like (Type I) taste cells. OXT itself is not produced locally in taste tissue and is likely delivered through the circulation. Loss of OXTR does not grossly alter the morphology of any of the cell types contained in taste buds. Instead, we speculate that OXT-responsive Glial-like (Type I) taste bud cells modulate taste signaling and afferent sensory output. Such modulation would complement central pathways of appetite regulation that employ circulating homeostatic and satiety signals.

  4. Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans.

    PubMed

    Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y

    2017-01-01

    The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.

  5. A new 6-axis apparatus to squeeze the Kawai-cell of sintered diamond cubes

    NASA Astrophysics Data System (ADS)

    Ito, Eiji; Katsura, Tomoo; Yamazaki, Daisuke; Yoneda, Akira; Tado, Masashi; Ochi, Takahiro; Nishibara, Eiichi; Nakamura, Akihiro

    2009-05-01

    In order to overcome disadvantages of the DIA type press in squeezing the Kawai-cell, such as uneven compression between the upper and lower anvils and the four surrounding anvils and frictional loss of applied load in the guide block, we have developed a new 6-axis apparatus in which the movements of the six anvils are controlled by a servo mechanism. It is possible to keep the Kawai-cell cubic within an accuracy of ±2 μm during compression and decompression. Pressure generation using sintered diamond cubic anvils with edge length of 14.0 mm and a truncation of 1.5 mm has been carried out up to ca. 60 GPa by measuring electrical resistance of GaP, Zr, and Fe 2O 3. The results are compared with our previous calibration, carried out using an almost the same sample setup for identical anvils at SPring-8, by means of in situ X-ray observation. It is demonstrated that a significant amount of the applied load is lost by friction when the Kawai-cell is squeezed in the DIA type press. The load loss increases with increasing load, or pressure, and amounts to 45% at ca. 60 GPa. Therefore the 6-axis apparatus is very advantageous to generate higher pressures in the Kawai-cell. However, individual control of the anvils sometimes induces a runaway advancement of the anvils which brings about an abrupt increase of pressure.

  6. Transient receptor potential vanilloid type 2 (TRPV2) expression in normal urothelium and in urothelial carcinoma of human bladder: correlation with the pathologic stage.

    PubMed

    Caprodossi, Sara; Lucciarini, Roberta; Amantini, Consuelo; Nabissi, Massimo; Canesin, Giacomo; Ballarini, Patrizia; Di Spilimbergo, Adriana; Cardarelli, Marco Andrea; Servi, Lucilla; Mammana, Gabriele; Santoni, Giorgio

    2008-09-01

    To evaluate the expression of transient receptor potential vanilloid type 2 (TRPV2) in normal human bladder and urothelial carcinoma (UC) tissues. Bladder specimens were obtained by transurethral resection or radical cystectomy. TRPV2 mRNA expression in normal human urothelial cells (NHUCs), UC cell lines, and formalin-fixed paraffin-embedded normal (n=6) and cancer bladder tissues (n=58) was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (RT-PCR). TRPV2 protein expression was assessed by cytofluorimetric and confocal microscopy analyses in NHUCs and UC cells and by Western blotting and immunohistochemistry in normal and UC tissues. Enhanced TRPV2 mRNA and protein expression was found in high-grade and -stage UC specimens and UC cell lines. Both the full-length TRPV2 (hTRPV2) and a short splice-variant (s-TRPV2) were detected in NHUC and normal bladder specimens, whereas a progressive decline of s-TRPV2 in pTa, pT1, and pT2 stages was observed, up to a complete loss in pT3 and pT4 UC specimens. Normal human urothelial cells and bladder tissue specimens express TRPV2 at both the mRNA and protein levels. A progressive loss of s-TRPV2 accompanied by a marked increase of hTRPV2 expression was found in high-grade and -stage UC tissues.

  7. Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats.

    PubMed

    Everson, Carol A; Henchen, Christopher J; Szabo, Aniko; Hogg, Neil

    2014-12-01

    Increased cell injury would provide the type of change in constitution that would underlie sleep disruption as a risk factor for multiple diseases. The current study was undertaken to investigate cell injury and altered cell fate as consequences of sleep deprivation, which were predicted from systemic clues. Partial (35% sleep reduction) and total sleep deprivation were produced in rats for 10 days, which was tolerated and without overtly deteriorated health. Recovery rats were similarly sleep deprived for 10 days, then allowed undisturbed sleep for 2 days. The plasma, liver, lung, intestine, heart, and spleen were analyzed and compared to control values for damage to DNA, proteins, and lipids; apoptotic cell signaling and death; cell proliferation; and concentrations of glutathione peroxidase and catalase. Oxidative DNA damage in totally sleep deprived rats was 139% of control values, with organ-specific effects in the liver (247%), lung (166%), and small intestine (145%). Overall and organ-specific DNA damage was also increased in partially sleep deprived rats. In the intestinal epithelium, total sleep deprivation resulted in 5.3-fold increases in dying cells and 1.5-fold increases in proliferating cells, compared with control. Recovery sleep restored the balance between DNA damage and repair, and resulted in normal or below-normal metabolic burdens and oxidative damage. These findings provide physical evidence that sleep loss causes cell damage, and in a manner expected to predispose to replication errors and metabolic abnormalities; thereby providing linkage between sleep loss and disease risk observed in epidemiological findings. Properties of recovery sleep include biochemical and molecular events that restore balance and decrease cell injury. © 2014 Associated Professional Sleep Societies, LLC.

  8. Postnatal Deletion of the Type II Transforming Growth Factor-β Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice.

    PubMed

    Hu, Jie Hong; Wei, Hao; Jaffe, Mia; Airhart, Nathan; Du, Liang; Angelov, Stoyan N; Yan, James; Allen, Julie K; Kang, Inkyung; Wight, Thomas N; Fox, Kate; Smith, Alexandra; Enstrom, Rachel; Dichek, David A

    2015-12-01

    Prenatal deletion of the type II transforming growth factor-β (TGF-β) receptor (TBRII) prevents normal vascular morphogenesis and smooth muscle cell (SMC) differentiation, causing embryonic death. The role of TBRII in adult SMC is less well studied. Clarification of this role has important clinical implications because TBRII deletion should ablate TGF-β signaling, and blockade of TGF-β signaling is envisioned as a treatment for human aortopathies. We hypothesized that postnatal loss of SMC TBRII would cause aortopathy. We generated mice with either of 2 tamoxifen-inducible SMC-specific Cre (SMC-CreER(T2)) alleles and homozygous floxed Tgfbr2 alleles. Mice were injected with tamoxifen, and their aortas examined 4 and 14 weeks later. Both SMC-CreER(T2) alleles efficiently and specifically rearranged a floxed reporter gene and efficiently rearranged a floxed Tgfbr2 allele, resulting in loss of aortic medial TBRII protein. Loss of SMC TBRII caused severe aortopathy, including hemorrhage, ulceration, dissection, dilation, accumulation of macrophage markers, elastolysis, abnormal proteoglycan accumulation, and aberrant SMC gene expression. All areas of the aorta were affected, with the most severe pathology in the ascending aorta. Cre-mediated loss of SMC TBRII in vitro ablated both canonical and noncanonical TGF-β signaling and reproduced some of the gene expression abnormalities detected in vivo. SMC TBRII plays a critical role in maintaining postnatal aortic homeostasis. Loss of SMC TBRII disrupts TGF-β signaling, acutely alters SMC gene expression, and rapidly results in severe and durable aortopathy. These results suggest that pharmacological blockade of TGF-β signaling in humans could cause aortic disease rather than prevent it. © 2015 American Heart Association, Inc.

  9. Saponins from Soy and Chickpea: Stability during Beadmaking and in Vitro Bioaccessibility

    PubMed Central

    Serventi, Luca; Chitchumroonchokchai, Chureeporn; Riedl, Ken M.; Kerem, Zohar; Berhow, Mark A.; Vodovotz, Yael; Schwartz, Steven J.; Failla, Mark L.

    2013-01-01

    This study investigated the stability of saponins during the making and simulated digestion of soy and soy–chickpea breads and the bioaccessibility of saponins in digested breads. Recovery of saponins in soy bread exceeded that in soy–chickpea breads, and recovery of type A and B saponins was greater than for type E and DDMP saponins. Simulated digestion of breads resulted in greater relative losses of type A and DDMP saponins than type B and E saponins due in part to conversion of DDMP. Bioaccessibility of type B, E, and DDMP saponins in aqueous fraction of chyme exceeded 50%, but was ~30% for type A saponins. Caco-2 cells accumulated 0.8–2.8% of saponins from apical compartment containing diluted aqueous fraction of chyme. These findings suggest that saponin structure and food matrix affect the stability of saponins during processing and digestion and that uptake of saponins by enterocyte-like cells is poor despite moderate apparent bioaccessibility. PMID:23768100

  10. The yeast Holliday junction resolvase, CCE1, can restore wild-type mitochondrial DNA to human cells carrying rearranged mitochondrial DNA.

    PubMed

    Sembongi, Hiroshi; Di Re, Miriam; Bokori-Brown, Monika; Holt, Ian J

    2007-10-01

    Rearrangements of mitochondrial DNA (mtDNA) are a well-recognized cause of human disease; deletions are more frequent, but duplications are more readily transmitted to offspring. In theory, partial duplications of mtDNA can be resolved to partially deleted and wild-type (WT) molecules, via homologous recombination. Therefore, the yeast CCE1 gene, encoding a Holliday junction resolvase, was introduced into cells carrying partially duplicated or partially triplicated mtDNA. Some cell lines carrying the CCE1 gene had substantial amounts of WT mtDNA suggesting that the enzyme can mediate intramolecular recombination in human mitochondria. However, high levels of expression of CCE1 frequently led to mtDNA loss, and so it is necessary to strictly regulate the expression of CCE1 in human cells to ensure the selection and maintenance of WT mtDNA.

  11. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies

    PubMed Central

    Steckel, Michael; Molina-Arcas, Miriam; Weigelt, Britta; Marani, Michaela; Warne, Patricia H; Kuznetsov, Hanna; Kelly, Gavin; Saunders, Becky; Howell, Michael; Downward, Julian; Hancock, David C

    2012-01-01

    Oncogenic mutations in RAS genes are very common in human cancer, resulting in cells with well-characterized selective advantages, but also less well-understood vulnerabilities. We have carried out a large-scale loss-of-function screen to identify genes that are required by KRAS-transformed colon cancer cells, but not by derivatives lacking this oncogene. Top-scoring genes were then tested in a larger panel of KRAS mutant and wild-type cancer cells. Cancer cells expressing oncogenic KRAS were found to be highly dependent on the transcription factor GATA2 and the DNA replication initiation regulator CDC6. Extending this analysis using a collection of drugs with known targets, we found that cancer cells with mutant KRAS showed selective addiction to proteasome function, as well as synthetic lethality with topoisomerase inhibition. Combination targeting of these functions caused improved killing of KRAS mutant cells relative to wild-type cells. These observations suggest novel targets and new ways of combining existing therapies for optimal effect in RAS mutant cancers, which are traditionally seen as being highly refractory to therapy. PMID:22613949

  12. Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage

    PubMed Central

    Corwin, William L.; Baust, John G.; Van Buskirk, Robert G.

    2013-01-01

    Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation. PMID:24845253

  13. COUP-TFI mitotically regulates production and migration of dentate granule cells and modulates hippocampal Cxcr4 expression.

    PubMed

    Parisot, Joséphine; Flore, Gemma; Bertacchi, Michele; Studer, Michèle

    2017-06-01

    Development of the dentate gyrus (DG), the primary gateway for hippocampal inputs, spans embryonic and postnatal stages, and involves complex morphogenetic events. We have previously identified the nuclear receptor COUP-TFI as a novel transcriptional regulator in the postnatal organization and function of the hippocampus. Here, we dissect its role in DG morphogenesis by inactivating it in either granule cell progenitors or granule neurons. Loss of COUP-TFI function in progenitors leads to decreased granule cell proliferative activity, precocious differentiation and increased apoptosis, resulting in a severe DG growth defect in adult mice. COUP-TFI-deficient cells express high levels of the chemokine receptor Cxcr4 and migrate abnormally, forming heterotopic clusters of differentiated granule cells along their paths. Conversely, high COUP-TFI expression levels downregulate Cxcr4 expression, whereas increased Cxcr4 expression in wild-type hippocampal cells affects cell migration. Finally, loss of COUP-TFI in postmitotic cells leads to only minor and transient abnormalities, and to normal Cxcr4 expression. Together, our results indicate that COUP-TFI is required predominantly in DG progenitors for modulating expression of the Cxcr4 receptor during granule cell neurogenesis and migration. © 2017. Published by The Company of Biologists Ltd.

  14. Necroptosis: an emerging type of cell death in liver diseases.

    PubMed

    Saeed, Waqar Khalid; Jun, Dae Won

    2014-09-21

    Cell death has been extensively evaluated for decades and it is well recognized that pharmacological interventions directed to inhibit cell death can prevent significant cell loss and can thus improve an organ's physiological function. For long, only apoptosis was considered as a sole form of programmed cell death. Recently necroptosis, a RIP1/RIP3-dependent programmed cell death, has been identified as an apoptotic backup cell death mechanism with necrotic morphology. The evidences of necroptosis and protective effects achieved by blocking necroptosis have been extensively reported in recent past. However, only a few studies reported the evidence of necroptosis and protective effects achieved by inhibiting necroptosis in liver related disease conditions. Although the number of necroptosis initiators is increasing; however, interestingly, it is still unclear that what actually triggers necroptosis in different liver diseases or if there is always a different necroptosis initiator in each specific disease condition followed by specific downstream signaling molecules. Understanding the precise mechanism of necroptosis as well as counteracting other cell death pathways in liver diseases could provide a useful insight towards achieving extensive therapeutic significance. By targeting necroptosis and/or other parallel death pathways, a significant cell loss and thus a decrement in an organ's physiological function can be prevented.

  15. Ageing in the musculoskeletal system.

    PubMed

    Roberts, Sally; Colombier, Pauline; Sowman, Aneka; Mennan, Claire; Rölfing, Jan H D; Guicheux, Jérôme; Edwards, James R

    2016-12-01

    The extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment.

  16. Ageing in the musculoskeletal system

    PubMed Central

    Roberts, Sally; Colombier, Pauline; Sowman, Aneka; Mennan, Claire; Rölfing, Jan H D; Guicheux, Jérôme; Edwards, James R

    2016-01-01

    The extent of ageing in the musculoskeletal system during the life course affects the quality and length of life. Loss of bone, degraded articular cartilage, and degenerate, narrowed intervertebral discs are primary features of an ageing skeleton, and together they contribute to pain and loss of mobility. This review covers the cellular constituents that make up some key components of the musculoskeletal system and summarizes discussion from the 2015 Aarhus Regenerative Orthopaedic Symposium (AROS) (Regeneration in the Ageing Population) about how each particular cell type alters within the ageing skeletal microenvironment. PMID:27748151

  17. Neuregulin 1 Deficiency Modulates Adolescent Stress-Induced Dendritic Spine Loss in a Brain Region-Specific Manner and Increases Complement 4 Expression in the Hippocampus.

    PubMed

    Clarke, David J; Chohan, Tariq W; Kassem, Mustafa S; Smith, Kristie L; Chesworth, Rose; Karl, Tim; Kuligowski, Michael P; Fok, Sandra Y; Bennett, Maxwell R; Arnold, Jonathon C

    2018-03-16

    One neuropathological feature of schizophrenia is a diminished number of dendritic spines in the prefrontal cortex and hippocampus. The neuregulin 1 (Nrg1) system is involved in the plasticity of dendritic spines, and chronic stress decreases dendritic spine densities in the prefrontal cortex and hippocampus. Here, we aimed to assess whether Nrg1 deficiency confers vulnerability to the effects of adolescent stress on dendritic spine plasticity. We also assessed other schizophrenia-relevant neurobiological changes such as microglial cell activation, loss of parvalbumin (PV) interneurons, and induction of complement factor 4 (C4). Adolescent male wild-type (WT) and Nrg1 heterozygous mice were subjected to chronic restraint stress before their brains underwent Golgi impregnation or immunofluorescent staining of PV interneurons, microglial cells, and C4. Stress in WT mice promoted dendritic spine loss and microglial cell activation in the prefrontal cortex and the hippocampus. However, Nrg1 deficiency rendered mice resilient to stress-induced dendritic spine loss in the infralimbic cortex and the CA3 region of the hippocampus without affecting stress-induced microglial cell activation in these brain regions. Nrg1 deficiency and adolescent stress combined to trigger increased dendritic spine densities in the prelimbic cortex. In the hippocampal CA1 region, Nrg1 deficiency accentuated stress-induced dendritic spine loss. Nrg1 deficiency increased C4 protein and decreased C4 mRNA expression in the hippocampus, and the number of PV interneurons in the basolateral amygdala. This study demonstrates that Nrg1 modulates the impact of stress on the adolescent brain in a region-specific manner. It also provides first evidence of a link between Nrg1 and C4 systems in the hippocampus.

  18. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity.

    PubMed

    Gursoy-Yuzugullu, Ozge; Carman, Chelsea; Serafim, Rodolfo Bortolozo; Myronakis, Marios; Valente, Valeria; Price, Brendan D

    2017-04-11

    Radiation therapy is widely used to treat human malignancies, but many tumor types, including gliomas, exhibit significant radioresistance. Radiation therapy creates DNA double-strand breaks (DSBs), and DSB repair is linked to rapid changes in epigenetic modifications, including increased histone methylation. This increased histone methylation recruits DNA repair proteins which can then alter the local chromatin structure and promote repair. Consequently, combining inhibitors of specific histone methyltransferases with radiation therapy may increase tumor radiosensitivity, particularly in tumors with significant therapeutic resistance. Here, we demonstrate that inhibitors of the H4K20 methyltransferase SETD8 (UNC-0379) and the H3K9 methyltransferase G9a (BIX-01294) are effective radiosensitizers of human glioma cells. UNC-0379 blocked H4K20 methylation and reduced recruitment of the 53BP1 protein to DSBs, although this loss of 53BP1 caused only limited changes in radiosensitivity. In contrast, loss of H3K9 methylation through G9a inhibition with BIX-01294 increased radiosensitivity of a panel of glioma cells (SER2Gy range: 1.5 - 2.9). Further, loss of H3K9 methylation reduced DSB signaling dependent on H3K9, including reduced activation of the Tip60 acetyltransferase, loss of ATM signaling and reduced phosphorylation of the KAP-1 repressor. In addition, BIX-0194 inhibited DSB repair through both the homologous recombination and nonhomologous end-joining pathways. Inhibition of G9a and loss of H3K9 methylation is therefore an effective approach for increasing radiosensitivity of glioma cells. These results suggest that combining inhibitors of histone methyltransferases which are critical for DSB repair with radiation therapy may provide a new therapeutic route for sensitizing gliomas and other tumors to radiation therapy.

  19. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions.

    PubMed

    Shinagawa-Ohama, Rei; Mochizuki, Mai; Tamaki, Yuichi; Suda, Naoto; Nakahara, Taka

    2017-05-01

    An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.

  20. Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection

    PubMed Central

    Wang, Yaming; Swiecki, Melissa; Cella, Marina; Alber, Gottfried; Schreiber, Robert D; Gilfillan, Susan; Colonna, Marco

    2013-01-01

    Summary Type I Interferons (IFN-I) promote antiviral CD8+T cell responses, but the contribution of different IFN-I sources and signaling pathways are ill-defined. While plasmacytoid dendritic cells (pDCs) produce IFN-I upon TLR stimulation, IFN-I are induced in most cells by helicases like MDA5. Using acute and chronic lymphocytic choriomeningitis virus (LCMV) infection models, we determined that pDCs transiently produce IFN-I that minimally impacts CD8+T cell responses and viral persistence. Rather, MDA5 is the key sensor that induces IFN-I required for CD8+T cell responses. In the absence of MDA5, CD8+T cell responses to acute infection rely on CD4+T cell help, and loss of both CD4+T cells and MDA5 results in CD8+T cell exhaustion and persistent infection. Chronic LCMV infection rapidly attenuates IFN-I responses, but early administration of exogenous IFN-I rescues CD8+T cells, promoting viral clearance. Thus, effective antiviral CD8+T cell responses depend on the timing and magnitude of IFN-I responses. PMID:22704623

  1. Timing and magnitude of type I interferon responses by distinct sensors impact CD8 T cell exhaustion and chronic viral infection.

    PubMed

    Wang, Yaming; Swiecki, Melissa; Cella, Marina; Alber, Gottfried; Schreiber, Robert D; Gilfillan, Susan; Colonna, Marco

    2012-06-14

    Type I interferon (IFN-I) promotes antiviral CD8(+)T cell responses, but the contribution of different IFN-I sources and signaling pathways are ill defined. While plasmacytoid dendritic cells (pDCs) produce IFN-I upon TLR stimulation, IFN-I is induced in most cells by helicases like MDA5. Using acute and chronic lymphocytic choriomeningitis virus (LCMV) infection models, we determined that pDCs transiently produce IFN-I that minimally impacts CD8(+)T cell responses and viral persistence. Rather, MDA5 is the key sensor that induces IFN-I required for CD8(+)T cell responses. In the absence of MDA5, CD8(+)T cell responses to acute infection rely on CD4(+)T cell help, and loss of both CD4(+)T cells and MDA5 results in CD8(+)T cell exhaustion and persistent infection. Chronic LCMV infection rapidly attenuates IFN-I responses, but early administration of exogenous IFN-I rescues CD8(+)T cells, promoting viral clearance. Thus, effective antiviral CD8(+)T cell responses depend on the timing and magnitude of IFN-I production. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The reverse evolution from multicellularity to unicellularity during carcinogenesis.

    PubMed

    Chen, Han; Lin, Fangqin; Xing, Ke; He, Xionglei

    2015-03-09

    Theoretical reasoning suggests that cancer may result from a knockdown of the genetic constraints that evolved for the maintenance of metazoan multicellularity. By characterizing the whole-life history of a xenograft tumour, here we show that metastasis is driven by positive selection for general loss-of-function mutations on multicellularity-related genes. Expression analyses reveal mainly downregulation of multicellularity-related genes and an evolving expression profile towards that of embryonic stem cells, the cell type resembling unicellular life in its capacity of unlimited clonal proliferation. Also, the emergence of metazoan multicellularity ~600 Myr ago is accompanied by an elevated birth rate of cancer genes, and there are more loss-of-function tumour suppressors than activated oncogenes in a typical tumour. These data collectively suggest that cancer represents a loss-of-function-driven reverse evolution back to the unicellular 'ground state'. This cancer evolution model may account for inter-/intratumoural genetic heterogeneity, could explain distant-organ metastases and hold implications for cancer therapy.

  3. Age-dependent damage of hair cuticle: contribution of S100A3 protein and its citrullination.

    PubMed

    Takahashi, Toshie; Mamada, Akira; Kizawa, Kenji; Suzuki, Ryosuke

    2016-09-01

    There are two types of damage pattern of human hair cuticle: type L, where the cell membrane complex is split and the cuticle lifts up, and type E, where the fragile substructure of the cuticle cell (endocuticle) is broken. In our previous paper, it was reported that the dominant damage pattern shifts from type L to E with the subjects' age around the 40s. Loss of the cuticle due to daily grooming stresses increases with the subjects' age and is related to the level of type E damage. It is supposed that deterioration of endocuticle advances the loss of cuticle. S100A3 protein, located at the endocuticle, was found to be citrullinated and transformed into tetramer to improve its Ca(2+) -binding ability. It is postulated that this biochemical property affects the maturation of cuticle and contributes to its reinforcement. This study aims to elucidate the role that S100A3 plays in age-dependent cuticle damage. Hair fibers collected from Japanese females were evaluated for the content and citrullination rate of S100A3, incidence of type E damage, and resistance of cuticle. In the aged hair, the content of S100A3 was positively correlated with the level of type E damage and low resistance to stress. Hair fibers in which S100A3 is highly citrullinated, however, showed low levels of type E damage and high resistance of cuticle, even in the aged hair as well as at younger ages. S100A3 and its citrullination process are related to rigidity of endocuticle of aged hair. © 2015 Wiley Periodicals, Inc.

  4. Histone methylation mediates plasticity of human FOXP3(+) regulatory T cells by modulating signature gene expressions.

    PubMed

    He, Haiqi; Ni, Bing; Tian, Yi; Tian, Zhiqiang; Chen, Yanke; Liu, Zhengwen; Yang, Xiaomei; Lv, Yi; Zhang, Yong

    2014-03-01

    CD4(+) FOXP3(+) regulatory T (Treg) cells constitute a heterogeneous and plastic T-cell lineage that plays a pivotal role in maintaining immune homeostasis and immune tolerance. However, the fate of human Treg cells after loss of FOXP3 expression and the epigenetic mechanisms contributing to such a phenotype switch remain to be fully elucidated. In the current study, we demonstrate that human CD4(+) CD25(high) CD127(low/-) Treg cells convert to two subpopulations with distinctive FOXP3(+) and FOXP3(-) phenotypes following in vitro culture with anti-CD3/CD28 and interleukin-2. Digital gene expression analysis showed that upon in vitro expansion, human Treg cells down-regulated Treg cell signature genes, such as FOXP3, CTLA4, ICOS, IKZF2 and LRRC32, but up-regulated a set of T helper lineage-associated genes, especially T helper type 2 (Th2)-associated, such as GATA3, GFI1 and IL13. Subsequent chromatin immunoprecipitation-sequencing of these subpopulations yielded genome-wide maps of their H3K4me3 and H3K27me3 profiles. Surprisingly, reprogramming of Treg cells was associated with differential histone modifications, as evidenced by decreased abundance of permissive H3K4me3 within the down-regulated Treg cell signature genes, such as FOXP3, CTLA4 and LRRC32 loci, and increased abundance of H3K4me3 within the Th2-associated genes, such as IL4 and IL5; however, the H3K27me3 modification profile was not significantly different between the two subpopulations. In conclusion, this study revealed that loss of FOXP3 expression from human Treg cells during in vitro expansion can induce reprogramming to a T helper cell phenotype with a gene expression signature dominated by Th2 lineage-associated genes, and that this cell type conversion may be mediated by histone methylation events. © 2013 John Wiley & Sons Ltd.

  5. Narcolepsy Type 1 Is Associated with a Systemic Increase and Activation of Regulatory T Cells and with a Systemic Activation of Global T Cells.

    PubMed

    Lecendreux, Michel; Churlaud, Guillaume; Pitoiset, Fabien; Regnault, Armelle; Tran, Tu Anh; Liblau, Roland; Klatzmann, David; Rosenzwajg, Michelle

    2017-01-01

    Narcolepsy is a rare neurologic disorder characterized by excessive daytime sleepiness, cataplexy and disturbed nocturnal sleep patterns. Narcolepsy type 1 (NT1) has been shown to result from a selective loss of hypothalamic hypocretin-secreting neurons with patients typically showing low CSF-hypocretin levels (<110 pg/ml). This specific loss of hypocretin and the strong association with the HLA-DQB1*06:02 allele led to the hypothesis that NT1 could be an immune-mediated pathology. Moreover, susceptibility to NT1 has recently been associated with several pathogens, particularly with influenza A H1N1 virus either through infection or vaccination. The goal of this study was to compare peripheral blood immune cell populations in recent onset pediatric NT1 subjects (post or non-post 2009-influenza A H1N1 vaccination) to healthy donors. We demonstrated an increased number of central memory CD4+ T cells (CD62L+ CD45RA-) associated to an activated phenotype (increase in CD69 and CD25 expression) in NT1 patients. Percentage and absolute count of regulatory T cells (Tregs) in NT1 patients were increased associated with an activated phenotype (increase in GITR and LAP expression), and of activated memory phenotype. Cytokine production by CD4+ and CD8+ T cells after activation was not modified in NT1 patients. In H1N1 vaccinated NT1 patients, absolute counts of CD3+, CD8+ T cells, and B cells were increased compared to non-vaccinated NT1 patients. These results support a global T cell activation in NT1 patients and thus support a T cell-mediated autoimmune origin of NT1, but do not demonstrate the pathological role of H1N1 prophylactic vaccination. They should prompt further studies of T cells, particularly of Tregs (such as suppression and proliferation antigen specific assays, and also T-cell receptor sequencing), in NT1.

  6. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    PubMed

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.

  7. Overexpression of NGF ameliorates ethanol neurotoxicity in the developing cerebellum.

    PubMed

    Heaton, M B; Mitchell, J J; Paiva, M

    2000-11-05

    Transgenic mice overexpressing NGF in the central nervous system under the control of the glial fibrillary acidic protein (GFAP) promoter were exposed to ethanol via vapor inhalation on postnatal days 4 and 5 (P4-5), the period of maximal cerebellar Purkinje cell sensitivity to ethanol. Wild-type controls were exposed in a similar manner. There were no differences in body weight or size following these procedures, but the transgenic brain weights at this age were significantly greater than wild-type controls. In the wild-type animals, a significant 33.3% ethanol-mediated loss of Purkinje cells in lobule I was detected via unbiased three-dimensional stereological counting on P5. In the GFAP-NGF transgenic animals, however, the 17.6% difference in Purkinje cell number in control and ethanol-exposed animals was not significant. There was a similar difference in Purkinje cell density in both groups, which did reach statistical significance (-32.7% in wild-type ethanol-treated animals, -17% in transgenic ethanol-exposed animals). These results suggest that endogenous overexpression of neurotrophic factors, which have previously been shown to protect against ethanol neurotoxicity in culture, can serve a similar protective function in the intact animal. Copyright 2000 John Wiley & Sons, Inc.

  8. Viral infections in type 1 diabetes mellitus — why the β cells?

    PubMed Central

    2017-01-01

    Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection — particularly by enteroviruses (for example, coxsackievirus) — as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review. PMID:27020257

  9. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression.

    PubMed

    Li, Xiaosu; Chen, Rui; Zhu, Sijun

    2017-11-15

    Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism

    PubMed Central

    Garbati, Michael R.; Welgan, Catherine A.; Landefeld, Sally H.; Newell, Laura F.; Agarwal, Anupriya; Dunlap, Jennifer B.; Chourasia, Tapan K.; Lee, Hyunjung; Elferich, Johannes; Traer, Elie; Rattray, Rogan; Cascio, Michael J.; Press, Richard D.; Bagby, Grover C.; Tyner, Jeffrey W.; Druker, Brian J.; Dao, Kim-Hien T.

    2016-01-01

    Mutations in the calreticulin gene (CALR) were recently identified in approximately 70–80% of patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. All frameshift mutations generate a recurring novel C-terminus. Here we provide evidence that mutant calreticulin does not accumulate efficiently in cells and is abnormally enriched in the nucleus and extracellular space compared to wildtype calreticulin. The main determinant of these findings is the loss of the calcium-binding and KDEL domains. Expression of type I mutant CALR in Ba/F3 cells confers minimal IL-3-independent growth. Interestingly, expression of type I and type II mutant CALR in a non-hematopoietic cell line does not directly activate JAK/STAT signaling compared to JAK2-V617F expression. These results led us to investigate paracrine mechanisms of JAK/STAT activation. Here we show that conditioned media from cells expressing type I mutant CALR exaggerate cytokine production from normal monocytes with or without treatment with a toll-like receptor agonist. These effects are not dependent on the novel C-terminus. These studies offer novel insights into the mechanism of JAK/STAT activation in patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. PMID:26573090

  11. Genomic evolution and chemoresistance in germ-cell tumours.

    PubMed

    Taylor-Weiner, Amaro; Zack, Travis; O'Donnell, Elizabeth; Guerriero, Jennifer L; Bernard, Brandon; Reddy, Anita; Han, G Celine; AlDubayan, Saud; Amin-Mansour, Ali; Schumacher, Steven E; Litchfield, Kevin; Turnbull, Clare; Gabriel, Stacey; Beroukhim, Rameen; Getz, Gad; Carter, Scott L; Hirsch, Michelle S; Letai, Anthony; Sweeney, Christopher; Van Allen, Eliezer M

    2016-11-30

    Germ-cell tumours (GCTs) are derived from germ cells and occur most frequently in the testes. GCTs are histologically heterogeneous and distinctly curable with chemotherapy. Gains of chromosome arm 12p and aneuploidy are nearly universal in GCTs, but specific somatic genomic features driving tumour initiation, chemosensitivity and progression are incompletely characterized. Here, using clinical whole-exome and transcriptome sequencing of precursor, primary (testicular and mediastinal) and chemoresistant metastatic human GCTs, we show that the primary somatic feature of GCTs is highly recurrent chromosome arm level amplifications and reciprocal deletions (reciprocal loss of heterozygosity), variations that are significantly enriched in GCTs compared to 19 other cancer types. These tumours also acquire KRAS mutations during the development from precursor to primary disease, and primary testicular GCTs (TGCTs) are uniformly wild type for TP53. In addition, by functional measurement of apoptotic signalling (BH3 profiling) of fresh tumour and adjacent tissue, we find that primary TGCTs have high mitochondrial priming that facilitates chemotherapy-induced apoptosis. Finally, by phylogenetic analysis of serial TGCTs that emerge with chemotherapy resistance, we show how TGCTs gain additional reciprocal loss of heterozygosity and that this is associated with loss of pluripotency markers (NANOG and POU5F1) in chemoresistant teratomas or transformed carcinomas. Our results demonstrate the distinct genomic features underlying the origins of this disease and associated with the chemosensitivity phenotype, as well as the rare progression to chemoresistance. These results identify the convergence of cancer genomics, mitochondrial priming and GCT evolution, and may provide insights into chemosensitivity and resistance in other cancers.

  12. Ischemic optic neuropathy as a model of neurodegenerative disorder: A review of pathogenic mechanism of axonal degeneration and the role of neuroprotection.

    PubMed

    Khalilpour, Saba; Latifi, Shahrzad; Behnammanesh, Ghazaleh; Majid, Amin Malik Shah Abdul; Majid, Aman Shah Abdul; Tamayol, Ali

    2017-04-15

    Optic neuropathy is a neurodegenerative disease which involves optic nerve injury. It is caused by acute or intermittent insults leading to visual dysfunction. There are number of factors, responsible for optic neuropathy, and the optic nerve axon is affected in all type which causes the loss of retinal ganglion cells. In this review we will highlight various mechanisms involved in the cell loss cascades during axonal degeneration as well as ischemic optic neuropathy. These mechanisms include oxidative stress, excitotoxicity, angiogenesis, neuroinflammation and apoptosis following retinal ischemia. We will also discuss the effect of neuroprotective agents in attenuation of the negative effect of factors involve in the disease occurrence and progression. Copyright © 2016. Published by Elsevier B.V.

  13. Salmonella-host cell interactions, changes in host cell architecture, and destruction of prostate tumor cells with genetically altered Salmonella.

    PubMed

    Zhong, Zhisheng; Kazmierczak, Robert A; Dino, Alison; Khreis, Rula; Eisenstark, Abraham; Schatten, Heide

    2007-10-01

    Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.

  14. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis.

    PubMed

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. © The Author(s), 2015.

  15. Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis

    PubMed Central

    Nicholas, Richard; Magliozzi, Roberta; Campbell, Graham; Mahad, Don; Reynolds, Richard

    2016-01-01

    Background: Seizures are recognised in multiple sclerosis (MS), but their true incidence and the mechanism by which they are associated with MS is unclear. Objective: The objective of this paper is to determine the lifetime frequency of seizures in the United Kingdom MS Tissue Bank (UKMSTB) population and any pathological features associated with seizures. Methods: We evaluated 255 individuals from the UKMSTB. A subset underwent analysis of cortical thickness, grey matter lesion (GML) (type and number) and cortical neuronal numbers (total and GABAergic). Results: A total of 37/255 patients had seizures (14.5% lifetime incidence); in 47% they were associated with concurrent infection. In those with seizures, death and wheelchair use occurred earlier and in 59% seizures developed after 15 years of disease. Seizures were associated with Type 1 GMLs and reduced cortical thickness in the middle temporal gyrus. Localised selective GABAergic interneuron loss in layers IV and VI was related to GMLs but was not explained by the presence of inflammation or by mitochondrial dysfunction within Type I GMLs. Conclusion: We confirm that seizure frequency rises in MS. Type I GMLs in the temporal lobe underlie a loss of inhibitory interneurons in cortical layers IV and VI and these changes could together with concurrent infection enhance susceptibility to seizures. PMID:25921040

  16. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes.

    PubMed

    Xue, Meilang; Jackson, Christopher J

    2014-01-01

    Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising. © 2014 Elsevier Inc. All rights reserved.

  17. Growth factor-induced morphological, physiological and molecular characteristics in cerebral endothelial cells.

    PubMed

    Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C

    2000-09-01

    The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.

  18. Chemistry and biology of reactive species with special reference to the antioxidative defence status in pancreatic β-cells.

    PubMed

    Lenzen, Sigurd

    2017-08-01

    Diabetes mellitus is a serious metabolic disease. Dysfunction and subsequent loss of the β-cells in the islets of Langerhans through apoptosis ultimately cause a life-threatening insulin deficiency. The underlying reason for the particular vulnerability of the β-cells is an extraordinary sensitivity to the toxicity of reactive oxygen and nitrogen species (ROS and RNS) due to its low antioxidative defense status. This review considers the different aspects of the chemistry and biology of the biologically most important reactive species and their chemico-biological interactions in the β-cell toxicity of proinflammatory cytokines in type 1 diabetes and of lipotoxicity in type 2 diabetes development. The weak antioxidative defense equipment in the different subcellular organelles makes the β-cells particularly vulnerable and prone to mitochondrial, peroxisomal and ER stress. Looking upon the enzyme deficiencies which are responsible for the low antioxidative defense status of the pancreatic β-cells it is the lack of enzymatic capacity for H 2 O 2 inactivation at all major subcellular sites. Diabetes is the most prevalent metabolic disorder with a steadily increasing incidence of both type 1 and type 2 diabetes worldwide. The weak protection of the pancreatic β-cells against oxidative stress is a major reason for their particular vulnerability. Thus, careful protection of the β-cells is required for prevention of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Lysophosphatidic Acid Receptor Type 1 (LPA1) Plays a Functional Role in Osteoclast Differentiation and Bone Resorption Activity*

    PubMed Central

    David, Marion; Machuca-Gayet, Irma; Kikuta, Junichi; Ottewell, Penelope; Mima, Fuka; Leblanc, Raphael; Bonnelye, Edith; Ribeiro, Johnny; Holen, Ingunn; Vales, Rùben Lopez; Jurdic, Pierre; Chun, Jerold; Clézardin, Philippe; Ishii, Masaru; Peyruchaud, Olivier

    2014-01-01

    Lysophosphatidic acid (LPA) is a natural bioactive lipid that acts through six different G protein-coupled receptors (LPA1–6) with pleiotropic activities on multiple cell types. We have previously demonstrated that LPA is necessary for successful in vitro osteoclastogenesis of bone marrow cells. Bone cells controlling bone remodeling (i.e. osteoblasts, osteoclasts, and osteocytes) express LPA1, but delineating the role of this receptor in bone remodeling is still pending. Despite Lpar1−/− mice displaying a low bone mass phenotype, we demonstrated that bone marrow cell-induced osteoclastogenesis was reduced in Lpar1−/− mice but not in Lpar2−/− and Lpar3−/− animals. Expression of LPA1 was up-regulated during osteoclastogenesis, and LPA1 antagonists (Ki16425, Debio0719, and VPC12249) inhibited osteoclast differentiation. Blocking LPA1 activity with Ki16425 inhibited expression of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and dendritic cell-specific transmembrane protein and interfered with the fusion but not the proliferation of osteoclast precursors. Similar to wild type osteoclasts treated with Ki16425, mature Lpar1−/− osteoclasts had reduced podosome belt and sealing zone resulting in reduced mineralized matrix resorption. Additionally, LPA1 expression markedly increased in the bone of ovariectomized mice, which was blocked by bisphosphonate treatment. Conversely, systemic treatment with Debio0719 prevented ovariectomy-induced cancellous bone loss. Moreover, intravital multiphoton microscopy revealed that Debio0719 reduced the retention of CX3CR1-EGFP+ osteoclast precursors in bone by increasing their mobility in the bone marrow cavity. Overall, our results demonstrate that LPA1 is essential for in vitro and in vivo osteoclast activities. Therefore, LPA1 emerges as a new target for the treatment of diseases associated with excess bone loss. PMID:24429286

  20. Robust and irreversible development in cell society as a general consequence of intra-inter dynamics

    NASA Astrophysics Data System (ADS)

    Kaneko, Kunihiko; Furusawa, Chikara

    2000-05-01

    A dynamical systems scenario for developmental cell biology is proposed, based on numerical studies of a system with interacting units with internal dynamics and reproduction. Diversification, formation of discrete and recursive types, and rules for differentiation are found as a natural consequence of such a system. “Stem cells” that either proliferate or differentiate to different types stochastically are found to appear when intra-cellular dynamics are chaotic. Robustness of the developmental process against microscopic and macroscopic perturbations is shown to be a natural consequence of such intra-inter dynamics, while irreversibility in developmental process is discussed in terms of the gain of stability, loss of diversity and chaotic instability.

  1. Microfluidic antibody arrays for simultaneous cell separation and stimulus.

    PubMed

    Liu, Yan; Germain, Todd; Pappas, Dimitri

    2014-12-01

    A microfluidic chip containing stamped antibody arrays was developed for simultaneous cell separation and drug testing. Poly(dimethyl siloxane) (PDMS) stamping was used to deposit antibodies in a microfluidic channel, forming discrete cell-capture regions on the surface. Cell mixtures were then introduced, resulting in the separation of cells when specific antibodies were used. Anti-CD19 antibody regions resulted in 94 % capture purity for CD19+ Ramos cells. An antibody that captures multiple cell types, for example anti-CD71, can also be used to capture several cell types simultaneously. Cells could also be loaded onto the arrays with spatial control using laminar streams. Both Ramos B cells and HuT 78 T cells were isolated in the chip and exposed to staurosporine in the same channel. Both cell lines had similar responses to the drug, with 2-10 % of cells remaining viable after 20 h of drug treatment, depending on cell type. The chip can also be used to analyze the efficacy of antibody therapy against cancer cells. Anti-CD95 was deposited on the surface and used for simultaneous cell capture and apoptosis induction via the extrinsic pathway. Cells captured on anti-CD95 surfaces had significant viability loss (15 % viability after 24 h) when compared with a control anti-CD71 antibody (81 % viability after 24 h). This chip can be used for a variety of cell separation and/or drug testing studies, enabling researchers to isolate cells and test them against different anti-cancer compounds and to follow cell response using fluorescence or other readout methods.

  2. Engineering sciences area and module performance and failure analysis area

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Runkle, L. D.

    1982-01-01

    Photovoltaic-array/power-conditioner interface studies are updated. An experiment conducted to evaluate different operating-point strategies, such as constant voltage and pilot cells, and to determine array energy losses when the array is operated off the maximum power points is described. Initial results over a test period of three and a half weeks showed a 2% energy loss when the array is operated at a fixed voltage. Degraded-array studies conducted at NE RES that used a range of simulated common types of degraded I-V curves are reviewed. The instrumentation installed at the JPL field-test site to obtain the irradiance data was described. Experiments using an optical filter to adjust the spectral irradiance of the large-area pulsed solar simulator (LAPSS) to AM1.5 are described. Residential-array research activity is reviewed. Voltage isolation test results are described. Experiments performed on one type of module to determine the relationship between leakage current and temperature are reviewed. An encapsulated-cell testing approach is explained. The test program, data reduction methods, and initial results of long-duration module testing are described.

  3. Coexistence of giant blue nevus of the scalp with hair loss and alopecia areata.

    PubMed

    Takeichi, Sachiko; Kubo, Yoshiaki; Murao, Kazutoshi; Inoue, Natsuko; Ansai, Shin-ichi; Arase, Seiji

    2011-04-01

    A 43-year-old Japanese man presented with a 13-year history of a grayish macule measuring 7 cm in diameter with sparse hairs on the vertex. Histopathological examination demonstrated two types of melanocytes, spindle-shaped and ovoid cells, with abundant melanin aggregated around the upper part of the pilosebaceous apparatus. Fibrous, thick collagen bundles were also seen surrounding the upper part of the small hair follicles. There was no infiltration of melanocytes or lymphocytes in the lower dermis or adipose tissue. Based on these findings, a diagnosis of blue nevus, cellular type, was made. Giant cellular blue nevi on the scalp are rare, and 11 cases reported in the published work have shown characteristic features such as hair loss and cranial invasion of nevus cells. It should be noted that melanocytes of giant blue nevi have a high potential to damage other organs such as underlying bone and hair follicles. The patient also showed a typical lesion of alopecia areata on the left temporal which was successfully treated with topical corticosteroid. © 2010 Japanese Dermatological Association.

  4. Porphyromonas gingivalis Promotes Unrestrained Type I Interferon Production by Dysregulating TAM Signaling via MYD88 Degradation.

    PubMed

    Mizraji, Gabriel; Nassar, Maria; Segev, Hadas; Sharawi, Hafiz; Eli-Berchoer, Luba; Capucha, Tal; Nir, Tsipora; Tabib, Yaara; Maimon, Avraham; Dishon, Shira; Shapira, Lior; Nussbaum, Gabriel; Wilensky, Asaf; Hovav, Avi-Hai

    2017-01-10

    Whereas type I interferons (IFNs-I) were proposed to be elevated in human periodontitis, their role in the disease remains elusive. Using a bacterial-induced model of murine periodontitis, we revealed a prolonged elevation in IFN-I expression. This was due to the downregulation of TAM signaling, a major negative regulator of IFN-I. Further examination revealed that the expression of certain TAM components was reduced as a result of prolonged degradation of MYD88 by the infection. As a result of such prolonged IFN-I production, innate immunological functions of the gingiva were disrupted, and CD4 + T cells were constitutively primed by dendritic cells, leading to elevated RANKL expression and, subsequently, alveolar bone loss (ABL). Blocking IFN-I signaling restored proper immunological function and prevented ABL. Importantly, a loss of negative regulation on IFN-I expression by TAM signaling was also evident in periodontitis patients. These findings thus suggest a role for IFN-I in the pathogenesis of periodontitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. A Rare Case of Retroperitoneal Follicular Dendritic Cell Sarcoma Identified by 99mTc-HYNIC-TOC SPECT/CT.

    PubMed

    Li, Yi; Xu, Xiaoping; Xu, Junyan; Huang, Dan

    2018-05-31

    Follicular dendritic cell sarcoma is a very rare neoplasm, which is not lymphoma, but originates from a type of immune cells called follicular dendritic cells. We presented a 37-year-old woman who has suffered from obstructive jaundice, weight loss and right upper abdominal pain for 2 months. The contrast CT revealed masses located in the region of pancreatic head and lots of enlarged retroperitoneal lymph nodes, both of which were enhanced on the artery phase of CT images. Meanwhile, Tc-HYNIC-TOC SPECT/CT revealed high activity in the corresponding lesions. After biopsy, the masses were pathologically confirmed as retroperitoneal follicular dendritic cell sarcoma.

  6. Organs on chip approach: a tool to evaluate cancer -immune cells interactions.

    PubMed

    Biselli, Elena; Agliari, Elena; Barra, Adriano; Bertani, Francesca Romana; Gerardino, Annamaria; De Ninno, Adele; Mencattini, Arianna; Di Giuseppe, Davide; Mattei, Fabrizio; Schiavoni, Giovanna; Lucarini, Valeria; Vacchelli, Erika; Kroemer, Guido; Di Natale, Corrado; Martinelli, Eugenio; Businaro, Luca

    2017-10-06

    In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a microfluidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from 'wild type' donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative confirmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems.

  7. PATHOPHYSIOLOGY AND TREATMENT OF TYPE 2 DIABETES: PERSPECTIVES ON THE PAST, PRESENT AND FUTURE

    PubMed Central

    Kahn, Steven E.; Cooper, Mark E.; Del Prato, Stefano

    2014-01-01

    Normal regulation of glucose metabolism is determined by a feedback loop involving the islet β-cell and insulin-sensitive tissues in which tissue sensitivity to insulin determines the magnitude of the β-cell response. When insulin resistance is present, the β-cell maintains normal glucose tolerance by increasing insulin output. It is only when the β-cell is incapable of releasing sufficient insulin in the presence of insulin resistance that glucose levels rise. While β-cell dysfunction has a clear genetic component, environmental changes play a vital role. Modern approaches have also informed regarding the importance of hexoses, amino acids and fatty acids in determining insulin resistance and β-cell dysfunction as well as the potential role of alterations in the microbiome. A number of new treatment approaches have been developed, but more effective therapies that slow the progressive loss of β-cell function are needed. Recent clinical trials have provided important information regarding approaches to prevent and treat type 2 diabetes as well as some of the adverse effects of these interventions. However, additional long-term studies of medications and bariatric surgery are required in order to identify novel approaches to prevention and treatment, thereby reducing the deleterious impact of type 2 diabetes. PMID:24315620

  8. Regulation of voltage-gated Ca(2+) currents by Ca(2+)/calmodulin-dependent protein kinase II in resting sensory neurons.

    PubMed

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H

    2014-09-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent. Published by Elsevier Inc.

  9. A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.

    PubMed

    Cerchiari, Alec E; Garbe, James C; Jee, Noel Y; Todhunter, Michael E; Broaders, Kyle E; Peehl, Donna M; Desai, Tejal A; LaBarge, Mark A; Thomson, Matthew; Gartner, Zev J

    2015-02-17

    Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.

  10. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway.

    PubMed

    Namba, Takushi; Chu, Kiki; Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W

    2015-08-21

    Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53.

  11. Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1α/XBP1 pathway

    PubMed Central

    Kodama, Rika; Byun, Sanguine; Yoon, Kyoung Wan; Hiraki, Masatsugu; Mandinova, Anna; Lee, Sam W.

    2015-01-01

    Altered regulation of ER stress response has been implicated in a variety of human diseases, such as cancer and metabolic diseases. Excessive ER function contributes to malignant phenotypes, such as chemoresistance and metastasis. Here we report that the tumor suppressor p53 regulates ER function in response to stress. We found that loss of p53 function activates the IRE1α/XBP1 pathway to enhance protein folding and secretion through upregulation of IRE1α and subsequent activation of its target XBP1. We also show that wild-type p53 interacts with synoviolin (SYVN1)/HRD1/DER3, a transmembrane E3 ubiquitin ligase localized to ER during ER stress and removes unfolded proteins by reversing transport to the cytosol from the ER, and its interaction stimulates IRE1α degradation. Moreover, IRE1α inhibitor suppressed protein secretion, induced cell death in p53-deficient cells, and strongly suppressed the formation of tumors by p53-deficient human tumor cells in vivo compared with those that expressed wild-type p53. Therefore, our data imply that the IRE1α/XBP1 pathway serves as a target for therapy of chemoresistant tumors that express mutant p53. PMID:26254280

  12. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila.

    PubMed

    Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei

    2014-08-25

    Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterwald, C. R.; Anderberg, A.; Rummel, S.

    We present an analysis of the results of a solar weathering program that found a linear relationship between maximum power degradation and the total UV exposure dose for four different types of commercial crystalline Si modules. The average degradation rate for the four modules types was 0.71% per year. The analysis showed that losses of short-circuit current were responsible for the maximum power degradation. Judging by the appearance of the undegraded control modules, it is very doubtful that the short-circuit current losses were caused by encapsulation browning or obscuration. When we compared the quantum efficiency of a single cell inmore » a degraded module to one from an unexposed control module, it appears that most of the degradation has occurred in the 800 - 1100 nm wave-length region, and not the short wavelength region.« less

  14. Genetic disruption of the nuclear receptor Nur77 (Nr4a1) in rat reduces dopamine cell loss and l-Dopa-induced dyskinesia in experimental Parkinson's disease.

    PubMed

    Rouillard, Claude; Baillargeon, Joanie; Paquet, Brigitte; St-Hilaire, Michel; Maheux, Jérôme; Lévesque, Catherine; Darlix, Noémie; Majeur, Simon; Lévesque, Daniel

    2018-06-01

    Parkinson's disease (PD) is an idiopathic progressive neurodegenerative disorder characterized by the loss of midbrain dopamine neurons. Levodopa (l-dopa) is the main pharmacological approach to relieve PD motor symptoms. However, chronic treatment with l-Dopa is inevitably associated with the generation of abnormal involuntary movements (l-Dopa-induced dyskinesia). We have previously shown that Nr4a1 (Nur77), a transcription factor of the nuclear receptor family, is closely associated with dopamine neurotransmission in the mature brain. However, the role of Nr4a1 in the etiology of PD and its treatment remain elusive. We report here that the neurotoxin 6-hydroxydopamine in rat lead to a rapid up-regulation of Nr4a1 in the substantia nigra. Genetic disruption of Nr4a1 in rat reduced neurotoxin-induced dopamine cell loss and l-Dopa-induced dyskinesia, whereas virally-driven striatal overexpression of Nr4a1 enhanced or partially restored involuntary movements induced by chronic l-Dopa in wild type and Nr4a1-deficient rats, respectively. Collectively, these results suggest that Nr4a1 is involved in dopamine cell loss and l-Dopa-induced dyskinesia in experimental PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure -volume relationship.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Wolfe, Joe; Mencuccini, Maurizio; Ball, Marilyn C

    2017-07-01

    A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m -2 s -1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport. © 2016 John Wiley & Sons Ltd.

  16. Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption

    PubMed Central

    Khare, Priyanka; Schneider, Zita; Ober, Raimund J; Ward, Elizabeth Sally

    2017-01-01

    Tumor cells rely on high concentrations of amino acids to support their growth and proliferation. Although increased macropinocytic uptake and lysosomal degradation of the most abundant serum protein, albumin, in Ras-transformed cells can meet these demands, it is not understood how the majority of tumor cells that express wild type Ras achieve this. In the current study we reveal that the neonatal Fc receptor, FcRn, regulates tumor cell proliferation through the ability to recycle its ligand, albumin. By contrast with normal epithelial cells, we show that human FcRn is present at very low or undetectable levels in the majority of tumor cell lines analyzed. Remarkably, shRNA-mediated ablation of FcRn expression in an FcRn-positive tumor cell line results in a substantial growth increase of tumor xenografts, whereas enforced expression of this receptor by lentiviral transduction has the reverse effect. Moreover, intracellular albumin and glutamate levels are increased by the loss of FcRn-mediated recycling of albumin, combined with hypoalbuminemia in tumor-bearing mice. These studies identify a novel role for FcRn as a suppressor of tumor growth and have implications for the use of this receptor as a prognostic indicator and therapeutic target. PMID:27974681

  17. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    PubMed Central

    Chanson, Lea; Brownfield, Douglas; Garbe, James C.; Kuhn, Irene; Stampfer, Martha R.; Bissell, Mina J.; LaBarge, Mark A.

    2011-01-01

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells. PMID:21300877

  18. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanson, L.; Brownfield, D.; Garbe, J. C.

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal humanmore » mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.« less

  19. Digestive cell turnover in digestive gland epithelium of slugs experimentally exposed to a mixture of cadmium and kerosene.

    PubMed

    Zaldibar, B; Cancio, I; Soto, M; Marigómez, I

    2007-11-01

    Slugs, Arion ater (L), have been proposed as sentinel organisms to assess soil health. In slugs under the influence of pollutants, digestive cell loss and the concomitant increase of excretory cells of the digestive gland have been described. The aim of the present work was to determine up to what extent digestive cell loss affects biomarkers and whether the affectation is reversible after exposure to a mixture of metal and organic pollutants. Slugs were dosed with a mixture of cadmium and kerosene in the food for 27 days. Apart from chemical analyses, the volume density of black silver deposits (Vv(BSD)) after autometallography, and acyl-CoA oxidase (AOX) activity were used as biomarkers of exposure to metals and organic compounds, respectively. As effect biomarkers, changes in the volume density of the cell types that constitute the digestive gland epithelium were calculated. Proliferating cells were identified by means of bromodeoxyuridine (BrdU) immunohistochemistry. Results revealed that the mixture of pollutants provoked an increase in Vv(BSD) and AOX activity and a decrease in the number of digestive cells. These changes had no effect in the digestive gland accumulation capacity or in the effect and exposure biomarkers employed. BrdU-labelling showed that exposure to pollutants provoked an enhanced digestive cell proliferation.

  20. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    PubMed

    Suzuki, Sho W; Onodera, Jun; Ohsumi, Yoshinori

    2011-02-25

    Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

Top