Neiman, Daniel; Moss, Joshua; Hecht, Merav; Magenheim, Judith; Piyanzin, Sheina; Shapiro, A M James; de Koning, Eelco J P; Razin, Aharon; Cedar, Howard; Shemer, Ruth; Dor, Yuval
2017-12-19
DNA methylation at promoters is an important determinant of gene expression. Earlier studies suggested that the insulin gene promoter is uniquely unmethylated in insulin-expressing pancreatic β-cells, providing a classic example of this paradigm. Here we show that islet cells expressing insulin, glucagon, or somatostatin share a lack of methylation at the promoters of the insulin and glucagon genes. This is achieved by rapid demethylation of the insulin and glucagon gene promoters during differentiation of Neurogenin3 + embryonic endocrine progenitors, regardless of the specific endocrine cell-type chosen. Similar methylation dynamics were observed in transgenic mice containing a human insulin promoter fragment, pointing to the responsible cis element. Whole-methylome comparison of human α- and β-cells revealed generality of the findings: genes active in one cell type and silent in the other tend to share demethylated promoters, while methylation differences between α- and β-cells are concentrated in enhancers. These findings suggest an epigenetic basis for the observed plastic identity of islet cell types, and have implications for β-cell reprogramming in diabetes and diagnosis of β-cell death using methylation patterns of circulating DNA. Copyright © 2017 the Author(s). Published by PNAS.
2013-01-01
Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445
Rash, J E; Yasumura, T; Dudek, F E; Nagy, J I
2001-03-15
The transmembrane connexin proteins of gap junctions link extracellularly to form channels for cell-to-cell exchange of ions and small molecules. Two primary hypotheses of gap junction coupling in the CNS are the following: (1) generalized coupling occurs between neurons and glia, with some connexins expressed in both neurons and glia, and (2) intercellular junctional coupling is restricted to specific coupling partners, with different connexins expressed in each cell type. There is consensus that gap junctions link neurons to neurons and astrocytes to oligodendrocytes, ependymocytes, and other astrocytes. However, unresolved are the existence and degree to which gap junctions occur between oligodendrocytes, between oligodendrocytes and neurons, and between astrocytes and neurons. Using light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling of adult rat CNS, we investigated whether four of the best-characterized CNS connexins are each present in one or more cell types, whether oligodendrocytes also share gap junctions with other oligodendrocytes or with neurons, and whether astrocytes share gap junctions with neurons. Connexin32 (Cx32) was found only in gap junctions of oligodendrocyte plasma membranes, Cx30 and Cx43 were found only in astrocyte membranes, and Cx36 was only in neurons. Oligodendrocytes shared intercellular gap junctions only with astrocytes, with each oligodendrocyte isolated from other oligodendrocytes except via astrocyte intermediaries. Finally, neurons shared gap junctions only with other neurons and not with glial cells. Thus, the different cell types of the CNS express different connexins, which define separate pathways for neuronal versus glial gap junctional communication.
Information on Stem Cell Research
... of stem cells share similar properties there are differences as well. For example, ES cells and iPS cells are able to differentiate into any type of cell, whereas adult stem cells are more restricted in their potential. The promise of all stem cells for use ...
Ji, Hong-Fang; Zhuang, Qi-Shuai; Shen, Liang
2016-04-05
Our study investigated the shared genetic etiology underlying type 2 diabetes (T2D) and major depressive disorder (MDD) by analyzing large-scale genome wide association studies statistics. A total of 496 shared SNPs associated with both T2D and MDD were identified at p-value ≤ 1.0E-07. Functional enrichment analysis showed that the enriched pathways pertained to immune responses (Fc gamma R-mediated phagocytosis, T cell and B cell receptors signaling), cell signaling (MAPK, Wnt signaling), lipid metabolism, and cancer associated pathways. The findings will have potential implications for future interventional studies of the two diseases.
Epithelial Cells in Urine: MedlinePlus Lab Test Information
... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...
Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures
Sanes, Joshua R.
2017-01-01
The retina communicates with the brain using ≥30 parallel channels, each carried by axons of distinct types of retinal ganglion cells. In every mammalian retina one finds so-called "alpha" ganglion cells (αRGCs), identified by their large cell bodies, stout axons, wide and mono-stratified dendritic fields, and high levels of neurofilament protein. In the mouse, three αRGC types have been described based on responses to light steps: On-sustained, Off-sustained, and Off-transient. Here we employed a transgenic mouse line that labels αRGCs in the live retina, allowing systematic targeted recordings. We characterize the three known types and identify a fourth, with On-transient responses. All four αRGC types share basic aspects of visual signaling, including a large receptive field center, a weak antagonistic surround, and absence of any direction selectivity. They also share a distinctive waveform of the action potential, faster than that of other RGC types. Morphologically, they differ in the level of dendritic stratification within the IPL, which accounts for their response properties. Molecularly, each type has a distinct signature. A comparison across mammals suggests a common theme, in which four large-bodied ganglion cell types split the visual signal into four channels arranged symmetrically with respect to polarity and kinetics. PMID:28753612
A hierarchy of self-renewing tumor-initiating cell types in glioblastoma.
Chen, Ruihuan; Nishimura, Merry C; Bumbaca, Stephanie M; Kharbanda, Samir; Forrest, William F; Kasman, Ian M; Greve, Joan M; Soriano, Robert H; Gilmour, Laurie L; Rivers, Celina Sanchez; Modrusan, Zora; Nacu, Serban; Guerrero, Steve; Edgar, Kyle A; Wallin, Jeffrey J; Lamszus, Katrin; Westphal, Manfred; Heim, Susanne; James, C David; VandenBerg, Scott R; Costello, Joseph F; Moorefield, Scott; Cowdrey, Cynthia J; Prados, Michael; Phillips, Heidi S
2010-04-13
The neural stem cell marker CD133 is reported to identify cells within glioblastoma (GBM) that can initiate neurosphere growth and tumor formation; however, instances of CD133(-) cells exhibiting similar properties have also been reported. Here, we show that some PTEN-deficient GBM tumors produce a series of CD133(+) and CD133(-) self-renewing tumor-initiating cell types and provide evidence that these cell types constitute a lineage hierarchy. Our results show that the capacities for self-renewal and tumor initiation in GBM need not be restricted to a uniform population of stemlike cells, but can be shared by a lineage of self-renewing cell types expressing a range of markers of forebrain lineage. Copyright 2010 Elsevier Inc. All rights reserved.
Nagao, Yusuke; Takada, Hiroyuki; Miyadai, Motohiro; Adachi, Tomoko; Kamei, Yasuhiro; Hara, Ikuyo; Naruse, Kiyoshi; Hibi, Masahiko
2018-01-01
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. PMID:29621239
Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches
Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.
2016-01-01
The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors. PMID:26876789
Simulation shows that HLA-matched stem cell donors can remain unidentified in donor searches
NASA Astrophysics Data System (ADS)
Sauter, Jürgen; Solloch, Ute V.; Giani, Anette S.; Hofmann, Jan A.; Schmidt, Alexander H.
2016-02-01
The heterogeneous nature of HLA information in real-life stem cell donor registries may hamper unrelated donor searches. It is even possible that fully HLA-matched donors with incomplete HLA information are not identified. In our simulation study, we estimated the probability of these unnecessarily failed donor searches. For that purpose, we carried out donor searches in several virtual donor registries. The registries differed by size, composition with respect to HLA typing levels, and genetic diversity. When up to three virtual HLA typing requests were allowed within donor searches, the share of unnecessarily failed donor searches ranged from 1.19% to 4.13%, thus indicating that non-identification of completely HLA-matched stem cell donors is a problem of practical relevance. The following donor registry characteristics were positively correlated with the share of unnecessarily failed donor searches: large registry size, high genetic diversity, and, most strongly correlated, large fraction of registered donors with incomplete HLA typing. Increasing the number of virtual HLA typing requests within donor searches up to ten had a smaller effect. It follows that the problem of donor non-identification can be substantially reduced by complete high-resolution HLA typing of potential donors.
Durand, Eric; Zoued, Abdelrahim; Spinelli, Silvia; Watson, Paul J. H.; Aschtgen, Marie-Stéphanie; Journet, Laure; Cambillau, Christian; Cascales, Eric
2012-01-01
The Type VI secretion system (T6SS) is a macromolecular system distributed in Gram-negative bacteria, responsible for the secretion of effector proteins into target cells. The T6SS has a broad versatility as it can target both eukaryotic and prokaryotic cells. It is therefore involved in host pathogenesis or killing neighboring bacterial cells to colonize a new niche. At the architecture level, the T6SS core apparatus is composed of 13 proteins, which assemble in two subcomplexes. One of these subcomplexes, composed of subunits that share structural similarities with bacteriophage tail and baseplate components, is anchored to the cell envelope by the membrane subcomplex. This latter is constituted of at least three proteins, TssL, TssM, and TssJ. The crystal structure of the TssJ outer membrane lipoprotein and its interaction with the inner membrane TssM protein have been recently reported. TssL and TssM share sequence homology and characteristics with two components of the Type IVb secretion system (T4bSS), IcmH/DotU and IcmF, respectively. In this study, we report the crystal structure of the cytoplasmic domain of the TssL inner membrane protein from the enteroaggregative Escherichia coli Sci-1 T6SS. It folds as a hook-like structure composed of two three-helix bundles. Two TssL molecules associate to form a functional complex. Although the TssL trans-membrane segment is the main determinant of self-interaction, contacts between the cytoplasmic domains are required for TssL function. Based on sequence homology and secondary structure prediction, we propose that the TssL structure is the prototype for the members of the TssL and IcmH/DotU families. PMID:22371492
Hequet, O; Le, Q H; Rodriguez, J; Dubost, P; Revesz, D; Clerc, A; Rigal, D; Salles, G; Coiffier, B
2014-04-01
Hematopoietic stem cells (HSCs) required to perform peripheral hematopoietic autologous stem cell transplantation (APBSCT) can be collected by processing several blood volumes (BVs) in leukapheresis sessions. However, this may cause granulocyte harvest in graft and decrease in patient's platelet blood level. Both consequences may induce disturbances in patient. One apheresis team's current purpose is to improve HSC collection by increasing HSC collection and prevent increase in granulocyte and platelet harvests. Before improving HSC collection it seemed important to know more about the way to harvest these types of cells. The purpose of our study was to develop a simple model for analysing respective collections of intended CD34+ cells among HSC (designated here as HSC) and harvests of unintended platelets or granulocytes among mature cells (designated here as mature cells) considering the number of BVs processed and factors likely to influence cell collection or harvest. For this, we processed 1, 2 and 3 BVs in 59 leukapheresis sessions and analysed corresponding collections and harvests with a referent device (COBE Spectra). First we analysed the amounts of HSC collected and mature cells harvested and second the evolution of the respective shares of HSC and mature cells collected or harvested throughout the BV processes. HSC collections and mature cell harvests increased globally (p<0.0001) and their respective shares remained stable throughout the BV processes (p non-significant). We analysed the role of intrinsic (patient's features) and extrinsic (features before starting leukapheresis sessions) factors in collections and harvests, which showed that only pre-leukapheresis blood levels (CD34+cells and platelets) influenced both cell collections and harvests (CD34+cells and platelets) (p<0.001) and shares of HSC collections and mature unintended cells harvests (p<0.001) throughout the BV processes. Altogether, our results suggested that the main factors likely to influence intended HSC collections or unintended mature cell harvests were pre-leukapheresis blood cell levels. Our model was meant to assist apheresis teams in analysing shares of HSC collected and mature cells harvested with new devices or with new types of HSC mobilization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chevalier, Sébastien A.; Durand, Stéphanie; Dasgupta, Arindam; Radonovich, Michael; Cimarelli, Andrea; Brady, John N.
2012-01-01
Human T-cell Lymphotropic Viruses type 1 (HTLV-1) is the etiological agent of Adult T-cell Leukemia/Lymphoma. Although associated with lymphocytosis, HTLV-2 infection is not associated with any malignant hematological disease. Similarly, no infection-related symptom has been detected in HTLV-3-infected individuals studied so far. Differences in individual Tax transcriptional activity might account for these distinct physiopathological outcomes. Tax-1 and Tax-3 possess a PDZ binding motif in their sequence. Interestingly, this motif, which is critical for Tax-1 transforming activity, is absent from Tax-2. We used the DNA microarray technology to analyze and compare the global gene expression profiles of different T- and non T-cell types expressing Tax-1, Tax-2 or Tax-3 viral transactivators. In a T-cell line, this analysis allowed us to identify 48 genes whose expression is commonly affected by all Tax proteins and are hence characteristic of the HTLV infection, independently of the virus type. Importantly, we also identified a subset of genes (n = 70) which are specifically up-regulated by Tax-1 and Tax-3, while Tax-1 and Tax-2 shared only 1 gene and Tax-2 and Tax-3 shared 8 genes. These results demonstrate that Tax-3 and Tax-1 are closely related in terms of cellular gene deregulation. Analysis of the molecular interactions existing between those Tax-1/Tax-3 deregulated genes then allowed us to highlight biological networks of genes characteristic of HTLV-1 and HTLV-3 infection. The majority of those up-regulated genes are functionally linked in biological processes characteristic of HTLV-1-infected T-cells expressing Tax such as regulation of transcription and apoptosis, activation of the NF-κB cascade, T-cell mediated immunity and induction of cell proliferation and differentiation. In conclusion, our results demonstrate for the first time that, in T- and non T-cells types, Tax-3 is a functional analogue of Tax-1 in terms of transcriptional activation and suggest that HTLV-3 might share pathogenic features with HTLV-1 in vivo. PMID:22911729
White, Nicole; Benton, Miles; Kennedy, Daniel; Fox, Andrew; Griffiths, Lyn; Lea, Rodney; Mengersen, Kerrie
2017-01-01
Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously. Under the proposed methodology, sex-specific differences in methylation by cell type are also assessed. Using publicly available, cell-sorted methylation data, we show that 51.3% of female CpG markers and 61.4% of male CpG markers identified were associated with differential methylation in more than one cell type. The impact of cell lineage on differential methylation was also highlighted. An evaluation of sex-specific differences revealed differences in CD56+NK methylation, within both single and multi- cell dependent methylation patterns. Our findings demonstrate the need to account for cell lineage in studies of differential methylation and associated sex effects.
Stem cells in the Drosophila digestive system.
Zeng, Xiankun; Chauhan, Chhavi; Hou, Steven X
2013-01-01
Adult stem cells maintain tissue homeostasis by continuously replenishing damaged, aged and dead cells in any organism. Five types of region and organ-specific multipotent adult stem cells have been identified in the Drosophila digestive system: intestinal stem cells (ISCs) in the posterior midgut; hindgut intestinal stem cells (HISCs) at the midgut/hindgut junction; renal and nephric stem cells (RNSCs) in the Malpighian Tubules; type I gastric stem cells (GaSCs) at foregut/midgut junction; and type II gastric stem cells (GSSCs) at the middle of the midgut. Despite the fact that each type of stem cell is unique to a particular organ, they share common molecular markers and some regulatory signaling pathways. Due to the simpler tissue structure, ease of performing genetic analysis, and availability of abundant mutants, Drosophila serves as an elegant and powerful model system to study complex stem cell biology. The recent discoveries, particularly in the Drosophila ISC system, have greatly advanced our understanding of stem cell self-renewal, differentiation, and the role of stem cells play in tissue homeostasis/regeneration and adaptive tissue growth.
An atlas of active enhancers across human cell types and tissues
NASA Astrophysics Data System (ADS)
Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A. Maxwell; Baillie, J. Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J.; Meehan, Terrence F.; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O.; Heutink, Peter; Hume, David A.; Jensen, Torben Heick; Suzuki, Harukazu; Hayashizaki, Yoshihide; Müller, Ferenc; Consortium, The Fantom; Forrest, Alistair R. R.; Carninci, Piero; Rehli, Michael; Sandelin, Albin
2014-03-01
Enhancers control the correct temporal and cell-type-specific activation of gene expression in multicellular eukaryotes. Knowing their properties, regulatory activity and targets is crucial to understand the regulation of differentiation and homeostasis. Here we use the FANTOM5 panel of samples, covering the majority of human tissues and cell types, to produce an atlas of active, in vivo-transcribed enhancers. We show that enhancers share properties with CpG-poor messenger RNA promoters but produce bidirectional, exosome-sensitive, relatively short unspliced RNAs, the generation of which is strongly related to enhancer activity. The atlas is used to compare regulatory programs between different cells at unprecedented depth, to identify disease-associated regulatory single nucleotide polymorphisms, and to classify cell-type-specific and ubiquitous enhancers. We further explore the utility of enhancer redundancy, which explains gene expression strength rather than expression patterns. The online FANTOM5 enhancer atlas represents a unique resource for studies on cell-type-specific enhancers and gene regulation.
Improvement of minority carrier life time in N-type monocrystalline Si by the Czochralski method
NASA Astrophysics Data System (ADS)
Baik, Sungsun; Pang, Ilsun; Kim, Jaemin; Kim, Kwanghun
2016-07-01
The installation amount of solar power plants increases every year. Multi-crystalline Si solar cells comprise a large share of the market of solar power plants. Multi-crystalline and single-crystalline Si solar cells are competing against one another in the market. Many single-crystalline companies are trying to develop and produce n-type solar cells with higher cell efficiency than that of p-type. In n-type wafers with high cell efficiency, wafer quality has become increasingly important. In order to make ingots with higher MCLT, the effects of both poly types related to metal impurities and pull speeds related to vacancy concentration on minority carrier life time were studied. In the final part of ingots, poly types related to the metal impurities are a dominant factor on MCLT. In the initial part of ingots, pull speeds related to vacancy concentration are a dominant factor on MCLT. [Figure not available: see fulltext.
Smith, R; Lehner, T
1989-09-01
Three monoclonal antibodies (MAb) were prepared against a cell surface antigen which cross-react between Streptococcus mutans (serotypes c, e and f) and Streptococcus sobrinus (serotypes d and g). Two of the MAb also recognise a determinant on the surface of Streptococcus cricetus (serotype a). The common antigen shared between S. mutans and S. sobrinus was demonstrated by Western blotting to be about 200 kD in size. This antigen is shared not only by the cell surfaces of serotypes a, c, d, e, f and g, but also by the major cell surface antigen of S. mutans of 185 kD and another of 150 kD. These MAb identify all but one mutans type of streptococci and can be utilised as analytical reagents.
Invadopodia formation in blood clots: Not so SLUGgish after all.
Knowles, Lynn M; Maranchie, Jodi K; Pilch, Jan
2014-01-01
Blood clotting specifically supports the metastatic dissemination of malignant cells to the lung. We have recently demonstrated that 2 tumor types that are prone to form lung metastases, renal cell carcinoma and soft tissue sarcoma, share specific adhesive mechanisms that support the invasion and colonization of blood clots in the pulmonary vasculature.
Generation of Spinal Motor Neurons from Human Pluripotent Stem Cells.
Santos, David P; Kiskinis, Evangelos
2017-01-01
Human embryonic stem cells (ESCs) are characterized by their unique ability to self-renew indefinitely, as well as to differentiate into any cell type of the human body. Induced pluripotent stem cells (iPSCs) share these salient characteristics with ESCs and can easily be generated from any given individual by reprogramming somatic cell types such as fibroblasts or blood cells. The spinal motor neuron (MN) is a specialized neuronal subtype that synapses with muscle to control movement. Here, we present a method to generate functional, postmitotic, spinal motor neurons through the directed differentiation of ESCs and iPSCs by the use of small molecules. These cells can be utilized to study the development and function of human motor neurons in healthy and disease states.
Molecular analysis of mixed endometrial carcinomas shows clonality in most cases
Hoang, Lien N.; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C. Blake; Lee, Cheng-Han
2016-01-01
Mixed endometrial carcinoma refers to a tumor that is comprised of two or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas - 11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade endometrioid carcinomas (CCC/EC), and 2 mixed clear cell and serous carcinoma (CCC/SC), using targeted next generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC and 1 SC/CCC) showed a serous carcinoma molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch repair protein (MMR) deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and one EC/CCC case showed both shared and unique molecular features in the two histotype components, suggesting early molecular divergence from a common clonal origin. In two cases, there were no shared molecular features and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphological mimicry, whereby tumors with serous-type molecular profile show morphological features of endometrioid or clear cell carcinoma, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors). PMID:26492180
Difficult Diagnosis between B Cell Lymphoma and Classical Hodgkin's Lymphoma.
Rentas Torres, Yaixa; Rodríguez-López, Joshua L; Valentin, Maria; Silva, Hector
2015-01-01
Although primary mediastinal large B-cell lymphoma and classic Hodgkin lymphoma of nodular sclerosis type are distinct disease, they share several clinical characteristics and biologic features. However, there are mediastinal lymphomas that not fit in either category. These types of lymphomas are recognized as mediastinal gray zone lymphomas. Gray zone lymphomas are lymphatic tumors that cannot be assigned to a defined lymphoma entity due to morphological, clinical, or genetic reasons. In this report, we present a case of a 22 year-old-Hispanic-female diagnosed with B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma and Hodgkin lymphoma.
Gage, P J; Roller, M L; Saunders, T L; Scarlett, L M; Camper, S A
1996-01-01
The Ames dwarf mouse transmits a recessive mutation (df) resulting in a profound anterior pituitary hypocellularity due to a general lack of thyrotropes, somatotropes and lactotropes. These cell types are also dependent on the pituitary-specific transcription factor, Pit-1. We present evidence that expression of Pit-1 and limited commitment to these cells lineages occurs in df/df pituitaries. Thus, the crucial role of df may be in lineage-specific proliferation, rather than cytodifferentiation. The presence of all three Pit-1-dependent cell types in clonally derived clusters provides compelling evidence that these three lineages share a common, pluripotent precursor cell. Clusters containing different combinations of Pit-1-dependent cell types suggests that the Pit-1+ precursor cells choose from multiple developmental options during ontogeny. Characterization of df/df<-->+/+ chimeric mice demonstrated that df functions by a cell-autonomous mechanism. Therefore, df and Pit-1 are both cell-autonomous factors required for thyrotrope, somatotrope and lactotrope ontogeny, but their relative roles are different.
Cancer Immunosurveillance by Tissue-resident Innate Lymphoid Cells and Innate-like T Cells
Dadi, Saïda; Chhangawala, Sagar; Whitlock, Benjamin M.; Franklin, Ruth A.; Luo, Chong T.; Oh, Soyoung A.; Toure, Ahmed; Pritykin, Yuri; Huse, Morgan; Leslie, Christina S.; Li, Ming O.
2016-01-01
Summary Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remain obscure. Here we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, TCRαβ and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a and CD103, these cells share a gene expression signature distinct from those of conventional NK cells, T cells and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15, but not Nfil3, deficiency results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type 1-like innate lymphoid cells and type 1 innate-like T cells. PMID:26806130
Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A; Platt, Nick; Davis, Lianne C; Morgan, Anthony J; Höglinger, Doris; Tatituri, Raju Venkata V; Clark, Simon; Williams, Ian M; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S; Besra, Gurdyal S; Russell, David G; Brenner, Michael B; Sim, Edith; Platt, Frances M
2016-11-18
Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis , achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persistent mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Macrophages infected with persistent intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that persistent intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies.
Fineran, Paul; Lloyd-Evans, Emyr; Lack, Nathan A.; Platt, Nick; Davis, Lianne C.; Morgan, Anthony J.; Höglinger, Doris; Tatituri, Raju Venkata V.; Clark, Simon; Williams, Ian M.; Tynan, Patricia; Al Eisa, Nada; Nazarova, Evgeniya; Williams, Ann; Galione, Antony; Ory, Daniel S.; Besra, Gurdyal S.; Russell, David G.; Brenner, Michael B.; Sim, Edith; Platt, Frances M.
2017-01-01
Background. Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with intracellular mycobacteria share phenotypic similarities with cells taken from patients suffering from Niemann-Pick Disease Type C (NPC), a rare lysosomal storage disease in which endocytic trafficking defects and lipid accumulation within the lysosome lead to cell dysfunction and cell death. We investigated whether these shared phenotypes reflected an underlying mechanistic connection between mycobacterial intracellular persistence and the host cell pathway dysfunctional in NPC. Methods. The induction of NPC phenotypes in macrophages from wild-type mice or obtained from healthy human donors was assessed via infection with mycobacteria and subsequent measurement of lipid levels and intracellular calcium homeostasis. The effect of NPC therapeutics on intracellular mycobacterial load was also assessed. Results. Macrophages infected with intracellular mycobacteria phenocopied NPC cells, exhibiting accumulation of multiple lipid types, reduced lysosomal Ca 2+ levels, and defects in intracellular trafficking. These NPC phenotypes could also be induced using only lipids/glycomycolates from the mycobacterial cell wall. These data suggest that intracellular mycobacteria inhibit the NPC pathway, likely via inhibition of the NPC1 protein, and subsequently induce altered acidic store Ca 2+ homeostasis. Reduced lysosomal calcium levels may provide a mechanistic explanation for the reduced levels of phagosome-lysosome fusion in mycobacterial infection. Treatments capable of correcting defects in NPC mutant cells via modulation of host cell calcium were of benefit in promoting clearance of mycobacteria from infected host cells. Conclusion. These findings provide a novel mechanistic explanation for mycobacterial intracellular persistence, and suggest that targeting interactions between the mycobacteria and host cell pathways may provide a novel avenue for development of anti-TB therapies. PMID:28008422
Chan, Kei Hang K; Huang, Yen-Tsung; Meng, Qingying; Wu, Chunyuan; Reiner, Alexander; Sobel, Eric M; Tinker, Lesley; Lusis, Aldons J; Yang, Xia; Liu, Simin
2014-12-01
Although cardiovascular disease (CVD) and type 2 diabetes mellitus (T2D) share many common risk factors, potential molecular mechanisms that may also be shared for these 2 disorders remain unknown. Using an integrative pathway and network analysis, we performed genome-wide association studies in 8155 blacks, 3494 Hispanic American, and 3697 Caucasian American women who participated in the national Women's Health Initiative single-nucleotide polymorphism (SNP) Health Association Resource and the Genomics and Randomized Trials Network. Eight top pathways and gene networks related to cardiomyopathy, calcium signaling, axon guidance, cell adhesion, and extracellular matrix seemed to be commonly shared between CVD and T2D across all 3 ethnic groups. We also identified ethnicity-specific pathways, such as cell cycle (specific for Hispanic American and Caucasian American) and tight junction (CVD and combined CVD and T2D in Hispanic American). In network analysis of gene-gene or protein-protein interactions, we identified key drivers that included COL1A1, COL3A1, and ELN in the shared pathways for both CVD and T2D. These key driver genes were cross-validated in multiple mouse models of diabetes mellitus and atherosclerosis. Our integrative analysis of American women of 3 ethnicities identified multiple shared biological pathways and key regulatory genes for the development of CVD and T2D. These prospective findings also support the notion that ethnicity-specific susceptibility genes and process are involved in the pathogenesis of CVD and T2D. © 2014 American Heart Association, Inc.
Ning, Gang; Bijron, Jonathan G.; Yamamoto, Yusuke; Wang, Xia; Howitt, Brooke E.; Herfs, Michael; Yang, Eric; Hong, Yue; Cornille, Maxence; Wu, Lingyan; Hanamornroongruang, Suchanan; McKeon, Frank D.; Crum, Christopher P.; Xian, Wa
2014-01-01
The oviducts contain high grade serous cancer (HGSC) precursors (serous tubal intraepithelial neoplasia or STINs), which are γ-H2AXp- and TP53 mutation-positive. Although they express wild type p53, secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer; moreover both STINs and SCOUTs share a loss of PAX2 expression (PAX2n). We evaluated PAX2 expression in proliferating adult and embryonic oviductal cells, normal mucosa, SCOUTs, Walthard cell nests (WCNs), STINs and HGSCs, and the expression of genes chosen empirically or from SCOUT expression arrays. Clones generated in vitro from embryonic gynecologic tract and adult fallopian tube were Krt7p/PAX2n/EZH2p and underwent ciliated (PAX2n/EZH2n/FOXJ1p) and basal (Krt7n/EZH2n/Krt5p) differentiation. Similarly non-ciliated cells in normal mucosa were PAX2p but became PAX2n in multilayered epithelium undergoing ciliated or basal (Walthard cell nests or WCN) cell differentiation. PAX2n SCOUTs fell into two groups; Type I were secretory or secretory/ciliated with a “tubal” phenotype and were ALDH1n and β-cateninmem (membraneous only). Type II displayed a columnar to pseudostratified (endometrioid) phenotype, with an EZH2p, ALDH1p, β-cateninnc (nuclear and cytoplasmic), stathminp, LEF1p, RCN1p and RUNX2p expression signature. STINs and HGSCs shared the Type I immunophenotype of PAX2n, ALDH1n, β-cateninmem, but highly expressed EZH2p, LEF1p, RCN1p, and stathminp. This study, for the first time, links PAX2n with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumor suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2), calcium binding (RCN1) and oncogenesis (stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target for early prevention. PMID:25130537
Lateral Membrane Waves Constitute a Universal Dynamic Pattern of Motile Cells
NASA Astrophysics Data System (ADS)
Döbereiner, Hans-Günther; Dubin-Thaler, Benjamin J.; Hofman, Jake M.; Xenias, Harry S.; Sims, Tasha N.; Giannone, Grégory; Dustin, Michael L.; Wiggins, Chris H.; Sheetz, Michael P.
2006-07-01
We have monitored active movements of the cell circumference on specifically coated substrates for a variety of cells including mouse embryonic fibroblasts and T cells, as well as wing disk cells from fruit flies. Despite having different functions and being from multiple phyla, these cell types share a common spatiotemporal pattern in their normal membrane velocity; we show that protrusion and retraction events are organized in lateral waves along the cell membrane. These wave patterns indicate both spatial and temporal long-range periodic correlations of the actomyosin gel.
Tsukamoto, Yoshihiko; Omi, Naoko
2017-01-01
We confirmed the classification of 15 morphological types of mouse bipolar cells by serial section transmission electron microscopy and characterized each type by identifying chemical synapses and gap junctions at axon terminals. Although whether the previous type 5 cells consist of two or three types was uncertain, they are here clustered into three types based on the vertical distribution of axonal ribbons. Next, while two groups of rod bipolar (RB) cells, RB1, and RB2, were previously proposed, we clarify that a half of RB1 cells have the intermediate characteristics, suggesting that these two groups comprise a single RB type. After validation of bipolar cell types, we examined their relationship with amacrine cells then particularly with AII amacrine cells. We found a strong correlation between the number of amacrine cell synaptic contacts and the number of bipolar cell axonal ribbons. Formation of bipolar cell output at each ribbon synapse may be effectively regulated by a few nearby inhibitory inputs of amacrine cells which are chosen from among many amacrine cell types. We also found that almost all types of ON cone bipolar cells frequently have a minor group of midway ribbons along the axon passing through the OFF sublamina as well as a major group of terminal ribbons in the ON sublamina. AII amacrine cells are connected to five of six OFF bipolar cell types via conventional chemical synapses and seven of eight ON (cone) bipolar cell types via electrical synapses (gap junctions). However, the number of synapses is dependent on bipolar cell types. Type 2 cells have 69% of the total number of OFF bipolar chemical synaptic contacts with AII amacrine cells and type 6 cells have 46% of the total area of ON bipolar gap junctions with AII amacrine cells. Both type 2 and 6 cells gain the greatest access to AII amacrine cell signals also share those signals with other types of bipolar cells via networked gap junctions. These findings imply that the most sensitive scotopic signal may be conveyed to the center by ganglion cells that have the most numerous synapses with type 2 and 6 cells. PMID:29114208
IL-21: an executor of B cell fate.
Konforte, Danijela; Simard, Nathalie; Paige, Christopher J
2009-02-15
IL-21 is a type I cytokine that shares the common receptor gamma-chain with IL-2, IL-4, IL-7, IL-9, and IL-15. B cells are one of the lymphoid cell types whose development and function are regulated by IL-21. Depending on the interplay with costimulatory signals and on the developmental stage of a B cell, IL-21 can induce proliferation, differentiation into Ig-producing plasma cells, or apoptosis in both mice and humans. Alone and in combination with Th cell-derived cytokines IL-21 can regulate class switch recombination to IgG, IgA, or IgE isotypes, indicating its important role in shaping the effector function of B cells. This review highlights the role of IL-21 in B cell development, function, and disease and provides some perspectives on the future studies in this area.
Interlocked feedforward loops control cell-type-specific Rhodopsin expression in the Drosophila eye.
Johnston, Robert J; Otake, Yoshiaki; Sood, Pranidhi; Vogt, Nina; Behnia, Rudy; Vasiliauskas, Daniel; McDonald, Elizabeth; Xie, Baotong; Koenig, Sebastian; Wolf, Reinhard; Cook, Tiffany; Gebelein, Brian; Kussell, Edo; Nakagoshi, Hideki; Desplan, Claude
2011-06-10
How complex networks of activators and repressors lead to exquisitely specific cell-type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression. dve is a shared component of two opposing, interlocked feedforward loops (FFLs). Orthodenticle and Dve interact in an incoherent FFL to repress Rhodopsin expression throughout the eye. In R7 and R8 photoreceptors, a coherent FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network uses repression to restrict and combinatorial activation to induce cell-type-specific expression. Furthermore, Dve levels are finely tuned to yield cell-type- and region-specific repression or activation outcomes. This interlocked FFL motif may be a general mechanism to control terminal cell-fate specification. Copyright © 2011 Elsevier Inc. All rights reserved.
Ontogeny and function of murine epidermal Langerhans cells.
Kaplan, Daniel H
2017-09-19
Langerhans cells (LCs) are epidermis-resident antigen-presenting cells that share a common ontogeny with macrophages but function as dendritic cells (DCs). Their development, recruitment and retention in the epidermis is orchestrated by interactions with keratinocytes through multiple mechanisms. LC and dermal DC subsets often show functional redundancy, but LCs are required for specific types of adaptive immune responses when antigen is concentrated in the epidermis. This Review will focus on those developmental and functional properties that are unique to LCs.
Immunohistochemical Analysis of Human Vallate Taste Buds
Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S.
2015-01-01
The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. PMID:26400924
Anatomic evidence for peripheral neural processing in mammalian graviceptors
NASA Technical Reports Server (NTRS)
Ross, M. D.
1985-01-01
Ultrastructural study of utricular and saccular maculas demonstrates that their innervation patterns are complex. There is a clustering of type I and type II hair cells based upon a sharing of afferents, a system of efferent-type beaded fibers that is of intramacular (mostly calyceal) origin, and a plexus-like arrangement of afferents and efferents at many sites in the neuroepithelium. Results suggest that information concerning linear acceleration is processed peripherally, beginning at the hair cell level, before being sent to the central nervous system. The findings may supply a structural basis for peripheral adaptation to a constant stimulus, and for lateral inhibition to improve signal relative to noise.
Proceedings: international regulatory considerations on development pathways for cell therapies.
Feigal, Ellen G; Tsokas, Katherine; Viswanathan, Sowmya; Zhang, Jiwen; Priest, Catherine; Pearce, Jonathan; Mount, Natalie
2014-08-01
Regenerative medicine is a rapidly evolving field that faces novel scientific and regulatory challenges. In September 2013, the International Workshop on Regulatory Pathways for Cell Therapies was convened to discuss the nature of these challenges and potential solutions and to highlight opportunities for potential convergence between different regulatory bodies that might assist the field's development. The workshop discussions generated potentially actionable steps in five main areas that could mitigate cell therapy development pathway risk and accelerate moving promising therapies to patients. These included the need for convergence of regulatory guidelines on donor eligibility and suitability of lines for use in clinical trials and subsequent commercialization for cell therapies to move forward on a global basis; the need to challenge and encourage investigators in the regenerative medicine field to share information and provide examples of comparability studies related to master cell banks; the need for convergence of guidelines across regulatory jurisdictions on requirements for tumorigenicity studies, based on particular cell types and on biodistribution studies; the need to increase transparency in sharing clinical trial information more broadly and disseminating results more rapidly; and the need to establish a forum for sharing the experiences of various approaches being developed to expedite regulatory approvals and access for patients to innovative cell and regenerative therapies in the different regulatory jurisdictions and to assess their potential strengths and weaknesses. ©AlphaMed Press.
A family business: stem cell progeny join the niche to regulate homeostasis.
Hsu, Ya-Chieh; Fuchs, Elaine
2012-01-23
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems.
A family business: stem cell progeny join the niche to regulate homeostasis
Hsu, Ya-Chieh; Fuchs, Elaine
2012-01-01
Stem cell niches, the discrete microenvironments in which the stem cells reside, play a dominant part in regulating stem cell activity and behaviours. Recent studies suggest that committed stem cell progeny become indispensable components of the niche in a wide range of stem cell systems. These unexpected niche inhabitants provide versatile feedback signals to their stem cell parents. Together with other heterologous cell types that constitute the niche, they contribute to the dynamics of the microenvironment. As progeny are often located in close proximity to stem cell niches, similar feedback regulations may be the underlying principles shared by different stem cell systems. PMID:22266760
Berard, Frederic; Blanco, Patrick; Davoust, Jean; Neidhart-Berard, Eve-Marie; Nouri-Shirazi, Mahyar; Taquet, Nicolas; Rimoldi, Donata; Cerottini, Jean Charles; Banchereau, Jacques; Palucka, A. Karolina
2000-01-01
The goal of tumor immunotherapy is to elicit immune responses against autologous tumors. It would be highly desirable that such responses include multiple T cell clones against multiple tumor antigens. This could be obtained using the antigen presenting capacity of dendritic cells (DCs) and cross-priming. That is, one could load the DC with tumor lines of any human histocompatibility leukocyte antigen (HLA) type to elicit T cell responses against the autologous tumor. In this study, we show that human DCs derived from monocytes and loaded with killed melanoma cells prime naive CD45RA+CD27+CD8+ T cells against the four shared melanoma antigens: MAGE-3, gp100, tyrosinase, and MART-1. HLA-A201+ naive T cells primed by DCs loaded with HLA-A201− melanoma cells are able to kill several HLA-A201+ melanoma targets. Cytotoxic T lymphocyte priming towards melanoma antigens is also obtained with cells from metastatic melanoma patients. This demonstration of cross-priming against shared tumor antigens builds the basis for using allogeneic tumor cell lines to deliver tumor antigens to DCs for vaccination protocols. PMID:11104796
Mustroph, Angelika; Bailey-Serres, Julia
2010-03-01
Plants consist of distinct cell types distinguished by position, morphological features and metabolic activities. We recently developed a method to extract cell-type specific mRNA populations by immunopurification of ribosome-associated mRNAs. Microarray profiles of 21 cell-specific mRNA populations from seedling roots and shoots comprise the Arabidopsis Translatome dataset. This gene expression atlas provides a new tool for the study of cell-specific processes. Here we provide an example of how genes involved in a pathway limited to one or few cell-types can be further characterized and new candidate genes can be predicted. Cells of the root endodermis produce suberin as an inner barrier between the cortex and stele, whereas the shoot epidermal cells form cutin as a barrier to the external environment. Both polymers consist of fatty acid derivates, and share biosynthetic origins. We use the Arabidopsis Translatome dataset to demonstrate the significant cell-specific expression patterns of genes involved in those biosynthetic processes and suggest new candidate genes in the biosynthesis of suberin and cutin.
Garrick, Michael D; Garrick, Laura M
2009-05-01
Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.
Koliakos, George
2017-02-01
The article is a presentation at the 4th Conference of ESAAM, which took place on October 30-31, 2015, in Athens, Greece. Its purpose was not to cover all aspects of cellular aging but to share with the audience of the Conference, in a 15-minute presentation, current knowledge about the rejuvenating and repairing somatic stem cells that are distinct from other stem cell types (such as embryonic or induced pluripotent stem cells), emphasize that our body in old age cannot take advantage of these rejuvenating cells, and provide some examples of novel experimental stem cell applications in the field of rejuvenation and antiaging biomedical research.
Ontology based molecular signatures for immune cell types via gene expression analysis
2013-01-01
Background New technologies are focusing on characterizing cell types to better understand their heterogeneity. With large volumes of cellular data being generated, innovative methods are needed to structure the resulting data analyses. Here, we describe an ‘Ontologically BAsed Molecular Signature’ (OBAMS) method that identifies novel cellular biomarkers and infers biological functions as characteristics of particular cell types. This method finds molecular signatures for immune cell types based on mapping biological samples to the Cell Ontology (CL) and navigating the space of all possible pairwise comparisons between cell types to find genes whose expression is core to a particular cell type’s identity. Results We illustrate this ontological approach by evaluating expression data available from the Immunological Genome project (IGP) to identify unique biomarkers of mature B cell subtypes. We find that using OBAMS, candidate biomarkers can be identified at every strata of cellular identity from broad classifications to very granular. Furthermore, we show that Gene Ontology can be used to cluster cell types by shared biological processes in order to find candidate genes responsible for somatic hypermutation in germinal center B cells. Moreover, through in silico experiments based on this approach, we have identified genes sets that represent genes overexpressed in germinal center B cells and identify genes uniquely expressed in these B cells compared to other B cell types. Conclusions This work demonstrates the utility of incorporating structured ontological knowledge into biological data analysis – providing a new method for defining novel biomarkers and providing an opportunity for new biological insights. PMID:24004649
Sathe, Priyanka; Metcalf, Donald; Vremec, David; Naik, Shalin H; Langdon, Wallace Y; Huntington, Nicholas D; Wu, Li; Shortman, Ken
2014-07-17
The relationship between dendritic cells (DCs) and macrophages is often debated. Here we ask whether steady-state, lymphoid-tissue-resident conventional DCs (cDCs), plasmacytoid DCs (pDCs), and macrophages share a common macrophage-DC-restricted precursor (MDP). Using new clonal culture assays combined with adoptive transfer, we found that MDP fractions isolated by previous strategies are dominated by precursors of macrophages and monocytes, include some multipotent precursors of other hematopoietic lineages, but contain few precursors of resident cDCs and pDCs and no detectable common precursors restricted to these DC types and macrophages. Overall we find no evidence for a common restricted MDP leading to both macrophages and FL-dependent, resident cDCs and pDCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Cerosaletti, Karen; Barahmand-Pour-Whitman, Fariba; Yang, Junbao; DeBerg, Hannah A; Dufort, Matthew J; Murray, Sara A; Israelsson, Elisabeth; Speake, Cate; Gersuk, Vivian H; Eddy, James A; Reijonen, Helena; Greenbaum, Carla J; Kwok, William W; Wambre, Erik; Prlic, Martin; Gottardo, Raphael; Nepom, Gerald T; Linsley, Peter S
2017-07-01
The significance of islet Ag-reactive T cells found in peripheral blood of type 1 diabetes (T1D) subjects is unclear, partly because similar cells are also found in healthy control (HC) subjects. We hypothesized that key disease-associated cells would show evidence of prior Ag exposure, inferred from expanded TCR clonotypes, and essential phenotypic properties in their transcriptomes. To test this, we developed single-cell RNA sequencing procedures for identifying TCR clonotypes and transcript phenotypes in individual T cells. We applied these procedures to analysis of islet Ag-reactive CD4 + memory T cells from the blood of T1D and HC individuals after activation with pooled immunodominant islet peptides. We found extensive TCR clonotype sharing in Ag-activated cells, especially from individual T1D subjects, consistent with in vivo T cell expansion during disease progression. The expanded clonotype from one T1D subject was detected at repeat visits spanning >15 mo, demonstrating clonotype stability. Notably, we found no clonotype sharing between subjects, indicating a predominance of "private" TCR specificities. Expanded clones from two T1D subjects recognized distinct IGRP peptides, implicating this molecule as a trigger for CD4 + T cell expansion. Although overall transcript profiles of cells from HC and T1D subjects were similar, profiles from the most expanded clones were distinctive. Our findings demonstrate that islet Ag-reactive CD4 + memory T cells with unique Ag specificities and phenotypes are expanded during disease progression and can be detected by single-cell analysis of peripheral blood. Copyright © 2017 by The American Association of Immunologists, Inc.
Clinical application of adipose stem cells in plastic surgery.
Kim, Yong-Jin; Jeong, Jae-Ho
2014-04-01
Adipose stem cells (ASCs) are a type of adult stem cells that share common characteristics with typical mesenchymal stem cells. In the last decade, ASCs have been shown to be a useful cell resource for tissue regeneration. The major role of regenerative medicine in this century is based on cell therapy in which ASCs hold a key position. Active research on this new type of adult stem cell has been ongoing and these cells now have several clinical applications, including fat grafting, overcoming wound healing difficulties, recovery from local tissue ischemia, and scar remodeling. The application of cultured cells will increase the efficiency of cell therapy. However, the use of cultured stem cells is strictly controlled by government regulation to ensure patient safety. Government regulation is a factor that can limit more versatile clinical application of ASCs. In this review, current clinical applications of ASCs in plastic surgery are introduced. Future stem cell applications in clinical field including culturing and banking of ASCs are also discussed in this review.
Studying cell biology in the skin.
Morrow, Angel; Lechler, Terry
2015-11-15
Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. © 2015 Morrow and Lechler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes.
Ackermann, Amanda M; Wang, Zhiping; Schug, Jonathan; Naji, Ali; Kaestner, Klaus H
2016-03-01
Although glucagon-secreting α-cells and insulin-secreting β-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of β-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and β-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and β-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and β-cell specification and plasticity. We sorted human α- and β-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. We identified numerous transcripts with either α-cell- or β-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in β-cells. Furthermore, α-cell- and β-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. We have determined the genetic landscape of human α- and β-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and β-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.
Immunohistochemical Analysis of Human Vallate Taste Buds.
Tizzano, Marco; Grigereit, Laura; Shultz, Nicole; Clary, Matthew S; Finger, Thomas E
2015-11-01
The morphology of the vallate papillae from postmortem human samples was investigated with immunohistochemistry. Microscopically, taste buds were present along the inner wall of the papilla, and in some cases in the outer wall as well. The typical taste cell markers PLCβ2, GNAT3 (gustducin) and the T1R3 receptor stain elongated cells in human taste buds consistent with the Type II cells in rodents. In the human tissue, taste bud cells that stain with Type II cell markers, PLCβ2 and GNAT3, also stain with villin antibody. Two typical immunochemical markers for Type III taste cells in rodents, PGP9.5 and SNAP25, fail to stain any taste bud cells in the human postmortem tissue, although these antibodies do stain numerous nerve fibers throughout the specimen. Car4, another Type III cell marker, reacted with only a few taste cells in our samples. Finally, human vallate papillae have a general network of innervation similar to rodents and antibodies directed against SNAP25, PGP9.5, acetylated tubulin and P2X3 all stain free perigemmal nerve endings as well as intragemmal taste fibers. We conclude that with the exception of certain molecular features of Type III cells, human vallate papillae share the structural, morphological, and molecular features observed in rodents. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Jiang, Haoyu; Zhou, Renjun; Zhang, Mengdi; Cheng, Zhineng; Li, Jun; Zhang, Gan; Chen, Baowei; Zou, Shichun; Yang, Ying
2018-05-30
To better understand the potential genic communication and dissemination of antibiotic resistance genes (ARGs) in different environmental matrices, the differences of ARG profiles between river surface water and sediments were explored. Metagenomic analysis was applied to investigate the comprehensive ARG profiles in water and sediment samples collected from the highly human-impacted catchment of the Beijiang River and its river source. A total of 135 ARG subtypes belonging to 18 ARG types were identified. Generally, ARGs in surface water were more diverse and abundant than those in sediments. ARG profiles in the surface water and sediment samples were distinct from each other, but some ARGs were shared by the surface water and sediments. Results revealed that multidrug and bacitracin resistance genes were the predominant ARGs types in both surface water (0.30, 0.17 copies/cell) and sediments (0.19, 0.15 copies/cell). 73 ARG subtypes were shared by the water and sediment samples and had taken over 90% of the total detected ARG abundance. Most of the shared ARGs are resistant to the clinically relevant antibiotics. Furthermore, significant correlations between the ARGs and 21 shared genera or mobile genetic elements (MGEs) (plasmids and integrons) were found in surface water and sediments, suggesting the important role of genera or MGEs in shaping ARGs profiles, propagation and distribution. These findings provide deeper insight into mitigating the propagation of ARGs and the associated risks to public health. Copyright © 2018 Elsevier Inc. All rights reserved.
Sherlekar, Amrita L; Janssen, Abbey; Siehr, Meagan S; Koo, Pamela K; Caflisch, Laura; Boggess, May; Lints, Robyn
2013-01-01
Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male's decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite's surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation.
Sherlekar, Amrita L.; Janssen, Abbey; Siehr, Meagan S.; Koo, Pamela K.; Caflisch, Laura; Boggess, May; Lints, Robyn
2013-01-01
Background Mating behaviors in simple invertebrate model organisms represent tractable paradigms for understanding the neural bases of sex-specific behaviors, decision-making and sensorimotor integration. However, there are few examples where such neural circuits have been defined at high resolution or interrogated. Methodology/Principal Findings Here we exploit the simplicity of the nematode Caenorhabditis elegans to define the neural circuits underlying the male’s decision to initiate mating in response to contact with a mate. Mate contact is sensed by male-specific sensilla of the tail, the rays, which subsequently induce and guide a contact-based search of the hermaphrodite’s surface for the vulva (the vulva search). Atypically, search locomotion has a backward directional bias so its implementation requires overcoming an intrinsic bias for forward movement, set by activity of the sex-shared locomotory system. Using optogenetics, cell-specific ablation- and mutant behavioral analyses, we show that the male makes this shift by manipulating the activity of command cells within this sex-shared locomotory system. The rays control the command interneurons through the male-specific, decision-making interneuron PVY and its auxiliary cell PVX. Unlike many sex-shared pathways, PVY/PVX regulate the command cells via cholinergic, rather than glutamatergic transmission, a feature that likely contributes to response specificity and coordinates directional movement with other cholinergic-dependent motor behaviors of the mating sequence. PVY/PVX preferentially activate the backward, and not forward, command cells because of a bias in synaptic inputs and the distribution of key cholinergic receptors (encoded by the genes acr-18, acr-16 and unc-29) in favor of the backward command cells. Conclusion/Significance Our interrogation of male neural circuits reveals that a sex-specific response to the opposite sex is conferred by a male-specific pathway that renders subordinate, sex-shared motor programs responsive to mate cues. Circuit modifications of these types may make prominent contributions to natural variations in behavior that ultimately bring about speciation. PMID:23577128
Type II Natural Killer T (NKT) Cells And Their Emerging Role In Health And Disease
Dhodapkar, Madhav V.; Kumar, Vipin
2016-01-01
Natural killer T (NKT) cells recognize lipid antigens presented by a class I MHC-like molecule CD1d, a member of the CD1 family. While most of the initial studies on NKT cells focused on a subset with semi-invariant T cell receptor (TCR) termed iNKT cells, majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed as type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self lipid ligands, and share some properties with both iNKT as well as conventional T cells. Emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. Improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions. PMID:28115591
Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H
1987-01-01
One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978
Eye evolution at high resolution: the neuron as a unit of homology.
Erclik, Ted; Hartenstein, Volker; McInnes, Roderick R; Lipshitz, Howard D
2009-08-01
Based on differences in morphology, photoreceptor-type usage and lens composition it has been proposed that complex eyes have evolved independently many times. The remarkable observation that different eye types rely on a conserved network of genes (including Pax6/eyeless) for their formation has led to the revised proposal that disparate complex eye types have evolved from a shared and simpler prototype. Did this ancestral eye already contain the neural circuitry required for image processing? And what were the evolutionary events that led to the formation of complex visual systems, such as those found in vertebrates and insects? The recent identification of unexpected cell-type homologies between neurons in the vertebrate and Drosophila visual systems has led to two proposed models for the evolution of complex visual systems from a simple prototype. The first, as an extension of the finding that the neurons of the vertebrate retina share homologies with both insect (rhabdomeric) and vertebrate (ciliary) photoreceptor cell types, suggests that the vertebrate retina is a composite structure, made up of neurons that have evolved from two spatially separate ancestral photoreceptor populations. The second model, based largely on the conserved role for the Vsx homeobox genes in photoreceptor-target neuron development, suggests that the last common ancestor of vertebrates and flies already possessed a relatively sophisticated visual system that contained a mixture of rhabdomeric and ciliary photoreceptors as well as their first- and second-order target neurons. The vertebrate retina and fly visual system would have subsequently evolved by elaborating on this ancestral neural circuit. Here we present evidence for these two cell-type homology-based models and discuss their implications.
Multimap formation in visual cortex
Jain, Rishabh; Millin, Rachel; Mel, Bartlett W.
2015-01-01
An extrastriate visual area such as V2 or V4 contains neurons selective for a multitude of complex shapes, all sharing a common topographic organization. Simultaneously developing multiple interdigitated maps—hereafter a “multimap”—is challenging in that neurons must compete to generate a diversity of response types locally, while cooperating with their dispersed same-type neighbors to achieve uniform visual field coverage for their response type at all orientations, scales, etc. Previously proposed map development schemes have relied on smooth spatial interaction functions to establish both topography and columnar organization, but by locally homogenizing cells' response properties, local smoothing mechanisms effectively rule out multimap formation. We found in computer simulations that the key requirements for multimap development are that neurons are enabled for plasticity only within highly active regions of cortex designated “learning eligibility regions” (LERs), but within an LER, each cell's learning rate is determined only by its activity level with no dependence on location. We show that a hybrid developmental rule that combines spatial and activity-dependent learning criteria in this way successfully produces multimaps when the input stream contains multiple distinct feature types, or in the degenerate case of a single feature type, produces a V1-like map with “salt-and-pepper” structure. Our results support the hypothesis that cortical maps containing a fine mixture of different response types, whether in monkey extrastriate cortex, mouse V1 or elsewhere in the cortex, rather than signaling a breakdown of map formation mechanisms at the fine scale, are a product of a generic cortical developmental scheme designed to map cells with a diversity of response properties across a shared topographic space. PMID:26641946
Glycocalyx Engineering Reveals a Siglec-Based Mechanism for NK Cell Immunoevasion
Hudak, Jason E.; Canham, Stephen M.; Bertozzi, Carolyn R.
2013-01-01
The increase of cell surface sialic acid is a characteristic shared by many tumor types. A correlation between hypersialylation and immunoprotection has been observed, but few hypotheses have provided a mechanistic understanding of this immunosuppressive phenomenon. Here, we show that increasing sialylated glycans on cancer cells inhibits human NK cell activation through the recruitment of Siglec-7. Key to these findings was the use of glycopolymers end-functionalized with phospholipids, which enable the introduction of synthetically defined glycans onto cancer cell surfaces. Remodeling the sialylation status of cancer cells affected the susceptibility to NK cell cytotoxicity via Siglec-7 engagement in a variety of tumor types. These results support a model in which hypersialylation offers a selective advantage to tumor cells under pressure from NK immunosurveillance by increasing Siglec ligands. We also exploited this finding to protect allogeneic and xenogeneic primary cells from NK-mediated killing suggesting the potential of Siglecs as therapeutic targets in cell transplant therapy. PMID:24292068
Cell-of-Origin DNA Methylation Signatures Are Maintained during Colorectal Carcinogenesis.
Bormann, Felix; Rodríguez-Paredes, Manuel; Lasitschka, Felix; Edelmann, Dominic; Musch, Tanja; Benner, Axel; Bergman, Yehudit; Dieter, Sebastian M; Ball, Claudia R; Glimm, Hanno; Linhart, Heinz G; Lyko, Frank
2018-06-12
Colorectal adenomas are precursor lesions of colorectal cancers and represent clonal amplifications of single cells from colonic crypts. DNA methylation patterns specify cell-type identity during cellular differentiation and, therefore, provide opportunities for the molecular analysis of tumors. We have now analyzed DNA methylation patterns in colorectal adenomas and identified three biologically defined subclasses that describe different intestinal crypt differentiation stages. Importantly, colorectal carcinomas could be classified into the same methylation subtypes, reflecting their shared cell types of origin with adenomas. Further data analysis also revealed significantly reduced overall survival for one of the subtypes. Our results provide a concept for understanding the methylation patterns observed in colorectal cancer and provide opportunities for tumor subclassification and patient stratification. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
You, Sungyong; Yoo, Seung-Ah; Choi, Susanna; Kim, Ji-Young; Park, Su-Jung; Ji, Jong Dae; Kim, Tae-Hwan; Kim, Ki-Jo; Cho, Chul-Soo; Hwang, Daehee; Kim, Wan-Uk
2014-01-01
Rheumatoid synoviocytes, which consist of fibroblast-like synoviocytes (FLSs) and synovial macrophages (SMs), are crucial for the progression of rheumatoid arthritis (RA). Particularly, FLSs of RA patients (RA-FLSs) exhibit invasive characteristics reminiscent of cancer cells, destroying cartilage and bone. RA-FLSs and SMs originate differently from mesenchymal and myeloid cells, respectively, but share many pathologic functions. However, the molecular signatures and biological networks representing the distinct and shared features of the two cell types are unknown. We performed global transcriptome profiling of FLSs and SMs obtained from RA and osteoarthritis patients. By comparing the transcriptomes, we identified distinct molecular signatures and cellular processes defining invasiveness of RA-FLSs and proinflammatory properties of RA-SMs, respectively. Interestingly, under the interleukin-1β (IL-1β)–stimulated condition, the RA-FLSs newly acquired proinflammatory signature dominant in RA-SMs without losing invasive properties. We next reconstructed a network model that delineates the shared, RA-FLS–dominant (invasive), and RA-SM–dominant (inflammatory) processes. From the network model, we selected 13 genes, including periostin, osteoblast-specific factor (POSTN) and twist basic helix–loop–helix transcription factor 1 (TWIST1), as key regulator candidates responsible for FLS invasiveness. Of note, POSTN and TWIST1 expressions were elevated in independent RA-FLSs and further instigated by IL-1β. Functional assays demonstrated the requirement of POSTN and TWIST1 for migration and invasion of RA-FLSs stimulated with IL-1β. Together, our systems approach to rheumatoid synovitis provides a basis for identifying key regulators responsible for pathological features of RA-FLSs and -SMs, demonstrating how a certain type of cells acquires functional redundancy under chronic inflammatory conditions. PMID:24374632
Sox5 Functions as a Fate Switch in Medaka Pigment Cell Development
Nagao, Yusuke; Suzuki, Takao; Shimizu, Atsushi; Kimura, Tetsuaki; Seki, Ryoko; Adachi, Tomoko; Inoue, Chikako; Omae, Yoshihiro; Kamei, Yasuhiro; Hara, Ikuyo; Taniguchi, Yoshihito; Naruse, Kiyoshi; Wakamatsu, Yuko; Kelsh, Robert N.; Hibi, Masahiko; Hashimoto, Hisashi
2014-01-01
Mechanisms generating diverse cell types from multipotent progenitors are crucial for normal development. Neural crest cells (NCCs) are multipotent stem cells that give rise to numerous cell-types, including pigment cells. Medaka has four types of NCC-derived pigment cells (xanthophores, leucophores, melanophores and iridophores), making medaka pigment cell development an excellent model for studying the mechanisms controlling specification of distinct cell types from a multipotent progenitor. Medaka many leucophores-3 (ml-3) mutant embryos exhibit a unique phenotype characterized by excessive formation of leucophores and absence of xanthophores. We show that ml-3 encodes sox5, which is expressed in premigratory NCCs and differentiating xanthophores. Cell transplantation studies reveal a cell-autonomous role of sox5 in the xanthophore lineage. pax7a is expressed in NCCs and required for both xanthophore and leucophore lineages; we demonstrate that Sox5 functions downstream of Pax7a. We propose a model in which multipotent NCCs first give rise to pax7a-positive partially fate-restricted intermediate progenitors for xanthophores and leucophores; some of these progenitors then express sox5, and as a result of Sox5 action develop into xanthophores. Our results provide the first demonstration that Sox5 can function as a molecular switch driving specification of a specific cell-fate (xanthophore) from a partially-restricted, but still multipotent, progenitor (the shared xanthophore-leucophore progenitor). PMID:24699463
Perillo, Margherita; Wang, Yue Julia; Leach, Steven D; Arnone, Maria Ina
2016-05-26
Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems.
Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases
Li, Yun R; Li, Jin; Zhao, Sihai D; Bradfield, Jonathan P; Mentch, Frank D; Maggadottir, S Melkorka; Hou, Cuiping; Abrams, Debra J; Chang, Diana; Gao, Feng; Guo, Yiran; Wei, Zhi; Connolly, John J; Cardinale, Christopher J; Bakay, Marina; Glessner, Joseph T; Li, Dong; Kao, Charlly; Thomas, Kelly A; Qiu, Haijun; Chiavacci, Rosetta M; Kim, Cecilia E; Wang, Fengxiang; Snyder, James; Richie, Marylyn D; Flatø, Berit; Førre, Øystein; Denson, Lee A; Thompson, Susan D; Becker, Mara L; Guthery, Stephen L; Latiano, Anna; Perez, Elena; Resnick, Elena; Russell, Richard K; Wilson, David C; Silverberg, Mark S; Annese, Vito; Lie, Benedicte A; Punaro, Marilynn; Dubinsky, Marla C; Monos, Dimitri S; Strisciuglio, Caterina; Staiano, Annamaria; Miele, Erasmo; Kugathasan, Subra; Ellis, Justine A; Munro, Jane E; Sullivan, Kathleen E; Wise, Carol A; Chapel, Helen; Cunningham-Rundles, Charlotte; Grant, Struan F A; Orange, Jordan S; Sleiman, Patrick M A; Behrens, Edward M; Griffiths, Anne M; Satsangi, Jack; Finkel, Terri H; Keinan, Alon; Prak, Eline T Luning; Polychronakos, Constantin; Baldassano, Robert N; Li, Hongzhe; Keating, Brendan J; Hakonarson, Hakon
2016-01-01
Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ2 meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico–replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases. PMID:26301688
NASA Astrophysics Data System (ADS)
Lespinats, S.; Meyer-Bäse, Anke; He, Huan; Marshall, Alan G.; Conrad, Charles A.; Emmett, Mark R.
2009-05-01
Partial Least Square Regression (PLSR) and Data-Driven High Dimensional Scaling (DD-HDS) are employed for the prediction and the visualization of changes in polar lipid expression induced by different combinations of wild-type (wt) p53 gene therapy and SN38 chemotherapy of U87 MG glioblastoma cells. A very detailed analysis of the gangliosides reveals that certain gangliosides of GM3 or GD1-type have unique properties not shared by the others. In summary, this preliminary work shows that data mining techniques are able to determine the modulation of gangliosides by different treatment combinations.
The STAT3-Ser/Hes3 signaling axis in cancer.
Poser, Steven W; Park, Deric M; Androutsellis-Theotokis, Andreas
2014-01-01
Disrupting the regenerative capacity of tumorigenic cells is a major focus in medicine. These regenerative properties are carried by a subpopulation of cells within the tumor, termed cancer stem cells. Current therapies don't effectively tackle the disease suggesting these cells employ yet unidentified molecular mechanisms allowing them to evade targeting. Recent observations in neural stem cells reveal an extraordinary plasticity in the signaling pathways they utilize to grow. These findings are being extended to the cancer stem cell field, illuminating conceptually novel treatment strategies. Tumorigenic cells can make use of distinct, even opposing pathways, including JAK/STAT and the non-canonical STAT3-Ser/Hes3 signaling axis. This plasticity may not be confined to the cancer stem cell population, but may be shared by various cell types within the tumor, blurring the line distinguishing cancer stem cells from other tumor cell types. The implications to anti-cancer medicine are highly significant, since these findings demonstrate that inhibiting one cell growth pathway may actually enhance the activity of alternative ones. Drug discovery programs will also benefit from these concepts.
UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer.
Liu-Smith, Feng; Jia, Jinjing; Zheng, Yan
2017-01-01
There are three major types of skin cancer: melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC and SCC are often referred to as non-melanoma skin cancer (NMSC). NMSCs are relatively non-lethal and curable by surgery, hence are not reportable in most cancer registries all over the world. Melanoma is the deadliest skin cancer. Its incidence rate (case number) is about 1/10th of that for NMSC, yet its death toll is ~8 fold higher than NMSC.Melanomas arise from melanocytes which are normally located on the basement membrane with dendrites extending into the epidermal keratinocytes. A major known function of melanocytes is to produce pigments which are enclosed by lipid membrane (termed melanosomes) and distribute them into keratinocytes, thus give different shade of skin colors. BCCs arise from basal cells, which are a layer of cells located at the deepest part of epidermis. Basal cells are recently considered to be skin stem cells as they are constantly proliferating and generating keratinocytes which are continuously pushed to the surface and eventually become a dead layer of stratum corneum. Squamous cells are the keratinocytes which resembles fish scale shape, ie, those initiated from basal cells and differentiated into squamous cells. Both basal cells and squamous cells belong to keratinocytes, therefore sometimes BCC and SCC are termed keratinocyte cancer.These three types of cancer share many characteristics, yet they are very different from etiology to progression. One shared characteristic of skin cancer is that, according to the current views, they all are caused by solar or artificial ultraviolet radiation (UVR). UVA and UVB from solar UVR are the major UV bands reaching the earth surface. Both UV types cause DNA damage and immune suppression which play crucial roles in skin carcinogenesis. UVB can be directly absorbed by DNA molecules and thus causes UV-signature DNA damages; UVA, on the other hand, may function through inducing cellular ROS which then causes oxidative DNA damages [1-4]. This chapter will discuss the molecular signaling differences of UVR in melanoma and NMSC.
Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge
Gonzalez-Pena, Dianelys; Nixon, Scott E.; O’Connor, Jason C.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.
2016-01-01
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis. PMID:26959683
Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge.
Gonzalez-Pena, Dianelys; Nixon, Scott E; O'Connor, Jason C; Southey, Bruce R; Lawson, Marcus A; McCusker, Robert H; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G; Dantzer, Robert; Kelley, Keith W; Rodriguez-Zas, Sandra L
2016-01-01
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.
Seddigh, Aram; Berntson, Erik; Platts, Loretta G; Westerlund, Hugo
2016-01-01
This study investigates the joint effect of office type (cell, shared room, open-plan, and flex) and personality, measured by the Big Five personality traits, on self-rated measures of distraction, job satisfaction, and job performance (measured by professional efficacy). Regression analyses with interactions between personality and office type were conducted on 1205 participants working in 5 organizations from both the private and public sectors. While few interactions were observed in the cases of professional efficacy and job satisfaction, several were observed between personality traits and office type on the level of distraction reported. Specifically, more emotionally stable participants reported lower distraction, particularly those working in flex offices. Both agreeableness and openness to experience were associated with higher levels of distraction among participants in open-plan compared to cell offices.
Seddigh, Aram; Berntson, Erik; Platts, Loretta G.; Westerlund, Hugo
2016-01-01
This study investigates the joint effect of office type (cell, shared room, open-plan, and flex) and personality, measured by the Big Five personality traits, on self-rated measures of distraction, job satisfaction, and job performance (measured by professional efficacy). Regression analyses with interactions between personality and office type were conducted on 1205 participants working in 5 organizations from both the private and public sectors. While few interactions were observed in the cases of professional efficacy and job satisfaction, several were observed between personality traits and office type on the level of distraction reported. Specifically, more emotionally stable participants reported lower distraction, particularly those working in flex offices. Both agreeableness and openness to experience were associated with higher levels of distraction among participants in open-plan compared to cell offices. PMID:27223898
Bringing prosocial values to translational, disease-specific stem cell research.
Sass, Reuben G
2014-02-27
Disease-specific stem cell therapies, created from induced pluripotent stem cell lines containing the genetic defects responsible for a particular disease, have the potential to revolutionize the treatment of refractory chronic diseases. Given their capacity to differentiate into any human cell type, these cell lines might be reprogrammed to correct a disease-causing genetic defect in any tissue or organ, in addition to offering a more clinically realistic model for testing new drugs and studying disease mechanisms. Clinical translation of these therapies provides an opportunity to design a more systematic, accessible and patient-influenced model for the delivery of medically innovative treatments to chronically ill patients. I focus on disease-specific cell therapies because the types of patients who would benefit from them have congenital, severe, high-maintenance chronic conditions. They accordingly have a very strong claim for medical need and therapeutic intervention, must interact regularly with health providers, and so have the greatest stake in influencing, at a systemic level, the way their care is delivered. Given such patients' shared, aggregate needs for societal support and access to medical innovation, they constitute "patient communities". To reify the relevance of patient communities within a clinical context, I propose competitive grants or "prizes" to spur innovation in delivery of care, promoting "prosocial" values of transparency, equity, patient empowerment, and patient-provider and inter-institutional collaboration. As facilitators of participant-driven advocacy for health and quality of life-improving measures, patient communities may be synergistic with the broad-based, geo-culturally embedded public health networks typically referred to as "communities" in the public health literature. Prosocial values acquire a strong ethical justification based on shared need, and can be clearly defined as grant criteria, when applied to patients such as those who will benefit from disease-specific stem cell treatments. Within this context, prosociality aims not just to expand patients' treatment choices, but also their opportunities to take a more active role in the management of their own care and contribute towards shared goals through better-informed advocacy. Accordingly, prosociality promotes relational autonomy as well as other basic bioethical principles, including beneficence and a holistic, relational conception of human dignity.
Molleman, Toon; van Ginneken, Esther F J C
2015-09-01
Prisons worldwide operate under crowded conditions, in which prisoners are forced to share a cell. Few studies have looked at the relationship between cell sharing and the quality of prison life in Europe. This study aims to fill this gap with a multilevel analysis on the link between cell sharing and quality of prison life, using results from a Dutch prisoner survey. Findings show that cell sharing is associated with lower perceived prison quality, which is partially mediated by reduced quality of staff-prisoner relationships. Cell sharing thus undermines the Dutch penological philosophy, which considers staff-prisoner relationships to be at the heart of prisoner treatment and rehabilitation. It is recommended that prisoners are held in single rather than double cells. © The Author(s) 2014.
[The role of endothelial cells and endothelial precursor cells in angiogenesis].
Poreba, Małgorzata; Usnarska-Zubkiewicz, Lidia; Kuliczkowski, Kazimierz
2006-01-01
Endothelium plays a key role in maintenance of vascular homeostasis in human organism. According to new data endothelial cells and hematopoietic cells have a common precursor in prenatal life--a hemangioblast, which explains the fact of sharing the same determinants on the surface of both type of cells. Circulating endothelial precursors were identified in adults and this suggests that hemangioblasts may be present not only during embriogenesis. In some clinical situations the increased numbers of endothelial cells and endothelial precursors were noted, and especially in patients with neoplastic diseases, which is probably the result of increased angiogenesis. Endothelial precursors are thought to be the promice for therapeutic purposes in future--to increase local angiogenesis.
Differential Sox10 Genomic Occupancy in Myelinating Glia
Lopez-Anido, Camila; Sun, Guannan; Koenning, Matthias; Srinivasan, Rajini; Hung, Holly A.; Emery, Ben; Keles, Sunduz; Svaren, John
2015-01-01
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells, and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. PMID:25974668
Unique Action of Interleukin-18 on T Cells and Other Immune Cells.
Nakanishi, Kenji
2018-01-01
Interleukin (IL)-18 was originally discovered as a factor that enhances interferon (IFN)-γ production by anti-CD3-stimulated Th1 cells, particularly in association with IL-12. IL-12 is a cytokine that induces development of Th1 cells. IL-18 cannot induce Th1 cell development, but has the capacity to activate established Th1 cells to produce IFN-γ in the presence of IL-12. Thus, IL-18 is regarded as a proinflammatory cytokine that facilitates type 1 responses. However, in the absence of IL-12 but presence of IL-2, IL-18 stimulates natural killer cells, NKT cells, and even established Th1 cells to produce IL-3, IL-9, and IL-13. Thus, IL-18 also facilitates type 2 responses. This unique function of IL-18 contributes to infection-associated allergic diseases. Together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Thus, IL-18 also induces innate-type allergic inflammation. IL-18 belongs to the IL-1 family of cytokines, which share similar molecular structures, receptors structures, and signal transduction pathways. Nevertheless, IL-18 shows a unique function by binding to a specific receptor expressed on distinct types of cells. In this review article, I will focus on the unique features of IL-18 in lymphocytes, basophils, and mast cells, particularly in comparison with IL-33.
Convergence of the Insulin and Serotonin Programs in the Pancreatic β-Cell
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B.; Honig, Gerard; Kim, Hail; Gasa, Rosa M.; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H.; Deneris, Evan S.; German, Michael S.
2011-01-01
OBJECTIVE Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. RESEARCH DESIGN AND METHODS We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. RESULTS We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. CONCLUSIONS These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes. PMID:22013016
Convergence of the insulin and serotonin programs in the pancreatic β-cell.
Ohta, Yasuharu; Kosaka, Yasuhiro; Kishimoto, Nina; Wang, Juehu; Smith, Stuart B; Honig, Gerard; Kim, Hail; Gasa, Rosa M; Neubauer, Nicole; Liou, Angela; Tecott, Laurence H; Deneris, Evan S; German, Michael S
2011-12-01
Despite their origins in different germ layers, pancreatic islet cells share many common developmental features with neurons, especially serotonin-producing neurons in the hindbrain. Therefore, we tested whether these developmental parallels have functional consequences. We used transcriptional profiling, immunohistochemistry, DNA-binding analyses, and mouse genetic models to assess the expression and function of key serotonergic genes in the pancreas. We found that islet cells expressed the genes encoding all of the products necessary for synthesizing, packaging, and secreting serotonin, including both isoforms of the serotonin synthetic enzyme tryptophan hydroxylase and the archetypal serotonergic transcription factor Pet1. As in serotonergic neurons, Pet1 expression in islets required homeodomain transcription factor Nkx2.2 but not Nkx6.1. In β-cells, Pet1 bound to the serotonergic genes but also to a conserved insulin gene regulatory element. Mice lacking Pet1 displayed reduced insulin production and secretion and impaired glucose tolerance. These studies demonstrate that a common transcriptional cascade drives the differentiation of β-cells and serotonergic neurons and imparts the shared ability to produce serotonin. The interrelated biology of these two cell types has important implications for the pathology and treatment of diabetes.
Banchereau, Jacques; Zurawski, Sandra; Thompson-Snipes, LuAnn; Blanck, Jean-Philippe; Clayton, Sandra; Munk, Adiel; Cao, Yanying; Wang, Zhiqing; Khandelwal, Sunaina; Hu, Jiancheng; McCoy, William H.; Palucka, Karolina A.; Reiter, Yoram; Fremont, Daved H.; Zurawski, Gerard; Colonna, Marco; Shaw, Andrey S.; Klechevsky, Eynav
2012-01-01
Human Langerhans cells (LCs) are highly efficient at priming cytolytic CD8+ T cells compared with dermal CD14+ dendritic cells (DCs). Here we show that dermal CD14+ DCs instead prime a fraction of naïve CD8+ T cells into cells sharing the properties of type 2 cytokine-secreting CD8+ T cells (TC2). Differential expression of the CD8-antagonist receptors on dermal CD14+ DCs, the Ig-like transcript (ILT) inhibitory receptors, explains the difference between the two types of DCs. Inhibition of CD8 function on LCs inhibited cytotoxic T lymphocytes (CTLs) and enhanced TC2 generation. In addition, blocking ILT2 or ILT4 on dermal CD14+ DCs enhanced the generation of CTLs and inhibited TC2 cytokine production. Lastly, addition of soluble ILT2 and ILT4 receptors inhibited CTL priming by LCs. Thus, ILT receptor expression explains the polarization of CD8+ T-cell responses by LCs vs. dermal CD14+ DCs. PMID:23112154
Cancer of the Esophagus and Esophagogastric Junction: An Eighth Edition Staging Primer
Rice, Thomas W.; Ishwaran, Hemant; Ferguson, Mark K.; Blackstone, Eugene H.; Goldstraw, Peter
2017-01-01
This primer for eighth edition staging of esophageal and esophagogastric epithelial cancers presents separate classifications for the clinical (cTNM), pathologic (pTNM), and postneoadjuvant pathologic (ypTNM) stage groups, which are no longer shared. For pTNM, pT1 has been subcategorized as pT1a and pT1b for the subgrouping pStage I adenocarcinoma and squamous cell carcinoma. A new, simplified esophagus-specific regional lymph node map has been introduced. Undifferentiated histologic grade (G4) has been eliminated; additional analysis is required to expose histopathologic cell type. Location has been removed as a category for pT2N0M0 squamous cell cancer. The definition of the esophagogastric junction has been revised. ypTNM stage groups are identical for both histopathologic cell types, unlike those for cTNM and pTNM. PMID:27810391
Seliktar-Ofir, Sivan; Merhavi-Shoham, Efrat; Itzhaki, Orit; Yunger, Sharon; Markel, Gal; Schachter, Jacob; Besser, Michal J
2017-01-01
Adoptive cell therapy (ACT) of autologous tumor infiltrating lymphocytes (TIL) is an effective immunotherapy for patients with solid tumors, yielding objective response rates of around 40% in refractory patients with metastatic melanoma. Most clinical centers utilize bulk, randomly isolated TIL from the tumor tissue for ex vivo expansion and infusion. Only a minor fraction of the administered T cells recognizes tumor antigens, such as shared and mutation-derived neoantigens, and consequently eliminates the tumor. Thus, there are many ongoing effects to identify and select tumor-specific TIL for therapy; however, those approaches are very costly and require months, which is unreasonable for most metastatic patients. CD137 (4-1BB) has been identified as a co-stimulatory marker, which is induced upon the specific interaction of T cells with their target cell. Therefore, CD137 can be a useful biomarker and an important tool for the selection of tumor-reactive T cells. Here, we developed and validated a simple and time efficient method for the selection of CD137-expressing T cells for therapy based on magnetic bead separation. CD137 selection was performed with clinical grade compliant reagents, and TIL were expanded in a large-scale manner to meet cell numbers required for the patient setting in a GMP facility. For the first time, the methodology was designed to comply with both clinical needs and limitations, and its feasibility was assessed. CD137-selected TIL demonstrated significantly increased antitumor reactivity and were enriched for T cells recognizing neoantigens as well as shared tumor antigens. CD137-based selection enabled the enrichment of tumor-reactive T cells without the necessity of knowing the epitope specificity or the antigen type. The direct implementation of the CD137 separation method to the cell production of TIL may provide a simple way to improve the clinical efficiency of TIL ACT.
Seliktar-Ofir, Sivan; Merhavi-Shoham, Efrat; Itzhaki, Orit; Yunger, Sharon; Markel, Gal; Schachter, Jacob; Besser, Michal J.
2017-01-01
Adoptive cell therapy (ACT) of autologous tumor infiltrating lymphocytes (TIL) is an effective immunotherapy for patients with solid tumors, yielding objective response rates of around 40% in refractory patients with metastatic melanoma. Most clinical centers utilize bulk, randomly isolated TIL from the tumor tissue for ex vivo expansion and infusion. Only a minor fraction of the administered T cells recognizes tumor antigens, such as shared and mutation-derived neoantigens, and consequently eliminates the tumor. Thus, there are many ongoing effects to identify and select tumor-specific TIL for therapy; however, those approaches are very costly and require months, which is unreasonable for most metastatic patients. CD137 (4-1BB) has been identified as a co-stimulatory marker, which is induced upon the specific interaction of T cells with their target cell. Therefore, CD137 can be a useful biomarker and an important tool for the selection of tumor-reactive T cells. Here, we developed and validated a simple and time efficient method for the selection of CD137-expressing T cells for therapy based on magnetic bead separation. CD137 selection was performed with clinical grade compliant reagents, and TIL were expanded in a large-scale manner to meet cell numbers required for the patient setting in a GMP facility. For the first time, the methodology was designed to comply with both clinical needs and limitations, and its feasibility was assessed. CD137-selected TIL demonstrated significantly increased antitumor reactivity and were enriched for T cells recognizing neoantigens as well as shared tumor antigens. CD137-based selection enabled the enrichment of tumor-reactive T cells without the necessity of knowing the epitope specificity or the antigen type. The direct implementation of the CD137 separation method to the cell production of TIL may provide a simple way to improve the clinical efficiency of TIL ACT. PMID:29067023
Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution.
Denas, Olgert; Sandstrom, Richard; Cheng, Yong; Beal, Kathryn; Herrero, Javier; Hardison, Ross C; Taylor, James
2015-02-14
Because species-specific gene expression is driven by species-specific regulation, understanding the relationship between sequence and function of the regulatory regions in different species will help elucidate how differences among species arise. Despite active experimental and computational research, relationships among sequence, conservation, and function are still poorly understood. We compared transcription factor occupied segments (TFos) for 116 human and 35 mouse TFs in 546 human and 125 mouse cell types and tissues from the Human and the Mouse ENCODE projects. We based the map between human and mouse TFos on a one-to-one nucleotide cross-species mapper, bnMapper, that utilizes whole genome alignments (WGA). Our analysis shows that TFos are under evolutionary constraint, but a substantial portion (25.1% of mouse and 25.85% of human on average) of the TFos does not have a homologous sequence on the other species; this portion varies among cell types and TFs. Furthermore, 47.67% and 57.01% of the homologous TFos sequence shows binding activity on the other species for human and mouse respectively. However, 79.87% and 69.22% is repurposed such that it binds the same TF in different cells or different TFs in the same cells. Remarkably, within the set of repurposed TFos, the corresponding genome regions in the other species are preferred locations of novel TFos. These events suggest exaptation of some functional regulatory sequences into new function. Despite TFos repurposing, we did not find substantial changes in their predicted target genes, suggesting that CRMs buffer evolutionary events allowing little or no change in the TFos - target gene associations. Thus, the small portion of TFos with strictly conserved occupancy underestimates the degree of conservation of regulatory interactions. We mapped regulatory sequences from an extensive number of TFs and cell types between human and mouse using WGA. A comparative analysis of this correspondence unveiled the extent of the shared regulatory sequence across TFs and cell types under study. Importantly, a large part of the shared regulatory sequence is repurposed on the other species. This sequence, fueled by turnover events, provides a strong case for exaptation in regulatory elements.
Li, Angsheng; Yin, Xianchen; Pan, Yicheng
2016-01-01
In this study, we propose a method for constructing cell sample networks from gene expression profiles, and a structural entropy minimisation principle for detecting natural structure of networks and for identifying cancer cell subtypes. Our method establishes a three-dimensional gene map of cancer cell types and subtypes. The identified subtypes are defined by a unique gene expression pattern, and a three-dimensional gene map is established by defining the unique gene expression pattern for each identified subtype for cancers, including acute leukaemia, lymphoma, multi-tissue, lung cancer and healthy tissue. Our three-dimensional gene map demonstrates that a true tumour type may be divided into subtypes, each defined by a unique gene expression pattern. Clinical data analyses demonstrate that most cell samples of an identified subtype share similar survival times, survival indicators and International Prognostic Index (IPI) scores and indicate that distinct subtypes identified by our algorithms exhibit different overall survival times, survival ratios and IPI scores. Our three-dimensional gene map establishes a high-definition, one-to-one map between the biologically and medically meaningful tumour subtypes and the gene expression patterns, and identifies remarkable cells that form singleton submodules. PMID:26842724
Wang, Tiehui; Johansson, Petronella; Abós, Beatriz; Holt, Amy; Tafalla, Carolina; Jiang, Youshen; Wang, Alex; Xu, Qiaoqing; Qi, Zhitao; Huang, Wenshu; Costa, Maria M.; Diaz-Rosales, Patricia; Holland, Jason W.; Secombes, Christopher J.
2016-01-01
IL-4 and IL-13 are closely related canonical type-2 cytokines in mammals and have overlapping bioactivities via shared receptors. They are frequently activated together as part of the same immune response and are the signature cytokines produced by T-helper (Th)2 cells and type-2 innate lymphoid cells (ILC2), mediating immunity against extracellular pathogens. Little is known about the origin of type-2 responses, and whether they were an essential component of the early adaptive immune system that gave a fitness advantage by limiting collateral damage caused by metazoan parasites. Two evolutionary related type-2 cytokines, IL-4/13A and IL-4/13B, have been identified recently in several teleost fish that likely arose by duplication of an ancestral IL-4/13 gene as a consequence of a whole genome duplication event that occurred at the base of this lineage. However, studies of their comparative expression levels are largely missing and bioactivity analysis has been limited to IL-4/13A in zebrafish. Through interrogation of the recently released salmonid genomes, species in which an additional whole genome duplication event has occurred, four genomic IL-4/13 loci have been identified leading to the cloning of three active genes, IL-4/13A, IL-4/13B1 and IL-4/13B2, in both rainbow trout and Atlantic salmon. Comparative expression analysis by real-time PCR in rainbow trout revealed that the IL-4/13A expression is broad and high constitutively but less responsive to pathogen-associated molecular patterns (PAMPs) and pathogen challenge. In contrast, the expression of IL-4/13B1 and IL-4/13B2 is low constitutively but is highly induced by viral haemorrhagic septicaemia virus (VHSH) infection and during proliferative kidney disease (PKD) in vivo, and by formalin-killed bacteria, PAMPs, the T cell mitogen PHA, and the T-cell cytokines IL-2 and IL-21 in vitro. Moreover, bioactive recombinant cytokines of both IL-4/13A and B were produced and found to have shared but also distinct bioactivities. Both cytokines rapidly induce the gene expression of antimicrobial peptides and acute phase proteins, providing an effector mechanism of fish type-2 cytokines in immunity. They are anti-inflammatory via up-regulation of IL-10 and down-regulation of IL-1β and IFN-γ. They modulate the expression of cellular markers of T cells, macrophages and B cells, the receptors of IFN-γ, the IL-6 cytokine family and their own potential receptors, suggesting multiple target cells and important roles of fish type-2 cytokines in the piscine cytokine network. Furthermore both cytokines increased the number of IgM secreting B cells but had no effects on the proliferation of IgM+ B cells in vitro. Taken as a whole, fish IL-4/13A may provide a basal level of type-2 immunity whilst IL-4/13B, when activated, provides an enhanced type-2 immunity, which may have an important role in specific cell-mediated immunity. To our knowledge this is the first in-depth analysis of the expression, modulation and bioactivities of type-2 cytokines in the same fish species, and in any early vertebrate. It contributes to a broader understanding of the evolution of type-2 immunity in vertebrates, and establishes a framework for further studies and manipulation of type-2 cytokines in fish. PMID:26870894
Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S
1984-09-01
The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.
Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W
2016-11-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.; ...
2016-11-04
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
Van Valen, David A.; Lane, Keara M.; Quach, Nicolas T.; Maayan, Inbal
2016-01-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems. PMID:27814364
The differential expression of IL-4 and IL-13 and its impact on type-2 immunity.
Bao, Katherine; Reinhardt, R Lee
2015-09-01
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hemrajani, Cordula; Marches, Olivier; Wiles, Siouxsie; Girard, Francis; Dennis, Alison; Dziva, Francis; Best, Angus; Phillips, Alan D; Berger, Cedric N; Mousnier, Aurelie; Crepin, Valerie F; Kruidenier, Laurens; Woodward, Martin J; Stevens, Mark P; La Ragione, Roberto M; MacDonald, Thomas T; Frankel, Gad
2008-11-01
The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-kappaB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC DeltanleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-kappaB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-kappaB response elements, we found that NleH causes an increase in NF-kappaB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain.
Ge, Na; Jiang, Miao; Li, Li; Bian, Yanqin; Xu, Gang; Bian, Zhaoxiang; Zhang, Ge; Lu, Aiping
2015-01-01
Rheumatoid arthritis (RA) and Type 2 diabetes (T2D) are both systemic diseases linked with altered immune response, moderate mortality when present together. The treatment for both RA and T2D are not satisfied, partly because of the linkage between them has not yet been appreciated. A comprehensive study for the potential associations between the two disorders is needed. In this study, we used RNA sequencing to explore the differently expressed genes (DEGs) in peripheral blood mononuclear cells (PBMC) of 10 RA and 10 T2D patients comparing with 10 healthy volunteers (control). We used bioinformatics analysis and the Ingenuity Pathways Analysis (IPA) to predict the commonalities on signaling pathways and molecular networks between those two diseases. 212 DEGs in RA and 114 DEGs in T2D patients were identified compared with healthy controls, respectively. 32 DEGs were shared between the two comparisons. The top 10 shared pathways interacted in cross-talking networks, regulated by 5 shared predicted upstream regulators, leading to the activated immune response were explored, which was considered as partly of the association mechanism of this two disorders. These discoveries would be considered as new understanding on the associations between RA and T2D, and provide novel treatment or prevention strategy. PMID:26252209
Camacho, Jasmin; Antczak, Jared L.; Prakash, Anish N.; Cziep, Matthew E.; Walker, Anita I.; Noctor, Stephen C.
2012-01-01
The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates. PMID:22272298
Martínez-Cerdeño, Verónica; Cunningham, Christopher L; Camacho, Jasmin; Antczak, Jared L; Prakash, Anish N; Cziep, Matthew E; Walker, Anita I; Noctor, Stephen C
2012-01-01
The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.
Petegrosso, Raphael; Tolar, Jakub
2018-01-01
Single-cell RNA sequencing (scRNA-seq) has been widely applied to discover new cell types by detecting sub-populations in a heterogeneous group of cells. Since scRNA-seq experiments have lower read coverage/tag counts and introduce more technical biases compared to bulk RNA-seq experiments, the limited number of sampled cells combined with the experimental biases and other dataset specific variations presents a challenge to cross-dataset analysis and discovery of relevant biological variations across multiple cell populations. In this paper, we introduce a method of variance-driven multitask clustering of single-cell RNA-seq data (scVDMC) that utilizes multiple single-cell populations from biological replicates or different samples. scVDMC clusters single cells in multiple scRNA-seq experiments of similar cell types and markers but varying expression patterns such that the scRNA-seq data are better integrated than typical pooled analyses which only increase the sample size. By controlling the variance among the cell clusters within each dataset and across all the datasets, scVDMC detects cell sub-populations in each individual experiment with shared cell-type markers but varying cluster centers among all the experiments. Applied to two real scRNA-seq datasets with several replicates and one large-scale droplet-based dataset on three patient samples, scVDMC more accurately detected cell populations and known cell markers than pooled clustering and other recently proposed scRNA-seq clustering methods. In the case study applied to in-house Recessive Dystrophic Epidermolysis Bullosa (RDEB) scRNA-seq data, scVDMC revealed several new cell types and unknown markers validated by flow cytometry. MATLAB/Octave code available at https://github.com/kuanglab/scVDMC. PMID:29630593
Blood types of the native Americans of Oklahoma.
Kasprisin, D O; Crow, M; McClintock, C; Lawson, J
1987-05-01
Large numbers of Indians from Oklahoma were screened for a variety of red cell antigens. Sufficient numbers of Cherokees, Creeks, and Choctaws were studied to calculate gene frequencies. These tribes originated in the Southeastern United States and were forcibly moved to Oklahoma. The Creeks and Choctaws have not been studied previously. A small number of Cherokees remained in North Carolina, and their blood types have been reported. The blood types of the Oklahoma Cherokees are quite similar to those observed there but one important difference was discovered. The data previously reported concerning the Eastern Cherokees revealed the absence of the Dia antigen. The present study found that the Oklahoma Cherokees do have the Dia antigen, although in a lower percentage than the other southeastern tribes. The Creeks and Choctaws share a linguistic heritage as well as having similar red cell phenotypes.
Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy
Medrano, Ruan F.V.; Hunger, Aline; Mendonça, Samir Andrade; Barbuto, José Alexandre M.; Strauss, Bryan E.
2017-01-01
During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-α and IFN-β, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-α/β share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-α/β, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-α/β has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-α/β have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied. PMID:29050360
NASA Technical Reports Server (NTRS)
Castro, Jonathan P.
1993-01-01
A third generation mobile system intends to support communications in all environments (i.e., outdoors, indoors at home or office and when moving). This system will integrate services that are now available in architectures such as cellular, cordless, mobile data networks, paging, including satellite services to rural areas. One way through which service integration will be made possible is by supporting a hierarchical cellular structure based on umbrella cells, macro cells, micro and pico cells. In this type of structure, satellites are part of the giant umbrella cells allowing continuous global coverage, the other cells belong to cities, neighborhoods, and buildings respectively. This does not necessarily imply that network operation of terrestrial and satellite segments interconnect to enable roaming and spectrum sharing. However, the cell concept does imply hand-off between different cell types, which may involve change of frequency. Within this propsective, the present work uses power attenuation characteristics to determine a dynamic criterion that allows smooth transition from space to terrestrial networks. The analysis includes a hybrid channel that combines Rician, Raleigh and Log Normal fading characteristics.
Office type's association to employees' welfare: Three studies.
Danielsson, Christina Bodin
2016-08-12
The workplace is important for employees' daily life and well-being. This article investigates exploratory the office design's role for employees' welfare from different perspectives. By comparing different studies of the office, type's influence on different factors of employees' welfare the aim is to see if any common patterns exist in office design's impact. The three included studies investigate office type's association with employees' welfare by measuring its influence on: a) perception of leadership, b) sick leave, and c) job satisfaction.The sample consists of office employees from a large, national representative work environment survey that work in one of the seven identified office types in contemporary office design: (1) cell-offices; (2) shared-room offices; (3) small, (4) medium-sized and (5) large open-plan offices; (6) flex-offices and (7) combi-offices. Statistical method used is multivariate logistic and linear regression analysis with adjustment for background factors. Overall results show that shared-room office, traditional open plan offices and flex-office stand out negatively, but to different degree(s) on the different outcomes measured. This explorative comparison of different studies finds a pattern of office types that repeatedly show indications of negative influence on employees' welfare, but further studies are needed to clarify this.
Li, Bing; Su, Trent; Ferrari, Roberto; Li, Jing-Yu; Kurdistani, Siavash K
2014-02-01
The cellular epigenetic landscape changes as pluripotent stem cells differentiate to somatic cells or when differentiated cells transform to a cancerous state. These epigenetic changes are commonly correlated with differences in gene expression. Whether active DNA replication is also associated with distinct chromatin environments in these developmentally and phenotypically diverse cell types has not been known. Here, we used BrdU-seq to map active DNA replication loci in human embryonic stem cells (hESCs), normal primary fibroblasts and a cancer cell line, and correlated these maps to the epigenome. In all cell lines, the majority of BrdU peaks were enriched in euchromatin and at DNA repetitive elements, especially at microsatellite repeats, and coincided with previously determined replication origins. The most prominent BrdU peaks were shared between all cells but a sizable fraction of the peaks were specific to each cell type and associated with cell type-specific genes. Surprisingly, the BrdU peaks that were common to all cell lines were associated with H3K18ac, H3K56ac, and H4K20me1 histone marks only in hESCs but not in normal fibroblasts or cancer cells. Depletion of the histone acetyltransferases for H3K18 and H3K56 dramatically decreased the number and intensity of BrdU peaks in hESCs. Our data reveal a unique epigenetic signature that distinguishes active replication loci in hESCs from normal somatic or malignant cells.
Immune Modules Shared by Innate Lymphoid Cells and T Cells
Robinette, Michelle L.; Colonna, Marco
2016-01-01
In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core “immune modules” that encompass transcriptional circuitry and effector functions, while utilizing non-redundant, complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. PMID:27817796
Pathological aspects of so called "hilar cholangiocarcinoma"
Castellano-Megías, Víctor M; Ibarrola-de Andrés, Carolina; Colina-Ruizdelgado, Francisco
2013-01-01
Cholangiocarcinoma (CC) arising from the large intrahepatic bile ducts and extrahepatic hilar bile ducts share clinicopathological features and have been called hilar and perihilar CC as a group. However, “hilar and perihilar CC” are also used to refer exclusively to the intrahepatic hilar type CC or, more commonly, the extrahepatic hilar CC. Grossly, a major distinction can be made between papillary and non-papillary tumors. Histologically, most hilar CCs are well to moderately differentiated conventional type (biliary) carcinomas. Immunohistochemically, CK7, CK20, CEA and MUC1 are normally expressed, being MUC2 positive in less than 50% of cases. Two main premalignant lesions are known: biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the biliary tract (IPNB). IPNB includes the lesions previously named biliary papillomatosis and papillary carcinoma. A series of 29 resected hilar CC from our archives is reviewed. Most (82.8%) were conventional type adenocarcinomas, mostly well to moderately differentiated, although with a broad morphological spectrum; three cases exhibited a poorly differentiated cell component resembling signet ring cells. IPNB was observed in 5 (17.2%), four of them with an associated invasive carcinoma. A clear cell type carcinoma, an adenosquamous carcinoma and two gastric foveolar type carcinomas were observed. PMID:23919110
Pathological aspects of so called "hilar cholangiocarcinoma".
Castellano-Megías, Víctor M; Ibarrola-de Andrés, Carolina; Colina-Ruizdelgado, Francisco
2013-07-15
Cholangiocarcinoma (CC) arising from the large intrahepatic bile ducts and extrahepatic hilar bile ducts share clinicopathological features and have been called hilar and perihilar CC as a group. However, "hilar and perihilar CC" are also used to refer exclusively to the intrahepatic hilar type CC or, more commonly, the extrahepatic hilar CC. Grossly, a major distinction can be made between papillary and non-papillary tumors. Histologically, most hilar CCs are well to moderately differentiated conventional type (biliary) carcinomas. Immunohistochemically, CK7, CK20, CEA and MUC1 are normally expressed, being MUC2 positive in less than 50% of cases. Two main premalignant lesions are known: biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the biliary tract (IPNB). IPNB includes the lesions previously named biliary papillomatosis and papillary carcinoma. A series of 29 resected hilar CC from our archives is reviewed. Most (82.8%) were conventional type adenocarcinomas, mostly well to moderately differentiated, although with a broad morphological spectrum; three cases exhibited a poorly differentiated cell component resembling signet ring cells. IPNB was observed in 5 (17.2%), four of them with an associated invasive carcinoma. A clear cell type carcinoma, an adenosquamous carcinoma and two gastric foveolar type carcinomas were observed.
Bringing prosocial values to translational, disease-specific stem cell research
2014-01-01
Background Disease-specific stem cell therapies, created from induced pluripotent stem cell lines containing the genetic defects responsible for a particular disease, have the potential to revolutionize the treatment of refractory chronic diseases. Given their capacity to differentiate into any human cell type, these cell lines might be reprogrammed to correct a disease-causing genetic defect in any tissue or organ, in addition to offering a more clinically realistic model for testing new drugs and studying disease mechanisms. Clinical translation of these therapies provides an opportunity to design a more systematic, accessible and patient-influenced model for the delivery of medically innovative treatments to chronically ill patients. Discussion I focus on disease-specific cell therapies because the types of patients who would benefit from them have congenital, severe, high-maintenance chronic conditions. They accordingly have a very strong claim for medical need and therapeutic intervention, must interact regularly with health providers, and so have the greatest stake in influencing, at a systemic level, the way their care is delivered. Given such patients’ shared, aggregate needs for societal support and access to medical innovation, they constitute “patient communities”. To reify the relevance of patient communities within a clinical context, I propose competitive grants or “prizes” to spur innovation in delivery of care, promoting “prosocial” values of transparency, equity, patient empowerment, and patient-provider and inter-institutional collaboration. As facilitators of participant-driven advocacy for health and quality of life-improving measures, patient communities may be synergistic with the broad-based, geo-culturally embedded public health networks typically referred to as “communities” in the public health literature. Summary Prosocial values acquire a strong ethical justification based on shared need, and can be clearly defined as grant criteria, when applied to patients such as those who will benefit from disease-specific stem cell treatments. Within this context, prosociality aims not just to expand patients’ treatment choices, but also their opportunities to take a more active role in the management of their own care and contribute towards shared goals through better-informed advocacy. Accordingly, prosociality promotes relational autonomy as well as other basic bioethical principles, including beneficence and a holistic, relational conception of human dignity. PMID:24575864
Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion
Li, Zhenhai; Lee, Hyunjung; Zhu, Cheng
2016-01-01
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation. PMID:27720950
18th Space Photovoltaic Research and Technology Conference
NASA Technical Reports Server (NTRS)
Morton, Thomas L. (Compiler)
2005-01-01
The 18th Space Photovoltaic Research and Technology (SPRAT XVIII) Conference was held September 16 to 18, 2003, at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. The SPRAT conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar cell technology. This year s conference continued to build on many of the trends shown in SPRAT XVII-the continued advances of thin-film and multijunction solar cell technologies and the new issues required to qualify those types of cells for space applications.
Proceedings of the 19th Space Photovoltaic Research and Technology Conference
NASA Technical Reports Server (NTRS)
Castro, Stephanie (Compiler); Morton, Thomas (Compiler)
2007-01-01
The 19th Space Photovoltaic Research and Technology Conference (SPRAT XIX) was held September 20 to 22, 2005, at the Ohio Aerospace Institute (OAI) in Brook Park, Ohio. The SPRAT Conference, hosted by the Photovoltaic and Space Environments Branch of the NASA Glenn Research Center, brought together representatives of the space photovoltaic community from around the world to share the latest advances in space solar cell technology. This year's conference continued to build on many of the trends shown in SPRAT XVIII-the continued advances of thin-film and multijunction solar cell technologies and the new issues required to qualify those types of cells for space applications.
Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs
Zanoni, Ivan; Granucci, Francesca; Broggi, Achille
2017-01-01
Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though they share little protein homology with type I IFN, both exhibit remarkable functional similarities: each can be induced in response to viral infections, and both lead to Janus kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. However, despite the similarities in their effector functions with type I IFNs, IFN-λ also has a non-redundant role in protecting barrier organs: epithelial cells preferentially produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral replication in epithelial cells and constitutes an added layer of protection at mucosal sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby configures itself less as a cytokine that is only specific to the epithelium, and more as a cytokine that directly controls the inflammatory response at mucosal sites. Here, we critically review the recent literature on immune modulatory roles for IFN-λ, and distinguish between the direct and indirect effects of this IFN on immune cell functions in different inflammatory settings. PMID:29234323
Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs.
Zanoni, Ivan; Granucci, Francesca; Broggi, Achille
2017-01-01
Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though they share little protein homology with type I IFN, both exhibit remarkable functional similarities: each can be induced in response to viral infections, and both lead to Janus kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. However, despite the similarities in their effector functions with type I IFNs, IFN-λ also has a non-redundant role in protecting barrier organs: epithelial cells preferentially produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral replication in epithelial cells and constitutes an added layer of protection at mucosal sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby configures itself less as a cytokine that is only specific to the epithelium, and more as a cytokine that directly controls the inflammatory response at mucosal sites. Here, we critically review the recent literature on immune modulatory roles for IFN-λ, and distinguish between the direct and indirect effects of this IFN on immune cell functions in different inflammatory settings.
ɣδ T cell receptor ligands and modes of antigen recognition
Champagne, Eric
2011-01-01
T lymphocytes expressing the γδ-type of T cell receptors for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs. PMID:21298486
γδ T cell receptor ligands and modes of antigen recognition.
Champagne, Eric
2011-04-01
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
Brock, Stephanie E; Rendon, Beatriz E; Yaddanapudi, Kavitha; Mitchell, Robert A
2012-11-02
AMP-activated protein kinase (AMPK) is a nutrient- and metabolic stress-sensing enzyme activated by the tumor suppressor kinase, LKB1. Because macrophage migration inhibitory factor (MIF) and its functional homolog, d-dopachrome tautomerase (d-DT), have protumorigenic functions in non-small cell lung carcinomas (NSCLCs) but have AMPK-activating properties in nonmalignant cell types, we set out to investigate this apparent paradox. Our data now suggest that, in contrast to MIF and d-DTs AMPK-activating properties in nontransformed cells, MIF and d-DT act cooperatively to inhibit steady-state phosphorylation and activation of AMPK in LKB1 wild type and LKB1 mutant human NSCLC cell lines. Our data further indicate that MIF and d-DT, acting through their shared cell surface receptor, CD74, antagonize NSCLC AMPK activation by maintaining glucose uptake, ATP production, and redox balance, resulting in reduced Ca(2+)/calmodulin-dependent kinase kinase β-dependent AMPK activation. Combined, these studies indicate that MIF and d-DT cooperate to inhibit AMPK activation in an LKB1-independent manner.
Distinct Pseudomonas type-III effectors use a cleavable transit peptide to target chloroplasts.
Li, Guangyong; Froehlich, John E; Elowsky, Christian; Msanne, Joseph; Ostosh, Andrew C; Zhang, Chi; Awada, Tala; Alfano, James R
2014-01-01
The pathogen Pseudomonas syringae requires a type-III protein secretion system and the effector proteins it injects into plant cells for pathogenesis. The primary role for P. syringae type-III effectors is the suppression of plant immunity. The P. syringae pv. tomato DC3000 HopK1 type-III effector was known to suppress the hypersensitive response (HR), a programmed cell death response associated with effector-triggered immunity. Here we show that DC3000 hopK1 mutants are reduced in their ability to grow in Arabidopsis, and produce reduced disease symptoms. Arabidopsis transgenically expressing HopK1 are reduced in PAMP-triggered immune responses compared with wild-type plants. An N-terminal region of HopK1 shares similarity with the corresponding region in the well-studied type-III effector AvrRps4; however, their C-terminal regions are dissimilar, indicating that they have different effector activities. HopK1 is processed in planta at the same processing site found in AvrRps4. The processed forms of HopK1 and AvrRps4 are chloroplast localized, indicating that the shared N-terminal regions of these type-III effectors represent a chloroplast transit peptide. The HopK1 contribution to virulence and the ability of HopK1 and AvrRps4 to suppress immunity required their respective transit peptides, but the AvrRps4-induced HR did not. Our results suggest that a primary virulence target of these type-III effectors resides in chloroplasts, and that the recognition of AvrRps4 by the plant immune system occurs elsewhere. Moreover, our results reveal that distinct type-III effectors use a cleavable transit peptide to localize to chloroplasts, and that targets within this organelle are important for immunity. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Hu, Dong Gui; McKinnon, Ross A; Hulin, Julie-Ann; Mackenzie, Peter I; Meech, Robyn
2016-12-27
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2-8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer ( PCGEM1 , PEG3 , EPHA3 , and EFNB2 ) or other types of human cancers ( TOX3 , ST8SIA4 , and SLITRK3 ), and genes that are diagnostic/prognostic biomarkers of prostate cancer ( GRINA3 , and BCHE ).
Immune modules shared by innate lymphoid cells and T cells.
Robinette, Michelle L; Colonna, Marco
2016-11-01
In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Comparative modelling of human β tubulin isotypes and implications for drug binding
NASA Astrophysics Data System (ADS)
Torin Huzil, J.; Ludueña, Richard F.; Tuszynski, Jack
2006-02-01
The protein tubulin is a target for several anti-mitotic drugs, which affect microtubule dynamics, ultimately leading to cell cycle arrest and apoptosis. Many of these drugs, including the taxanes and Vinca alkaloids, are currently used clinically in the treatment of several types of cancer. Another tubulin binding drug, colchicine, although too toxic to be used as a chemotherapeutic agent, is commonly used for the treatment of gout. The main disadvantage that all of these drugs share is that they bind tubulin indiscriminately, leading to the death of both cancerous and healthy cells. However, the broad cellular distribution of several tubulin isotypes provides a platform upon which to construct novel chemotherapeutic drugs that could differentiate between different cell types, reducing the undesirable side effects associated with current chemotherapeutic treatments. Here, we report an analysis of ten human β tubulin isotypes and discuss differences within each of the previously characterized paclitaxel, colchicine and vinblastine binding sites.
Charman, H P; Gilden, R V; Oroszlan, S
1979-01-01
Reticuloendotheliosis virus (REV) p30 shares cross-reactive determinants and a common NH2-terminal tripeptide with mammalian type C viral p30's. An interspecies competition radioimmunoassay was developed, using iodinated REV p30 and a broadly reactive antiserum to mammalian virus p30's. The avian leukosis-sarcoma viruses and mammalian non-type C retroviruses did not compete in this assay. Previous data indicating that the REV group is not represented completely in normal avian cell DNA lead us to speculate that this may be the first example of interclass transmission, albeit in the remote past, among the Retroviridae. PMID:87519
Clinical and histopathological differential diagnosis of eosinophilic pustular folliculitis.
Fujiyama, Toshiharu; Tokura, Yoshiki
2013-06-01
Eosinophilic pustular folliculitis (EPF) is an inflammatory disease characterized by repeated pruritic follicular papules and pustules arranged in arcuate plaques, and folliculotropic infiltration of eosinophils. The diagnosis of EPF is occasionally difficult and problematic because EPF may share the clinical appearance and histological findings with other diseases. Moreover, EPF has several clinical subtypes, including the classical type, infantile type and immunosuppression-associated type. Because the therapies of EPF are relatively specific as compared to eczematous disorders, accurate diagnosis is essential for the management of EPF. Clinical differential diagnoses include tinea, acne, rosacea, eczematous dermatitis, granuloma faciale, autoimmune annular erythema, infestations and pustular dermatosis. Histologically, cutaneous diseases with eosinophilic infiltrates can be differentially diagnosed. Follicular mucinosis, mycosis fungoides and other cutaneous T-cell lymphomas are the most important differential diagnoses both clinically and histopathologically. It should be kept in mind particularly that the initial lesions of cutaneous T-cell lymphoma resemble EPF. © 2013 Japanese Dermatological Association.
Shared or Integrated: Which Type of Integration is More Effective Improves Students’ Creativity?
NASA Astrophysics Data System (ADS)
Mariyam, M.; Kaniawati, I.; Sriyati, S.
2017-09-01
Integrated science learning has various types of integration. This study aims to apply shared and integrated type of integration with project based learning (PjBL) model to improve students’ creativity on waste recycling theme. The research method used is a quasi experiment with the matching-only pre test-post test design. The samples of this study are 108 students consisting of 36 students (experiment class 1st), 35 students (experiment class 2nd) and 37 students (control class 3rd) at one of Junior High School in Tanggamus, Lampung. The results show that there is difference of creativity improvement in the class applied by PjBL model with shared type of integration, integrated type of integration and without any integration in waste recycling theme. Class applied by PjBL model with shared type of integration has the higher creativity improvement than the PjBL model with integrated type of integration and without any integration. Integrated science learning using shared type only combines 2 lessons, hence an intact concept is resulted. So, PjBL model with shared type of integration more effective improves students’ creativity than integrated type.
Jordan, Margaret A.; Poulton, Lynn D.; Fletcher, Julie M.; Baxter, Alan G.
2009-01-01
The NOD mouse is a well characterized model of type 1 diabetes that shares several of the characteristics of Ets1-deficient targeted mutant mice, viz: defects in TCR allelic exclusion, susceptibility to a lupus like disease characterized by IgM and IgG autoantibodies and immune complex-mediated glomerulonephritis, and deficiencies of NK and NKT cells. Here, we sought evidence for allelic variation of Ets1 in mice contributing to the NK and NKT cell phenotypes of the NOD strain. ETS1 expression in NK and NKT cells was reduced in NOD mice, compared to C57BL/6 mice. Although NKT cells numbers were significantly correlated with ETS1 expression in both strains, NKT cell numbers were not linked to the Ets1 gene in a first backcross from NOD to C57BL/6 mice. These results indicate that allelic variation of Ets1 did not contribute to variation in NKT cell numbers in these mice. It remains possible that a third factor not linked to the Ets1 locus controls both ETS1 expression and subsequently NK and NKT cell phenotypes. PMID:19806240
Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes and progenitors
Villani, Alexandra-Chloé; Satija, Rahul; Reynolds, Gary; Sarkizova, Siranush; Shekhar, Karthik; Fletcher, James; Griesbeck, Morgane; Butler, Andrew; Zheng, Shiwei; Lazo, Suzan; Jardine, Laura; Dixon, David; Stephenson, Emily; Nilsson, Emil; Grundberg, Ida; McDonald, David; Filby, Andrew; Li, Weibo; De Jager, Philip L.; Rozenblatt-Rosen, Orit; Lane, Andrew A.; Haniffa, Muzlifah; Regev, Aviv; Hacohen, Nir
2017-01-01
Dendritic cells (DCs) and monocytes play a central role in pathogen sensing, phagocytosis and antigen presentation and consist of multiple specialized subtypes. However, their identities and interrelationships are not fully understood. Using unbiased single-cell RNA sequencing (RNA-seq) of ~2400 cells, we identified six human DCs and four monocyte subtypes in human blood. Our study reveals: a new DC subset that shares properties with plasmacytoid DCs (pDCs) but potently activates T cells, thus redefining pDCs; a new subdivision within the CD1C+ subset of DCs; the relationship between blastic plasmacytoid DC neoplasia cells and healthy DCs; and circulating progenitor of conventional DCs (cDCs). Our revised taxonomy will enable more accurate functional and developmental analyses as well as immune monitoring in health and disease. PMID:28428369
Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates
Yamagishi, Jumpei F; Saito, Nen; Kaneko, Kunihiko
2016-01-01
As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of interacting cells with limited resources, and is consistent with the observed behaviors and forms of several aggregates of unicellular organisms. PMID:27749898
A spaceflight study of synaptic plasticity in adult rat vestibular maculas
NASA Technical Reports Server (NTRS)
Ross, M. D.
1994-01-01
Behavioral signs of vestibular perturbation in altered gravity have not been well correlated with structural modifications in neurovestibular centers. This ultrastructural research investigated synaptic plasticity in hair cells of adult rat utricular maculas exposed to microgravity for nine days on a space shuttle. The hypothesis was that synaptic plasticity would be more evident in type II hair cells because they are part of a distributed modifying macular circuitry. All rats were shared with other investigators and were subjected to treatments unrelated to this experiment. Maculas were obtained from flight and control rats after shuttle return (R + 0) and nine days post-flight (R + 9). R + 9 rats had chromodacryorrhea, a sign of acute stress. Tissues were prepared for ultrastructural study by conventional methods. Ribbon synapses were counted in fifty serial sections from medial utricular macular regions of three rats of each flight and control group. Counts in fifty additional consecutive sections from one sample in each group established method reliability. All synapses were photographed and located to specific cells on mosaics of entire sections. Pooled data were analyzed statistically. Flown rats showed abnormal posture and movement at R + 0. They had statistically significant increases in total ribbon synapses and in sphere-like ribbons in both kinds of hair cells; in type II cells, pairs of synapses nearly doubled and clusters of 3 to 6 synapses increased twelve-fold. At R + 9, behavioral signs were normal. However, synapse counts remained high in both kinds of hair cells of flight maculas and were elevated in control type II cells. Only counts in type I cells showed statistically significant differences at R + 9. High synaptic counts at R + 9 may have resulted from stress due to experimental treatments. The results nevertheless demonstrate that adult maculas retain the potential for synaptic plasticity. Type II cells exhibited more synaptic plasticity, but space flight induced synaptic plasticity in type I cells.
Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes
Bolzer, Andreas; Kreth, Gregor; Solovei, Irina; Koehler, Daniela; Saracoglu, Kaan; Fauth, Christine; Müller, Stefan; Eils, Roland; Cremer, Christoph; Speicher, Michael R
2005-01-01
Studies of higher-order chromatin arrangements are an essential part of ongoing attempts to explore changes in epigenome structure and their functional implications during development and cell differentiation. However, the extent and cell-type-specificity of three-dimensional (3D) chromosome arrangements has remained controversial. In order to overcome technical limitations of previous studies, we have developed tools that allow the quantitative 3D positional mapping of all chromosomes simultaneously. We present unequivocal evidence for a probabilistic 3D order of prometaphase chromosomes, as well as of chromosome territories (CTs) in nuclei of quiescent (G0) and cycling (early S-phase) human diploid fibroblasts (46, XY). Radial distance measurements showed a probabilistic, highly nonrandom correlation with chromosome size: small chromosomes—independently of their gene density—were distributed significantly closer to the center of the nucleus or prometaphase rosette, while large chromosomes were located closer to the nuclear or rosette rim. This arrangement was independently confirmed in both human fibroblast and amniotic fluid cell nuclei. Notably, these cell types exhibit flat-ellipsoidal cell nuclei, in contrast to the spherical nuclei of lymphocytes and several other human cell types, for which we and others previously demonstrated gene-density-correlated radial 3D CT arrangements. Modeling of 3D CT arrangements suggests that cell-type-specific differences in radial CT arrangements are not solely due to geometrical constraints that result from nuclear shape differences. We also found gene-density-correlated arrangements of higher-order chromatin shared by all human cell types studied so far. Chromatin domains, which are gene-poor, form a layer beneath the nuclear envelope, while gene-dense chromatin is enriched in the nuclear interior. We discuss the possible functional implications of this finding. PMID:15839726
Immunochemical characterization of the "native" type III polysaccharide of group B Streptococcus
1976-01-01
The type III polysaccharide of -roup B Streptococcus has been isolated and purified by a method that employs washing of intact cells at neutral pH. That the polysaccharide prepared by this procedure is the "native" type III antigen is suggested by its molecular size in excess of 10(6) daltons, its degradation by acid and heat treatment to a fragment with immunologic characteristics of the classical HCl antigen, and its type-specific serologic activity. The type III polysaccharide in native form contains sialic acid, galactose, glucose, glucosamine, heptose, and mannose. It is acidic in nature, is resistant to neuramindiase degradation, contains no O-acetyl groups, and does not share antigenic determinants with capsular type K1 antigen of Escherichia coli or Group B polysaccharide antigen of Neiserria meningitidis. PMID:55450
Mark, M R; Scadden, D T; Wang, Z; Gu, Q; Goddard, A; Godowski, P J
1994-04-08
We have isolated cDNA clones that encode the human and murine forms of a novel receptor-type tyrosine kinase termed Rse. Sequence analysis indicates that human Rse contains 890 amino acids, with an extracellular region composed of two immunoglobulin-like domains followed by two fibronectin type III domains. Murine Rse contains 880 amino acids and shares 90% amino acid identity with its human counterpart. Rse is structurally similar to the receptor-type tyrosine kinase Axl/Ufo, and the two proteins have 35 and 63% sequence identity in their extracellular and intracellular domains, respectively. To study the synthesis and activation of this putative receptor-type tyrosine kinase, we constructed a version of Rse (termed gD-Rse, where gD represents glycoprotein D) that contains an NH2-terminal epitope tag. NIH3T3 cells were engineered to express gD-Rse, which could be detected at the cell surface by fluorescence-activated cell sorting. Moreover, gD-Rse was rapidly phosphorylated on tyrosine residues upon incubation of the cells with an antibody directed against the epitope tag, suggesting that rse encodes an active tyrosine kinase. In the human tissues we examined, the highest level of expression of rse mRNA was observed in the brain; rse mRNA was also detected in the premegakaryocytopoietic cell lines CMK11-5 and Dami. The gene for rse was localized to human chromosome 15.
The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts
Szabó, A.; Czirók, A.
2010-01-01
Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells – guided by cell-cell contacts – can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation. PMID:20165554
3-D Reconstruction of Macular Type II Cell Innervation Patterns in Space-Flight and Control Rats
NASA Technical Reports Server (NTRS)
Ross, Muriel Dorothy; Montgomery, K.; Linton, S.; Cheng, R.; Tomko, David L. (Technical Monitor)
1995-01-01
A semiautomated method for reconstructing objects from serial thin sections has been developed in the Biocomputation Center. The method is being used to completely, for the first time, type II hair cells and their innervations. The purposes are to learn more about the fundamental circuitry of the macula on Earth and to determine whether changes in connectivities occur under space flight conditions. Data captured directly from a transmission electron microscope via a video camera are sent to a graphics workstation. There, the digitized micrographs are mosaicked into sections and contours are traced, registered and displayed by semiautomated methods. Current reconstructions are of type II cells from the medial part of rat maculas collected in-flight on the Space Life Sciences-2 mission, 4.5 hrs post-flight, and from a ground control. Results show that typical type II cells receive processes from tip to six nearby calyces or afferents. Nearly all processes are elongated and have bouton-like enlargements; some have numerous vesicles. Multiple (2 to 4) processes from a single calyx to a type II cell are common, and approximately 1/3 of the processes innervale 2 or 3 type II cells or a neighboring cluster. From 2% to 6% of the cells resemble type I cells morphologically but have demi-calyces. Thus far, increments in synaptic number in type II cells of flight rats are prominent along processes that supply two hair cells. It is clear that reconstruction methods provide insights into details of macular circuitry not obtainable by other techniques. The results demonstrate a morphological basis for interactions between adjacent receptive fields through feed back-feed forward connections, and for dynamic alterations in receptive field range and activity during preprocessing of linear acceleratory information by the maculas. The reconstruction method we have developed will find further applications in the study of the details of neuronal architecture of more complex systems, to seek out shared organizational properties or neuronal networks and to understand better localization of synaptic changes in altered environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. Here we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantum dots (QDs),more » showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with upregulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly downregulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong upregulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis and organelle activities. In contrast, strategies unique to carboxylated QDs showed upregulation of DNA repair and RNA activities, and decreased regulation of cell division, coupled in some cases with upregulation of stress responses and ATP related functions. Together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified, proactive defenses or repairs of the NP insults.« less
Progranulin and its biological effects in cancer.
Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura
2017-11-07
Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.
Chien, Wenwen; O'Kelly, James; Lu, Daning; Leiter, Amanda; Sohn, Julia; Yin, Dong; Karlan, Beth; Vadgama, Jay; Lyons, Karen M; Koeffler, H Phillip
2011-06-01
Connective tissue growth factor (CTGF/CCN2) belongs to the CCN family of matricellular proteins, comprising Cyr61, CTGF, NovH and WISP1-3. The CCN proteins contain an N-terminal signal peptide followed by four conserved domains sharing sequence similarities with the insulin-like growth factor binding proteins, von Willebrand factor type C repeat, thrombospondin type 1 repeat, and a C-terminal growth factor cysteine knot domain. To investigate the role of CCN2 in breast cancer, we transfected MCF-7 cells with full-length CCN2, and with four mutant constructs in which one of the domains had been deleted. MCF-7 cells stably expressing full-length CCN2 demonstrated reduced cell proliferation, increased migration in Boyden chamber assays and promoted angiogenesis in chorioallantoic membrane assays compared to control cells. Deletion of the C-terminal cysteine knot domain, but not of any other domain-deleted mutants, abolished activities mediated by full-length CCN2. We have dissected the role of CCN2 in breast tumorigenesis on a structural basis.
Rost-Roszkowska, M M; Kszuk-Jendrysik, M; Marchewka, A; Poprawa, I
2018-01-01
The midgut of millipedes is composed of a simple epithelium that rests on a basal lamina, which is surrounded by visceral muscles and hepatic cells. As the material for our studies, we chose Telodeinopus aoutii (Demange, 1971) (Kenyan millipede) (Diplopoda, Spirostreptida), which lives in the rain forests of Central Africa. This commonly reared species is easy to obtain from local breeders and easy to culture in the laboratory. During our studies, we used transmission and scanning electron microscopes and light and fluorescent microscopes. The midgut epithelium of the species examined here shares similarities to the structure of the millipedes analyzed to date. The midgut epithelium is composed of three types of cells-digestive, secretory, and regenerative cells. Evidence of three types of secretion have been observed in the midgut epithelium: merocrine, apocrine, and microapocrine secretion. The regenerative cells of the midgut epithelium in millipedes fulfill the role of midgut stem cells because of their main functions: self-renewal (the ability to divide mitotically and to maintain in an undifferentiated state) and potency (ability to differentiate into digestive cells). We also confirmed that spot desmosomes are common intercellular junctions between the regenerative and digestive cells in millipedes.
George, Julie; Walter, Vonn; Peifer, Martin; Alexandrov, Ludmil B; Seidel, Danila; Leenders, Frauke; Maas, Lukas; Müller, Christian; Dahmen, Ilona; Delhomme, Tiffany M; Ardin, Maude; Leblay, Noemie; Byrnes, Graham; Sun, Ruping; De Reynies, Aurélien; McLeer-Florin, Anne; Bosco, Graziella; Malchers, Florian; Menon, Roopika; Altmüller, Janine; Becker, Christian; Nürnberg, Peter; Achter, Viktor; Lang, Ulrich; Schneider, Peter M; Bogus, Magdalena; Soloway, Matthew G; Wilkerson, Matthew D; Cun, Yupeng; McKay, James D; Moro-Sibilot, Denis; Brambilla, Christian G; Lantuejoul, Sylvie; Lemaitre, Nicolas; Soltermann, Alex; Weder, Walter; Tischler, Verena; Brustugun, Odd Terje; Lund-Iversen, Marius; Helland, Åslaug; Solberg, Steinar; Ansén, Sascha; Wright, Gavin; Solomon, Benjamin; Roz, Luca; Pastorino, Ugo; Petersen, Iver; Clement, Joachim H; Sänger, Jörg; Wolf, Jürgen; Vingron, Martin; Zander, Thomas; Perner, Sven; Travis, William D; Haas, Stefan A; Olivier, Magali; Foll, Matthieu; Büttner, Reinhard; Hayes, David Neil; Brambilla, Elisabeth; Fernandez-Cuesta, Lynnette; Thomas, Roman K
2018-03-13
Pulmonary large-cell neuroendocrine carcinomas (LCNECs) have similarities with other lung cancers, but their precise relationship has remained unclear. Here we perform a comprehensive genomic (n = 60) and transcriptomic (n = 69) analysis of 75 LCNECs and identify two molecular subgroups: "type I LCNECs" with bi-allelic TP53 and STK11/KEAP1 alterations (37%), and "type II LCNECs" enriched for bi-allelic inactivation of TP53 and RB1 (42%). Despite sharing genomic alterations with adenocarcinomas and squamous cell carcinomas, no transcriptional relationship was found; instead LCNECs form distinct transcriptional subgroups with closest similarity to SCLC. While type I LCNECs and SCLCs exhibit a neuroendocrine profile with ASCL1 high /DLL3 high /NOTCH low , type II LCNECs bear TP53 and RB1 alterations and differ from most SCLC tumors with reduced neuroendocrine markers, a pattern of ASCL1 low /DLL3 low /NOTCH high , and an upregulation of immune-related pathways. In conclusion, LCNECs comprise two molecularly defined subgroups, and distinguishing them from SCLC may allow stratified targeted treatment of high-grade neuroendocrine lung tumors.
Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis
2017-02-01
Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.
Alikhan, Mir; Song, Joo Y; Sohani, Aliyah R; Moroch, Julien; Plonquet, Anne; Duffield, Amy S; Borowitz, Michael J; Jiang, Liuyan; Bueso-Ramos, Carlos; Inamdar, Kedar; Menon, Madhu P; Gurbuxani, Sandeep; Chan, Ernest; Smith, Sonali M; Nicolae, Alina; Jaffe, Elaine S; Gaulard, Philippe; Venkataraman, Girish
2016-10-01
Nodal follicular helper T-cell-derived lymphoproliferations (specifically the less common peripheral T-cell lymphomas of follicular type) exhibit a spectrum of histologic features that may mimic reactive hyperplasia or Hodgkin lymphoma. Even though angioimmunoblastic T-cell lymphoma and peripheral T-cell lymphoma of follicular type share a common biologic origin from follicular helper T-cells and their morphology has been well characterized, flow cytometry of peripheral T-cell lymphomas of follicular type has not been widely discussed as a tool for identifying this reactive hyperplasia/Hodgkin lymphoma mimic. We identified 10 peripheral T-cell lymphomas of follicular type with available flow cytometry data from five different institutions, including two cases with peripheral blood evaluation. For comparison, we examined flow cytometry data for 8 classical Hodgkin lymphomas (including 1 lymphocyte-rich classical Hodgkin lymphoma), 15 nodular lymphocyte predominant Hodgkin lymphomas, 15 angioimmunoblastic T-cell lymphomas, and 26 reactive nodes. Lymph node histology and flow cytometry data were reviewed, specifically for the presence of a CD3(-/dim)CD4(+) aberrant T-cell population (described in angioimmunoblastic T-cell lymphomas), besides other T-cell aberrancies. Nine of 10 (90%) peripheral T-cell lymphomas of follicular type showed a CD3(-/dim)CD4(+) T-cell population constituting 29.3% (range 7.9-62%) of all lymphocytes. Five of 10 (50%) had nodular lymphocyte predominant Hodgkin lymphoma or lymphocyte-rich classical Hodgkin lymphoma-like morphology with scattered Hodgkin-like cells that expressed CD20, CD30, CD15, and MUM1. Three cases had a nodular growth pattern and three others exhibited a perifollicular growth pattern without Hodgkin-like cells. Epstein-Barr virus was positive in 1 of 10 cases (10%). PCR analysis showed clonal T-cell receptor gamma gene rearrangement in all 10 peripheral T-cell lymphomas of follicular type. By flow cytometry, 11 of 15 (73.3%) angioimmunoblastic T-cell lymphomas showed the CD3(-/dim)CD4(+) population (mean: 19.5%, range: 3-71.8%). Using a threshold of 3% for CD3(-/dim)CD4(+) T cells, all 15 nodular lymphocyte predominant Hodgkin lymphoma controls and 8 classical Hodgkin lymphomas were negative (Mann-Whitney P=0.01, F-PTCL vs Hodgkin lymphomas), as were 25 of 26 reactive lymph nodes. The high frequency of CD3(-/dim)CD4(+) aberrant T cells is similar in angioimmunoblastic T-cell lymphomas and peripheral T-cell lymphomas of follicular type, and is a useful feature in distinguishing peripheral T-cell lymphomas of follicular type from morphologic mimics such as reactive hyperplasia or Hodgkin lymphoma.
Haggar, A; Flock, J-I; Norrby-Teglund, A
2010-08-01
Extracellular adherence protein (Eap) from Staphylococcus aureus has been reported to have strong anti-inflammatory properties, which make Eap a potential anti-inflammatory agent. However, Eap has also been demonstrated to trigger T-cell activation and to share structural homology with superantigens. In this study, we focused on whether Eap fulfilled the definition criteria for a superantigen. We demonstrate that T-cell activation by Eap is dependent on both major histocompatibility complex class II and intercellular adhesion molecule type 1, that cellular processing is required for Eap to elicit T-cell proliferation, and that the kinetics of proliferation resemble the profile of a conventional antigen and not that of a superantigen.
Staphylococcus aureus recovery from cotton towels.
Oller, Anna R; Mitchell, Ashley
2009-04-30
Staphylococcus aureus is an emerging pathogen afflicting healthy individuals without known risk factors, and methicillin-resistant Staphylococcus aureus has been shown to colonize multiple family members sharing households. Because household items such as towels are often shared by family members, this study investigated whether cotton towel absorbency or washing conditions affect Staphylococcus aureus cell viability or cell retention, and whether the levels may be sufficient for person-to-person transmission. Staphylococcus aureus ATCC 25923 was added to a 48 mm(2) template area on three cotton towel types (terry, pima, and Egyptian), and subjected to hand washing, without manual wringing, in three conditions (water only, bleach addition, or liquid detergent addition). Serial dilutions plated onto mannitol salt plates quantified bacteria for inoculations, pre- and post-wash water samples, towel surfaces, and hand transfer. Hand transfer of bacteria was determined on towels immediately, one, 24, and 48 hours post inoculation. Bleach (p < or = .05) was the most effective at reducing bacterial viability on all towel types compared to detergent and water. Although not statistically significant, more Staphylococcus colonies were recovered from higher absorbency towels and from inside directly inoculated template areas. A paired t-test showed a difference between immediate and one-hour CFUs versus 24- and 48-hour recoveries (0.0002) for hand transfers. Cell viability decreased for over 48 hours on towels, but sufficient quantities may remain for colonization. More absorbent towels may harbor more Staphylococci than less absorbent ones, and may serve as a transmission mechanism for the bacterium.
Cardiac muscle regeneration: lessons from development
Mercola, Mark; Ruiz-Lozano, Pilar; Schneider, Michael D.
2011-01-01
The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart. PMID:21325131
Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael
2013-06-01
Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.
Hemrajani, Cordula; Marches, Olivier; Wiles, Siouxsie; Girard, Francis; Dennis, Alison; Dziva, Francis; Best, Angus; Phillips, Alan D.; Berger, Cedric N.; Mousnier, Aurelie; Crepin, Valerie F.; Kruidenier, Laurens; Woodward, Martin J.; Stevens, Mark P.; La Ragione, Roberto M.; MacDonald, Thomas T.; Frankel, Gad
2008-01-01
The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-κB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC ΔnleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-κB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-κB response elements, we found that NleH causes an increase in NF-κB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain. PMID:18725419
Topologically associating domains are stable units of replication-timing regulation.
Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L; Wang, Yanli; Hansen, R Scott; Canfield, Theresa K; Thurman, Robert E; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H; Snyder, Michael P; Stamatoyannopoulos, John A; Taylor, James; Hardison, Ross C; Kahveci, Tamer; Ren, Bing; Gilbert, David M
2014-11-20
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Evolution and diversity of plant cell walls: from algae to flowering plants.
Popper, Zoë A; Michel, Gurvan; Hervé, Cécile; Domozych, David S; Willats, William G T; Tuohy, Maria G; Kloareg, Bernard; Stengel, Dagmar B
2011-01-01
All photosynthetic multicellular Eukaryotes, including land plants and algae, have cells that are surrounded by a dynamic, complex, carbohydrate-rich cell wall. The cell wall exerts considerable biological and biomechanical control over individual cells and organisms, thus playing a key role in their environmental interactions. This has resulted in compositional variation that is dependent on developmental stage, cell type, and season. Further variation is evident that has a phylogenetic basis. Plants and algae have a complex phylogenetic history, including acquisition of genes responsible for carbohydrate synthesis and modification through a series of primary (leading to red algae, green algae, and land plants) and secondary (generating brown algae, diatoms, and dinoflagellates) endosymbiotic events. Therefore, organisms that have the shared features of photosynthesis and possession of a cell wall do not form a monophyletic group. Yet they contain some common wall components that can be explained increasingly by genetic and biochemical evidence.
Necroptosis, necrostatins and tissue injury
Smith, Christopher CT; Yellon, Derek M
2011-01-01
Abstract Cell death is an integral part of the life of an organism being necessary for the maintenance of organs and tissues. If, however, cell death is allowed to proceed unrestricted, tissue damage and degenerative disease may ensue. Until recently, three morphologically distinct types of cell death were recognized, apoptosis (type I), autophagy (type II) and necrosis (type III). Apoptosis is a highly regulated, genetically determined mechanism designed to dismantle cells systematically (e.g. cells that are no longer functionally viable), via protease (caspase) action, and maintain homeostasis. Autophagy is responsible for the degradation of cytoplasmic material, e.g. proteins and organelles, through autophagosome formation and subsequent proteolytic degradation by lysosomes, and is normally considered in the context of survival although it is sometimes associated with cell death. Necrosis was formerly considered to be an accidental, unregulated form of cell death resulting from excessive stress, although it has been suggested that this is an over-simplistic view as necrosis may under certain circumstances involve the mobilization of specific transduction mechanisms. Indeed, recently, an alternative death pathway, termed necroptosis, was delineated and proposed as a form of ‘programmed necrosis’. Identified with the aid of specific inhibitors called necrostatins, necroptosis shares characteristics with both necrosis and apoptosis. Necroptosis involves Fas/tumour necrosis factor-α death domain receptor activation and inhibition of receptor-interacting protein I kinase, and it has been suggested that it may contribute to the development of neurological and myocardial diseases. Significantly, necrostatin-like drugs have been mooted as possible future therapeutic agents for the treatment of degenerative conditions. PMID:21564515
Elson, G C; Graber, P; Losberger, C; Herren, S; Gretener, D; Menoud, L N; Wells, T N; Kosco-Vilbois, M H; Gauchat, J F
1998-08-01
In this report we describe the identification, cloning, and expression pattern of human cytokine-like factor 1 (hCLF-1) and the identification and cloning of its murine homologue. They were identified from expressed sequence tags using amino acid sequences from conserved regions of the cytokine type I receptor family. Human CLF-1 and murine CLF-1 shared 96% amino acid identity and significant homology with many cytokine type I receptors. CLF-1 is a secreted protein, suggesting that it is either a soluble subunit within a cytokine receptor complex, like the soluble form of the IL-6R alpha-chain, or a subunit of a multimeric cytokine, e.g., IL-12 p40. The highest levels of hCLF-1 mRNA were observed in lymph node, spleen, thymus, appendix, placenta, stomach, bone marrow, and fetal lung, with constitutive expression of CLF-1 mRNA detected in a human kidney fibroblastic cell line. In fibroblast primary cell cultures, CLF-1 mRNA was up-regulated by TNF-alpha, IL-6, and IFN-gamma. Western blot analysis of recombinant forms of hCLF-1 showed that the protein has the tendency to form covalently linked di- and tetramers. These results suggest that CLF-1 is a novel soluble cytokine receptor subunit or part of a novel cytokine complex, possibly playing a regulatory role in the immune system and during fetal development.
Huang, Lei; Owen, Jonas K.; Xie, Anna; Navarro, Antonia; Monsivais, Diana; Coon V, John S.; Kim, J. Julie; Dai, Yang; Bulun, Serdar E.
2012-01-01
Background Progesterone, via its nuclear receptor (PR), exerts an overall tumorigenic effect on both uterine fibroid (leiomyoma) and breast cancer tissues, whereas the antiprogestin RU486 inhibits growth of these tissues through an unknown mechanism. Here, we determined the interaction between common or cell-specific genome-wide binding sites of PR and mRNA expression in RU486-treated uterine leiomyoma and breast cancer cells. Principal Findings ChIP-sequencing revealed 31,457 and 7,034 PR-binding sites in breast cancer and uterine leiomyoma cells, respectively; 1,035 sites overlapped in both cell types. Based on the chromatin-PR interaction in both cell types, we statistically refined the consensus progesterone response element to G•ACA• • •TGT•C. We identified two striking differences between uterine leiomyoma and breast cancer cells. First, the cis-regulatory elements for HSF, TEF-1, and C/EBPα and β were statistically enriched at genomic RU486/PR-targets in uterine leiomyoma, whereas E2F, FOXO1, FOXA1, and FOXF sites were preferentially enriched in breast cancer cells. Second, 51.5% of RU486-regulated genes in breast cancer cells but only 6.6% of RU486-regulated genes in uterine leiomyoma cells contained a PR-binding site within 5 kb from their transcription start sites (TSSs), whereas 75.4% of RU486-regulated genes contained a PR-binding site farther than 50 kb from their TSSs in uterine leiomyoma cells. RU486 regulated only seven mRNAs in both cell types. Among these, adipophilin (PLIN2), a pro-differentiation gene, was induced via RU486 and PR via the same regulatory region in both cell types. Conclusions Our studies have identified molecular components in a RU486/PR-controlled gene network involved in the regulation of cell growth, cell migration, and extracellular matrix function. Tissue-specific and common patterns of genome-wide PR binding and gene regulation may determine the therapeutic effects of antiprogestins in uterine fibroids and breast cancer. PMID:22272226
Basic Components of Vascular Connective Tissue and Extracellular Matrix.
Halper, Jaroslava
2018-01-01
Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.
FDA Warns About Stem Cell Therapies
... For Consumers Consumer Updates FDA Warns About Stem Cell Therapies Share Tweet Linkedin Pin it More sharing ... the boxed section below for more advice. Stem Cell Uses and FDA Regulation The FDA has the ...
Platelets as autonomous drones for hemostatic and immune surveillance.
Li, Jackson LiangYao; Zarbock, Alexander; Hidalgo, Andrés
2017-07-18
Platelets participate in many important physiological processes, including hemostasis and immunity. However, despite their broad participation in these evolutionarily critical roles, the anucleate platelet is uniquely mammalian. In contrast with the large nucleated equivalents in lower vertebrates, we find that the design template for the evolutionary specialization of platelets shares remarkable similarities with human-engineered unmanned aerial vehicles in terms of overall autonomy, maneuverability, and expendability. Here, we review evidence illustrating how platelets are uniquely suited for surveillance and the manner in which they consequently provide various types of support to other cell types. © 2017 Li et al.
Single cell gene expression profiling in Alzheimer's disease.
Ginsberg, Stephen D; Che, Shaoli; Counts, Scott E; Mufson, Elliott J
2006-07-01
Development and implementation of microarray techniques to quantify expression levels of dozens to hundreds to thousands of transcripts simultaneously within select tissue samples from normal control subjects and neurodegenerative diseased brains has enabled scientists to create molecular fingerprints of vulnerable neuronal populations in Alzheimer's disease (AD) and related disorders. A goal is to sample gene expression from homogeneous cell types within a defined region without potential contamination by expression profiles of adjacent neuronal subpopulations and nonneuronal cells. The precise resolution afforded by single cell and population cell RNA analysis in combination with microarrays and real-time quantitative polymerase chain reaction (qPCR)-based analyses allows for relative gene expression level comparisons across cell types under different experimental conditions and disease progression. The ability to analyze single cells is an important distinction from global and regional assessments of mRNA expression and can be applied to optimally prepared tissues from animal models of neurodegeneration as well as postmortem human brain tissues. Gene expression analysis in postmortem AD brain regions including the hippocampal formation and neocortex reveals selectively vulnerable cell types share putative pathogenetic alterations in common classes of transcripts, for example, markers of glutamatergic neurotransmission, synaptic-related markers, protein phosphatases and kinases, and neurotrophins/neurotrophin receptors. Expression profiles of vulnerable regions and neurons may reveal important clues toward the understanding of the molecular pathogenesis of various neurological diseases and aid in identifying rational targets toward pharmacotherapeutic interventions for progressive, late-onset neurodegenerative disorders such as mild cognitive impairment (MCI) and AD.
Homann, Oliver R.; Hernday, Aaron D.; Monighetti, Cinna K.; De La Vega, Francisco M.; Johnson, Alexander D.
2010-01-01
The differentiation of cells into distinct cell types, each of which is heritable for many generations, underlies many biological phenomena. White and opaque cells of the fungal pathogen Candida albicans are two such heritable cell types, each thought to be adapted to unique niches within their human host. To systematically investigate their differences, we performed strand-specific, massively-parallel sequencing of RNA from C. albicans white and opaque cells. With these data we first annotated the C. albicans transcriptome, finding hundreds of novel differentially-expressed transcripts. Using the new annotation, we compared differences in transcript abundance between the two cell types with the genomic regions bound by a master regulator of the white-opaque switch (Wor1). We found that the revised transcriptional landscape considerably alters our understanding of the circuit governing differentiation. In particular, we can now resolve the poor concordance between binding of a master regulator and the differential expression of adjacent genes, a discrepancy observed in several other studies of cell differentiation. More than one third of the Wor1-bound differentially-expressed transcripts were previously unannotated, which explains the formerly puzzling presence of Wor1 at these positions along the genome. Many of these newly identified Wor1-regulated genes are non-coding and transcribed antisense to coding transcripts. We also find that 5′ and 3′ UTRs of mRNAs in the circuit are unusually long and that 5′ UTRs often differ in length between cell-types, suggesting UTRs encode important regulatory information and that use of alternative promoters is widespread. Further analysis revealed that the revised Wor1 circuit bears several striking similarities to the Oct4 circuit that specifies the pluripotency of mammalian embryonic stem cells. Additional characteristics shared with the Oct4 circuit suggest a set of general hallmarks characteristic of heritable differentiation states in eukaryotes. PMID:20808890
Natural killer T cells in health and disease
Wu, Lan; Van Kaer, Luc
2013-01-01
Natural killer T (NKT) cells are a subset of T lymphocytes that share surface markers and functional characteristics with both conventional T lymphocytes and natural killer cells. Most NKT cells express a semiinvariant T cell receptor that reacts with glycolipid antigens presented by the major histocompatibility complex class I-related protein CD1d on the surface of antigen-presenting cells. NKT cells become activated during a variety of infections and inflammatory conditions, rapidly producing large amounts of immunomodulatory cytokines. NKT cells can influence the activation state and functional properties of multiple other cell types in the immune system and, thus, modulate immune responses against infectious agents, autoantigens, tumors, tissue grafts and allergens. One attractive aspect of NKT cells is that their immunomodulatory activities can be readily harnessed with cognate glycolipid antigens, such as the marine sponge-derived glycosphingolipid alpha-galactosylceramide. These properties of NKT cells are being exploited for therapeutic intervention to prevent or treat cancer, infections, and autoimmune and inflammatory diseases. PMID:21196373
Stem cell function during plant vascular development
Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka
2013-01-01
The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537
Adult somatic stem cells in the human parasite Schistosoma mansoni.
Collins, James J; Wang, Bo; Lambrus, Bramwell G; Tharp, Marla E; Iyer, Harini; Newmark, Phillip A
2013-02-28
Schistosomiasis is among the most prevalent human parasitic diseases, affecting more than 200 million people worldwide. The aetiological agents of this disease are trematode flatworms (Schistosoma) that live and lay eggs within the vasculature of the host. These eggs lodge in host tissues, causing inflammatory responses that are the primary cause of morbidity. Because these parasites can live and reproduce within human hosts for decades, elucidating the mechanisms that promote their longevity is of fundamental importance. Although adult pluripotent stem cells, called neoblasts, drive long-term homeostatic tissue maintenance in long-lived free-living flatworms (for example, planarians), and neoblast-like cells have been described in some parasitic tapeworms, little is known about whether similar cell types exist in any trematode species. Here we describe a population of neoblast-like cells in the trematode Schistosoma mansoni. These cells resemble planarian neoblasts morphologically and share their ability to proliferate and differentiate into derivatives of multiple germ layers. Capitalizing on available genomic resources and RNA-seq-based gene expression profiling, we find that these schistosome neoblast-like cells express a fibroblast growth factor receptor orthologue. Using RNA interference we demonstrate that this gene is required for the maintenance of these neoblast-like cells. Our observations indicate that adaptation of developmental strategies shared by free-living ancestors to modern-day schistosomes probably contributed to the success of these animals as long-lived obligate parasites. We expect that future studies deciphering the function of these neoblast-like cells will have important implications for understanding the biology of these devastating parasites.
Bredenoord, Annelien L; Mostert, Menno; Isasi, Rosario; Knoppers, Bartha M
2015-01-01
Data and sample sharing constitute a scientific and ethical imperative but need to be conducted in a responsible manner in order to protect individual interests as well as maintain public trust. In 2014, the Global Alliance for Genomics and Health (GA4GH) adopted a common Framework for Responsible Sharing of Genomic and Health-Related Data. The GA4GH Framework is applicable to data sharing in the stem cell field, however, interpretation is required so as to provide guidance for this specific context. In this paper, the International Stem Cell Forum Ethics Working Party discusses those principles that are specific to translational stem cell science, including engagement, data quality and safety, privacy, security and confidentiality, risk-benefit analysis and sustainability.
Klein-Hessling, Stefan; Schneider, Günter; Heinfling, Annette; Chuvpilo, Sergei; Serfling, Edgar
1996-01-01
HMG I(Y) proteins bind to double-stranded A+T oligonucleotides longer than three base pairs. Such motifs form part of numerous NF-AT-binding sites of lymphokine promoters, including the interleukin 4 (IL-4) promoter. NF-AT factors share short homologous peptide sequences in their DNA-binding domain with NF-κB factors and bind to certain NF-κB sites. It has been shown that HMG I(Y) proteins enhance NF-κB binding to the interferon β promoter and virus-mediated interferon β promoter induction. We show that HMG I(Y) proteins exert an opposite effect on the DNA binding of NF-AT factors and the induction of the IL-4 promoter in T lymphocytes. Introduction of mutations into a high-affinity HMG I(Y)-binding site of the IL-4 promoter, which decreased HMG I(Y)-binding to a NF-AT-binding sequence, the Pu-bB (or P) site, distinctly increased the induction of the IL-4 promoter in Jurkat T leukemia cells. High concentrations of HMG I(Y) proteins are able to displace NF-ATp from its binding to the Pu-bB site. High HMG I(Y) concentrations are typical for Jurkat cells and peripheral blood T lymphocytes, whereas El4 T lymphoma cells and certain T helper type 2 cell clones contain relatively low HMG I(Y) concentrations. Our results indicate that HMG I(Y) proteins do not cooperate, but instead compete with NF-AT factors for the binding to DNA even though NF-AT factors share some DNA-binding properties with NF-kB factors. This competition between HMG I(Y) and NF-AT proteins for DNA binding might be due to common contacts with minor groove nucleotides of DNA and may be one mechanism contributing to the selective IL-4 expression in certain T lymphocyte populations, such as T helper type 2 cells. PMID:8986808
Turner, Richard; Joseph, Adrian; Titchener-Hooker, Nigel; Bender, Jean
2017-08-04
Cell harvesting is the separation or retention of cells and cellular debris from the supernatant containing the target molecule Selection of harvest method strongly depends on the type of cells, mode of bioreactor operation, process scale, and characteristics of the product and cell culture fluid. Most traditional harvesting methods use some form of filtration, centrifugation, or a combination of both for cell separation and/or retention. Filtration methods include normal flow depth filtration and tangential flow microfiltration. The ability to scale down predictably the selected harvest method helps to ensure successful production and is critical for conducting small-scale characterization studies for confirming parameter targets and ranges. In this chapter we describe centrifugation and depth filtration harvesting methods, share strategies for harvest optimization, present recent developments in centrifugation scale-down models, and review alternative harvesting technologies.
Wilms, Viviane; Köppl, Christine; Söffgen, Chris; Hartmann, Anna-Maria; Nothwang, Hans Gerd
2016-01-01
In the cochlea, mammals maintain a uniquely high endolymphatic potential (EP), which is not observed in other vertebrate groups. However, a high [K+] is always present in the inner ear endolymph. Here, we show that Kir4.1, which is required in the mammalian stria vascularis to generate the highly positive EP, is absent in the functionally equivalent avian tegmentum vasculosum. In contrast, the molecular repertoire required for K+ secretion, specifically NKCC1, KCNQ1, KCNE1, BSND and CLC-K, is shared between the tegmentum vasculosum, the vestibular dark cells and the marginal cells of the stria vascularis. We further show that in barn owls, the tegmentum vasculosum is enlarged and a higher EP (~+34 mV) maintained, compared to other birds. Our data suggest that both the tegmentum vasculosum and the stratified stria vascularis evolved from an ancestral vestibular epithelium that already featured the major cell types of the auditory epithelia. Genetic recruitment of Kir4.1 specifically to strial melanocytes was then a crucial step in mammalian evolution enabling an increase in the cochlear EP. An increased EP may be related to high-frequency hearing, as this is a hallmark of barn owls among birds and mammals among amniotes. PMID:27680950
Villagómez-Ortíz, Vicente José; Paz-Delgadillo, Diana Estela; Marino-Martínez, Iván; Ceseñas-Falcón, Luis Ángel; Sandoval-de la Fuente, Anabel; Reyes-Escobedo, Alfonso
2016-01-01
Cancer of the head and neck comprises a group of neoplasms that share a similar anatomical origin. Most originate from the epithelium of the aerodigestive tract and 90% correspond to squamous cell carcinoma. In the last 15 years, an increase in the incidence of squamous cell carcinoma induced by human papillomavirus (HPV) has been seen, mainly types 16 and 18, which are the most frequent found in cancers of the oral cavity and oropharynx, and types 6 and 11 in laryngeal cancer. There are reports in the literature that show HPV as the leading cause of oropharyngeal squamous cell carcinoma. Determine the prevalence of infection with high-risk HPV in patients diagnosed with squamous cell carcinoma of the oral cavity, oropharynx and larynx. An observational, cross-sectional, descriptive, unblinded study was performed. Prevalence of HPV infection was determined by polymerase chain reaction (PCR) in DNA samples from tumour tissue of patients with squamous cell carcinoma of the oral cavity, oropharynx and larynx. Typing was subsequently performed in HPV positive samples in order to detect types 18, 16, 11 and 6, using custom primers. A total of 45 patients were included. The association between laryngeal squamous cell carcinoma and HPV was established in two patients, which represented an overall prevalence of 4.4% in our population, and 10% for laringeal tumours. There is a low prevalence of HPV infection in squamous cell carcinoma of the oral cavity, oropharynx and larynx, in our population. Prospective studies on younger patients could provide more information. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.
Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.
Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro
2015-04-01
Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. Copyright© Ferrata Storti Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. In this paper, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantummore » dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Finally, together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.« less
Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.; ...
2016-10-27
The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. In this paper, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantummore » dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Finally, together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.« less
McCarthy, Corinna; Youde, Sarah J; Man, Stephen
2006-05-15
Although human papillomavirus (HPV) types 16 and 18 are the most common types associated with cervical cancer worldwide, other related HPV types such as HPV 35, 45 and 58 have significant prevalence in geographically distinct populations. For development of global prophylactic and therapeutic vaccine strategies, it is important to study immune responses against these viruses and to define the degree of cross-reactivity between related HPV types. To investigate the potential for T cell cross-reactivity after vaccination, HLA-A2/Kb transgenic mice were immunised with DNA plasmid constructs containing HPV18 and 45 E6 and E7. Splenocytes from immunised mice were tested in direct ELIspot assays against overlapping pools of HPV 18 peptides. Immunisation with either HPV18 or HPV45 E6 DNA produced dominant T cell responses against an epitope (KCIDFYSRI) that was shared between HPV18 and HPV45. This peptide was shown to bind to HLA-A*0201 but not Db or Kb molecules on the cell surface. Furthermore this peptide was shown to be immunogenic in vitro to human T cells from 2 out of 3 HLA-A2+ healthy donors. Collectively, these results demonstrate that HPV 18 and 45 E6 DNA vaccines are immunogenic in mice and demonstrate that cross-reactive T cell responses against closely related HPV types can be induced in vivo. The use of the HLA-A2/Kb transgenic mice allowed definition of an HLA-A*0201 binding peptide epitope that would have been rejected on the basis of predicted major histocompatibility complex binding affinity. Copyright (c) 2005 Wiley-Liss, Inc.
Hrdlickova, Barbara; Kumar, Vinod; Kanduri, Kartiek; Zhernakova, Daria V; Tripathi, Subhash; Karjalainen, Juha; Lund, Riikka J; Li, Yang; Ullah, Ubaid; Modderman, Rutger; Abdulahad, Wayel; Lähdesmäki, Harri; Franke, Lude; Lahesmaa, Riitta; Wijmenga, Cisca; Withoff, Sebo
2014-01-01
Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (α <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (α <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways.
36 CFR 1206.50 - What types of funding and cost sharing arrangements does the Commission make?
Code of Federal Regulations, 2010 CFR
2010-07-01
... opportunity announcements. (2) Cost sharing may include cash or in-kind contributions provided by the... cost sharing arrangements does the Commission make? 1206.50 Section 1206.50 Parks, Forests, and Public... RECORDS COMMISSION Applying for NHPRC Grants § 1206.50 What types of funding and cost sharing arrangements...
Blanket Gate Would Address Blocks Of Memory
NASA Technical Reports Server (NTRS)
Lambe, John; Moopenn, Alexander; Thakoor, Anilkumar P.
1988-01-01
Circuit-chip area used more efficiently. Proposed gate structure selectively allows and restricts access to blocks of memory in electronic neural-type network. By breaking memory into independent blocks, gate greatly simplifies problem of reading from and writing to memory. Since blocks not used simultaneously, share operational amplifiers that prompt and read information stored in memory cells. Fewer operational amplifiers needed, and chip area occupied reduced correspondingly. Cost per bit drops as result.
Albariño, César G; Wiggleton Guerrero, Lisa; Spengler, Jessica R; Uebelhoer, Luke S; Chakrabarti, Ayan K; Nichol, Stuart T; Towner, Jonathan S
2015-02-01
Previous in vitro studies have demonstrated that Ebola and Marburg virus (EBOV and MARV) VP35 antagonize the host cell immune response. Moreover, specific mutations in the IFN inhibitory domain (IID) of EBOV and MARV VP35 that abrogate their interaction with virus-derived dsRNA, lack the ability to inhibit the host immune response. To investigate the role of MARV VP35 in the context of infectious virus, we used our reverse genetics system to generate two recombinant MARVs carrying specific mutations in the IID region of VP35. Our data show that wild-type and mutant viruses grow to similar titers in interferon deficient cells, but exhibit attenuated growth in interferon-competent cells. Furthermore, in contrast to wild-type virus, both MARV mutants were unable to inhibit expression of various antiviral genes. The MARV VP35 mutants exhibit similar phenotypes to those previously described for EBOV, suggesting the existence of a shared immune-modulatory strategy between filoviruses. Published by Elsevier Inc.
Ch Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P
2016-10-01
The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.
Hu, Dong Gui; McKinnon, Ross A.; Hulin, Julie-Ann; Mackenzie, Peter I.; Meech, Robyn
2016-01-01
Nearly 20 different transcripts of the human androgen receptor (AR) are reported with two currently listed as Refseq isoforms in the NCBI database. Isoform 1 encodes wild-type AR (type 1 AR) and isoform 2 encodes the variant AR45 (type 2 AR). Both variants contain eight exons: they share common exons 2–8 but differ in exon 1 with the canonical exon 1 in isoform 1 and the variant exon 1b in isoform 2. Splicing of exon 1 or exon 1b is reported to be mutually exclusive. In this study, we identified a novel exon 1b (1b/TAG) that contains an additional TAG trinucleotide upstream of exon 1b. Moreover, we identified AR transcripts in both normal and cancerous breast and prostate cells that contained either exon 1b or 1b/TAG spliced between the canonical exon 1 and exon 2, generating nine-exon AR transcripts that we have named isoforms 3a and 3b. The proteins encoded by these new AR variants could regulate androgen-responsive reporters in breast and prostate cancer cells under androgen-depleted conditions. Analysis of type 3 AR-GFP fusion proteins showed partial nuclear localization in PC3 cells under androgen-depleted conditions, supporting androgen-independent activation of the AR. Type 3 AR proteins inhibited androgen-induced growth of LNCaP cells. Microarray analysis identified a small set of type 3a AR target genes in LNCaP cells, including genes known to modulate growth and proliferation of prostate cancer (PCGEM1, PEG3, EPHA3, and EFNB2) or other types of human cancers (TOX3, ST8SIA4, and SLITRK3), and genes that are diagnostic/prognostic biomarkers of prostate cancer (GRINA3, and BCHE). PMID:28035996
Phagocytic response of astrocytes to damaged neighboring cells
Cruz, Gladys Mae S.; Ro, Clarissa C.; Moncada, Emmanuel G.; Khatibzadeh, Nima; Flanagan, Lisa A.; Berns, Michael W.
2018-01-01
This study aims to understand the phagocytic response of astrocytes to the injury of neurons or other astrocytes at the single cell level. Laser nanosurgery was used to damage individual cells in both primary mouse cortical astrocytes and an established astrocyte cell line. In both cases, the release of material/substances from laser-irradiated astrocytes or neurons induced a phagocytic response in near-by astrocytes. Propidium iodide stained DNA originating from irradiated cells was visible in vesicles of neighboring cells, confirming phagocytosis of material from damaged cortical cells. In the presence of an intracellular pH indicator dye, newly formed vesicles correspond to acidic pH fluorescence, thus suggesting lysosome bound degradation of cellular debris. Cells with shared membrane connections prior to laser damage had a significantly higher frequency of induced phagocytosis compared to isolated cells with no shared membrane. The increase in phagocytic response of cells with a shared membrane occurred regardless of the extent of shared membrane (a thin filopodial connection vs. a cell cluster with significant shared membrane). In addition to the presence (or lack) of a membrane connection, variation in phagocytic ability was also observed with differences in injury location within the cell and distance separating isolated astrocytes. These results demonstrate the ability of an astrocyte to respond to the damage of a single cell, be it another astrocyte, or a neuron. This single-cell level of analysis results in a better understanding of the role of astrocytes to maintain homeostasis in the CNS, particularly in the sensing and removal of debris in damaged or pathologic nervous tissue. PMID:29708987
Molecular Analysis of Mixed Endometrial Carcinomas Shows Clonality in Most Cases.
Köbel, Martin; Meng, Bo; Hoang, Lien N; Almadani, Noorah; Li, Xiaodong; Soslow, Robert A; Gilks, C Blake; Lee, Cheng-Han
2016-02-01
Mixed endometrial carcinoma refers to a tumor that comprises 2 or more distinct histotypes. We studied 18 mixed-type endometrial carcinomas-11 mixed serous and low-grade endometrioid carcinomas (SC/EC), 5 mixed clear cell and low-grade ECs (CCC/EC), and 2 mixed CCC and SCs (CCC/SC), using targeted next-generation sequencing and immunohistochemistry to compare the molecular profiles of the different histotypes present in each case. In 16 of 18 cases there was molecular evidence that both components shared a clonal origin. Eight cases (6 EC/SC, 1 EC/CCC, and 1 SC/CCC) showed an SC molecular profile that was the same in both components. Five cases (3 CCC/EC and 2 SC/EC) showed a shared endometrioid molecular profile and identical mismatch-repair protein deficiency in both components. A single SC/EC case harbored the same POLE exonuclease domain mutation in both components. One SC/CCC and 1 EC/CCC case showed both shared and unique molecular features in the 2 histotype components, suggesting early molecular divergence from a common clonal origin. In 2 cases, there were no shared molecular features, and these appear to be biologically unrelated synchronous tumors. Overall, these results show that the different histologic components in mixed endometrial carcinomas typically share the same molecular aberrations. Mixed endometrial carcinomas most commonly occur through morphologic mimicry, whereby tumors with serous-type molecular profile show morphologic features of EC or CCC, or through underlying deficiency in DNA nucleotide repair, with resulting rapid accrual of mutations and intratumoral phenotypic heterogeneity. Less commonly, mixed endometrial carcinomas are the result of early molecular divergence from a common progenitor clone or are synchronous biologically unrelated tumors (collision tumors).
CD161 Defines a Functionally Distinct Subset of Pro-Inflammatory Natural Killer Cells
Kurioka, Ayako; Cosgrove, Cormac; Simoni, Yannick; van Wilgenburg, Bonnie; Geremia, Alessandra; Björkander, Sophia; Sverremark-Ekström, Eva; Thurnheer, Christine; Günthard, Huldrych F.; Khanna, Nina; Aubert, V; Arancibia-Cárcamo, CV; Walker, Lucy Jane; Arancibia-Cárcamo, Carolina V.; Newell, Evan W.; Willberg, Christian B.; Klenerman, Paul
2018-01-01
CD161 is a C-type lectin-like receptor expressed on the majority of natural killer (NK) cells; however, the significance of CD161 expression on NK cells has not been comprehensively investigated. Recently, we found that CD161 expression identifies a transcriptional and innate functional phenotype that is shared across various T cell populations. Using mass cytometry and microarray experiments, we demonstrate that this functional phenotype extends to NK cells. CD161 marks NK cells that have retained the ability to respond to innate cytokines during their differentiation, and is lost upon cytomegalovirus-induced maturation in both healthy and human immunodeficiency virus (HIV)-infected patients. These pro-inflammatory NK cells are present in the inflamed lamina propria where they are enriched for integrin CD103 expression. Thus, CD161 expression identifies NK cells that may contribute to inflammatory disease pathogenesis and correlates with an innate responsiveness to cytokines in both T and NK cells. PMID:29686665
2013-01-01
This report synthesizes the discussions during a workshop convened April 24–25, 2012, by the National Institute of Mental Health and the Foundation for the NIH in Bethesda, Maryland, that focused on progress and challenges in the use of patient-derived reprogrammed cells for basic biological discovery, target identification, screening, and drug development for mental illnesses such as schizophrenia, bipolar disorder, and autism spectrum disorders. The workshop revealed that the greatest progress has been made in reprogramming methods and agreed-upon standards for validating the resulting induced pluripotent stem cell lines. However, challenges remain in several areas, including efficiently generating and validating specific neural cell types with respect to regional identity, establishing assays with predictive validity to mental illness pathophysiology, and generating sufficient statistical power and data reproducibility across laboratories. A brainstorming session yielded a number of suggestions, including calls to (a) facilitate the replication of results by standardizing protocols and samples used across laboratories; (b) improve technology by generating cheaper/faster targeting methods, reporters, and assays; and (c) improve resource sharing and collaboration, with an emphasis on rapid sharing of new cell lines, technologies, and best practices, possibly incorporated into a public-private partnership. The meeting provided an important venue for academic, government, and private sector scientists to address potential opportunities for translational and clinical applications of reprogrammed cell research. A number of activities since the workshop have reflected the feedback from meeting participants. PMID:23408104
Panchision, David M
2013-03-01
This report synthesizes the discussions during a workshop convened April 24-25, 2012, by the National Institute of Mental Health and the Foundation for the NIH in Bethesda, Maryland, that focused on progress and challenges in the use of patient-derived reprogrammed cells for basic biological discovery, target identification, screening, and drug development for mental illnesses such as schizophrenia, bipolar disorder, and autism spectrum disorders. The workshop revealed that the greatest progress has been made in reprogramming methods and agreed-upon standards for validating the resulting induced pluripotent stem cell lines. However, challenges remain in several areas, including efficiently generating and validating specific neural cell types with respect to regional identity, establishing assays with predictive validity to mental illness pathophysiology, and generating sufficient statistical power and data reproducibility across laboratories. A brainstorming session yielded a number of suggestions, including calls to (a) facilitate the replication of results by standardizing protocols and samples used across laboratories; (b) improve technology by generating cheaper/faster targeting methods, reporters, and assays; and (c) improve resource sharing and collaboration, with an emphasis on rapid sharing of new cell lines, technologies, and best practices, possibly incorporated into a public-private partnership. The meeting provided an important venue for academic, government, and private sector scientists to address potential opportunities for translational and clinical applications of reprogrammed cell research. A number of activities since the workshop have reflected the feedback from meeting participants.
Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela
2011-07-01
Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone.
Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela
2011-01-01
Background Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Design and Methods Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Results Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. Conclusions The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone. PMID:21486864
Ogura, Kanako; Matsumoto, Toshiharu; Aoki, Yuji; Kitabatake, Toshiaki; Fujisawa, Minoru; Kojima, Kuniaki
2010-07-01
Sometimes, mastitis needs to be differentiated from carcinoma because of its association with induration and with ultrasound findings (such as low-echo lesions) that resemble those in carcinoma. The aim was to define this type of mastitis and to examine 18 cases to clarify its clinicopathological features. All cases were categorized into three types: non-specific mastitis with neutrophilic infiltration (n = 7); non-specific mastitis with lymphoplasmacytic infiltration (n = 9); and granulomatous lobular mastitis (n = 2). The three types of mastitis presented similar ultrasound findings and shared certain histological features including fibrosis and diffuse or lobulocentric inflammation. Granulomatous lobular mastitis showed specific clinicopathological features including lobulocentric inflammation with giant cells, diffuse IgG4+ plasma cells, and also a high level of serum IgG4. Granulomatous lobular mastitis could be categorized into IgG4-related and non-IgG4-related granulomatous lobular mastitis. IgG4 immunohistochemistry serum IgG4 might be useful for diagnosis of IgG4-related granulomatous lobular mastitis and could help to avoid overtreatment such as wide excision.
Kreikemeyer, Bernd; Nakata, Masanobu; Oehmcke, Sonja; Gschwendtner, Caroline; Normann, Jana; Podbielski, Andreas
2005-09-30
The Streptococcus pyogenes collagen type I-binding protein Cpa (collagen-binding protein of group A streptococci) expressed by 28 serotypes of group A streptococci has been extensively characterized at the gene and protein levels. Evidence for three distinct families of cpa genes was found, all of which shared a common sequence encoding a 60-amino acid domain that accounted for selective binding to type I collagen. Surface plasmon resonance-based affinity measurements and functional studies indicated that the expression of Cpa was consistent with an attachment role for bacteria to tissue containing collagen type I. A cpa mutant displayed a significantly decreased internalization rate when incubated with HEp-2 cells but had no effect on the host cell viability. By utilizing serum from patients with a positive titer for streptolysin/DNase antibody, an increased anti-Cpa antibody titer was noted for patients with a clinical history of arthritis or osteomyelitis. Taken together, these results suggest Cpa may be a relevant matrix adhesin contributing to the pathogenesis of S. pyogenes infection of bones and joints.
Connective tissue growth factor (CTGF) and cancer progression.
Chu, Chia-Yu; Chang, Cheng-Chi; Prakash, Ekambaranellore; Kuo, Min-Liang
2008-11-01
Connective tissue growth factor (CTGF) is a member of the CCN family of secreted, matrix-associated proteins encoded by immediate early genes that play various roles in angiogenesis and tumor growth. CCN family proteins share uniform modular structure which mediates various cellular functions such as regulation of cell division, chemotaxis, apoptosis, adhesion, motility, angiogenesis, neoplastic transformation, and ion transport. Recently, CTGF expression has been shown to be associated with tumor development and progression. There is growing body of evidence that CTGF may regulate cancer cell migration, invasion, angiogenesis, and anoikis. In this review, we will highlight the influence of CTGF expression on the biological behavior and progression of various cancer cells, as well as its regulation on various types of protein signals and their mechanisms.
Wiggers, Erin Callie; Johnson, William; Tucci, Michelle; Benghuzzi, Hamed
2011-01-01
Osteomyelitis is a bacterial infection of the bone that occurs frequently as a complication of open fractures and various kinds of orthopedic surgery. This infection can often lead to more extensive surgeries and even death of the patient. In animal models of osteomyelitis, the site of infection by Staphylococcus aureus was observed to have high numbers of both macrophages and osteoclasts, both of which may contribute to large amounts of osteolysis and tissue damage. In order to evaluate the immune response in both types of cells, two cells lines, a macrophage cell line and a macrophage cell line stimulated to become osteoclasts by the addition of receptor activator of nuclear-factor B (RANKL), were exposed to lipopolysaccharides, opsonized S. aureus, and unopsonized S. aureus. The results showed that both cell types activated a biochemical cascade that included the release of cytokines and nitric oxide associated with cell damage and death in response to infection. However, macrophages and osteoclasts differed in response magnitude, most likely due to differences in cell-membrane receptors. This data supports the growing body of research that links the immune and skeletal systems. Further understanding of biochemical pathways shared by the two systems could lead to significant advances in the treatment of osteomyelitis and the success of prostheses.
Mikulska-Ruminska, Karolina; Kulik, Andrej J; Benadiba, Carine; Bahar, Ivet; Dietler, Giovanni; Nowak, Wieslaw
2017-08-18
Contactin-4 (CNTN4) is a complex cell adhesion molecule (CAM) localized at neuronal membranes, playing a key role in maintaining the mechanical integrity and signaling properties of the synapse. CNTN4 consists of six immunoglobulin C2 type (IgC2) domains and four fibronectin type III (FnIII) domains that are shared with many other CAMs. Mutations in CNTN4 gene have been linked to various psychiatric disorders. Toward elucidating the response of this modular protein to mechanical stress, we studied its force-induced unfolding using single molecule atomic force microscopy (smAFM) and steered molecular dynamics (SMD) simulations. Extensive smAFM and SMD data both indicate the distinctive mechanical behavior of the two types of modules distinguished by unique force-extension signatures. The data also reveal the heterogeneity of the response of the individual FNIII and IgC2 modules, which presumably plays a role in the adaptability of CNTN4 to maintaining cell-cell communication and adhesion properties under different conditions. Results show that extensive sampling of force spectra, facilitated by robot-enhanced AFM, can help reveal the existence of weak stabilizing interactions between the domains of multidomain proteins, and provide insights into the nanomechanics of such multidomain or heteromeric proteins.
Cancer (stem) cell differentiation: An inherent or acquired property?
Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas
2015-12-01
There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Apoplastic interactions between plants and plant root intruders.
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.
Nikolaienko, Roman M.; Hammel, Michal; Dubreuil, Véronique; ...
2016-08-18
Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptormore » cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling.« less
Apoplastic interactions between plants and plant root intruders
Mitsumasu, Kanako; Seto, Yoshiya; Yoshida, Satoko
2015-01-01
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant–parasite interactions. PMID:26322059
48 CFR 716.303 - Cost-sharing contracts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Cost-sharing contracts. 716.303 Section 716.303 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost Reimbursement Contracts 716.303 Cost-sharing...
48 CFR 716.303 - Cost-sharing contracts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Cost-sharing contracts. 716.303 Section 716.303 Federal Acquisition Regulations System AGENCY FOR INTERNATIONAL DEVELOPMENT CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost Reimbursement Contracts 716.303 Cost-sharing...
48 CFR 1516.303-73 - Types of cost-sharing.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., cost matching, or other in-kind contributions. (b) In-kind contributions represent non-cash... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Types of cost-sharing. 1516... CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost-Reimbursement Contracts 1516.303-73 Types of...
Tooth, hair and claw: comparing epithelial stem cell niches of ectodermal appendages
Naveau, Adrien; Seidel, Kerstin; Klein, Ophir D.
2014-01-01
The vertebrate ectoderm gives rise to organs that produce mineralized or keratinized substances, including teeth, hair, and claws. Most of these ectodermal derivatives grow continuously throughout the animal’s life and have active pools of adult stem cells that generate all the necessary cell types. These organs provide powerful systems for understanding the mechanisms that enable stem cells to regenerate or renew ectodermally derived tissues, and remarkable progress in our understanding of these systems has been made in recent years using mouse models. We briefly compare what is known about stem cells and their niches in incisors, hair follicles, and claws, and we examine expression of Gli1 as a potential example of a shared stem cell marker. We summarize some of the features, structures, and functions of the stem cell niches in these ectodermal derivatives; definition of the basic elements of the stem cell niches in these organs will provide guiding principles for identification and characterization of the niche in similar systems. PMID:24530577
Metastatic potential of tumor-initiating cells in solid tumors.
Adhikari, Amit S; Agarwal, Neeraj; Iwakuma, Tomoo
2011-01-01
The lethality of cancer is mainly caused by its properties of metastasis, drug resistance, and subsequent recurrence. Understanding the mechanisms governing these properties and developing novel strategies to overcome them will greatly improve the survival of cancer patients. Recent findings suggest that tumors are comprised of heterogeneous cell populations, and only a small fraction of these are tumorigenic with the ability to self-renew and produce phenotypically diverse tumor cell populations. Cells in this fraction are called tumor-initiating cells (TICs) or cancer stem cells (CSCs). TICs have been identified from many types of cancer. They share several similarities with normal adult stem cells including sphere-forming ability, self-renewability, and expression of stem cell surface markers and transcription factors. TICs have also been proposed to be responsible for cancer metastasis, however, scarce evidence for their metastatic potential has been provided. In this review article, we have attempted to summarize the studies which have examined the metastatic potential of TICs in solid tumors.
NASA Astrophysics Data System (ADS)
Jeon, Seong-Beom; Yi, Se Won; Samal, Monica; Park, Keun-Hong; Yun, Kyusik
2018-04-01
We investigated the biocompatibility of GQDs in terms of the cellular response, an aspect often overlooked. Herein, we synthesized two types of GQDs - Glu-GQDs (GQDs which are derived from glucose) and Gr-GQDs (GQDs which are derived from graphite) - with different functional groups on their surfaces. Both types of GQDs shared similar morphological features (shape and size distribution); the size distribution varied between 1.5 nm to 9.5 nm in both cases. Spectral analysis confirmed the difference in their chemical composition. The presence of nitrogen and chlorine in the Glu-GQDs is the major distinction between the two types of GQDs. Fluorescence emission of the obtained GQDs was observed at 480 nm for the Glu-GQDs, and at 550 nm for the Gr-GQDs. The cytotoxicity in NHDF and HeLa cell line was evaluated by a CCK-8 assay, and it confirmed that the cell viability was above 80% despite the high concentration (1024 μg/mL) in both cases. Cellular response after GQDs treatment was different from the control, but it was not lethal in the cell viability aspect. Furthermore, the potential of the GQDs as bio-imaging agents was examined using a fluorescence microscope and a laser scanning confocal microscope. The Glu-GQDs dispersed throughout the cells in NHDF and HeLa cell line, while the Gr-GQDs dispersed in the cytoplasm of the NHDF cells, and were distributed throughout the cell in HeLa. This study demonstrates that GQDs have potential in biomedical applications, even though their functionalities may be different.
Comparative ultrastructure of vallate, foliate and fungiform taste buds of golden Syrian hamster.
Miller, R L; Chaudhry, A P
1976-01-01
A fine-structure study of the hamster fungiform, foliate and vallate taste buds was undertaken for comparative purposes. All three taste bud types shared in common composition of the dark cells, light cells, basal cells, nerve fibers and nerve endings and undifferentiated peripheral cells, but morphological difference existed among them. The foliate and vallate taste buds were quite similar in their ultrastructural morphology. Their dark cells displayed long apical necks, long apical microvilli, apical osmiophilic secretory granules and an abundant rough endoplasmic reticulum. The dark cells of the fungiform taste buds, however, showed no neck formation and lacked apical osmiophilic granules. They had short apical microvilli and relatively scant rough endoplasmic reticulum. There was no difference in the fine structure features of the light cells, basal cells and neural elements of different types of taste buds. Both light and dark cells were much more readily distinguishable in foliate and vallate buds than in fungiform buds at both light-and electron-microscopic levels. Foliate and vallate buds demonstrated homogeneous dense substance within the taste pores while fungiform pores were frequently empty. It is speculated that the differences in taste bud morphology may be due to their different lingual locations and/or may be a reflection of the differences in the inductive influences from different nerves. Furthermore, structural differences may be responsible for varying thresholds to different taste modalities.
Breast tumor heterogeneity: cancer stem cells or clonal evolution?
Campbell, Lauren L; Polyak, Kornelia
2007-10-01
Breast tumors are composed of a variety of cell types with distinct morphologies and behaviors. It is not clear how this tumor heterogeneity comes about. Two popular concepts that attempt to explain this are the cancer stem cell hypothesis and the clonal evolution model. Each of these ideas has been investigated for some time, leading to the accumulation of numerous findings that are used to support one or the other. Although the two views share some similarities, they are fundamentally different notions with very different clinical implications. Analysis of the research backing each concept, along with a review of the results of our recent study investigating putative breast cancer stem cells, suggests how the cancer stem cell hypothesis and the clonal evolution model may be involved in generating breast tumor heterogeneity. An understanding of this process will allow the development of more effective ways to treat and prevent breast cancer.
Cre-mediated recombination in pituitary somatotropes
Nasonkin, Igor O.; Potok, Mary Anne; Camper, Sally A.
2009-01-01
We report a transgenic line with highly penetrant cre recombinase activity in the somatotrope cells of the anterior pituitary gland. Expression of the cre transgene is under the control of the locus control region of the human growth hormone gene cluster and the rat growth hormone promoter. Cre recombinase activity was assessed with two different lacZ reporter genes that require excision of a floxed stop sequence for expression: a chick β-actin promoter with the CMV enhancer transgene and a ROSA26 knock-in. Cre activity is detectable in the developing pituitary after initiation of Gh transcription and persists through adulthood with high penetrance in Gh expressing cells and lower penetrance in lactotropes, a cell type that shares a common origin with somatotropes. This Gh-cre transgenic line is suitable for efficient, cell-specific deletion of floxed regions of genomic DNA in differentiated somatotropes and a subset of lactotrope cells of the anterior pituitary gland. PMID:19039787
Reflectance Confocal Microscopy in Lentigo Maligna.
Gamo, R; Pampín, A; Floristán, U
2016-12-01
Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.
Immunogenetic mechanisms for the coexistence of organ-specific and systemic autoimmune diseases.
Fridkis-Hareli, Masha
2008-02-15
Organ-specific autoimmune diseases affect particular targets in the body, whereas systemic diseases engage multiple organs. Both types of autoimmune diseases may coexist in the same patient, either sequentially or concurrently, sustained by the presence of autoantibodies directed against the corresponding autoantigens. Multiple factors, including those of immunological, genetic, endocrine and environmental origin, contribute to the above condition. Due to association of certain autoimmune disorders with HLA alleles, it has been intriguing to examine the immunogenetic basis for autoantigen presentation leading to the production of two or more autoantibodies, each distinctive of an organ-specific or systemic disease. This communication offers the explanation for shared autoimmunity as illustrated by organ-specific blistering diseases and the connective tissue disorders of systemic nature. Several hypothetical mechanisms implicating HLA determinants, autoantigenic peptides, T cells, and B cells have been proposed to elucidate the process by which two autoimmune diseases are induced in the same individual. One of these scenarios, based on the assumption that the patient carries two disease-susceptible HLA genes, arises when a single T cell epitope of each autoantigen recognizes its HLA protein, leading to the generation of two types of autoreactive B cells, which produce autoantibodies. Another mechanism functioning whilst an epitope derived from either autoantigen binds each of the HLA determinants, resulting in the induction of both diseases by cross-presentation. Finally, two discrete epitopes originating from the same autoantigen may interact with each of the HLA specificities, eliciting the production of both types of autoantibodies. Despite the lack of immediate or unequivocal experimental evidence supporting the present hypothesis, several approaches may secure a better understanding of shared autoimmunity. Among these are animal models expressing the transgenes of human disease-associated HLA determinants and T or B cell receptors, as well as in vitro binding studies employing purified HLA proteins, synthetic peptides, and cellular assays with antigen-presenting cells and patient's lymphocytes. Indisputably, a bioinformatics-based search for peptide motifs and the modeling of the conformation of bound autoantigenic peptides associated with their respective HLA alleles will reveal some of these important processes. The elucidation of HLA-restricted immune recognition mechanisms prompting the production of two or more disease-specific autoantibodies holds significant clinical ramifications and implications for the development of more effective treatment protocols.
Wang, Wen; Li, Hao; Zhao, Zheng; Wang, Haoyuan; Zhang, Dong; Zhang, Yan; Lan, Qing; Wang, Jiangfei; Cao, Yong; Zhao, Jizong
2018-04-01
Abdominal aortic aneurysms (AAAs) and intracranial saccular aneurysms (IAs) are the most common types of aneurysms. This study was to investigate the common pathogenesis shared between these two kinds of aneurysms. We collected 12 IAs samples and 12 control arteries from the Beijing Tiantan Hospital and performed microarray analysis. In addition, we utilized the microarray datasets of IAs and AAAs from the Gene Expression Omnibus (GEO), in combination with our microarray results, to generate messenger RNA expression profiles for both AAAs and IAs in our study. Functional exploration and protein-protein interaction (PPI) analysis were performed. A total of 727 common genes were differentially expressed (404 was upregulated; 323 was downregulated) for both AAAs and IAs. The GO and pathway analyses showed that the common dysregulated genes were mainly enriched in vascular smooth muscle contraction, muscle contraction, immune response, defense response, cell activation, IL-6 signaling and chemokine signaling pathways, etc. The further protein-protein analysis identified 35 hub nodes, including TNF, IL6, MAPK13, and CCL5. These hub node genes were enriched in inflammatory response, positive regulation of IL-6 production, chemokine signaling pathway, and T/B cell receptor signaling pathway. Our study will gain new insight into the molecular mechanisms for the pathogenesis of both types of aneurysms and provide new therapeutic targets for the patients harboring AAAs and IAs.
Signals from the Fourth Dimension Regulate Drug Relapse.
Mulholland, Patrick J; Chandler, L Judson; Kalivas, Peter W
2016-07-01
Despite the enormous societal burden of alcohol and drug addiction and abundant research describing drug-induced maladaptive synaptic plasticity, there are few effective strategies for treating substance use disorders. Recent awareness that synaptic plasticity involves astroglia and the extracellular matrix is revealing new possibilities for understanding and treating addiction. We first review constitutive corticostriatal adaptations that are elicited by and shared between all abused drugs from the perspective of tetrapartite synapses, and integrate recent discoveries regarding cell type-specificity in striatal neurons. Next, we describe recent discoveries that drug-seeking is associated with transient synaptic plasticity that requires all four synaptic elements and is shared across drug classes. Finally, we prognosticate how considering tetrapartite synapses can provide new treatment strategies for addiction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yuan, G-H; Tanaka, M; Masuko-Hongo, K; Shibakawa, A; Kato, T; Nishioka, K; Nakamura, H
2004-01-01
To identify the characteristics of cells isolated from pannus-like soft tissue on osteoarthritic cartilage (OA pannus cells), and to evaluate the role of this tissue in osteoarthritis (OA). OA pannus cells were isolated from pannus-like tissues in five joints obtained during arthroplasty. The phenotypic features of the isolated cells were characterized by safranin-O staining and immunohistochemical studies. Expression of MMP-1, MMP-3 and MMP-13 was also assessed using reverse transcriptase-polymerase chain reactions (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Foci and plaque formation of pannus-like tissue over cartilage surface were found in 15 of 21 (71.4%) OA joints macroscopically, and among them, only five samples had enough tissue to be isolated. OA pannus cells were positive for type I collagen and vimentin, besides they also expressed type II collagen and aggrecan mRNA. Spontaneous expression of MMP-1, MMP-3 and MMP-13 was detected in OA pannus cells. Similar or higher levels of MMPs were detected in the supernatant of cultured OA pannus cells compared to OA chondrocytes, and among these MMP-3 levels were relatively higher in OA pannus cells. Immunohistochemically, MMP-3 positive cells located preferentially in pannus-like tissue on the border of original hyaline cartilage. Our results showed that OA pannus cells shared the property of mesenchymal cells and chondrocytes; however, their origin seemed different from chondrocytes or synoviocytes. The spontaneous expression of MMPs suggests that they are involved in the articular degradation in OA.
Topologically-associating domains are stable units of replication-timing regulation
Pope, Benjamin D.; Ryba, Tyrone; Dileep, Vishnu; Yue, Feng; Wu, Weisheng; Denas, Olgert; Vera, Daniel L.; Wang, Yanli; Hansen, R. Scott; Canfield, Theresa K.; Thurman, Robert E.; Cheng, Yong; Gülsoy, Günhan; Dennis, Jonathan H.; Snyder, Michael P.; Stamatoyannopoulos, John A.; Taylor, James; Hardison, Ross C.; Kahveci, Tamer; Ren, Bing; Gilbert, David M.
2014-01-01
Summary Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program1. During mammalian development, at least half the genome changes replication timing, primarily in units of 400–800 kb (“replication domains”; RDs), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements2–7. Early and late replication correlate strongly with open and closed chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, lamina-associated domains (LADs)4,5,8,9. Recent Hi-C mapping has unveiled a substructure of topologically-associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to RDs8,10. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale11,12. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure8,9,13. Here, we localize boundaries of RDs to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, RD boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure RD boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell type specific sub-nuclear compartmentalization with developmentally stable chromosome domains and offer a unified model for large-scale chromosome structure and function. PMID:25409831
Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J
2014-01-01
Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.
Malignant histiocytosis in childhood: morphologic considerations.
Jurco, S; Starling, K; Hawkins, E P
1983-12-01
Eight cases diagnosed over a ten-year period as malignant histiocytosis (MH; histiocytic medullary reticulosis) were reviewed to clarify diagnostic criteria for the childhood disease and to identify sources of diagnostic confusion. Five of the eight cases met the authors' criteria for diagnosis; i.e., they were characterized by loose mixed infiltrates composed of three cell types--well-differentiated histiocytes, prohistiocytes, and malignant histiocytes--and they had no leukemic phase. Three cases did not share these features and were reclassified. The liver was found to be the organ most useful in premortem diagnosis, and immunoperoxidase staining for immunoglobulins and lysozyme was also helpful. The clinical and morphologic features of the five cases confirm the authors' view that diagnoses of MH should be limited to cases in which there is a loose pleomorphic population of all three types of histiocytes and that cases with monomorphous populations of aggregated malignant cells should be classified as lymphomas.
Deucher, Anne; Chiang, Tsoyu; Schrijver, Iris
2010-01-01
Typing of STR (short tandem repeat) alleles is used in a variety of applications in clinical molecular pathology, including evaluations for maternal cell contamination. Using a commercially available STR typing assay for maternal cell contamination performed in conjunction with prenatal diagnostic testing, we were posed with apparent nonmaternity when the two fetal samples did not demonstrate the expected maternal allele at one locus. By designing primers external to the region amplified by the primers from the commercial assay and by performing direct sequencing of the resulting amplicon, we were able to determine that a guanine to adenine sequence variation led to primer mismatch and allele dropout. This explained the apparent null allele shared between the maternal and fetal samples. Therefore, although rare, allele dropout must be considered whenever unexplained homozygosity at an STR locus is observed. PMID:20203001
The physical boundaries of public goods cooperation between surface-attached bacterial cells
Weigert, Michael; Kümmerli, Rolf
2017-01-01
Bacteria secrete a variety of compounds important for nutrient scavenging, competition mediation and infection establishment. While there is a general consensus that secreted compounds can be shared and therefore have social consequences for the bacterial collective, we know little about the physical limits of such bacterial social interactions. Here, we address this issue by studying the sharing of iron-scavenging siderophores between surface-attached microcolonies of the bacterium Pseudomonas aeruginosa. Using single-cell fluorescent microscopy, we show that siderophores, secreted by producers, quickly reach non-producers within a range of 100 µm, and significantly boost their fitness. Producers in turn respond to variation in sharing efficiency by adjusting their pyoverdine investment levels. These social effects wane with larger cell-to-cell distances and on hard surfaces. Thus, our findings reveal the boundaries of compound sharing, and show that sharing is particularly relevant between nearby yet physically separated bacteria on soft surfaces, matching realistic natural conditions such as those encountered in soft tissue infections. PMID:28701557
Nematode Tango Milonguero - the C. elegans male's search for the hermaphrodite vulva.
Sherlekar, Amrita L; Lints, Robyn
2014-09-01
The vulva search corresponds to the first step of mating in Caenorhabditis elegans wherein the male recognizes a potential mate through contact and commences a systematic, contact-based search of her surface for the vulva. During this 'dance' the male presses his tail genitalia firmly against the hermaphrodite surface and moves backward, modulating tail posture to effect changes in search trajectory. Upon sensing the vulva, the male pauses and the insemination phase of mating begins. External tail sensilla, the rays, induce and guide the male's search by registering hermaphrodite surface cues. C. elegans male mating behavior, like many other animate interactions (such as predator-prey interactions or intrasexual aggression), is performed at close quarters and requires that participants constantly adjust their movement with respect to one another on a moment-by-moment basis. The design features of the supporting circuitry explain simultaneously the robustness, speed and acuity of the male's behavior and its male-specific nature. Processing at all levels of the circuitry appears to be distributed. Cellular components exhibit both partial redundancy (thus conferring robustness in output) and subtle functional differences (predicted to confer acuity). Surprisingly, gender-shared cell types feature prominently in the circuitry. Male-specific components form sensory pathways that render downstream gender-shared circuits responsive to mate cues, while other male cells act to augment gender-shared cell activity. Overall, the attributes of the vulva search circuitry provide insight into principles guiding the design and operation of circuits supporting dynamic social behaviors expressed by more complex and less tractable animal species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fertig, Elana J; Danilova, Ludmila V; Favorov, Alexander V; Ochs, Michael F
2011-01-01
Modeling of signal driven transcriptional reprogramming is critical for understanding of organism development, human disease, and cell biology. Many current modeling techniques discount key features of the biological sub-systems when modeling multiscale, organism-level processes. We present a mechanistic hybrid model, GESSA, which integrates a novel pooled probabilistic Boolean network model of cell signaling and a stochastic simulation of transcription and translation responding to a diffusion model of extracellular signals. We apply the model to simulate the well studied cell fate decision process of the vulval precursor cells (VPCs) in C. elegans, using experimentally derived rate constants wherever possible and shared parameters to avoid overfitting. We demonstrate that GESSA recovers (1) the effects of varying scaffold protein concentration on signal strength, (2) amplification of signals in expression, (3) the relative external ligand concentration in a known geometry, and (4) feedback in biochemical networks. We demonstrate that setting model parameters based on wild-type and LIN-12 loss-of-function mutants in C. elegans leads to correct prediction of a wide variety of mutants including partial penetrance of phenotypes. Moreover, the model is relatively insensitive to parameters, retaining the wild-type phenotype for a wide range of cell signaling rate parameters.
Peyer’s patches: Organizing B cell responses at the intestinal frontier
Reboldi, Andrea; Cyster, Jason G
2015-01-01
Summary Secondary lymphoid tissues share the important function of bringing together antigens and rare antigen-specific lymphocytes to foster induction of adaptive immune responses. Peyer’s patches (PPs) are unique compared to other secondary lymphoid tissues in their continual exposure to an enormous diversity of microbiome- and food-derived antigens and in the types of pathogens they encounter. Antigens are delivered to PPs by specialized microfold (M) epithelial cells and they may be captured and presented by resident dendritic cells (DCs). In accord with their state of chronic microbial antigen exposure, PPs exhibit continual germinal center (GC) activity. These GCs contribute to the generation of B cells and plasma cells producing somatically mutated gut antigen-specific IgA antibodies, but have also been suggested to support antigen-nonspecific diversification of the B cell repertoire. Here we review current understanding of how PPs foster B cell encounters with antigen, how they favor isotype switching to the secretory IgA isotype, and how their GC responses may uniquely contribute to mucosal immunity. PMID:27088918
Developing defined substrates for stem cell culture and differentiation.
Hagbard, Louise; Cameron, Katherine; August, Paul; Penton, Christopher; Parmar, Malin; Hay, David C; Kallur, Therése
2018-07-05
Over the past few decades, a variety of different reagents for stem cell maintenance and differentiation have been commercialized. These reagents share a common goal in facilitating the manufacture of products suitable for cell therapy while reducing the amount of non-defined components. Lessons from developmental biology have identified signalling molecules that can guide the differentiation process in vitro , but less attention has been paid to the extracellular matrix used. With the introduction of more biologically relevant and defined matrices, that better mimic specific cell niches, researchers now have powerful resources to fine-tune their in vitro differentiation systems, which may allow the manufacture of therapeutically relevant cell types. In this review article, we revisit the basics of the extracellular matrix, and explore the important role of the cell-matrix interaction. We focus on laminin proteins because they help to maintain pluripotency and drive cell fate specification.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.
Luštrek, Mitja; Lorenz, Peter; Kreutzer, Michael; Qian, Zilliang; Steinbeck, Felix; Wu, Di; Born, Nadine; Ziems, Bjoern; Hecker, Michael; Blank, Miri; Shoenfeld, Yehuda; Cao, Zhiwei; Glocker, Michael O; Li, Yixue; Fuellen, Georg; Thiesen, Hans-Jürgen
2013-01-01
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.
A taxonomy of bacterial microcompartment loci constructed by a novel scoring method
Axen, Seth D.; Erbilgin, Onur; Kerfeld, Cheryl A.; ...
2014-10-23
Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found inmore » seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications.« less
A Taxonomy of Bacterial Microcompartment Loci Constructed by a Novel Scoring Method
Kerfeld, Cheryl A.
2014-01-01
Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications. PMID:25340524
Expression of the high-affinity choline transporter CHT1 in rat and human arteries.
Lips, Katrin S; Pfeil, Uwe; Reiners, Katja; Rimasch, Christoph; Kuchelmeister, Klaus; Braun-Dullaeus, Ruediger C; Haberberger, Rainer V; Schmidt, Rupert; Kummer, Wolfgang
2003-12-01
The arterial vascular wall contains a non-neuronal intrinsic cholinergic system. The rate-limiting step in acetylcholine (ACh) synthesis is choline uptake. A high-affinity choline transporter, CHT1, has recently been cloned from neural tissue and has been identified in epithelial cholinergic cells. Here we investigated its presence in rat and human arteries and in primary cell cultures of rat vascular cells (endothelial cells, smooth muscle cells, fibroblasts). CHT1-mRNA was detected in the arterial wall and in all isolated cell types by RT-PCR using five different CHT1-specific primer pairs. Antisera raised against amino acids 29-40 of the rat sequence labeled a single band (50 kD) in Western blots of rat aorta, and an additional higher molecular weight band appeared in the hippocampus. Immunohistochemistry demonstrated CHT1 immunoreactivity in endothelial and smooth muscle cells in situ and in all cultured cell types. A high-affinity [3H]-choline uptake mechanism sharing characteristics with neuronal high-affinity choline uptake, i.e., sensitivity to hemicholinium-3 and dependence on sodium, was demonstrated in rat thoracic aortic segments by microimager autoradiography. Expression of the high-affinity choline transporter CHT1 is a novel component of the intrinsic non-neuronal cholinergic system of the arterial vascular wall, predominantly in the intimal and medial layers.
Streptococcus mutans in a Wild, Sucrose-Eating Rat Population
Coykendall, Alan L.; Specht, Patricia A.; Samol, Harry H.
1974-01-01
Streptococcus mutans, an organism implicated in dental caries and not previously found outside of man and certain laboratory animals, was isolated from the mouths of wild rats which ate sugar cane. The strains isolated fermented mannitol and sorbitol, and failed to grow in 6.5% NaCl or at 45 C. They formed in vitro plaques on nichrome wires when grown in sucrose broth. They also stored intracellular polysaccharide which could be catabolized by washed, resting cells. Deoxyribonucleic acid-deoxyribonucleic acid reassociations revealed two genetic types. One type shared extensive deoxyribonucleic acid base sequences with S. mutans strains HS6 and OMZ61, two members of a genetic type found in man and laboratory hamsters. The other type seemed unrelated to any S. mutans genetic type previously encountered. It is concluded that the ecological triad of tooth-sucrose-S. mutans is not a phenomenon unique to man and experimental animals. Images PMID:4601769
Present knowledge of electronic properties and charge transport of icosahedral boron-rich solids
NASA Astrophysics Data System (ADS)
Werheit, Helmut
2009-06-01
B12 icosahedra or related structure elements determine the different modifications of elementary boron and numerous boron-rich compounds from α-rhombohedral boron with 12 to YB66 type with about 1584 atoms per unit cell. Typical are well-defined high density intrinsic defects: Jahn-Teller distorted icosahedra, vacancies, incomplete occupancies, statistical occupancies and antisite defects. The correlation between intrinsic point defects and electron deficiencies solves the discrepancy between theoretically predicted metal and experimentally proved semiconducting character. The electron deficiencies generate split-off valence states, which are decisive for the electronic transport, a superposition of band-type and hopping-type conduction. Their share depends on actual conditions like temperature or pre-excitation. The theoretical model of bipolaron hopping is incompatible with numerous experiments. Technical application of the typically p-type icosahedral boron-rich solids requires suitable n-type counterparts; doping and other possibilities are discussed.
Sensory Hair Cells: An Introduction to Structure and Physiology.
McPherson, Duane R
2018-06-18
Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian.Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.
Pang, Siew Wai; Lahiri, Chandrajit; Poh, Chit Laa; Tan, Kuan Onn
2018-05-01
Paraneoplastic Ma Family (PNMA) comprises a growing number of family members which share relatively conserved protein sequences encoded by the human genome and is localized to several human chromosomes, including the X-chromosome. Based on sequence analysis, PNMA family members share sequence homology to the Gag protein of LTR retrotransposon, and several family members with aberrant protein expressions have been reported to be closely associated with the human Paraneoplastic Disorder (PND). In addition, gene mutations of specific members of PNMA family are known to be associated with human mental retardation or 3-M syndrome consisting of restrictive post-natal growth or dwarfism, and development of skeletal abnormalities. Other than sequence homology, the physiological function of many members in this family remains unclear. However, several members of this family have been characterized, including cell signalling events mediated by these proteins that are associated with apoptosis, and cancer in different cell types. Furthermore, while certain PNMA family members show restricted gene expression in the human brain and testis, other PNMA family members exhibit broader gene expression or preferential and selective protein interaction profiles, suggesting functional divergence within the family. Functional analysis of some members of this family have identified protein domains that are required for subcellular localization, protein-protein interactions, and cell signalling events which are the focus of this review paper. Copyright © 2018 Elsevier Inc. All rights reserved.
Kwon, Hakju; Ogle, Louise; Benitez, Bobby; Bohuslav, Jan; Montano, Mauricio; Felsher, Dean W; Greene, Warner C
2005-10-21
Type I human T cell leukemia virus (HTLV-I) is etiologically linked with adult T cell leukemia, an aggressive and usually fatal expansion of activated CD4+ T lymphocytes that frequently traffic to skin. T cell transformation induced by HTLV-I involves the action of the 40-kDa viral Tax transactivator protein. Tax both stimulates the HTLV-I long terminal repeat and deregulates the expression of select cellular genes by altering the activity of specific host transcription factors, including cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor, NF-kappaB/Rel, and serum response factor. To study initiating events involved in HTLV-I Tax-induced T cell transformation, we generated "Tet-off" transgenic mice conditionally expressing in a lymphocyte-restricted manner (EmuSR alpha promoter-enhancer) either wild-type Tax or mutant forms of Tax that selectively compromise the NF-kappaB (M22) or CREB/activating transcription factor (M47) activation pathways. Wild-type Tax and M47 Tax-expressing mice, but not M22-Tax expressing mice, developed progressive alopecia, hyperkeratosis, and skin lesions containing profuse activated CD4 T cell infiltrates with evidence of deregulated inflammatory cytokine production. In addition, these animals displayed systemic lymphadenopathy and splenomegaly. These findings suggest that Tax-mediated activation of NF-kappaB plays a key role in the development of this aggressive skin disease that shares several features in common with the skin disease occurring during the preleukemic stage in HTLV-I-infected patients. Of note, this skin disease completely resolved when Tax transgene expression was suppressed by administration of doxycycline, emphasizing the key role played by this viral oncoprotein in the observed pathology.
Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2.
Eames, B Frank; Sharpe, Paul T; Helms, Jill A
2004-10-01
Across vertebrates, there are three principal skeletal tissues: bone, persistent cartilage, and replacement cartilage. Although each tissue has a different evolutionary history and functional morphology, they also share many features. For example, they function as structural supports, they are comprised of cells embedded in collagen-rich extracellular matrix, and they derive from a common embryonic stem cell, the osteochondroprogenitor. Occasionally, homologous skeletal elements can change tissue type through phylogeny. Together, these observations raise the possibility that skeletal tissue identity is determined by a shared set of genes. Here, we show that misexpression of either Sox9 or Runx2 can substitute bone with replacement cartilage or can convert persistent cartilage into replacement cartilage and vice versa. Our data also suggest that these transcription factors function in a molecular hierarchy in which chondrogenic factors dominate. We propose a binary molecular code that determines whether skeletal tissues form as bone, persistent cartilage, or replacement cartilage. Finally, these data provide insights into the roles that master regulatory genes play during evolutionary change of the vertebrate skeleton.
Da Silva, Diane M; Movius, Carly A; Raff, Adam B; Brand, Heike E; Skeate, Joseph G; Wong, Michael K; Kast, W Martin
2014-03-01
Human papillomavirus (HPV) has evolved mechanisms that allow it to evade the human immune system. Studies have shown HPV-mediated suppression of activation of Langerhans cells (LC) is a key mechanism through which HPV16 evades initial immune surveillance. However, it has not been established whether high- and low-risk mucosal and cutaneous HPV genotypes share a common mechanism of immune suppression. Here, we demonstrate that LC exposed to capsids of HPV types 18, 31, 45, 11, (alpha-papillomaviruses) and HPV5 (beta-papillomavirus) similarly suppress LC activation, including lack of costimulatory molecule expression, lack of cytokine and chemokine secretion, lack of migration, and deregulated cellular signaling. In contrast, HPV1 (mu-papillomavirus) induced costimulatory molecule and cytokine upregulation, but LC migration and cellular signaling was suppressed. These results suggest that alpha and beta HPV genotypes, and partially a mu genotype, share a conserved mechanism of immune escape that enables these viruses to remain undetected in the absence of other inflammatory events. Copyright © 2014 Elsevier Inc. All rights reserved.
He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank
2015-01-01
Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution. PMID:25682842
He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank
2015-04-01
Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution. © 2015 Anatomical Society.
Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis
Schwede, Matthew; Spentzos, Dimitrios; Bentink, Stefan; Hofmann, Oliver; Haibe-Kains, Benjamin; Harrington, David; Quackenbush, John; Culhane, Aedín C.
2013-01-01
Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable in the clinical management or treatment of ovarian cancer. PMID:23536770
Fazi, Barbara; Felsani, Armando; Grassi, Luigi; Moles, Anna; D'Andrea, Daniel; Toschi, Nicola; Sicari, Daria; De Bonis, Pasquale; Anile, Carmelo; Guerrisi, Maria Giovanna; Luca, Emilia; Farace, Maria Giulia; Maira, Giulio
2015-01-01
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor, driving patients to death within 15 months after diagnosis (short term survivors, ST), with the exception of a small fraction of patients (long term survivors, LT) surviving longer than 36 months. Here we present deep sequencing data showing that peritumoral (P) areas differ from healthy white matter, but share with their respective frankly tumoral (C) samples, a number of mRNAs and microRNAs representative of extracellular matrix remodeling, TGFβ and signaling, of the involvement of cell types different from tumor cells but contributing to tumor growth, such as microglia or reactive astrocytes. Moreover, we provide evidence about RNAs differentially expressed in ST vs LT samples, suggesting the contribution of TGF-β signaling in this distinction too. We also show that the edited form of miR-376c-3p is reduced in C vs P samples and in ST tumors compared to LT ones. As a whole, our study provides new insights into the still puzzling distinction between ST and LT tumors, and sheds new light onto that “grey” zone represented by the area surrounding the tumor, which we show to be characterized by the expression of several molecules shared with the proper tumor mass. PMID:26188123
Fazi, Barbara; Felsani, Armando; Grassi, Luigi; Moles, Anna; D'Andrea, Daniel; Toschi, Nicola; Sicari, Daria; De Bonis, Pasquale; Anile, Carmelo; Guerrisi, Maria Giovanna; Luca, Emilia; Farace, Maria Giulia; Maira, Giulio; Ciafré, Silvia Anna; Mangiola, Annunziato
2015-09-08
Glioblastoma multiforme (GBM) is the most common and deadliest primary brain tumor, driving patients to death within 15 months after diagnosis (short term survivors, ST), with the exception of a small fraction of patients (long term survivors, LT) surviving longer than 36 months. Here we present deep sequencing data showing that peritumoral (P) areas differ from healthy white matter, but share with their respective frankly tumoral (C) samples, a number of mRNAs and microRNAs representative of extracellular matrix remodeling, TGFβ and signaling, of the involvement of cell types different from tumor cells but contributing to tumor growth, such as microglia or reactive astrocytes. Moreover, we provide evidence about RNAs differentially expressed in ST vs LT samples, suggesting the contribution of TGF-β signaling in this distinction too. We also show that the edited form of miR-376c-3p is reduced in C vs P samples and in ST tumors compared to LT ones. As a whole, our study provides new insights into the still puzzling distinction between ST and LT tumors, and sheds new light onto that "grey" zone represented by the area surrounding the tumor, which we show to be characterized by the expression of several molecules shared with the proper tumor mass.
Patient-shared TCRβ-CDR3 clonotypes correlate with favorable prognosis in chronic hepatitis B.
Jiang, Qiong; Zhao, Tingting; Zheng, Wenhong; Zhou, Jijun; Wang, Haoliang; Dong, Hui; Chen, Yongwen; Tang, Xiaoqin; Liu, Cong; Ye, Lilin; Mao, Qing; Wang, Chunlin; Han, Jian; Shang, Xiaoyun; Wu, Yuzhang
2018-06-01
The presence of shared T cell clonotypes was found in several different diseases, but its relationship with the progression of disease remains unclear. By sequencing the complementary determining region 3 of T cell receptor (TCR) β chains from the purified antigen-experienced CD8 + T cells, we characterized the T cell repertoire in a prospective cohort study among 75 patients with chronic hepatitis B in China, as well as a healthy control and a validation cohort. We found that most T cell clones from patients harbored the 'patient-specific' TCR sequences. However, 'patient-shared' TCR clonotypes were also widely found, which correlated with the favorable turnover of disease. Interestingly, the frequency of the 'patient-shared' clonotypes can serve as a biomarker for favorable prognosis. Based on the clonotypes in those patients with favorable outcomes, we created a database including several clusters of protective anti-HBV CD8 + T cell clonotypes that might be a reasonable target for therapeutic vaccine development or adoptive cell transfer therapy. These findings were validated in an additional independent cohort of patients. These results suggest that the 'patient-shared' TCR clonotypes may serve as a valuable prognostic tool in the treatment of chronic hepatitis B and possibly other chronic viral diseases. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
1991-02-01
Htirano T, Kishimoto T, Nakahata T. Asano S: In vitro hernatopoietic growth factors. J1 Natl Cancer Inst 81: t370. 1989 expansion of the murine...a.i phas S. %’ink A. Billiau A. VanSnick 1: Identification of the nutohlbyrcmiatntrekn.Cllmuolt12. human Zh-kd protein, interferon beta ,, as a B... beta . B-cell %timulatory factor type 2 shares identity T. Takaku F. Akivama Y: In vivo effects of recombinant human with rnsanc~tc-derived
BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.
Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin
2016-01-01
Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions. Copyright © 2015. Published by Elsevier Ltd.
Esterase reactions in acute myelomonocytic leukemia.
Kass, L
1977-05-01
Specific and nonspecific esterase reactions of bone marrow cells from 14 patients with untreated acute myelomonocytic leukemia and six patients with acute histiomonocytic leukemia were examined. The technic for esterase determination permitted simultaneous visualization of both esterases on the same glass coverslip containing the marrow cells. In cases of acute histiomonocytic leukemia, monocytes, monocytoid hemohistioblasts and undifferentiated blasts stained intensely positive for nonspecific esterase, using alpha-naphthyl acetate as the substrate. No evidence of specific esterase activity using naphthol ASD-chloroacetate as the substrate and fast blue BBN as the dye coupler was apparent in these cells. In all of the cases of acute myelomonocytic leukemia, both specific and nonspecific esterases were visualized within monocytes, monocytoid cells, and granulocytic cells that had monocytoid-type nuclei. Nonspecific esterase activity was not observed in polymorphonuclear leukocytes in cases of myelomonocytic leukemia. The results support a current viewpoint that acute myelomonocytic leukemia may be a variant of acute myeloblastic leukemia, and that cytochemically, many of the leukemic cells in myelomonocytic leukemia share properties of both granulocytes and monocytes.
Translocation and Endocytosis for Cell-penetrating Peptide Internalization
Jiao, Chen-Yu; Delaroche, Diane; Burlina, Fabienne; Alves, Isabel D.; Chassaing, Gérard; Sagan, Sandrine
2009-01-01
Cell-penetrating peptides (CPPs) share the property of cellular internalization. The question of how these peptides reach the cytoplasm of cells is still widely debated. Herein, we have used a mass spectrometry-based method that enables quantification of internalized and membrane-bound peptides. Internalization of the most used CPP was studied at 37 °C (endocytosis and translocation) and 4 °C (translocation) in wild type and proteoglycan-deficient Chinese hamster ovary cells. Both translocation and endocytosis are internalization pathways used by CPP. The choice of one pathway versus the other depends on the peptide sequence (not the number of positive changes), the extracellular peptide concentration, and the membrane components. There is no relationship between the high affinity of these peptides for the cell membrane and their internalization efficacy. Translocation occurs at low extracellular peptide concentration, whereas endocytosis, a saturable and cooperative phenomenon, is activated at higher concentrations. Translocation operates in a narrow time window, which implies a specific lipid/peptide co-import in cells. PMID:19833724
Xia, Wei; Wu, Jian; Deng, Fei-Yan; Wu, Long-Fei; Zhang, Yong-Hong; Guo, Yu-Fan; Lei, Shu-Feng
2017-02-01
Rheumatoid arthritis (RA) is a systemic autoimmune disease. So far, it is unclear whether there exist common RA-related genes shared in different tissues/cells. In this study, we conducted an integrative analysis on multiple datasets to identify potential shared genes that are significant in multiple tissues/cells for RA. Seven microarray gene expression datasets representing various RA-related tissues/cells were downloaded from the Gene Expression Omnibus (GEO). Statistical analyses, testing both marginal and joint effects, were conducted to identify significant genes shared in various samples. Followed-up analyses were conducted on functional annotation clustering analysis, protein-protein interaction (PPI) analysis, gene-based association analysis, and ELISA validation analysis in in-house samples. We identified 18 shared significant genes, which were mainly involved in the immune response and chemokine signaling pathway. Among the 18 genes, eight genes (PPBP, PF4, HLA-F, S100A8, RNASEH2A, P2RY6, JAG2, and PCBP1) interact with known RA genes. Two genes (HLA-F and PCBP1) are significant in gene-based association analysis (P = 1.03E-31, P = 1.30E-2, respectively). Additionally, PCBP1 also showed differential protein expression levels in in-house case-control plasma samples (P = 2.60E-2). This study represented the first effort to identify shared RA markers from different functional cells or tissues. The results suggested that one of the shared genes, i.e., PCBP1, is a promising biomarker for RA.
Comprehensive proteomic characterization of stem cell-derived extracellular matrices.
Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G
2017-06-01
In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wachowiak, Matt; Economo, Michael N.; Díaz-Quesada, Marta; Brunert, Daniela; Wesson, Daniel W.; White, John. A.; Rothermel, Markus
2013-01-01
Understanding central processing requires precise monitoring of neural activity across populations of identified neurons in the intact brain. Here we used recently-optimized variants of the genetically-encoded calcium sensor GCaMP (GCaMP3 and GCaMPG5G) to image activity among genetically- and anatomically-defined neuronal populations in the olfactory bulb (OB), including two types of GABA-ergic interneurons (periglomerular (PG) and short axon (SA) cells) and OB output neurons (mitral/tufted (MT) cells) projecting to piriform cortex. We first established that changes in neuronal spiking can be accurately related to GCaMP fluorescence changes via a simple quantitative relationship over a large dynamic range. We next used in vivo two-photon imaging from individual neurons and epifluorescence signals reflecting population-level activity to investigate the spatiotemporal representation of odorants across these neuron types in anesthetized and awake mice. Under anesthesia, individual PG and SA cells showed temporally simple responses and little spontaneous activity, while MT cells were spontaneously active and showed diverse temporal responses. At the population level, response patterns of PG, SA and MT cells were surprisingly similar to those imaged from sensory inputs, with shared odorant-specific topography across the dorsal OB and inhalation-coupled temporal dynamics. During wakefulness, PG and SA cell responses increased in magnitude but remained temporally simple while those of MT cells changed to complex spatiotemporal patterns reflecting restricted excitation and widespread inhibition. These results point to multiple circuit elements with distinct roles in transforming odor representations in the OB and provide a framework for further dissecting early olfactory processing using optical and genetic tools. PMID:23516293
Franco, Maribel; Seyfried, Nicholas T.; Brand, Andrea H.; Peng, Junmin; Mayor, Ugo
2011-01-01
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system. PMID:20861518
Yin, Haifeng; Nichols, Teresa D; Horowitz, Jonathan M
2010-07-01
The Sp-family of transcription factors is comprised by nine members, Sp1-9, that share a highly conserved DNA-binding domain. Sp2 is a poorly characterized member of this transcription factor family that is widely expressed in murine and human cell lines yet exhibits little DNA-binding or trans-activation activity in these settings. As a prelude to the generation of a "knock-out" mouse strain, we isolated a mouse Sp2 cDNA and performed a detailed analysis of Sp2 transcription in embryonic and adult mouse tissues. We report that (1) the 5' untranslated region of Sp2 is subject to alternative splicing, (2) Sp2 transcription is regulated by at least two promoters that differ in their cell-type specificity, (3) one Sp2 promoter is highly active in nine mammalian cell lines and strains and is regulated by at least five discrete stimulatory and inhibitory elements, (4) a variety of sub-genomic messages are synthesized from the Sp2 locus in a tissue- and cell-type-specific fashion and these transcripts have the capacity to encode a novel partial-Sp2 protein, and (5) RNA in situ hybridization assays indicate that Sp2 is widely expressed during mouse embryogenesis, particularly in the embryonic brain, and robust Sp2 expression occurs in neurogenic regions of the post-natal and adult brain. Copyright (c) 2010 Elsevier B.V. All rights reserved.
McNamara, Ann Marie; Denizot, Jean-Pierre; Hopkins, Carl D
2005-01-01
Fish in the family Mormyridae produce weak electric organ discharges that are used in orientation and communication. The peripheral and central anatomy of the electrosensory system has been well studied in the species Gnathonemus petersii, but comparative studies in other species are scarce. Here we report on one genus of mormyrid that displays a remarkable change in the electrosensory lateral line lobe (ELL), the hypertrophied rhombencephalic structure that receives primary electroreceptor input. Although all other mormyrids studied have three distinct zones on each side of the ELL, fish of the genus Stomatorhinus exhibit only two. Therefore, the two-zone ELL is a unique derived characteristic shared by Stomatorhinus. We examined the cutaneous electroreceptors that project to the ELL in Stomatorhinus. All three types of electroreceptors previously described for G. petersii were present, but there was a significant change in one type, the mormyromast. Both mormyromast sensory cell types (A- and B-cells) are present, but the B-cell is not innervated in Stomatorhinus. We conclude that, although all cutaneous sensory cells are present, the missing B-cell afferents account for the loss of the dorsolateral zone of the ELL, and therefore the loss of an entire sensory map. Because mormyromasts are involved in electrolocation behavior, this anatomical difference is probably related to differences in electrolocation abilities. Stomatorhinus could prove to be an excellent system for linking evolutionary changes in behavior with modifications in their neural substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhati, Mugdha; Lee, Christopher; Nancarrow, Amy L.
2008-09-03
LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1{sub LBD}).more » Although the LIM interaction domain of Ldb1 (Ldb1{sub LID}) and Isl1{sub LBD} share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1{sub LBD} mimics Ldb1{sub LID}. These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.« less
Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight
Corbet, Cyril
2018-01-01
Normal and cancer stem cells (CSCs) share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism. PMID:29403375
Data on the association of the nuclear envelope protein Sun1 with nucleoli.
Moujaber, Ossama; Omran, Nawal; Kodiha, Mohamed; Pié, Brigitte; Cooper, Ellis; Presley, John F; Stochaj, Ursula
2017-08-01
SUN proteins participate in diverse cellular activities, many of which are connected to the nuclear envelope. Recently, the family member SUN1 has been linked to novel biological activities. These include the regulation of nucleoli, intranuclear compartments that assemble ribosomal subunits. We show that SUN1 associates with nucleoli in several mammalian epithelial cell lines. This nucleolar localization is not shared by all cell types, as SUN1 concentrates at the nuclear envelope in ganglionic neurons and non-neuronal satellite cells. Database analyses and Western blotting emphasize the complexity of SUN1 protein profiles in different mammalian cells. We constructed a STRING network which identifies SUN1-related proteins as part of a larger network that includes several nucleolar proteins. Taken together, the current data highlight the diversity of SUN1 proteins and emphasize the possible links between SUN1 and nucleoli.
Spectral mismatch and solar simulator quality factor in advanced LED solar simulators
NASA Astrophysics Data System (ADS)
Scherff, Maximilian L. D.; Nutter, Jason; Fuss-Kailuweit, Peter; Suthues, Jörn; Brammer, Torsten
2017-08-01
Solar cell simulators based on light emitting diodes (LED) have the potential to achieve a large potential market share in the next years. As advantages they can provide a short and long time stable spectrum, which fits very well to the global AM1.5g reference spectrum. This guarantees correct measurements during the flashes and throughout the light engines’ life span, respectively. Furthermore, a calibration with a solar cell type of different spectral response (SR) as well as the production of solar cells with varying SR in between two calibrations does not affect the correctness of the measurement result. A high quality 21 channel LED solar cell spectrum is compared to former study comprising a standard modified xenon spectrum light source. It is shown, that the spectrum of the 21-channel-LED light source performs best for all examined cases.
Arakaki, Kazunari; Chinen, Katsuya; Kamiya, Masuzo; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Uehara, Karina; Shimabukuro, Hiroichi; Kinjo, Takao
2014-01-01
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas. PMID:25674275
Arakaki, Kazunari; Chinen, Katsuya; Kamiya, Masuzo; Tanabe, Yasuka; Tawata, Natsumi; Ikehara, Fukino; Uehara, Karina; Shimabukuro, Hiroichi; Kinjo, Takao
2014-01-01
Cellular angiofibroma (CAF) is a rare soft tissue tumor characterized by random arrangement of spindle tumor cells in the stroma with short collagen bundles and thick- and hyalinized small vessels. CAFs share histological characteristics with spindle cell lipomas and mammary type myofibroblastomas. Because these tumors harbor monoallelic 13q14, common genetic and molecular mechanism for tumorigenesis is presumed. In this study, we reported a case of CAF in a 69-year-old man with monoallelic 13q14. Immunohistochemical analysis revealed that FOXO1, which is located in chromosome 13q14, was not expressed in the tumor. We also detected oxidative stress markers and found p38 MAPK activation, which is often induced by cellular stressors such as reactive oxygen species (ROS). Because FOXO1 induces the expression of genes encoding enzymes that generate antioxidants, oxidative stress induced by loss of FOXO1 expression may be common among CAFs, spindle cell lipomas, and mammary type myofibroblastomas.
Origin and evolution of chromosomal sperm proteins.
Eirín-López, José M; Ausió, Juan
2009-10-01
In the eukaryotic cell, DNA compaction is achieved through its interaction with histones, constituting a nucleoprotein complex called chromatin. During metazoan evolution, the different structural and functional constraints imposed on the somatic and germinal cell lines led to a unique process of specialization of the sperm nuclear basic proteins (SNBPs) associated with chromatin in male germ cells. SNBPs encompass a heterogeneous group of proteins which, since their discovery in the nineteenth century, have been studied extensively in different organisms. However, the origin and controversial mechanisms driving the evolution of this group of proteins has only recently started to be understood. Here, we analyze in detail the histone hypothesis for the vertical parallel evolution of SNBPs, involving a "vertical" transition from a histone to a protamine-like and finally protamine types (H --> PL --> P), the last one of which is present in the sperm of organisms at the uppermost tips of the phylogenetic tree. In particular, the common ancestry shared by the protamine-like (PL)- and protamine (P)-types with histone H1 is discussed within the context of the diverse structural and functional constraints acting upon these proteins during bilaterian evolution.
Weil, D; Levy, G; Sahly, I; Levi-Acobas, F; Blanchard, S; El-Amraoui, A; Crozet, F; Philippe, H; Abitbol, M; Petit, C
1996-04-16
The gene encoding human myosin VIIA is responsible for Usher syndrome type III (USH1B), a disease which associates profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. The reconstituted cDNA sequence presented here predicts a 2215 amino acid protein with a typical unconventional myosin structure. This protein is expected to dimerize into a two-headed molecule. The C terminus of its tail shares homology with the membrane-binding domain of the band 4.1 protein superfamily. The gene consists of 48 coding exons. It encodes several alternatively spliced forms. In situ hybridization analysis in human embryos demonstrates that the myosin VIIA gene is expressed in the pigment epithelium and the photoreceptor cells of the retina, thus indicating that both cell types may be involved in the USH1B retinal degenerative process. In addition, the gene is expressed in the human embryonic cochlear and vestibular neuroepithelia. We suggest that deafness and vestibular dysfunction in USH1B patients result from a defect in the morphogenesis of the inner ear sensory cell stereocilia.
Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J
2015-05-01
Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.
Böhnlein, E; Siekevitz, M; Ballard, D W; Lowenthal, J W; Rimsky, L; Bogérd, H; Hoffman, J; Wano, Y; Franza, B R; Greene, W C
1989-04-01
The human immunodeficiency virus type 1 (HIV-1) preferentially infects CD4+ T lymphocytes and may exist as a latent provirus within these cells for extended periods. The transition to a productive retroviral infection results in T-cell death and clinically may lead to the acquired immune deficiency syndrome. Accelerated production of infectious HIV-1 virions appears to be closely linked to a heightened state of T-cell activation. The transactivator (Tax) protein of the type I human T-cell leukemia virus (HTLV-I) can produce such an activated T-cell phenotype and augments activity of the HIV-1 long terminal repeat. One Tax-responsive region within the HIV-1 long terminal repeat has been mapped to a locus composed of two 10-base-pair direct repeats sharing homology with the binding site for the eucaryotic transcription factor NF-kappaB (GGGACTTTCC). Tax-expressing Jurkat T cells contain one or more inducible cellular proteins that specifically associate with the HIV-1 enhancer at these binding sites. Microscale DNA affinity precipitation assays identified a Tax-inducible 86-kilodalton protein, HIVEN86A, as one of these HIV-1 enhancer-binding factors. The interaction of HIVEN86A, and presumably other cellular proteins, with the HIV-1 enhancer appears functionally important as oligonucleotides corresponding to this enhancer were sufficient to impart Tax inducibility to an unresponsive heterologous promoter. These findings suggest that the Tax-inducible cellular protein HIVEN86A plays an important role in the transcriptional activation of the HIV-1 enhancer. These specific protein-DNA interactions may also be important for the transition of HIV-1 from a latent to a productive mode of infection. Furthermore, these findings highlight an intriguing biological interplay between HTLV-1 and HIV-1 through a cellular transcriptional pathway that is normally involved in T-cell activation and growth.
Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.
2016-01-01
The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296
1988-01-01
The primary amino acid sequence of contactin, a neuronal cell surface glycoprotein of 130 kD that is isolated in association with components of the cytoskeleton (Ranscht, B., D. J. Moss, and C. Thomas. 1984. J. Cell Biol. 99:1803-1813), was deduced from the nucleotide sequence of cDNA clones and is reported here. The cDNA sequence contains an open reading frame for a 1,071-amino acid transmembrane protein with 962 extracellular and 89 cytoplasmic amino acids. In its extracellular portion, the polypeptide features six type 1 and two type 2 repeats. The six amino-terminal type 1 repeats (I-VI) each consist of 81-99 amino acids and contain two cysteine residues that are in the right context to form globular domains as described for molecules with immunoglobulin structure. Within the proposed globular region, contactin shares 31% identical amino acids with the neural cell adhesion molecule NCAM. The two type 2 repeats (I-II) are each composed of 100 amino acids and lack cysteine residues. They are 20-31% identical to fibronectin type III repeats. Both the structural similarity of contactin to molecules of the immunoglobulin supergene family, in particular the amino acid sequence resemblance to NCAM, and its relationship to fibronectin indicate that contactin could be involved in some aspect of cellular adhesion. This suggestion is further strengthened by its localization in neuropil containing axon fascicles and synapses. PMID:3049624
The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs
Bard, Jonathan B. L.
2012-01-01
This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/. PMID:22347883
The AEO, an Ontology of Anatomical Entities for Classifying Animal Tissues and Organs.
Bard, Jonathan B L
2012-01-01
This paper describes the AEO, an ontology of anatomical entities that expands the common anatomy reference ontology (CARO) and whose major novel feature is a type hierarchy of ~160 anatomical terms. The breadth of the AEO is wider than CARO as it includes both developmental and gender-specific classes, while the granularity of the AEO terms is at a level adequate to classify simple-tissues (~70 classes) characterized by their containing a predominantly single cell-type. For convenience and to facilitate interoperability, the AEO contains an abbreviated version of the ontology of cell-types (~100 classes) that is linked to these simple-tissue types. The AEO was initially based on an analysis of a broad range of animal anatomy ontologies and then upgraded as it was used to classify the ~2500 concepts in a new version of the ontology of human developmental anatomy (www.obofoundry.org/), a process that led to significant improvements in its structure and content, albeit with a possible focus on mammalian embryos. The AEO is intended to provide the formal classification expected in contemporary ontologies as well as capturing knowledge about anatomical structures not currently included in anatomical ontologies. The AEO may thus be useful in increasing the amount of tissue and cell-type knowledge in other anatomy ontologies, facilitating annotation of tissues that share common features, and enabling interoperability across anatomy ontologies. The AEO can be downloaded from http://www.obofoundry.org/.
Structure of nerve growth factor complexed with the shared neurotrophin receptor p75.
He, Xiao-Lin; Garcia, K Christopher
2004-05-07
Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.
de Re, Valli; Simula, Maria Paola; Pavan, Alessandro; Garziera, Marica; Marin, Dolores; Dolcetti, Riccardo; de Vita, Salvatore; Sansonno, Domenico; Geremia, Silvano; Toffoli, Giuseppe
2009-09-01
Autoimmune type-II cryoglobulinemia (II-MC) is sustained by hepatitis C virus (HCV) infection and B-cell (oligo)clones. This is the reason why the disease may be considered an "indolent B-cell lymphoma (NHL)." B clones show a restricted use of immunoglobulin variable genes (BCR), in particular in the use of the variable kappa (VK)3-20/15 light chain, and show a homology between their BCR functional regions and those of autoimmune rheumatoid factors. We underlined the BCR unique repertoire with frequent rheumatoid factor activity also observed in other autoimmune disorders associated with NHL. The immunoglobulin idiotype is a clonal B-cell marker and an ideal target for immunotherapy. Five monoclonal antibodies were produced in our laboratory toward the VK3-20 of a subject with HCV infection and a II-MC-associated NHL. Epitope determination was performed using the epitope excision approach. Monoclonal antibody reactivity was tested in vitro in ELISA, Western blot, and cytofluorimetry. Data confirmed that a panel of antibodies, reactive against shared idiotypes, can be produced from patients with HCV-associated B-cell lymphoproliferative diseases, thus obviating the need to produce an anti-idiotype antibody for each patient.
Molecular Studies of HTLV-1 Replication: An Update
Martin, Jessica L.; Maldonado, José O.; Mueller, Joachim D.; Zhang, Wei; Mansky, Louis M.
2016-01-01
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies. PMID:26828513
Nikolaienko, Roman M; Hammel, Michal; Dubreuil, Véronique; Zalmai, Rana; Hall, David R; Mehzabeen, Nurjahan; Karuppan, Sebastian J; Harroch, Sheila; Stella, Salvatore L; Bouyain, Samuel
2016-10-07
Protein-tyrosine phosphatase receptor type G (RPTPγ/PTPRG) interacts in vitro with contactin-3-6 (CNTN3-6), a group of glycophosphatidylinositol-anchored cell adhesion molecules involved in the wiring of the nervous system. In addition to PTPRG, CNTNs associate with multiple transmembrane proteins and signal inside the cell via cis-binding partners to alleviate the absence of an intracellular region. Here, we use comprehensive biochemical and structural analyses to demonstrate that PTPRG·CNTN3-6 complexes share similar binding affinities and a conserved arrangement. Furthermore, as a first step to identifying PTPRG·CNTN complexes in vivo, we found that PTPRG and CNTN3 associate in the outer segments of mouse rod photoreceptor cells. In particular, PTPRG and CNTN3 form cis-complexes at the surface of photoreceptors yet interact in trans when expressed on the surfaces of apposing cells. Further structural analyses suggest that all CNTN ectodomains adopt a bent conformation and might lie parallel to the cell surface to accommodate these cis and trans binding modes. Taken together, these studies identify a PTPRG·CNTN complex in vivo and provide novel insights into PTPRG- and CNTN-mediated signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Office design's impact on sick leave rates.
Bodin Danielsson, Christina; Chungkham, Holendro Singh; Wulff, Cornelia; Westerlund, Hugo
2014-01-01
The effect of office type on sickness absence among office employees was studied prospectively in 1852 employees working in (1) cell-offices; (2) shared-room offices; (3) small, (4) medium-sized and (5) large open-plan offices; (6) flex-offices and (7) combi-offices. Sick leaves were self-reported two years later as number of (a) short and (b) long (medically certified) sick leave spells as well as (c) total number of sick leave days. Multivariate logistic regression analysis was used, with adjustment for background factors. A significant excess risk for sickness absence was found only in terms of short sick leave spells in the three open-plan offices. In the gender separate analysis, this remained for women, whereas men had a significantly increased risk in flex-offices. For long sick leave spells, a significantly higher risk was found among women in large open-plan offices and for total number of sick days among men in flex-offices. A prospective study of the office environment's effect on employees is motivated by the high rates of sick leaves in the workforce. The results indicate differences between office types, depending on the number of people sharing workspace and the opportunity to exert personal control as influenced by the features that define the office types.
Cooper, James Ross; Abdullatif, Muhammad Bilal; Burnett, Edward C.; Kempsell, Karen E.; Conforti, Franco; Tolley, Howard; Collins, Jane E.; Davies, Donna E.
2016-01-01
Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 ‘alveolar’ cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham’s F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line. PMID:27792742
Dasgupta, Preeta; Qi, Xiulan; Smith, Elizabeth P; Keegan, Achsah D
2013-01-01
The T(H)2 cytokines, IL-4 and IL-13, play critical roles in inducing allergic lung inflammation and drive the alternative activation of macrophages (AAM). Although both cytokines share receptor subunits, IL-4 and IL-13 have differential roles in asthma pathogenesis: IL-4 regulates T(H)2 cell differentiation, while IL-13 regulates airway hyperreactivity and mucus production. Aside from controlling T(H)2 differentiation, the unique contribution of IL-4 signaling via the Type I receptor in airway inflammation remains unclear. Therefore, we analyzed responses in mice deficient in gamma c (γ(c)) to elucidate the role of the Type I IL-4 receptor. OVA primed CD4⁺ OT-II T cells were adoptively transferred into RAG2⁻/⁻ and γ(c)⁻/⁻ mice and allergic lung disease was induced. Both γ(c)⁻/⁻ and γcxRAG2⁻/⁻ mice developed increased pulmonary inflammation and eosinophilia upon OVA challenge, compared to RAG2⁻/⁻ mice. Characteristic AAM proteins FIZZ1 and YM1 were expressed in lung epithelial cells in both mouse strains, but greater numbers of FIZZ1+ or YM1+ airways were present in γ(c)⁻/⁻ mice. Absence of γc in macrophages, however, resulted in reduced YM1 expression. We observed higher T(H)2 cytokine levels in the BAL and an altered DC phenotype in the γ(c)⁻/⁻ recipient mice suggesting the potential for dysregulated T cell and dendritic cell (DC) activation in the γ(c)-deficient environment. These results demonstrate that in absence of the Type I IL-4R, the Type II R can mediate allergic responses in the presence of T(H)2 effectors. However, the Type I R regulates AAM protein expression in macrophages.
HydroShare: A Platform for Collaborative Data and Model Sharing in Hydrology
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Couch, A.; Hooper, R. P.; Dash, P. K.; Stealey, M.; Yi, H.; Bandaragoda, C.; Castronova, A. M.
2017-12-01
HydroShare is an online, collaboration system for sharing of hydrologic data, analytical tools, and models. It supports the sharing of and collaboration around "resources" which are defined by standardized content types for data formats and models commonly used in hydrology. With HydroShare you can: Share your data and models with colleagues; Manage who has access to the content that you share; Share, access, visualize and manipulate a broad set of hydrologic data types and models; Use the web services application programming interface (API) to program automated and client access; Publish data and models and obtain a citable digital object identifier (DOI); Aggregate your resources into collections; Discover and access data and models published by others; Use web apps to visualize, analyze and run models on data in HydroShare. This presentation will describe the functionality and architecture of HydroShare highlighting its use as a virtual environment supporting education and research. HydroShare has components that support: (1) resource storage, (2) resource exploration, and (3) web apps for actions on resources. The HydroShare data discovery, sharing and publishing functions as well as HydroShare web apps provide the capability to analyze data and execute models completely in the cloud (servers remote from the user) overcoming desktop platform limitations. The HydroShare GIS app provides a basic capability to visualize spatial data. The HydroShare JupyterHub Notebook app provides flexible and documentable execution of Python code snippets for analysis and modeling in a way that results can be shared among HydroShare users and groups to support research collaboration and education. We will discuss how these developments can be used to support different types of educational efforts in Hydrology where being completely web based is of value in an educational setting as students can all have access to the same functionality regardless of their computer.
... Consumer Devices Consumer Products Contact Lenses Types of Contact Lenses Share Tweet Linkedin Pin it More sharing ... Orthokeratology (Ortho-K) Decorative (Plano) Contact Lenses Soft Contact Lenses Soft contact lenses are made of soft, ...
Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W.; Weissman, Irving L.; Benoist, Christophe; Mathis, Diane
2006-01-01
The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8+ T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8+ T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level. PMID:16492737
Dental stem cells: a future asset of ocular cell therapy.
Yam, Gary Hin-Fai; Peh, Gary Swee-Lim; Singhal, Shweta; Goh, Bee-Tin; Mehta, Jodhbir S
2015-11-10
Regenerative medicine using patient's own stem cells (SCs) to repair dysfunctional tissues is an attractive approach to complement surgical and pharmacological treatments for aging and degenerative disorders. Recently, dental SCs have drawn much attention owing to their accessibility, plasticity and applicability for regenerative use not only for dental, but also other body tissues. In ophthalmology, there has been increasing interest to differentiate dental pulp SC and periodontal ligament SC (PDLSC) towards ocular lineage. Both can commit to retinal fate expressing eye field transcription factors and generate rhodopsin-positive photoreceptor-like cells. This proposes a novel therapeutic alternative for retinal degeneration diseases. Moreover, as PDLSC shares similar cranial neural crest origin and proteoglycan secretion with corneal stromal keratoctyes and corneal endothelial cells, this offers the possibility of differentiating PDLSC to these corneal cell types. The advance could lead to a shift in the medical management of corneal opacities and endothelial disorders from highly invasive corneal transplantation using limited donor tissue to cell therapy utilizing autologous cells. This article provides an overview of dental SC research and the perspective of utilizing dental SCs for ocular regenerative medicine.
In vitro effects of direct current electric fields on adipose-derived stromal cells.
Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B
2010-06-18
Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Rodríguez-Seguel, Elisa; Mah, Nancy; Naumann, Heike; Pongrac, Igor M.; Cerdá-Esteban, Nuria; Fontaine, Jean-Fred; Wang, Yongbo; Chen, Wei; Andrade-Navarro, Miguel A.; Spagnoli, Francesca M.
2013-01-01
Understanding how distinct cell types arise from multipotent progenitor cells is a major quest in stem cell biology. The liver and pancreas share many aspects of their early development and possibly originate from a common progenitor. However, how liver and pancreas cells diverge from a common endoderm progenitor population and adopt specific fates remains elusive. Using RNA sequencing (RNA-seq), we defined the molecular identity of liver and pancreas progenitors that were isolated from the mouse embryo at two time points, spanning the period when the lineage decision is made. The integration of temporal and spatial gene expression profiles unveiled mutually exclusive signaling signatures in hepatic and pancreatic progenitors. Importantly, we identified the noncanonical Wnt pathway as a potential developmental regulator of this fate decision and capable of inducing the pancreas program in endoderm and liver cells. Our study offers an unprecedented view of gene expression programs in liver and pancreas progenitors and forms the basis for formulating lineage-reprogramming strategies to convert adult hepatic cells into pancreatic cells. PMID:24013505
Munfus, Delicia L; Haga, Christopher L; Burrows, Peter D; Cooper, Max D
2007-01-01
Background In mouse the cytokine interleukin-7 (IL-7) is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine. Results Our database search identified a family of nine gene candidates, which we have provisionally named fibronectin immunoglobulin leucine-rich repeat (FIGLER). The FIGLER 1–9 genes are predicted to encode type I transmembrane glycoproteins with 6–12 leucine-rich repeats (LRR), a C2 type Ig domain, a fibronectin type III domain, a hydrophobic transmembrane domain, and a cytoplasmic domain containing one to four tyrosine residues. Members of this multichromosomal gene family possess 20–47% overall amino acid identity and are differentially expressed in cell lines and primary hematopoietic lineage cells. Genes for FIGLER homologs were identified in macaque, orangutan, chimpanzee, mouse, rat, dog, chicken, toad, and puffer fish databases. The non-human FIGLER homologs share 38–99% overall amino acid identity with their human counterpart. Conclusion The extracellular domain structure and absence of recognizable cytoplasmic signaling motifs in members of the highly conserved FIGLER gene family suggest a trophic or cell adhesion function for these molecules. PMID:17854505
Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph
2013-05-01
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism.
Cytodifferentiation of hair cells during the development of a basal chordate.
Gasparini, Fabio; Caicci, Federico; Rigon, Francesca; Zaniolo, Giovanna; Burighel, Paolo; Manni, Lucia
2013-10-01
Tunicates are unique animals for studying the origin and evolution of vertebrates because they are considered vertebrates' closest living relatives and share the vertebrate body plan and many specific features. Both possess neural placodes, transient thickenings of the cranial ectoderm that give rise to various types of sensory cells, including axonless secondary mechanoreceptors. In vertebrates, these are represented by the hair cells of the inner ear and the lateral line, which have an apical apparatus typically bearing cilia and stereovilli. In tunicates, they are found in the coronal organ, which is a mechanoreceptor located at the base of the oral siphon along the border of the velum and tentacles and is formed of cells bearing a row of cilia and short microvilli. The coronal organ represents the best candidate homolog for the vertebrate lateral line. To further understand the evolution of secondary sensory cells, we analysed the development and cytodifferentiation of coronal cells in the tunicate ascidian Ciona intestinalis for the first time. Here, coronal sensory cells can be identified as early as larval metamorphosis, before tentacles form, as cells with short cilia and microvilli. Sensory cells gradually differentiate, acquiring hair cell features with microvilli containing actin and myosin VIIa; in the meantime, the associated supporting cells develop. The coronal organ grows throughout the animal's lifespan, accompanying the growth of the tentacle crown. Anti-phospho Histone H3 immunostaining indicates that both hair cells and supporting cells can proliferate. This finding contributes to the understanding of the evolution of secondary sensory cells, suggesting that both ancestral cell types were able to proliferate and that this property was progressively restricted to supporting cells in vertebrates and definitively lost in mammals. Copyright © 2013 Elsevier B.V. All rights reserved.
Exploring the genetics and non-cell autonomous mechanisms underlying ALS/FTLD.
Chen, Hongbo; Kankel, Mark W; Su, Susan C; Han, Steve W S; Ofengeim, Dimitry
2018-03-01
Although amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, was first described in 1874, a flurry of genetic discoveries in the last 10 years has markedly increased our understanding of this disease. These findings have not only enhanced our knowledge of mechanisms leading to ALS, but also have revealed that ALS shares many genetic causes with another neurodegenerative disease, frontotemporal lobar dementia (FTLD). In this review, we survey how recent genetic studies have bridged our mechanistic understanding of these two related diseases and how the genetics behind ALS and FTLD point to complex disorders, implicating non-neuronal cell types in disease pathophysiology. The involvement of non-neuronal cell types is consistent with a non-cell autonomous component in these diseases. This is further supported by studies that identified a critical role of immune-associated genes within ALS/FTLD and other neurodegenerative disorders. The molecular functions of these genes support an emerging concept that various non-autonomous functions are involved in neurodegeneration. Further insights into such a mechanism(s) will ultimately lead to a better understanding of potential routes of therapeutic intervention. Facts ALS and FTLD are severe neurodegenerative disorders on the same disease spectrum. Multiple cellular processes including dysregulation of RNA homeostasis, imbalance of proteostasis, contribute to ALS/FTLD pathogenesis. Aberrant function in non-neuronal cell types, including microglia, contributes to ALS/FTLD. Strong neuroimmune and neuroinflammatory components are associated with ALS/FTLD patients. Open Questions Why can patients with similar mutations have different disease manifestations, i.e., why do C9ORF72 mutations lead to motor neuron loss in some patients while others exhibit loss of neurons in the frontotemporal lobe? Do ALS causal mutations result in microglial dysfunction and contribute to ALS/FTLD pathology? How do microglia normally act to mitigate neurodegeneration in ALS/FTLD? To what extent do cellular signaling pathways mediate non-cell autonomous communications between distinct central nervous system (CNS) cell types during disease? Is it possible to therapeutically target specific cell types in the CNS?
Pericytes and endothelial precursor cells: cellular interactions and contributions to malignancy.
Bagley, Rebecca G; Weber, William; Rouleau, Cecile; Teicher, Beverly A
2005-11-01
Tumor vasculature is irregular, abnormal, and essential for tumor growth. Pericytes and endothelial precursor cells (EPC) contribute to the formation of blood vessels under angiogenic conditions. As primary cells in culture, pericytes and EPC share many properties such as tube/network formation and response to kinase inhibitors selective for angiogenic pathways. Expression of cell surface proteins including platelet-derived growth factor receptor, vascular cell adhesion molecule, intercellular adhesion molecule, CD105, desmin, and neural growth proteoglycan 2 was similar between pericytes and EPC, whereas expression of P1H12 and lymphocyte function-associated antigen-1 clearly differentiates the cell types. Further distinction was observed in the molecular profiles for expression of angiogenic genes. Pericytes or EPC enhanced the invasion of MDA-MB-231 breast cancer cells in a coculture assay system. The s.c. coinjection of live pericytes or EPC along with MDA-MB-231 cells resulted in an increased rate of tumor growth compared with coinjection of irradiated pericytes or EPC. Microvessel density analysis indicated there was no difference in MDA-MB-231 tumors with or without EPC or pericytes. However, immunohistochemical staining of vasculature suggested that EPC and pericytes may stabilize or normalize vasculature rather than initiate vasculogenesis. In addition, tumors arising from the coinjection of EPC and cancer cells were more likely to develop lymphatic vessels. These results support the notion that pericytes and EPC contribute to malignancy and that these cell types can be useful as cell-based models for tumor vascular development and selection of agents that may provide therapeutic benefit.
Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...
2014-12-23
Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less
Liu, Kuei-Chun; Yo, Yi-Te; Huang, Rui-Lan; Wang, Yu-Chi; Liao, Yu-Ping; Huang, Tien-Shuo; Chao, Tai-Kuang; Lin, Chi-Kang; Weng, Shao-Ju; Ma, Kuo-Hsing; Chang, Cheng-Chang; Yu, Mu-Hsien; Lai, Hung-Cheng
2013-01-01
Spheroid formation is one property of stem cells—such as embryo-derived or neural stem cells—that has been used for the enrichment of cancer stem-like cells (CSLCs). However, it is unclear whether CSLC-derived spheroids are heterogeneous or whether they share common embryonic stemness properties. Understanding these features might lead to novel therapeutic approaches. Ovarian carcinoma is a deadly disease of women. We identified two types of spheroids (SR1 and SR2) from ovarian cancer cell lines and patients' specimens according to their morphology. Both types expressed stemness markers and could self-renew and initiate tumors when a low number of cells were used. Only SR1 could differentiate into multiple-lineage cell types under specific induction conditions. SR1 spheroids could differentiate to SR2 spheroids through epithelial–mesenchymal transition. Alkaline phosphatase (ALP) was highly expressed in SR1 spheroids, decreased in SR2 spheroids, and was absent in differentiated progenies in accordance with the loss of stemness properties. We verified that ALP can be a marker for ovarian CSLCs, and patients with greater ALP expression is related to advanced clinical stages and have a higher risk of recurrence and lower survival rate. The ALP inhibitor, levamisole, disrupted the self-renewal of ovarian CSLCs in vitro and tumor growth in vivo. In summary, this research provides a plastic ovarian cancer stem cell model and a new understanding of the cross-link between stem cells and cancers. This results show that ovarian CSLCs can be suppressed by levamisole. Our findings demonstrated that some ovarian CSLCs may restore ALP activity, and this suggests that inhibition of ALP activity may present a new opportunity for treatment of ovarian cancer. PMID:24280306
NASA Astrophysics Data System (ADS)
Cortini, Ruggero; Barbi, Maria; Caré, Bertrand R.; Lavelle, Christophe; Lesne, Annick; Mozziconacci, Julien; Victor, Jean-Marc
2016-04-01
In higher organisms, all cells share the same genome, but every cell expresses only a limited and specific set of genes that defines the cell type. During cell division, not only the genome, but also the cell type is inherited by the daughter cells. This intriguing phenomenon is achieved by a variety of processes that have been collectively termed epigenetics: the stable and inheritable changes in gene expression patterns. This article reviews the extremely rich and exquisitely multiscale physical mechanisms that govern the biological processes behind the initiation, spreading, and inheritance of epigenetic states. These include not only the changes in the molecular properties associated with the chemical modifications of DNA and histone proteins, such as methylation and acetylation, but also less conventional changes, typically in the physics that governs the three-dimensional organization of the genome in cell nuclei. Strikingly, to achieve stability and heritability of epigenetic states, cells take advantage of many different physical principles, such as the universal behavior of polymers and copolymers, the general features of dynamical systems, and the electrostatic and mechanical properties related to chemical modifications of DNA and histones. By putting the complex biological literature in this new light, the emerging picture is that a limited set of general physical rules play a key role in initiating, shaping, and transmitting this crucial "epigenetic landscape." This new perspective not only allows one to rationalize the normal cellular functions, but also helps to understand the emergence of pathological states, in which the epigenetic landscape becomes dysfunctional.
Santini, D; Gelli, M C; Mazzoleni, G; Ricci, M; Severi, B; Pasquinelli, G; Pelusi, G; Martinelli, G
1989-08-01
The histologic, histochemical, immunohistochemical, and ultrastructural features of Brenner tumor (BT) were studied. BT was compared with transitional bladder cells, and close similarities between the two tissues were identified. Abundant glycogen in all cellular layers, an alcianophilic/sialomucinic surface mucous coat, and argyrophilic cells characterized both BT and bladder epithelium. Immunohistochemically, chromogranin and neuron-specific enolase reactivity was observed in all cases examined. An additional relevant finding was the presence of serotonin-storing cells in both BT and urothelium. Moreover, carcinoembryonic antigen, epithelial membrane antigen, and keratin reaction were found in BT and urothelium, indicating an additional antigenic similarity. Additionally, malignant Brenner tumor was ultrastructurally found to share many common features with the bladder tissue. The distinct histochemical, ultrastructural, and antigenic pattern of BT, primarily of the transitional type, is emphasized.
Vickers, Mark A; Wilkie, Gwen M; Robinson, Nicolas; Rivera, Nadja; Haque, Tanzina; Crawford, Dorothy H; Barry, Jacqueline; Fraser, Neil; Turner, David M; Robertson, Victoria; Dyer, Phil; Flanagan, Peter; Newlands, Helen R; Campbell, John; Turner, Marc L
2014-01-01
Epstein-Barr virus (EBV) is associated with several malignancies, including post-transplant lymphoproliferative disorder (PTLD). Conventional treatments for PTLD are often successful, but risk organ rejection and cause significant side effects. EBV-specific cytotoxic T lymphocytes (CTLs) generated in vitro from peripheral blood lymphocytes provide an alternative treatment modality with few side effects, but autologous CTLs are difficult to use in clinical practice. Here we report the establishment and operation of a bank of EBV-specific CTLs derived from 25 blood donors with human leucocyte antigen (HLA) types found at high frequency in European populations. Since licensure, there have been enquiries about 37 patients, who shared a median of three class I and two class II HLA types with these donors. Cells have been infused into ten patients with lymphoproliferative disease, eight of whom achieved complete remission. Neither patient with refractory disease was matched for HLA class II. Both cases of EBV-associated non-haematopoietic sarcoma receiving cells failed to achieve complete remission. Thirteen patients died before any cells could be issued, emphasizing that the bank should be contacted before patients become pre-terminal. Thus, this third party donor-derived EBV-specific CTL cell bank can supply most patients with appropriately matched cells and most recipients have good outcomes. PMID:25066775
Keenan, Alexandra B; Jenkins, Sherry L; Jagodnik, Kathleen M; Koplev, Simon; He, Edward; Torre, Denis; Wang, Zichen; Dohlman, Anders B; Silverstein, Moshe C; Lachmann, Alexander; Kuleshov, Maxim V; Ma'ayan, Avi; Stathias, Vasileios; Terryn, Raymond; Cooper, Daniel; Forlin, Michele; Koleti, Amar; Vidovic, Dusica; Chung, Caty; Schürer, Stephan C; Vasiliauskas, Jouzas; Pilarczyk, Marcin; Shamsaei, Behrouz; Fazel, Mehdi; Ren, Yan; Niu, Wen; Clark, Nicholas A; White, Shana; Mahi, Naim; Zhang, Lixia; Kouril, Michal; Reichard, John F; Sivaganesan, Siva; Medvedovic, Mario; Meller, Jaroslaw; Koch, Rick J; Birtwistle, Marc R; Iyengar, Ravi; Sobie, Eric A; Azeloglu, Evren U; Kaye, Julia; Osterloh, Jeannette; Haston, Kelly; Kalra, Jaslin; Finkbiener, Steve; Li, Jonathan; Milani, Pamela; Adam, Miriam; Escalante-Chong, Renan; Sachs, Karen; Lenail, Alex; Ramamoorthy, Divya; Fraenkel, Ernest; Daigle, Gavin; Hussain, Uzma; Coye, Alyssa; Rothstein, Jeffrey; Sareen, Dhruv; Ornelas, Loren; Banuelos, Maria; Mandefro, Berhan; Ho, Ritchie; Svendsen, Clive N; Lim, Ryan G; Stocksdale, Jennifer; Casale, Malcolm S; Thompson, Terri G; Wu, Jie; Thompson, Leslie M; Dardov, Victoria; Venkatraman, Vidya; Matlock, Andrea; Van Eyk, Jennifer E; Jaffe, Jacob D; Papanastasiou, Malvina; Subramanian, Aravind; Golub, Todd R; Erickson, Sean D; Fallahi-Sichani, Mohammad; Hafner, Marc; Gray, Nathanael S; Lin, Jia-Ren; Mills, Caitlin E; Muhlich, Jeremy L; Niepel, Mario; Shamu, Caroline E; Williams, Elizabeth H; Wrobel, David; Sorger, Peter K; Heiser, Laura M; Gray, Joe W; Korkola, James E; Mills, Gordon B; LaBarge, Mark; Feiler, Heidi S; Dane, Mark A; Bucher, Elmar; Nederlof, Michel; Sudar, Damir; Gross, Sean; Kilburn, David F; Smith, Rebecca; Devlin, Kaylyn; Margolis, Ron; Derr, Leslie; Lee, Albert; Pillai, Ajay
2018-01-24
The Library of Integrated Network-Based Cellular Signatures (LINCS) is an NIH Common Fund program that catalogs how human cells globally respond to chemical, genetic, and disease perturbations. Resources generated by LINCS include experimental and computational methods, visualization tools, molecular and imaging data, and signatures. By assembling an integrated picture of the range of responses of human cells exposed to many perturbations, the LINCS program aims to better understand human disease and to advance the development of new therapies. Perturbations under study include drugs, genetic perturbations, tissue micro-environments, antibodies, and disease-causing mutations. Responses to perturbations are measured by transcript profiling, mass spectrometry, cell imaging, and biochemical methods, among other assays. The LINCS program focuses on cellular physiology shared among tissues and cell types relevant to an array of diseases, including cancer, heart disease, and neurodegenerative disorders. This Perspective describes LINCS technologies, datasets, tools, and approaches to data accessibility and reusability. Copyright © 2017 Elsevier Inc. All rights reserved.
The secretory pathway at 50: a golden anniversary for some momentous grains of silver.
Matlin, Karl S; Caplan, Michael J
2017-01-15
The secretory pathway along which newly synthesized secretory and membrane proteins traffic through the cell was revealed in two articles published 50 years ago. This discovery was the culmination of decades of effort to unite the power of biochemical and morphological methodologies in order to elucidate the dynamic nature of the cell's biosynthetic machinery. The secretory pathway remains a central paradigm of modern cell biology. Its elucidation 50 years ago inspired tremendous multidisciplinary and on-going efforts to understand the machinery that makes it run, the adaptations that permit it to serve the needs of specialized cell types, and the pathological consequences that arise when it is perturbed. © 2017 Matlin and Caplan. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Verma, Ashutosh Kumar; Dhawan, Sunita Singh
2017-10-01
Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre . Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre . Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre . An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris . Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre . Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity.
Verma, Ashutosh Kumar; Dhawan, Sunita Singh
2017-01-01
Background: Gymnema sylvestre R. Br. a member of family Asclepiadaceae as mentioned in Indian Pharmacopoeia popular among the researchers because of stimulatory effect of its phytoconstituent on pancreatic cells and potential to treat Type I and II type of diabetes. Objectives: Development of cost-effective marker system for the selection of high gymnemic acid yielding accessions of G. sylvestre. Materials and Methods: Presoaked seeds of Brassica campestris treated with different dilutions of gymnemagenin and 10% leaf extract of twenty different accessions of G. sylvestre. Root tips of germinated seeds were fixed, and chromosomal studies were made by root tip bioassay method. Results: Exposure of seeds to treatment solutions promotes various types of chromosomal anomalies in root meristem, and surprisingly, direct correlation between the percentage of chromosomal fragmentation and the percentage of gymnemic acid shared by treatment solution were observed. Conclusion: Later finding may be explored for the development of a novel methodology or marker system for the selection of high active principle yielding accessions of G. sylvestre. SUMMARY An experiment was carried out using root tip bioassay method for the study of effect of different dilutions of standard gymnemic acid and 10% leaf extract of twenty different accessions of Gymnema sylvestre on root tip meristem of Brassica campestris. Various types of chromosomal anomalies were observed. Of which, percentage of chromosomal fragmentation was showed a direct (∞) relationship with the percentage of gymnemic acid shared by treatment solution. This interesting result after more and more exploration and revalidation could be utilized for the development of a novel methodology for the selection of high active principle yielding accessions of G. sylvestre. Abbreviations used: MI: Mitotic index; CP: Condensed prophase; CM: Clumped metaphase; MC: Metaphase cleft; FR: Fragmentation; AP: Anaphase with persistent nucleolous; LA: Laggard, BR: Bridge; BI: Bi-nucleated cell; DA: Disturbed anaphasic polarity. PMID:29142402
The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts.
ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I; Davison, Noel L; de Vries, Teun J; Everts, Vincent
2015-01-01
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones--cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K.
The Foreign Body Giant Cell Cannot Resorb Bone, But Dissolves Hydroxyapatite Like Osteoclasts
ten Harkel, Bas; Schoenmaker, Ton; Picavet, Daisy I.; Davison, Noel L.; de Vries, Teun J.; Everts, Vincent
2015-01-01
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones—cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K. PMID:26426806
The Complete Guide to Job Sharing.
ERIC Educational Resources Information Center
Hohn, Marcia D.
This booklet provides information on job sharing that resulted from the research and experience of the Merrimack Valley Job Sharing Project. An overview of the topic considers the need for job sharing, employer benefits, types of jobs shared, job division, benefits, employer costs and savings, financial considerations for job sharers, perspectives…
24 CFR 982.616 - Shared housing: Lease and HAP contract.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Shared housing: Lease and HAP... Types Shared Housing § 982.616 Shared housing: Lease and HAP contract. For assistance in a shared housing unit, there is a separate HAP contract and lease for each assisted family. ...
From “ES-like” cells to induced pluripotent stem cells: A historical perspective in domestic animals
Koh, Sehwon; Piedrahita, Jorge A.
2013-01-01
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat, however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as “ES-like” cells due to similar morphological characteristics to mouse ESCs but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of induced pluripotent stem cells. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of induced pluripotent stem cells. PMID:24274415
Elevated Cyclic AMP Levels in T Lymphocytes Transformed by Human T-Cell Lymphotropic Virus Type 1▿
Kress, Andrea K.; Schneider, Grit; Pichler, Klemens; Kalmer, Martina; Fleckenstein, Bernhard; Grassmann, Ralph
2010-01-01
Human T-cell lymphotropic virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), transforms CD4+ T cells to permanent growth through its transactivator Tax. HTLV-1-transformed cells share phenotypic properties with memory and regulatory T cells (T-reg). Murine T-reg-mediated suppression employs elevated cyclic AMP (cAMP) levels as a key regulator. This led us to determine cAMP levels in HTLV-1-transformed cells. We found elevated cAMP concentrations as a consistent feature of all HTLV-1-transformed cell lines, including in vitro-HTLV-1-transformed, Tax-transformed, and patient-derived cells. In transformed cells with conditional Tax expression, high cAMP levels coincided with the presence of Tax but were lost without it. However, transient ectopic expression of Tax alone was not sufficient to induce cAMP. We found specific downregulation of the cAMP-degrading phosphodiesterase 3B (PDE3B) in HTLV-1-transformed cells, which was independent of Tax in transient expression experiments. This is in line with the notion that PDE3B transcripts and cAMP levels are inversely correlated. Overexpression of PDE3B led to a decrease of cAMP in HTLV-1-transformed cells. Decreased expression of PDE3B was associated with inhibitory histone modifications at the PDE3B promoter and the PDE3B locus. In summary, Tax transformation and its continuous expression contribute to elevated cAMP levels, which may be regulated through PDE3B suppression. This shows that HTLV-1-transformed cells assume biological features of long-lived T-cell populations that potentially contribute to viral persistence. PMID:20573814
Kegler, Kristel; Imbschweiler, Ilka; Ulrich, Reiner; Kovermann, Peter; Fahlke, Christoph; Deschl, Ulrich; Kalkuhl, Arno; Baumgärnter, Wolfgang; Wewetzer, Konstantin
2014-06-01
Central nervous system (CNS) injury triggers production of myelinating Schwann cells from endogenous oligodendrocyte precursors (OLPs). These CNS Schwann cells may be attractive candidates for novel therapeutic strategies aiming to promote endogenous CNS repair. However, CNS Schwann cells have been so far mainly characterized in situ regarding morphology and marker expression, and it has remained enigmatic whether they display functional properties distinct from peripheral nervous system (PNS) Schwann cells. Potassium channels (K+) have been implicated in progenitor and glial cell proliferation after injury and may, therefore, represent a suitable pharmacological target. In the present study, we focused on the function and expression of voltage-gated K+ channels Kv(1-12) and accessory β-subunits in purified adult canine CNS and PNS Schwann cell cultures using electrophysiology and microarray analysis and characterized their antigenic phenotype. We show here that K+ channels differed significantly in both cell types. While CNS Schwann cells displayed prominent K D-mediated K+ currents, PNS Schwann cells elicited K(D-) and K(A-type) K+ currents. Inhibition of K+ currents by TEA and Ba2+ was more effective in CNS Schwann cells. These functional differences were not paralleled by differential mRNA expression of Kv(1-12) and accessory β-subunits. However, O4/A2B5 and GFAP expressions were significantly higher and lower, respectively, in CNS than in PNS Schwann cells. Taken together, this is the first evidence that CNS Schwann cells display specific properties not shared by their peripheral counterpart. Both Kv currents and increased O4/A2B5 expression were reminiscent of OLPs suggesting that CNS Schwann cells retain OLP features during maturation.
Minireview: Human Ovarian Cancer: Biology, Current Management, and Paths to Personalizing Therapy
Romero, Ignacio
2012-01-01
More than 90% of ovarian cancers have been thought to arise from epithelial cells that cover the ovarian surface or, more frequently, line subserosal cysts. Recent studies suggest that histologically similar cancers can arise from the fimbriae of Fallopian tubes and from deposits of endometriosis. Different histotypes are observed that resemble epithelial cells from the normal Fallopian tube (serous), endometrium (endometrioid), cervical glands (mucinous), and vaginal rests (clear cell) and that share expression of relevant HOX genes which drive normal gynecological differentiation. Two groups of epithelial ovarian cancers have been distinguished: type I low-grade cancers that present in early stage, grow slowly, and resist conventional chemotherapy but may respond to hormonal manipulation; and type II high-grade cancers that are generally diagnosed in advanced stage and grow aggressively but respond to chemotherapy. Type I cancers have wild-type p53 and BRCA1/2, but have frequent mutations of Ras and Raf as well as expression of IGFR and activation of the phosphatidylinositol-3-kinase (PI3K) pathway. Virtually all type II cancers have mutations of p53, and almost half have mutation or dysfunction of BRCA1/2, but other mutations are rare, and oncogenesis appears to be driven by amplification of several growth-regulatory genes that activate the Ras/MAPK and PI3K pathways. Cytoreductive surgery and combination chemotherapy with platinum compounds and taxanes have improved 5-yr survival, but less than 40% of all stages can be cured. Novel therapies are being developed that target high-grade serous cancer cells with PI3Kness or BRCAness as well as the tumor vasculature. Both in silico and animal models are needed that more closely resemble type I and type II cancers to facilitate the identification of novel targets and to predict response to combinations of new agents. PMID:22416079
Kang, Sung Yoon Catherine; Kannan, Nagarajan; Zhang, Lewei; Martinez, Victor; Rosin, Miriam P.; Eaves, Connie J.
2015-01-01
Summary Human palatine tonsils are oropharyngeal lymphoid tissues containing multiple invaginations (crypts) in which the continuity of the outer surface epithelium is disrupted and the isolated epithelial cells intermingle with other cell types. We now show that primitive epithelial cells detectable in vitro in 2D colony assays and in a 3D culture system are CD44+NGFR+ and present in both surface and crypt regions. Transcriptome analysis indicated a high similarity between CD44+NGFR+ cells in both regions, although those isolated from the crypt contained a higher proportion of the most primitive (holo)clonogenic cells. Lentiviral transduction of CD44+NGFR+ cells from both regions with human papillomavirus 16-encoded E6/E7 prolonged their growth in 2D cultures and caused aberrant differentiation in 3D cultures. Our findings therefore reveal a shared, site-independent, hierarchical organization, differentiation potential, and transcriptional profile of normal human tonsillar epithelial progenitor cells. They also introduce a new model for investigating the mechanisms of their transformation. PMID:26527383
Tonomura, Noriko; Elvers, Ingegerd; Thomas, Rachael; Megquier, Kate; Turner-Maier, Jason; Howald, Cedric; Sarver, Aaron L.; Swofford, Ross; Frantz, Aric M.; Ito, Daisuke; Mauceli, Evan; Arendt, Maja; Noh, Hyun Ji; Koltookian, Michele; Biagi, Tara; Fryc, Sarah; Williams, Christina; Avery, Anne C.; Kim, Jong-Hyuk; Barber, Lisa; Burgess, Kristine; Lander, Eric S.; Karlsson, Elinor K.; Azuma, Chieko
2015-01-01
Dogs, with their breed-determined limited genetic background, are great models of human disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malignancies of the hematologic system that are clinically and histologically similar to human B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosarcoma (20%). We conducted genome-wide association studies for hemangiosarcoma and B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are located on chromosome 5, and together contribute ~20% of the risk of developing these cancers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6, respectively. Whole genome resequencing of nine cases and controls followed by genotyping and detailed analysis identified three shared and one B-cell lymphoma specific risk haplotypes within the two loci, but no coding changes were associated with the risk haplotypes. Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk haplotypes at the first locus is associated with down-regulation of several nearby genes including the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell activation, among other functions. The shared risk haplotype in the second locus overlaps the vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated with gene expression changes of 100 genes enriched for pathways involved in immune cell activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangiosarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune response in the tumor. This suggests that the interaction between the immune system and malignant cells plays a common role in the tumorigenesis of these relatively different cancers. PMID:25642983
O'Gorman, William E.; Hsieh, Elena W.Y.; Savig, Erica S.; Gherardini, Pier Federico; Hernandez, Joseph D.; Hansmann, Leo; Balboni, Imelda M.; Utz, Paul J.; Bendall, Sean C.; Fantl, Wendy J.; Lewis, David B.; Nolan, Garry P.; Davis, Mark M.
2015-01-01
Background Activation of Toll-Like Receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in Systemic Lupus Erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has previously not been described. Objective To characterize TLR activation across multiple immune cell subsets and individuals, with the goal of establishing a reference framework against which to compare pathological processes. Methods Peripheral whole blood samples were stimulated with TLR ligands, and analyzed by mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied seventeen healthy volunteer donors and eight newly diagnosed untreated SLE patients. Results Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of NK and T cells selectively induced NF-κB in response to TLR2 ligands. CD14hi monocytes exhibited the most polyfunctional cytokine expression patterns, with over 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared amongst a group of healthy donors, with minimal intra- and inter- individual variability. Furthermore, autoimmune disease altered baseline cytokine production, as newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. Conclusion Mass cytometry analysis defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in inflammatory disease, such as SLE. PMID:26037552
UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer.
Rezvani, Khosrow
2016-10-14
The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.
Adeno-associated virus type 2 enhances goose parvovirus replication in embryonated goose eggs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkinson, Mertyn; Winocour, Ernest
The autonomous goose parvovirus (GPV) and the human helper-dependent adeno-associated virus type 2 (AAV2) share a high degree of homology. To determine if this evolutionary relationship has a biological impact, we studied viral replication in human 293 cells and in embryonated goose eggs coinfected with both viruses. Similar experiments were performed with the minute virus of mice (MVM), an autonomous murine parvovirus with less homology to AAV2. In human 293 cells, both GPV and MVM augmented AAV2 replication. In contrast, AAV2 markedly enhanced GPV replication in embryonated goose eggs under conditions where a similar effect was not observed with MVM.more » AAV2 did not replicate in embryonated goose eggs and AAV2 inactivated by UV-irradiation also enhanced GPV replication. To our knowledge, this is the first report that a human helper-dependent member of the Parvoviridae can provide helper activity for an autonomous parvovirus in a natural host.« less
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates
Joly, Jean-Stéphane; Recher, Gaelle; Brombin, Alessandro; Ngo, Kathy; Hartenstein, Volker
2016-01-01
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar ‘conveyor belt neurogenesis’ could play an essential role in generating the topographically ordered circuitry of the visual system. PMID:27780043
Simons, Matias; Gloy, Joachim; Ganner, Athina; Bullerkotte, Axel; Bashkurov, Mikhail; Krönig, Corinna; Schermer, Bernhard; Benzing, Thomas; Cabello, Olga A; Jenny, Andreas; Mlodzik, Marek; Polok, Bozena; Driever, Wolfgang; Obara, Tomoko; Walz, Gerd
2013-01-01
Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells1. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure2. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development. PMID:15852005
Ventimiglia, Donovan; Bargmann, Cornelia I
2017-11-21
Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWC ON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWC ON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWC ON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWC ON , generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions.
Ventimiglia, Donovan
2017-01-01
Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the C. elegans central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWCON and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWCON is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWCON release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWCON, generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions. PMID:29160768
Korom, Maria; Davis, Katie L.
2014-01-01
ABSTRACT The herpes simplex virus 1 (HSV-1) ICP34.5 protein strongly influences neurovirulence and regulates several cellular antiviral responses. Despite the clinical importance of HSV-2, relatively little is known about its ICP34.5 ortholog. We found that HSV-2 produces up to four distinct forms of ICP34.5 in infected cells: a full-length protein, one shorter form sharing the N terminus, and two shorter forms sharing the C terminus. These forms appeared with similar kinetics and accumulated in cells over much of the replication cycle. We confirmed that the N-terminal form is translated from the primary unspliced transcript to a stop codon within the intron unique to HSV-2 γ34.5. We found that the N-terminal form was produced in a variety of cell types and by 9 of 10 clinical isolates. ICP27 influenced but was not required for expression of the N-terminal form. Western blotting and reverse transcription-PCR indicated the C-terminal forms did not contain the N terminus and were not products of alternative splicing or internal transcript initiation. Expression plasmids encoding methionine at amino acids 56 and 70 generated products that comigrated in SDS-PAGE with the C1 and C2 forms, respectively, and mutation of these sites abolished C1 and C2. Using a recombinant HSV-2 encoding hemagglutinin (HA)-tagged ICP34.5, we demonstrated that the C-terminal forms were also produced during infection of many human and mouse cell types but were not detectable in mouse primary neurons. The protein diversity generated from the HSV-2 γ34.5 open reading frame implies additional layers of cellular regulation through potential independent activities associated with the various forms of ICP34.5. IMPORTANCE The herpes simplex virus 1 (HSV-1) protein ICP34.5, encoded by the γ34.5 gene, interferes with several host defense mechanisms by binding cellular proteins that would otherwise stimulate the cell's autophagic, translational-arrest, and type I interferon responses to virus infection. ICP34.5 also plays a crucial role in determining the severity of nervous system infections with HSV-1 and HSV-2. The HSV-2 γ34.5 gene contains an intron not present in HSV-1 γ34.5. A shorter N-terminal form of HSV-2 ICP34.5 can be translated from the unspliced γ34.5 mRNA. Here, we show that two additional forms consisting of the C-terminal portion of ICP34.5 are generated in infected cells. Production of these N- and C-terminal forms is highly conserved among HSV-2 strains, including many clinical isolates, and they are broadly expressed in several cell types, but not mouse primary neurons. Multiple ICP34.5 polypeptides add additional complexity to potential functional interactions influencing HSV-2 neurovirulence. PMID:25031346
O'Brien, Timothy D; Jia, Peilin; Caporaso, Neil E; Landi, Maria Teresa; Zhao, Zhongming
2018-02-27
There are two main types of lung cancer: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC has many subtypes, but the two most common are lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). These subtypes are mainly classified by physiological and pathological characteristics, although there is increasing evidence of genetic and molecular differences as well. Although some work has been done at the somatic level to explore the genetic and biological differences among subtypes, little work has been done that interrogates these differences at the germline level to characterize the unique and shared susceptibility genes for each subtype. We used single-nucleotide polymorphisms (SNPs) from a genome-wide association study (GWAS) of European samples to interrogate the similarity of the subtypes at the SNP, gene, pathway, and regulatory levels. We expanded these genotyped SNPs to include all SNPs in linkage disequilibrium (LD) using data from the 1000 Genomes Project. We mapped these SNPs to several lung tissue expression quantitative trait loci (eQTL) and enhancer datasets to identify regulatory SNPs and their target genes. We used these genes to perform a biological pathway analysis for each subtype. We identified 8295, 8734, and 8361 SNPs with moderate association signals for LUAD, LUSC, and SCLC, respectively. Those SNPs had p < 1 × 10 - 3 in the original GWAS or were within LD (r 2 > 0.8, Europeans) to the genotyped SNPs. We identified 215, 320, and 172 disease-associated genes for LUAD, LUSC, and SCLC, respectively. Only five genes (CHRNA5, IDH3A, PSMA4, RP11-650 L12.2, and TBC1D2B) overlapped all subtypes. Furthermore, we observed only two pathways from the Kyoto Encyclopedia of Genes and Genomes shared by all subtypes. At the regulatory level, only three eQTL target genes and two enhancer target genes overlapped between all subtypes. Our results suggest that the three lung cancer subtypes do not share much genetic signal at the SNP, gene, pathway, or regulatory level, which differs from the common subtype classification based upon histology. However, three (CHRNA5, IDH3A, and PSMA4) of the five genes shared between the subtypes are well-known lung cancer genes that may act as general lung cancer genes regardless of subtype.
Coelomic epithelium-derived cells in visceral morphogenesis.
Ariza, Laura; Carmona, Rita; Cañete, Ana; Cano, Elena; Muñoz-Chápuli, Ramón
2016-03-01
Coelomic cavities of vertebrates are lined by a mesothelium which develops from the lateral plate mesoderm. During development, the coelomic epithelium is a highly active cell layer, which locally is able to supply mesenchymal cells that contribute to the mesodermal elements of many organs and provide signals which are necessary for their development. The relevance of this process of mesenchymal cell supply to the developing organs is becoming clearer because genetic lineage tracing techniques have been developed in recent years. Body wall, heart, liver, lungs, gonads, and gastrointestinal tract are populated by cells derived from the coelomic epithelium which contribute to their connective and vascular tissues, and sometimes to specialized cell types such as the stellate cells of the liver, the Cajal interstitial cells of the gut or the Sertoli cells of the testicle. In this review we collect information about the contribution of coelomic epithelium derived cells to visceral development, their developmental fates and signaling functions. The common features displayed by all these processes suggest that the epithelial-mesenchymal transition of the embryonic coelomic epithelium is an underestimated but key event of vertebrate development, and probably it is shared by all the coelomate metazoans. © 2015 Wiley Periodicals, Inc.
Kawano, Mitsuoki
2012-12-01
Toxin-antitoxin (TA) systems are categorized into three classes based on the type of antitoxin. In type I TA systems, the antitoxin is a small antisense RNA that inhibits translation of small toxic proteins by binding to the corresponding mRNAs. Those type I TA systems were originally identified as plasmid stabilization modules rendering a post-segregational killing (PSK) effect on the host cells. The type I TA loci also exist on the Escherichia coli chromosome but their biological functions are less clear. Genetic organization and regulatory elements of hok/sok and ldr/rdl families are very similar and the toxins are predicted to contain a transmembrane domain, but otherwise share no detectable sequence similarity. This review will give an overview of the type I TA modules of E. coli K-12, especially hok/sok, ldr/rdl and SOS-inducible symE/symR systems, which are regulated by divergently overlapping cis-encoded antisense RNAs.
Kar, Siddhartha P; Beesley, Jonathan; Amin Al Olama, Ali; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J; Thompson, Deborah J; Kibel, Adam S; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K; Gentry-Maharaj, Aleksandra; Whittemore, Alice S; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B; Burwinkel, Barbara; Karlan, Beth Y; Nordestgaard, Børge G; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B; Høgdall, Claus K; Teerlink, Craig C; Kang, Daehee; Tessier, Daniel C; Schaid, Daniel J; Stram, Daniel O; Cramer, Daniel W; Neal, David E; Eccles, Diana; Flesch-Janys, Dieter; Edwards, Digna R Velez; Wokozorczyk, Dominika; Levine, Douglas A; Yannoukakos, Drakoulis; Sawyer, Elinor J; Bandera, Elisa V; Poole, Elizabeth M; Goode, Ellen L; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C; Wiklund, Fredrik; Giles, Graham G; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A; Darabi, Hatef; Salvesen, Helga B; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L; Benítez, Javier; Doherty, Jennifer A; Permuth, Jennifer B; Chang-Claude, Jenny; Donovan, Jenny L; Dennis, Joe; Schildkraut, Joellen M; Schleutker, Johanna; Hopper, John L; Kupryjanczyk, Jolanta; Park, Jong Y; Figueroa, Jonine; Clements, Judith A; Knight, Julia A; Peto, Julian; Cunningham, Julie M; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A; Massuger, Leon F A G; Fitzgerald, Liesel M; Cook, Linda S; Cannon-Albright, Lisa; Hooning, Maartje J; Pike, Malcolm C; Bolla, Manjeet K; Luedeke, Manuel; Teixeira, Manuel R; Goodman, Marc T; Schmidt, Marjanka K; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A T; Hou, Ming-Feng; Schoemaker, Minouk J; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M; Broberg, Per; Fasching, Peter A; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K; Stephenson, Robert A; MacInnis, Robert J; Hoover, Robert N; Winqvist, Robert; Ness, Roberta; Milne, Roger L; Travis, Ruth C; Benlloch, Sara; Olson, Sara H; McDonnell, Shannon K; Tworoger, Shelley S; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N; Bojesen, Stig E; Gapstur, Susan M; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L J; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J; Edwards, Todd L; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L; Berchuck, Andrew; Dunning, Alison M; Simard, Jacques; Haiman, Christopher A; Spurdle, Amanda; Sellers, Thomas A; Hunter, David J; Henderson, Brian E; Kraft, Peter; Chanock, Stephen J; Couch, Fergus J; Hall, Per; Gayther, Simon A; Easton, Douglas F; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D P; Lambrechts, Diether
2016-09-01
Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis. We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 932. ©2016 American Association for Cancer Research.
A Comparative Encyclopedia of DNA Elements in the Mouse Genome
Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D.; Shen, Yin; Pervouchine, Dmitri D.; Djebali, Sarah; Thurman, Bob; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K.; Williams, Brian A.; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M. A.; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T.; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D.; Bansal, Mukul S.; Keller, Cheryl A.; Morrissey, Christapher S.; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S.; Cayting, Philip; Kawli, Trupti; Boyle, Alan P.; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S.; Cline, Melissa S.; Erickson, Drew T.; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A.; Rosenbloom, Kate R.; de Sousa, Beatriz Lacerda; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W. James; Santos, Miguel Ramalho; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J.; Wilken, Matthew S.; Reh, Thomas A.; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P.; Neph, Shane; Humbert, Richard; Hansen, R. Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E.; Orkin, Stuart H.; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J.; Blobel, Gerd A.; Good, Peter J.; Lowdon, Rebecca F.; Adams, Leslie B.; Zhou, Xiao-Qiao; Pazin, Michael J.; Feingold, Elise A.; Wold, Barbara; Taylor, James; Kellis, Manolis; Mortazavi, Ali; Weissman, Sherman M.; Stamatoyannopoulos, John; Snyder, Michael P.; Guigo, Roderic; Gingeras, Thomas R.; Gilbert, David M.; Hardison, Ross C.; Beer, Michael A.; Ren, Bing
2014-01-01
Summary As the premier model organism in biomedical research, the laboratory mouse shares the majority of protein-coding genes with humans, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications, and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of other sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases. PMID:25409824
A comparative encyclopedia of DNA elements in the mouse genome.
Yue, Feng; Cheng, Yong; Breschi, Alessandra; Vierstra, Jeff; Wu, Weisheng; Ryba, Tyrone; Sandstrom, Richard; Ma, Zhihai; Davis, Carrie; Pope, Benjamin D; Shen, Yin; Pervouchine, Dmitri D; Djebali, Sarah; Thurman, Robert E; Kaul, Rajinder; Rynes, Eric; Kirilusha, Anthony; Marinov, Georgi K; Williams, Brian A; Trout, Diane; Amrhein, Henry; Fisher-Aylor, Katherine; Antoshechkin, Igor; DeSalvo, Gilberto; See, Lei-Hoon; Fastuca, Meagan; Drenkow, Jorg; Zaleski, Chris; Dobin, Alex; Prieto, Pablo; Lagarde, Julien; Bussotti, Giovanni; Tanzer, Andrea; Denas, Olgert; Li, Kanwei; Bender, M A; Zhang, Miaohua; Byron, Rachel; Groudine, Mark T; McCleary, David; Pham, Long; Ye, Zhen; Kuan, Samantha; Edsall, Lee; Wu, Yi-Chieh; Rasmussen, Matthew D; Bansal, Mukul S; Kellis, Manolis; Keller, Cheryl A; Morrissey, Christapher S; Mishra, Tejaswini; Jain, Deepti; Dogan, Nergiz; Harris, Robert S; Cayting, Philip; Kawli, Trupti; Boyle, Alan P; Euskirchen, Ghia; Kundaje, Anshul; Lin, Shin; Lin, Yiing; Jansen, Camden; Malladi, Venkat S; Cline, Melissa S; Erickson, Drew T; Kirkup, Vanessa M; Learned, Katrina; Sloan, Cricket A; Rosenbloom, Kate R; Lacerda de Sousa, Beatriz; Beal, Kathryn; Pignatelli, Miguel; Flicek, Paul; Lian, Jin; Kahveci, Tamer; Lee, Dongwon; Kent, W James; Ramalho Santos, Miguel; Herrero, Javier; Notredame, Cedric; Johnson, Audra; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Canfield, Theresa; Sabo, Peter J; Wilken, Matthew S; Reh, Thomas A; Giste, Erika; Shafer, Anthony; Kutyavin, Tanya; Haugen, Eric; Dunn, Douglas; Reynolds, Alex P; Neph, Shane; Humbert, Richard; Hansen, R Scott; De Bruijn, Marella; Selleri, Licia; Rudensky, Alexander; Josefowicz, Steven; Samstein, Robert; Eichler, Evan E; Orkin, Stuart H; Levasseur, Dana; Papayannopoulou, Thalia; Chang, Kai-Hsin; Skoultchi, Arthur; Gosh, Srikanta; Disteche, Christine; Treuting, Piper; Wang, Yanli; Weiss, Mitchell J; Blobel, Gerd A; Cao, Xiaoyi; Zhong, Sheng; Wang, Ting; Good, Peter J; Lowdon, Rebecca F; Adams, Leslie B; Zhou, Xiao-Qiao; Pazin, Michael J; Feingold, Elise A; Wold, Barbara; Taylor, James; Mortazavi, Ali; Weissman, Sherman M; Stamatoyannopoulos, John A; Snyder, Michael P; Guigo, Roderic; Gingeras, Thomas R; Gilbert, David M; Hardison, Ross C; Beer, Michael A; Ren, Bing
2014-11-20
The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.
The International Human Epigenome Consortium Data Portal.
Bujold, David; Morais, David Anderson de Lima; Gauthier, Carol; Côté, Catherine; Caron, Maxime; Kwan, Tony; Chen, Kuang Chung; Laperle, Jonathan; Markovits, Alexei Nordell; Pastinen, Tomi; Caron, Bryan; Veilleux, Alain; Jacques, Pierre-Étienne; Bourque, Guillaume
2016-11-23
The International Human Epigenome Consortium (IHEC) coordinates the production of reference epigenome maps through the characterization of the regulome, methylome, and transcriptome from a wide range of tissues and cell types. To define conventions ensuring the compatibility of datasets and establish an infrastructure enabling data integration, analysis, and sharing, we developed the IHEC Data Portal (http://epigenomesportal.ca/ihec). The portal provides access to >7,000 reference epigenomic datasets, generated from >600 tissues, which have been contributed by seven international consortia: ENCODE, NIH Roadmap, CEEHRC, Blueprint, DEEP, AMED-CREST, and KNIH. The portal enhances the utility of these reference maps by facilitating the discovery, visualization, analysis, download, and sharing of epigenomics data. The IHEC Data Portal is the official source to navigate through IHEC datasets and represents a strategy for unifying the distributed data produced by international research consortia. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence.
Willcocks, Sam; Wren, Brendan W
2014-01-01
Mycobacterium tuberculosis, an etiologic agent of tuberculosis, exacts a heavy toll in terms of human morbidity and mortality. Although an ancient disease, new strains are emerging as human population density increases. The emergent virulent strains appear adept at steering the host immune response from a protective Th1 type response towards a Th2 bias, a feature shared with some pathogenic fungi. Other common characteristics include infection site, metabolic features, the composition and display of cell surface molecules, the range of innate immune receptors engaged during infection, and the ability to form granulomas. Literature from these two distinct fields of research are reviewed to propose that the emergent virulent strains of M. tuberculosis are in the process of convergent evolution with pathogenic fungi, and are increasing the prominence of conserved traits from environmental phylogenetic ancestors that facilitate their evasion of host defenses and dissemination.
Okamoto, Norihiko L; Tanaka, Katsushi; Yasuhara, Akira; Inui, Haruyuki
2014-04-01
The structure of the δ1p phase in the iron-zinc system has been refined by single-crystal synchrotron X-ray diffraction combined with scanning transmission electron microscopy. The large hexagonal unit cell of the δ1p phase with the space group of P63/mmc comprises more or less regular (normal) Zn12 icosahedra, disordered Zn12 icosahedra, Zn16 icosioctahedra and dangling Zn atoms that do not constitute any polyhedra. The unit cell contains 52 Fe and 504 Zn atoms so that the compound is expressed with the chemical formula of Fe13Zn126. All Fe atoms exclusively occupy the centre of normal and disordered icosahedra. Iron-centred normal icosahedra are linked to one another by face- and vertex-sharing forming two types of basal slabs, which are bridged with each other by face-sharing with icosioctahedra, whereas disordered icosahedra with positional disorder at their vertex sites are isolated from other polyhedra. The bonding features in the δ1p phase are discussed in comparison with those in the Γ and ζ phases in the iron-zinc system.
Li, Xingxing; Huang, Shixin; Van de Meene, Allison M.L.; Tran, Mai L.; Killeavy, Erin; Mercure, Danielle; Burton, Rachel A.
2017-01-01
The secondary cell walls of tracheary elements and fibers are rich in cellulose microfibrils that are helically oriented and laterally aggregated. Support cells within the leaf midribs of mosses deposit cellulose-rich secondary cell walls, but their biosynthesis and microfibril organization have not been examined. Although the Cellulose Synthase (CESA) gene families of mosses and seed plants diversified independently, CESA knockout analysis in the moss Physcomitrella patens revealed parallels with Arabidopsis (Arabidopsis thaliana) in CESA functional specialization, with roles for both subfunctionalization and neofunctionalization. The similarities include regulatory uncoupling of the CESAs that synthesize primary and secondary cell walls, a requirement for two or more functionally distinct CESA isoforms for secondary cell wall synthesis, interchangeability of some primary and secondary CESAs, and some CESA redundancy. The cellulose-deficient midribs of ppcesa3/8 knockouts provided negative controls for the structural characterization of stereid secondary cell walls in wild type P. patens. Sum frequency generation spectra collected from midribs were consistent with cellulose microfibril aggregation, and polarization microscopy revealed helical microfibril orientation only in wild type leaves. Thus, stereid secondary walls are structurally distinct from primary cell walls, and they share structural characteristics with the secondary walls of tracheary elements and fibers. We propose a mechanism for the convergent evolution of secondary walls in which the deposition of aggregated and helically oriented microfibrils is coupled to rapid and highly localized cellulose synthesis enabled by regulatory uncoupling from primary wall synthesis. PMID:28768816
Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.
2012-01-01
An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470
Hormia, M; Ylipaavalniemi, P; Nagle, R B; Virtanen, I
1987-08-01
Immunostaining with monoclonal antibodies was used to study and compare the cytokeratin content of odontogenic cysts and normal gingival epithelium. Two monoclonal antibodies, PKK2 and KA1, stained the whole epithelium in all cyst samples. In gingiva, PKK2 gave a suprabasal staining and KA1 reacted with all epithelial cell layers. Antibodies PKK1, KM 4.62 and KS 8.12 gave a heterogeneous staining in follicular and radicular cysts. In keratocysts and in gingiva PKK1 and KM 4.62 reacted mainly with basal cells and KS 8.12 gave a suprabasal staining. Antibodies reacting with the simple epithelial cytokeratin polypeptide No. 18 (PKK3, KS 18.18) recognized in gingiva only solitary cells compatible with Merkel cells. In a case of follicular ameloblastoma a distinct staining of tumor epithelium was revealed with these antibodies. In 2 follicular cysts, but not in other cyst types, a layer of cytokeratin 18-positive cells was revealed. KA5 and KK 8.60 antibodies, reacting exclusively with keratinizing epithelia, including normal gingiva, gave no reaction in radicular cysts, keratocysts and ameloblastoma. Two of the follicular cysts, were negative for PKK3 and KS 18.18, but reacted strongly with KA5 and KK 8.60. The present results show that odontogenic jaw cysts have distinct differences in their cytokeratin content. With the exception of some follicular cysts, they lack signs of keratinizing epithelial differentiation. Only follicular cysts appear to share with some types of ameloblastoma the expression of cytokeratin polypeptide No. 18.
Elimination of mitochondrial DNA is not required for herpes simplex virus 1 replication.
Duguay, Brett A; Saffran, Holly A; Ponomarev, Alina; Duley, Shayla A; Eaton, Heather E; Smiley, James R
2014-03-01
Infection with herpes simplex virus type 1 (HSV-1) results in the rapid elimination of mitochondrial DNA (mtDNA) from host cells. It is known that a mitochondrial isoform of the viral alkaline nuclease (UL12) called UL12.5 triggers this process. However, very little is known about the impact of mtDNA depletion on viral replication or the biology of HSV-1 infections. These questions have been difficult to address because UL12.5 and UL12 are encoded by overlapping transcripts that share the same open reading frame. As a result, mutations that alter UL12.5 also affect UL12, and UL12 null mutations severely impair viral growth by interfering with the intranuclear processing of progeny viral genomes. Therefore, to specifically assess the impact of mtDNA depletion on viral replication, it is necessary to eliminate the activity of UL12.5 while preserving the nuclear functions of UL12. Previous work has shown that the human cytomegalovirus alkaline nuclease UL98 can functionally substitute for UL12 during HSV-1 replication. We found that UL98 is unable to deplete mtDNA in transfected cells and therefore generated an HSV-1 variant in which UL98 coding sequences replace the UL12/UL12.5 open reading frame. The resulting virus was severely impaired in its ability to trigger mtDNA loss but reached titers comparable to those of wild-type HSV-1 in one-step and multistep growth experiments. Together, these observations demonstrate that the elimination of mtDNA is not required for HSV-1 replication in cell culture. Herpes simplex virus types 1 and 2 destroy the DNA of host cell mitochondria, the powerhouses of cells. Epstein-Barr virus, a distantly related herpesvirus, has a similar effect, indicating that mitochondrial DNA destruction is under positive selection and thus confers a benefit to the virus. The present work shows that mitochondrial DNA destruction is not required for efficient replication of herpes simplex virus type 1 in cultured Vero kidney epithelial cells, suggesting that this activity likely benefits the virus in other cell types or in the intact human host.
Vallejo, Raquel; García Marín, Juan Francisco; Juste, Ramón Antonio; Muñoz-Mendoza, Marta; Salguero, Francisco Javier; Balseiro, Ana
2018-05-04
Sheep have been traditionally considered as less susceptible to Mycobacterium bovis (Mbovis) infection than other domestic ruminants such as cattle and goats. However, there is increasing evidence for the role of this species as a domestic Mbovis reservoir, mostly when sheep share grazing fields with infected cattle and goats. Nevertheless, there is a lack of information about the pathogenesis and the immune response of Mbovis infection in sheep. The goals of this study were to characterize the granuloma stages produced by the natural infection of Mbovis in sheep, to compare them with other species and to identify possible differences in the sheep immune response. Samples from bronchial lymph nodes from twelve Mbovis-naturally infected sheep were used. Four immunohistochemical protocols for the specific detection of T-lymphocytes, B-lymphocytes, plasma cells and macrophages were performed to study the local immune reaction within the granulomas. Differences were observed in the predominant cell type present in each type of granuloma, as well as differences and similarities with the development of tuberculous granulomas in other species. Very low numbers of T-lymphocytes were observed in all granuloma types indicating that specific cellular immune response mediated by T-cells might not be of much importance in sheep in the early stages of infection, when macrophages are the predominant cell type within lesions. Plasma cells and mainly B lymphocytes increased considerably as the granuloma developed being attracted to the lesions in a shift towards a Th2 response against the increasing amounts of mycobacteria. Therefore, we have proposed that the granulomas could be defined as initial, developed and terminal. Results showed that the study of the lymphoid tissue granulomata reinforces the view that the three different types of granuloma represent stages of lesion progression and suggest an explanation to the higher resistance of sheep based on a higher effective innate immune response to control tuberculosis infection.
Innate immunity, insulin resistance and type 2 diabetes.
Fernández-Real, José Manuel; Pickup, John C
2008-01-01
Recent evidence has disclosed previously unrecognized links among insulin resistance, obesity, circulating immune markers, immunogenetic susceptibility, macrophage function and chronic infection. Genetic variations leading to altered production or function of circulating innate immune proteins, cellular pattern-recognition receptors and inflammatory cytokines have been linked with insulin resistance, type 2 diabetes, obesity and atherosclerosis. Cellular innate immune associations with obesity and insulin resistance include increased white blood cell count and adipose tissue macrophage numbers. The innate immune response is modulated possibly by both predisposition (genetic or fetal programming), perhaps owing to evolutionary pressures caused by acute infections at the population level (pandemics), and chronic low exposure to environmental products or infectious agents. The common characteristics shared among innate immunity activation, obesity and insulin resistance are summarized.
Expression profiling of microRNAs in human bone tissue from postmenopausal women.
De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia
2018-01-01
Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.
The effect of the size of fluorescent dextran on its endocytic pathway.
Li, Lei; Wan, Tao; Wan, Min; Liu, Bei; Cheng, Ran; Zhang, Rongying
2015-05-01
Fluorescent dextrans are commonly used as macropinocytic probes to study the properties of endocytic cargoes; however, the effect of the size of dextrans on endocytic mechanisms has not been carefully analyzed. By using chemical and siRNA inhibition of individual endocytic pathways, we evaluated the internalization of two commonly used dextrans, Dex10 (dextran 10 kDa) and Dex70 (dextran 70 kDa), in mammalian HeLa cells and Caenorhabditis elegans coelomocytes. We revealed that Dex70 enters these two cell types predominantly via clathrin- and dynamin-independent and amiloride-sensitive macropinocytosis process; Dex10, on the other hand, enters the two cell types through clathrin-/dynamin-dependent micropinocytosis in addition to macropinocytosis. In addition, although different-sized dextrans follow different endocytic processes, they share common post-endocytic events. Herein, though straightforward, our studies support that the size of nanomaterials could play a paramount role in their inclusion into endocytic vesicles and suggest that care should be taken while selecting endocytic pathway markers. Based on our results, we propose that Dex70 is a better probe for macropinocytosis, whereas Dex10 and smaller molecules are better for probing general fluid-phase endocytosis, which includes macropinocytic and micropinocytic processes. © 2015 International Federation for Cell Biology.
Cui, Xiang; Liu, Minghan; Wang, Jiaxu; Zhou, Yue; Xiang, Qiang
2015-04-01
The study was aimed at evaluating the effect of electrospun scaffold containing TGF-β1 on promoting human mesenchymal stem cells (MSCs) differentiation towards a nucleus pulposus-like phenotype under hypoxia. Two kinds of nanofibrous scaffolds containing TGF-β1 were fabricated using uniaxial electrospinning (Group I) and coaxial electrospinning (Group II). Human MSCs were seeded on both kinds of scaffolds and cultured in a hypoxia chamber (2% O2), and then the scaffolds were characterised. Cell proliferation and differentiation were also evaluated after 3 weeks of cell culture. Results showed that both kinds of scaffolds shared similar diameter distributions and protein release. However, Group I scaffolds were more hydrophilic than that of Group II. Both kinds of scaffolds induced the MSCs to differentiate towards the nucleus pulposus-type phenotype in vitro. In addition, the expression of nucleus pulposus-associated genes (aggrecan, type II collagen, HIF-1α and Sox-9) in Group I increased more than that of Group II. These results indicate that electrospinning nanofibrous scaffolds containing TGF-β1 supports the differentiation of MSCs towards the pulposus-like phenotype in a hypoxia chamber, which would be a more appropriate choice for nucleus pulposus regeneration.
Data Sharing For Precision Medicine: Policy Lessons And Future Directions.
Blasimme, Alessandro; Fadda, Marta; Schneider, Manuel; Vayena, Effy
2018-05-01
Data sharing is a precondition of precision medicine. Numerous organizations have produced abundant guidance on data sharing. Despite such efforts, data are not being shared to a degree that can trigger the expected data-driven revolution in precision medicine. We set out to explore why. Here we report the results of a comprehensive analysis of data-sharing guidelines issued over the past two decades by multiple organizations. We found that the guidelines overlap on a restricted set of policy themes. However, we observed substantial fragmentation in the policy landscape across specific organizations and data types. This may have contributed to the current stalemate in data sharing. To move toward a more efficient data-sharing ecosystem for precision medicine, policy makers should explore innovative ways to cope with central policy themes such as privacy, consent, and data quality; focus guidance on interoperability, attribution, and public engagement; and promote data-sharing policies that can be adapted to multiple data types.
Koh, Sehwon; Piedrahita, Jorge A
2014-01-01
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs. Copyright © 2014 Elsevier Inc. All rights reserved.
Mills, Kate M; Brocardo, Mariana G; Henderson, Beric R
2016-02-01
Mutations in adenomatous polyposis coli (APC) disrupt regulation of Wnt signaling, mitosis, and the cytoskeleton. We describe a new role for APC in the transport of mitochondria. Silencing of wild-type APC by small interfering RNA caused mitochondria to redistribute from the cell periphery to the perinuclear region. We identified novel APC interactions with the mitochondrial kinesin-motor complex Miro/Milton that were mediated by the APC C-terminus. Truncating mutations in APC abolished its ability to bind Miro/Milton and reduced formation of the Miro/Milton complex, correlating with disrupted mitochondrial distribution in colorectal cancer cells that could be recovered by reconstitution of wild-type APC. Using proximity ligation assays, we identified endogenous APC-Miro/Milton complexes at mitochondria, and live-cell imaging showed that loss of APC slowed the frequency of anterograde mitochondrial transport to the membrane. We propose that APC helps drive mitochondria to the membrane to supply energy for cellular processes such as directed cell migration, a process disrupted by cancer mutations. © 2016 Mills et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Time-lapse cinematography in living Drosophila tissues: preparation of material.
Davis, Ilan; Parton, Richard M
2006-11-01
The fruit fly, Drosophila melanogaster, has been an extraordinarily successful model organism for studying the genetic basis of development and evolution. It is arguably the best-understood complex multicellular model system, owing its success to many factors. Recent developments in imaging techniques, in particular sophisticated fluorescence microscopy methods and equipment, now allow cellular events to be studied at high resolution in living material. This ability has enabled the study of features that tend to be lost or damaged by fixation, such as transient or dynamic events. Although many of the techniques of live cell imaging in Drosophila are shared with the greater community of cell biologists working on other model systems, studying living fly tissues presents unique difficulties in keeping the cells alive, introducing fluorescent probes, and imaging through thick hazy cytoplasm. This protocol outlines the preparation of major tissue types amenable to study by time-lapse cinematography and different methods for keeping them alive.
Squamous cell carcinoma – similarities and differences among anatomical sites
Yan, Wusheng; Wistuba, Ignacio I; Emmert-Buck, Michael R; Erickson, Heidi S
2011-01-01
Squamous cell carcinoma (SCC) is an epithelial malignancy involving many anatomical sites and is the most common cancer capable of metastatic spread. Development of early diagnosis methods and novel therapeutics are important for prevention and mortality reduction. In this effort, numerous molecular alterations have been described in SCCs. SCCs share many phenotypic and molecular characteristics, but they have not been extensively compared. This article reviews SCC as a disease, including: epidemiology, pathology, risk factors, molecular characteristics, prognostic markers, targeted therapy, and a new approach to studying SCCs. Through this comparison, several themes are apparent. For example, HPV infection is a common risk factor among the four major SCCs (NMSC, HNSC, ESCC, and NSCLC) and molecular abnormalities in cell-cycle regulation and signal transduction predominate. These data reveal that the molecular insights, new markers, and drug targets discovered in individual SCCs may shed light on this type of cancer as a whole. PMID:21938273
McClellan, Michael J.; Wood, C. David; Ojeniyi, Opeoluwa; Cooper, Tim J.; Kanhere, Aditi; Arvey, Aaron; Webb, Helen M.; Palermo, Richard D.; Harth-Hertle, Marie L.; Kempkes, Bettina; Jenner, Richard G.; West, Michelle J.
2013-01-01
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors. PMID:24068937
Kar, Siddhartha P.; Beesley, Jonathan; Al Olama, Ali Amin; Michailidou, Kyriaki; Tyrer, Jonathan; Kote-Jarai, ZSofia; Lawrenson, Kate; Lindstrom, Sara; Ramus, Susan J.; Thompson, Deborah J.; Kibel, Adam S.; Dansonka-Mieszkowska, Agnieszka; Michael, Agnieszka; Dieffenbach, Aida K.; Gentry-Maharaj, Aleksandra; Whittemore, Alice S.; Wolk, Alicja; Monteiro, Alvaro; Peixoto, Ana; Kierzek, Andrzej; Cox, Angela; Rudolph, Anja; Gonzalez-Neira, Anna; Wu, Anna H.; Lindblom, Annika; Swerdlow, Anthony; Ziogas, Argyrios; Ekici, Arif B.; Burwinkel, Barbara; Karlan, Beth Y.; Nordestgaard, Børge G.; Blomqvist, Carl; Phelan, Catherine; McLean, Catriona; Pearce, Celeste Leigh; Vachon, Celine; Cybulski, Cezary; Slavov, Chavdar; Stegmaier, Christa; Maier, Christiane; Ambrosone, Christine B.; Høgdall, Claus K.; Teerlink, Craig C.; Kang, Daehee; Tessier, Daniel C.; Schaid, Daniel J.; Stram, Daniel O.; Cramer, Daniel W.; Neal, David E.; Eccles, Diana; Flesch-Janys, Dieter; Velez Edwards, Digna R.; Wokozorczyk, Dominika; Levine, Douglas A.; Yannoukakos, Drakoulis; Sawyer, Elinor J.; Bandera, Elisa V.; Poole, Elizabeth M.; Goode, Ellen L.; Khusnutdinova, Elza; Høgdall, Estrid; Song, Fengju; Bruinsma, Fiona; Heitz, Florian; Modugno, Francesmary; Hamdy, Freddie C.; Wiklund, Fredrik; Giles, Graham G.; Olsson, Håkan; Wildiers, Hans; Ulmer, Hans-Ulrich; Pandha, Hardev; Risch, Harvey A.; Darabi, Hatef; Salvesen, Helga B.; Nevanlinna, Heli; Gronberg, Henrik; Brenner, Hermann; Brauch, Hiltrud; Anton-Culver, Hoda; Song, Honglin; Lim, Hui-Yi; McNeish, Iain; Campbell, Ian; Vergote, Ignace; Gronwald, Jacek; Lubiński, Jan; Stanford, Janet L.; Benítez, Javier; Doherty, Jennifer A.; Permuth, Jennifer B.; Chang-Claude, Jenny; Donovan, Jenny L.; Dennis, Joe; Schildkraut, Joellen M.; Schleutker, Johanna; Hopper, John L.; Kupryjanczyk, Jolanta; Park, Jong Y.; Figueroa, Jonine; Clements, Judith A.; Knight, Julia A.; Peto, Julian; Cunningham, Julie M.; Pow-Sang, Julio; Batra, Jyotsna; Czene, Kamila; Lu, Karen H.; Herkommer, Kathleen; Khaw, Kay-Tee; Matsuo, Keitaro; Muir, Kenneth; Offitt, Kenneth; Chen, Kexin; Moysich, Kirsten B.; Aittomäki, Kristiina; Odunsi, Kunle; Kiemeney, Lambertus A.; Massuger, Leon F.A.G.; Fitzgerald, Liesel M.; Cook, Linda S.; Cannon-Albright, Lisa; Hooning, Maartje J.; Pike, Malcolm C.; Bolla, Manjeet K.; Luedeke, Manuel; Teixeira, Manuel R.; Goodman, Marc T.; Schmidt, Marjanka K.; Riggan, Marjorie; Aly, Markus; Rossing, Mary Anne; Beckmann, Matthias W.; Moisse, Matthieu; Sanderson, Maureen; Southey, Melissa C.; Jones, Michael; Lush, Michael; Hildebrandt, Michelle A. T.; Hou, Ming-Feng; Schoemaker, Minouk J.; Garcia-Closas, Montserrat; Bogdanova, Natalia; Rahman, Nazneen; Le, Nhu D.; Orr, Nick; Wentzensen, Nicolas; Pashayan, Nora; Peterlongo, Paolo; Guénel, Pascal; Brennan, Paul; Paulo, Paula; Webb, Penelope M.; Broberg, Per; Fasching, Peter A.; Devilee, Peter; Wang, Qin; Cai, Qiuyin; Li, Qiyuan; Kaneva, Radka; Butzow, Ralf; Kopperud, Reidun Kristin; Schmutzler, Rita K.; Stephenson, Robert A.; MacInnis, Robert J.; Hoover, Robert N.; Winqvist, Robert; Ness, Roberta; Milne, Roger L.; Travis, Ruth C.; Benlloch, Sara; Olson, Sara H.; McDonnell, Shannon K.; Tworoger, Shelley S.; Maia, Sofia; Berndt, Sonja; Lee, Soo Chin; Teo, Soo-Hwang; Thibodeau, Stephen N.; Bojesen, Stig E.; Gapstur, Susan M.; Kjær, Susanne Krüger; Pejovic, Tanja; Tammela, Teuvo L.J.; Dörk, Thilo; Brüning, Thomas; Wahlfors, Tiina; Key, Tim J.; Edwards, Todd L.; Menon, Usha; Hamann, Ute; Mitev, Vanio; Kosma, Veli-Matti; Setiawan, Veronica Wendy; Kristensen, Vessela; Arndt, Volker; Vogel, Walther; Zheng, Wei; Sieh, Weiva; Blot, William J.; Kluzniak, Wojciech; Shu, Xiao-Ou; Gao, Yu-Tang; Schumacher, Fredrick; Freedman, Matthew L.; Berchuck, Andrew; Dunning, Alison M.; Simard, Jacques; Haiman, Christopher A.; Spurdle, Amanda; Sellers, Thomas A.; Hunter, David J.; Henderson, Brian E.; Kraft, Peter; Chanock, Stephen J.; Couch, Fergus J.; Hall, Per; Gayther, Simon A.; Easton, Douglas F.; Chenevix-Trench, Georgia; Eeles, Rosalind; Pharoah, Paul D.P.; Lambrechts, Diether
2016-01-01
Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10−8 seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10−5 in the three-cancer meta-analysis. PMID:27432226
Pang, Jen-Chieh; Lin, Jer-Sheng; Tsai, Cheng-Chih; Tsen, Hau-Yang
2006-10-01
Seventy-seven animal isolates of Salmonella enterica serovar Enteritidis (S. Enteritidis) obtained from the United States were analyzed by phage typing and pulsed field gel electrophoresis (PFGE). Thirty-nine strains were found with phage types (PT) 4, 8, and 13a. When the chromosomal DNA of these 39 isolated strains with PT4, 8, and 13a were digested with XbaI, SpeI and NotI, followed by PFGE analysis, 28 strains were found with a pattern combination of X4S4N4, which was the major subtype. When PFGE patterns of the US isolates with PT 4 and 8 were compared with those of the Taiwanese and German isolates, pattern X3S3N3 was confirmed to be the world-wide subtype shared by PT 4 isolates, as previously reported, while pattern X4S4N4 was newly found to be the most common subtype shared by PT 8 strains. The presence of such major world-wide clones, however, does not necessarily mean that these clones are highly virulent, at least not according to the results of invasiveness assays using cultured human intestinal epithelium cell line Int-407 and living BALB/mice.
Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels
2017-01-01
Electroporation (EP) of mRNA into human cells is a broadly applicable method to transiently express proteins of choice in a variety of different cell types. We have spent more than a decade to optimize and adapt this method, first for antigen-loading of dendritic cells (DCs), and subsequently for T cells, B cells, bulk PBMCs, and several cell lines. In this regard, antigens were introduced, processed, and presented in context of MHC class I and II. Next to that, functional proteins like adhesion receptors, T-cell receptors (TCRs), chimeric antigen receptors (CARs), constitutively active signal transducers, and others were successfully expressed. We have also established this protocol under full GMP compliance as part of a manufacturing license to produce mRNA-electroporated DCs for therapeutic vaccination in clinical trials. Therefore, we here want to share our universal mRNA electroporation protocol and the experience we have gathered with this method. The advantages of the transfection method presented here are: (1) easy adaptation to different cell types, (2) scalability from 10 6 to approximately 10 8 cells per shot, (3) high transfection efficiency (80-99 %), (4) homogenous protein expression, (5) GMP compliance if the EP is performed in a class A clean room, and (6) no transgene integration into the genome. The provided protocol involves: Opti-MEM® as EP medium, a square-wave pulse with 500 V, and 4 mm cuvettes. To adapt the protocol to differently sized cells, simply the pulse time is altered. Next to the basic protocol, we also provide an extensive list of hints and tricks, which in our opinion are of great value for everyone who intends to use this transfection technique.
NASA Astrophysics Data System (ADS)
Horsburgh, J. S.; Jones, A. S.
2016-12-01
Data and models used within the hydrologic science community are diverse. New research data and model repositories have succeeded in making data and models more accessible, but have been, in most cases, limited to particular types or classes of data or models and also lack the type of collaborative, and iterative functionality needed to enable shared data collection and modeling workflows. File sharing systems currently used within many scientific communities for private sharing of preliminary and intermediate data and modeling products do not support collaborative data capture, description, visualization, and annotation. More recently, hydrologic datasets and models have been cast as "social objects" that can be published, collaborated around, annotated, discovered, and accessed. Yet it can be difficult using existing software tools to achieve the kind of collaborative workflows and data/model reuse that many envision. HydroShare is a new, web-based system for sharing hydrologic data and models with specific functionality aimed at making collaboration easier and achieving new levels of interactive functionality and interoperability. Within HydroShare, we have developed new functionality for creating datasets, describing them with metadata, and sharing them with collaborators. HydroShare is enabled by a generic data model and content packaging scheme that supports describing and sharing diverse hydrologic datasets and models. Interoperability among the diverse types of data and models used by hydrologic scientists is achieved through the use of consistent storage, management, sharing, publication, and annotation within HydroShare. In this presentation, we highlight and demonstrate how the flexibility of HydroShare's data model and packaging scheme, HydroShare's access control and sharing functionality, and versioning and publication capabilities have enabled the sharing and publication of research datasets for a large, interdisciplinary water research project called iUTAH (innovative Urban Transitions and Aridregion Hydro-sustainability). We discuss the experiences of iUTAH researchers now using HydroShare to collaboratively create, curate, and publish datasets and models in a way that encourages collaboration, promotes reuse, and meets funding agency requirements.
Heng, Boon Chin; Richards, Mark; Ge, Zigang; Shu, Yimin
2010-02-01
The successful derivation of iPSC lines effectively demonstrates that it is possible to reset the 'developmental clock' of somatic cells all the way back to the initial embryonic state. Hence, it is plausible that this clock may instead be turned back half-way to a less immature developmental stage that is more directly applicable to clinical therapeutic applications or for in vitro pharmacology/toxicology screening assays. Such a suitable developmental state is postulated to be either the putative transit amplifying progenitor stage or adult stem cell stage. It is hypothetically possible to reprogram mature and terminally differentiated somatic cells back to the adult stem cell or transit amplifying progenitor stage, in a manner similar to the derivation of iPSC. It is proposed that the terminology 'Induced Adult Stem Cells' (iASC) or 'Induced Transit Amplifying Progenitor Cells' (iTAPC) be used to described such reprogrammed somatic cells. Of particular interest, is the possibility of resetting the developmental clock of mature differentiated somatic cells of the mesenchymal lineage, explanted from adipose tissue, bone marrow and cartilage. The putative adult stem cell sub-population from which these cells are derived, commonly referred to as 'mesenchymal stem cells', are highly versatile and hold much therapeutic promise in regenerative medicine, as attested to by numerous human clinical trials and animal studies. Perhaps it may be appropriate to term such reprogrammed cells as 'Induced Mesenchymal Stem Cells' (iMSC) or as 'Induced Mesenchumal Progenitor Cells' (iMPC). Given that cells from the same organ/tissue will share some commonalities in gene expression, we hypothesize that the generation of iASC or iTAPC would be more efficient as compared to iPSC generation, since a common epigenetic program must exist between the reprogrammed cells, adult stem cell or progenitor cell types and terminally differentiated cell types from the same organ/tissue.
Huang, Ruili; Lin, Ja-An; Sedykh, Alexander; Zhao, Jinghua; Tice, Raymond R.; Paules, Richard S.; Xia, Menghang; Auerbach, Scott S.
2017-01-01
Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our analysis, it is possible to formulate mechanism-based hypotheses on the cytotoxic properties of the tested chemicals. PMID:28531190
Liu, Chang; Yang, Yunchen; Wu, Yun
2018-03-08
Current cancer diagnostic methods are challenged by low sensitivity, high false positive rate, limited tumor information, uncomfortable or invasive procedures, and high cost. Liquid biopsy that analyzes circulating biomarkers in body fluids represents a promising solution to these challenges. Exosomes are one of the promising cancer biomarkers for liquid biopsy because they are cell-secreted, nano-sized, extracellular vesicles that stably exist in all types of body fluids. Exosomes transfer DNAs, RNAs, proteins, and lipids from parent cells to recipient cells for intercellular communication and play important roles in cancer initiation, progression, and metastasis. Many liquid biopsy biosensors have been developed to offer non- or minimally-invasive, highly sensitive, simple, rapid, and cost-effective cancer diagnostics. This review summarized recent advances of liquid biopsy biosensors with a focus on the detection of exosomal proteins as biomarkers for cancer screening, diagnosis, and prognosis. We reviewed six major types of liquid biopsy biosensors including immunofluorescence biosensor, colorimetric biosensor, surface plasmon resonance (SPR) biosensor, surface-enhanced Raman scattering (SERS) biosensor, electrochemical biosensor, and nuclear magnetic resonance (NMR) biosensor. We shared our perspectives on future improvement of exosome-based liquid biopsy biosensors to accelerate their clinical translation.
Regulation of Memory T Cells by Interleukin-23.
Li, Yanchun; Wang, Hongbo; Lu, Honghua; Hua, Shucheng
2016-01-01
Interleukin-23 (IL-23), a member of the IL-12 family of cytokines, is a heterodimeric cytokine. It is composed of subunits p40 (shared with IL-12) and p19 (an IL-12 p35-related subunit) and is secreted by several types of immune cells, such as natural killer cells and dendritic cells. The IL-23 receptor is composed of the subunit IL-12Rβ1 and the IL-23-specific subunit IL-23R. The binding of IL-23 to its specific cell surface receptor regulates a number of functions, including proliferation and differentiation of cells and secretion of cell factors. Memory T cells are a subset of T cells that secrete numerous important cell factors, and they function in the immune response to infection and diseases like cancer, autoimmune disease and bronchial asthma. IL-23R is expressed on the surface of memory T cells, which suggests that it can specifically regulate memory T cell function. IL-23 has been widely used as a clinical indicator in immune-related diseases and shows potential for use in disease treatment. Here we review the current progress in the study of the role of IL-23 in the regulation of memory T cells. © 2016 S. Karger AG, Basel.
48 CFR 3416.303 - Cost-sharing contracts.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Cost-sharing contracts. 3416.303 Section 3416.303 Federal Acquisition Regulations System DEPARTMENT OF EDUCATION ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost-Reimbursement Contracts 3416.303...
Sirko, Swetlana; Beckers, Johannes; Irmler, Martin
2015-01-01
Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self‐renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long‐term self‐renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere‐forming capacity including multipotency and long‐term self‐renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome‐wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. GLIA 2015;63:1452–1468 PMID:25965557
Word form Encoding in Chinese Word Naming and Word Typing
ERIC Educational Resources Information Center
Chen, Jenn-Yeu; Li, Cheng-Yi
2011-01-01
The process of word form encoding was investigated in primed word naming and word typing with Chinese monosyllabic words. The target words shared or did not share the onset consonants with the prime words. The stimulus onset asynchrony (SOA) was 100 ms or 300 ms. Typing required the participants to enter the phonetic letters of the target word,…
Type IV Pili in Gram-Positive Bacteria
Craig, Lisa
2013-01-01
SUMMARY Type IV pili (T4P) are surface-exposed fibers that mediate many functions in bacteria, including locomotion, adherence to host cells, DNA uptake (competence), and protein secretion and that can act as nanowires carrying electric current. T4P are composed of a polymerized protein, pilin, and their assembly apparatuses share protein homologs with type II secretion systems in eubacteria and the flagella of archaea. T4P are found throughout Gram-negative bacterial families and have been studied most extensively in certain model Gram-negative species. Recently, it was discovered that T4P systems are also widespread among Gram-positive species, in particular the clostridia. Since Gram-positive and Gram-negative bacteria have many differences in cell wall architecture and other features, it is remarkable how similar the T4P core proteins are between these organisms, yet there are many key and interesting differences to be found as well. In this review, we compare the two T4P systems and identify and discuss the features they have in common and where they differ to provide a very broad-based view of T4P systems across all eubacterial species. PMID:24006467
Patterson, Jesse C.; Klimenko, Evguenia S.; Thorner, Jeremy
2014-01-01
Eukaryotic cells use multiple mitogen-activated protein kinase (MAPK) cascades to evoke appropriate responses to external stimuli. In Saccharomyces cerevisiae, the MAPK Fus3 is activated by pheromone-binding G protein-coupled receptors to promote mating, whereas the MAPK Hog1 is activated by hyperosmotic stress to elicit the high osmolarity glycerol (HOG) response. Although these MAPK pathways share several upstream components, exposure to either pheromone or osmolyte alone triggers only the appropriate response. We used fluorescent localization- and transcription-specific reporters to assess activation of these pathways in individual cells on the minute and hour timescale, respectively. Dual activation of these two MAPK pathways occurred over a broad range of stimulant concentrations and temporal regimes in wild-type cells subjected to co-stimulation. Thus, signaling specificity is achieved through an “insulation” mechanism, not a “cross-inhibition” mechanism. Furthermore, we showed that there was a critical period during which Hog1 activity had to occur for proper insulation of the HOG pathway. PMID:20959523
Haller-Kikkatalo, Kadri; Uibo, Raivo
2016-02-01
Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance that begins or is first recognized during pregnancy. The prevalence of GDM is highly variable, depending on the population studied, and reflects the underlying pattern of diabetes in the population. GDM manifests by the second half of pregnancy and disappears following delivery in most cases, but is associated with the risk of subsequent diabetes development. Normal pregnancy induces carbohydrate intolerance to favor the availability of nutrients for the fetus, which is compensated by increased insulin secretion from the maternal pancreas. Pregnancy shares similarities with adiposity in metabolism to save energy, and both conditions favor the development of insulin resistance (IR) and low-grade inflammation. A highly complicated network of modified regulatory mechanisms may primarily affect carbohydrate metabolism by promoting autoimmune reactions to pancreatic β cells and affecting insulin function. As a result, diabetes development during pregnancy is facilitated. Depending on a pregnant woman's genetic susceptibility to diabetes, autoimmune mechanisms or IR are fundamental to the development autoimmune or non-autoimmune GDM, respectively. Pregnancy may facilitate the identification of women at risk of developing diabetes later in life; autoimmune and non-autoimmune GDM may be early markers of the risk of future type 1 and type 2 diabetes, respectively. The most convenient and efficient way to discriminate GDM types is to assess pancreatic β-cell autoantibodies along with diagnosing diabetes in pregnancy.
Trail networks formed by populations of immune cells
NASA Astrophysics Data System (ADS)
Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J.
2014-02-01
Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells.
Epigenomic Views of Innate Lymphoid Cells.
Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O'Shea, John J
2017-01-01
The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.
Epigenomic Views of Innate Lymphoid Cells
Sciumè, Giuseppe; Shih, Han-Yu; Mikami, Yohei; O’Shea, John J.
2017-01-01
The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity. PMID:29250060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Rajreddy; Kumar, B. Mohana; Lee, Won-Jae
Dental tissues provide an alternative autologous source of mesenchymal stem cells (MSCs) for regenerative medicine. In this study, we isolated human dental MSCs of follicle, pulp and papilla tissue from a single donor tooth after impacted third molar extraction by excluding the individual differences. We then compared the morphology, proliferation rate, expression of MSC-specific and pluripotency markers, and in vitro differentiation ability into osteoblasts, adipocytes, chondrocytes and functional hepatocyte-like cells (HLCs). Finally, we analyzed the protein expression profiles of undifferentiated dental MSCs using 2DE coupled with MALDI-TOF-MS. Three types of dental MSCs largely shared similar morphology, proliferation potential, expression ofmore » surface markers and pluripotent transcription factors, and differentiation ability into osteoblasts, adipocytes, and chondrocytes. Upon hepatogenic induction, all MSCs were transdifferentiated into functional HLCs, and acquired hepatocyte functions by showing their ability for glycogen storage and urea production. Based on the proteome profiling results, we identified nineteen proteins either found commonly or differentially expressed among the three types of dental MSCs. In conclusion, three kinds of dental MSCs from a single donor tooth possessed largely similar cellular properties and multilineage potential. Further, these dental MSCs had similar proteomic profiles, suggesting their interchangeable applications for basic research and call therapy. - Highlights: • Isolated and characterized three types of human dental MSCs from a single donor. • MSCs of dental follicle, pulp and papilla had largely similar biological properties. • All MSCs were capable of transdifferentiating into functional hepatocyte-like cells. • 2DE proteomics with MALDI-TOF/MS identified 19 proteins in three types of MSCs. • Similar proteomic profiles suggest interchangeable applications of dental MSCs.« less
Vickers, Mark A; Wilkie, Gwen M; Robinson, Nicolas; Rivera, Nadja; Haque, Tanzina; Crawford, Dorothy H; Barry, Jacqueline; Fraser, Neil; Turner, David M; Robertson, Victoria; Dyer, Phil; Flanagan, Peter; Newlands, Helen R; Campbell, John; Turner, Marc L
2014-11-01
Epstein-Barr virus (EBV) is associated with several malignancies, including post-transplant lymphoproliferative disorder (PTLD). Conventional treatments for PTLD are often successful, but risk organ rejection and cause significant side effects. EBV-specific cytotoxic T lymphocytes (CTLs) generated in vitro from peripheral blood lymphocytes provide an alternative treatment modality with few side effects, but autologous CTLs are difficult to use in clinical practice. Here we report the establishment and operation of a bank of EBV-specific CTLs derived from 25 blood donors with human leucocyte antigen (HLA) types found at high frequency in European populations. Since licensure, there have been enquiries about 37 patients, who shared a median of three class I and two class II HLA types with these donors. Cells have been infused into ten patients with lymphoproliferative disease, eight of whom achieved complete remission. Neither patient with refractory disease was matched for HLA class II. Both cases of EBV-associated non-haematopoietic sarcoma receiving cells failed to achieve complete remission. Thirteen patients died before any cells could be issued, emphasizing that the bank should be contacted before patients become pre-terminal. Thus, this third party donor-derived EBV-specific CTL cell bank can supply most patients with appropriately matched cells and most recipients have good outcomes. © 2014 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
Targeting Leukemia Stem Cells in the Bone Marrow Niche
Bornhäuser, Martin
2018-01-01
The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic. PMID:29466292
Biomarkers for evaluation of mast cell and basophil activation.
Kabashima, Kenji; Nakashima, Chisa; Nonomura, Yumi; Otsuka, Atsushi; Cardamone, Chiara; Parente, Roberta; De Feo, Giulia; Triggiani, Massimo
2018-03-01
Mast cells and basophils play a pathogenetic role in allergic, inflammatory, and autoimmune disorders. These cells have different development, anatomical location and life span but share many similarities in mechanisms of activation and type of mediators. Mediators secreted by mast cells and basophils correlate with clinical severity in asthma, chronic urticaria, anaphylaxis, and other diseases. Therefore, effective biomarkers to measure mast cell and basophil activation in vivo could potentially have high diagnostic and prognostic values. An ideal biomarker should be specific for mast cells or basophils, easily and reproducibly detectable in blood or biological fluids and should be metabolically stable. Markers of mast cell and basophil include molecules secreted by stimulated cells and surface molecules expressed upon activation. Some markers, such as histamine and lipid mediators are common to mast cells and basophils whereas others, such as tryptase and other proteases, are relatively specific for mast cells. The best surface markers of activation expressed on mast cells and basophils are CD63 and CD203. While these mediators and surface molecules have been associated to a variety of diseases, none of them fulfills requirements for an optimal biomarker and search for better indicators of mast cell/basophil activation in vivo is ongoing. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The HydroShare Collaborative Repository for the Hydrology Community
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D. P.; Goodall, J. L.; Couch, A.; Hooper, R. P.; Dash, P. K.; Stealey, M.; Yi, H.; Bandaragoda, C.; Castronova, A. M.
2017-12-01
HydroShare is an online, collaboration system for sharing of hydrologic data, analytical tools, and models. It supports the sharing of, and collaboration around, "resources" which are defined by standardized content types for data formats and models commonly used in hydrology. With HydroShare you can: Share your data and models with colleagues; Manage who has access to the content that you share; Share, access, visualize and manipulate a broad set of hydrologic data types and models; Use the web services application programming interface (API) to program automated and client access; Publish data and models and obtain a citable digital object identifier (DOI); Aggregate your resources into collections; Discover and access data and models published by others; Use web apps to visualize, analyze and run models on data in HydroShare. This presentation will describe the functionality and architecture of HydroShare highlighting our approach to making this system easy to use and serving the needs of the hydrology community represented by the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI). Metadata for uploaded files is harvested automatically or captured using easy to use web user interfaces. Users are encouraged to add or create resources in HydroShare early in the data life cycle. To encourage this we allow users to share and collaborate on HydroShare resources privately among individual users or groups, entering metadata while doing the work. HydroShare also provides enhanced functionality for users through web apps that provide tools and computational capability for actions on resources. HydroShare's architecture broadly is comprised of: (1) resource storage, (2) resource exploration website, and (3) web apps for actions on resources. System components are loosely coupled and interact through APIs, which enhances robustness, as components can be upgraded and advanced relatively independently. The full power of this paradigm is the extensibility it supports. Web apps are hosted on separate servers, which may be 3rd party servers. They are registered in HydroShare using a web app resource that configures the connectivity for them to be discovered and launched directly from resource types they are associated with.
Jacoby, Jason
2017-01-01
Retinal ganglion cells (RGCs) are frequently divided into functional types by their ability to extract and relay specific features from a visual scene, such as the capacity to discern local or global motion, direction of motion, stimulus orientation, contrast or uniformity, or the presence of large or small objects. Here we introduce three previously uncharacterized, nondirection-selective ON–OFF RGC types that represent a distinct set of feature detectors in the mouse retina. The three high-definition (HD) RGCs possess small receptive-field centers and strong surround suppression. They respond selectively to objects of specific sizes, speeds, and types of motion. We present comprehensive morphological characterization of the HD RGCs and physiological recordings of their light responses, receptive-field size and structure, and synaptic mechanisms of surround suppression. We also explore the similarities and differences between the HD RGCs and a well characterized RGC with a comparably small receptive field, the local edge detector, in response to moving objects and textures. We model populations of each RGC type to study how they differ in their performance tracking a moving object. These results, besides introducing three new RGC types that together constitute a substantial fraction of mouse RGCs, provide insights into the role of different circuits in shaping RGC receptive fields and establish a foundation for continued study of the mechanisms of surround suppression and the neural basis of motion detection. SIGNIFICANCE STATEMENT The output cells of the retina, retinal ganglion cells (RGCs), are a diverse group of ∼40 distinct neuron types that are often assigned “feature detection” profiles based on the specific aspects of the visual scene to which they respond. Here we describe, for the first time, morphological and physiological characterization of three new RGC types in the mouse retina, substantially augmenting our understanding of feature selectivity. Experiments and modeling show that while these three “high-definition” RGCs share certain receptive-field properties, they also have distinct tuning to the size, speed, and type of motion on the retina, enabling them to occupy different niches in stimulus space. PMID:28100743
Lindström, Miia; Hinderink, Katja; Somervuo, Panu; Kiviniemi, Katri; Nevas, Mari; Chen, Ying; Auvinen, Petri; Carter, Andrew T.; Mason, David R.; Peck, Michael W.; Korkeala, Hannu
2009-01-01
Comparative genomic hybridization analysis of 32 Nordic group I Clostridium botulinum type B strains isolated from various sources revealed two homogeneous clusters, clusters BI and BII. The type B strains differed from reference strain ATCC 3502 by 413 coding sequence (CDS) probes, sharing 88% of all the ATCC 3502 genes represented on the microarray. The two Nordic type B clusters differed from each other by their response to 145 CDS probes related mainly to transport and binding, adaptive mechanisms, fatty acid biosynthesis, the cell membranes, bacteriophages, and transposon-related elements. The most prominent differences between the two clusters were related to resistance to toxic compounds frequently found in the environment, such as arsenic and cadmium, reflecting different adaptive responses in the evolution of the two clusters. Other relatively variable CDS groups were related to surface structures and the gram-positive cell wall, suggesting that the two clusters possess different antigenic properties. All the type B strains carried CDSs putatively related to capsule formation, which may play a role in adaptation to different environmental and clinical niches. Sequencing showed that representative strains of the two type B clusters both carried subtype B2 neurotoxin genes. As many of the type B strains studied have been isolated from foods or associated with botulism, it is expected that the two group I C. botulinum type B clusters present a public health hazard in Nordic countries. Knowing the genetic and physiological markers of these clusters will assist in targeting control measures against these pathogens. PMID:19270141
The Role of ARX in Human Pancreatic Endocrine Specification
Gage, Blair K.; Asadi, Ali; Baker, Robert K.; Webber, Travis D.; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J.
2015-01-01
The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs. PMID:26633894
The Role of ARX in Human Pancreatic Endocrine Specification.
Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J
2015-01-01
The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.
Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment
Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Postovit, Lynne-Marie; Seftor, Elisabeth A.; Seftor, Richard E.B.; Hendrix, Mary J.C.; Kulesa, Paul M.
2008-01-01
The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumour cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay towards this important interface of developmental and cancer biology. PMID:18629870
Polge, Cécile; Jossier, Mathieu; Crozet, Pierre; Gissot, Lionel; Thomas, Martine
2008-01-01
The SNF1/AMPK/SnRK1 kinases are evolutionary conserved kinases involved in yeast, mammals, and plants in the control of energy balance. These heterotrimeric enzymes are composed of one α-type catalytic subunit and two γ- and β-type regulatory subunits. In yeast it has been proposed that the β-type subunits regulate both the localization of the kinase complexes within the cell and the interaction of the kinases with their targets. In this work, we demonstrate that the three β-type subunits of Arabidopsis (Arabidopsis thaliana; AKINβ1, AKINβ2, and AKINβ3) restore the growth phenotype of the yeast sip1Δsip2Δgal83Δ triple mutant, thus suggesting the conservation of an ancestral function. Expression analyses, using AKINβ promoter∷β-glucuronidase transgenic lines, reveal different and specific patterns of expression for each subunit according to organs, developmental stages, and environmental conditions. Finally, our results show that the β-type subunits are involved in the specificity of interaction of the kinase with the cytosolic nitrate reductase. Together with previous cell-free phosphorylation data, they strongly support the proposal that nitrate reductase is a real target of SnRK1 in the physiological context. Altogether our data suggest the conservation of ancestral basic function(s) together with specialized functions for each β-type subunit in plants. PMID:18768910
Hepp, Christof; Maier, Berenike
2017-10-01
Secretion systems enable bacteria to import and secrete large macromolecules including DNA and proteins. While most components of these systems have been identified, the molecular mechanisms of macromolecular transport remain poorly understood. Recent findings suggest that various bacterial secretion systems make use of the translocation ratchet mechanism for transporting polymers across the cell envelope. Translocation ratchets are powered by chemical potential differences generated by concentration gradients of ions or molecules that are specific to the respective secretion systems. Bacteria employ these potential differences for biasing Brownian motion of the macromolecules within the conduits of the secretion systems. Candidates for this mechanism include DNA import by the type II secretion/type IV pilus system, DNA export by the type IV secretion system, and protein export by the type I secretion system. Here, we propose that these three secretion systems employ different molecular implementations of the translocation ratchet mechanism. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.
Mucinous cystic neoplasms of the pancreas: update on the surgical pathology and molecular genetics.
Fukushima, Noriyoshi; Zamboni, Giuseppe
2014-11-01
Mucinous cystic neoplasms (MCNs) of the pancreas are primary pancreatic cyst-forming neoplasms that can be a precursor to invasive adenocarcinoma of the pancreas. MCNs occur almost exclusively in the distal pancreas of middle-aged women. MCNs typically show a "cyst-in-cyst" pattern of growth and are well encapsulated by a thick fibrous wall. MCNs are composed of mucin-producing neoplastic epithelial cells and "ovarian-type" subepithelial stroma. The epithelium is dysplastic and the grade can range from low to high grade; some MCNs have an associated invasive carcinoma. It is this associated invasive carcinoma that determines prognosis. MCNs harbor several characteristic genetic and epigenetic alterations, some of which are shared with conventional invasive pancreatic ductal adenocarcinoma. Furthermore, several studies reveal characteristic patterns of gene expression in the ovarian-type stroma that suggest steroidogenesis in the ovarian-type stroma. Better knowledge of the molecular alterations could help in the management of patients with this type of precursor of invasive carcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.
Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena
2016-01-01
p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407
The Implications of the Cancer Stem Cell Hypothesis for Neuro-Oncology and Neurology.
Rich, Jeremy N
2008-05-01
The cancer stem cell hypothesis posits that cancers contain a subset of neoplastic cells that propagate and maintain tumors through sustained self-renewal and potent tumorigenecity. Recent excitement has been generated by a number of reports that have demonstrated the existence of cancer stem cells in several types of brain tumors. Brain cancer stem cells - also called tumor initiating cells or tumor propagating cells - share features with normal neural stem cells but do not necessarily originate from stem cells. Although most cancers have only a small fraction of cancer stem cells, these tumor cells have been shown in laboratory studies to contribute to therapeutic resistance, formation of new blood vessels to supply the tumor, and tumor spread. As malignant brain tumors rank among the deadliest of all neurologic diseases, the identification of new cellular targets may have profound implications in neuro-oncology. Novel drugs that target stem cell pathways active in brain tumors have been efficacious against cancer stem cells suggesting that anti-cancer stem cell therapies may advance brain tumor therapy. The cancer stem cell hypothesis may have several implications for other neurologic diseases as caution must be exercised in activating stem cell maintenance pathways in cellular therapies for neurodegenerative diseases. The ability for a small fraction of cells to determine the overall course of a disease may also inform new paradigms of disease that may translate into improved patient outcomes.
Challenges in Sharing Information Effectively: Examples from Command and Control
ERIC Educational Resources Information Center
Sonnenwald, Diane H.
2006-01-01
Introduction: The goal of information sharing is to change a person's image of the world and to develop a shared working understanding. It is an essential component of collaboration. This paper examines barriers to sharing information effectively in dynamic group work situations. Method: Three types of battlefield training simulations were…
Shared Savings Financing for College and University Energy Efficiency Investments.
ERIC Educational Resources Information Center
Business Officer, 1984
1984-01-01
Shared savings arrangements for campus energy efficient investments are discussed. Shared savings is a term for an agreement in which a private company offers to implement an energy efficiency program, including capital improvements, in exchange for a portion of the energy cost savings. Attention is directed to: types of shared savings…
Rani, Pittu Sandhya; Babajan, Banaganapalli; Tulsian, Nikhil K; Begum, Mahabubunnisa; Kumar, Ashutosh; Ahmed, Niyaz
2013-11-01
Diabetes mellitus is a multifactorial disease and its incidence is increasing worldwide. Among the two types of diabetes, type-2 accounts for about 90% of all diabetic cases, whereas type-1 or juvenile diabetes is less prevalent and presents with humoral immune responses against some of the autoantigens. We attempted to test whether the sera of type-1 diabetes patients cross-react with mycobacterial heat shock protein 65 (Hsp65) due to postulated epitope homologies between mycobacterial Hsp65 and an important autoantigen of type-1 diabetes, glutamic acid decarboxylase-65 (GAD65). In our study, we used either recombinant mycobacterial Hsp65 protein or synthetic peptides corresponding to some of the potential epitopes of mycobacterial Hsp65 that are shared with GAD65 or human Hsp60, and a control peptide sourced from mycobacterial Hsp65 which is not shared with GAD65, Hsp60 and other autoantigens of type-1 diabetes. The indirect ELISA results indicated that both type-1 diabetes and type-2 diabetes sera cross-react with conserved mycobacterial Hsp65 peptides and recombinant mycobacterial Hsp65 protein but do not do so with the control peptide. Our results suggest that cross-reactivity of mycobacterial Hsp65 with autoantibodies of diabetes sera could be due to the presence of significantly conserved peptides between mycobacterial Hsp65 and human Hsp60 rather than between mycobacterial Hsp65 and GAD65. The treatment of human peripheral blood mononuclear cells (PBMCs) with recombinant mycobacterial Hsp65 protein or the synthetic peptides resulted in a significant increase in the secretion of cytokines such as IL-1β, IL-8, IL-6, TNF-α and IL-10. Taken together, these findings point towards a dual role for mycobacterial Hsp65: in inducing autoimmunity and in inflammation, the two cardinal features of diabetes mellitus.
Yamaguchi, Takuya; Takizawa, Fumio; Fischer, Uwe; Dijkstra, Johannes M.
2015-01-01
A phenomenon already discovered more than 25 years ago is the possibility of naïve helper T cells to polarize into TH1 or TH2 populations. In a simplified model, these polarizations occur at opposite ends of an “immune 1-2 axis” (i1-i2 axis) of possible conditions. Additional polarizations of helper/regulatory T cells were discovered later, such as for example TH17 and Treg phenotypes; although these polarizations are not selected by the axis-end conditions, they are affected by i1-i2 axis factors, and may retain more potential for change than the relatively stable TH1 and TH2 phenotypes. I1-i2 axis conditions are also relevant for polarizations of other types of leukocytes, such as for example macrophages. Tissue milieus with “type 1 immunity” (“i1”) are biased towards cell-mediated cytotoxicity, while the term “type 2 immunity” (“i2”) is used for a variety of conditions which have in common that they inhibit type 1 immunity. The immune milieus of some tissues, like the gills in fish and the uterus in pregnant mammals, probably are skewed towards type 2 immunity. An i2-skewed milieu is also created by many tumors, which allows them to escape eradication by type 1 immunity. In this review we compare a number of i1-i2 axis factors between fish and mammals, and conclude that several principles of the i1-i2 axis system seem to be ancient and shared between all classes of jawed vertebrates. Furthermore, the present study is the first to identify a canonical TH2 cytokine locus in a bony fish, namely spotted gar, in the sense that it includes RAD50 and bona fide genes of both IL-4/13 and IL-3/IL-5/GM-CSF families. PMID:26593954
Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L.; Mahata, Sushil K.; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J.; O'Connor, Daniel T.; Taupenot, Laurent
2010-01-01
Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H+-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network. PMID:20061385
Courel, Maïté; Soler-Jover, Alex; Rodriguez-Flores, Juan L; Mahata, Sushil K; Elias, Salah; Montero-Hadjadje, Maïté; Anouar, Youssef; Giuly, Richard J; O'Connor, Daniel T; Taupenot, Laurent
2010-03-26
Processes underlying the formation of dense core secretory granules (DCGs) of neuroendocrine cells are poorly understood. Here, we present evidence that DCG biogenesis is dependent on the secretory protein secretogranin (Sg) II, a member of the granin family of pro-hormone cargo of DCGs in neuroendocrine cells. Depletion of SgII expression in PC12 cells leads to a decrease in both the number and size of DCGs and impairs DCG trafficking of other regulated hormones. Expression of SgII fusion proteins in a secretory-deficient PC12 variant rescues a regulated secretory pathway. SgII-containing dense core vesicles share morphological and physical properties with bona fide DCGs, are competent for regulated exocytosis, and maintain an acidic luminal pH through the V-type H(+)-translocating ATPase. The granulogenic activity of SgII requires a pH gradient along this secretory pathway. We conclude that SgII is a critical factor for the regulation of DCG biogenesis in neuroendocrine cells, mediating the formation of functional DCGs via its pH-dependent aggregation at the trans-Golgi network.
Eckner, Robert J.
1973-01-01
Co-infection of neonatal BALB/c mice with Friend virus (FV) complex (containing defective spleen focus-forming virus [SFFV] and endogenous N-tropic leukemia-inducing helper virus [LLV-F]) and B-tropic Tennant leukemia virus (TenLV) resulted in the inhibition of LLV-F by the Fv-1b gene and recovery of a TenLV pseudotype of SFFV, abbreviated SFFV(TenLV). The host range of this pseudotype was B-tropic, since SFFV(TenLV) was 10 to 100 times more infectious for B-type (Fv-1bb) than for N-type (Fv-1nn) mice. The similar patterns of neutralization of N-tropic and B-tropic SFFV by type-specific murine antisera suggested that the difference in infectivity between these two SFFV preparations did not reside in envelope determinants. Rather, helper control of SFFV's host range was only apparent and dependent upon the ability of associated virus to provide a helper function for late stages in SFFV synthesis. Early stages in SFFV's infectious cycle were shown to be helper independent. The Fv-1 gene did not act at the level of the cell membrane to effectively restrict SFFV infection, since SFFV-induced transformed cells could be detected in the absence of spleen focus formation and SFFV synthesis. Further, the generation of these transformed cells by SFFV followed a one-hit, dose-response pattern, suggesting that SFFV-induced cell transformation is helper independent. Finally, restriction of helper function by Fv-1 may be an intracellular event, because both SFFV and its associated LLV-F helper share common envelope determinants and presumably adsorb onto and penetrate target cells with equal efficiency. PMID:4127030
Developing Novel Oncolytic Adenoviruses through Bioselection
Yan, Wen; Kitzes, Galila; Dormishian, Farid; Hawkins, Lynda; Sampson-Johannes, Adam; Watanabe, Josh; Holt, Jenny; Lee, Vivian; Dubensky, Thomas; Fattaey, Ali; Hermiston, Terry; Balmain, Allan; Shen, Yuqiao
2003-01-01
Mutants of human adenovirus 5 (Ad5) with enhanced oncolytic activity were isolated by using a procedure termed bioselection. Two mutants, ONYX-201 and ONYX-203, were plaque purified from a pool of randomly mutagenized Ad5 that was repeatedly passaged in the human colorectal cancer cell line HT29, and they were subsequently characterized. ONYX-201 and ONYX-203 replicated more rapidly in HT29 cells than wild-type Ad5, and they lysed HT29 cells up to 1,000-fold more efficiently. The difference was most profound when cells were infected at a relatively low multiplicity of infection, presumably due to the compounding effects of multiple rounds of infection. This enhanced cytolytic activity was observed not only in HT29 cells but also in many other human cancer cell lines tested. In contrast, the cytotoxicity of the bioselected mutants in a number of normal primary human cells was similar to that of wild-type Ad5, thus enhancing the therapeutic index (cytotoxicity in tumor cells versus that in normal cells) of these oncolytic agents. Both ONYX-201 and -203 contain seven single-base-pair mutations when compared with Ad5, four of which were common between ONYX-201 and -203. The mutation at nucleotide 8350, shared by both mutant viruses, was shown to be essential for the observed phenotypes. This mutation was mapped to the i-leader region of the major late transcription unit, resulting in the truncation of 21 amino acids from the C terminus of the i-leader protein. This work demonstrates that bioselection is a powerful tool for developing novel tumor-selective oncolytic viruses. Other potential applications of this technology are discussed. PMID:12552003
ID2 collaborates with ID3 to suppress iNKT and innate-like tumors1
Li, Jia; Roy, Sumedha; Kim, Young-Mi; Li, Shibo; Zhang, Baojun; Love, Cassandra; Reddy, Anupama; Rajagopalan, Deepthi; Dave, Sandeep; Diehl, Anna Mae; Zhuang, Yuan
2017-01-01
Inhibitor of DNA binding (ID) proteins, including ID1-4, are transcriptional regulators involved in promoting cell proliferation and survival in various cell types. Although upregulation of Id proteins has been associated with a broad spectrum of tumors, recent studies have identified that ID3 plays a tumor suppressor role in the development of Burkitt’s lymphoma in humans and Hepatosplenic T cell lymphomas in mice. Here, we report rapid lymphoma development in Id2/Id3 double knockout (L-DKO) mice caused by unchecked expansion of either invariant Natural Killer T (iNKT) cells, or a unique subset of innate-like, CD1d-independent T cells. These populations started expansion in neonatal mice and, upon malignant transformation, caused fatality at age between 3–11 months. The malignant cells also gave rise to lymphomas upon transfer to Rag-deficient and wild-type hosts, reaffirming their inherent tumorigenic potential. Microarray analysis revealed a significantly modified program in these neonatal iNKT cells that ultimately led to their malignant transformation. The lymphoma cells demonstrated chromosome instability, along with upregulation of several different signaling pathways, including the cytokine-cytokine receptor interaction pathway, which can promote their expansion and migration. Dysregulation of genes with reported driver mutations and the NF-kB pathway were found to be shared between L-DKO lymphomas and human NKT tumors. Our work identifies a distinct premalignant state and multiple tumoriogenic pathways caused by loss function of ID2 and ID3. Thus, conditional deletion of Id2 and Id3 in developing T cells establishes a unique animal model for iNKT and relevant innate-like lymphomas. PMID:28258199
48 CFR 1516.303-75 - Amount of cost-sharing.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... 1516.303-75 Section 1516.303-75 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CONTRACTING METHODS AND CONTRACT TYPES TYPES OF CONTRACTS Cost-Reimbursement Contracts 1516.303-75 Amount of... market share position; (3) The time and risk necessary to achieve success; (4) If the results of the...
Pont, Frédéric; Fournié, Jean Jacques
2010-03-01
MS, the reference technology for proteomics, routinely produces large numbers of protein lists whose fast comparison would prove very useful. Unfortunately, most softwares only allow comparisons of two to three lists at once. We introduce here nwCompare, a simple tool for n-way comparison of several protein lists without any query language, and exemplify its use with differential and shared cancer cell proteomes. As the software compares character strings, it can be applied to any type of data mining, such as genomic or metabolomic datalists.
The Shigella flexneri OspB effector: an early immunomodulator.
Ambrosi, Cecilia; Pompili, Monica; Scribano, Daniela; Limongi, Dolores; Petrucca, Andrea; Cannavacciuolo, Sonia; Schippa, Serena; Zagaglia, Carlo; Grossi, Milena; Nicoletti, Mauro
2015-01-01
Through the action of the type three secretion system (T3SS) Shigella flexneri delivers several effectors into host cells to promote cellular invasion, multiplication and to exploit host-cell signaling pathways to modulate the host innate immune response. Although much progress has been made in the understanding of many type III effectors, the molecular and cellular mechanism of the OspB effector is still poorly characterized. In this study we present new evidence that better elucidates the role of OspB as pro-inflammatory factor at very early stages of infection. Indeed, we demonstrate that, during the first hour of infection, OspB is required for full activation of ERK1/2 and p38 MAPKs and the cytosolic phospholipase A(2) (cPLA(2)). Activation of cPLA(2) ultimately leads to the production and secretion of PMN chemoattractant metabolite(s) uncoupled with release of IL-8. Moreover, we also present evidence that OspB is required for the development of the full and promptly inflammatory reaction characteristic of S. flexneri wild-type infection in vivo. Based on OspB and OspF similarity (both effectors share similar transcription regulation, temporal secretion into host cells and nuclear localization) we hypothesized that OspB and OspF effectors may form a pair aimed at modulating the host cell response throughout the infection process, with opposite effects. A model is presented to illustrate how OspB activity would promote S. flexneri invasion and bacterial dissemination at early critical phases of infection. Copyright © 2014 Elsevier GmbH. All rights reserved.
Heimann, Louisa; Horst, Ina; Perduns, Renke; Dreesen, Björn; Offermann, Sascha; Peterhansel, Christoph
2013-01-01
C4 photosynthesis evolved more than 60 times independently in different plant lineages. Each time, multiple genes were recruited into C4 metabolism. The corresponding promoters acquired new regulatory features such as high expression, light induction, or cell type-specific expression in mesophyll or bundle sheath cells. We have previously shown that histone modifications contribute to the regulation of the model C4 phosphoenolpyruvate carboxylase (C4-Pepc) promoter in maize (Zea mays). We here tested the light- and cell type-specific responses of three selected histone acetylations and two histone methylations on five additional C4 genes (C4-Ca, C4-Ppdk, C4-Me, C4-Pepck, and C4-RbcS2) in maize. Histone acetylation and nucleosome occupancy assays indicated extended promoter regions with regulatory upstream regions more than 1,000 bp from the transcription initiation site for most of these genes. Despite any detectable homology of the promoters on the primary sequence level, histone modification patterns were highly coregulated. Specifically, H3K9ac was regulated by illumination, whereas H3K4me3 was regulated in a cell type-specific manner. We further compared histone modifications on the C4-Pepc and C4-Me genes from maize and the homologous genes from sorghum (Sorghum bicolor) and Setaria italica. Whereas sorghum and maize share a common C4 origin, C4 metabolism evolved independently in S. italica. The distribution of histone modifications over the promoters differed between the species, but differential regulation of light-induced histone acetylation and cell type-specific histone methylation were evident in all three species. We propose that a preexisting histone code was recruited into C4 promoter control during the evolution of C4 metabolism. PMID:23564230
Shared use agreements and leisure time physical activity in North Carolina public schools.
Carlton, Troy A; Kanters, Michael A; Bocarro, Jason N; Floyd, Myron F; Edwards, Michael B; Suau, Luis J
2017-02-01
Although increasing community access to public schools through shared use agreements (SUAs) has been a recommended strategy for promoting physical activity (PA) among national, state and local organizations, empirical evidence examining the efficacy of SUAs is limited. This study examined the degree of usage and production of PA among schools with shared use, and how variation in PA output is related to characteristics of the school, type of activity, facility type, and when activity occurs. Data were collected in 20 schools across North Carolina using System for Observing Play and Recreation in Communities (SOPARC) and Structured Physical Activity Surveys (SPAS) to assess PA in school athletic facilities during out of school time. Findings indicated that although schools had a policy of shared or open use, most facilities were empty during non-school hours. Hierarchal linear regression models also showed that formal programming was positively associated with both use and PA levels. Given the abundance of empty facilities, community groups in need of space to facilitate structured PA programs should pursue avenues of sharing facilities with public schools. Furthermore, to increase the efficacy of shared use, structured physical activity programs may be needed. Future studies are encouraged to further explore the effects of the specific types of shared use programs on PA production as well other aspects of the built environment surrounding schools. Copyright © 2016 Elsevier Inc. All rights reserved.
Ride-sharing activities in the Richmond regional planning district.
DOT National Transportation Integrated Search
1977-01-01
This report gives the results of a survey made of industries in the Richmond Regional Planning District to determine the current and expected ride-sharing activities there and the type of information deemed most useful in planning ride-sharing progra...
Molecular definition of the identity and activation of natural killer cells.
Bezman, Natalie A; Kim, Charles C; Sun, Joseph C; Min-Oo, Gundula; Hendricks, Deborah W; Kamimura, Yosuke; Best, J Adam; Goldrath, Ananda W; Lanier, Lewis L
2012-10-01
Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes with cytotoxic CD8(+) T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, many encoding molecules with unknown functions. Resting NK cells demonstrate a 'preprimed' state compared with naive T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene expression of NK cells in various states.
The integumentary skeleton of tetrapods: origin, evolution, and development
Vickaryous, Matthew K; Sire, Jean-Yves
2009-01-01
Although often overlooked, the integument of many tetrapods is reinforced by a morphologically and structurally diverse assemblage of skeletal elements. These elements are widely understood to be derivatives of the once all-encompassing dermal skeleton of stem-gnathostomes but most details of their evolution and development remain confused and uncertain. Herein we re-evaluate the tetrapod integumentary skeleton by integrating comparative developmental and tissue structure data. Three types of tetrapod integumentary elements are recognized: (1) osteoderms, common to representatives of most major taxonomic lineages; (2) dermal scales, unique to gymnophionans; and (3) the lamina calcarea, an enigmatic tissue found only in some anurans. As presently understood, all are derivatives of the ancestral cosmoid scale and all originate from scleroblastic neural crest cells. Osteoderms are plesiomorphic for tetrapods but demonstrate considerable lineage-specific variability in size, shape, and tissue structure and composition. While metaplastic ossification often plays a role in osteoderm development, it is not the exclusive mode of skeletogenesis. All osteoderms share a common origin within the dermis (at or adjacent to the stratum superficiale) and are composed primarily (but not exclusively) of osseous tissue. These data support the notion that all osteoderms are derivatives of a neural crest-derived osteogenic cell population (with possible matrix contributions from the overlying epidermis) and share a deep homology associated with the skeletogenic competence of the dermis. Gymnophionan dermal scales are structurally similar to the elasmoid scales of most teleosts and are not comparable with osteoderms. Whereas details of development are lacking, it is hypothesized that dermal scales are derivatives of an odontogenic neural crest cell population and that skeletogenesis is comparable with the formation of elasmoid scales. Little is known about the lamina calcarea. It is proposed that this tissue layer is also odontogenic in origin, but clearly further study is necessary. Although not homologous as organs, all elements of the integumentary skeleton share a basic and essential relationship with the integument, connecting them with the ancestral rhombic scale. PMID:19422424
Evidence of femtosecond-laser pulse induced cell membrane nanosurgery
NASA Astrophysics Data System (ADS)
Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.
2017-02-01
The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.
Janiszewska, Jolanta; Posadas, Inmaculada; Játiva, Pablo; Bugaj-Zarebska, Marta; Urbanczyk-Lipkowska, Zofia; Ceña, Valentín
2016-01-01
Glioblastomas are the most common malignant primary brain tumours in adults and one of the most aggressive and difficult-to-treat cancers. No effective treatment exits actually for this tumour and new therapeutic approaches are needed for this disease. One possible innovative approach involves the nanoparticle-mediated specific delivery of drugs and/or genetic material to glioblastoma cells where they can provide therapeutic benefits. In the present work, we have synthesised and characterised several second generation amphiphilic polylysine dendrons to be used as siRNA carriers. We have found that, in addition to their siRNA binding properties, these new compounds inhibit the proliferation of two glioblastoma cell lines while being nontoxic for non-tumoural central nervous system cells like neurons and glia, cell types that share the anatomical space with glioblastoma cells during the course of the disease. The selective toxicity of these nanoparticles to glioblastoma cells, as compared to neurons and glial cells, involves mitochondrial depolarisation and reactive oxygen species production. This selective toxicity, together with the ability to complex and release siRNA, suggests that these new polylysine dendrons might offer a scaffold in the development of future nanoparticles designed to restrict the proliferation of glioblastoma cells. PMID:27832093
Adaptive and Pathogenic Responses to Stress by Stem Cells during Development.
Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A
2012-12-10
Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies.
Adaptive and Pathogenic Responses to Stress by Stem Cells during Development
Mansouri, Ladan; Xie, Yufen; Rappolee, Daniel A
2012-01-01
Cellular stress is the basis of a dose-dependent continuum of responses leading to adaptive health or pathogenesis. For all cells, stress leads to reduction in macromolecular synthesis by shared pathways and tissue and stress-specific homeostatic mechanisms. For stem cells during embryonic, fetal, and placental development, higher exposures of stress lead to decreased anabolism, macromolecular synthesis and cell proliferation. Coupled with diminished stem cell proliferation is a stress-induced differentiation which generates minimal necessary function by producing more differentiated product/cell. This compensatory differentiation is accompanied by a second strategy to insure organismal survival as multipotent and pluripotent stem cells differentiate into the lineages in their repertoire. During stressed differentiation, the first lineage in the repertoire is increased and later lineages are suppressed, thus prioritized differentiation occurs. Compensatory and prioritized differentiation is regulated by at least two types of stress enzymes. AMP-activated protein kinase (AMPK) which mediates loss of nuclear potency factors and stress-activated protein kinase (SAPK) that does not. SAPK mediates an increase in the first essential lineage and decreases in later lineages in placental stem cells. The clinical significance of compensatory and prioritized differentiation is that stem cell pools are depleted and imbalanced differentiation leads to gestational diseases and long term postnatal pathologies. PMID:24710551
Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D
2014-10-20
The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.
González, Silvia A; Falcón, Juan I; Affranchino, José L
2014-03-01
Feline immunodeficiency virus (FIV) and the T cell-tropic strains of human immunodeficiency virus type 1 (HIV-1) share the use of the chemokine receptor CXCR4 for cell entry. To study this process further we developed a cell surface binding assay based on the expression of a soluble version of the FIV SU C-terminally tagged with the influenza virus hemagglutinin epitope (HA). The specificity of the assay was demonstrated by the following evidence: (1) the SU-HA protein bound to HeLa cells that express CXCR4 but not to MDCK cells that lack this chemokine receptor; and (2) binding of the SU-HA to HeLa cells was blocked by incubation with the CXCR4 antagonist AMD3100 as well as with the anti-CXCR4 monoclonal antibody (MAb) 12G5. Deletion of the V3 region from the FIV SU glycoprotein abolished its ability to bind CXCR4-expressing cells. Remarkably, substitution of the V3 domain of the FIV SU by the equivalent region of the HIV-1 NL4-3 isolate resulted in efficient cell surface binding of the chimeric SU protein to CXCR4. Moreover, transfection of MDCK cells with a plasmid encoding human CXCR4 allowed the association of the chimeric SU-HA glycoprotein to the transfected cells. Interestingly, while cell binding of the chimeric FIV-HIV SU was inhibited by an anti-HIV-1 V3 MAb, its association with CXCR4 was found to be resistant to AMD3100. Of note, the chimeric FIV-HIV Env glycoprotein was capable of promoting CXCR4-dependent cell-to-cell fusion.
Wilson, Thomas E; Arlt, Martin F; Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W
2015-02-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. © 2015 Wilson et al.; Published by Cold Spring Harbor Laboratory Press.
Oling, David; Masoom, Rehan; Kvint, Kristian
2014-06-15
Ubp3 is a conserved ubiquitin protease that acts as an antisilencing factor in MAT and telomeric regions. Here we show that ubp3∆ mutants also display increased silencing in ribosomal DNA (rDNA). Consistent with this, RNA polymerase II occupancy is lower in cells lacking Ubp3 than in wild-type cells in all heterochromatic regions. Moreover, in a ubp3∆ mutant, unequal recombination in rDNA is highly suppressed. We present genetic evidence that this effect on rDNA recombination, but not silencing, is entirely dependent on the silencing factor Sir2. Further, ubp3∆ sir2∆ mutants age prematurely at the same rate as sir2∆ mutants. Thus our data suggest that recombination negatively influences replicative life span more so than silencing. However, in ubp3∆ mutants, recombination is not a prerequisite for aging, since cells lacking Ubp3 have a shorter life span than isogenic wild-type cells. We discuss the data in view of different models on how silencing and unequal recombination affect replicative life span and the role of Ubp3 in these processes. © 2014 Öling et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Park, So Hae; Rajendran, Sountharia; Paulsen, Michelle; Ljungman, Mats; Glover, Thomas W.
2015-01-01
Copy number variants (CNVs) resulting from genomic deletions and duplications and common fragile sites (CFSs) seen as breaks on metaphase chromosomes are distinct forms of structural chromosome instability precipitated by replication inhibition. Although they share a common induction mechanism, it is not known how CNVs and CFSs are related or why some genomic loci are much more prone to their occurrence. Here we compare large sets of de novo CNVs and CFSs in several experimental cell systems to each other and to overlapping genomic features. We first show that CNV hotpots and CFSs occurred at the same human loci within a given cultured cell line. Bru-seq nascent RNA sequencing further demonstrated that although genomic regions with low CNV frequencies were enriched in transcribed genes, the CNV hotpots that matched CFSs specifically corresponded to the largest active transcription units in both human and mouse cells. Consistently, active transcription units >1 Mb were robust cell-type-specific predictors of induced CNV hotspots and CFS loci. Unlike most transcribed genes, these very large transcription units replicated late and organized deletion and duplication CNVs into their transcribed and flanking regions, respectively, supporting a role for transcription in replication-dependent lesion formation. These results indicate that active large transcription units drive extreme locus- and cell-type-specific genomic instability under replication stress, resulting in both CNVs and CFSs as different manifestations of perturbed replication dynamics. PMID:25373142
These Small Schools Pooled Resources to Beef Up Bare-Bones Curriculums.
ERIC Educational Resources Information Center
Ditzler, Lolita
1984-01-01
In the Midwest, three types of cooperation among rural school districts have supplemented rural schools' limited curricula and facilities: (1) shared classes, with cooperative transportation between schools; (2) shared classes via cable television; and (3) shared extracurricular activities. (JW)
Murata, Ken; Hayashibara, Toshihisa; Sugahara, Kazuyuki; Uemura, Akiko; Yamaguchi, Taku; Harasawa, Hitomi; Hasegawa, Hiroo; Tsuruda, Kazuto; Okazaki, Toshiro; Koji, Takehiko; Miyanishi, Takayuki; Yamada, Yasuaki; Kamihira, Shimeru
2006-01-01
Adult T-cell leukemia (ATL) is associated with prior infection with human T-cell leukemia virus type 1 (HTLV-1); however, the mechanism by which HTLV-1 causes adult T-cell leukemia has not been fully elucidated. Recently, a functional basic leucine zipper (bZIP) protein coded in the minus strand of HTLV-1 genome (HBZ) was identified. We report here a novel isoform of the HTLV-1 bZIP factor (HBZ), HBZ-SI, identified by means of reverse transcription-PCR (RT-PCR) in conjunction with 5′ and 3′ rapid amplification of cDNA ends (RACE). HBZ-SI is a 206-amino-acid-long protein and is generated by alternative splicing between part of the HBZ gene and a novel exon located in the 3′ long terminal repeat of the HTLV-1 genome. Consequently, these isoforms share >95% amino acid sequence identity, and differ only at their N termini, indicating that HBZ-SI is also a functional protein. Duplex RT-PCR and real-time quantitative RT-PCR analyses showed that the mRNAs of these isoforms were expressed at equivalent levels in all ATL cell samples examined. Nonetheless, we found by Western blotting that the HBZ-SI protein was preferentially expressed in some ATL cell lines examined. A key finding was obtained from the subcellular localization analyses of these isoforms. Despite their high sequence similarity, each isoform was targeted to distinguishable subnuclear structures. These data show the presence of a novel isoform of HBZ in ATL cells, and in addition, shed new light on the possibility that each isoform may play a unique role in distinct regions in the cell nucleus. PMID:16474156
Litchman, Michelle L; Allen, Nancy A; Colicchio, Vanessa D; Wawrzynski, Sarah E; Sparling, Kerri M; Hendricks, Krissa L; Berg, Cynthia A
2018-01-01
Little research exists regarding how real-time continuous glucose monitoring (RT-CGM) data sharing plays a role in the relationship between patients and their care partners. To (1) identify the benefits and challenges related to RT-CGM data sharing from the patient and care partner perspective and (2) to explore the number and type of individuals who share and follow RT-CGM data. This qualitative content analysis was conducted by examining publicly available blogs focused on RT-CGM and data sharing. A thematic analysis of blogs and associated comments was conducted. A systematic appraisal of personal blogs examined 39 blogs with 206 corresponding comments. The results of the study provided insight about the benefits and challenges related to individuals with diabetes sharing their RT-CGM data with a care partner(s). The analysis resulted in three themes: (1) RT-CGM data sharing enhances feelings of safety, (2) the need to communicate boundaries to avoid judgment, and (3) choice about sharing and following RT-CGM data. RT-CGM data sharing occurred within dyads (n = 46), triads (n = 15), and tetrads (n = 2). Adults and children with type 1 diabetes and their care partners are empowered by the ability to share and follow RT-CGM data. Our findings suggest that RT-CGM data sharing between an individual with diabetes and their care partner can complicate relationships. Healthcare providers need to engage patients and care partners in discussions about best practices related to RT-CGM sharing and following to avoid frustrations within the relationship.
Heterogeneity of cell firing properties and opioid sensitivity in the thalamic reticular nucleus.
Brunton, J; Charpak, S
1997-05-01
The thalamic reticular nucleus receives afferents from the dorsal thalamus, cortex and brainstem, and projects back onto most cortically projecting thalamic nuclei thus playing a key role in the synchronization of the thalamocortical network. Although this nucleus was initially thought to consist of a homogeneous population of cells using GABA as a transmitter, and sharing identical intrinsic membrane properties, some heterogeneity was subsequently reported. The morphological diversity is generally acknowledged, but only two studies have shown functional differences between two classes of cells which vary in their ability to discharge in bursts. However, the location of the non-bursting cells was not characterized with anatomical techniques. Our recent work on the action of mu-opioid agonists in the thalamus revealed a widespread K+-mediated inhibition of most, if not all, thalamic relay and diffuse projection neurons. However, in the reticular nucleus, preliminary experiments suggested that the opioid sensitivity was variable. Based on these results and on observations of a discrete localization of mu-opioid receptors in the reticular nucleus, we investigated cellular heterogeneity within the nucleus using opioid agonists as markers. Using the whole cell patch clamp technique in young rat thalamic slices, we tested the responses of 28 neurons to opioids, the intrinsic membrane properties of each cell, and their relative location within the nucleus. Two types of intrinsic membrane properties underlying distinct discharge behaviours were seen in neurobiotin-labelled cells clearly located in the reticular nucleus: type I with the typical bursting behaviour previously reported in reticularis neurons, and type II in which bursting was greatly reduced or absent. Each class of cell could be further divided into subpopulations based on their opioid sensitivity. About half of both bursting (20) and non-bursting or tonic (8) cells were strongly inhibited by the mu-opioid receptor agonist D-Ala2,N-Me-Phe4,glycinol5-enkephalin, an effect mediated by an increase in K+ conductance. At no time was inhibition by delta- or kappa-receptor agonists seen. Our work therefore further demonstrates that the reticular nucleus is functionally heterogeneous, although the role of such cell diversity has still to be determined.
Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin
2009-07-01
Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.
Clinical characteristics and HLA alleles of a family with simultaneously occurring alopecia areata.
Emre, Selma; Metin, Ahmet; Caykoylu, Ali; Akoglu, Gulsen; Ceylan, Gülay G; Oztekin, Aynure; Col, Esra S
2016-06-01
Alopecia areata (AA) is a T-cell-mediated autoimmune disease resulting in partial or total noncicatricial hair loss. HLA class II antigens are the most important markers that constitute genetic predisposition to AA. Various life events and intense psychological stress may play an important role in triggering AA attacks. We report an unusual case series of 4 family members who had simultaneously occurring active AA lesions. Our aim was to evaluate the clinical and psychiatric features of 4 cases of active AA lesions occurring simultaneously in a family and determine HLA alleles. The clinical and psychological features of all patients were examined. HLA antigen DNA typing was performed by polymerase chain reaction with sequence-specific primers. All patients had typical AA lesions over the scalp and/or beard area. Psychological examinations revealed obsessive-compulsive personality disorder in the proband's parents as well as anxiety and lack of self-confidence in both the proband and his sister. HLA antigen types were not commonly shared with family members. These findings suggest that AA presenting concurrently in members of the same family was not associated with genetic predisposition. Shared psychological disorders and stressful life events might be the major key points in the concurrent presentation of these familial AA cases and development of resistance against treatments.
Chambers, D W
1997-01-01
Our ambivalence toward competition can be traced to an unspoken preference for certain types of competition which give us an advantage over the types we value less. Four types are defined (a) pure (same rules, same objectives), (b) collaborative (same rules, shared objective), (c) market share (different rules, same objectives), and (d) market growth (different rules, value added orientation). The defining characteristics of the four types of competition are respectively: needing a referee, arguing over the spoils, differentiation and substitutability, and customer focus. Dentistry has features of all four types of competition, thus making it difficult to have a meaningful discussion or frame a coherent policy on this topic.
Shared versus distributed memory multiprocessors
NASA Technical Reports Server (NTRS)
Jordan, Harry F.
1991-01-01
The question of whether multiprocessors should have shared or distributed memory has attracted a great deal of attention. Some researchers argue strongly for building distributed memory machines, while others argue just as strongly for programming shared memory multiprocessors. A great deal of research is underway on both types of parallel systems. Special emphasis is placed on systems with a very large number of processors for computation intensive tasks and considers research and implementation trends. It appears that the two types of systems will likely converge to a common form for large scale multiprocessors.
ERIC Educational Resources Information Center
Youn, Houng Jin
2013-01-01
The purpose of this dissertation was to launch a leadership training program for shared leadership based on "super leadership." The constructs of the study were designed to study Bible leaders in shared leadership, leadership paradigm and types, transformational leadership, and, super leadership and shared leadership theory that are all…
Role of the β Common (βc) Family of Cytokines in Health and Disease.
Hercus, Timothy R; Kan, Winnie L T; Broughton, Sophie E; Tvorogov, Denis; Ramshaw, Hayley S; Sandow, Jarrod J; Nero, Tracy L; Dhagat, Urmi; Thompson, Emma J; Shing, Karen S Cheung Tung; McKenzie, Duncan R; Wilson, Nicholas J; Owczarek, Catherine M; Vairo, Gino; Nash, Andrew D; Tergaonkar, Vinay; Hughes, Timothy; Ekert, Paul G; Samuel, Michael S; Bonder, Claudine S; Grimbaldeston, Michele A; Parker, Michael W; Lopez, Angel F
2018-06-01
The β common ([βc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use βc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the βc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease. This review will focus on the emerging biological roles for the βc cytokines, our progress toward understanding the mechanisms of receptor assembly and signaling, and the application of this knowledge to develop exciting new therapeutic approaches against human disease. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
2012-01-01
Background The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates. Methods The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments. Results We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins). Conclusion We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina. PMID:22642675
Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2010-01-01
Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that showed signs of damage by viruses and virus titers (see figure) that indicated large increases in the populations of viruses during the days following inoculation.
CellML metadata standards, associated tools and repositories
Beard, Daniel A.; Britten, Randall; Cooling, Mike T.; Garny, Alan; Halstead, Matt D.B.; Hunter, Peter J.; Lawson, James; Lloyd, Catherine M.; Marsh, Justin; Miller, Andrew; Nickerson, David P.; Nielsen, Poul M.F.; Nomura, Taishin; Subramanium, Shankar; Wimalaratne, Sarala M.; Yu, Tommy
2009-01-01
The development of standards for encoding mathematical models is an important component of model building and model sharing among scientists interested in understanding multi-scale physiological processes. CellML provides such a standard, particularly for models based on biophysical mechanisms, and a substantial number of models are now available in the CellML Model Repository. However, there is an urgent need to extend the current CellML metadata standard to provide biological and biophysical annotation of the models in order to facilitate model sharing, automated model reduction and connection to biological databases. This paper gives a broad overview of a number of new developments on CellML metadata and provides links to further methodological details available from the CellML website. PMID:19380315
Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A
2014-05-01
Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation. © 2013 AlphaMed Press.
Insulin-like growth factor-1 signaling in renal cell carcinoma.
Tracz, Adam F; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M
2016-07-12
Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells.
Hanna, K M; Dashiff, C J; Stump, T E; Weaver, M T
2013-09-01
Parent-adolescent shared responsibility for diabetes care is advocated by experts to achieve beneficial diabetes and psychosocial outcomes for adolescents with type 1 diabetes. Parental autonomy support may be a way to facilitate this sharing. In this dyadic study, we examined parental diabetes-specific autonomy support experienced by adolescents with type 1 diabetes and their parents (n = 89 dyads), and its association with their experience of shared diabetes care responsibility. Path analysis was used to test an Actor-Partner Interdependence Model for parental autonomy support effects on shared responsibility. This was a secondary analysis of data from 89 parent-early/mid-adolescent dyads. Actor effects were identified. Parents' and adolescents' perceptions of parental autonomy support were associated with their respective reports of shared diabetes care responsibility. One partner effect was identified. Adolescents' reports of parental autonomy support were associated with parents' reports of shared responsibility. Parents and adolescents held similar views of autonomy support but discrepant views of shared responsibility. Older adolescents perceived less parental autonomy support. Increasing parental autonomy support may facilitate parent-adolescent sharing of diabetes care responsibility. Adolescent and parent perceptions influence each other and need to be considered when working with them to strengthen parental autonomy support. © 2012 John Wiley & Sons Ltd.
Lovy, Jan; Piesik, P.; Hershberger, P.K.; Garver, K.A.
2013-01-01
In British Columbia, Canada (BC), aquaculture of finfish in ocean netpens has the potential for pathogen transmission between wild and farmed species due to the sharing of an aquatic environment. Viral hemorrhagic septicemia virus (VHSV) is enzootic in BC and causes serious disease in wild Pacific herring, Clupea pallasii, which often enter and remain in Atlantic salmon, Salmo salar, netpens. Isolation of VHSV from farmed Atlantic salmon has been previously documented, but the effects on the health of farmed salmon and the wild fish sharing the environment are unknown. To determine their susceptibility, Atlantic salmon were exposed to a pool of 9 isolates of VHSV obtained from farmed Atlantic salmon in BC by IP-injection or by waterborne exposure and cohabitation with diseased Pacific herring. Disease intensity was quantified by recording mortality, clinical signs, histopathological changes, cellular sites of viral replication, expression of interferon-related genes, and viral tissue titers. Disease ensued in Atlantic salmon after both VHSV exposure methods. Fish demonstrated gross disease signs including darkening of the dorsal skin, bilateral exophthalmia, light cutaneous hemorrhage, and lethargy. The virus replicated within endothelial cells causing endothelial cell necrosis and extensive hemorrhage in anterior kidney. Infected fish demonstrated a type I interferon response as seen by up-regulation of genes for IFNα, Mx, and ISG15. In a separate trial infected salmon transmitted the virus to sympatric Pacific herring. The results demonstrate that farmed Atlantic salmon can develop clinical VHS and virus can persist in the tissues for at least 10 weeks. Avoiding VHS epizootics in Atlantic salmon farms would limit the potential of VHS in farmed Atlantic salmon, the possibility for further host adaptation in this species, and virus spillback to sympatric wild fishes.
Description of Leifsonia kafniensis sp. nov. and Leifsonia antarctica sp. nov.
Pindi, Pavan Kumar; Kishore, K Hara; Reddy, G S N; Shivaji, S
2009-06-01
Strains KFC-22(T) and SPC-20(T) are yellow-pigmented, Gram-positive, aerobic, non-motile, rod-shaped bacteria that were isolated from a soil sample near the Kafni glacier in the Himalayan mountain ranges in India, and from a spade core sediment sample from the Antarctic Ocean at Larsemann Hill, respectively. In both cases, the cell-wall peptidoglycan contained 2,4-diaminobutyric acid as the diamino acid, anteiso-C(15 : 0), anteiso-C(17 : 0) and iso-C(16 : 0) were the predominant fatty acids and MK-11 was the major isoprenoid quinone in the cell membrane. On the basis of the above-mentioned characteristics, both strains can be assigned to the genus Leifsonia. The strains share 16S rRNA gene sequence similarity of 97.7 % and DNA relatedness of only 10 %, indicating that they represent different species. A blast analysis indicated that Leifsonia pindariensis PON10(T) was the closest phylogenetic neighbour of strains SPC-20(T) and KFC-22(T), showing 16S rRNA gene sequence similarities of 97.3 and 97.7 %, respectively. However, at the whole-genome level, strains KFC-22(T) and SPC-20(T) shared 42 and 11 % DNA-DNA relatedness, respectively, with L. pindariensis PON10(T). In addition, both strains exhibited several phenotypic differences with respect to L. pindariensis PON10(T). Thus, on the basis of the differences that the two strains exhibited with respect to L. pindariensis, both were identified as representing novel species of the genus Leifsonia, for which the names Leifsonia kafniensis sp. nov. (type strain KFC-22(T) =NCCB 100216(T) =LMG 24362(T)) and Leifsonia antarctica sp. nov. (type strain SPC-20(T) =NCCB 100227(T) =LMG 24541(T)) are proposed.
Anonymity Versus Privacy: Selective Information Sharing in Online Cancer Communities
Vermeulen, Ivar E; Beekers, Nienke
2014-01-01
Background Active sharing in online cancer communities benefits patients. However, many patients refrain from sharing health information online due to privacy concerns. Existing research on privacy emphasizes data security and confidentiality, largely focusing on electronic medical records. Patient preferences around information sharing in online communities remain poorly understood. Consistent with the privacy calculus perspective adopted from e-commerce research, we suggest that patients approach online information sharing instrumentally, weighing privacy costs against participation benefits when deciding whether to share certain information. Consequently, we argue that patients prefer sharing clinical information over daily life and identity information that potentially compromises anonymity. Furthermore, we explore whether patients’ prior experiences, age, health, and gender affect perceived privacy costs and thus willingness to share information. Objective The goal of the present study is to document patient preferences for sharing information within online health platforms. Methods A total of 115 cancer patients reported sharing intentions for 15 different types of information, demographics, health status, prior privacy experiences, expected community utility, and privacy concerns. Results Factor analysis on the 15 information types revealed 3 factors coinciding with 3 proposed information categories: clinical, daily life, and identity information. A within-subject ANOVA showed a strong preference for sharing clinical information compared to daily life and identity information (F 1,114=135.59, P=.001, η2=.93). Also, adverse online privacy experiences, age, and health status negatively affected information-sharing intentions. Female patients shared information less willingly. Conclusions Respondents’ information-sharing intentions depend on dispositional and situational factors. Patients share medical details more willingly than daily life or identity information. The results suggest the need to focus on anonymity rather than privacy in online communities. PMID:24828114
Anonymity versus privacy: selective information sharing in online cancer communities.
Frost, Jeana; Vermeulen, Ivar E; Beekers, Nienke
2014-05-14
Active sharing in online cancer communities benefits patients. However, many patients refrain from sharing health information online due to privacy concerns. Existing research on privacy emphasizes data security and confidentiality, largely focusing on electronic medical records. Patient preferences around information sharing in online communities remain poorly understood. Consistent with the privacy calculus perspective adopted from e-commerce research, we suggest that patients approach online information sharing instrumentally, weighing privacy costs against participation benefits when deciding whether to share certain information. Consequently, we argue that patients prefer sharing clinical information over daily life and identity information that potentially compromises anonymity. Furthermore, we explore whether patients' prior experiences, age, health, and gender affect perceived privacy costs and thus willingness to share information. The goal of the present study is to document patient preferences for sharing information within online health platforms. A total of 115 cancer patients reported sharing intentions for 15 different types of information, demographics, health status, prior privacy experiences, expected community utility, and privacy concerns. Factor analysis on the 15 information types revealed 3 factors coinciding with 3 proposed information categories: clinical, daily life, and identity information. A within-subject ANOVA showed a strong preference for sharing clinical information compared to daily life and identity information (F1,114=135.59, P=.001, η(2)=.93). Also, adverse online privacy experiences, age, and health status negatively affected information-sharing intentions. Female patients shared information less willingly. Respondents' information-sharing intentions depend on dispositional and situational factors. Patients share medical details more willingly than daily life or identity information. The results suggest the need to focus on anonymity rather than privacy in online communities.
Xu, Fangyi; Wang, Xiaoning; Wu, Nannan; He, Shuiqing; Yi, Weijie; Xiang, Siyun; Zhang, Piwei; Xie, Xiao; Ying, Chenjiang
2017-12-01
Based on the breast cancer cells and the vascular endothelial cells are both estrogen-sensitive, we proposed a close reciprocity existed between them in the tumor microenvironment, via shared molecular mechanism affected by environmental endocrine disruptors (EDCs). In this study, bisphenol A (BPA), via triggering G-protein estrogen receptor (GPER), stimulated cell proliferation and migration of bovine vascular endothelial cells (BVECs) and breast cancer cells (SkBr-3 and MDA-MB-231) and enhanced tumor growth in vivo. Moreover, the expression of both hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) were up-regulated in a GPER-dependent manner by BPA treatment under hypoxic condition, and the activated GPER induced the HIF-1α expression by competitively binding to caveolin-1 (Cav-1) and facilitating the release of heat shock protein 90 (HSP90). These findings show that in a hypoxic microenvironment, BPA promotes HIF-1α and VEGF expressions through a shared GPER/Cav-1/HSP90 signaling cascade. Our observations provide a probable hypothesis that the effects of BPA on tumor development are copromoting relevant biological responses in both vascular endothelial and breast cancer cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jiao, Zhijun; Bedoui, Sammy; Brady, Jamie L.; Walter, Anne; Chopin, Michael; Carrington, Emma M.; Sutherland, Robyn M.; Nutt, Stephen L.; Zhang, Yuxia; Ko, Hyun-Ja; Wu, Li
2014-01-01
Migratory CD103+ and lymphoid-resident CD8+ dendritic cells (DCs) share many attributes, such as dependence on the same transcription factors, cross-presenting ability and expression of certain surface molecules, such that it has been proposed they belong to a common sub-lineage. The functional diversity of the two DC types is nevertheless incompletely understood. Here we reveal that upon skin infection with herpes simplex virus, migratory CD103+ DCs from draining lymph nodes were more potent at inducing Th17 cytokine production by CD4+ T cells than CD8+ DCs. This superior capacity to drive Th17 responses was also evident in CD103+ DCs from uninfected mice. Their differential potency to induce Th17 differentiation was reflected by higher production of IL-1β and IL-6 by CD103+ DCs compared with CD8+ DCs upon stimulation. The two types of DCs from isolated lymph nodes also differ in expression of certain pattern recognition receptors. Furthermore, elevated levels of GM-CSF, typical of those found in inflammation, substantially increased the pool size of CD103+ DCs in lymph nodes and skin. We argue that varied levels of GM-CSF may explain the contrasting reports regarding the positive role of GM-CSF in regulating development of CD103+ DCs. Together, we find that these two developmentally closely-related DC subsets display functional differences and that GM-CSF has differential effect on the two types of DCs. PMID:24637385
The role of NDR1 in pathogen perception and plant defense signaling.
Knepper, Caleb; Savory, Elizabeth A; Day, Brad
2011-08-01
The biochemical and cellular function of NDR1 in plant immunity and defense signaling has long remained elusive. Herein, we describe a novel role for NDR1 in both pathogen perception and plant defense signaling, elucidated by exploring a broader, physiological role for NDR1 in general stress responses and cell wall adhesion. Based on our predictive homology modeling, coupled with a structure-function approach, we found that NDR1 shares a striking similarity to mammalian integrins, well-characterized for their role in mediating the interaction between the extracellular matrix and stress signaling. ndr1-1 mutant plants exhibit higher electrolyte leakage following pathogen infection, compared to wild type Col-0. In addition, we observed an altered plasmolysis phenotype, supporting a role for NDR1 in maintaining cell wall-plasma membrane adhesions through mediating fluid loss under stress.
APRIL modulates B and T cell immunity
Stein, Jens V.; López-Fraga, Marta; Elustondo, Fernando A.; Carvalho-Pinto, Carla E.; Rodríguez, Dolores; Gómez-Caro, Ruth; de Jong, Joan; Martínez-A, Carlos; Medema, Jan Paul; Hahne, Michael
2002-01-01
The TNF-like ligands APRIL and BLyS are close relatives and share the capacity to bind the receptors TACI and BCMA. BLyS has been shown to play an important role in B cell homeostasis and autoimmunity, but the biological role of APRIL remains less well defined. Analysis of T cells revealed an activation-dependent increase in APRIL mRNA expression. We therefore generated mice expressing APRIL as a transgene in T cells. These mice appeared normal and showed no signs of B cell hyperplasia. Transgenic T cells revealed a greatly enhanced survival in vitro as well as enhanced survival of staphylococcal enterotoxin B–reactive CD4+ T cells in vivo, which both directly correlate with elevated Bcl-2 levels. Analysis of humoral responses to T cell–dependent antigens in the transgenic mice indicated that APRIL affects only IgM but not IgG responses. In contrast, T cell–independent type 2 (TI-2) humoral response was enhanced in APRIL transgenic mice. As TACI was previously reported to be indispensable for TI-2 antibody formation, these results suggest a role for APRIL/TACI interactions in the generation of this response. Taken together, our data indicate that APRIL is involved in the induction and/or maintenance of T and B cell responses. PMID:12070306
Silencers, silencing, and heritable transcriptional states.
Laurenson, P; Rine, J
1992-01-01
Three copies of the mating-type genes, which determine cell type, are found in the budding yeast Saccharomyces cerevisiae. The copy at the MAT locus is transcriptionally active, whereas identical copies of the mating-type genes at the HML and HMR loci are transcriptionally silent. Hence, HML and HMR, also known as the silent mating-type loci, are subject to a position effect. Regulatory sequences flank the silent mating-type loci and mediate repression of HML and HMR. These regulatory sequences are called silencers for their ability to repress the transcription of nearby genes in a distance- and orientation-independent fashion. In addition, a number of proteins, including the four SIR proteins, histone H4, and an alpha-acetyltransferase, are required for the complete repression of HML and HMR. Because alterations in the amino-terminal domain of histone H4 result in the derepression of the silent mating-type loci, the mechanism of repression may involve the assembly of a specific chromatin structure. A number of additional clues permit insight into the nature of repression at HML and HMR. First, an S phase event is required for the establishment of repression. Second, at least one gene appears to play a role in the establishment mechanism yet is not essential for the stable propagation of repression through many rounds of cell division. Third, certain aspects of repression are linked to aspects of replication. The silent mating-type loci share many similarities with heterochromatin. Furthermore, regions of S. cerevisiae chromosomes, such as telomeres, which are known to be heterochromatic in other organisms, require a subset of SIR proteins for repression. Further analysis of the transcriptional repression at the silent mating-type loci may lend insight into heritable repression in other eukaryotes. PMID:1480108
Zhang, Yu; Nagata, Hiroshi; Ikeuchi, Tatsuro; Mukai, Hiroyuki; Oyoshi, Michiko K; Demachi, Ayako; Morio, Tomohiro; Wakiguchi, Hiroshi; Kimura, Nobuhiro; Shimizu, Norio; Yamamoto, Kohtaro
2003-06-01
In this study, we describe the cytological and cytogenetic features of six Epstein-Barr virus (EBV)-infected natural killer (NK) cell clones. Three cell clones, SNK-1, -3 and -6, were derived from patients with nasal T/NK-cell lymphomas; two cell clones, SNK-5 and -10, were isolated from patients with chronic active EBV infection (CAEBV); and the other cell clone, SNK-11, was from a patient with hydroa vacciniforme (HV)-like eruptions. An analysis of the number of EBV-terminal repeats showed that the SNK cell clones had monoclonal EBV genomes identical to the original EBV-infected cells of the respective patients, and SNK cells had the type II latency of EBV infection, suggesting that not only the cell clones isolated from nasal T/NK-cell lymphomas but also those isolated from CAEBV and HV-like eruptions had been transformed by EBV to a certain degree. Cytogenetic analysis detected deletions in chromosome 6q in five out of the six SNK cell clones, while 6q was not deleted in four control cell lines of T-cell lineage. This suggested that a 6q deletion is a characteristic feature of EBV-positive NK cells, which proliferated in the diseased individuals. The results showed that EBV-positive NK cells in malignant and non-malignant lymphoproliferative diseases shared common cytological and cytogenetic features.
To share or not to share: a randomized trial of consent for data sharing in genome research.
McGuire, Amy L; Oliver, Jill M; Slashinski, Melody J; Graves, Jennifer L; Wang, Tao; Kelly, P Adam; Fisher, William; Lau, Ching C; Goss, John; Okcu, Mehmet; Treadwell-Deering, Diane; Goldman, Alica M; Noebels, Jeffrey L; Hilsenbeck, Susan G
2011-11-01
Despite growing concerns toward maintaining participants' privacy, individual investigators collecting tissue and other biological specimens for genomic analysis are encouraged to obtain informed consent for broad data sharing. Our purpose was to assess the effect on research enrollment and data sharing decisions of three different consent types (traditional, binary, or tiered) with varying levels of control and choices regarding data sharing. A single-blinded, randomized controlled trial was conducted with 323 eligible adult participants being recruited into one of six genome studies at Baylor College of Medicine in Houston, Texas, between January 2008 and August 2009. Participants were randomly assigned to one of three experimental consent documents (traditional, n = 110; binary, n = 103; and tiered, n = 110). Debriefing in follow-up visits provided participants a detailed review of all consent types and the chance to change data sharing choices or decline genome study participation. Before debriefing, 83.9% of participants chose public data release. After debriefing, 53.1% chose public data release, 33.1% chose restricted (controlled access database) release, and 13.7% opted out of data sharing. Only one participant declined genome study participation due to data sharing concerns. Our findings indicate that most participants are willing to publicly release their genomic data; however, a significant portion prefers restricted release. These results suggest discordance between existing data sharing policies and participants' judgments and desires.
Part-Time Faculty Employment. Project on the Status and Education of Women.
ERIC Educational Resources Information Center
Association of American Colleges, Washington, DC.
Different types of policies adopted by colleges and universities to deal with part-time faculty employment and kinds of issues that may arise are considered. Three types of part-time teaching appointments are distinguished, and the shared appointments or split contracts arrangement is described. The shared appointment is one full-time position…
Comparative analysis of programmed cell death pathways in filamentous fungi.
Fedorova, Natalie D; Badger, Jonathan H; Robson, Geoff D; Wortman, Jennifer R; Nierman, William C
2005-12-08
Fungi can undergo autophagic- or apoptotic-type programmed cell death (PCD) on exposure to antifungal agents, developmental signals, and stress factors. Filamentous fungi can also exhibit a form of cell death called heterokaryon incompatibility (HI) triggered by fusion between two genetically incompatible individuals. With the availability of recently sequenced genomes of Aspergillus fumigatus and several related species, we were able to define putative components of fungi-specific death pathways and the ancestral core apoptotic machinery shared by all fungi and metazoa. Phylogenetic profiling of HI-associated proteins from four Aspergilli and seven other fungal species revealed lineage-specific protein families, orphan genes, and core genes conserved across all fungi and metazoa. The Aspergilli-specific domain architectures include NACHT family NTPases, which may function as key integrators of stress and nutrient availability signals. They are often found fused to putative effector domains such as Pfs, SesB/LipA, and a newly identified domain, HET-s/LopB. Many putative HI inducers and mediators are specific to filamentous fungi and not found in unicellular yeasts. In addition to their role in HI, several of them appear to be involved in regulation of cell cycle, development and sexual differentiation. Finally, the Aspergilli possess many putative downstream components of the mammalian apoptotic machinery including several proteins not found in the model yeast, Saccharomyces cerevisiae. Our analysis identified more than 100 putative PCD associated genes in the Aspergilli, which may help expand the range of currently available treatments for aspergillosis and other invasive fungal diseases. The list includes species-specific protein families as well as conserved core components of the ancestral PCD machinery shared by fungi and metazoa.
Lysosomal abnormalities in hereditary spastic paraplegia types SPG15 and SPG11
Renvoisé, Benoît; Chang, Jaerak; Singh, Rajat; Yonekawa, Sayuri; FitzGibbon, Edmond J; Mankodi, Ami; Vanderver, Adeline; Schindler, Alice B; Toro, Camilo; Gahl, William A; Mahuran, Don J; Blackstone, Craig; Pierson, Tyler Mark
2014-01-01
Objective Hereditary spastic paraplegias (HSPs) are among the most genetically diverse inherited neurological disorders, with over 70 disease loci identified (SPG1-71) to date. SPG15 and SPG11 are clinically similar, autosomal recessive disorders characterized by progressive spastic paraplegia along with thin corpus callosum, white matter abnormalities, cognitive impairment, and ophthalmologic abnormalities. Furthermore, both have been linked to early-onset parkinsonism. Methods We describe two new cases of SPG15 and investigate cellular changes in SPG15 and SPG11 patient-derived fibroblasts, seeking to identify shared pathogenic themes. Cells were evaluated for any abnormalities in cell division, DNA repair, endoplasmic reticulum, endosomes, and lysosomes. Results Fibroblasts prepared from patients with SPG15 have selective enlargement of LAMP1-positive structures, and they consistently exhibited abnormal lysosomal storage by electron microscopy. A similar enlargement of LAMP1-positive structures was also observed in cells from multiple SPG11 patients, though prominent abnormal lysosomal storage was not evident. The stabilities of the SPG15 protein spastizin/ZFYVE26 and the SPG11 protein spatacsin were interdependent. Interpretation Emerging studies implicating these two proteins in interactions with the late endosomal/lysosomal adaptor protein complex AP-5 are consistent with shared abnormalities in lysosomes, supporting a converging mechanism for these two disorders. Recent work with Zfyve26−/− mice revealed a similar phenotype to human SPG15, and cells in these mice had endolysosomal abnormalities. SPG15 and SPG11 are particularly notable among HSPs because they can also present with juvenile parkinsonism, and this lysosomal trafficking or storage defect may be relevant for other forms of parkinsonism associated with lysosomal dysfunction. PMID:24999486
Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki; ...
2013-10-16
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of itsmore » morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883 T, the type strain of T. acidaminovorans, stain Z-9701 T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of itsmore » morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883 T, the type strain of T. acidaminovorans, stain Z-9701 T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C.; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja
2013-01-01
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:24501645
School Co-ops and Shared Media Services
ERIC Educational Resources Information Center
Miller, Thomas E.
1973-01-01
Examines shared services through school system cooperatives as one of the most promising alternatives to the reorganization of small school districts. Criteria are proposed for selection of services to be shared. Nine types of media services are discussed that could be provided appropriately through school cooperatives. (Author/WM)
Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans.
Mowrey, William R; Bennett, Jessica R; Portman, Douglas S
2014-01-29
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology.
Distributed Effects of Biological Sex Define Sex-Typical Motor Behavior in Caenorhabditis elegans
Mowrey, William R.; Bennett, Jessica R.
2014-01-01
Sex differences in shared behaviors (for example, locomotion and feeding) are a nearly universal feature of animal biology. Though these behaviors may share underlying neural programs, their kinematics can exhibit robust differences between males and females. The neural underpinnings of these differences are poorly understood because of the often-untested assumption that they are determined by sex-specific body morphology. Here, we address this issue in the nematode Caenorhabditis elegans, which features two sexes with distinct body morphologies but similar locomotor circuitry and body muscle. Quantitative behavioral analysis shows that C. elegans and related nematodes exhibit significant sex differences in the dynamics and geometry of locomotor body waves, such that the male is generally faster. Using a recently proposed model of locomotor wave propagation, we show that sex differences in both body mechanics and the intrinsic dynamics of the motor system can contribute to kinematic differences in distinct mechanical contexts. By genetically sex-reversing the properties of specific tissues and cells, however, we find that sex-specific locomotor frequency in C. elegans is determined primarily by the functional modification of shared sensory neurons. Further, we find that sexual modification of body wall muscle together with the nervous system is required to alter body wave speed. Thus, rather than relying on a single focus of modification, sex differences in motor dynamics require independent modifications to multiple tissue types. Our results suggest shared motor behaviors may be sex-specifically optimized though distributed modifications to several aspects of morphology and physiology. PMID:24478342
Shared target antigens on cancer cells and tissue stem cells: go or no-go for CAR T cells?
Hombach, Andreas A; Abken, Hinrich
2017-02-01
Adoptive therapy with chimeric antigen receptor (CAR) T cells redirected towards CD19 produces remissions of B cell malignancies, however, it also eradicates healthy B cells sharing the target antigen. Such 'on-target off-tumor' toxicity raises serious safety concerns when the target antigen is also expressed by tissue stem cells, with the risk of lasting tissue destruction. Areas covered: We discuss CAR T cell targeting of activation antigens versus lineage associated antigens on the basis of recent experimental and animal data and the literature in the field. Expert commentary: Targeting an activation associated antigen which is transiently expressed by stem cells seems to be safe, like CAR T cells targeting CD30 spare CD30 + hematopoietic stem and progenitor cells while eliminating CD30 + lymphoma cells, whereas targeting lineage associated antigens which increase in expression during cell maturation, like folate receptor-β and CD123, is of risk to destruct tissue stem cells.
Pearson, Bruce M.; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H.M.
2015-01-01
CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Horsburgh, J. S.; Ames, D.; Goodall, J. L.; Band, L. E.; Merwade, V.; Couch, A.; Arrigo, J.; Hooper, R. P.; Valentine, D. W.; Maidment, D. R.
2013-12-01
HydroShare is an online, collaborative system being developed for sharing hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. HydroShare will use the integrated Rule-Oriented Data System (iRODS) to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.
Organic and perovskite solar cells: Working principles, materials and interfaces.
Marinova, Nevena; Valero, Silvia; Delgado, Juan Luis
2017-02-15
In the last decades organic solar cells (OSCs) have been considered as a promising photovoltaic technology with the potential to provide reasonable power conversion efficiencies combined with low cost and easy processability. Unexpectedly, Perovskite Solar Cells (PSCs) have experienced unprecedented rise in Power Conversion Efficiency (PCE) thus emerging as a highly efficient photovoltaic technology. OSCs and PSCs are two different kind of devices with distinct charge generation mechanism, which however share some similarities in the materials processing, thus standard strategies developed for OSCs are currently being employed in PSCs. In this article, we recapitulate the main processes in these two types of photovoltaic technologies with an emphasis on interfacial processes and interfacial modification, spotlighting the materials and newest approaches in the interfacial engineering. We discuss on the relevance of well-known materials coming from the OSCs field, which are now being tested in the PSCs field, while maintaining a focus on the importance of the material design for highly efficient, stable and accessible solar cells. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
de Astis, Silvia; Corradini, Irene; Morini, Raffaella; Rodighiero, Simona; Tomasoni, Romana; Lenardi, Cristina; Verderio, Claudia; Milani, Paolo; Matteoli, Michela
2013-10-01
Activation of glial cells, including astrocytes and microglia, has been implicated in the inflammatory responses underlying brain injury and neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The classic activation state (M1) is characterized by high capacity to present antigens, high production of nitric oxide (NO) and reactive oxygen species (ROS) and proinflammatory cytokines. Classically activated cells act as potent effectors that drive the inflammatory response and may mediate detrimental effects on neural cells. The second phenotype (M2) is an alternative, apparently beneficial, activation state, more related to a fine tuning of inflammation, scavenging of debris, promotion of angiogenesis, tissue remodeling and repair. Specific environmental chemical signals are able to induce these different polarization states. We provide here evidence that nanostructured substrates are able, exclusively in virtue of their physical properties, to push microglia toward the proinflammatory activation phenotype, with an efficacy which reflects the graded nanoscale rugosity. The acquisition of a proinflammatory phenotype appears specific for microglia and not astrocytes, indicating that these two cell types, although sharing common innate immune responses, respond differently to external physical stimuli.
HIV-derived vectors for gene therapy targeting dendritic cells.
Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella
2013-01-01
Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.
HIV reservoirs: the new frontier.
Iglesias-Ussel, Maria D; Romerio, Fabio
2011-01-01
Current antiretroviral therapies suppress viremia to very low levels, but are ineffective in eliminating reservoirs of persistent HIV infection. Efforts toward the development of therapies aimed at HIV reservoirs are complicated by the evidence that HIV establishes persistent productive and nonproductive infection in a number of cell types and through a variety of mechanisms. Moreover, immunologically privileged sites such as the brain also act as HIV sanctuaries. To facilitate the advancement of our knowledge in this new area of research, in vitro models of HIV persistence in different cellular reservoirs have been developed, particularly in CD4+ T-cells that represent the largest pool of persistently infected cells in the body. Whereas each model presents clear advantages, they all share one common limitation: they are systems attempting to recapitulate extremely complex virus-cell interactions occurring in vivo, which we know very little about. Potentially conflicting results arising from different models may be difficult to interpret without validation with clinical samples. Addressing these issues, among others, merits careful consideration for the identification of valid targets and the design of effective strategies for therapy, which may increase the success of efforts toward HIV eradication.
Linear Regression Links Transcriptomic Data and Cellular Raman Spectra.
Kobayashi-Kirschvink, Koseki J; Nakaoka, Hidenori; Oda, Arisa; Kamei, Ken-Ichiro F; Nosho, Kazuki; Fukushima, Hiroko; Kanesaki, Yu; Yajima, Shunsuke; Masaki, Haruhiko; Ohta, Kunihiro; Wakamoto, Yuichi
2018-06-08
Raman microscopy is an imaging technique that has been applied to assess molecular compositions of living cells to characterize cell types and states. However, owing to the diverse molecular species in cells and challenges of assigning peaks to specific molecules, it has not been clear how to interpret cellular Raman spectra. Here, we provide firm evidence that cellular Raman spectra and transcriptomic profiles of Schizosaccharomyces pombe and Escherichia coli can be computationally connected and thus interpreted. We find that the dimensions of high-dimensional Raman spectra and transcriptomes measured by RNA sequencing can be reduced and connected linearly through a shared low-dimensional subspace. Accordingly, we were able to predict global gene expression profiles by applying the calculated transformation matrix to Raman spectra, and vice versa. Highly expressed non-coding RNAs contributed to the Raman-transcriptome linear correspondence more significantly than mRNAs in S. pombe. This demonstration of correspondence between cellular Raman spectra and transcriptomes is a promising step toward establishing spectroscopic live-cell omics studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R; Lafuente, Esther M; Reche, Pedro A
2015-01-01
Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes.
Molero-Abraham, Magdalena; Glutting, John-Paul; Flower, Darren R.; Lafuente, Esther M.; Reche, Pedro A.
2015-01-01
Concerns that variola viruses might be used as bioweapons have renewed the interest in developing new and safer smallpox vaccines. Variola virus genomes are now widely available, allowing computational characterization of the entire T-cell epitome and the use of such information to develop safe and yet effective vaccines. To this end, we identified 124 proteins shared between various species of pathogenic orthopoxviruses including variola minor and major, monkeypox, cowpox, and vaccinia viruses, and we targeted them for T-cell epitope prediction. We recognized 8,106, and 8,483 unique class I and class II MHC-restricted T-cell epitopes that are shared by all mentioned orthopoxviruses. Subsequently, we developed an immunological resource, EPIPOX, upon the predicted T-cell epitome. EPIPOX is freely available online and it has been designed to facilitate reverse vaccinology. Thus, EPIPOX includes key epitope-focused protein annotations: time point expression, presence of leader and transmembrane signals, and known location on outer membrane structures of the infective viruses. These features can be used to select specific T-cell epitopes suitable for experimental validation restricted by single MHC alleles, as combinations thereof, or by MHC supertypes. PMID:26605344
Tong, Wing-Chiu; Ghouri, Iffath; Taggart, Michael J
2014-01-01
The uterus and heart share the important physiological feature whereby contractile activation of the muscle tissue is regulated by the generation of periodic, spontaneous electrical action potentials (APs). Preterm birth arising from premature uterine contractions is a major complication of pregnancy and there remains a need to pursue avenues of research that facilitate the use of drugs, tocolytics, to limit these inappropriate contractions without deleterious actions on cardiac electrical excitation. A novel approach is to make use of mathematical models of uterine and cardiac APs, which incorporate many ionic currents contributing to the AP forms, and test the cell-specific responses to interventions. We have used three such models-of uterine smooth muscle cells (USMC), cardiac sinoatrial node cells (SAN), and ventricular cells-to investigate the relative effects of reducing two important voltage-gated Ca currents-the L-type (ICaL) and T-type (ICaT) Ca currents. Reduction of ICaL (10%) alone, or ICaT (40%) alone, blunted USMC APs with little effect on ventricular APs and only mild effects on SAN activity. Larger reductions in either current further attenuated the USMC APs but with also greater effects on SAN APs. Encouragingly, a combination of ICaL and ICaT reduction did blunt USMC APs as intended with little detriment to APs of either cardiac cell type. Subsequent overlapping maps of ICaL and ICaT inhibition profiles from each model revealed a range of combined reductions of ICaL and ICaT over which an appreciable diminution of USMC APs could be achieved with no deleterious action on cardiac SAN or ventricular APs. This novel approach illustrates the potential for computational biology to inform us of possible uterine and cardiac cell-specific mechanisms. Incorporating such computational approaches in future studies directed at designing new, or repurposing existing, tocolytics will be beneficial for establishing a desired uterine specificity of action.
Wang, Ying; Yan, Jie; Lee, Haeryun; Lu, Qiuheng; Adler, Paul N.
2014-01-01
The frizzled/starry night pathway regulates planar cell polarity in a wide variety of tissues in many types of animals. It was discovered and has been most intensively studied in the Drosophila wing where it controls the formation of the array of distally pointing hairs that cover the wing. The pathway does this by restricting the activation of the cytoskeleton to the distal edge of wing cells. This results in hairs initiating at the distal edge and growing in the distal direction. All of the proteins encoded by genes in the pathway accumulate asymmetrically in wing cells. The pathway is a hierarchy with the Planar Cell Polarity (PCP) genes (aka the core genes) functioning as a group upstream of the Planar Polarity Effector (PPE) genes which in turn function as a group upstream of multiple wing hairs. Upstream proteins, such as Frizzled accumulate on either the distal and/or proximal edges of wing cells. Downstream PPE proteins accumulate on the proximal edge under the instruction of the upstream proteins. A variety of types of data support this hierarchy, however, we have found that when over expressed the PPE proteins can alter both the subcellular location and level of accumulation of the upstream proteins. Thus, the epistatic relationship is context dependent. We further show that the PPE proteins interact physically and can modulate the accumulation of each other in wing cells. We also find that over expression of Frtz results in a marked delay in hair initiation suggesting that it has a separate role/activity in regulating the cytoskeleton that is not shared by other members of the group. PMID:25072625
Collaborative Sharing of Multidimensional Space-time Data Using HydroShare
NASA Astrophysics Data System (ADS)
Gan, T.; Tarboton, D. G.; Horsburgh, J. S.; Dash, P. K.; Idaszak, R.; Yi, H.; Blanton, B.
2015-12-01
HydroShare is a collaborative environment being developed for sharing hydrological data and models. It includes capability to upload data in many formats as resources that can be shared. The HydroShare data model for resources uses a specific format for the representation of each type of data and specifies metadata common to all resource types as well as metadata unique to specific resource types. The Network Common Data Form (NetCDF) was chosen as the format for multidimensional space-time data in HydroShare. NetCDF is widely used in hydrological and other geoscience modeling because it contains self-describing metadata and supports the creation of array-oriented datasets that may include three spatial dimensions, a time dimension and other user defined dimensions. For example, NetCDF may be used to represent precipitation or surface air temperature fields that have two dimensions in space and one dimension in time. This presentation will illustrate how NetCDF files are used in HydroShare. When a NetCDF file is loaded into HydroShare, header information is extracted using the "ncdump" utility. Python functions developed for the Django web framework on which HydroShare is based, extract science metadata present in the NetCDF file, saving the user from having to enter it. Where the file follows Climate Forecast (CF) convention and Attribute Convention for Dataset Discovery (ACDD) standards, metadata is thus automatically populated. Users also have the ability to add metadata to the resource that may not have been present in the original NetCDF file. HydroShare's metadata editing functionality then writes this science metadata back into the NetCDF file to maintain consistency between the science metadata in HydroShare and the metadata in the NetCDF file. This further helps researchers easily add metadata information following the CF and ACDD conventions. Additional data inspection and subsetting functions were developed, taking advantage of Python and command line libraries for working with NetCDF files. We describe the design and implementation of these features and illustrate how NetCDF files from a modeling application may be curated in HydroShare and thus enhance reproducibility of the associated research. We also discuss future development planned for multidimensional space-time data in HydroShare.
Sánchez-Vega, Francisco; Gotea, Valer; Margolin, Gennady; Elnitski, Laura
2015-01-01
The term CpG island methylator phenotype (CIMP) has been used to describe widespread DNA hypermethylation at CpG-rich genomic regions affecting clinically distinct subsets of cancer patients. Even though there have been numerous studies of CIMP in individual cancer types, a uniform analysis across tissues is still lacking. We analyze genome-wide patterns of CpG island hypermethylation in 5,253 solid epithelial tumors from 15 cancer types from TCGA and 23 cancer cell lines from ENCODE. We identify differentially methylated loci that define CIMP+ and CIMP- samples, and we use unsupervised clustering to provide a robust molecular stratification of tumor methylomes for 12 cancer types and all cancer cell lines. With a minimal set of 89 discriminative loci, we demonstrate accurate pan-cancer separation of the 12 CIMP+/- subpopulations, based on their average levels of methylation. Tumor samples in different CIMP subclasses show distinctive correlations with gene expression profiles and recurrence of somatic mutations, copy number variations, and epigenetic silencing. Enrichment analyses indicate shared canonical pathways and upstream regulators for CIMP-targeted regions across cancer types. Furthermore, genomic alterations showing consistent associations with CIMP+/- status include genes involved in DNA repair, chromatin remodeling genes, and several histone methyltransferases. Associations of CIMP status with specific clinical features, including overall survival in several cancer types, highlight the importance of the CIMP+/- designation for individual tumor evaluation and personalized medicine. We present a comprehensive computational study of CIMP that reveals pan-cancer commonalities and tissue-specific differences underlying concurrent hypermethylation of CpG islands across tumors. Our stratification of solid tumors and cancer cell lines based on CIMP status is data-driven and agnostic to tumor type by design, which protects against known biases that have hindered classic methods previously used to define CIMP. The results that we provide can be used to refine existing molecular subtypes of cancer into more homogeneously behaving subgroups, potentially leading to more uniform responses in clinical trials.
Jiang, Wenzhi; Cossey, Sarah; Rosenberg, Julian N; Oyler, George A; Olson, Bradley J S C; Weeks, Donald P
2014-09-25
Cell walls are essential for most bacteria, archaea, fungi, algae and land plants to provide shape, structural integrity and protection from numerous biotic and abiotic environmental factors. In the case of eukaryotic algae, relatively little is known of the composition, structure or mechanisms of assembly of cell walls in individual species or between species and how these differences enable algae to inhabit a great diversity of environments. In this paper we describe the use of camelid antibody fragments (VHHs) and a streamlined ELISA assay as powerful new tools for obtaining mono-specific reagents for detecting individual algal cell wall components and for isolating algae that share a particular cell surface component. To develop new microalgal bioprospecting tools to aid in the search of environmental samples for algae that share similar cell wall and cell surface components, we have produced single-chain camelid antibodies raised against cell surface components of the single-cell alga, Chlamydomonas reinhardtii. We have cloned the variable-region domains (VHHs) from the camelid heavy-chain-only antibodies and overproduced tagged versions of these monoclonal-like antibodies in E. coli. Using these VHHs, we have developed an accurate, facile, low cost ELISA that uses live cells as a source of antigens in their native conformation and that requires less than 90 minutes to perform. This ELISA technique was demonstrated to be as accurate as standard ELISAs that employ proteins from cell lysates and that generally require >24 hours to complete. Among the cloned VHHs, VHH B11, exhibited the highest affinity (EC50 < 1 nM) for the C. reinhardtii cell surface. The live-cell ELISA procedure was employed to detect algae sharing cell surface components with C. reinhardtii in water samples from natural environments. In addition, mCherry-tagged VHH B11 was used along with fluorescence activated cell sorting (FACS) to select individual axenic isolates of presumed wild relatives of C. reinhardtii and other Chlorphyceae from the same environmental samples. Camelid antibody VHH domains provide a highly specific tool for detection of individual cell wall components of algae and for allowing the selection of algae that share a particular cell surface molecule from diverse ecosystems.
Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru
2016-01-01
Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588
Goodwin, Katharine; Lostchuck, Emily E; Cramb, Kaitlyn M L; Zulueta-Coarasa, Teresa; Fernandez-Gonzalez, Rodrigo; Tanentzapf, Guy
2017-05-15
Tissue morphogenesis relies on the coordinated action of actin networks, cell-cell adhesions, and cell-extracellular matrix (ECM) adhesions. Such coordination can be achieved through cross-talk between cell-cell and cell-ECM adhesions. Drosophila dorsal closure (DC), a morphogenetic process in which an extraembryonic tissue called the amnioserosa contracts and ingresses to close a discontinuity in the dorsal epidermis of the embryo, requires both cell-cell and cell-ECM adhesions. However, whether the functions of these two types of adhesions are coordinated during DC is not known. Here we analyzed possible interdependence between cell-cell and cell-ECM adhesions during DC and its effect on the actomyosin network. We find that loss of cell-ECM adhesion results in aberrant distributions of cadherin-mediated adhesions and actin networks in the amnioserosa and subsequent disruption of myosin recruitment and dynamics. Moreover, loss of cell-cell adhesion caused up-regulation of cell-ECM adhesion, leading to reduced cell deformation and force transmission across amnioserosa cells. Our results show how interdependence between cell-cell and cell-ECM adhesions is important in regulating cell behaviors, force generation, and force transmission critical for tissue morphogenesis. © 2017 Goodwin, Lostchuck, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Modelling the heart as a communication system.
Ashikaga, Hiroshi; Aguilar-Rodríguez, José; Gorsky, Shai; Lusczek, Elizabeth; Marquitti, Flávia Maria Darcie; Thompson, Brian; Wu, Degang; Garland, Joshua
2015-04-06
Electrical communication between cardiomyocytes can be perturbed during arrhythmia, but these perturbations are not captured by conventional electrocardiographic metrics. We developed a theoretical framework to quantify electrical communication using information theory metrics in two-dimensional cell lattice models of cardiac excitation propagation. The time series generated by each cell was coarse-grained to 1 when excited or 0 when resting. The Shannon entropy for each cell was calculated from the time series during four clinically important heart rhythms: normal heartbeat, anatomical reentry, spiral reentry and multiple reentry. We also used mutual information to perform spatial profiling of communication during these cardiac arrhythmias. We found that information sharing between cells was spatially heterogeneous. In addition, cardiac arrhythmia significantly impacted information sharing within the heart. Entropy localized the path of the drifting core of spiral reentry, which could be an optimal target of therapeutic ablation. We conclude that information theory metrics can quantitatively assess electrical communication among cardiomyocytes. The traditional concept of the heart as a functional syncytium sharing electrical information cannot predict altered entropy and information sharing during complex arrhythmia. Information theory metrics may find clinical application in the identification of rhythm-specific treatments which are currently unmet by traditional electrocardiographic techniques. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Larval body patterning and apical organs are conserved in animal evolution
2014-01-01
Background Planktonic ciliated larvae are characteristic for the life cycle of marine invertebrates. Their most prominent feature is the apical organ harboring sensory cells and neurons of largely undetermined function. An elucidation of the relationships between various forms of primary larvae and apical organs is key to understanding the evolution of animal life cycles. These relationships have remained enigmatic due to the scarcity of comparative molecular data. Results To compare apical organs and larval body patterning, we have studied regionalization of the episphere, the upper hemisphere of the trochophore larva of the marine annelid Platynereis dumerilii. We examined the spatial distribution of transcription factors and of Wnt signaling components previously implicated in anterior neural development. Pharmacological activation of Wnt signaling with Gsk3β antagonists abolishes expression of apical markers, consistent with a repressive role of Wnt signaling in the specification of apical tissue. We refer to this Wnt-sensitive, six3- and foxq2-expressing part of the episphere as the ‘apical plate’. We also unraveled a molecular signature of the apical organ - devoid of six3 but expressing foxj, irx, nkx3 and hox - that is shared with other marine phyla including cnidarians. Finally, we characterized the cell types that form part of the apical organ by profiling by image registration, which allows parallel expression profiling of multiple cells. Besides the hox-expressing apical tuft cells, this revealed the presence of putative light- and mechanosensory as well as multiple peptidergic cell types that we compared to apical organ cell types of other animal phyla. Conclusions The similar formation of a six3+, foxq2+ apical plate, sensitive to Wnt activity and with an apical tuft in its six3-free center, is most parsimoniously explained by evolutionary conservation. We propose that a simple apical organ - comprising an apical tuft and a basal plexus innervated by sensory-neurosecretory apical plate cells - was present in the last common ancestors of cnidarians and bilaterians. One of its ancient functions would have been the control of metamorphosis. Various types of apical plate cells would then have subsequently been added to the apical organ in the divergent bilaterian lineages. Our findings support an ancient and common origin of primary ciliated larvae. PMID:24476105
The role of cytokines in T-cell memory in health and disease.
Raeber, Miro E; Zurbuchen, Yves; Impellizzieri, Daniela; Boyman, Onur
2018-05-01
Upon stimulation with their cognate antigen, naive T cells undergo proliferation and differentiation into effector cells, followed by apoptosis or survival as precursors of long-lived memory cells. These phases of a T-cell response and the ensuing maintenance of memory T cells are shaped by cytokines, most notably interleukin-2 (IL-2), IL-7, and IL-15 that share the common γ chain (γ c ) cytokine receptor. Steady-state production of IL-7 and IL-15 is necessary for background proliferation and homeostatic survival of CD4 + and CD8 + memory T cells. During immune responses, augmented levels of IL-2, IL-15, IL-21, IL-12, IL-18, and type-I interferons determine the memory potential of antigen-specific effector CD8 + cells, while increased IL-2 and IL-15 cause bystander proliferation of heterologous CD4 + and CD8 + memory T cells. Limiting availability of γ c cytokines, reduction in regulatory T cells or IL-10, and persistence of inflammation or cognate antigen can result in memory T cells, which fail to become cytokine-dependent long-lived cells. Conversely, increased IL-7 and IL-15 can expand memory T cells, including pathogenic tissue-resident memory T cells, as seen in lymphopenia and certain chronic-inflammatory disorders and malignancies. These abovementioned factors impact immunotherapy and vaccines directed at memory T cells in cancer and chronic infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Johansson, Joel; Tabor, Vedrana; Wikell, Anna; Jalkanen, Sirpa; Fuxe, Jonas
2015-01-01
Breast cancer progression toward metastatic disease is linked to re-activation of epithelial–mesenchymal transition (EMT), a latent developmental process. Breast cancer cells undergoing EMT lose epithelial characteristics and gain the capacity to invade the surrounding tissue and migrate away from the primary tumor. However, less is known about the possible role of EMT in providing cancer cells with properties that allow them to traffic to distant sites. Given the fact that pro-metastatic cancer cells share a unique capacity with immune cells to traffic in-and-out of blood and lymphatic vessels we hypothesized that tumor cells undergoing EMT may acquire properties of immune cells. To study this, we performed gene-profiling analysis of mouse mammary EpRas tumor cells that had been allowed to adopt an EMT program after long-term treatment with TGF-β1 for 2 weeks. As expected, EMT cells acquired traits of mesenchymal cell differentiation and migration. However, in addition, we found another cluster of induced genes, which was specifically enriched in monocyte-derived macrophages, mast cells, and myeloid dendritic cells, but less in other types of immune cells. Further studies revealed that this monocyte/macrophage gene cluster was enriched in human breast cancer cell lines displaying an EMT or a Basal B profile, and in human breast tumors with EMT and undifferentiated (ER−/PR−) characteristics. The results identify an EMT-induced monocyte/macrophage gene cluster, which may play a role in breast cancer cell dissemination and metastasis. PMID:25674539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jian; Chai, Ping; Diefenbach, Kariem
2014-03-03
Twelve new lanthanide copper heterobimetallic compounds, RE2Cu(TeO3)2(SO4)2 (RE = Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), with two different structural topologies, have been prepared by hydrothermal treatment. Both structure types crystallize in the triclinic space group, Pmore » $$\\bar{1}$$, but the unit cell parameters and structures are quite different. The earlier RE2Cu(TeO3)2(SO4)2 (RE = Y, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm) share a common structural motif consisting of edge-sharing LnO8 chains and [Cu(TeO3)2(SO4)2]6– units. The later lanthanide version (Yb and Lu) is composed of edge-sharing LnO7 dimers bridged by similar [Cu(TeO3)2(SO4)2]6– units. The change in the structure type can be attributed to the decreasing ionic radii of the lanthanides. The compounds containing RE3+ ions with diamagnetic ground states (Y3+ and Eu3+) exhibit antiferromagnetic ordering at 12.5 K and 15 K, respectively, owing to the magnetic exchange between Cu2+ moments. No magnetic phase transition was observed in all the other phases. The lack of magnetic ordering is attributed to the competing magnetic interactions caused by the presence of paramagnetic RE3+ ions. The magnetism data suggests that substantial 3d–4f coupling only occurs in the Yb analogue.« less
Bavassano, Carlo; Eigentler, Andreas; Stanika, Ruslan; Obermair, Gerald J.; Boesch, Sylvia; Dechant, Georg
2017-01-01
Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder that is caused by a CAG trinucleotide repeat expansion in the CACNA1A gene. As one of the few bicistronic genes discovered in the human genome, CACNA1A encodes not only the α1A subunit of the P/Q type voltage-gated Ca2+ channel CaV2.1 but also the α1ACT protein, a 75 kDa transcription factor sharing the sequence of the cytoplasmic C-terminal tail of the α1A subunit. Isoforms of both proteins contain the polyglutamine (polyQ) domain that is expanded in SCA6 patients. Although certain SCA6 phenotypes appear to be specific for Purkinje neurons, other pathogenic effects of the SCA6 polyQ mutation can affect a broad spectrum of central nervous system (CNS) neuronal subtypes. We investigated the expression and function of CACNA1A gene products in human neurons derived from induced pluripotent stem cells from two SCA6 patients. Expression levels of CACNA1A encoding α1A subunit were similar between SCA6 and control neurons, and no differences were found in the subcellular distribution of CaV2.1 channel protein. The α1ACT immunoreactivity was detected in the majority of cell nuclei of SCA6 and control neurons. Although no SCA6 genotype-dependent differences in CaV2.1 channel function were observed, they were found in the expression levels of the α1ACT target gene Granulin (GRN) and in glutamate-induced cell vulnerability. PMID:28946818
Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura
2013-01-01
The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer. PMID:24149212
Sánchez-Vega, Francisco; Gotea, Valer; Petrykowska, Hanna M; Margolin, Gennady; Krivak, Thomas C; DeLoia, Julie A; Bell, Daphne W; Elnitski, Laura
2013-12-01
The study of aberrant DNA methylation in cancer holds the key to the discovery of novel biological markers for diagnostics and can help to delineate important mechanisms of disease. We have identified 12 loci that are differentially methylated in serous ovarian cancers and endometrioid ovarian and endometrial cancers with respect to normal control samples. The strongest signal showed hypermethylation in tumors at a CpG island within the ZNF154 promoter. We show that hypermethylation of this locus is recurrent across solid human epithelial tumor samples for 15 of 16 distinct cancer types from TCGA. Furthermore, ZNF154 hypermethylation is strikingly present across a diverse panel of ENCODE cell lines, but only in those derived from tumor cells. By extending our analysis from the Illumina 27K Infinium platform to the 450K platform, to sequencing of PCR amplicons from bisulfite treated DNA, we demonstrate that hypermethylation extends across the breadth of the ZNF154 CpG island. We have also identified recurrent hypomethylation in two genomic regions associated with CASP8 and VHL. These three genes exhibit significant negative correlation between methylation and gene expression across many cancer types, as well as patterns of DNaseI hypersensitivity and histone marks that reflect different chromatin accessibility in cancer vs. normal cell lines. Our findings emphasize hypermethylation of ZNF154 as a biological marker of relevance for tumor identification. Epigenetic modifications affecting the promoters of ZNF154, CASP8, and VHL are shared across a vast array of tumor types and may therefore be important for understanding the genomic landscape of cancer.
ERIC Educational Resources Information Center
Janning, Michelle
2006-01-01
Level and type of spousal shared work has been oversimplified in past research. This research proposes that being similar to a spouse, in the case of paid work, differs depending on whether spouses share workplace, occupation, or both. And this level and type of similarity can influence the level and qualitative characteristics of work-related…
ETOILE Regulates Developmental Patterning in the Filamentous Brown Alga Ectocarpus siliculosus[W
Le Bail, Aude; Billoud, Bernard; Le Panse, Sophie; Chenivesse, Sabine; Charrier, Bénédicte
2011-01-01
Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell–cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell–cell communication during the establishment of the developmental pattern in this brown alga. PMID:21478443
Current Advances and Limitations in Modeling ALS/FTD in a Dish Using Induced Pluripotent Stem Cells
Guo, Wenting; Fumagalli, Laura; Prior, Robert; Van Den Bosch, Ludo
2017-01-01
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two age-dependent multifactorial neurodegenerative disorders, which are typically characterized by the selective death of motor neurons and cerebral cortex neurons, respectively. These two diseases share many clinical, genetic and pathological aspects. During the past decade, cell reprogramming technologies enabled researchers to generate human induced pluripotent stem cells (iPSCs) from somatic cells. This resulted in the unique opportunity to obtain specific neuronal and non-neuronal cell types from patients which could be used for basic research. Moreover, these in vitro models can mimic not only the familial forms of ALS/FTD, but also sporadic cases without known genetic cause. At present, there have been extensive technical advances in the generation of iPSCs, as well as in the differentiation procedures to obtain iPSC-derived motor neurons, cortical neurons and non-neuronal cells. The major challenge at this moment is to determine whether these iPSC-derived cells show relevant phenotypes that recapitulate complex diseases. In this review, we will summarize the work related to iPSC models of ALS and FTD. In addition, we will discuss potential drawbacks and solutions for establishing more trustworthy iPSC models for both ALS and FTD. PMID:29326542
Gupta, Kishan; Beer, Nathan J.; Keller, Lauren A.; Hasselmo, Michael E.
2014-01-01
Prior studies of head direction (HD) cells indicate strong landmark control over the preferred firing direction of these cells, with few studies exhibiting shifts away from local reference frames over time. We recorded spiking activity of grid and HD cells in the medial entorhinal cortex of rats, testing correlations of local environmental cues with the spatial tuning curves of these cells' firing fields as animals performed continuous spatial alternation on a T-maze that shared the boundaries of an open-field arena. The environment was rotated into configurations the animal had either seen or not seen in the past recording week. Tuning curves of both cell types demonstrated commensurate shifts of tuning with T-maze rotations during less recent rotations, more so than recent rotations. This strongly suggests that animals are shifting their reference frame away from the local environmental cues over time, learning to use a different reference frame more likely reliant on distal or idiothetic cues. In addition, grid fields demonstrated varying levels of “fragmentation” on the T-maze. The propensity for fragmentation does not depend on grid spacing and grid score, nor animal trajectory, indicating the cognitive treatment of environmental subcompartments is likely driven by task demands. PMID:23382518
Regulatory logic of pan-neuronal gene expression in C. elegans
Stefanakis, Nikolaos; Carrera, Ines; Hobert, Oliver
2015-01-01
While neuronal cell types display an astounding degree of phenotypic diversity, most if not all neuron types share a core panel of terminal features. However, little is known about how pan-neuronal expression patterns are genetically programmed. Through an extensive analysis of the cis-regulatory control regions of a battery of pan-neuronal C.elegans genes, including genes involved in synaptic vesicle biology and neuropeptide signaling, we define a common organizational principle in the regulation of pan-neuronal genes in the form of a surprisingly complex array of seemingly redundant, parallel-acting cis-regulatory modules that direct expression to broad, overlapping domains throughout the nervous system. These parallel-acting cis-regulatory modules are responsive to a multitude of distinct trans-acting factors. Neuronal gene expression programs therefore fall into two fundamentally distinct classes. Neuron type-specific genes are generally controlled by discrete and non-redundantly acting regulatory inputs, while pan-neuronal gene expression is controlled by diverse, coincident and seemingly redundant regulatory inputs. PMID:26291158
Gehring, Walter J
2014-01-01
In this review, the evolution of vision is retraced from its putative origins in cyanobacteria to humans. Circadian oscillatory clocks, phototropism, and phototaxis require the capability to detect light. Photosensory proteins allow us to reconstruct molecular phylogenetic trees. The evolution of animal eyes leading from an ancestral prototype to highly complex image forming eyes can be deciphered on the basis of evolutionary developmental genetic experiments and comparative genomics. As all bilaterian animals share the same master control gene, Pax6, and the same retinal and pigment cell determination genes, we conclude that the different eye-types originated monophyletically and subsequently diversified by divergent, parallel, or convergent evolution. © 2012 Wiley Periodicals, Inc.
Molecular blood grouping of donors.
St-Louis, Maryse
2014-04-01
For many decades, hemagglutination has been the sole means to type blood donors. Since the first blood group gene cloning in the early 1990s, knowledge on the molecular basis of most red blood cell, platelet and neutrophil antigens brought the possibility of using nucleotide-based techniques to predict phenotype. This review will summarized methodologies available to genotype blood groups from laboratory developed assays to commercially available platforms, and how proficiency assays become more present. The author will also share her vision of the transfusion medicine future. The field is presently at the crossroads, bringing new perspectives to a century old practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structure of bacterial lipopolysaccharides.
Caroff, Martine; Karibian, Doris
2003-11-14
Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.
Yoshimatsu, Aya; Hoshi, Takuo; Nishikawa, Masashi; Aya, Daisuke; Ueda, Hiroshi; Yokouchi, Takako; Tanaka, Makoto
2013-08-01
We report a B Rh negative patient undergoing total pelvic exenteration, who received both ABO and Rh incompatible packed red blood cells in an emergency situation. After this experience, we revised the manual of emergency blood transfusion. We defined level of severity to share information with surgeon, nurses, anesthesiologists and the member of the blood center. We changed anesthesia information management system for showing blood type including Duffy blood group system and checking out whether we can transfuse Rh positive blood to Rh negative patient in an emergency situation at the timeout of surgery.
Bourbousson, J; Poizat, G; Saury, J; Seve, C
2011-02-01
This exploratory case study describes the sharedness of knowledge within a basketball team (nine players) and how it changes during an official match. To determine how knowledge is mobilised in an actual game situation, the data were collected and processed following course-of-action theory (Theureau 2003). The results were used to characterise the contents of the shared knowledge (i.e. regarding teammate characteristics, team functioning, opponent characteristics, opposing team functioning and game conditions) and to identify the characteristic types of change: (a) the reinforcement of a previous element of shared knowledge; (b) the invalidation of an element of shared knowledge; (c) fragmentation of an element of shared knowledge; (d) the creation of a new element of shared knowledge. The discussion deals with the diverse types of change in shared knowledge and the heterogeneous and dynamic nature of common ground within the team. STATEMENT OF RELEVANCE: The present case study focused on how the cognitions of individual members of a team coordinate to produce a team performance (e.g. surgical teams in hospitals, military teams) and how the shared knowledge changes during team activity. Traditional methods to increase knowledge sharedness can be enhanced by making use of 'opportunities for coordination' to optimise team adaptiveness.
Colon Stem Cell and Crypt Dynamics Exposed by Cell Lineage Reconstruction
Itzkovitz, Shalev; Elbaz, Judith; Maruvka, Yosef E.; Segev, Elad; Shlush, Liran I.; Dekel, Nava; Shapiro, Ehud
2011-01-01
Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems. PMID:21829376
Immune cell identity: perspective from a palimpsest
Rothenberg, Ellen V.
2016-01-01
The immune system in mammals is composed of multiple different immune cell types that migrate through the body and are made continuously throughout life. Lymphocytes and myeloid cells interact with each other and depend upon each other, but are each highly diverse and specialized for different roles. Lymphocytes uniquely require developmentally programmed mutational changes in the genome itself for their maturation. Despite profound differences between their mechanisms of threat recognition and threat response, however, the developmental origins of lymphocytes and myeloid cells are interlinked, and important aspects of their response mechanisms remain shared. As the immune defense system has been elucidated in the past 50 years, it is notable that the chain of logic toward our current understanding was driven by strongly posited models that led to crucial discoveries even though these models ended up being partly wrong. It has been the predictive strength of these models and their success as guides to incisive experimental research that has also illuminated the limits of each model’s explanatory scope, beyond which another model needed to assume the lead. This brief review describes how a succession of distinct paradigms has helped to clarify a sophisticated picture of immune cell generation and control. PMID:26750603
Identification of a candidate CD5 homologue in the amphibian Xenopus laevis.
Jürgens, J B; Gartland, L A; Du Pasquier, L; Horton, J D; Göbel, T W; Cooper, M D
1995-11-01
We identified a novel T cell Ag in the South African clawed toad (Xenopus laevis) by a mAb designated 2B1. This Ag is present in relatively high levels on most thymocytes, approximately 65% of splenocytes, 55% of PBL, and 65% of intestinal lymphocytes, but is rarely seen on IgM+ B cells in any of these tissues. Lymphocytes bearing the 2B1 Ag proliferate in response to stimulation with Con A or PHA, whereas the 2B1- lymphocytes are reactive to LPS. Biochemical analysis indicates that this Ag is a differentially phosphorylated glycoprotein of 71 to 82 kDa. The protein core of 64 kDa bears both N- and O-linked carbohydrate side chains. The amino-terminal protein sequence of the 2B1 Ag shares significant homology with both the macrophage scavenger receptor type 1 motif and the mammalian CD5/CD6 family. The biochemical characteristics and cellular distribution of the 2B1 Ag suggest that it represents the CD5 homologue in X. laevis. While T cells constitutively express this highly conserved molecule, Xenopus B cells acquire the CD5 homologue only when they are stimulated in the presence of T cells.
A phylogenomic data-driven exploration of viral origins and evolution
Nasir, Arshan; Caetano-Anollés, Gustavo
2015-01-01
The origin of viruses remains mysterious because of their diverse and patchy molecular and functional makeup. Although numerous hypotheses have attempted to explain viral origins, none is backed by substantive data. We take full advantage of the wealth of available protein structural and functional data to explore the evolution of the proteomic makeup of thousands of cells and viruses. Despite the extremely reduced nature of viral proteomes, we established an ancient origin of the “viral supergroup” and the existence of widespread episodes of horizontal transfer of genetic information. Viruses harboring different replicon types and infecting distantly related hosts shared many metabolic and informational protein structural domains of ancient origin that were also widespread in cellular proteomes. Phylogenomic analysis uncovered a universal tree of life and revealed that modern viruses reduced from multiple ancient cells that harbored segmented RNA genomes and coexisted with the ancestors of modern cells. The model for the origin and evolution of viruses and cells is backed by strong genomic and structural evidence and can be reconciled with existing models of viral evolution if one considers viruses to have originated from ancient cells and not from modern counterparts. PMID:26601271
Li, Shundai; Bashline, Logan; Zheng, Yunzhen; Xin, Xiaoran; Huang, Shixin; Kong, Zhaosheng; Kim, Seong H.; Cosgrove, Daniel J.; Gu, Ying
2016-01-01
Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana. This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs. PMID:27647923
Li, Shundai; Bashline, Logan; Zheng, Yunzhen; Xin, Xiaoran; Huang, Shixin; Kong, Zhaosheng; Kim, Seong H; Cosgrove, Daniel J; Gu, Ying
2016-10-04
Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.
Ginsburg, G T; Kimmel, A R
1997-08-15
Early during Dictyostelium development a fundamental cell-fate decision establishes the anteroposterior (prestalk/prespore) axis. Signaling via the 7-transmembrane cAMP receptor CAR4 is essential for creating and maintaining a normal pattern; car4-null alleles have decreased levels of prestalk-specific mRNAs but enhanced expression of prespore genes. car4- cells produce all of the signals required for prestalk differentiation but lack an extracellular factor necessary for prespore differentiation of wild-type cells. This secreted factor decreases the sensitivity of prespore cells to inhibition by the prestalk morphogen DIF-1. At the cell autonomous level, CAR4 is linked to intracellular circuits that activate prestalk but inhibit prespore differentiation. The autonomous action of CAR4 is antagonistic to the positive intracellular signals mediated by another cAMP receptor, CAR1 and/or CAR3. Additional data indicate that these CAR-mediated pathways converge at the serine/threonine protein kinase GSK3, suggesting that the anterior (prestalk)/posterior (prespore) axis of Dictyostelium is regulated by an ancient mechanism that is shared by the Wnt/Fz circuits for dorsoventral patterning during early Xenopus development and establishing Drosophila segment polarity.
Cellular therapies for heart disease: unveiling the ethical and public policy challenges.
Raval, Amish N; Kamp, Timothy J; Hogle, Linda F
2008-10-01
Cellular therapies have emerged as a potential revolutionary treatment for cardiovascular disease. Promising preclinical results have resulted in a flurry of basic research activity and spawned multiple clinical trials worldwide. However, the optimal cell type and delivery mode have not been determined for target patient populations. Nor have the mechanisms of benefit for the range of cellular interventions been clearly defined. Experiences to date have unveiled a myriad of ethical and public policy challenges which will affect the way researchers and clinicians make decisions for both basic and clinical research. Stem cells derived from embryos are at the forefront of the ethical and political debate, raising issues of which derivation methods are morally and socially permissible to pursue, as much as which are technically feasible. Adult stem cells are less controversial; however, important challenges exist in determining study design, cell processing, delivery mode, and target patient population. Pathways to successful commercialization and hence broad accessibility of cellular therapies for heart disease are only beginning to be explored. Comprehensive, multi-disciplinary and collaborative networks involving basic researchers, clinicians, regulatory officials and policymakers are required to share information, develop research, regulatory and policy standards and enable rational and ethical cell-based treatment approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owerbach, D.; Gabbay, K.H.
1994-05-01
Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.
... Category: Share: Yes No, Keep Private Botox Share | Botulinum toxin type A (trade name: Botox) is an injectable ... is for educational purposes only and is the property of the American Osteopathic College of Dermatology. It ...
Power Sharing in Postconflict Societies: Implications for Peace and Governance
ERIC Educational Resources Information Center
Cammett, Melani; Malesky, Edmund
2012-01-01
Which components of power sharing contribute to the duration of peace and what explains the linkages between institutional design and stability? The authors argue that certain types of political power sharing are associated with more durable peace than others, primarily through their positive effects on governance and public service delivery. In…
Video-Sharing Websites: Tools for Developing Pattern Languages in Children
ERIC Educational Resources Information Center
An, Heejung; Seplocha, Holly
2010-01-01
Children and their families and teachers use video-sharing websites for new types of learning and information sharing. With the expansion of the World Wide Web, the ability to freely exchange pattern-based information has grown exponentially. As noted by Alexander, "pattern language development" is a process in which communities freely share…
Gurven, Michael; Jaeggi, Adrian V.; von Rueden, Chris; Hooper, Paul L.; Kaplan, Hillard
2015-01-01
Sharing and exchange are common practices for minimizing food insecurity in rural populations. The advent of markets and monetization in egalitarian indigenous populations presents an alternative means of managing risk, with the potential impact of eroding traditional networks. We test whether market involvement buffers several types of risk and reduces traditional sharing behavior among Tsimane Amerindians of the Bolivian Amazon. Results vary based on type of market integration and scale of analysis (household vs. village), consistent with the notion that local culture and ecology shape risk management strategies. Greater wealth and income were unassociated with the reliance on others for food, or on reciprocity, but wealth was associated with a greater proportion of food given to others (i.e., giving intensity) and a greater number of sharing partners (i.e., sharing breadth). Across villages, greater mean income was negatively associated with reciprocity, but economic inequality was positively associated with giving intensity and sharing breadth. Incipient market integration does not necessarily replace traditional buffering strategies but instead can often enhance social capital. PMID:26526638
Gurven, Michael; Jaeggi, Adrian V; von Rueden, Chris; Hooper, Paul L; Kaplan, Hillard
2015-08-01
Sharing and exchange are common practices for minimizing food insecurity in rural populations. The advent of markets and monetization in egalitarian indigenous populations presents an alternative means of managing risk, with the potential impact of eroding traditional networks. We test whether market involvement buffers several types of risk and reduces traditional sharing behavior among Tsimane Amerindians of the Bolivian Amazon. Results vary based on type of market integration and scale of analysis (household vs. village), consistent with the notion that local culture and ecology shape risk management strategies. Greater wealth and income were unassociated with the reliance on others for food, or on reciprocity, but wealth was associated with a greater proportion of food given to others (i.e., giving intensity) and a greater number of sharing partners (i.e., sharing breadth). Across villages, greater mean income was negatively associated with reciprocity, but economic inequality was positively associated with giving intensity and sharing breadth. Incipient market integration does not necessarily replace traditional buffering strategies but instead can often enhance social capital.
White, J; Meredith, M
1995-01-16
The nervus terminalis is a ganglionated vertebrate cranial nerve of unknown function that connects the brain and the peripheral nasal structures. To investigate its function, we have studied nervus terminalis ganglion morphology and physiology in the bonnethead shark (Sphyrna tiburo), where the nerve is particularly prominent. Immunocytochemistry for gonadotropin-releasing hormone (GnRH) and Leu-Pro-Leu-Arg-Phe-NH2 (LPLRFamide) revealed two distinct populations of cells. Both were acetylcholinesterase positive, but LPLR-Famide-immunoreactive cells consistently stained more darkly for acetylcholinesterase activity. Tyrosine hydroxylase immunocytochemistry revealed fibers and terminal-like puncta in the ganglion, primarily in areas containing GnRH-immunoreactive cells. Consistent with the anatomy, in vitro electrophysiological recordings provided evidence for cholinergic and catecholaminergic actions. In extracellular recordings, acetylcholine had a variable effect on baseline ganglion cell activity, whereas norepinephrine consistently reduced activity. Electrical stimulation of the nerve trunks suppressed ganglion activity, as did impulses from the brain in vivo. During electrical suppression, acetylcholine consistently increased activity, and norepinephrine decreased activity. Muscarinic and, to a lesser extent, alpha-adrenergic antagonists both increased activity during the electrical suppression, suggesting involvement of both systems. Intracellular recordings revealed two types of ganglion cells that were distinguishable pharmacologically and physiologically. Some cells were hyperpolarized by cholinergic agonists and unaffected by norepinephrine; these cells did not depolarize with peripheral nerve trunk stimulation. Another group of cells did depolarize with peripheral trunk stimulation; a representative of this group was depolarized by carbachol and hyperpolarized by norepinephrine. These and other data suggest that the bonnethead nervus terminalis ganglion contains at least two cell populations that respond differently to acetylcholine and norepinephrine. The bonnethead nervus terminalis ganglion appears to differ fundamentally from sensory and autonomic ganglia but does share some features with the neural circuits of forebrain GnRH systems.
Cell-type-specific role of ΔFosB in nucleus accumbens in modulating inter-male aggression.
Aleyasin, Hossein; Flanigan, Meghan E; Golden, Sam A; Takahashi, Aki; Menard, Caroline; Pfau, Madeline L; Multer, Jacob; Pina, Jacqueline; McCabe, Kathryn A; Bhatti, Naemal; Hodes, Georgia E; Heshmati, Mitra; Neve, Rachael L; Nestler, Eric J; Heller, Elizabeth A; Russo, Scott J
2018-06-11
A growing number of studies implicate the brain's reward circuitry in aggressive behavior. However, the cellular and molecular mechanisms within brain reward regions that modulate the intensity of aggression as well as motivation for it have been underexplored. Here, we investigate the cell-type-specific influence of ΔFosB, a transcription factor known to regulate a range of reward and motivated behaviors, acting in the nucleus accumbens (NAc)-a key reward region-in male aggression in mice. We show that ΔFosB is specifically increased in dopamine D1 receptor (Drd1) expressing medium spiny neurons (D1-MSNs) in NAc after repeated aggressive encounters. Viral-mediated induction of ΔFosB selectively in D1-MSNs of NAc intensifies aggressive behavior, without affecting the preference for the aggression-paired context in a conditioned place preference (CPP) assay. In contrast, ΔFosB induction selectively in D2-MSNs reduces the time spent exploring the aggression-paired context during CPP without affecting the intensity of aggression per se. These data strongly support a dissociable cell-type-specific role for ΔFosB in the NAc in modulating aggression and aggression reward. Significance Statement: Aggressive behavior is associated with several neuropsychiatric disorders and can be disruptive for the individuals as well as their victims. Studies have shown a positive reinforcement mechanism underlying aggressive behavior that shares many common features with drug addiction. Here, we explore the cell-type-specific role of the addiction-associated transcription factor ΔFosB in the nucleus accumbens (NAc) in aggression. We found that ΔFosB expression promotes aggressive behavior, effects that are dissociable from its effects on aggression reward. This finding is a significant first step in identifying therapeutic targets for the reduction of aggressive behavior across a range of neuropsychiatric illnesses. Copyright © 2018 the authors.
De Smet, Frederik; Saiz Rubio, Mirian; Hompes, Daphne; Naus, Evelyne; De Baets, Greet; Langenberg, Tobias; Hipp, Mark S; Houben, Bert; Claes, Filip; Charbonneau, Sarah; Delgado Blanco, Javier; Plaisance, Stephane; Ramkissoon, Shakti; Ramkissoon, Lori; Simons, Colinda; van den Brandt, Piet; Weijenberg, Matty; Van England, Manon; Lambrechts, Sandrina; Amant, Frederic; D'Hoore, André; Ligon, Keith L; Sagaert, Xavier; Schymkowitz, Joost; Rousseau, Frederic
2017-05-01
Although p53 protein aggregates have been observed in cancer cell lines and tumour tissue, their impact in cancer remains largely unknown. Here, we extensively screened for p53 aggregation phenotypes in tumour biopsies, and identified nuclear inclusion bodies (nIBs) of transcriptionally inactive mutant or wild-type p53 as the most frequent aggregation-like phenotype across six different cancer types. p53-positive nIBs co-stained with nuclear aggregation markers, and shared molecular hallmarks of nIBs commonly found in neurodegenerative disorders. In cell culture, tumour-associated stress was a strong inducer of p53 aggregation and nIB formation. This was most prominent for mutant p53, but could also be observed in wild-type p53 cell lines, for which nIB formation correlated with the loss of p53's transcriptional activity. Importantly, protein aggregation also fuelled the dysregulation of the proteostasis network in the tumour cell by inducing a hyperactivated, oncogenic heat-shock response, to which tumours are commonly addicted, and by overloading the proteasomal degradation system, an observation that was most pronounced for structurally destabilized mutant p53. Patients showing tumours with p53-positive nIBs suffered from a poor clinical outcome, similar to those with loss of p53 expression, and tumour biopsies showed a differential proteostatic expression profile associated with p53-positive nIBs. p53-positive nIBs therefore highlight a malignant state of the tumour that results from the interplay between (1) the functional inactivation of p53 through mutation and/or aggregation, and (2) microenvironmental stress, a combination that catalyses proteostatic dysregulation. This study highlights several unexpected clinical, biological and therapeutically unexplored parallels between cancer and neurodegeneration. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Endocrine Therapy of Breast Cancer
2009-06-01
the LCCC and shared fully with the broader research community . Our adoption of caBIG and our activities in this large federally funded research... community also allows us to share our expertise and tools with many other cancer researchers. We also continue to further develop and optimize our...cell growth arrest in M1, eventually leading to critically short telomeres and massive cell death or “mortality stage 2 (M2)” or “ crisis .” Individual
Migueles, Stephen A; Mendoza, Daniel; Zimmerman, Matthew G; Martins, Kelly M; Toulmin, Sushila A; Kelly, Elizabeth P; Peterson, Bennett A; Johnson, Sarah A; Galson, Eric; Poropatich, Kate O; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A; Jones, Sara; Hallahan, Claire W; Follmann, Dean A; Connors, Mark
2015-01-01
Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8(+) T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8(+) T-cell specificity and function of B*27/57(neg) LTNP/EC (n = 23), B*27/57(pos) LTNP/EC (n = 23) and B*27/57(neg) progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57(neg) LTNP/EC did not target more highly conserved epitopes, their CD8(+) T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57(pos) LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8(+) T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people.
Migueles, Stephen A.; Mendoza, Daniel; Zimmerman, Matthew G.; Martins, Kelly M.; Toulmin, Sushila A.; Kelly, Elizabeth P.; Peterson, Bennett A.; Johnson, Sarah A.; Galson, Eric; Poropatich, Kate O.; Patamawenu, Andy; Imamichi, Hiromi; Ober, Alexander; Rehm, Catherine A.; Jones, Sara; Hallahan, Claire W.; Follmann, Dean A.; Connors, Mark
2014-01-01
Understanding natural immunologic control over Human Immunodeficiency Virus (HIV)-1 replication, as occurs in rare long-term nonprogressors/elite controllers (LTNP/EC), should inform the design of efficacious HIV vaccines and immunotherapies. Durable control in LTNP/EC is likely mediated by highly functional virus-specific CD8+ T-cells. Protective Human Leukocyte Antigen (HLA) class I alleles, like B*27 and B*57, are present in most, but not all LTNP/EC, providing an opportunity to investigate features shared by their HIV-specific immune responses. To better understand the contribution of epitope targeting and conservation to immune control, we compared the CD8+ T-cell specificity and function of B*27/57neg LTNP/EC (n = 23), B*27/57pos LTNP/EC (n = 23) and B*27/57neg progressors (n = 13). Fine mapping revealed 11 previously unreported immunodominant responses. Although B*27/57neg LTNP/EC did not target more highly conserved epitopes, their CD8+ T-cell cytotoxic capacity was significantly higher than progressors. Similar to B*27/57pos LTNP/EC, this superior cytotoxicity was mediated by preferential expansion of immunodominant responses and lysis through the predicted HLA. These findings suggest that increased CD8+ T-cell cytotoxic capacity is a common mechanism of control in most LTNP/EC regardless of HLA type. They also suggest that potent cytotoxicity can be mediated through various epitopes and HLA molecules and could, in theory, be induced in most people. PMID:26137533
Unusual cardiac paraganglioma mimicking an atypical carcinoid tumor of the lung
Evans, Mark; Wang, Beverly; Delrosario, J. Lawrence; Cheng, Timmy; Milliken, Jeffrey
2018-01-01
We present a case of unusual cardiac paraganglioma (PG) initially misdiagnosed as atypical carcinoid tumor of the lung and discuss key clinical and pathologic characteristics that guide surgical management of these rare chromaffin cell tumors. A 64-year-old female with persistent cough and back pain was found to have a 4 cm × 3 cm mass abutting multiple cardiopulmonary structures. A biopsy was performed at an outside institution and pathology reported “atypical neuroendocrine carcinoma, consistent with carcinoid”. The patient was transferred to our institution and pericardial resection with right pneumonectomy was performed to excise the tumor. Histology of the mass was that of PG with multiple ethanol embolizations. Immunohistochemical examination revealed that type I (chief) cells were positive for neuroendocrine markers (chromogranin A and synaptophysin), while type II (sustentacular) cells were positive for S100. There was no evidence of atypical carcinoid tumor in the lung. PG is an entity of chromaffin cell tumors that often affects the adrenal glands and carotid body. PG rarely occurs in the thoracic region, accounting for just 1–2% of all PG. Proper diagnosis of cardiac PG is challenging owing to its rare prevalence, subtle symptoms of presentation, and the neuroendocrine histopathological features it shares with atypical carcinoids. These tumors are typically benign and are best treated by surgical resection. Our report examines the approach to appropriate diagnosis of cardiac PG vs. atypical carcinoid, preoperative management, and surgical treatment by describing successful resection through thoracotomy without the use of cardiopulmonary bypass. PMID:29600100
Basal Cell Carcinoma: A Patient and Physician's Experience.
Cohen, Barbara J; Cohen, Eliahou S; Cohen, Philip R
2018-06-02
In this article, the first coauthor, a patient with a basal cell carcinoma on her upper lip, discusses her experience with Mohs micrographic surgery for the treatment of the skin cancer. The second coauthor, who is the patient's physician (a dermatologist who shares her last name but is not a relative), diagnosed her skin cancer and referred her for Mohs surgery. The third coauthor, who is the patient's son and not only a dermatologist, but also a dermatopathologist and a Mohs surgeon (and also shares her last name), summarizes the presentation and treatment of the basal cell carcinoma.
Hutton, John J; Jegga, Anil G; Kong, Sue; Gupta, Ashima; Ebert, Catherine; Williams, Sarah; Katz, Jonathan D; Aronow, Bruce J
2004-01-01
Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions. PMID:15504237
Interacting damage models mapped onto ising and percolation models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toussaint, Renaud; Pride, Steven R.
The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in themore » system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model to standard statistical mechanics.« less
Suzuki, Kengo; Mitra, Sharbanee; Iwata, Osamu; Ishikawa, Takahiro; Kato, Sueo; Yamada, Koji
2015-01-01
Euglena gracilis is a microalgae used as a model organism. Recently, mass cultivation of this species has been achieved for industrial applications. The genus Euglena includes more than 200 species that share common useful features, but the potential industrial applications of other Euglena species have not been evaluated. Thus, we conducted a pilot screening study to identify other species that proliferate at a sufficiently rapid rate to be used for mass cultivation; we found that Euglena anabaena var. minor had a rapid growth rate. In addition, its cells accumulated more than 40% weight of carbohydrate, most of which is considered to be a euglenoid specific type of beta-1-3-glucan, paramylon. Carbohydrate is stored in E. anabaena var. minor cells during normal culture, whereas E. gracilis requires nitrogen limitation to facilitate paramylon accumulation. These results suggest the potential industrial application of E. anabaena var. minor.
VIEWPOINT – Vitiligo and alopecia areata: Apples and oranges?
Harris, John E.
2013-01-01
Vitiligo and alopecia areata are common autoimmune diseases of the skin. Vitiligo is caused by the destruction of melanocytes and results in the appearance of white patches on any part of the body, while alopecia areata is characterized by patchy hair loss primarily on the scalp, but may also involve other areas as well. At first glance, the two diseases appear to be quite different, targeting different cell types and managed using different treatment approaches. However, the immune cell populations and cytokines that drive each disease are similar, they are closely associated within patients and their family members, and vitiligo and alopecia areata have common genetic risk factors, suggesting that they share a similar pathogenesis. Like apples and oranges, vitiligo and alopecia areata have some obvious differences, but similarities abound. Recognizing both similarities and differences will promote research into the pathogenesis of each disease, as well as the development of new treatments. PMID:24131336
Byrnit, Jill T; Høgh-Olesen, Henrik; Makransky, Guido
2015-08-01
All over the world, humans (Homo sapiens) display resource-sharing behavior, and common patterns of sharing seem to exist across cultures. Humans are not the only primates to share, and observations from the wild have long documented food sharing behavior in our closest phylogenetic relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). However, few controlled studies have been made in which groups of Pan are introduced to food items that may be shared or monopolized by a first food possessor, and very few studies have examined what happens to these sharing patterns if the food in question is a highly attractive, monopolizable food source. The one study to date to include food quality as the independent variable used different types of food as high- and low-value items, making differences in food divisibility and size potentially confounding factors. It was the aim of the present study to examine the sharing behavior of groups of captive chimpanzees and bonobos when introducing the same type of food (branches) manipulated to be of 2 different degrees of desirability (with or without syrup). Results showed that the large majority of food transfers in both species came about as sharing in which group members were allowed to cofeed or remove food from the stock of the food possessor, and the introduction of high-value food resulted in more sharing, not less. Food sharing behavior differed between species in that chimpanzees displayed significantly more begging behavior than bonobos. Bonobos, instead, engaged in sexual invitations, which the chimpanzees never did. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
A hybrid reconfigurable solar and wind energy system
NASA Astrophysics Data System (ADS)
Gadkari, Sagar A.
We study the feasibility of a novel hybrid solar-wind hybrid system that shares most of its infrastructure and components. During periods of clear sunny days the system will generate electricity from the sun using a parabolic concentrator. The concentrator is formed by individual mirror elements and focuses the light onto high intensity vertical multi-junction (VMJ) cells. During periods of high wind speeds and at night, the same concentrator setup will be reconfigured to channel the wind into a wind turbine which will be used to harness wind energy. In this study we report on the feasibility of this type of solar/wind hybrid energy system. The key mechanisms; optics, cooling mechanism of VMJ cells and air flow through the system were investigated using simulation tools. The results from these simulations, along with a simple economic analysis giving the levelized cost of energy for such a system are presented. An iterative method of design refinement based on the simulation results was used to work towards a prototype design. The levelized cost of the system achieved in the economic analysis shows the system to be a good alternative for a grid isolated site and could be used as a standalone system in regions of lower demand. The new approach to solar wind hybrid system reported herein will pave way for newer generation of hybrid systems that share common infrastructure in addition to the storage and distribution of energy.
Kapanadze, B; Kashuba, V; Baranova, A; Rasool, O; van Everdink, W; Liu, Y; Syomov, A; Corcoran, M; Poltaraus, A; Brodyansky, V; Syomova, N; Kazakov, A; Ibbotson, R; van den Berg, A; Gizatullin, R; Fedorova, L; Sulimova, G; Zelenin, A; Deaven, L; Lehrach, H; Grander, D; Buys, C; Oscier, D; Zabarovsky, E R; Einhorn, S; Yankovsky, N
1998-04-17
B-cell chronic lymphocytic leukemia (B-CLL) is a human hematological neoplastic disease often associated with the loss of a chromosome 13 region between RB1 gene and locus D13S25. A new tumor suppressor gene (TSG) may be located in the region. A cosmid contig has been constructed between the loci D13S1168 (WI9598) and D13S25 (H2-42), which corresponds to the minimal region shared by B-CLL associated deletions. The contig includes more than 200 LANL and ICRF cosmid clones covering 620 kb. Three cDNAs likely corresponding to three different genes have been found in the minimally deleted region, sequenced and mapped against the contigged cosmids. cDNA clone 10k4 as well as a chimeric clone 13g3, codes for a zinc-finger domain of the RING type and shares homology to some known genes involved in tumorigenesis (RET finger protein, BRCA1) and embryogenesis (MID1). We have termed the gene corresponding to 10k4/13g3 clones LEU5. This is the first gene with homology to known TSGs which has been found in the region of B-CLL rearrangements.
Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies.
Mathes, C; Rosenthal, J J; Armstrong, G M; Gilly, W F
1997-04-01
Inactivation of delayed rectifier K conductance (gk) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (approximately -10 mV in 50-70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12-18 degrees C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at -10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12 degrees C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kvl channels studied in heterologous expression systems.
Gomez, Delphine; Coyet, Aurélie; Ollivier, Véronique; Jeunemaitre, Xavier; Jondeau, Guillaume; Michel, Jean-Baptiste; Vranckx, Roger
2011-01-01
Aims Human thoracic aortic aneurysms (TAAs) are characterized by extracellular matrix breakdown associated with progressive smooth muscle cell (SMC) rarefaction. These features are present in all types of TAA: monogenic forms [mainly Marfan syndrome (MFS)], forms associated with bicuspid aortic valve (BAV), and degenerative forms. Initially described in a mouse model of MFS, the transforming growth factor-β1 (TGF-β1)/Smad2 signalling pathway is now assumed to play a role in TAA of various aetiologies. However, the relation between the aetiological diversity and the common cell phenotype with respect to TGF-β signalling remains unexplained. Methods and results This study was performed on human aortic samples, including TAA [MFS, n = 14; BAV, n = 15; and degenerative, n = 19] and normal aortas (n = 10) from which tissue extracts and human SMCs and fibroblasts were obtained. We show that all types of TAA share a complex dysregulation of Smad2 signalling, independent of TGF-β1 in TAA-derived SMCs (pharmacological study, qPCR). The Smad2 dysregulation is characterized by an SMC-specific, heritable activation and overexpression of Smad2, compared with normal aortas. The cell specificity and heritability of this overexpression strongly suggest the implication of epigenetic control of Smad2 expression. By chromatin immunoprecipitation, we demonstrate that the increases in H3K9/14 acetylation and H3K4 methylation are involved in Smad2 overexpression in TAA, in a cell-specific and transcription start site-specific manner. Conclusion Our results demonstrate the heritability, the cell specificity, and the independence with regard to TGF-β1 and genetic backgrounds of the Smad2 dysregulation in human thoracic aneurysms and the involvement of epigenetic mechanisms regulating histone marks in this process. PMID:20829218
Bultema, Jarred J.; Ambrosio, Andrea L.; Burek, Carolyn L.; Di Pietro, Santiago M.
2012-01-01
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis. PMID:22511774
Bultema, Jarred J; Ambrosio, Andrea L; Burek, Carolyn L; Di Pietro, Santiago M
2012-06-01
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.
Visualizing Herpesvirus Procapsids in Living Cells.
Maier, Oana; Sollars, Patricia J; Pickard, Gary E; Smith, Gregory A
2016-11-15
A complete understanding of herpesvirus morphogenesis requires studies of capsid assembly dynamics in living cells. Although fluorescent tags fused to the VP26 and pUL25 capsid proteins are available, neither of these components is present on the initial capsid assembly, the procapsid. To make procapsids accessible to live-cell imaging, we made a series of recombinant pseudorabies viruses that encoded green fluorescent protein (GFP) fused in frame to the internal capsid scaffold and maturation protease. One recombinant, a GFP-VP24 fusion, maintained wild-type propagation kinetics in vitro and approximated wild-type virulence in vivo The fusion also proved to be well tolerated in herpes simplex virus. Viruses encoding GFP-VP24, along with a traditional capsid reporter fusion (pUL25/mCherry), demonstrated that GFP-VP24 was a reliable capsid marker and revealed that the protein remained capsid associated following entry into cells and upon nuclear docking. These dual-fluorescent viruses made possible the discrimination of procapsids during infection and monitoring of capsid shell maturation kinetics. The results demonstrate the feasibility of imaging herpesvirus procapsids and their morphogenesis in living cells and indicate that the encapsidation machinery does not substantially help coordinate capsid shell maturation. The family Herpesviridae consists of human and veterinary pathogens that cause a wide range of diseases in their respective hosts. These viruses share structurally related icosahedral capsids that encase the double-stranded DNA (dsDNA) viral genome. The dynamics of capsid assembly and maturation have been inaccessible to examination in living cells. This study has overcome this technical hurdle and provides new insights into this fundamental stage of herpesvirus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies
Mathes, Chris; Rosenthal, Joshua J.C.; Armstrong, Clay M.; Gilly, William F.
1997-01-01
Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems. PMID:9101403
Origin of clear cell carcinoma: nature or nurture?
Kolin, David L; Dinulescu, Daniela M; Crum, Christopher P
2018-02-01
A rare but serious complication of endometriosis is the development of carcinoma, and clear cell and endometrioid carcinomas of the ovary are the two most common malignancies which arise from endometriosis. They are distinct diseases, characterized by unique morphologies, immunohistochemical profiles, and responses to treatment. However, both arise in endometriosis and can share common mutations. The overlapping mutational profiles of clear cell and endometrioid carcinomas suggest that their varied histologies may be due to a different cell of origin which gives rise to each type of cancer. Cochrane and colleagues address this question in a recent article in this journal. They show that a marker of ovarian clear cell carcinoma, cystathionine gamma lyase, is expressed in ciliated cells. Similarly, they show that markers of secretory cells (estrogen receptor and methylenetetrahydrofolate dehydrogenase 1) are expressed in ovarian endometrioid carcinoma. Taken together, they suggest that endometrioid and clear cell carcinomas arise from cells related to secretory and ciliated cells, respectively. We discuss Cochrane et al's work in the context of other efforts to determine the cell of origin of gynecological malignancies, with an emphasis on recent developments and challenges unique to the area. These limitations complicate our interpretation of tumor differentiation; does it reflect nature imposed by a specific cell of origin or nurture, by either mutation(s) or environment? Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Lassak, Kerstin; Ghosh, Abhrajyoti; Albers, Sonja-Verena
2012-01-01
Archaea have evolved fascinating surface structures allowing rapid adaptation to changing environments. The archaeal surface appendages display such diverse biological roles as motility, adhesion, biofilm formation, exchange of genetic material and species-specific interactions and, in turn, increase fitness of the cells. Intriguingly, despite sharing the same functions with their bacterial counterparts, the assembly mechanism of many archaeal surface structures is rather related to assembly of bacterial type IV pili. This review summarizes our state-of-the-art knowledge about unique structural and biochemical properties of archaeal surface appendages with a particular focus on archaeal type IV pili-like structures. The latter comprise not only widely distributed archaella (formerly known as archaeal flagella), but also different highly specialized archaeal pili, which are often restricted to certain species. Recent findings regarding assembly mechanisms, structural aspects and physiological roles of these type IV pili-like structures will be discussed in detail. Recently, first regulatory proteins involved in transition from both planktonic to sessile lifestyle and in assembly of archaella were identified. To conclude, we provide novel insights into regulatory mechanisms underlying the assembly of archaeal surface structures. Copyright © 2012. Published by Elsevier Masson SAS.
Molecular And Structural Basis of Cytokine Receptor Pleiotropy in the Interleukin-4/13 System
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.
2009-05-20
Interleukin-4 and Interleukin-13 are cytokines critical to the development of T cell-mediated humoral immune responses, which are associated with allergy and asthma, and exert their actions through three different combinations of shared receptors. Here we present the crystal structures of the complete set of type I (IL-4R{alpha}/{gamma}{sub c}/IL-4) and type II (IL-4R/IL-13R{alpha}1/IL-4, IL-4R{alpha}/IL-13R{alpha}1/IL-13) ternary signaling complexes. The type I complex reveals a structural basis for {gamma}{sub c}'s ability to recognize six different {gamma}{sub c}-cytokines. The two type II complexes utilize an unusual top-mounted Ig-like domain on IL-13R{alpha}1 for a novel mode of cytokine engagement that contributes to a reversal inmore » the IL-4 versus IL-13 ternary complex assembly sequences, which are mediated through substantially different recognition chemistries. We also show that the type II receptor heterodimer signals with different potencies in response to IL-4 versus IL-13 and suggest that the extracellular cytokine-receptor interactions are modulating intracellular membrane-proximal signaling events.« less
Metabolic Respiration Induces AMPK- and Ire1p-Dependent Activation of the p38-Type HOG MAPK Pathway
Adhikari, Hema; Cullen, Paul J.
2014-01-01
Evolutionarily conserved mitogen activated protein kinase (MAPK) pathways regulate the response to stress as well as cell differentiation. In Saccharomyces cerevisiae, growth in non-preferred carbon sources (like galactose) induces differentiation to the filamentous cell type through an extracellular-signal regulated kinase (ERK)-type MAPK pathway. The filamentous growth MAPK pathway shares components with a p38-type High Osmolarity Glycerol response (HOG) pathway, which regulates the response to changes in osmolarity. To determine the extent of functional overlap between the MAPK pathways, comparative RNA sequencing was performed, which uncovered an unexpected role for the HOG pathway in regulating the response to growth in galactose. The HOG pathway was induced during growth in galactose, which required the nutrient regulatory AMP-dependent protein kinase (AMPK) Snf1p, an intact respiratory chain, and a functional tricarboxylic acid (TCA) cycle. The unfolded protein response (UPR) kinase Ire1p was also required for HOG pathway activation in this context. Thus, the filamentous growth and HOG pathways are both active during growth in galactose. The two pathways redundantly promoted growth in galactose, but paradoxically, they also inhibited each other's activities. Such cross-modulation was critical to optimize the differentiation response. The human fungal pathogen Candida albicans showed a similar regulatory circuit. Thus, an evolutionarily conserved regulatory axis links metabolic respiration and AMPK to Ire1p, which regulates a differentiation response involving the modulated activity of ERK and p38 MAPK pathways. PMID:25356552
Foshee, Vangie A; McNaughton Reyes, H Luz; Chen, May S; Ennett, Susan T; Basile, Kathleen C; DeGue, Sarah; Vivolo-Kantor, Alana M; Moracco, Kathryn E; Bowling, J Michael
2016-04-01
The high risk of perpetrating physical dating violence, bullying, and sexual harassment by adolescents exposed to domestic violence points to the need for programs to prevent these types of aggression among this group. This study of adolescents exposed to domestic violence examined whether these forms of aggression share risk factors that could be targeted for change in single programs designed to prevent all three types of aggression. Analyses were conducted on 399 mother victims of domestic violence and their adolescents, recruited through community advertising. The adolescents ranged in age from 12 to 16 years; 64 % were female. Generalized estimating equations was used to control for the covariation among the aggression types when testing for shared risk factors. Approximately 70 % of the adolescents reported perpetrating at least one of the three forms of aggression. In models examining one risk factor at a time, but controlling for demographics, adolescent acceptance of sexual violence, mother-adolescent discord, family conflict, low maternal monitoring, low mother-adolescent closeness, low family cohesion, depressed affect, feelings of anger, and anger reactivity were shared across all three aggression types. In multivariable models, which included all of the risk factors examined and the demographic variables, low maternal monitoring, depressed affect and anger reactivity remained significant shared risk factors. Our findings suggest that programs targeting these risk factors for change have the potential to prevent all three forms of aggression. In multivariable models, poor conflict management skills was a risk for bullying and sexual harassment, but not dating violence; acceptance of dating violence was a risk for dating violence and bullying, but not sexual harassment; and none of the examined risk factors were unique to aggression type. The study's implications for the development of interventions and future research are discussed.
Waring, Justin; Currie, Graeme; Crompton, Amanda; Bishop, Simon
2013-12-01
This paper reports on an exploratory study of intra-organisational knowledge brokers working within three large acute hospitals in the English National Health Services. Knowledge brokering is promoted as a strategy for supporting knowledge sharing and learning in healthcare, especially in the diffusion of research evidence into practice. Less attention has been given to brokers who support knowledge sharing and learning within healthcare organisations. With specific reference to the need for learning around patient safety, this paper focuses on the structural position and role of four types of intra-organisational brokers. Through ethnographic research it examines how variations in formal role, location and relationships shape how they share and support the use of knowledge across organisational and occupational boundaries. It suggests those occupying hybrid organisational roles, such as clinical-managers, are often best positioned to support knowledge sharing and learning because of their 'ambassadorial' type position and legitimacy to participate in multiple communities through dual-directed relationships. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chokeshaiusaha, Kaj; Puthier, Denis; Nguyen, Catherine; Sananmuang, Thanida
2018-06-01
Trimethylation of histone 3 (H3) at 4th lysine N-termini (H3K4me3) in gene promoter region was the universal marker of active genes specific to cell lineage. On the contrary, coexistence of trimethylation at 27th lysine (H3K27me3) in the same loci-the bivalent H3K4m3/H3K27me3 was known to suspend the gene transcription in germ cells, and could also be inherited to the developed stem cell. In galline species, throughout example of H3K4m3 and H3K27me3 ChIP-seq analysis was still not provided. We therefore designed and demonstrated such procedures using ChIP-seq and mRNA-seq data of chicken follicular mesenchymal cells and male germ cells. Analytical workflow was designed and provided in this study. ChIP-seq and RNA-seq datasets of follicular mesenchymal cells and male germ cells were acquired and properly preprocessed. Peak calling by Model-based analysis of ChIP-seq 2 was performed to identify H3K4m3 or H3K27me3 enriched regions (Fold-change≥2, FDR≤0.01) in gene promoter regions. Integrative genomics viewer was utilized for cellular retinoic acid binding protein 1 ( CRABP1 ), growth differentiation factor 10 ( GDF10 ), and gremlin 1 ( GREM1 ) gene explorations. The acquired results indicated that follicular mesenchymal cells and germ cells shared several unique gene promoter regions enriched with H3K4me3 (5,704 peaks) and also unique regions of bivalent H3K4m3/H3K27me3 shared between all cell types and germ cells (1,909 peaks). Subsequent observation of follicular mesenchyme-specific genes- CRABP1 , GDF10 , and GREM1 correctly revealed vigorous transcriptions of these genes in follicular mesenchymal cells. As expected, bivalent H3K4m3/H3K27me3 pattern was manifested in gene promoter regions of germ cells, and thus suspended their transcriptions. According the results, an example of chicken H3K4m3/H3K27me3 ChIP-seq data analysis was successfully demonstrated in this study. Hopefully, the provided methodology should hereby be useful for galline ChIP-seq data analysis in the future.
Enhancement of DNA ligase I level by gemcitabine in human cancer cells.
Sun, Daekyu; Urrabaz, Rheanna; Kelly, Susan; Nguyen, Myhanh; Weitman, Steve
2002-04-01
DNA ligase I is an essential enzyme for completing DNA replication and DNA repair by ligating Okazaki fragments and by joining single-strand breaks formed either directly by DNA-damaging agents or indirectly by DNA repair enzymes, respectively. In this study, we examined whether the DNA ligase I level could be modulated in human tumor cell lines by treatment with gemcitabine (2', 2'-difluoro-2'-deoxycytidine), which is a nucleoside analogue of cytidine with proven antitumor activity against a broad spectrum of human cancers in clinical studies. To determine the effect of gemcitabine on DNA ligase I expression, Western blot analysis was used to measure the DNA ligase I levels in MiaPaCa, NGP, and SK-N-BE cells treated with different concentrations of gemcitabine and harvested at different time intervals. Cell cycle analysis was also performed to determine the underlying mechanism of DNA ligase I level enhancement in response to gemcitabine. In addition, other agents that share the same mechanism of action with gemcitabine were used to elucidate further details. When different types of tumor cell lines, including MiaPaCa, NGP, and SK-N-BE, were treated with gemcitabine, the level of DNA ligase I increased severalfold despite significant cell growth inhibition. In contrast, other DNA ligases (III and IV) either remained unchanged or decreased with treatment. Cell cycle analysis showed that arrest in S-phase corresponded to an increase of DNA ligase I levels in gemcitabine treated cells. Other agents, such as 1-beta-D-arabinofuranosylcytosine and hydroxyurea, which partly share mechanisms of action with gemcitabine by targeting DNA polymerases and ribonucleotide reductase, respectively, also caused an increase of DNA ligase I levels. However, 5-fluorouracil, which predominantly targets thymidylate synthase, did not cause an increase of DNA ligase I level. Our results suggest that an arrest of DNA replication caused by gemcitabine treatment through incorporation of gemcitabine triphosphate into replicating DNA and inhibition of ribonucleotide reductase would trigger an increase in DNA ligase I levels in cancer cells. The elevated presence of DNA ligase I in S-phase-arrested cells leads us to speculate that DNA ligase I might have an important role in repairing DNA damage caused by stalled replication forks.
Molecular physiology and modulation of somatodendritic A-type potassium channels.
Jerng, Henry H; Pfaffinger, Paul J; Covarrubias, Manuel
2004-12-01
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana
Ihsan, Muhammad Z.; Ahmad, Samina J. N.; Shah, Zahid Hussain; Rehman, Hafiz M.; Aslam, Zubair; Ahuja, Ishita; Bones, Atle M.; Ahmad, Jam N.
2017-01-01
The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana. PMID:28289422
Modelling and simulation of two-chamber microbial fuel cell
NASA Astrophysics Data System (ADS)
Zeng, Yingzhi; Choo, Yeng Fung; Kim, Byung-Hong; Wu, Ping
Microbial fuel cells (MFCs) offer great promise for simultaneous treatment of wastewater and energy recovery. While past research has been based extensively on experimental studies, modelling and simulation remains scarce. A typical MFC shares many similarities with chemical fuel cells such as direct ascorbic acid fuel cells and direct methanol fuel cells. Therefore, an attempt is made to develop a MFC model similar to that for chemical fuel cells. By integrating biochemical reactions, Butler-Volmer expressions and mass/charge balances, a MFC model based on a two-chamber configuration is developed that simulates both steady and dynamic behaviour of a MFC, including voltage, power density, fuel concentration, and the influence of various parameters on power generation. Results show that the cathodic reaction is the most significant limiting factor of MFC performance. Periodic changes in the flow rate of fuel result in a boost of power output; this offers further insight into MFC behaviour. In addition to a MFC fuelled by acetate, the present method is also successfully extended to using artificial wastewater (solution of glucose and glutamic acid) as fuel. Since the proposed modelling method is easy to implement, it can serve as a framework for modelling other types of MFC and thereby will facilitate the development and scale-up of more efficient MFCs.
T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research
Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves modifying peripheral blood T cells with chimeric antigen receptors or T-cell receptors (TCR) that target specific tumor antigens. Unfortunately, epithelial cancers, which are the vast majority of cancers diagnosed, have proven difficult to treat this way because most identified antigens are shared with healthy tissues and targeting them leads to toxic side effects. However, cancers caused by persistent human papillomavirus (HPV) infection, including cervical, head and neck, anal, vaginal, vulvar, and penile cancers, may be particularly amenable to the latter form of ACT since the E6 and E7 viral proteins are essential for cancer formation but are not produced in normal tissues. To test this idea, Christian Hinrichs, M.D., and his colleagues examined tumor infiltrating lymphocytes (TILs) from a patient who experienced a prolonged disease-free period after her second surgical removal of metastatic anal cancer in the hopes of identifying a TCR against one of the HPV oncoproteins.
Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin
2017-01-01
Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657
ERIC Educational Resources Information Center
Hojnoski, Robin; Polignano, Joy; Columba, Helen Lynn
2016-01-01
Research Findings: Shared book reading provides opportunities for adults to engage in literacy-related interactions with children in meaningful ways. Research has examined various dimensions of adult and child behavior during shared book-reading interactions with some focus on how book type affects the reading experience. Little research, however,…
Jiang, Ting-Xin; Widelitz, Randall B.; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming
2015-01-01
Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions (de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically co-localize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to swarming robot navigation, reaching intelligent automata and representing a self-re-configurable type of control rather than a follow-the-instruction type of control. PMID:15272377
Cho, Kyoung-in; Yu, Minzhong; Hao, Ying; Qiu, Sunny; Pillai, Indulekha C. L.; Peachey, Neal S.; Ferreira, Paulo A.
2013-01-01
Non-autonomous cell-death is a cardinal feature of the disintegration of neural networks in neurodegenerative diseases, but the molecular bases of this process are poorly understood. The neural retina comprises a mosaic of rod and cone photoreceptors. Cone and rod photoreceptors degenerate upon rod-specific expression of heterogeneous mutations in functionally distinct genes, whereas cone-specific mutations are thought to cause only cone demise. Here we show that conditional ablation in cone photoreceptors of Ran-binding protein-2 (Ranbp2), a cell context-dependent pleiotropic protein linked to neuroprotection, familial necrotic encephalopathies, acute transverse myelitis and tumor-suppression, promotes early electrophysiological deficits, subcellular erosive destruction and non-apoptotic death of cones, whereas rod photoreceptors undergo cone-dependent non-autonomous apoptosis. Cone-specific Ranbp2 ablation causes the temporal activation of a cone-intrinsic molecular cascade highlighted by the early activation of metalloproteinase 11/stromelysin-3 and up-regulation of Crx and CoREST, followed by the down-modulation of cone-specific phototransduction genes, transient up-regulation of regulatory/survival genes and activation of caspase-7 without apoptosis. Conversely, PARP1+-apoptotic rods develop upon sequential activation of caspase-9 and caspase-3 and loss of membrane permeability. Rod photoreceptor demise ceases upon cone degeneration. These findings reveal novel roles of Ranbp2 in the modulation of intrinsic and extrinsic cell death mechanisms and pathways. They also unveil a novel spatiotemporal paradigm of progression of neurodegeneration upon cell-specific genetic damage whereby a cone to rod non-autonomous death pathway with intrinsically distinct cell-type death manifestations is triggered by cell-specific loss of Ranbp2. Finally, this study casts new light onto cell-death mechanisms that may be shared by human dystrophies with distinct retinal spatial signatures as well as with other etiologically distinct neurodegenerative disorders. PMID:23818861
The insulin-like growth factor pathway is altered in Spinocerebellar ataxia type 1 and type 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatchel, Jennifer R.; Watase, Kei; Thaller, Christina
2008-01-29
Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG trinucleotide repeats encoding a polyglutamine tract in the disease-causing proteins. There are nine of these disorders each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with corresponding degeneration of Purkinje cells. Given this common phenotype, we asked whether the two disorders share common molecular pathogenic events. To address this question we studied two genetically accurate mouse models of SCA1 and SCA7—Sca1154Q/2Q and Sca7266Q/5Q knock-in mice—that express the glutamine-expanded proteins from the respective endogenousmore » loci. We found common transcriptional changes in early symptomatic mice, with downregulation of Insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust transcriptional changes that closely correlates with disease state. Interestingly, down-regulation of Igfbp5 occurred in granule neurons through a non-cell autonomous mechanism and was concomitant with activation of the Insulin-like growth factor I (Igf-I) pathway, and, in particular, the Igf-I receptor, expressed in part on Purkinje cells (PC). These data define a possible common pathogenic response in SCA1 and SCA7 and reveal the importance of neuron-neuron interactions in SCA1 and SCA7 pathogenesis. The sensitivity of Igfbp5 levels to disease state could render it and other components of its effector pathway useful as biomarkers in this class of diseases.« less
Mere Gifting: Liking a Gift More Because It Is Shared.
Polman, Evan; Maglio, Sam J
2017-11-01
We investigated a type of mere similarity that describes owning the same item as someone else. Moreover, we examined this mere similarity in a gift-giving context, whereby givers gift something that they also buy for themselves (a behavior we call "companionizing"). Using a Heiderian account of balancing unit-sentiment relations, we tested whether gift recipients like gifts more when gifts are companionized. Akin to mere ownership, which describes people liking their possessions more merely because they own them, we tested a complementary prediction: whether people like their possessions more merely because others own them too. Thus, in a departure from previous work, we examined a type of similarity based on two people sharing the same material item. We find that this type of sharing causes gift recipients to like their gifts more, and feel closer to gift givers.
Characterization of cell types during rat liver development.
Fiegel, Henning C; Park, Jonas J h; Lioznov, Michael V; Martin, Andreas; Jaeschke-Melli, Stefan; Kaufmann, Peter M; Fehse, Boris; Zander, Axel R; Kluth, Dietrich
2003-01-01
Hepatic stem cells have been identified in adult liver. Recently, the origin of hepatic progenitors and hepatocytes from bone marrow was demonstrated. Hematopoietic and hepatic stem cells share the markers CD 34, c-kit, and Thy1. Little is known about liver stem cells during liver development. In this study, we investigated the potential stem cell marker Thy1 and hepatocytic marker CK-18 during liver development to identify putative fetal liver stem cell candidates. Livers were harvested from embryonic and fetal day (ED) 16, ED 18, ED 20, and neonatal ED 22 stage rat fetuses from Sprague-Dawley rats. Fetal livers were digested by collagenase-DNAse solution and purified by percoll centrifugation. Magnetic cell sorting (MACS) depletion of fetal liver cells was performed using OX43 and OX44 antibodies. Cells were characterized by immunocytochemistry for Thy1, CK-18, and proliferating cell antigen Ki-67 and double labeling for Thy1 and CK-18. Thy1 expression was found at all stages of liver development before and after MACS in immunocytochemistry. Thy1 positive cells were enriched after MACS only in early developmental stages. An enrichment of CK-18 positive cells was found after MACS at all developmental stages. Cells coexpressing Thy1 and CK-18 were identified by double labeling of fetal liver cell isolates. In conclusion, hepatic progenitor cells (CK-18 positive) in fetal rat liver express Thy1. Other progenitors express only CK-18. This indicates the coexistence of different hepatic cell compartments. Isolation and further characterization of such cells is needed to demonstrate their biologic properties.