Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar
2018-03-01
This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.
Effect of sodium hypochlorite on human pulp cells: an in vitro study
Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.
2014-01-01
Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446
The effect of ultrasound-related stimuli on cell viability in microfluidic channels
2013-01-01
Background In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Results Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0–29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. Conclusion The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells. PMID:23809777
MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization
Hayakawa, Tohru; Yoshida, Eiji; Yoshimura, Yoshitaka; Uo, Motohiro; Yoshinari, Masao
2012-01-01
The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells. PMID:22675359
Fluorescein diacetate for determination of cell viability in 3D fibroblast-collagen-GAG constructs.
Powell, Heather M; Armour, Alexis D; Boyce, Steven T
2011-01-01
Quantification of cell viability and distribution within engineered tissues currently relies on representative histology, phenotypic assays, and destructive assays of viability. To evaluate uniformity of cell density throughout 3D collagen scaffolds prior to in vivo use, a nondestructive, field assessment of cell viability is advantageous. Here, we describe a field measure of cell viability in lyophilized collagen-glycosaminoglycan (C-GAG) scaffolds in vitro using fluorescein diacetate (FdA). Fibroblast-C-GAG constructs are stained 1 day after cellular inoculation using 0.04 mg/ml FdA followed by exposure to 366 nm UV light. Construct fluorescence quantified using Metamorph image analysis is correlated with inoculation density, MTT values, and histology of corresponding biopsies. Construct fluorescence correlates significantly with inoculation density (p < 0.001) and MTT values (p < 0.001) of biopsies collected immediately after FdA staining. No toxicity is detected in the constructs, as measured by MTT assay before and after the FdA assay at different time points; normal in vitro histology is demonstrated for the FdA-exposed constructs. In conclusion, measurement of intracellular fluorescence with FdA allows for the early, comprehensive measurement of cellular distributions and viability in engineered tissue.
Synthetic vs natural scaffolds for human limbal stem cells
Tominac Trcin, Mirna; Dekaris, Iva; Mijović, Budimir; Bujić, Marina; Zdraveva, Emilija; Dolenec, Tamara; Pauk-Gulić, Maja; Primorac, Dragan; Crnjac, Josip; Špoljarić, Branimira; Mršić, Gordan; Kuna, Krunoslav; Špoljarić, Daniel; Popović, Maja
2015-01-01
Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes. PMID:26088849
Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio; Párraga, Mario; Villena, Joan
2018-01-01
Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions . These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.
Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio
2018-01-01
Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells. PMID:29552079
Cakir, Murteza; Colak, Abdullah; Calikoglu, Cagatay; Taspinar, Numan; Sagsoz, Mustafa Erdem; Kadioglu, Hakan Hadi; Hacimuftuoglu, Ahmet; Seven, Sabriye
2016-01-01
Objective: We aimed to evaluate the effects of gamma-ray, laser light, and visible light, which neurons are commonly exposed to during treatment of various cranial diseases, on the viability of neurons. Materials and Methods: Neuronal cell culture was prepared from the frontal cortex of 9 newborn rats. Cultured cells were irradiated with gamma-ray for 1–10 min by 152Eu, 241Am, and 132Ba isotopes, visible light for 1–160 min, and laser light for 0.2–2 seconds. The MTT tetrazolium reduction assay was used to assess the number of viable cells in the neuronal cell cultures. Wavelength dispersive X-ray fluorescence spectrometer was used to determine Na, K, and Ca levels in cellular fluid obtained from neuronal cell culture plaques. Results: Under low-dose radiation with 152Eu, 241Am, and 132Ba isotopes, cell viability insignificantly decreased with time (p>0.05). On the other hand, exposure to visible light produced statistically significant decrease in cell viability at both short- (1–10 min) and long-term (20–160 min). Cell viability did not change with 2 seconds of laser exposure. Na, K, and Ca levels significantly decreased with gamma-ray and visible light. The level of oxidative stress markers significantly changed with gamma-ray. Conclusion: In conclusion, while low dose gamma-ray has slight to moderate apoptotic effect in neuronal cell cultures by oxidative stress, long-term visible light induces remarkable apoptosis and cell death. Laser light has no significant effect on neurons. Further genetic studies are needed to clarify the chronic effect of visible light on neuronal development and functions. PMID:27551168
Is cell viability always directly related to corrosion resistance of stainless steels?
Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L
2016-05-01
It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of the effect of three autogenous bone harvesting methods on cell viability in rabbits
Moradi Haghgoo, Janet; Arabi, Seyed Reza; Hosseinipanah, Seyyed Mohammad; Solgi, Ghasem; Rastegarfard, Neda; Farhadian, Maryam
2017-01-01
Background. This study was designed to compare the viability of autogenous bone grafts, harvested using different methods, in order to determine the best harvesting technique with respect to more viable cells. Methods. In this animal experimental study, three harvesting methods, including manual instrument (chisel), rotary device and piezosurgery, were used for harvesting bone grafts from the lateral body of the mandible on the left and right sides of 10 rabbits. In each group, 20 bone samples were collected and their viability was assessed using MTS kit. Statistical analyses, including ANOVA and post hoc Tukey tests, were used for evaluating significant differences between the groups. Results. One-way ANOVA showed significant differences between all the groups (P=0.000). Data analysis using post hoc Tukey tests indicated that manual instrument and piezosurgery had no significant differences with regard to cell viability (P=0.749) and the cell viability in both groups was higher than that with the use of a rotary instrument (P=0.000). Conclusion. Autogenous bone grafts harvested with a manual instrument and piezosurgery had more viable cells in comparison to the bone chips harvested with a rotary device. PMID:28748046
Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder
Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio
2016-01-01
Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915
Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J; Van der Heide, Emile
2017-06-01
Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture.
Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van der Heide, Emile
2017-01-01
Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture. PMID:28761837
Tilgase, Andra; Patetko, Liene; Blāķe, Ilze; Ramata-Stunda, Anna; Borodušķis, Mārtiņš; Alberts, Pēteris
2018-01-01
Background: The role of oncolytic viruses in cancer treatment is increasingly studied. The first oncolytic virus (Rigvir®, ECHO-7) was registered in Latvia over a decade ago. In a recent retrospective study Rigvir® decreased mortality 4.39-6.57-fold in stage IB-IIC melanoma patients. The aims of the present study are to test the effect of Rigvir® on cell line viability in vitro and to visualize the cellular presence of Rigvir® by immunocytochemistry. Methods: The cytolytic effect of Rigvir® on the viability of FM-9, RD, AGS, A549, HDFa, HPAF‑II, MSC, MCF7, HaCaT, and Sk-Mel-28 cell lines was measured using live cell imaging. PBMC viability was measured using flow cytometry. The presence of ECHO-7 virus was visualized using immunocytochemistry. Statistical difference between treatment groups was calculated using two-way ANOVA. Results: Rigvir® (10%, volume/volume) reduced cell viability in FM-9, RD, AGS, A549, HDFa, HPAF‑II and MSC cell lines by 67-100%. HaCaT cell viability was partly affected while Rigvir® had no effect on MCF7, Sk-Mel-28 and PBMC viability. Detection of ECHO-7 by immunocytochemistry in FM-9, RD, AGS, A549, HDFa, HPAF-II and Sk-Mel-28 cell lines suggests that the presence of Rigvir® in the cells preceded or coincided with the time of reduction of cell viability. Rigvir® (10%) had no effect on live PBMC count. Conclusions: The results suggest that Rigvir® in vitro reduces the viability of cells of human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma, pancreas adenocarcinoma but not in PBMC. The presence of Rigvir® in the sensitive cells was confirmed using anti-ECHO-7 antibodies. The present results suggest that a mechanism of action for the clinical benefit of Rigvir® is its cytolytic properties. The present results suggest that the effect of Rigvir® could be tested in other cancers besides melanoma. Further studies of possible Rigvir® entry receptors are needed.
Tabatabaei, Fahimeh Sadat
2016-01-01
ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698
Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy.
Aggerholm-Pedersen, Ninna; Demuth, Christina; Safwat, Akmal; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe
2016-01-01
Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin.
The reducibility of heLa cell viability by Sargassum polycystum extracts
NASA Astrophysics Data System (ADS)
Firdaus, M.; Setijawati, D.; Islam, I.; Nursyam, H.; Kartikaningsih, H.; Yufidasari, H. S.; Prihanto, A. A.; Nurdiani, R.; Jaziri, A. A.
2018-04-01
Cervical cancer is the second largest cause of death-related cancer in women. The efficacy of cancer drugs is still low. Bioactive of brown seaweed has been studied by in vitro and in vivo as anticancer. The aim of this study was to evaluate the cytotoxicity of Sargassum polycystum extracts on HeLa cell, to recognize bioactive on extract and estimate the interaction between the bioactive and target protein. S. polycystum was found from Talango Island waters and HeLa cell was obtained from Indonesian Science Institute. Sample was extracted by ethanol, ethyl acetate and hexane, concentrated and finally, extracts were assayed on HeLa cell. The viability of this cell was quantified on ELISA-Reader. The bioactive compounds of the extract were elucidated by GC-MS. The interaction between bioactive and target protein was evaluated by using in silico method. The result showed that the lowest viability of HeLa cell on n-hexane extracts treatment. The n-hexane extract of this seaweed contained benzenepropanoic acid. This compound reduced HeLa cell viability by reducing of thrombin concentration. In conclusion, the benzene propanoic acid of S. polycystum was the cytotoxic agent and it is potential agent for anti-cervical cancer.
Schech, Amanda J.; Nemieboka, Brandon E.; Brodie, Angela H.
2012-01-01
Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole for 72 hours. This combination significantly increased inhibition of aromatase activity of AC-1 cells by compared to letrozole alone. Combination treatment of 1nM letrozole and 1μM and 10μM zoledronic acid resulted in an additive drug interaction on inhibiting cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine 473. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72 hours, as shown by a shift to the right in the estradiol dose response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability. PMID:22659283
The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells
Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai
2015-01-01
Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165
Liu, Qiong; Chen, Jing; Wang, Xu; Yu, Liang; Hu, Li-hong; Shen, Xu
2010-01-01
Aim: To investigate the effects of the natural product Withagulatin A on hepatic stellate cell (HSC) viability and type I procollagen production. The potential mechanism underlying the pharmacological actions was also explored. Methods: The effect of Withagulatin A on cell viability was evaluated in HSC and LX-2 cells using a sulforhodamine B (SRB) assay. Cell cycle distribution was analyzed using flow cytometry. Type I procollagen gene expression was determined using real-time PCR. Regulation of signaling molecules by Withagulatin A was detected using Western blotting. Results: Primary rat HSCs and the human hepatic stellate cell line LX-2 treated with Withagulatin A (0.625-20 μmol/L) underwent a dose-dependent decrease in cell viability, which was associated with S phase arrest and the induction of cell apoptosis. In addition, the natural product decreased phosphorylation of the Akt/mTOR/p70S6K pathway that controls cell proliferation and survival. Furthermore, Withagulatin A (1, 2 μmol/L) inhibited transforming growth factor-β (TGF-β) stimulated type I procollagen gene expression, which was attributable to the suppression of TGF-β stimulated Smad2 and Smad3 phosphorylation. Conclusion: Our results demonstrated that Withagulatin A potently inhibited HSC viability and type I procollagen production, thereby implying that this natural product has potential use in the development of anti-fibrogenic reagents for the treatment of hepatic fibrosis. PMID:20644552
Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer
2017-01-01
Background: The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. Materials and Methods: A total of 15 systemically healthy individuals between the age group of 15–25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7th day. Results: The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant (P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant (P > 0.05) when compared to the cells cultured with culture media. Conclusion: The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells. PMID:29386795
Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline
2017-01-01
Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036
Effects of demethoxycurcumin on the viability and apoptosis of skin cancer cells.
Wu, Yaoqun; Zhang, Pei; Yang, Hongyun; Ge, Yong; Xin, Yong
2017-07-01
The present study investigated the effects and mechanisms of demethoxycurcumin (DMC) on a human skin squamous cell carcinoma cell line, A431, and a human keratinocyte cell line, HaCaT. A431 and HaCaT cells were cultured in vitro. The effects of DMC treatment on cell viability were analyzed using the Cell Counting kit‑8 (CCK‑8) assay; cell cycle distribution was analyzed by flow cytometry; apoptosis was assessed by flow cytometry and Hoechst 33258 staining; and the protein expression levels of cytochrome c, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (BAX), caspase‑9 and caspase‑3 were evaluated by western blotting. CCK‑8 assay results demonstrated that DMC treatment significantly inhibited viability of A431 and HaCaT cells in a dose‑dependent manner. Flow cytometric analysis confirmed that DMC treatment induced apoptosis in a dose‑dependent manner, and significantly increased the proportion of cells in G2/M phase. Western blot analysis indicated that the protein expression levels of Bcl‑2 were decreased, whereas the expression levels of BAX, caspase‑9, caspase‑3 and cytochrome c were increased following DMC treatment compared with in untreated cells. In conclusion, DMC treatment significantly inhibited viability of A431 and HaCaT cells, and induced cell cycle arrest in G2/M phase. The present study indicated that DMC may induce apoptosis of skin cancer cells through a caspase‑dependent pathway.
Laredo-Naranjo, Martha Alicia; Carrillo-Gonzalez, Roberto; De La Garza-Ramos, Myriam Angelica; Garza-Navarro, Marco Antonio; Torre-Martinez, Hilda H. H.; Del Angel-Mosqueda, Casiano; Mercado-Hernandez, Roberto; Carrillo-Fuentevilla, Roberto
2016-01-01
Abstract Objective: To evaluate the antimicrobial properties and dental pulp stem cells (DPSCs) cytotoxicity of synthesized carboxymethyl cellulose-silver nanoparticles impregnated on titanium plates. Material and methods: The antibacterial effect of silver nanoparticles in a carboxymethyl cellulose matrix impregnated on titanium plates (Ti-AgNPs) in three concentrations: 16%, 50% and 100% was determined by adding these to bacterial cultures of Streptococcus mutans and Porphyromonas gingivalis. The Ti-AgNPs cytotoxicity on DPSCs was determined using a fluorimetric cytotoxicity assay with 0.12% chlorhexidine as a positive control. Results: Silver nanoparticles in all concentrations were antimicrobial, with concentrations of 50% and 100% being more cytotoxic with 4% cell viability. Silver nanoparticles 16% had a cell viability of 95%, being less cytotoxic than 0.12% chlorhexidine. Conclusions: Silver nanoparticles are a promising structure because of their antimicrobial properties. These have high cell viability at a concentration of 16%, and are less toxic than chlorhexidine. PMID:28642914
Souza, Beatriz Dulcineia Mendes de; Alves, Ana Maria Hecke; Santos, Luciane Geanini Pena Dos; Simões, Claudia Maria de Oliveira; Felippe, Wilson Tadeu; Felippe, Mara Cristina Santos
2016-01-01
The objective of this study was to evaluate the effectiveness of various storage media at 20 °C in maintaining the viability of human periodontal ligament fibroblasts (HPLF) over time. HPLF were maintained at 20 °C in skim milk (SM), whole milk (WM), freshly prepared Hank's balanced salt solution (HBSS), Save-A-Tooth(r), natural coconut water (NCW), coconut water industrialized (ICW) and tap water (negative control) for 3, 6, 24, 48, 72, 96 and 120 h. Cells maintained in Minimal Essential Medium (MEM-37) at 37 °C served as a positive control. Cell viability was determined by MTT assay. Statistical analysis was performed by Kruskal-Wallis test and Scheffe test (α = 5%). From 24 h, NCW was significantly better in maintaining cell viability than all other tested storage media (p<0.05). SM and WM were significantly better than HBSS for up to 72 h. Save-A-Tooth(r) and ICW were the worst conservation storage media. In conclusion, the effectiveness of the tested storage media to maintain the viability of the periodontal ligament cells was as follows, in a descending order: NCW > MEM-37> SM and IM> HBSS> ICW > Save-A-Tooth(r)> tap water.
Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.
2014-01-01
Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990
D’Costa, Vivian Flourish; Bangera, Madhu Keshava; Kini, Shravan; Kutty, Shakkira Moosa; Ragher, Mallikarjuna
2017-01-01
Background and Objectives: Two of the most critical factors affecting the prognosis of an avulsed tooth after replantation are extraoral dry time and the storage media in which the tooth is placed before treatment is rendered. The present study is undertaken to evaluate the periodontal ligament (PDL) cell viability after storage of teeth in different storage media, namely, coconut water, milk, and saline. Materials and Methods: Forty sound human premolars undergoing extraction for orthodontic purpose were selected. The teeth were allowed to lie dry on sand/mud for 30 min followed by which they were randomly divided and stored in three different media, i.e., coconut water, milk, and saline. After 45-min storage in their respective media, the root surface was then scraped for PDL tissue. Results: The ANOVA and Newman–Keuls post hoc procedure for statistical analysis of viable cell count under a light microscope using hemocytometer demonstrated that coconut water preserved significantly more PDL cells viable (P < 0.05) compared with milk and saline. Conclusion: Storage media help in preserving the viability of PDL cells when immediate replantation is not possible. This study evaluated the posttraumatic PDL cells’ viability following storage in three different storage media. Within the parameters of this study, it was found that coconut water is the most effective media for maintaining the viability of PDL. PMID:29284947
Fluorescein Diacetate Microplate Assay in Cell Viability Detection.
Chen, Xi; Yang, Xiu-Ying; Fang, Lian-Hua; DU, Guan-Hua
2016-12-20
Objective To investigate the application of the fluorescein diacetate (FDA) microplate assay in cell viability detection. Methods Cells were seeded in a 96-well culture plate until detection. After incubated with FDA,the plate was detected by fluorescence microplate analyzer. The effects of FDA incubation duration,concentration,and other factors on the assay's accuracy and stability were assessed. We also compared the results of FDA with methyl thiazolyl(MTT) in terms of cell numbers and H 2 O 2 injury. Results Within 0-30 minutes,the fluorescence-cell number coefficient of FDA assay increased with duration and reached 0.99 in 27-30 minutes. The optimum concentration of final FDA in this study was 10-30 μg/ml. On cell viability detection,the result of FDA method was equivalent to MTT method. As to H 2 O 2 injury assay,the sensitivity of FDA method was superior to MTT on the higher concentration H 2 O 2 treatment due to a relative shorter duration for detection. Conclusion As a stable and reliable method,FDA is feasible for cell variability detection under varied conditions.
Shin, Jeong-Hun; Jun, Seung-lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun
2012-01-01
Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論) to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle. PMID:25780653
Torshabi, Maryam; Esfahrood, Zeinab Rezaei; Gholamin, Parisan; Karami, Elahe
2016-11-01
Evidence shows that oxidative stress induced by nicotine plays an important role in bone loss. Vitamin E with its antioxidative properties may be able to reverse the effects of nicotine on bone. This study aimed to assess the effects of nicotine in the presence and absence of vitamin E on morphology, viability and osteogenic gene expression in MG-63 (osteosarcoma) human osteoblast-like cells. We treated the cells with 5 mM nicotine. The viability and morphology of cells were evaluated respectively using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and crystal violet assays. The effect of nicotine on osteogenic gene expression in MG-63 cells was assessed by real-time reverse-transcription polymerase chain reaction of osteoblast markers, namely, alkaline phosphatase, osteocalcin and bone sialoprotein. The results revealed that survival and proliferation of MG-63 cells were suppressed following exposure to nicotine, and cytoplasm vacuolization occurred in the cells. Nicotine significantly down-regulated the expression of osteogenic marker genes. Such adverse effects on morphology, viability and osteogenic gene expression of MG-63 cells were reversed by vitamin E therapy. In conclusion, vitamin E supplementation may play a role in proliferation and differentiation of osteoblasts, and vitamin E can be considered as an anabolic agent to treat nicotine-induced bone loss.
Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods
Fernandez Cabada, Tamara; Sanchez Lopez de Pablo, Cristina; Martinez Serrano, Alberto; del Pozo Guerrero, Francisco; Serrano Olmedo, Jose Javier; Ramos Gomez, Milagros
2012-01-01
Background Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells. Methods The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods. Results Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death. Conclusion The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development. PMID:22619509
Nanoparticles of barium induce apoptosis in human phagocytes
Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina
2015-01-01
Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element. PMID:26451108
Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K
2008-03-01
BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability.
Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K.
2010-01-01
Background A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO®13, SYTO®24 and SYBR®14 as possible alternatives to FDA. Results We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO®13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. Conclusions From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability. PMID:20814586
Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying
2015-01-01
AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718
Chu, Pat P. Y.; Bari, Sudipto; Fan, Xiubo; Gay, Florence P. H.; Ang, Justina M. L.; Chiu, Gigi N. C.; Lim, Sai K.; Hwang, William Y. K.
2012-01-01
Background aims. Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. Methods. In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). Results. Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P<0.01). This was associated with significant enhancement of mitochondrial membrane potential (P<0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P< 0.0001). Conclusions. Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture. PMID:22775077
NASA Astrophysics Data System (ADS)
El Batanouny, Mohamed H.; Khorshid, Amira M.; Arsanyos, Sonya F.; Shaheen, Hesham M.; Abdel Wahab, Nahed; Amin, Sherif N.; El Rouby, Mahmoud N.; Morsy, Mona I.
2010-04-01
Photodynamic therapy (PDT) is a novel treatment modality of cancer and non-cancerous conditions that are generally characterized by an overgrowth of unwanted or abnormal cells. Irradiation of photosensitizer loaded cells or tissues leads via the photochemical reactions of excited photosensitizer molecules to the production of singlet oxygen and free radicals, which initiate cell death. Many types of compounds have been tested as photosensitizers, such as methylene blue (MB) and photopherin seemed to be very promising. This study involved 26 cases of acute lymphoblastic leukemia and 15 normal volunteers as a control group. The cell viability was measured by Light microscope and flowcytometer. Mode of cell death was detected by flowcytometer and electron microscope in selected cases. The viability percentage of normal peripheral blood mononuclear cells (PBMC) incubated with methylene blue (MB) alone or combined with photo irradiation with diode laser (as measured by light microscope) was significantly lower than that of untreated cases either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. There was a significantly lower viability percentage of normal cells incubated with MB and photoirradiated with diode laser compared to normal cells treated with MB alone for either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. The decrease in viability was more enhanced with increasing the incubation time. For normal cells incubated with photopherin either for 1/2 an hour or 1 hour, there was a weak cytotoxic effect compared to the effect on untreated cells. There was a significant decrease in viability percentage of cells incubated with photopherin either for 1/2 an hour or 1 hour and photoirradiated with He:Ne laser compared to normal untreated cells. The decrease in the cell viability percentage was significantly lower with the use of PDT (photopherin and He:Ne laser ) compared to either photopherin alone or He:Ne laser alone. The decrease in viability was more enhanced with increasing the incubation time. The same effects reported on normal cells were detected on leukemic cells on comparing different methods used. However a more pronounced decrease in cell viability was detected. The most efficient ways of decreasing viability of leukemic cells with much less effect on normal cells was the use of PDT of cell incubation with MB for 1 hour then photoirradiation with diode laser and PDT of cell incubation with photopherin for 1 hour then photoirradiation with He:Ne laser. Flowcytometer (FCM) was more sensitivite than the light microscope in detecting the decrease in cell viability, it also helped in determining the mode of cell death weather apoptosis, necrosis or combined apoptosis and necrosis. Apoptotic cell percentage was higher in PDT of MB and Diode laser or photopherin and He:Ne laser, treated ALL cells compared to untreated ALL cells after 1 hour but was significantly lower after 24 hours post irradiation. A significant increase in necrotic, combined necrotic and apoptotic cell percentages either measured 1 hour or 24 hours post PDT, compared to untreated ALL cells and PDT treated normal cells. Electron microscope helped in detecting early cellular apoptotic changes occurring in response to different therapeutic modalities used in this study. In conclusion, PDT proved to be an effective clinical modality in decreasing the number of leukemic cells when irradiated in vitro with appropriate laser and photosensitizer system. Both PDT systems used in this study were efficient in inducing cell death of leukemic cells compared to untreated leukemic cells. However, photopherin PDT system was more efficient in decreasing the cell viability. A significant decrease in viability percentage was detected when studying the effect of PDT on leukemic cells compared to that on normal cells. This suggests that PDT when applied clinically will selectively differentiate between leukemic cells and normal cells, offering a successful component in ALL therapy.
Tanti, N.C.; Jones, L.; Sheardown, H.
2010-01-01
Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012
Seo, Soo Hyun; Shin, Sue; Roh, Eun Youn; Song, Eun Young; Oh, Sohee; Kim, Byoung Jae
2017-01-01
Background Maintaining the quality of cryopreserved cord blood is crucial. In this pilot study, we describe the results of the internal quality control program for a cord blood bank thus far. Methods Donated cord blood units unsuitable for transplantation were selected for internal quality control once a month. One unit of cord blood, aliquoted into 21 capillaries, was cryopreserved and thawed annually to analyze the total nucleated cell count, CD34+ cell count, cell viability test, and colony-forming units assay. Results No significant differences in the variables (total nucleated cell count, cell viability, CD34+ cell count) were observed between samples cryopreserved for one and two years. Upon comparing the variables before cryopreservation and post thawing with the capillaries of one year of storage, cell viability and CD34+ cell counts decreased significantly. The use of cord blood samples in capillaries, which can be easily stored for a long period, was similar to the methods used for testing segments attached to the cord blood unit. Conclusions The results of this study may be useful for determining the period during which the quality of cryopreserved cord blood units used for transplantation is maintained. PMID:28028998
2013-01-01
Background Bioactive molecules have received increasing attention due to their nutraceutical attributes and anticancer, antioxidant, antiproliferative and apoptosis-inducing properties. This study aimed to investigate the biological properties of carotenoids extracted from Archaea. Methods Halophilic Archaea strains were isolated from the brine of a local crystallizer pond (TS7) of a solar saltern at Sfax, Tunisia. The most carotenoid-producing strain (M8) was investigated on heptoma cell line (HepG2), and its viability was assessed by the MTT-test. The cells were incubated with different sub-lethal extract rates, with carotenoid concentrations ranging from 0.2 to 1.5 μM. Antioxidant activity was evaluated through exposing the cells to sub-lethal extract concentrations for 24 hours and then to oxidative stress induced by 60 μM arachidonic acid and 50 μM H2O2. Results Compared to non-treated cells, bacterial carotenoid extracts inhibited HepG2 cell viability (50%). A time and dose effect was observed, with cell viability undergoing a significant (P < 0.05) decrease with extract concentration. After exposure to oxidative stress, control cells underwent a significant (P < 0.05) decrease in viability as compared to the non-treated cells. Conclusions The bacterial extracts under investigation were noted to exhibit the strongest free radical scavenging activity with high carotenoid concentrations. The carotenoid extract also showed significant antiproliferative activity against HepG2 human cancer cell lines. PMID:24090008
In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells
Calvo, Patricia; Ropero, Inés; Pintor, Jesús
2014-01-01
Abstract Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Methods: Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. Results: The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. Conclusions: The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures. PMID:25100331
Liu, Yuzhi; Li, Wenyu; Guo, Mengyao; Li, Chengye; Qiu, Changwei
2016-01-01
We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p < 0.05), and the cell viability of the CTX + MSA group was lower than that of CTX and MSA groups (p < 0.05). Moreover, the inhibitory effect of selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p < 0.01). The protein and mRNA expression levels of vascular endothelial growth factor-alpha (VEGF-alpha), angiopoietin-2 (Ang-2), and hypoxia inducible factor-1 alpha (HIF-1 alpha) were downregulated in each group, while that of phosphatase and tensin homolog (PTEN) were upregulated (p < 0.05). In conclusion, these three selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.
VEGF improves survival of mesenchymal stem cells in infarcted hearts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice
2008-11-14
Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs ormore » VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.« less
Yang, Huihai; Li, Wei; Wang, Lulu; He, Xiaofeng; Sun, Hang; Zhang, Jing
2017-07-31
Our study aimed to investigate the protective role of SDAPR on cisplatin-induced cytotoxicity and its' possible mechanism in HEK293 cells. Cell viability was measured by MTT assay. Oxidative stress (SOD, GSH, LDH and MDA), inflammatory factors (TNF-α and IL-6) and apoptosis-related proteins (caspase-3, Bax, Bcl-2) expression were measured. The apoptotic cells were observed by TUNEL staining. Our study results indicated that non-cytotoxic levels of SDAPR significantly increased viability rate (LD 50 value of cisplatin is 20 μM), which improved antioxidant defence, attenuated apoptosis by decreasing expression levels of cleaved-caspase-3 and Bax, increasing Bcl-2 expression and inhibiting apoptotic positive cells in HEK 293 cells. In addition, SDAPR treatment markedly inhibited the levels of TNF-α and IL-6. In conclusion, Sika deer antler protein, a potential modulator, could alleviate cisplatin-induced cytotoxicity in HEK 293 cells.
Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen
2017-01-01
Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545
Effects of PPARα inhibition in head and neck paraganglioma cells.
Florio, Rosalba; De Lellis, Laura; di Giacomo, Viviana; Di Marcantonio, Maria Carmela; Cristiano, Loredana; Basile, Mariangela; Verginelli, Fabio; Verzilli, Delfina; Ammazzalorso, Alessandra; Prasad, Sampath Chandra; Cataldi, Amelia; Sanna, Mario; Cimini, Annamaria; Mariani-Costantini, Renato; Mincione, Gabriella; Cama, Alessandro
2017-01-01
Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL.
Raghavan, Shreya; Ward, Maria R.; Rowley, Katelyn R.; Wold, Rachel M.; Takayama, Shuichi; Buckanovich, Ronald J.; Mehta, Geeta
2015-01-01
Background Ovarian cancer grows and metastasizes from multicellular spheroidal aggregates within the ascites fluid. Multicellular tumor spheroids are therefore physiologically significant3Din vitro models for ovarian cancer research. Conventional hanging drop cultures require high starting cell numbers, and are tedious for long-term maintenance. In this study, we generate stable, uniform multicellular spheroids using very small number of ovarian cancer cells in a novel 384 well hanging drop array platform. Methods We used novel tumor spheroid platform and two ovarian cancer cell lines (A2780 and OVCAR3) to demonstrate the stable incorporation of as few as 10 cells into a single spheroid. Results Spheroids had uniform geometry, with projected areas (42.60 × 103 μm–475.22 × 103 μm2 for A2780 spheroids and 37.24 × 103 μm2–281.01 × 103 μm2 for OVCAR3 spheroids) that varied as a function of the initial cell seeding density. Phalloidin and nuclear stains indicated cells formed tightly packed spheroids with demarcated boundaries and cell–cell interaction within spheroids. Cells within spheroids demonstrated over 85% viability. 3D tumor spheroids demonstrated greater resistance (70–80% viability) to cisplatin chemotherapy compared to 2D cultures (30–50% viability). Conclusions Ovarian cancer spheroids can be generated from limited cell numbers in high throughput 384 well plates with high viability. Spheroids demonstrate therapeutic resistance relative to cells in traditional 2D culture. Stable incorporation of low cell numbers is advantageous when translating this research to rare patient-derived cells. This system can be used to understand ovarian cancer spheroid biology, as well as carry out preclinical drug sensitivity assays. PMID:25913133
Vahabi, Surena; Vaziri, Shahram; Torshabi, Maryam
2015-01-01
Objectives: Platelet preparations are commonly used to enhance bone and soft tissue regeneration. Considering the existing controversies on the efficacy of platelet products for tissue regeneration, more in vitro studies are required. The aim of the present study was to compare the in vitro effects of plasma rich in growth factors (PRGF) and platelet-rich fibrin (PRF) on proliferation and viability of human gingival fibroblasts (HGFs). Materials and Methods: Anitua’s PRGF and Choukran’s PRF were prepared according to the standard protocols. After culture periods of 24, 48 and 72 hours, proliferation of HGFs was evaluated by the methyl thiazol tetrazolium assay. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer’s multiple comparisons and P-values<0.05 were considered statistically significant. Results: PRGF treatment induced statistically significant (P<0.001) proliferation of HGF cells compared to the negative control (100% viability) at 24, 48 and 72 hours in values of 123%±2.25%, 102%±2.8% and 101%±3.92%, respectively. The PRF membrane treatment of HGF cells had a statistically significant effect on cell proliferation (21%±1.73%, P<0.001) at 24 hours compared to the negative control. However, at 48 and 72 hours after treatment, PRF had a negative effect on HGF cell proliferation and caused 38% and 60% decrease in viability and proliferation compared to the negative control, respectively. The HGF cell proliferation was significantly higher in PRGF than in PRF group (P< 0.001). Conclusion: This study demonstrated that PRGF had a strong stimulatory effect on HGF cell viability and proliferation compared to PRF. PMID:26877740
Osteochondral Tissue Cell Viability Is Affected by Total Impulse during Impaction Grafting
Balash, Paul; Kang, Richard W.; Schwenke, Thorsten; Cole, Brian J.; Wimmer, Markus A.
2010-01-01
Objective: Osteochondral graft transplantation has garnered significant attention because of its ability to replace the lesion with true hyaline cartilage. However, surgical impaction of the graft to anchor it into the defect site can be traumatic and lead to cell death and cartilage degeneration. This study aimed to test the hypothesis that increasing impulse magnitude during impaction of osteochondral plugs has a direct effect on loss of cell viability. Design: In this controlled laboratory study, the impaction force was kept constant while the impulse was varied. Ninety-six osteochondral plugs were extracted from the trochlea of bovine stifle joints and were randomly assigned into 3 experimental and 1 (nonimpacted) control group. The transferred impulse of the experimental groups reflected the median and the lower and upper quartiles of preceding clinical measurements. Data were obtained at day 0, day 4, and day 8; at each point, cell viability was assessed using the Live/Dead staining kit and histological assessments were performed to visualize matrix structural changes. Results: After impaction, cartilage samples stayed intact and did not show any histological signs of matrix disruption. As expected, higher impulse magnitudes introduced more cell death; however, this relationship was lost at day 8 after impaction. Conclusion: Impulse magnitude has a direct effect on cell viability of the graft. Because impulse magnitude is mostly governed by the press-fit characteristics of the recipient site, this study aids in the definition of optimal insertion conditions for osteochondral grafts. PMID:26069558
Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.
Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa
2018-05-01
Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.
Lewandowska, Urszula; Szewczyk, Karolina; Owczarek, Katarzyna; Hrabec, Zbigniew; Podsędek, Anna; Sosnowska, Dorota; Hrabec, Elżbieta
2013-01-01
There is a growing interest in plant polyphenols (including flavanols) that exhibit pleiotropic biological activities such as antiinflammatory, antioxidant, and anticancer effects. Here, we report for the first time the inhibition of MDA-MB-231 breast cancer cell viability and invasiveness by an evening primrose flavanol preparation (EPFP). We observed a decrease in MDA-MB-231 viability of 50% vs. a control after 72 h of incubation with EPFP at a concentration of 58 μM gallic acid equivalents (GAE) and an inhibition of their invasiveness of 65% vs. a control at 75 μM GAE after 48 h of incubation. EPFP caused a 10-fold reduction in matrix metalloproteinase-9 (MMP-9) activity at 100 μM GAE. Furthermore, through modulation of mRNA expression, EPFP reduced the expression levels of the following proteins: antiapoptotic Bcl-2, angiogenic vascular endothelial growth factor (VEGF), and 2 transcription factors (c-Jun, c-Fos). Moreover, analysis by flow cytometry revealed that EPFP induced apoptosis in MDA-MB-231 cells. In conclusion, our data shows that EPFP inhibits cell viability by increasing apoptosis and decreases cell invasiveness by decreasing angiogenesis.
Nurdin, Samsu U; Le Leu, Richard K; Young, Graeme P; Stangoulis, James C R; Christophersen, Claus T; Abbott, Catherine A
2017-04-03
Green cincau ( Premna oblongifolia Merr) is an Indonesian food plant with a high dietary fibre content. Research has shown that dietary fibre mixtures may be more beneficial for colorectal cancer prevention than a single dietary fibre type. The aim of this study was to investigate the effects of green cincau extract on short chain fatty acid (SCFA) production in anaerobic batch cultures inoculated with human faecal slurries and to compare these to results obtained using different dietary fibre types (pectin, inulin, and cellulose), singly and in combination. Furthermore, fermentation supernatants (FSs) were evaluated in Caco-2 cells for their effect on cell viability, differentiation, and apoptosis. Cincau increased total SCFA concentration by increasing acetate and propionate, but not butyrate concentration. FSs from all dietary fibre sources, including cincau, reduced Caco-2 cell viability. However, the effects of all FSs on cell viability, cell differentiation, and apoptosis were not simply explainable by their butyrate content. In conclusion, products of fermentation of cincau extracts induced cell death, but further work is required to understand the mechanism of action. This study demonstrates for the first time that this Indonesian traditional source of dietary fibre may be protective against colorectal cancer.
He, Kang; Duan, Guoqing; Li, Yanyang
2018-06-15
Neuroblastoma (NB) is the most predominant extracranial solid tumor of infancy in the world. However, current chemotherapy has limited efficacy for more advanced stages of NB due to acquired chemoresistance or acute toxicity in NB patients. Therefore, effective novel anti-NB drugs are desperately needed. The present study aimed to investigate the effects of dehydroeffusol (DHE), a phenanthrene isolated from J. effuses, on NB cells and its underlying mechanism. The results showed that DHE treatment effectively inhibited NB cell viability in a dose-dependent manner. Moreover, DHE treatment suppressed the epithelial-mesenchymal transition (EMT) process in NB cells by promoting the expression of E-cadherin (E-cad) and restraining the expressions of N-cadherin (N-cad) and vimentin. Also, the invasive capacity and expression of MMP-2 and MMP-9 in NB cells were inhibited by DHE. Furthermore, DHE suppressed the hedgehog (Hh) and the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways in NB cells. In conclusion, DHE effectively inhibited the viability and EMT through inactivating the Hh and the Akt/mTOR signaling pathways in NB cells, providing a novel evidence that DHE may be a potential anti-NB drug candidate. Copyright © 2018 Elsevier B.V. All rights reserved.
Respective effects of oxygen and energy substrate deprivation on beta cell viability.
Lablanche, Sandrine; Cottet-Rousselle, Cécile; Argaud, Laurent; Laporte, Camille; Lamarche, Frédéric; Richard, Marie-Jeanne; Berney, Thierry; Benhamou, Pierre-Yves; Fontaine, Eric
2015-01-01
Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success. Copyright © 2015 Elsevier B.V. All rights reserved.
Cui, Yanting; Liu, Bo; Xie, Jun; Xu, Pao; Habte-Tsion, H-Michael; Zhang, Yuanyuan
2014-06-01
In this study, we investigated the effects of hyperthermia and recovery on cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA), total antioxidant capacity (T-AOC), and heat shock protein (HSP60, 70, and 90) mRNA expression in the hepatic cells of the grass carp, Ctenopharyngodon idellus. Triplicate groups of cultured cells were exposed to 30, 32, or 34 °C for 0.5 h and then immediately incubated at 27 °C in 5 % CO2 for 6, 12, 24, or 48 h. Hyperthermia stress greatly reduced cell viability and increased LDH release. Cell damage declined after recovery. Hyperthermia stress increased the lipid peroxide levels and reduced the antioxidant capacity (e.g., reduced SOD and T-AOC) of the cells. However, oxidative damage declined as the recovery period increased, and the levels of MDA, SOD, and T-AOC were restored. After cells were exposed to 32 °C, the expression of HSP60 after recovery for 1, 2, and 4 h (P < 0.05), the expression of HSP70 after recovery for 0.5 and 1 h (P < 0.01), and the expression of HSP90 throughout recovery were significantly higher (P < 0.01) than the prestress levels. During the recovery period, the variations in HSP gene expression reflected the transition period from a state of cellular growth to one of the cellular repairs. In conclusion, hyperthermia depresses cell viability, induces oxidative damage, and increases HSP expression, which plays an important role during hyperthermic stress in grass carp hepatic cells.
Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira
2016-01-01
Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.
Effect of Nickel Chloride on Cell Proliferation
D’Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico
2012-01-01
Objective: Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Materials and Methods: Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl2) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl2 on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey’s test. Results: NiCl2 induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl2 caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl2 concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl2 caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl2 exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Conclusion: Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death. PMID:23198004
Bhogal, Maninder; Lwin, Chan N.; Seah, Xin-Yi; Murugan, Elavazhagan; Adnan, Khadijah; Lin, Shu-Jun; Mehta, Jodhbir S.
2017-01-01
Purpose To establish a method for assessing graft viability, in-vivo, following corneal transplantation. Methods Optimization of calcein AM fluorescence and toxicity assessment was performed in cultured human corneal endothelial cells and ex-vivo corneal tissue. Descemet membrane endothelial keratoplasty grafts were incubated with calcein AM and imaged pre and post preparation, and in-situ after insertion and unfolding in a pig eye model. Global, macroscopic images of the entire graft and individual cell resolution could be attained by altering the magnification of a clinical confocal scanning laser microscope. Patterns of cell loss observed in situ were compared to those seen using standard ex-vivo techniques. Results Calcein AM showed a positive dose-fluorescence relationship. A dose of 2.67μmol was sufficient to allow clear discrimination between viable and non-viable areas (sensitivity of 96.6% with a specificity of 96.1%) and was not toxic to cultured endothelial cells or ex-vivo corneal tissue. Patterns of cell loss seen in-situ closely matched those seen on ex-vivo assessment with fluorescence viability imaging, trypan blue/alizarin red staining or scanning electron microscopy. Iatrogenic graft damage from preparation and insertion varied between 7–35% and incarceration of the graft tissue within surgical wounds was identified as a significant cause of endothelial damage. Conclusions In-situ graft viability assessment using clinical imaging devices provides comparable information to ex-vivo methods. This method shows high sensitivity and specificity, is non-toxic and can be used to evaluate immediate cell viability in new grafting techniques in-vivo. PMID:28977017
Lou, Kexin; Chen, Ning; Li, Zhihong; Zhang, Bei; Wang, Xiuli; Chen, Ye; Xu, Haining; Wang, Dongwei; Wang, Hao
2017-01-02
Abnormal expression of microRNA (miR)-142-5p has been reported in hepatocellular carcinoma (HCC). However, little information is available regarding the functional role of miR-142-5p in HCC. We aimed to explore the effects of miR-142-5p aberrant expression on HCC cell growth and cell apoptosis, as well as the underlying mechanism. Human HCC cell lines HepG2 and SMMC-7721 cells were transfected with miR-142-5p mimic, inhibitor, or a corresponding negative control. Cell viability, cell cycle distribution, and cell apoptosis were then analyzed. In addition, protein expression of Forkhead box, class O (FOXO) 1 and 3, a Bcl-2-interacting mediator of cell death (Bim), procaspase 3, and activated caspase 3 was measured. After transfection with miR-142-5p inhibitor, FOXO1 and FOXO3 were overexpressed, and then the cell viability and cell apoptosis were determined again. The relative cell viability in both HepG2 and SMMC-7721 cells was significantly reduced by miR-142-5p overexpression (p < 0.05). miR-142-5p overexpression displayed a significant blockage at the G1/S transition and significantly increased the percentages of G0/G1 phase. Moreover, the results showed that miR-142-5p overexpression significantly induced cell apoptosis and statistically elevated the protein expression levels of FOXO1, FOXO3, Bim, procaspase 3, and activated caspase 3. However, the cells transfected with miR-142-5p inhibitor showed contrary results. Additionally, the effects of miR-142-5p inhibitor on cell viability and apoptosis were reversed by overexpression of FOXO. In conclusion, our results suggest that miR-142-5p overexpression shows an important protective role in HCC by inhibiting cell growth and inducing apoptosis. These effects might be by regulating FOXO expression in HCC cells.
Influence of cell printing on biological characters of chondrocytes
Qu, Miao; Gao, Xiaoyan; Hou, Yikang; Shen, Congcong; Xu, Yourong; Zhu, Ming; Wang, Hengjian; Xu, Haisong; Chai, Gang; Zhang, Yan
2015-01-01
Objective: To establish a two-dimensional biological printing technique of chondrocytes and compare the difference of related biological characters between printed chondrocytes and unprinted cells so as to control the cell transfer process and keep cell viability after printing. Methods: Primary chondrocytes were obtained from human mature and fetal cartilage tissues and then were regularly sub-cultured to harvest cells at passage 2 (P2), which were adjusted to the single cell suspension at a density of 1×106/mL. The experiment was divided into 2 groups: experimental group P2 chondrocytes were transferred by rapid prototype biological printer (driving voltage value 50 V, interval in x-axis 300 μm, interval in y-axis 1500 μm). Afterwards Live/Dead viability Kit and flow cytometry were respectively adopted to detect cell viability; CCK-8 Kit was adopted to detect cell proliferation viability; immunocytochemistry, immunofluorescence and RT-PCR was employed to identify related markers of chondrocytes; control group steps were the same as the printing group except that cell suspension received no printing. Results: Fluorescence microscopy and flow cytometry analyses showed that there was no significant difference between experimental group and control group in terms of cell viability. After 7-day in vitro culture, control group exhibited higher O.D values than experimental group from 2nd day to 7th day but there was no distinct difference between these two groups (P>0.05). Inverted microscope observation demonstrated that the morphology of these two groups had no significant difference either. Similarly, Immunocytochemistry, immunofluorescence and RT-PCR assays also showed that there was no significant difference in the protein and gene expression of type II collagen and aggrecan between these two groups (P>0.05). Conclusion Cell printing has no distinctly negative effect on cell vitality, proliferation and phenotype of chondrocytes. Biological printing technique may provide a novel approach for realizing the oriented, quantificational and regular distribution of chondrocytes in a two-dimensional plane and lay the foundation for the construction of three-dimensional cell printing or even organ printing system. PMID:26770337
Ren, Cong; Chen, Xiaohui; Du, Ning; Geng, Shuo; Hu, Yingying; Liu, Xin; Wu, Xianxian; Lin, Yuan; Bai, Xue; Yin, Wenzhe; Cheng, Shi; Yang, Lei; Zhang, Yong
2018-01-01
Background: It has been reported that ultrasound enhances peripheral nerve regeneration, but the mechanism remains elusive. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and alter protein production in various types of cells. In this study, we detected the effects of LIPUS on Schwann cells. Material and methods: Schwann cells were separated from new natal Sprague-Dawley rat sciatic nerves and were cultured and purified. The Schwann cells were treated by LIPUS for 10 minutes every day, with an intensity of 27.37 mW/cm2. After treatment for 5 days, MTT, EdU staining, and flow cytometry were performed to examine cell viability and proliferation. Neurotrophic factors, including FGF, NGF, BDNF, and GDNF, were measured by western blot and real-time PCR. GSK-3β, p-GSK-3β, β-catenin and Cyclin D1 protein levels were detected using a western blot analysis. The expression of Cyclin D1 was also detected by immunofluorescence. Results: MTT and EdU staining showed that LIPUS increased the Schwann cells viability and proliferation. Compared to the control group, LIPUS increased the expression of growth factors and neurotrophic factors, including FGF, NGF, BDNF, GDNF, and Cyclin D1. Meanwhile, GSK-3β activity was inhibited in the LIPUS group as demonstrated by the increased level of p-GSK-3β and the ratio of the p-GSK-3β/GSK-3β level. The mRNA and protein expressions of β-catenin were increased in the LIPUS group. However, SB216763, a GSK-3β inhibitor, reversed the effects of LIPUS on Schwann cells. Conclusion: LIPUS promotes Schwann cell viability and proliferation by increasing Cyclin D1 expression via enhancing the GSK-3β/β-catenin signaling pathway.
Ren, Cong; Bao, Yong-rui; Meng, Xian-sheng; Diao, Yun-peng; Kang, Ting-guo
2013-01-01
Backgroud: To simulate the ischemia-reperfusion injury in vivo, hypoxia/reoxygenation injury model was established in vitro and primary cultured neonatal rat cardiomyocytes were underwent hypoxia with hydrosulfite (Na2S2O4) for 1 h followed by 1 h reoxygenation. Materials and Methods: Determination the cell viability by MTT colorimetric assay. We use kit to detect the activity of lactate dehydrogenase (LDH), Na+-K+-ATPase and Ca2+-ATPase. Do research on the effect which ferulic acid and its drug-containing plasma have to self-discipline, conductivity, action potential duration and other electrophysiological phenomena of myocardial cells by direct observation using a microscope and recording method of intracellular action potential. Results: The experimental datum showed that both can reduce the damage hydrosulfite to myocardial cell damage and improve myocardial viability, reduce the amount of LDH leak, increase activity of Na+-K+-ATPase, Ca2+-ATPase, and increase APA (Action potential amplitude), Vmax (Maximum rate of depolarization) and MPD (Maximum potential diastolic). Conclusion: Taken together, therefore, we can get the conclusion that ferulic acid drug-containing plasma has better protective effect injured myocardial cell than ferulic acid. PMID:23930002
Bernardo, Cintia Fernanda de Freitas; de Souza, Francielly Fernanda de Freitas A.; Michél, Milton Domingos; Ribeiro, Camila Nunes de Morais; Germano, Sandro; Maluf, Daniela Florencio
2017-01-01
The aim of this study was to evaluate in fibroblast cultures the direct cytotoxic effects of etch-and-rinse, self-etch, and universal adhesive systems. The sterile glass cover slips (n = 3) were then immersed in culture medium to obtain the eluates for the experimental groups: (1) Adper™ Single Bond 2; (2) Ambar; (3) Adper™ Scotchbond™ Multi-Purpose; (4) Scotchbond™ Universal; (5) Ambar Universal; and (6) OptiBond All-In-One. As a negative control, sterile glass cover slips were immersed in culture medium only. After 24 h, the eluate obtained was applied on fibroblast culture. Cell viability and cell morphology were evaluated by MTT assay and SEM, respectively. Data were analyzed by Kruskal–Wallis and Mann–Whitney tests (α = 0.05). All adhesive systems except universal reduced cell viability in 3T3 cells to between 26.04% and 56.57%, and Scotchbond Universal and Ambar Universal reduced cell viability to 2.13% and 3.57%, respectively, when compared to the negative control. Cytoplasmic membrane shrinkage and cell-free areas with residual membrane fragments from dead cells were observed. In conclusion, improvements in universal adhesive system formulations and their mechanisms of action are not accompanied by increased toxicity compared with those in other systems, warranting commitment to the use of these dentin-pulp complexes. PMID:29109829
2014-01-01
Background Bacterial species coexist commonly in mixed communities, for instance those occurring in microbial infections of humans. Interspecies effects contribute to alterations in composition of communities with respect to species and thus, to the course and severity of infection. Therefore, knowledge concerning growth and viability of single species in medically-relevant mixed communities is of high interest to resolve complexity of interspecies dynamics and to support development of treatment strategies. In this study, a flow cytometric method was established to assess the species-specific viability in defined three-species mixed cultures. The method enables the characterization of viability of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus, which are relevant to lung infections of Cystic Fibrosis (CF) patients. The method combines fluorescence detection by antibody and lectin labeling with viability fluorescence staining using SYBR®Green I and propidium iodide. In addition, species-specific cell enumeration analysis using quantitative terminal restriction fragment length polymorphisms (qT-RFLP) was used to monitor the growth dynamics. Finally, to investigate the impact of substrate availability on growth and viability, concentrations of main substrates and metabolites released were determined. Results For each species, the time course of growth and viability during mixed culture cultivations was obtained by using qT-RFLP analysis in combination with flow cytometry. Comparison between mixed and pure cultures revealed for every species differences in growth properties, e.g. enhanced growth of P. aeruginosa in mixed culture. Differences were also observed for B. cepacia and S. aureus in the time course of viability, e.g. an early and drastic reduction of viability of S. aureus in mixed culture. Overall, P. aeruginosa clearly dominated the mixed culture with regard to obtained cell concentrations. Conclusions In combination with qT-RFLP analysis, the methods enabled monitoring of species-specific cell concentrations and viability during co-cultivation of theses strains. Experimental findings suggest that the predominance of P. aeruginosa over B. cepacia and S. aureus in mixed culture under the chosen cultivation conditions is promoted by more efficient substrate consumption of P. aeruginosa, and antagonistic interspecies effects induced by P. aeruginosa. PMID:24606608
Herten, Monika; Idelevich, Evgeny A; Sielker, Sonja; Becker, Karsten; Scherzinger, Anna S; Osada, Nani; Torsello, Giovanni B; Bisdas, Theodosios
2017-06-27
BACKGROUND Rifampin-soaked synthetic prosthetic grafts have been widely used for prevention or treatment of vascular graft infections (VGIs). This in vitro study investigated the effect of the antibiotics daptomycin and vancomycin and the new recombinant bacteriophage endolysin HY-133 on vascular cells, as potential alternatives compared to rifampin. MATERIAL AND METHODS Primary human ECs, vascular smooth muscle cells (vSMC), and fibroblasts were cultivated in 96-well plates and incubated with rifampin, daptomycin, vancomycin, and endolysin HY-133 for 24 h. Subsequently, after washing, cell viability was determined by measuring mitochondrial ATP concentration. Antibiotics were used in their corresponding minimum and maximum serum concentrations, in decimal multiples and in maximum soaking concentration. The experiments were performed in triplicate. RESULTS The 10-fold max serum concentrations of rifampin, daptomycin, and vancomycin did not influence viability of EC and vSMC (100 µg/ml, p>0.170). Higher concentrations of rifampin (>1 mg/ml) significantly (p<0.001) reduced cell viability of all cell types. For the other antibiotics, high concentrations (close to maximum soaking concentration) were most cytotoxic for EC and vSMC and fibroblasts (p<0.001). Endolysin did not display any cytotoxicity towards vascular cells. CONCLUSIONS Results of this in vitro study show the high cytotoxicity of rifampin against vascular cells, and may re-initiate the discussion about the benefit of prophylactic pre-soaking in high concentrations of rifampin. Further studies are necessary to determine the influence of rifampin on the restoration of vessel functionality versus its prophylactic effect against VGIs. Future use of recombinant phage endolysins for alternative prophylactic strategies needs further investigations.
Gajski, Goran; Garaj-Vrhovac, Vera
2010-10-01
The present study was aimed to investigate the impact of bee venom on frequency of sister chromatid exchanges (SCE) and viability in human peripheral blood lymphocytes in vitro. In addition, the proportion of lymphocytes that undergo one, two or three cell divisions as well as proliferative rate index (PRI) have been determined. Aqueous solution of whole bee venom was added to whole blood samples in concentrations ranging from 0.1 microg/mL to 20 microg/mL in different lengths of time. Results showed that whole bee venom inhibited cell viability, resulting in a 22.86 +/- 1.14% and 51.21 +/- 0.58% reduction of viable cells at 1 hour and 6 hours, respectively. The mean SCE per cell in all the exposed samples was significantly higher than in the corresponding controls. In addition, the percentage of high frequency cells (HFC) for each sample was estimated using the pooled distribution of all SCE measurements. This parameter was also significantly higher compared to the control. Inhibition of proliferation was statistically significant for both exposure times and concentrations and was time and dose dependent. These data indicate that whole bee venom inhibited cell proliferation, resulting in a 36.87 +/- 5.89% and 38.43 +/- 1.96% reduction of proliferation at 1 hour and 6 hours, respectively. In conclusion, this report demonstrated that whole bee venom is capable of inducing DNA alterations by virtue of increasing sister chromatid exchanges in addition to the cell viability decrease and inhibition of proliferation kinetics in human peripheral blood lymphocytes in vitro.
Islet Assessment for Transplantation
Papas, Klearchos K.; Suszynski, Thomas M.; Colton, Clark. K.
2010-01-01
Purpose of review There is a critical need for meaningful viability and potency assays that characterize islet preparations for release prior to clinical islet cell transplantation (ICT). Development, testing, and validation of such assays have been the subject of intense investigation for the past decade. These efforts are reviewed, highlighting the most recent results while focusing on the most promising assays. Recent Findings Assays based on membrane integrity do not reflect true viability when applied to either intact islets or dispersed islet cells. Assays requiring disaggregation of intact islets into individual cells for assessment introduce additional problems of cell damage and loss. Assays evaluating mitochondrial function, specifically mitochondrial membrane potential, bioenergetic status, and cellular oxygen consumption rate (OCR), especially when conducted with intact islets, appear most promising in evaluating their quality prior to ICT. Prospective, quantitative assays based on measurements of OCR with intact islets have been developed, validated and their results correlated with transplant outcomes in the diabetic nude mouse bioassay. Conclusion More sensitive and reliable islet viability and potency tests have been recently developed and tested. Those evaluating mitochondrial function are most promising, correlate with transplant outcomes in mice, and are currently being evaluated in the clinical setting. PMID:19812494
Wang, Y; Baumrucker, C R
2010-07-01
Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.
Hydrogen peroxide-induced apoptosis of human lens epithelial cells is inhibited by parthenolide
Shentu, Xing-Chao; Ping, Xi-Yuan; Cheng, Ya-Lan; Zhang, Xin; Tang, Ye-Lei; Tang, Xia-Jing
2018-01-01
AIM To explore the effect of parthenolide on hydrogen peroxide (H2O2)-induced apoptosis in human lens epithelial (HLE) cells. METHODS The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS Apoptosis of HLE cells was induced by 200 µmol/L H2O2, and the viability of these cells was similar to the half maximal inhibitory concentration (IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations (6.25, 12.5, 25 and 50 µmol/L) of parthenolide along with 200 µmol/L H2O2 or only 50 µmol/L parthenolide or 200 µmol/L H2O2 for 24h. Following treatment with higher concentrations of parthenolide (50 µmol/L), fewer HLE cells underwent H2O2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB (NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase (MAPK) family], and Akt proteins in HLE cells. CONCLUSION Parthenolide may suppress H2O2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling. PMID:29375984
Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean
2015-05-01
The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.
Effects of PPARα inhibition in head and neck paraganglioma cells
Florio, Rosalba; di Giacomo, Viviana; Di Marcantonio, Maria Carmela; Cristiano, Loredana; Basile, Mariangela; Verginelli, Fabio; Verzilli, Delfina; Ammazzalorso, Alessandra; Prasad, Sampath Chandra; Cataldi, Amelia; Sanna, Mario; Cimini, Annamaria; Mariani-Costantini, Renato; Mincione, Gabriella; Cama, Alessandro
2017-01-01
Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL. PMID:28594934
Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus
2016-04-01
Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. © 2016 Society for Laboratory Automation and Screening.
Kunert-Keil, Christiane; Gredes, Tomasz; Meyer, Annelie; Wróbel-Kwiatkowska, Magdalena; Dominiak, Marzena; Gedrange, Tomasz
2012-11-01
Natural fibers have long been used in several branches of industry. Nowadays, they are considered as composite materials in medicine with special focus on artificial tissue scaffolding, drug-release systems, cardiovascular patches and nerve cuffs. The purpose of this study has been to examine the in vitro biocompatibility of newly designed "green composites". Therefore, composites containing flax fibers from transgenic flax plants producing polyhydroxybutyrate (M50) and control (wt-NIKE) plants in a polylactid (PLA) or polycaprolactone (PCL) matrix were prepared and mice fibroblast viability and cytotoxicity determined after incubation for 12-48h and 3 weeks with those composites. After 24h and 48h, all green composites have a strong influence on cell viability and membrane stability without any differences among each other. The cell viability of treated cells is approximately 82.5-93% of those of untreated control cells, respectively. The increase in cytotoxicity ranged between 1.4 and 2.9 fold compared to untreated cells. After 3 weeks of incubation, no significant changes were detectable in the amount of dead and living cells between composite treated and untreated cells. In conclusion, the tested new "green composites" showed a good biocompatibility. The biocompatibility of composites from transgenic flax plant fibers producing PHB did not differ from composites of non-transgenic flax plant fibers. Copyright © 2012 Elsevier GmbH. All rights reserved.
Nurdin, Samsu U.; Le Leu, Richard K.; Young, Graeme P.; Stangoulis, James C. R.; Christophersen, Claus T.; Abbott, Catherine A.
2017-01-01
Green cincau (Premna oblongifolia Merr) is an Indonesian food plant with a high dietary fibre content. Research has shown that dietary fibre mixtures may be more beneficial for colorectal cancer prevention than a single dietary fibre type. The aim of this study was to investigate the effects of green cincau extract on short chain fatty acid (SCFA) production in anaerobic batch cultures inoculated with human faecal slurries and to compare these to results obtained using different dietary fibre types (pectin, inulin, and cellulose), singly and in combination. Furthermore, fermentation supernatants (FSs) were evaluated in Caco-2 cells for their effect on cell viability, differentiation, and apoptosis. Cincau increased total SCFA concentration by increasing acetate and propionate, but not butyrate concentration. FSs from all dietary fibre sources, including cincau, reduced Caco-2 cell viability. However, the effects of all FSs on cell viability, cell differentiation, and apoptosis were not simply explainable by their butyrate content. In conclusion, products of fermentation of cincau extracts induced cell death, but further work is required to understand the mechanism of action. This study demonstrates for the first time that this Indonesian traditional source of dietary fibre may be protective against colorectal cancer. PMID:28368356
The fate of chemoresistance in triple negative breast cancer (TNBC)
O’Reilly, Elma A.; Gubbins, Luke; Sharma, Shiva; Tully, Riona; Guang, Matthew Ho Zhing; Weiner-Gorzel, Karolina; McCaffrey, John; Harrison, Michele; Furlong, Fiona; Kell, Malcolm; McCann, Amanda
2015-01-01
Background Treatment options for women presenting with triple negative breast cancer (TNBC) are limited due to the lack of a therapeutic target and as a result, are managed with standard chemotherapy such as paclitaxel (Taxol®). Following chemotherapy, the ideal tumour response is apoptotic cell death. Post-chemotherapy, cells can maintain viability by undergoing viable cellular responses such as cellular senescence, generating secretomes which can directly enhance the malignant phenotype. Scope of Review How tumour cells retain viability in response to chemotherapeutic engagement is discussed. In addition we discuss the implications of this retained tumour cell viability in the context of the development of recurrent and metastatic TNBC disease. Current adjuvant and neo-adjuvant treatments available and the novel potential therapies that are being researched are also reviewed. Major conclusions Cellular senescence and cytoprotective autophagy are potential mechanisms of chemoresistance in TNBC. These two non-apoptotic outcomes in response to chemotherapy are inextricably linked and are neglected outcomes of investigation in the chemotherapeutic arena. Cellular fate assessments may therefore have the potential to predict TNBC patient outcome. General Significance Focusing on the fact that cancer cells can bypass the desired cellular apoptotic response to chemotherapy through cellular senescence and cytoprotective autophagy will highlight the importance of targeting non-apoptotic survival pathways to enhance chemotherapeutic efficacy. PMID:26676166
Iwasaki, Koji; Sudo, Hideki; Yamada, Katsuhisa; Ito, Manabu; Iwasaki, Norimasa
2014-01-01
Background Discography and discoblock are imaging procedures used to diagnose discogenic low back pain. Although needle puncture of the intervertebral disc (IVD) itself induces disc degeneration, the agents used in these procedures may also have harmful effects on IVD cells. The purpose of this study was to analyze whether radiocontrast agents and local anesthetic agents have detrimental effects on human nucleus pulposus (NP) cells. Methods Healthy human NP cells were cultured for 7 days in three-dimensional (3D) cell–alginate bead composites, and were then exposed to clinically relevant doses of a radiocontrast agent (iotrolan) or local anesthetic (lidocaine or bupivacaine). Cell viability and apoptosis were measured by confocal microscopy and flow cytometry. On the basis of caspase expression profiles, the apoptotic pathways activated by the agents were identified by Western blot analysis. Results The radiocontrast agent iotrolan did not affect NP cell viability or induce apoptosis. In contrast, both the anesthetic agents significantly decreased cell viability and increased the apoptotic cell number in a time- and dose-dependent manner. After 120 min, 2% lidocaine and 0.5% bupivacaine decreased percent live cells to 13% and 10%, respectively (p<0.05). The number of apoptotic cells was doubled by increasing lidocaine dosage from 1% to 2% (23% and 42%) and bupivacaine from 0.25% to 0.50% (25% and 48%) (p<0.05). Western blot analysis revealed that both anesthetic agents upregulated cleaved caspase-3 and caspase-8, whereas only bupivacaine upregulated cleaved caspase-9. Conclusions/Significance The present study demonstrates that iotrolan does not affect the viability of healthy human NP cells. In contrast, the two anesthetic agents commonly used in discography or discoblock may cause extensive damage to IVDs by inducing apoptotic cell death. PMID:24642945
Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M
2016-06-01
Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. © 2015 Blackwell Verlag GmbH.
Newly Developed Neutralized pH Icodextrin Dialysis Fluid: Nonclinical Evaluation.
Yamaguchi, Naoya; Miyamoto, Keiichi; Murata, Tomohiro; Ishikawa, Eiji; Horiuchi, Takashi
2016-08-01
A two-compartment system (NICOPELIQ; NICO, Terumo Co., Tokyo, Japan) has recently been developed to neutralize icodextrin peritoneal dialysis fluid (PDF). In this study, a nonclinical evaluation of NICO was carried out to evaluate biocompatibility as well as water transport ability. Glucose degradation products (GDPs) in the icodextrin PDFs were analyzed via high-performance liquid chromatography (HPLC). The cell viability of human peritoneal mesothelial cells derived from peritoneal dialysis effluent (PDE-HPMCs) was evaluated as well as the amount of lactate dehydrogenase (LDH) released after exposure to different PDFs (NICO and EXTRANEAL [EX, Baxter Healthcare Corp., Chicago, IL, USA]) and neutralized pH glucose PDF MIDPELIQ 250 (M250, Terumo). The water transport ability of NICO, EX, and M250 was tested using dialysis tube membranes with various pore sizes: 1, 2, 6-8, and 12-16 kDa. Although cell viability decreased by 30% after 30 min exposure to NICO, it was maintained for 6 h while a significant decrease was observed after 6 h exposure to EX. However, following adjustment of the pH to the same pre-exposure pH value, there was no significant difference in cell viability within the same pH group despite a doubling of the difference in the total amount of GDPs (44.6 ± 8.6 µM in NICO and 91.9 ± 9.5 µM in EX, respectively). In contrast, a significant decrease in cell viability was observed when the pH decreased to less than pH 6. Levels of released LDH, a cytotoxic marker, were within 5% after a 6-h exposure of NICO to PDE-HPMCs. There was no significant difference in water transport ability represented as overall osmotic gradients between NICO and EX. In conclusion, neutralization of icodextrin PDF is beneficial for maintaining cell viability and minimizing LDH release while water transport ability is comparable to the conventional icodextrin PDF. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Mojarrab, Mahdi; Mehrabi, Mehran; Ahmadi, Farahnaz; Hosseinzadeh, Leila
2016-01-01
Objective(s): This study was designed to indicate whether different fractions from Artemisia biennis hydroethanolic extract could provide cytoprotection against oxidative stress and apoptosis induced by doxorubicin (DOX) in rat pheochromocytoma cell line (PC12). Material and Methods: Cell viability was determined by MTT assay. Also, activation of caspase-3 and superoxide dismutase were evaluated by spectrophotometry. Detection of reactive oxygen species (ROS) and measurement of mitochondrial membrane potential (MMP) were performed by flowcytometry. Results: Treatment of PC12 cells with DOX reduced viability dose dependently. For evaluation of the effect of fractions (A-G) on DOX-induced cytotoxicity, PC12 cells were pretreated for 24 hr with the A. biennis fractions and then cells were treated with DOX. The fractions C and D increased PC12 cells viability significantly compared to DOX treated cells. Moreover, pretreatment with fractions C and D for 24 hr attenuated DOX-mediated apoptosis and the anti-apoptotic action of A. biennis fractions was partially dependent on inhibition of caspase 3 activity and also increasing the mitochondrial membrane potential (MMP). Selected A. biennis fractions also suppressed the generation of ROS and increased superoxide dismutase (SOD) activity. Conclusion: Taken together our observation indicated that subtoxic concentration of aforementioned fractions of A. biennis hydroetanolic extract has protective effect against apoptosis induced by DOX in PC12 cell. The results highlighted that fractions C and D may exert cytoprotective effects through their antioxidant actions. PMID:27403257
Ding, Ke; Yang, Zhong; Zhang, Yu-Long; Xu, Jian-Zhong
2013-09-01
A cell carrier plays an important role in the maintenance, growth and engraftment of specific cells aimed for defined therapeutic uses in many tissue engineering strategies. A suitable microenvironment for the cells allows for the maximum efficacy of the hybrid device. We have prepared an injectable thermosensitive chitosan/β-glycerophosphate/collagen (C/GP/Co) gel and investigated its potential application as a support for the culture of skeletal muscle satellite cells (SMSCs). A cell viability assay was used to evaluate the in vitro cytocompatibility of the gel. Cell growth was assessed by scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and histological analysis. The influence of the C/GP/Co gel on the plasticity of SMSCs seeded at the surface of the gel was assessed by induction of the myogenic, osteogenic and adipogenic differentiation. C/GP/Co gel provided the appropriate environment for the culture of SMSCs in vitro. In addition, the C/GP/Co gel supported SMSC plasticity. In vivo testing of the SMSC-seeded gel was investigated by subcutaneous injection into the dorsum of nude mice. Cell viability was assessed both by in vivo imaging and histological examination of the explants. In conclusion, C/GP/Co hydrogel is a cytocompatible carrier for the in vivo delivery of SMSCs and supportive for SMSC plasticity. Thus, this gel has potential applications in tissue engineering and regenerative medicine. © 2013 International Federation for Cell Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Becky M.; Kaiser, Brooke LD; Sydor, Michael A.
ABSTRACT Aims To develop and optimize an assay to determine viability status of Bacillus anthracis Sterne and Yersinia pestis pgm- strains in the presence of white powders by coupling propidium monoazide (PMA) treatment with real-time PCR (qPCR) analysis. Methods and Results PMA selectively enters nonviable cells and binds DNA, thereby increasing qPCR assay cycle threshold (CT) values compared to untreated samples. Dye concentration, cell number and fitness, incubation time, inactivation methods, and assay buffer were optimized for B. anthracis Sterne and Y. pestis pgm-. Differences in CT values in nonviable cells compared to untreated samples were consistently > 9 formore » both B. anthracis Sterne vegetative cells and Y. pestis pgm- in the presence and absence of three different white powders. Our method eliminates the need for a DNA extraction step prior to detection by qPCR. Conclusions The developed assay enables simultaneous identification and viability assessment for B. anthracis Sterne and Y. pestis pgm- under laboratory conditions, even in the presence of white powders. Eliminating the DNA extraction step that is typically used reduces total assay time and labor requirements for sample analysis. Significance and Impact of the Study The method developed for simultaneous detection and viability assessment for B. anthracis and Y. pestis can be employed in forming decisions about the severity of a biothreat event or the safety of food. Keywords Bacillus anthracis, Yersinia pestis, Propidium Monoazide, qPCR, White Powders, Rapid Viability Detection« less
da Costa, Kelen Jorge Rodrigues; Passos, Joel J; Gomes, Alinne D M; Sinisterra, Rubén D; Lanza, Célia R M; Cortés, Maria Esperanza
2012-11-01
In the current study, we characterized the polycaprolactone (PCL), poly(lactic acid-co-glycolic acid) (PLGA), and biphasic calcium phosphate (BCP) composites coated with testosterone propionate (T) using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (XRD). Osteoblastic cells were seeded with PCL/BCP, PCL/BCP/T, PLGA/PCL/BCP and PLGA/PCL/BCP/T scaffolds, and cell viability, proliferation, differentiation and adhesion were analyzed. The results of physic-chemical experiments showed no displacements or suppression of bands in the FTIR spectra of scaffolds. The XRD patterns of the scaffolds showed an amorphous profile. The osteoblastic cells viability and proliferation increased in the presence of composites with testosterone over 72 h, and were significantly greater when PLGA/PCL/BCP/T scaffold was tested against PCL/BCP/T. Furthermore alkaline phosphatase production was significantly greater in the same group. In conclusion, the PLGA/PCL/BCP scaffold with testosterone could be a promising option for bone tissue applications due to its biocompatibility and its stimulatory effect on cell proliferation.
MESTIERI, Leticia Boldrin; TANOMARU-FILHO, Mário; GOMES-CORNÉLIO, Ana Livia; SALLES, Loise Pedrosa; BERNARDI, Maria Inês Basso; GUERREIRO-TANOMARU, Juliane Maria
2014-01-01
Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. PMID:25591023
Beltrán-Partida, Ernesto; Moreno-Ulloa, Aldo; Valdez-Salas, Benjamín; Velasquillo, Cristina; Carrillo, Monica; Escamilla, Alan; Valdez, Ernesto; Villarreal, Francisco
2015-01-01
Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO2 nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials. PMID:28787976
Beltrán-Partida, Ernesto; Moreno-Ulloa, Aldo; Valdez-Salas, Benjamín; Velasquillo, Cristina; Carrillo, Monica; Escamilla, Alan; Valdez, Ernesto; Villarreal, Francisco
2015-03-02
Titanium (Ti) and its alloys are amongst the most commonly-used biomaterials in orthopedic and dental applications. The Ti-aluminum-vanadium alloy (Ti6Al4V) is widely used as a biomaterial for these applications by virtue of its favorable properties, such as high tensile strength, good biocompatibility and excellent corrosion resistance. TiO₂ nanotube (NTs) layers formed by anodization on Ti6Al4V alloy have been shown to improve osteoblast adhesion and function when compared to non-anodized material. In his study, NTs were grown on a Ti6Al4V alloy by anodic oxidation for 5 min using a super-oxidative aqueous solution, and their in vitro biocompatibility was investigated in pig periosteal osteoblasts and cartilage chondrocytes. Scanning electron microscopy (SEM), energy dispersion X-ray analysis (EDX) and atomic force microscopy (AFM) were used to characterize the materials. Cell morphology was analyzed by SEM and AFM. Cell viability was examined by fluorescence microscopy. Cell adhesion was evaluated by nuclei staining and cell number quantification by fluorescence microscopy. The average diameter of the NTs was 80 nm. The results demonstrate improved cell adhesion and viability at Day 1 and Day 3 of cell growth on the nanostructured material as compared to the non-anodized alloy. In conclusion, this study evidences the suitability of NTs grown on Ti6Al4V alloy using a super-oxidative water and a short anodization process to enhance the adhesion and viability of osteoblasts and chondrocytes. The results warrant further investigation for its use as medical implant materials.
Cytotoxic effect of the serotonergic drug 1-(1-Naphthyl)piperazine against melanoma cells.
Menezes, Ana Catarina; Carvalheiro, Manuela; Ferreira de Oliveira, José Miguel P; Ascenso, Andreia; Oliveira, Helena
2018-03-01
1-(1-Naphthyl)piperazine (1-NPZ) is a serotonergic derivative of quipazine acting both as antagonist and agonist of different serotonin receptors, with promising results for the management of skin cancer. In this work, we studied the effect of 1-NPZ on human MNT-1 melanoma cells by evaluating its effects on cell viability, ability to form colonies, cell cycle dynamics, reactive oxygen species (ROS) production and apoptosis. Treatment of MNT-1 cells with 1-NPZ for 24h decreased cell viability and induced apoptosis in a dose-dependent manner. Activity against melanoma was confirmed with a different melanoma cell line, SK-MEL-28. Simultaneously, 1-NPZ affected cell cycle progression by mediating a S-phase delay. Higher levels of ROS were also detected in MNT-1 cells after treatment with 1-NPZ. Furthermore, 1-NPZ significantly increased the expression of cyclooxygenase-2 in MNT-1 cells. These findings suggest that 1-NPZ pretreatment is able to induce oxidative stress, and consequently apoptotic cell death in melanoma cells. In conclusion, this study demonstrates the cytotoxic and genotoxic potential of 1-NPZ against melanoma cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
da Conceição, Aline O.; von Poser, Gilsane Lino; Barbeau, Benoit; Lafond, Julie
2014-01-01
Objective To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. Methods BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by 45Ca2+ influx evaluation. Results The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance; however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca2+ influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. Conclusions The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+ influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants. PMID:25182721
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Qu, Wei; Li, Dichen; Wang, Yufei; Wu, Qining; Hao, Dingjun
2018-06-04
BACKGROUND Radioresistance restricts the application of radiotherapy in human osteosarcoma (OS). This study investigated the molecular mechanism of radioresistance in OS, which may provide clues to finding ideal targets for genetic therapy. MATERIAL AND METHODS The human OS cell line MG63 was employed as parent cells. After repeat low-dose X-ray irradiation of MG63, the radioresistant OS cell line MG63R was produced. Colony formation assay was used to assess the radioresistance. Cell viability was evaluated by CCK-8 assay. Flow cytometry was used to detect cell apoptosis, and wound healing assay was used to evaluate invasive capacity. The nuclear translocation was evaluated by fluorescent immunohistochemistry. Protein expression levels were assessed by Western blotting. Specific siRNA against Shh was used to silence Shh. RESULTS More survival colony formation, elevated cell viability, less cell apoptosis, and increased wound closure were found in MG63R than in MG63 cells exposed to irradiation. The nuclear translocation of Gli, expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9 were increased in MG63R cells compared with MG63 cells. Transfection of Shh-siRNA suppressed expression levels of Shh, Smo, Ptch1, Bcl2, active MMP2, and active MMP9, as well as the nuclear translocation of Gli in MG63R cells. The cell viability, survival colony formation, and wound closure were impaired, whereas cell apoptosis was increased, in siRNA-transfected MG63R cells than in control MG63R cells exposed to irradiation. CONCLUSIONS Activation of Shh signaling was involved in radioresistance of OS cells. Blocking this signaling can impair the radioresistance capacity of OS cells.
[Knockdown of PRDX6 in microglia reduces neuron viability after OGD/R injury].
Tan, Li; Zhao, Yong; Jiang, Beibei; Yang, Bo; Zhang, Hui
2016-08-01
Objective To observe the effects of peroxiredoxin 6 (PRDX6) knockdown in the microglia on neuron viability after oxygen-glucose deprivation and reoxygenation (OGD/R). Methods Microglia was treated with lentivirus PRDX6-siRNA and Ca(2+)-independent phospholipase A2 (iPLA2) inhibitor, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33). Twenty-four hours later, it was co-cultured with primary neuron to establish the microglia-neuron co-culture OGD/R model. According to the different treatment of microglia, the cells were divided into normal group, OGD/R group, negative control-siRNA treated OGD/R group, PRDX6-siRNA treated OGD/R group and PRDX6-siRNA combined with MJ33 treated OGD/R group. Western blot analysis and real-time quantitative PCR were respectively performed to detect PRDX6 protein and mRNA levels after knockdown of PRDX6 in microglia. The iPLA2 activity was measured by ELISA. MTS and lactate dehydrogenase (LDH) assay were used to measure neuron viability and cell damage. The oxidative stress level of neuron was determined by measuring superoxide dismutase (SOD) and malonaldehyde (MDA) content. Results In PRDX6-siRNA group, neuron viability was inhibited and oxidative stress damage was aggravated compared with OGD/R group. In PRDX6-siRNA combined with MJ33 group, cell viability was promoted and oxidative stress damage was alleviated compared with PRDX6-siRNA group. Conclusion PRDX6 in microglia protects neuron against OGD/R-induced injury, and iPLA2 activity has an effect on PRDX6.
Jambor, Tomáš; Tvrdá, Eva; Tušimová, Eva; Kováčik, Anton; Bistáková, Jana; Forgács, Zsolt; Lukáč, Norbert
2017-03-01
Nonylphenol is considered an endocrine disruptor and has been reported to affect male reproductive functions. In our in vitro study, we evaluated the effects of 4-nonylphenol (4-NP) on cholesterol levels, hormone formation and viability in cultured Leydig cells from adult ICR male mice. We also determined the potential impact of 4-NP on generation of reactive oxygen species (ROS) after 44 h of cultivation. The cells were cultured with addition of 0.04; 0.2; 1.0; 2.5 and 5.0 μg/mL of 4-NP in the present of 1 IU/mL human chorionic gonadotropin (hCG) and compared to the control. The quantity of cholesterol was determined from culture medium using photometry. Determination of hormone production was performed by enzyme-linked immunosorbent assay. Metabolic activity assay was used for quantification of cell viability. The chemiluminescence technique, which uses a luminometer to measure reactive oxygen species, was employed. Applied doses of 4-NP (0.04-5.0 μg/mL) slight increase cholesterol levels and decrease production of dehydroepiandrosterone after 44 h of cultivation, but not significantly. Incubation of 4-NP treated cells with hCG significantly (P < 0.001) inhibited androstenedione, but not testosterone, formation at the highest concentration (5.0 μg/mL). The viability was significantly (P < 0.05); (P < 0.001) increased at 1.0; 2.5 and 5.0 μg/mL of 4-NP after 44 h treatment. Furthermore, 44 h treatment of 4-NP (0.04-5.0 μg/mL) caused significant (P < 0.001) intracellular accumulation of ROS in exposed cells. Taken together, the results of our in vitro study reported herein is consistent with the conclusion that 4-nonylphenol is able to influence hormonal profile, cell viability and generate ROS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chao, Pei-Yu; Lin, James A.; Ye, Je-Chiuan; Hwang, Jin-Ming; Ting, Wei-Jen; Huang, Chih-Yang; Liu, Jer-Yuh
2017-01-01
Objectives:Cell transplantation therapy of Schwann cells (SCs) is a promising therapeutic strategy after spinal cord injury. However, challenges such as oxidative stress hinder satisfactory cell viability and intervention for enhancing SCs survival is critical throughout the transplantation procedures. Ocimum gratissimum, widely used as a folk medicine in many countries, has therapeutic and anti-oxidative properties and may protect SCs survival. Methods:We examined the protective effects of aqueous O. gratissimum extract (OGE) against cell damage caused by H2O2-induced oxidative stress in RSC96 Schwann cells. Results:Our results showed that the RSC96 cells, damaged by H2O2 oxidative stress, decreased their viability up to 32% after treatment with different concentrations of up to 300 μM H2O2, but OGE pretreatment (150 or 200 μg/mL) increased cell viability by approximately 62% or 66%, respectively. Cell cycle analysis indicated a high (43%) sub-G1 cell population in the H2O2-treated RSC96 cells compared with untreated cells (1%); whereas OGE pretreatment (150 and 200 μg/mL) of RSC96 cells significantly reduced the sub-G1 cells (7% and 8%, respectively). Furthermore, Western blot analysis revealed that OGE pretreatment inhibited H2O2-induced apoptotic protein caspase-3 activation and PARP cleavage, as well as it reversed Bax up-regulation and Bcl-2 down-regulation. The amelioration of OGE of cell stress and stress-induced apoptosis was proved by the HSP70 and HSP72 decrease. Conclusion: Our data suggest that OGE may minimize the cytotoxic effects of H2O2-induced SCs apoptosis by modulating the apoptotic pathway and could potentially supplement cell transplantation therapy. PMID:28824312
Malik, Deepika; Tarek, Mohamed; Caceres del Carpio, Javier; Ramirez, Claudio; Boyer, David; Kenney, M Cristina; Kuppermann, Baruch D
2014-01-01
Purpose To compare the safety profiles of antivascular endothelial growth factor (VEGF) drugs ranibizumab, bevacizumab, aflibercept and ziv-aflibercept on retinal pigment epithelium cells in culture. Methods Human retinal pigment epithelium cells (ARPE-19) were exposed for 24 h to four anti-VEGF drugs at 1/2×, 1×, 2× and 10× clinical concentrations. Cell viability and mitochondrial membrane potential assay were performed to evaluate early apoptotic changes and rate of overall cell death. Results Cell viability decreased at 10× concentrations in bevacizumab (82.38%, p=0.0001), aflibercept (82.68%, p=0.0002) and ziv-aflibercept (77.25%, p<0.0001), but not at lower concentrations. However, no changes were seen in cell viability in ranibizumab-treated cells at all concentrations including 10×. Mitochondrial membrane potential was slightly decreased in 10× ranibizumab-treated cells (89.61%, p=0.0006) and 2× and 10× aflibercept-treated cells (88.76%, 81.46%; p<0.01, respectively). A larger reduction in mitochondrial membrane potential was seen at 1×, 2× and 10× concentrations of bevacizumab (86.53%, 74.38%, 66.67%; p<0.01) and ziv-aflibercept (73.50%, 64.83% and 49.65% p<0.01) suggestive of early apoptosis at lower doses, including the clinical doses. Conclusions At clinical doses, neither ranibizumab nor aflibercept produced evidence of mitochondrial toxicity or cell death. However, bevacizumab and ziv-aflibercept showed mild mitochondrial toxicity at clinically relevant doses. PMID:24836865
Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris
2014-01-01
Background MWCNT and CNF are interesting NPs that possess great potential for applications in various fields such as water treatment, reinforcement materials and medical devices. However, the rapid dissemination of NPs can impact the environment and in the human health. Thus, the aim of this study was to evaluate the MWCNT and cotton CNF toxicological effects on freshwater green microalgae Chlorella vulgaris. Results Exposure to MWCNT and cotton CNF led to reductions on algal growth and cell viability. NP exposure induced reactive oxygen species (ROS) production and a decreased of intracellular ATP levels. Addition of NPs further induced ultrastructural cell damage. MWCNTs penetrate the cell membrane and individual MWCNTs are seen in the cytoplasm while no evidence of cotton CNFs was found inside the cells. Cellular uptake of MWCNT was observed in algae cells cultured in BB medium, but cells cultured in Seine river water did not internalize MWCNTs. Conclusions Under the conditions tested, such results confirmed that exposure to MWCNTs and to cotton CNFs affects cell viability and algal growth. PMID:24750641
Pianetti, Anna; Manti, Anita; Boi, Paola; Citterio, Barbara; Sabatini, Luigia; Papa, Stefano; Rocchi, Marco Bruno Luigi; Bruscolini, Francesca
2008-10-31
Aeromonads in waters and foods can represent a risk to human health. Factors such as sodium chloride concentration and temperature can affect growth and viability of several food and water-borne pathogens. The behaviour of an Aeromonas hydrophila strain in the presence of 1.7%, 3.4% and 6% NaCl concentrations at 24 degrees C and 4 degrees C was studied over a 188 day period. Viability and membrane potential were assessed by flow cytometry; growth was evaluated by plate count technique. Flow cytometry evidenced that A. hydrophila retained viability over the period although varying according to temperature and salt concentrations. Colony Forming Units were generally lower in number than viable cells especially in the presence of 6% NaCl, indicating the occurrence of stressed cells which maintain metabolic activity yet are not able to grow on agar plates. In conclusion, A. hydrophila showed a long-term halotolerance even at elevated (6%) NaCl concentrations and a lesser sensitivity to salt at low temperature; therefore, low temperature and salt, which are two important factors limiting bacterial growth, do not assure safety in the case of high initial contamination. Finally, cytometry appears a valid tool for the rapid detection of the viability of pathogenic bacteria in food and environmental matrices to control and prevent health risks.
Kim, Min-Gyun; Pak, Jhang Ho; Choi, Won Ho; Park, Jeong-Yeol; Nam, Joo-Hyun
2012-01-01
Objective To investigate the relationship between cisplatin resistance and histone deacetylase (HDAC) isoform overexpression in ovarian cancer cell lines. Methods Expression of four HDAC isoforms (HDAC 1, 2, 3, and 4) in two ovarian cancer cell lines, SKOV3 and OVCAR3, exposed to various concentrations of cisplatin was examined by western blot analyses. Cells were transfected with plasmid DNA of each HDAC. The overexpression of protein and mRNA of each HDAC was confirmed by western blot and reverse transcriptase-polymerase chain reaction analyses, respectively. The cell viability of the SKOV3 and OVCAR3 cells transfected with HDAC plasmid DNA was measured using the cell counting kit-8 assay after treatment with cisplatin. Results The 50% inhibitory concentration of the SKOV3 and OVCAR3 cells can be determined 15-24 hours after treatment with 15 µg/mL cisplatin. The expression level of acetylated histone 3 protein in SKOV3 cells increased after exposure to cisplatin. Compared with control cells at 24 hours after cisplatin exposure, the viability of SKOV3 cells overexpressing HDAC 1 and 3 increased by 15% and 13% (p<0.05), respectively. On the other hand, OVCAR3 cells that overexpressed HDAC 2 and 4 exhibited increased cell viability by 23% and 20% (p<0.05), respectively, compared with control cells 24 hours after exposure to cisplatin. Conclusion In SKOV3 and OVCAR3 epithelial ovarian cancer cell lines, the correlation between HDAC overexpression and cisplatin resistance was confirmed. However, the specific HDAC isoform associated with resistance to cisplatin varied depending on the ovarian cancer cell line. These results may suggest that each HDAC isoform conveys cisplatin resistance via different mechanisms. PMID:22808361
Chen, Xin-Jun; Wu, Mian-Yun; Li, Deng-Hui; You, Jin
2016-09-01
The present study aimed to investigate the effect of apigenin on glioma cells and to explore its potential mechanism. U87 human glioma cells treated with apigenin were used in the current study. Cell Counting Kit‑8 solution and Annexin V-fluorescein isothiocyanate/propidium iodide Apoptosis Detection kit were used to analyze the effect of apigenin on U87 cell viability and apoptotic cell death. Reverse transcription‑quantitative polymerase chain reaction analysis was also used to determine microRNA‑16 (miR‑16) and MMP‑9 gene expression levels. Nuclear factor‑κB (NF‑κB) and B‑cell CLL/lymphoma 2 (BCL2) protein expression levels were determined using western blot analysis. An anti‑miR‑16 plasmid was constructed and transfected into U87 cells. The current study demonstrated that apigenin significantly decreased cell viability and induced apoptotic cell death of U87 cells in a dose‑dependent manner. Additionally, it was demonstrated that apigenin significantly increased miR‑16 levels, suppressed BCL2 protein expression and suppressed the NF‑κB/MMP9 signaling pathway in U87 cells. Furthermore, downregulation of miR‑16 using the anti‑miR‑16 plasmid reversed the effect of apigenin on cell viability, BCL2 protein expression and the NF‑κB/MMP‑9 pathway in U87 cells. The results of the present study suggested that apigenin inhibits glioma cell growth through promoting miR‑16 and suppression of BCL2 and NF-κB/MMP-9. In conclusion, the present study demonstrated the potential anticancer effects of apigenin on glioma cells.
Yu, T; Zhang, X Y; Wang, Z X; Li, B; Zheng, Y X; Bin, P
2017-06-20
Objective: To evaluate the viability of gasoline engine exhaust (GEE) with different particle sizes on human lung cell line BEAS-2B in vitro by air-liquid interface (ALI) . Methods: GEE were collected with a Tedlar bag and their particulate matter (PM) number, surface and mass concentration in three kind of GEE (filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter) were measured by two type of particle size spectrometer including TSI-3321 and SMPS-3938. Five groups were included, which divided into blank control group, clean air group, filtered automobile exhaust group, non-filtered automobile exhaust group and motorcycle exhaust without three-way catalytic converter group. Except the blank control group, BEAS-2B cells, cultured on the surface of Transwells, were treated with clean air or GEE by ALI method at a flow rate of 25 ml/min, 37 ℃ for 60 min in vitro . CCK-8 cytotoxicity test kit was used to determine the cell relative viability of BEAS-2B cells. Results: In the filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter, high concentrations of fine particles can be detected, but the coarse particles only accounted for a small proportion, and the sequence of PM concentration was motorcycle exhaust without three-way catalytic converter group> non-filtered automobile exhaust group> filtered automobile exhaust group ( P <0.001) . Compared with the clean air group, the cell relative viability in the 3 GEE-exposed groups were significantly lower ( P <0.001) . Among the comparisons of GEE exposure groups with different particle size spectra, the sequence of the cell relative viability was filtered automobile exhaust group >non-filtered automobile exhaust group> motorcycle exhaust without three-way catalytic converter group ( P <0.001) . When took the clean air control group as a reference, the mean of the cell relative viability in the filtered automobile exhaust group, non-filtered automobile exhaust group and motorcycle exhaust without three-way catalytic converter group, was decreased by 26.34%, 36.00% and 49.59%, respectively. Conclusion: GEE with different particle size spectra could induce different levels of toxic effects to the human lung cells BEAS-2B by ALI. After lowering the concentration of particles in the GEE and using the three-way catalytic converter could obviously improve the survival rate of lung cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mylonis, Ilias; Lakka, Achillia; Tsakalof, Andreas
Research highlights: {yields} Kaempferol inhibits HIF-1 activity in hepatocarcinoma cells; {yields} Kaempferol causes cytoplasmic mislocalization of HIF-1{alpha} by impairing the MAPK pathway. {yields} Viability of hepatocarcinoma cells under hypoxia is reduced by kaempferol. -- Abstract: Hepatocellular carcinoma (HCC) is characterized by high mortality rates and resistance to conventional treatment. HCC tumors usually develop local hypoxia, which stimulates proliferation of cancer cells and renders them resilient to chemotherapy. Adaptation of tumor cells to the hypoxic conditions depends on the hypoxia-inducible factor 1 (HIF-1). Over-expression of its regulated HIF-1{alpha} subunit, an important target of anti-cancer therapy, is observed in many cancers includingmore » HCC and is associated with severity of tumor growth and poor patient prognosis. In this report we investigate the effect of the dietary flavonoid kaempferol on activity, expression levels and localization of HIF-1{alpha} as well as viability of human hepatoma (Huh7) cancer cells. Treatment of Huh7 cells with kaempferol under hypoxic conditions (1% oxygen) effectively inhibited HIF-1 activity in a dose-dependent manner (IC{sub 50} = 5.16 {mu}M). The mechanism of this inhibition did not involve suppression of HIF-1{alpha} protein levels but rather its mislocalization into the cytoplasm due to inactivation of p44/42 MAPK by kaempferol (IC{sub 50} = 4.75 {mu}M). Exposure of Huh7 cells to 10 {mu}{Mu} kaempferol caused significant reduction of their viability, which was remarkably more evident under hypoxic conditions. In conclusion, kaempferol, a non-toxic natural food component, inhibits both MAPK and HIF-1 activity at physiologically relevant concentrations (5-10 {mu}M) and suppresses hepatocarcinoma cell survival more efficiently under hypoxia. It has, therefore, potential as a therapeutic or chemopreventive anti-HCC agent.« less
2014-01-01
Background Oral mucosa is frequently exposed to Herpes simplex virus type 1 (HSV-1) infection and irradiation due to dental radiography. During radiotherapy for oral cancer, the surrounding clinically normal tissues are also irradiated. This prompted us to study the effects of HSV-1 infection and irradiation on viability and apoptosis of oral epithelial cells. Methods Immortal gingival keratinocyte (HMK) cells were infected with HSV-1 at a low multiplicity of infection (MOI) and irradiated with 2 Gy 24 hours post infection. The cells were then harvested at 24, 72 and 144 hours post irradiation for viability assays and qRT-PCR analyses for the apoptosis-related genes caspases 3, 8, and 9, bcl-2, NFκB1, and viral gene VP16. Mann–Whitney U-test was used for statistical calculations. Results Irradiation improved the cell viability at 144 hours post irradiation (P = 0.05), which was further improved by HSV-1 infection at MOI of 0.00001 (P = 0.05). Simultaneously, the combined effects of infection at MOI of 0.0001 and irradiation resulted in upregulation in NFκB1 (P = 0.05). The combined effects of irradiation and HSV infection also significantly downregulated the expression of caspases 3, 8, and 9 at 144 hours (P = 0.05) whereas caspase 3 and 8 significantly upregulated in non-irradiated, HSV-infected cells as compared to uninfected controls (P = 0.05). Infection with 0.0001 MOI downregulated bcl-2 in non-irradiated cells but was upregulated by 27% after irradiation when compared to non-irradiated infected cells (P = 0.05). Irradiation had no effect on HSV-1 shedding or HSV gene expression at 144 hours. Conclusions HSV-1 infection may improve the viability of immortal cells after irradiation. The effect might be related to inhibition of apoptosis. PMID:25005804
Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes
Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher
2017-01-01
Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546
Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.
Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa
2018-04-01
Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.
Schneider, Natália; Gonçalves, Fabiany da Costa; Pinto, Fernanda Otesbelgue; Lopez, Patrícia Luciana da Costa; Araújo, Anelise Bergmann; Pfaffenseller, Bianca; Passos, Eduardo Pandolfi; Cirne-Lima, Elizabeth Obino; Meurer, Luíse; Lamers, Marcelo Lazzaron; Paz, Ana Helena
2015-01-01
Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.
Wang, Li; Hoogcarspel, Stan Jelle; Wen, Zhifei; van Vulpen, Marco; Molkentine, David P; Kok, Jan; Lin, Steven H; Broekhuizen, Roel; Ang, Kie-Kian; Bovenschen, Niels; Raaymakers, Bas W; Frank, Steven J
2016-10-01
Devices that combine magnetic resonance imaging with linear accelerators (MRL) represent a novel tool for MR-guided radiotherapy. However, whether magnetic fields (MFs) generated by these devices affect the radiosensitivity of tumors is unknown. We investigated the influence of a 1.5-T MF on cell viability and radioresponse of human solid tumors. Human head/neck cancer and lung cancer cells were exposed to single or fractionated 6-MV X-ray radiation; effects of the MF on cell viability were determined by cell plating efficiency and on radioresponsiveness by clonogenic cell survival. Doses needed to reduce the fraction of surviving cells to 37% of the initial value (D0s) were calculated for multiple exposures to MF and radiation. Results were analyzed using Student's t-tests. Cell viability was no different after single or multiple exposures to MRL than after exposure to a conventional linear accelerator (Linac, without MR-generated MF) in 12 of 15 experiments (all P > 0.05). Single or multiple exposures to MF had no influence on cell radioresponse (all P > 0.05). Cells treated up to four times with an MRL or a Linac further showed no changes in D0s with MF versus without MF (all P > 0.05). In conclusion, MF within the MRL does not seem to affect in vitro tumor radioresponsiveness as compared with a conventional Linac. Bioelectromagnetics. 37:471-480, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Vizcaino, Francisco; Bishop-Bailley, David; Lodi, Federica
Quercetin, the most abundant dietary flavonol, exerts vasodilator, anti-hypertensive, and anti-atherogenic effects and reduces the vascular remodelling associated with elevated blood pressure. Here, we have compared the effects of quercetin in intimal- and medial-type rat vascular smooth muscle cells (VSMC) in culture. After 48 h, quercetin reduced the viability of a polyclonal intimal-type cell line derived from neonatal aorta but not of a medial-type cell line derived from adult aorta. These differential effects were similar in both proliferating and quiescent VSMC. Quercetin also preferentially reduced the viability of intimal-type over medial-type VSMC in primary cultures derived from balloon-injured carotid arteries.more » The effects of quercetin on cell viability were mainly dependent upon induction of apoptosis, as demonstrated by nuclear condensation and fragmentation, and were unrelated to PPAR{gamma}, pro-oxidant effects or nitric oxide. The expression of MAPKs (ERK, p38, and JNK) and ERK phosphorylation were not different between intimal- and medial-type VSMC. p38 phosphorylation was negligible in both cell types. Medial-type showed a weak JNK phosphorylation while this was markedly increased in intimal-type cells. Quercetin reduced JNK phosphorylation but had no consistent effect on ERK phosphorylation. In conclusion, quercetin preferentially produced apoptosis in intimal-type compared to medial-type VSMC. This might play a role in the anti-atherogenic and anti-hypertensive effects of quercetin.« less
Hsu, Chao-Yu; Lin, Chun-Hsiang; Lin, Jiun-Tsai; Cheng, Yi-Fang; Chen, Han-Min; Kao, Shao-Hsuan
2015-09-01
Purine compounds are known to activate 5'-adenosine monophosphate-activated protein kinase (AMPK), which has important roles in treatments for renal cell carcinoma. The present study was aimed to investigate the effects of the purine analogue ENERGI‑F706 on the human renal carcinoma cell line 786‑O and the underlying mechanisms. The results revealed that ENERGI‑F706 (0.2‑0.6 mg/ml) significantly decreased the cell viability to up to 36.4±2.4% of that of the control. Compared to 786‑O cells, ENERGI‑F706 exerted less suppressive effects on the viability of the human non‑tumorigenic renal cell line HK‑2. Flow cytometric analysis showed that ENERGI‑F706 contributed to cell cycle arrest at S‑phase and triggered apoptosis of 786‑O cells. Immunoblot analysis revealed that anti‑apoptotic B‑cell lymphoma 2 (Bcl‑2) levels were reduced and pro‑apoptotic Bcl‑2‑associated X protein levels were diminished. In addition, activation of caspase‑9, caspase‑3 and poly(adenosine diphosphate ribose) polymerase (PARP) was promoted in 786‑O cells in response to ENERGI‑F706. Effects of ENERGI‑F706 on AMPK cascades were investigated and the results showed that ENERGI‑F706 enhanced phosphorylation of AMPKα (T172) and p53 (S15), a downstream target of AMPK. In addition, the AMPK activation, p53 (S15) phosphorylation, reduction of Bcl‑2, cleavage of caspase‑3 and PARP as well as suppressed cell viability induced by ENERGI‑F706 were reversed in the presence of AMPK inhibitor compound C (dorsomorphin). In conclusion, the findings of the present study revealed that ENERGI‑F706 significantly suppressed the viability of 786‑O cells via induction of cell cycle arrest and apoptosis, attributing to AMPK and p53 activation and subsequent cell cycle regulatory and apoptotic signaling. It was therefore indicated that ENERGI‑F706 may be suitable for the treatment of renal cell carcinoma.
Różanowska, Małgorzata; Bakker, Linda; Boulton, Michael E.; Różanowski, Bartosz
2012-01-01
The purpose of this study was to determine the effects of increasing concentration of ascorbate alone and in combinations with α-tocopherol and zeaxanthin on phototoxicity to the retinal pigment epithelium. ARPE-19 cells were exposed to rose bengal and visible light in the presence and absence of antioxidants. Toxicity was quantified by an assay of cell reductive activity. 20 min exposure to visible light and photosensitizer decreased cell viability to ~42%. Lipophilic antioxidants increased viabilities to ~70%, ~61% and ~75% for α-tocopherol, zeaxanthin and their combination, respectively. Cell viabilities were ~70%, 56% and 5% after exposures in the presence of 0.35, 0.7 and 1.4 mM ascorbate, respectively. 45 min exposure increased cell death to ~74% and to >95% in the absence and presence of ascorbate, respectively. In the presence of ascorbate, zeaxanthin did not significantly affect phototoxicity. α-Tocopherol and its combination with zeaxanthin enhanced protective effects of ascorbate but did not prevent from ascorbate-mediated deleterious effects. In conclusion, there is a narrow range of concentrations and exposure times where ascorbate exerts photoprotective effects, exceeding which leads to ascorbate-mediated increase in photocytotoxicity. Vitamin E and its combination with zeaxanthin can enhance protective effects of ascorbate but do not ameliorate its deleterious effects. PMID:22924673
Ren, Keyu; Yong, Chunming; Yuan, Hao; Cao, Bin; Zhao, Kun; Wang, Jin
2018-01-01
Ulcerative colitis is a chronic inflammatory disease of the colon where intestinal motility is disturbed. Interstitial cells of Cajal (ICC) are required to maintain normal intestinal motility. In the present study, we assessed the effect of tumor necrosis factor-alpha (TNF-α) on viability and apoptosis of ICC, as well as on the expression of stem cell factor (SCF), ghrelin, and substance P. ICC were derived from the small intestines of Swiss albino mice. Cell viability and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. ELISA was used to measure the concentrations of IL-1β, IL-6, ghrelin, substance P, and endothelin-1. Quantitative RT-PCR was used to measure the expression of SCF. Western blotting was used to measure the expression of apoptosis-related proteins, interleukins, SCF, and NF-κB signaling pathway proteins. TNF-α induced inflammatory injury in ICC by decreasing cell viability and increasing apoptosis and levels of IL-1β and IL-6. TNF-α decreased the levels of SCF, ghrelin, and substance P, but had no effect on endothelin-1. TNF-α down-regulated expressions of SCF, ghrelin, and substance P by activating the NF-κB pathway in ICC. In conclusion, TNF-α down-regulated the expressions of SCF, ghrelin, and substance P via the activation of the NF-κB pathway in ICC.
The effect of ultrasound-related stimuli on cell viability in microfluidic channels.
Ankrett, Dyan N; Carugo, Dario; Lei, Junjun; Glynne-Jones, Peter; Townsend, Paul A; Zhang, Xunli; Hill, Martyn
2013-06-28
In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0-29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells.
The novel kinase inhibitor ponatinib is an effective anti-angiogenic agent against neuroblastoma.
Whittle, Sarah B; Patel, Kalyani; Zhang, Linna; Woodfield, Sarah E; Du, Michael; Smith, Valeria; Zage, Peter E
2016-12-01
Background High-risk neuroblastoma has poor outcomes with high rates of relapse despite aggressive treatment, and novel therapies are needed to improve these outcomes. Ponatinib is a multi-tyrosine kinase inhibitor that targets many pathways implicated in neuroblastoma pathogenesis. We hypothesized that ponatinib would be effective against neuroblastoma in preclinical models. Methods We evaluated the effects of ponatinib on survival and migration of human neuroblastoma cells in vitro. Using orthotopic xenograft mouse models of human neuroblastoma, we analyzed tumors treated with ponatinib for growth, gross and histologic appearance, and vascularity. Results Ponatinib treatment of neuroblastoma cells resulted in decreased cell viability and migration in vitro. In mice with orthotopic xenograft neuroblastoma tumors, treatment with ponatinib resulted in decreased growth and vascularity. Conclusions Ponatinib reduces neuroblastoma cell viability in vitro and reduces tumor growth and vascularity in vivo. The antitumor effects of ponatinib suggest its potential as a novel therapeutic agent for neuroblastoma, and further preclinical testing is warranted.
Rodríguez-Huamán, Ángel; Casimiro-Gonzales, Sandra; Chávez-Pérez, Jorge Antonio; Gonzales-Arimborgo, Carla; Cisneros-Fernández, Richard; Aguilar-Mendoza, Luis Ángel; Gonzales, Gustavo F
2017-05-01
Reactive oxygen species (ROS) are normally produced during cell metabolism, there is strong evidence to suggest that ROS produced in excess impair the cell and may be etiologically related to various neurodegenerative diseases. This study was undertaken to examine the effects of Lepidium meyenii (MACA) methanol leaf extract on neurotoxicity in PC12 cell exposed to 6-hydroxydopamine (6-OHDA). Fresh samples of "maca" leaves were processed in order to obtain foliar extracts and to evaluate the neurobiological activity on PC12 cells, subjected to the cytotoxic effect of 6-OHDA through the determination of the capacity antioxidant, cell viability and cytotoxicity assays on PC12 cells. The results of the tests of antioxidant activity, showed maximum values of 2262.37 and 1305.36 expressed in Trolox equivalents (TEAC), for the methanolic and aqueous fractions respectively. Cell viability assays at a dose of 10 μg extract showed an increase of 31% and 60% at 6 and 12 h of pretreatment, respectively. Cytotoxicity assays at the same dose and exposure time showed a 31.4% and 47.8% reduction in lactate dehydrogenase (LDH) activity and an increase in superoxide dismutase (SOD) activity. The results allow us to affirm that the methanolic foliar extract of "maca" presents in vitro neurobiological activity of antioxidant protection, increase in cell viability and reduction of cytotoxicity against oxidative stress generated by 6-OHDA. In conclusion, the present study shows a protective role for Lepidium meyenii leaf extract on 6-OHDA-induced toxicity by an antioxidant effect.
Lewandowska, Urszula; Owczarek, Katarzyna; Szewczyk, Karolina; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta
2014-02-03
There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE) from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells), DU145 (prostate cancer cells) and MDA-MB-231 (breast cancer cells). The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control). Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.
Jung, Heejun; Kim, Namyoung; Yoon, Minjung
2016-10-01
The main objective of this study was to evaluate the efficacy of an additional cryoprotectant in 10% dimethyl sulfoxide (DMSO) on cryopreserving germ cells from stallions at different reproductive stages. Testicular samples were obtained from pre-pubertal (1-1.5 yr, n=6) and post-pubertal (3-7 yr, n=5) stallions. Germ cells were isolated using a two-enzyme digestion procedure and cryopreserved in minimal essential medium alpha containing 10% fetal bovine serum and 10% DMSO with or without addition of trehalose (50, 100, or 200mM) or polyethylene glycol (PEG, 2.5, 5, or 10%). Viability, cell population, and viable population were assessed after 1 and 3 months of cryopreservation. The viable UTF1-positive population of pre-pubertal stallion germ cells was also measured using immunocytochemistry after 1 and 3 months of cryopreservation. As expected, the viability, cell population, and viable cell population were significantly reduced after 1 and 3 months of cryopreservation. At the pre-pubertal stage, the addition of trehalose or PEG to 10% DMSO did not show any effect on the viability, cell population, viable cell population, or viable UTF1-positive germ cells at either 1 or 3 months after cryopreservation. However, at the post-pubertal stage, the viable population was significantly higher in germ cells that were cryopreserved with 5% or 10% PEG, than in the cells cryopreserved with 10% DMSO only. In conclusion, PEG at 5% or 10% added to 10% DMSO serves as an optimal cryoprotectant agent for the cryopreservation of germ cells from post-pubertal stallions. Copyright © 2016 Elsevier B.V. All rights reserved.
Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; de Oliveira, Thais Marchini; Cavalcanti, Bruno das Neves; Gomes, João Eduardo; Sakai, Vivien Thiemy
2018-01-01
Abstract Objective The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. Material and Methods SHED were cultured for 1 – 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. Results MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Conclusion Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population. PMID:29412365
Silva, Cláudia; Nunes, Catarina; Correia-Branco, Ana; Araújo, João R; Martel, Fátima
2017-04-01
Our aim was to investigate the effect of high levels of glucose, insulin, leptin, and tumor necrosis factor alpha, biomarkers of diabetes in pregnancy, in the process of placentation, using as a cell model a first trimester extravillous human trophoblast cell line (HTR8/SVneo cells). Exposure of HTR8/SVneo cells for 24 hours to either glucose (20 mmol/L) or leptin (25-100 ng/mL) did not cause significant changes in cell proliferation and viability. Tumor necrosis factor alpha (24 hours; 10-100 ng/L) caused a small decrease (10%) in cell proliferation and an increase (9%) in cell viability; however, both effects disappeared when exposure time was increased. Insulin (24 hours; 1-10 nmol/L) caused a concentration- and time-dependent decrease (10%-20%) in cell proliferation; the effect of insulin (10 nmol/L) was more pronounced after a 48 hours exposure (35%). In contrast, exposure to insulin (10 nmol/L; 48 hours) showed no significant effect on cell viability, apoptosis, and migration capacity. Insulin appears to cause hypertrophy of HTR8/SVneo cells as it reduces the cell mitotic index while increasing the culture protein content. The antiproliferative effect of insulin seems to involve activation of mammalian target of rapamycin, phosphoinositide 3-kinase, and p38 mitogen-activated protein kinase. Finally, simvastatin and the polyphenol quercetin potentiated the antiproliferative effect of insulin; on the contrary, the polyphenol resveratrol, the polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids, and folic acid were not able to change it. In conclusion, we show that insulin has an antiproliferative and hypertrophic effect on a first trimester extravillous human trophoblast cell line. So insulin might affect the process of placentation.
Duan, Liang; Wu, Rui; Ye, Liwei; Wang, Haiyan; Yang, Xia; Zhang, Yunyuan; Chen, Xian; Zuo, Guowei; Zhang, Yan; Weng, Yaguang; Luo, Jinyong; Tang, Min; Shi, Qiong; He, Tongchuan; Zhou, Lan
2013-01-01
Background and Objective S100A8 and S100A9, two members of the S100 protein family, have been reported in association with the tumor cell differentiation and tumor progression. Previous study has showed that their expression in stromal cells of colorectal carcinoma (CRC) is associated with tumor size. Here, we investigated the clinical significances of S100A8 and S100A9 in tumor cells of CRC and their underlying molecular mechanisms. Methods Expression of S100A8 and S100A9 in colorectal carcinoma and matching distal normal tissues were measured by reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry and western blot. CRC cell lines treated with the recombinant S100A8 and S100A9 proteins were used to analyze the roles and molecular mechanisms of the two proteins in CRC in vitro. Results S100A8 and S100A9 were elevated in more than 50% of CRC tissues and their expression in tumor cells was associated with differentiation, Dukes stage and lymph node metastasis. The CRC cell lines treatment with recombinant S100A8 and S100A9 proteins promoted the viability and migration of CRC cells. Furthermore, the two recombinant proteins also resulted in the increased levels of β-catenin and its target genes c-myc and MMP7. β-catenin over-expression in CRC cells by Adβ-catenin increased cell viability and migration. β-catenin knock-down by Adsiβ-catenin reduced cell viability and migration. Furthermore, β-catenin knockdown also partially abolished the promotive effects of recombinant S100A8 and S100A9 proteins on the viability and migration of CRC cells. Conclusions Our work demonstrated that S100A8 and S100A9 are linked to the CRC progression, and one of the underlying molecular mechanisms is that extracellular S100A8 and S100A9 proteins contribute to colorectal carcinoma cell survival and migration via Wnt/β-catenin pathway. PMID:23637971
NASA Astrophysics Data System (ADS)
Kawczyk-Krupka, Aleksandra; Czuba, Zenon; Ledwon, Aleksandra; Latos, Wojciech; Sliszka, Ewelina; Mianowska, Marta; Krol, Wojciech; Sieron, Aleksander
2008-02-01
Introduction. The whole mechanism of the cellular level of tumor destruction by photodynamic therapy (PDT) is still unknown. Despite necrotic and apoptotic ways of cell death, there is a variety of events leading to and magnifying the inactivation of tumor cells. Material and methods. J-774A.1 were incubated with δ-aminolevulinic acid (ALA) at different concentrations (125, 250, 500, 1000 μM) and then irradiated with VIS (400 - 750 nm) at the dose of 5,10 and 30 J/cm2 delivered from the incoherent light source. The effects of the application of ALA-PDT were evaluated on the basis of cell viability, nitric oxide (NO), tumor necrosis factor α- (TNF-α) and interleukin-1β (IL-1β) produced by the J-774A.1 cells. Results. The cell viability (assessed using MTT test) was comparable with control group at 5,10 and 30 J/cm2. At these doses of energy using different concentrations of ALA we have observed that at the higher energy doses, the greater increase of TNF-α release, lowering of the level of IL-1β production and decrease of NO release were observed. There was also observed the dependence of the secretional activity of the cells on the ALA concentrations. Conclusion. The cell viability and production of cytokines depended on ALA concentrations and energy doses of the light. The higher some cytokines' release after PDT could be an additional factor for the complete eradication of tumor.
Gualtieri, R; Mollo, V; Braun, S; Barbato, V; Fiorentino, I; Talevi, R
2012-10-15
Different in vitro models have been developed to study the interaction of gametes and embryos with the maternal tract. In cattle, the interaction of the oviduct with gametes and embryos have been classically studied using oviductal explants or monolayers (OMs). Explants are well differentiated but have to be used within 24 h after collection, whereas OMs can be used for a longer time after cell confluence but dedifferentiate during culture, losing cell polarity and ciliation. Herein, OMs were cultured either in M199 plus 10% fetal calf serum or in a semidefined culture medium (Gray's medium), in an immersed condition on collagen-coated coated microporous polyester or polycarbonate inserts under air-liquid interface conditions. The influence of culture conditions on long-term viability and differentiation of OMs was evaluated through scanning electron microscopy, localization of centrin and tubulin at the confocal laser scanning microscope, and assessment of maintenance of viability of sperm bound to OMs. Findings demonstrated that OMs cultured in an immersed condition with Gray's medium retain a better morphology, do not exhibit signs of crisis at least until 3 wks postconfluence, and maintain the viability of bound sperm significantly better than parallel OMs cultured in M199 plus 10% fetal calf serum. OM culture with Gray's medium in air-liquid interface conditions on porous inserts promotes cell polarity, ciliation, and maintenance of bound sperm viability at least until 3 wks postconfluence. In conclusion, oviduct culture in Gray's medium in an immersed or air-liquid condition allows long-term culture and, in the latter case, also ciliation of bovine OMs, and may represent in vitro systems that mimick more closely the biological processes modulated by the oviduct in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.
Li, Pei; Gan, Yibo; Wang, Haoming; Xu, Yuan; Song, Lei; Wang, Liyuan; Ouyang, Bin; Zhou, Qiang
2017-11-01
Various research models have been developed to study the biology of disc cells. Recently, the adult disc nucleus pulposus (NP) has been well studied. However, the immature NP is underinvestigated due to a lack of a suitable model. This study aimed to establish an organ culture of immature porcine disc by optimizing culture conditions and using a self-developed substance exchanger-based bioreactor. Immature porcine discs were first cultured in the bioreactor for 7 days at various levels of glucose (low, medium, high), osmolarity (hypo-, iso-, hyper-) and serum (5, 10, 20%) to determine the respective optimal level. The porcine discs were then cultured under the optimized conditions in the novel bioreactor, and were compared with fresh discs at day 14. For high-glucose, iso-osmolarity, or 10% serum, cell viability, the gene expression profile (for anabolic genes and catabolic genes), and glycosaminoglycan (GAG) and hydroxyproline (HYP) contents were more favorable than for other levels of glucose, osmolarity, and serum. When the immature discs were cultured under the optimized conditions using the novel bioreactor for 14 days, the viability of the immature NP was maintained based on histology, cell viability, GAG and HYP contents, and matrix molecule expression. In conclusion, the viability of the immature NP in organ culture could be maintained under the optimized culture conditions (high-glucose, iso-osmolarity, and 10% serum) in the substance exchanger-based bioreactor. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Shieh, Hester F; Graham, Christopher D; Brazzo, Joseph A; Zurakowski, David; Fauza, Dario O
2017-06-01
We sought to examine amniotic fluid mesenchymal stem cell (afMSC) viability within two FDA-approved collagen-based scaffolds, as a prerequisite to clinical translation of afMSC-based engineered diaphragmatic repair. Human afMSCs were seeded in a human-derived collagen hydrogel and in a bovine-derived collagen sheet at 3 matching densities. Cell viability was analyzed at 1, 3, and 5days using an ATP-based 3D bioluminescence assay. Statistical comparisons were by ANOVA (P<0.05). There was a highly significant 3-way interaction between scaffold type, seeding density, and time in 3D culture as determinants of cell viability, clearly favoring the human hydrogel (P<0.001). In both scaffolds, cell viability was highest at the highest seeding density of 150,000 cells/mL. Time in 3D culture impacted cell viability at the optimal seeding density in the human hydrogel, with the highest levels on days 1 (P<0.001) and 5 (P=0.05) with no significant effect in the bovine sheet (P=0.39-0.96). Among clinically-approved cell delivery vehicles, mesenchymal stem cell viability is significantly enhanced in a collagen hydrogel when compared with a collagen sheet. Cell viability can be further optimized by seeding density and time in 3D culture. These data further support the regulatory viability of clinical trials of engineered diaphragmatic repair. N/A (animal and laboratory study). Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae
2016-01-01
Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770
Abo-Zeid, Mona A M; Abdel-Samie, Negm S; Farghaly, Ayman A; Hassan, Emad M
2018-02-01
Cajanus cajan (L.) is a Pigeon pea cultivated in tropical and subtropical areas. It contains many bioactive components. The present study aimed to assess the antimutagenic efficacy of a flavonoid fraction of Cajanus cajan (FFCC) to reduce cytotoxicity and genotoxicity induced by cyclophosphamide (CP). We assessed genotoxic and cytotoxic effects using chromosome aberration, in mouse bone-marrow cells and spermatocytes, cell viability and DNA damage, in mouse bone-marrow cells. Animals received FFCC at concentrations 50,100 and 200 mg/kg b wt by oral gavage, and injected simultaneously with CP (20 mg/kg b wt) for 24 h. The results revealed that FFCC was safe and its effect was normal compared to control group. Moreover, we observed significant inhibition of CP-induced chromosome abnormalities in both, somatic and germ, cells (p ≪ 0.05) after concurrent administration of different concentrations of FFCC and CP. FFCC reduced chromosome aberrations by 14.29%, 25.21% and 28.57% in somatic cells, and 25.35%, 35.21% and 49.29% in germ cells after simultaneous treatment with CP respectively. Additionally, FFCC improved the cell viability of bone-marrow cells in a concentration-dependent manner when administered concurrently with CP. Similarly, FFCC diminished DNA damage (p ≪ 0.05) in CP-treated animals. The inhibitory index of tail DNA (%) reached 90.6% at the highest concentration of FFCC when administered simultaneously with CP. In conclusion, the flavonoid extract improved cell viability and protected animal cells from the cytotoxic and genotoxic effects exhibited by CP. Cajanus cajan flavonoids might contain the antioxidant bioactivity that effectively lessened chromosome aberrations and DNA damage induced by mutagenic agents. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of hydroquinone on retinal and vascular cells in vitro
Sharma, Ashish; Patil, Jayaprakash A; Gramajo, Ana L; Seigel, Gail M; Kuppermann, Baruch D; Kenney, Cristina M
2012-01-01
Aim: To explore the molecular pathophysiology that might explain the epidemiologic association between cigarette smoke and age-related macular degeneration (AMD) by examining the effects of hydroquinone (HQ), a toxic compound present in high concentration in cigarette smoke-related tar, on human retinal pigment epithelial cells (ARPE-19), rat retinal neurosensory cells (R-28), and human microvascular endothelial cells (HMVEC). Materials and Methods: ARPE-19, R-28, and HMVEC were treated for 24 h with four different concentrations of HQ (500 μM, 200 μM, 100 μM, 50 μM). Cell viability, caspase-3/7 activation, DNA laddering patterns, and lactate dehydrogenase (LDH) levels were analyzed. Results: At 50 μM HQ, R-28 cells showed a significant decrease in cell viability compared with the dimethyl sulfoxide (DMSO)-treated controls. At the 100–500 μM concentrations, all three cell lines showed significant cell death (P < 0.001). In the ARPE-19, R-28, and HMVEC cultures, the caspase-3/7 activities were not increased at any of the HQ concentration. Conclusion: Our findings suggest that the mechanism of cell death in all three cell lines was through non-apoptotic pathway. In addition, neuroretinal R-28 cells were more sensitive to HQ than the ARPE-19 and HMVEC cultures. PMID:22569379
Effect of Impaction Sequence on Osteochondral Graft Damage: The Role of Repeated and Varying Loads
Kang, Richard W.; Friel, Nicole A.; Williams, James M.; Cole, Brian J.; Wimmer, Markus A.
2013-01-01
Background Osteochondral autografts and allografts require mechanical force for proper graft placement into the defect site; however, impaction compromises the tissue. This study aimed to determine the effect of impaction force and number of hits to seat the graft on cartilage integrity. Hypothesis Under constant impulse conditions, higher impaction load magnitudes are more detrimental to cell viability, matrix integrity and collagen network organization and will result in proteoglycan loss and nitric oxide release. Study Design Controlled laboratory study Methods Osteochondral explants, harvested from fresh bovine trochleas, were exposed to a series of consistent impact loads delivered by a pneumatically driven device. Each plug received the same overall impulse of 7 Ns, reflecting the mean of 23 clinically inserted plugs. Impaction loads of 37.5N, 75N, 150N, and 300N were matched with 74, 37, 21, and 11 hits respectively. Following impaction, the plugs were harvested and cartilage was analyzed for cell viability, histology by safranin-o and picosirius red, and release of sulfated glycosaminoglycans and nitric oxide. Data were compared with non-impacted control. Results Impacted plugs had significantly lower cell viability than non-impacted plugs. A dose response relationship in loss of cell viability with respect to load magnitude was seen immediately and after 4 days but lost after 8 days. Histologic analysis revealed intact cartilage surface in all samples (loaded or control), with loaded samples showing alterations in birefringence. While the sulfated GAG release was similar across varying impaction loads, release of nitric oxide increased with increasing impaction magnitudes and time. Conclusions Impaction loading parameters have a direct effect on the time course of the viability of the cartilage in the graft tissue. Clinical Relevance Optimal loading parameters for surgical impaction of osteochondral grafts are those with lower load magnitudes and a greater number of hits to ensure proper fit. PMID:19915099
Lenarduzzi, Michelle; Hui, Angela B. Y.; Yue, Shijun; Ito, Emma; Shi, Wei; Williams, Justin; Bruce, Jeff; Sakemura-Nakatsugawa, Noriko; Xu, Wei; Schimmer, Aaron; Liu, Fei-Fei
2013-01-01
Introduction Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC. Experimental Design Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry. Results In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression. Conclusions Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management. PMID:23991213
Bioartificial liver devices: Perspectives on the state of the art.
Ding, Yi-Tao; Shi, Xiao-Lei
2011-03-01
Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients' own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an in vivo-like microenvironment for the growth of hepatocytes, thereby maintaining the cells' viability and function to the maximum extent. One future trend in the development of the bioreactor is to improve the oxygen supply system. Another direction for future research on bioreactors is the application of biomedical materials. In conclusion, BAL is, in principle, an important therapeutic strategy for patients with acute liver failure, and may also be a bridge to liver transplantation. It requires further research and development, however, before it can enter clinical practice.
Ayaki, Masahiko; Iwasawa, Atsuo; Niwano, Yoshimi
2012-01-01
We evaluated the in vitro cytotoxicity of benzalkonium chloride (BAK)-containing antiglaucoma eyedrops. We prepared cell cultures of SIRC, BCE C/D-1b, RC-1, and Chang conjunctiva. The viability of cell cultures was determined using the MTT and neutral red assays. The cell viability score (CVS) was used to compare the toxicity of test solutions. %CVS50 and %CVS40/80 of each eyedrop solution were 71 and 26 for Lumigan(®) (0.002% bimatoprost with 0.005% BAK), 100 and 99 for Tapros(®) (0.0015% tafluprost, a new formula from 2010 with 0.001% BAK), 39 and -29 for 2% Trusopt(®) (2% dorzolamide with 0.0075% BAK), 28 and -43 for Xalacom(®) (latanoprost/0.5% timolol with 0.02% BAK), 88 and 66 for DuoTrav(®) (travoprost/0.5% timolol with no BAK), 36 and -35 for Cosopt(®) (2% dorzolamide/0.5% timolol with 0.0075% BAK) and 53 and -1 for Combigan(®) (0.15% brimonidin/0.5% timolol with 0.005% BAK). Only Xalacom(®) and Tapros(®) did not show an apparent decrease in %CVS as compared to the corresponding concentration of BAK. In conclusion, the cytotoxicity of tested eyedrops was dependent on BAK. Only the eyedrops containing latanoprost or tafluprost showed a reduction in the cytotoxicity of BAK.
Ziarno, Małgorzata
2015-01-01
Background In the dairy industry, probiotic strains of Bifidobacterium are introduced into the composition of traditional starter cultures intended for the production of fermented foods, or sometimes are the sole microflora responsible for the fermentation process. In order to be able to reach the intestines alive and fulfil their beneficial role, probiotic strains must be able to withstand the acidity of the gastric juices and bile present in the duodenum. Objective The paper reports effects of selected fermented milk components on the viability of three strains of bifidobacteria in fermented milk during subsequent incubation under conditions representing model digestive juices. Design The viability of the bifidobacterial cells was examined after a 3-h incubation of fermented milk under simulated gastric juice conditions and then after 5-h incubation under simulated duodenum juice conditions. The Bifidobacterium strains tested differed in their sensitivity to the simulated conditions of the gastrointestinal juices. Results Bifidobacterial cell viability in simulated intestinal juices was dependent on the strain used in our experiments, and product components acted protectively towards bifidobacterial cells and its dose. Conclusions Bifidobacterial cells introduced into the human gastrointestinal tract as food ingredients have a good chance of survival during intestinal transit and to reach the large intestine thanks to the protective properties of the food components and depending on the strain and composition of the food. PMID:26546945
Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J
2012-05-01
Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.
2015-01-01
Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946
NASA Astrophysics Data System (ADS)
de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.
2015-04-01
The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.
Curcumin Induces Pancreatic Adenocarcinoma Cell Death via Reduction of the Inhibitors of Apoptosis
Osterman, Carlos J. Díaz; Gonda, Amber; Stiff, TessaRae; Sigaran, Ulysses; Valenzuela, Malyn May Asuncion; Bennit, Heather R. Ferguson; Moyron, Ron B.; Khan, Salma; Wall, Nathan R.
2015-01-01
Objectives The inhibitor of apoptosis (IAP) proteins are critical modulators of chemotherapeutic resistance in various cancers. To address the alarming emergence of chemotherapeutic resistance in pancreatic cancer, we investigated the efficacy of the turmeric derivative curcumin in reducing IAP protein and mRNA expression resulting in pancreatic cancer cell death. Methods The pancreatic adenocarcinoma cell line PANC-1 was used to assess curcumin’s effects in pancreatic cancer. Curcumin uptake was measured by spectral analysis and fluorescence microscopy. AlamarBlue and Trypan blue exclusion assays were used to determine PANC-1 cell viability following curcumin treatment. Visualization of PANC-1 cell death was performed using Hoffman Modulation Contrast microscopy. Western blot and PCR analyses were used to evaluate curcumin’s effects on IAP protein and mRNA expression. Results Curcumin enters PANC-1 cells and is ubiquitously present within the cell following treatment. Furthermore, curcumin reduces cell viability and induces morphological changes characteristic of cell death. Additionally, curcumin decreases IAP protein and mRNA expression in PANC-1 cells. Conclusions These data demonstrate that PANC-1 cells are sensitive to curcumin treatment. Furthermore, curcumin as a potential therapeutic tool for overcoming chemotherapeutic resistance mediated by IAPs, supports a role for curcumin as part of the therapeutic approach for pancreatic cancer. PMID:26348467
PINK1 alleviates myocardial hypoxia-reoxygenation injury by ameliorating mitochondrial dysfunction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Qiu, Liangxian; Liu, Xiping
PTEN inducible kinase-1 (PINK1) mutant induces mitochondrial dysfunction of cells, resulting in an inherited form of Parkinson's disease. However its exact role in the cardiomyocytes is unclear. The present study examined the function of PINK1 in hypoxia-reoxygenation (H/R) induced H9c2 cell damage and its potential mechanism. The H/R model in H9c2 cells was established by 6 h of hypoxia and 12 h of reoxygenation. The CCK8 and LDH assay indicated that the cell viability was obviously reduced after H/R. The expression of PINK1 was decreased in H/R-induced H9c2 cells compared with control group. The vector overexpressing PINK1 was constructed to transfect intomore » H/R-induced H9c2 cells. Our results showed that cell viability was increased, cell apoptosis and caspase 3, cytochrome C (Cyto C) levels were decreased after LV-PINK1 transfection. Furthermore, PINK1 overexpression stabilized electron transport chain (ETC) activity, increased ATP production, mPTP opening and mitochondrial membrane potential (MMP), inhibited ROS-generating mitochondria, implying PINK1 alleviates H/R induced mitochondrial dysfunction in cardiomyocytes. In addition, the TRAP-1 siRNA was transfected into PINK1 treated H9c2 cells after H/R to detected the molecular mechanism of PINK1 protecting cardiomyocytes. The results indicated that silence of TRAP-1 reversed the effects of PINK1 in H/R-induced H9c2 cells. In conclusion, these results suggest that PINK1 overexpression alleviates H/R-induced cell damage of H9c2 cells by phosphorylation of TRAP-1, and that is a valid approach for protection from myocardial I/R injury. - Highlights: • Effects of H/R on cell viability and PINK1 expression in H9c2 cells. • Effects of PINK1 on cell viability in H9c2 cells with H/R model. • Effects of PINK1 on mitochondrial dysfunction in H9c2 cells with H/R model. • PINK1 ameliorates H/R-induced H9c2 cells injury by activating p-TRAP-1.« less
Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han
2016-01-01
Aim: Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Methods: Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Results: Lidocaine (0.005%−0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50−800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Conclusion: Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway. PMID:27041463
Johnson, M. Brittany; Criss, Alison K.
2013-01-01
Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524
Mps1 kinase regulates tumor cell viability via its novel role in mitochondria
Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z
2016-01-01
Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells. PMID:27383047
Mps1 kinase regulates tumor cell viability via its novel role in mitochondria.
Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z
2016-07-07
Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells.
Alexander, Peter G.; Song, Yingjie; Taboas, Juan M.; Chen, Faye H.; Melvin, Gary M.; Manner, Paul A.
2013-01-01
Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration. PMID:26069650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji Lili; Shanghai R and D Centre for Standardization of Traditional Chinese Medicines, Shanghai 201203; Chen Ying
2008-09-15
Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability.more » Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.« less
Prevc, Ajda; Bedina Zavec, Apolonija; Cemazar, Maja; Kloboves-Prevodnik, Veronika; Stimac, Monika; Todorovic, Vesna; Strojan, Primoz; Sersa, Gregor
2016-10-01
Bystander effect, a known phenomenon in radiation biology, where irradiated cells release signals which cause damage to nearby, unirradiated cells, has not been explored in electroporated cells yet. Therefore, our aim was to determine whether bystander effect is present in electroporated melanoma cells in vitro, by determining viability of non-electroporated cells exposed to medium from electroporated cells and by the release of microvesicles as potential indicators of the bystander effect. Here, we demonstrated that electroporation of cells induces bystander effect: Cells exposed to electric pulses mediated their damage to the non-electroporated cells, thus decreasing cell viability. We have shown that shedding microvesicles may be one of the ways used by the cells to mediate the death signals to the neighboring cells. The murine melanoma B16F1 cell line was found to be more electrosensitive and thus more prone to bystander effect than the canine melanoma CMeC-1 cell line. In B16F1 cell line, bystander effect was present above the level of electropermeabilization of the cells, with the threshold at 800 V/cm. Furthermore, with increasing electric field intensities and the number of pulses, the bystander effect also increased. In conclusion, electroporation can induce bystander effect which may be mediated by microvesicles, and depends on pulse amplitude, repetition frequency and cell type.
Magcwebeba, Tandeka Unathi; Riedel, Sylvia; Swanevelder, Sonja; Swart, Pieter; De Beer, Dalene; Joubert, Elizabeth; Andreas Gelderblom, Wentzel Christoffel
2016-11-01
The relationship between polyphenol constituents, antioxidant properties of aqueous and methanol extracts of green tea (Camellia sinensis), the herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), against skin cell viability was investigated in vitro. The effect of extracts, characterised in terms of polyphenol content and antioxidant properties, on cell viability of premalignant, normal and malignant skin cells was determined. Phenolic composition, particularly high levels of potent antioxidants, of rooibos and green tea methanol extracts was associated with a strong reduction in cell viability specifically targeting premalignant cells. In contrast, the aqueous extracts of Cyclopia spp. were more effective in reducing cell viability. This correlated with a relatively high flavanol/proanthocyanidin content and ABTS radical cation scavenging capacity. The major green tea flavanol (epigallocatechin gallate) and rooibos dihydrochalcone (aspalathin) exhibited differential effects against cell viability, while the major honeybush xanthone (mangiferin) and flavanone (hesperidin) lacked any effect presumably due to a cytoprotective effect. The underlying mechanisms against skin cell viability are likely to involve mitochondrial dysfunction resulting from polyphenol-iron interactions. The polyphenol constituents and antioxidant parameters of herbal tea extracts are useful tools to predict their activity against skin cell survival in vitro and potential chemopreventive effects in vivo. © 2016 Royal Pharmaceutical Society.
Adenylate kinase 2 (AK2) promotes cell proliferation in insect development
2012-01-01
Background Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development. PMID:23020757
Wang, Jing; Yang, Yangfan; Xu, Jiangang; Lin, Xianchai; Wu, Kaili
2013-01-01
Purpose To investigate the effects of pirfenidone (PFD) on the migration, differentiation, and proliferation of retinal pigment epithelial (RPE) cells and demonstrate whether the drug induces cytotoxicity. Methods Human RPE cells (line D407) were treated with various concentrations of PFD. Cell migration was measured with scratch assay. The protein levels of fibronectin (FN), connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), transforming growth factor beta (TGFβS), and Smads were assessed with western blot analyses. Levels of mRNA of TGFβS, FN, and Snail1 were analyzed using reverse transcriptase–polymerase chain reaction. Cell apoptosis was detected with flow cytometry using the Annexin V/PI apoptosis kit, and the percentages of cells labeled in different apoptotic stage were compared. A Trypan Blue assay was used to assess cell viability. Results PFD inhibited RPE cell migration. Western blot analyses showed that PFD inhibited the expression of FN, α-SMA, CTGF, TGFβ1, TGFβ2, Smad2/3, and Smad4. Similarly, PFD also downregulated mRNA levels of Snail1, FN, TGFβ1, and TGFβ2. No significant differences in cell apoptosis or viability were observed between the control and PFD-treated groups. Conclusions PFD inhibited RPE cell migration, differentiation, and proliferation in vitro and caused no significant cytotoxicity. PMID:24415895
Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay
Zhou, Enhua H; Watson, Christa; Pizzo, Richard; Cohen, Joel; Dang, Quynh; de Barros, Pedro Macul Ferreira; Park, Chan Young; Chen, Cheng; Brain, Joseph D; Butler, James P; Ruberti, Jeffrey W; Fredberg, Jeffrey J; Demokritout, Philip
2015-01-01
Aim As engineered nanoparticles (ENPs) increasingly enter consumer products, humans become increasingly exposed. The first line of defense against ENPs is the epithelium, the integrity of which can be compromised by wounds induced by trauma, infection, or surgery, but the implications of ENPs on wound healing are poorly understood. Materials & methods Herein, we developed an in vitro assay to assess the impact of ENPs on the wound healing of cells from human cornea. Results & discussion We show that industrially relevant ENPs impeded wound healing and cellular migration in a manner dependent on the composition, dose and size of the ENPs as well as cell type. CuO and ZnO ENPs impeded both viability and wound healing for both fibroblasts and epithelial cells. Carboxylated polystyrene ENPs retarded wound healing of corneal fibroblasts without affecting viability. Conclusion Our results highlight the impact of ENPs on cellular wound healing and provide useful tools for studying the physiological impact of ENPs. PMID:24823434
Preliminary Study on Testicular Germ Cell Transplantation of Endemic Species Oryzias celebensis
NASA Astrophysics Data System (ADS)
Andriani, I.; Agustiani, F.; Hassan, M.; Parenrengi, A.; Inoue, K.
2018-03-01
The research has been conducted to study some technical steps for male germ-plasm from endemic fish species such as some species of Oryzias fish in Indonesia to preserve and propagate through germ cell transplantation technology. For preliminary research, the study was started with germ cell characterization of testes, cryopreservation of TGC and the transplantation of Oryzias celebensis as candidates for surrogate broodstock of Oryzias fish male germ plasm. The data analized included the potential number of TGC as donor, the viability of cryopreserved TGC in two types of cryoprotectans and the survival rate of O.celebensis larvae as recipient after transplantation. The result showed that the average amount of TGC yielded after dissociation was 131000 ± 31349 with 74.2 % viability of TGC each. Cryoprotectan10% DMSO +glucose yielded higher viable of TGC. More than 80 % of O.celebensis larvae survived after transplantation. In conclusion, these preliminary data of O.celebensis as surrogate broodstock candidate will support the application of TGC transplantation technology in Oryzias endemic species.
Inkjet printing Schwann cells and neuronal analogue NG108-15 cells.
Tse, Christopher; Whiteley, Robert; Yu, Tong; Stringer, Jonathan; MacNeil, Sheila; Haycock, John W; Smith, Patrick J
2016-03-01
Porcine Schwann cells and neuronal analogue NG108-15 cells were printed using a piezoelectric-inkjet-printer with a nozzle diameter of 60 μm, within the range of 70-230 V, with analysis of viability and quality after printing. Neuronal and glial cell viabilities of >86% and >90% were detected immediately after printing and no correlation between voltage applied and cell viability could be seen. Printed neuronal cells were shown to produce neurites earlier compared to controls, and over several days, produced longer neurites which become most evident by day 7. The number of neurites becomes similar by day 7 also, and cells proliferate with a similar viability to that of non-printed cells (controls). This method of inkjet printing cells provides a technical platform for investigating neuron-glial cell interactions with no significant difference to cell viability than standard cell seeding. Such techniques can be utilized for lab-on-a-chip technologies and to create printed neural networks for neuroscience applications.
Abbruzzese, L; Agostini, F; Durante, C; Toffola, R T; Rupolo, M; Rossi, F M; Lleshi, A; Zanolin, S; Michieli, M; Mazzucato, M
2013-07-01
Peripheral blood stem cell cryopreservation is associated with cell damage and decreased viability. We evaluated the impact of up to 10 years of cryopreservation (5% DMSO) on viability of CD34(+) cells utilizing graft samples of consecutive patients (2002-2012) with different malignancies who underwent stem cell collection and transplantation. Viability of CD34(+) cells from oncohaematological patients measured after 5 weeks (97·2 ± 0·6%) or after 9-10 years of cryopreservation (95·9 ± 0·5%) was unaffected. Haemoglobin, granulocyte and platelet recovery after transplantation of long-term cryopreserved grafts occurred within 8-13 days. CD34(+) stem cells can be safely stored up to 9-10 years, without affecting cell viability and clinical effectiveness. © 2013 International Society of Blood Transfusion.
Li, Guoxiao; Zhang, Rongbiao; Yang, Ning; Yin, Changsheng; Wei, Mingji; Zhang, Yecheng; Sun, Jian
2018-06-01
To overcome the drawbacks such as low automation and high cost, an approach for cell viability online detection is proposed, based on the extracted lensfree cell diffraction fingerprint characteristics. The cell fingerprints are acquired by a constructed large field-of-view (FOV) diffraction imaging platform without any lenses. The approach realizes distinguishing live and dead cells online and calculating cell viability index based on the number of live cells. With theoretical analysis and simulation, diffraction fingerprints of cells with different morphology are simulated and two characteristics are discovered to be able to reflect cell viability status effectively. Two parameters, fringe intensity contrast (FIC) and fringe dispersion (FD), are defined to quantify these two characteristics. They are verified to be reliable to identify live cells. In a cytotoxicity assay of different methyl mercury concentration on BRL cells, the proposed approach is used to detect cell viability. MTT method is also employed and the results of correlational analysis and Bland-Altman analysis prove the validity of the proposed approach. By comparison, it can be revealed that the proposed approach has some advantages over other present techniques. Therefore it may be widely used as a cell viability measurement method in drug screening, nutritional investigation and cell toxicology studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Curley, Clive J; Dolan, Eimear B; Cavanagh, Brenton; O'Sullivan, Janice; Duffy, Garry P; Murphy, Bruce P
2017-11-01
Localized delivery of stem cells is potentially a promising therapeutic strategy for regenerating damaged myocardium. Many studies focus on limiting the biologic component of cell loss, but few address the contribution of mechanical factors. This study investigates optimal parameters for retaining the largest volume of cell loaded hydrogels post intramyocardial injection, without compromising cell viability. In vitro, hydrogel was injected into porcine hearts using various needle designs. Hydrogel retention and distribution pattern was then determined. The two most promising needles were then investigated to understand the effect of needle geometry on stem cell viability. The needle to best impact cell viability was then used to investigate the effect of differing hydrogels on retention and distribution. Three-dimensional experimental modeling revealed needles with smaller diameter's to have greater poloxamer 407 hydrogel retention. No difference in retention existed among various needle designs of similar gauge, despite differences in bolus geometries. When hMSC's, embedded in fibrin hydrogel, were injected through helical and 26G bevel needles no difference in the percent of live cells was seen at 48 h. However, the helical group had almost half the metabolic activity of the 26G bevel group at both time points, and had a significant decline in the percent of live cells from 24 to 48 h. Varying gel type resulted in significantly more alginate being retained in the tissue in comparison to fibrin or poloxamer hydrogels. In conclusion, mechanical properties of injected hydrogels, and the diameter of the needle used, highly influences the volume of hydrogel retained. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2618-2629, 2017. © 2016 Wiley Periodicals, Inc.
Effect of storage temperature on cultured epidermal cell sheets stored in xenobiotic-free medium.
Jackson, Catherine; Aabel, Peder; Eidet, Jon R; Messelt, Edward B; Lyberg, Torstein; von Unge, Magnus; Utheim, Tor P
2014-01-01
Cultured epidermal cell sheets (CECS) are used in regenerative medicine in patients with burns, and have potential to treat limbal stem cell deficiency (LSCD), as demonstrated in animal models. Despite widespread use, short-term storage options for CECS are limited. Advantages of storage include: flexibility in scheduling surgery, reserve sheets for repeat operations, more opportunity for quality control, and improved transportation to allow wider distribution. Studies on storage of CECS have thus far focused on cryopreservation, whereas refrigeration is a convenient method commonly used for whole skin graft storage in burns clinics. It has been shown that preservation of viable cells using these methods is variable. This study evaluated the effect of different temperatures spanning 4°C to 37°C, on the cell viability, morphology, proliferation and metabolic status of CECS stored over a two week period in a xenobiotic-free system. Compared to non-stored control, best cell viability was obtained at 24°C (95.2±9.9%); reduced cell viability, at approximately 60%, was demonstrated at several of the temperatures (12°C, 28°C, 32°C and 37°C). Metabolic activity was significantly higher between 24°C and 37°C, where glucose, lactate, lactate/glucose ratios, and oxygen tension indicated increased activation of the glycolytic pathway under aerobic conditions. Preservation of morphology as shown by phase contrast and scanning electron micrographs was best at 12°C and 16°C. PCNA immunocytochemistry indicated that only 12°C and 20°C allowed maintenance of proliferative function at a similar level to non-stored control. In conclusion, results indicate that 12°C and 24°C merit further investigation as the prospective optimum temperature for short-term storage of cultured epidermal cell sheets.
Portuguese propolis disturbs glycolytic metabolism of human colorectal cancer in vitro
2013-01-01
Background Propolis is a resin collected by bees from plant buds and exudates, which is further processed through the activity of bee enzymes. Propolis has been shown to possess many biological and pharmacological properties, such as antimicrobial, antioxidant, immunostimulant and antitumor activities. Due to this bioactivity profile, this resin can become an alternative, economic and safe source of natural bioactive compounds. Antitumor action has been reported in vitro and in vivo for propolis extracts or its isolated compounds; however, Portuguese propolis has been little explored. The aim of this work was to evaluate the in vitro antitumor activity of Portuguese propolis on the human colon carcinoma cell line HCT-15, assessing the effect of different fractions (hexane, chloroform and ethanol residual) of a propolis ethanol extract on cell viability, proliferation, metabolism and death. Methods Propolis from Angra do Heroísmo (Azores) was extracted with ethanol and sequentially fractionated in solvents with increasing polarity, n-hexane and chloroform. To assess cell viability, cell proliferation and cell death, Sulforhodamine B, BrDU incorporation assay and Anexin V/Propidium iodide were used, respectively. Glycolytic metabolism was estimated using specific kits. Results All propolis samples exhibited a cytotoxic effect against tumor cells, in a dose- and time-dependent way. Chloroform fraction, the most enriched in phenolic compounds, appears to be the most active, both in terms of inhibition of viability and cell death. Data also show that this cytotoxicity involves disturbance in tumor cell glycolytic metabolism, seen by a decrease in glucose consumption and lactate production. Conclusion Our results show that Portuguese propolis from Angra do Heroísmo (Azores) can be a potential therapeutic agent against human colorectal cancer. PMID:23870175
Mazur-Bialy, Agnieszka Irena; Buchala, Beata; Plytycz, Barbara
2013-08-28
Riboflavin, or vitamin B2, as a precursor of the coenzymes FAD and FMN, has an indirect influence on many metabolic processes and determines the proper functioning of several systems, including the immune system. In the human population, plasma riboflavin concentration varies from 3·1 nM (in a moderate deficiency, e.g. in pregnant women) to 10·4 nM (in healthy adults) and 300 nM (in cases of riboflavin supplementation). The purpose of the present study was to investigate the effects of riboflavin concentration on the activity and viability of macrophages, i.e. on one of the immunocompetent cell populations. The study was performed on the murine monocyte/macrophage RAW 264.7 cell line cultured in medium with various riboflavin concentrations (3·1, 10·4, 300 and 531 nM). The results show that riboflavin deprivation has negative effects on both the activity and viability of macrophages and reduces their ability to generate an immune response. Signs of riboflavin deficiency developed in RAW 264.7 cells within 4 d of culture in the medium with a low riboflavin concentration (3·1 nM). In particular, the low riboflavin content reduced the proliferation rate and enhanced apoptotic cell death connected with the release of lactate dehydrogenase. The riboflavin deprivation impaired cell adhesion, completely inhibited the respiratory burst and slightly impaired phagocytosis of the zymosan particles. In conclusion, macrophages are sensitive to riboflavin deficiency; thus, a low riboflavin intake in the diet may affect the immune system and may consequently decrease proper host immune defence.
Qian, Ai-Rong; Hu, Li-Fang; Gao, Xiang; Zhang, Wei; Di, Sheng-Meng; Tian, Zong-Cheng; Yang, Peng-Fei; Yin, Da-Chuan; Weng, Yuan-Yuan; Shang, Peng
2009-10-01
The intense inhomogeneous magnetic fields acting on the diamagnetic materials naturally present in cells can generate strong magnetic forces. We have developed a superconducting magnet platform with large gradient high magnetic field (LG-HMF), which can produce three magnetic force fields of -1360, 0, and 1312 T(2)/m, and three corresponding apparent gravity levels, namely 0, 1, and 2-g for diamagnetic materials. In this study, the effects of different magnetic force fields on osteoblast-like cells (MG-63 and MC3T3-E1) viability, microtubule actin crosslinking factor 1 (MACF1) expression and its association with cytoskeleton were investigated. Results showed that cell viability increased to different degrees after exposure to 0 or 1-g conditions for 24 h, but it decreased by about 30% under 2-g conditions compared with control conditions. An increase in MACF1 expression at the RNA or protein level was observed in osteoblast-like cells under the magnetic force field of -1360 T(2)/m (0-g) relative to 1312 T(2)/m (2-g). Under control conditions, anti-MACF1 staining was scattered in the cytoplasm and partially colocalized with actin filaments (AFs) or microtubules (MTs) in the majority of osteoblast-like cells. Under 0-g conditions, MACF1 labeling was concentrated at perinuclear region and colocalization was not apparent. The patterns of anti-MACF1 labeling on MTs varied with MTs' changing under LG-HMF environment. In conclusion, LG-HMF affects osteoblast-like cell viability, MACF1 distribution, expression, and its association with cytoskeleton to some extent.
Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking
Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.
2013-01-01
Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825
Cell viability monitoring using Fano resonance in gold nanoslit array
NASA Astrophysics Data System (ADS)
Wu, Shu-Han; Hsieh, Shu-Yi; Lee, Kuang-Li; Weng, Ruei-Hung; Chiou, Arthur; Wei, Pei-Kuen
2013-09-01
Cell viability is a crucial issue in biological research. We present label-free monitoring of adhesion cells viability by gold nanoslits-based Fano resonance biosensors. Plastic multiple wells with gold nanoslits substrate were made using a thermal nanoimprint method. Adhesion cells in the wells were treated with doxorubicin for inducing cell death and compared with conventional colorimetric assay. The nanoslits method shows better respones of viability tests under low concentration and short interaction time due to its high surface sensitivies. The vinculin labelling indicates that the measured signals are in good agreement with the adhesion abilities of cells.
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R.; Rosas, Ivan; Ai, Xingbin
2016-01-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca2+-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca2+ oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease. PMID:26550921
Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin
2016-05-01
Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.
Chen, L; Yue, W; Xie, X Y; Zhang, X Y; Lyu, Y; Liu, D Q; Xi, J F; Qu, M Y; Fan, Z; Fang, F; Pei, X T
2018-01-14
Objective: To observe the effect of poloxamer 188 (P188) on megakaryocyte cultivation and induction from cord blood mononuclear cells in order to obtain more megakaryocyte progenitor cells (MPC). Methods: The cord blood mononuclear cells were isolated and inoculated in cell culture bag or cell culture flask respectively. The WIGGENS shaker and cell culture bags were used to mimick WAVE Bioreactor for three-dimensional (3D) cell culture, and the P188 was added to induction medium, The cells were detected for morphology, surface marker, viability, and number on day 14. Results: In the two-dimensional (2D) culture, CD41(+), CD41(+)/CD61(+), CD61(+) megakaryocytic numbers increased significantly after adding P188 (all P <0.01). And in the 3D culture of adding P188, the cell volume became larger and the nuclear shape was irregular, the cytoplasm appeared magenta granules, and the megakaryocyte cells became more mature. By 3D culture, the expression of CD41/CD61 was (36.30±1.27)% vs (23.95±1.34)%, hence the differentiation for MPC was significantly higher than that in the 2D group ( P <0.01). Furthermore, adding P188 in 3D culture resulted in highest differentiation efficiency for MPC [(59.45±1.20)%]. There were no significantly differences in terms of cell viability and cell number among 3D culture containing P188, 2D and 3D culture groups (all P >0.05). Conclusion: 3D culture was beneficial for the differentiation of MPC, but the cell viability was lower than 2D group; However, the satisfied cell growth and better induction efficiency were obtained by adding of P188, which might provide a new method of megakaryocytes production for clinical application.
MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer
Dorris, Emma; O'Neill, Amanda; Hanrahan, Karen; Treacy, Ann; Watson, R. William
2017-01-01
Background Overtreatment of low-grade prostate cancer is a recognised problem for clinicians and patients. However, under-treatment runs the risk of missing the opportunity for cure in those who could benefit. Identification of new biomarkers of disease progression, including metastases, is required to better stratify and appropriately treat these patients. The ability to predict if prostate cancer will recur is an important clinical question that would impact treatment options for patients. Studies in other cancers have associated MARCKS with metastasis. Methods Tissue microarrays of local prostatectomy samples from a cohort of biochemical recurrent and non-biochemical recurrent tumours were assayed for MARCKS protein expression. Prostate cancer cell lines were transfected with siRNA targeting MARCKS or a control and functional endpoints of migration, invasion, proliferation, viability and apoptosis were measured. Actin was visualised by fluorescent microscopy and evidence of a cadherin switch and activation of the AKT pathway were assayed. Results MARCKS was upregulated in biochemical recurrent patients compared to non-biochemical recurrent. Knockdown of MARCKS reduced migration and invasion of prostate cancer cells, reduced MMP9 mRNA expression, as well as decreasing cell spreading and increased cell:cell adhesion in prostate cancer cell colonies. Knockdown of MARCKS had no effect on proliferation, viability or apoptosis of the prostate cancer cells. Conclusions In conclusion, MARCKS promotes migration and invasion and is associated with biochemical recurrence in localised prostate cancer tumours. The mechanisms by which this occurs have yet to be fully elucidated but lack of a cadherin switch indicates it is not via epithelial-to-mesenchymal transition. Actin rearrangement indicates that MARCKS promotes invasion through regulating the architecture of the cell. PMID:29069765
Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment
Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana
2015-01-01
Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. PMID:26041732
Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis
2017-01-01
Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.
Shock Wave-Stimulated Periosteum for Cartilage Repair
2013-12-01
were added to the Gtn-HPA prior to the gelation 6 process, at a cell density of 1×105 cells/ml. In the control groups, cells received no treatment...Mesenchymal Stem Cell Viability Viability test was performed 24 hours post- gelation using the Live/Dead assay. Viability/cytotoxicity kit was used (Molecular
The role of adrenergic activation on murine luteal cell viability and progesterone production.
Wang, Jing; Tang, Min; Jiang, Huaide; Wu, Bing; Cai, Wei; Hu, Chuan; Bao, Riqiang; Dong, Qiming; Xiao, Li; Li, Gang; Zhang, Chunping
2016-09-15
Sympathetic innervations exist in mammalian CL. The action of catecholaminergic system on luteal cells has been the focus of a variety of studies. Norepinephrine (NE) increased progesterone secretion of cattle luteal cells by activating β-adrenoceptors. In this study, murine luteal cells were treated with NE and isoprenaline (ISO). We found that NE increased the viability of murine luteal cells and ISO decreased the viability of luteal cells. Both NE and ISO promoted the progesterone production. Nonselective β-adrenergic antagonist, propranolol reversed the effect of ISO on cell viability but did not reverse the effect of NE on cell viability. Propranolol blocked the influence of NE and ISO on progesterone production. These results reveal that the increase of luteal cell viability induced by NE is not dependent on β-adrenergic activation. α-Adrenergic activation possibly contributes to it. Both NE and ISO increased progesterone production through activating β-adrenergic receptor. Further study showed that CyclinD2 is involved in the increase of luteal cell induced by NE. 3β-Hydroxysteroid dehydrogenase, LHR, steroidogenic acute regulatory protein (StAR), and PGF2α contribute to the progesterone production induced by NE and ISO. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Yeon Seong; Jeong, Young-II; Jin, Shu-Guang; Pei, Jian; Wen, Min; Kim, In-Young; Moon, Kyung-Sub; Jung, Tae-Young; Ryu, Hyang-Hwa; Jung, Shin
2013-01-01
Background In this study, 293T cells were genetically engineered to secrete tissue inhibitor of metalloproteinase-2 (TIMP2) and encapsulated into alginate microcapsules to continuously release TIMP2 protein. Methods The anti-invasive potential of the microcapsules was studied in vitro using brain tumor cells. The TIMP2 gene was transfected to 293T cells, and genetically engineered 293TIMP2 cells were encapsulated into alginate microcapsules. Release of TIMP2 protein was detected with Western blot analysis and the anti-invasive potential against U87MG cells was tested using gelatin zymography and a Matrigel assay. Results Cell viability within the alginate microcapsules was maintained at a cell density of 5 × 106. Because polycationic polymers are helpful for maintaining the mechanical strength of microcapsules with good cell viability, the alginate microcapsules were reinforced with chitosan (0.1% w/v). Expression of TIMP2 protein in cell lysates and secretion of TIMP2 into the conditioned medium was confirmed by Western blot analysis. Alginate microcapsules encapsulating 293TIMP2 cells released TIMP2 protein into the medium efficiently, where the TIMP2 protein participated in degradation of the matrix metalloproteinase-2 enzyme and inhibited invasion of U87MG cells. Conclusion Alginate microcapsules encapsulating 293TIMP2 cells are promising candidates for anti-invasive treatment of glioma. PMID:24231999
Zhang, Yumei; Zhu, Lin; Wang, Jia; Zhao, Jianlei; Zhao, Xianlin; Guo, Hui; Li, Juan; Tang, Wenfu
2016-01-01
Objective. To identify the herbal formula compatibility law based on the effects of the absorbed components from DCQD on the cerulein-injured AR42J cells. Methods. AR42J cells were pretreated for 30 min with or without the different concentrations of the absorbed components from DCQD individually or in combination or DCQD and coincubated with cerulein (10 nM) for a further 24 h. Cell viability, lactate dehydrogenase (LDH) release, and the levels of apoptosis and necrosis were measured. Results. Compared to DCQD, the individual or combination components partially protected cerulein-injured AR42J cells by increasing cell viability, reducing LDH release, and promoting apoptosis. Rhein, naringin, and honokiol were the main absorbed components from DCQD in cerulein-induced pancreatitis. Moreover, rhein in combination with naringin and honokiol had synergistic effects in protecting cerulein-injured AR42J cells and was better than the individual or the pairwise combination of the three components. Conclusions. The ten effective components from DCQD may elicit similar protective effects as DCQD on cerulein-induced pancreatitis. The principle of the formula compatibility of DCQD may be identified based on the effects of its absorbed components in cerulein-injured AR42J cells. PMID:27123032
Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping
2016-10-01
Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.
Mata-Greenwood, Eugenia; Goyal, Dipali; Goyal, Ravi
2017-01-01
Background : Hypoxia inducible factor 1 alpha (HIF1A) is a master regulator of acute hypoxia; however, with chronic hypoxia, HIF1A levels return to the normoxic levels. Importantly, the genes that are involved in the cell survival and viability under chronic hypoxia are not known. Therefore, we tested the hypothesis that chronic hypoxia leads to the upregulation of a core group of genes with associated changes in the promoter DNA methylation that mediates the cell survival under hypoxia. Results : We examined the effect of chronic hypoxia (3 days; 0.5% oxygen) on human brain micro endothelial cells (HBMEC) viability and apoptosis. Hypoxia caused a significant reduction in cell viability and an increase in apoptosis. Next, we examined chronic hypoxia associated changes in transcriptome and genome-wide promoter methylation. The data obtained was compared with 16 other microarray studies on chronic hypoxia. Nine genes were altered in response to chronic hypoxia in all 17 studies. Interestingly, HIF1A was not altered with chronic hypoxia in any of the studies. Furthermore, we compared our data to three other studies that identified HIF-responsive genes by various approaches. Only two genes were found to be HIF dependent. We silenced each of these 9 genes using CRISPR/Cas9 system. Downregulation of EGLN3 significantly increased the cell death under chronic hypoxia, whereas downregulation of ERO1L, ENO2, adrenomedullin, and spag4 reduced the cell death under hypoxia. Conclusions : We provide a core group of genes that regulates cellular acclimatization under chronic hypoxic stress, and most of them are HIF independent. PMID:28620317
Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun
2016-04-11
BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.
Angeletti, Francesca; Fossati, Gianluca; Pattarozzi, Alessandra; Würth, Roberto; Solari, Agnese; Daga, Antonio; Masiello, Irene; Barbieri, Federica; Florio, Tullio; Comincini, Sergio
2016-01-01
Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7 , increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies.
Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.
Seet, Wan Tai; Manira, Maarof; Maarof, Manira; Khairul Anuar, Khairoji; Chua, Kien-Hui; Ahmad Irfan, Abdul Wahab; Ng, Min Hwei; Aminuddin, Bin Saim; Ruszymah, Bt Hj Idrus
2012-01-01
Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.
de Medina-Redondo, María; Arnáiz-Pita, Yolanda; Clavaud, Cécile; Fontaine, Thierry; del Rey, Francisco; Latgé, Jean Paul; Vázquez de Aldana, Carlos R.
2010-01-01
Background The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3)-glucan synthase complex synthesizes linear β(1,3)-glucans, which remain unorganized until they are cross-linked to other β(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3)-glucanosyl-transferases -gas1+, gas2+, gas4+ and gas5+- are present in S. pombe, although their function has not been analyzed. Methodology/Principal Findings Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast. Conclusions/Significance We conclude that β(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth. PMID:21124977
Angeletti, Francesca; Fossati, Gianluca; Pattarozzi, Alessandra; Würth, Roberto; Solari, Agnese; Daga, Antonio; Masiello, Irene; Barbieri, Federica; Florio, Tullio; Comincini, Sergio
2016-01-01
Increasing evidence highlighted the role of cancer stem cells (CSCs) in the development of tumor resistance to therapy, particularly in glioblastoma (GBM). Therefore, the development of new therapies, specifically directed against GBM CSCs, constitutes an important research avenue. Considering the extended range of cancer-related pathways modulated by histone acetylation/deacetylation processes, we studied the anti-proliferative and pro-apoptotic efficacy of givinostat (GVS), a pan-histone deacetylase inhibitor, on cell cultures enriched in CSCs, isolated from nine human GBMs. We report that GVS induced a significant reduction of viability and self-renewal ability in all GBM CSC cultures; conversely, GVS exposure did not cause a significant cytotoxic activity toward differentiated GBM cells and normal mesenchymal human stem cells. Analyzing the cellular and molecular mechanisms involved, we demonstrated that GVS affected CSC viability through the activation of programmed cell death pathways. In particular, a marked stimulation of macroautophagy was observed after GVS treatment. To understand the functional link between GVS treatment and autophagy activation, different genetic and pharmacological interfering strategies were used. We show that the up-regulation of the autophagy process, obtained by deprivation of growth factors, induced a reduction of CSC sensitivity to GVS, while the pharmacological inhibition of the autophagy pathway and the silencing of the key autophagy gene ATG7, increased the cell death rate induced by GVS. Altogether these findings suggest that autophagy represents a pro-survival mechanism activated by GBM CSCs to counteract the efficacy of the anti-proliferative activity of GVS. In conclusion, we demonstrate that GVS is a novel pharmacological tool able to target GBM CSC viability and its efficacy can be enhanced by autophagy inhibitory strategies. PMID:27833530
A new fibrin sealant as a three-dimensional scaffold candidate for mesenchymal stem cells
2014-01-01
Introduction The optimization of an organic scaffold for specific types of applications and cells is vital to successful tissue engineering. In this study, we investigated the effects of a new fibrin sealant derived from snake venom as a scaffold for mesenchymal stem cells, to demonstrate the ability of cells to affect and detect the biological microenvironment. Methods The characterization of CD34, CD44 and CD90 expression on mesenchymal stem cells was performed by flow cytometry. In vitro growth and cell viability were evaluated by light and electron microscopy. Differentiation into osteogenic, adipogenic and chondrogenic lineages was induced. Results The fibrin sealant did not affect cell adhesion, proliferation or differentiation and allowed the adherence and growth of mesenchymal stem cells on its surface. Hoechst 33342 and propidium iodide staining demonstrated the viability of mesenchymal stem cells in contact with the fibrin sealant and the ability of the biomaterial to maintain cell survival. Conclusions The new fibrin sealant is a three-dimensional scaffolding candidate that is capable of maintaining cell survival without interfering with differentiation, and might also be useful in drug delivery. Fibrin sealant has a low production cost, does not transmit infectious diseases from human blood and has properties of a suitable scaffold for stem cells because it permits the preparation of differentiated scaffolds that are suitable for every need. PMID:24916098
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin. PMID:23382804
Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng
2017-04-01
Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.
Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng
2013-01-01
The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin.
The plant decapeptide OSIP108 prevents copper-induced toxicity in various models for Wilson disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spincemaille, Pieter; Pham, Duc-Hung; Chandhok, Gursimran
2014-10-15
Background: Wilson disease (WD) is caused by accumulation of excess copper (Cu) due to a mutation in the gene encoding the liver Cu transporter ATP7B, and is characterized by acute liver failure or cirrhosis and neuronal cell death. We investigated the effect of OSIP108, a plant derived decapeptide that prevents Cu-induced apoptosis in yeast and human cells, on Cu-induced toxicity in various mammalian in vitro models relevant for WD and in a Cu-toxicity zebrafish larvae model applicable to WD. Methods: The effect of OSIP108 was evaluated on viability of various cell lines in the presence of excess Cu, on livermore » morphology of a Cu-treated zebrafish larvae strain that expresses a fluorescent reporter in hepatocytes, and on oxidative stress levels in wild type AB zebrafish larvae. Results: OSIP108 increased not only viability of Cu-treated CHO cells transgenically expressing ATP7B and the common WD-causing mutant ATP7B{sup H1069Q}, but also viability of Cu-treated human glioblastoma U87 cells. Aberrancies in liver morphology of Cu-treated zebrafish larvae were observed, which were further confirmed as Cu-induced hepatotoxicity by liver histology. Injections of OSIP108 into Cu-treated zebrafish larvae significantly increased the amount of larvae with normal liver morphology and decreased Cu-induced production of reactive oxygen species. Conclusions: OSIP108 prevents Cu-induced toxicity in in vitro models and in a Cu-toxicity zebrafish larvae model applicable to WD. General significance: All the above data indicate the potential of OSIP108 as a drug lead for further development as a novel WD treatment. - Highlights: • Wilson disease (WD) is characterized by accumulation of toxic copper (Cu). • OSIP108 increases viability of Cu-treated cellular models applicable to WD. • OSIP108 injections preserve liver morphology of Cu-treated zebrafish larvae. • OSIP108 injections into zebrafish larvae abrogates Cu-induced oxidative stress.« less
Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom
2015-02-15
We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglund, Erik, E-mail: erik.berglund@ki.se; Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm; Akcakaya, Pinar
2014-08-15
DOG1, a Ca{sup 2+}-activated Cl{sup −} channel (CaCC), was identified in 2004 to be robustly expressed in gastrointestinal stromal tumors (GIST). It was rapidly included as a tumor marker in routine diagnostics, but the functional role remained unknown. CaCCs are important regulators of normal physiological functions, but also implicated in tumorigenesis, cancer progression, metastasis, cell migration, apoptosis, proliferation and viability in several malignancies. We therefore investigated whether DOG1 plays a role in the three latter in GIST by utilizing in vitro cell model systems. Confocal microscopy identified different subcellular localizations of DOG1 in imatinib-sensitive and imatinib-resistant cells. Electrophysiological studies confirmedmore » that DOG1-specific pharmacological agents possess potent activating and inhibiting properties. Proliferation assays showed small effects up to 72 h, and flow cytometric analysis of adherent cells with 7-AAD/Annexin V detected no pharmacological effects on viable GIST cells. However, inhibition of DOG1 conveyed pro-apoptotic effects among early apoptotic imatinib-resistant cells. In conclusion, DOG1 generates Cl{sup −} currents in GIST that can be regulated pharmacologically, with small effects on cell viability and proliferation in vitro. Inhibition of DOG1 might act pro-apoptotic on some early apoptotic GIST cell populations. Further studies are warranted to fully illuminate the function of DOG1 and its potential as therapeutic target. - Highlights: • Subcellular DOG1 localization varies between GIST cells. • DOG1 in GIST is voltage- and Ca{sup 2+}-activated. • Known TMEM16A modulators, like A01 and Eact, modulate DOG1. • DOG1 has small effects on cell viability and proliferation in vitro. • DOG1 impact early apoptotic GIST cells to undergo late apoptosis.« less
He, Wei; Mosselhy, Dina A; Li, Xiaoning; Yang, Xing; Yue, Lina; Hannula, Simo-Pekka
2018-01-01
Introduction In recent years, there has been an increasing interest in silica (SiO2) nanoparticles (NPs) as drug delivery systems. This interest is mainly attributed to the ease of their surface functionalization for drug loading. In orthopedic applications, gentamicin-loaded SiO2 NPs (nanohybrids) are frequently utilized for their prolonged antibacterial effects. Therefore, the possible adverse effects of SiO2–gentamicin nanohybrids on osteogenesis of bone-related cells should be thoroughly investigated to ensure safe applications. Materials and methods The effects of SiO2–gentamicin nanohybrids on the cell viability and osteogenic differentiation of human osteoblast-like SaOS-2 cells were investigated, together with native SiO2 NPs and free gentamicin. Results The results of Cell Count Kit-8 (CCK-8) assay show that both SiO2–gentamicin nanohybrids and native SiO2 NPs reduce cell viability of SaOS-2 cells in a dose-dependent manner. Regarding osteogenesis, SiO2–gentamicin nanohybrids and native SiO2 NPs at the concentration range of 31.25–125 μg/mL do not influence the osteogenic differentiation capacity of SaOS-2 cells. At a high concentration (250 μg/mL), both materials induce a lower expression of alkaline phosphatase (ALP) but an enhanced mineralization. Free gentamicin at concentrations of 6.26 and 9.65 μg/mL does not significantly influence the cell viability and osteogenic differentiation capacity of SaOS-2 cells. Conclusions The results of this study suggest that both SiO2–gentamicin nanohybrids and SiO2 NPs show cytotoxic effects to SaOS-2 cells. Further investigation on the effects of SiO2–gentamicin nanohybrids on the behaviors of stem cells or other regular osteoblasts should be conducted to make a full evaluation of the safety of SiO2–gentamicin nanohybrids in orthopedic applications. PMID:29445277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cvetkovic, D; Wang, B; Gupta, R
Purpose: Photodynamic therapy (PTD) is a promising cancer treatment modality. 5-sminolevulinic acid (ALA) is a clinically approved photosensitizer. Here we studied the effect of 5-ALA administration with irradiation on several cell lines in vitro. Methods: Human head and neck (FaDu), lung (A549) and prostate (LNCaP) cancer cells (104/well) were seeded overnight in 96-well plates (Figure 1). 5-ALA at a range from 0.1 to 30.0mg/ml was added to confluent cells 3h before irradiation in 100ul of culture medium. 15MV photon beams from a Siemens Artiste linear accelerator were used to deliver 2 Gy dose in one fraction to the cells. Cellmore » viability was evaluated by WST1 assay. The development of orange color was measured 3h after the addition of WST-1 reagent at 450nm on an Envision Multilabel Reader (Figure 2) and directly correlated to cell number. Control, untreated cells were incubated without 5-ALA. The experiment was performed twice for each cell line. Results: The cell viability rates for the head and neck cancer line are shown in Figure 3. FaDu cell viability was reduced significantly to 36.5% (5-ALA) and 18.1% (5-ALA + RT) only at the highest concentration of 5-ALA, 30mg/ml. This effect was observed in neither A549, nor LNCaP cell line. No toxicity was detected at lower 5-ALA concentrations. Conclusion: Application of 5-ALA and subsequent PDT was found to be cytotoxic at the highest dose of the photosensitizer used in the FaDu head and neck cell line, and their effect was synergistic. Further efforts are necessary to study the potential therapeutic effects of 5-ALA PTD in vitro and in vivo. Our results suggest 5-ALA may improve the efficacy of radiotherapy by acting as a radiomediator in head and neck cancer.« less
Lee, Z-W; Teo, X-Y; Tay, E Y-W; Tan, C-H; Hagen, T; Moore, P K; Deng, L-W
2014-01-01
Background and Purpose Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2S) in cell survival. The present study investigated the effect of H2S on the viability of cancer and non-cancer cells. Experimental Approach Cancer and non-cancer cells were exposed to H2S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi) was determined by ratiometric pHi measurement using BCECF staining. Key Results Continuous, but not a single, exposure to H2S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. Conclusions and Implications Low and continuous exposure to H2S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy. PMID:24827113
Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.
Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim
2018-05-30
To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.
Chemopreventive Activities of Sulforaphane and Its Metabolites in Human Hepatoma HepG2 Cells.
Liu, Peng; Wang, Wei; Zhou, Zhigang; Smith, Andrew J O; Bowater, Richard P; Wormstone, Ian Michael; Chen, Yuqiong; Bao, Yongping
2018-05-09
Sulforaphane (SFN) exhibits chemopreventive effects through various mechanisms. However, few studies have focused on the bioactivities of its metabolites. Here, three metabolites derived from SFN were studied, known as sulforaphane glutathione, sulforaphane cysteine and sulforaphane- N -acetylcysteine. Their effects on cell viability, DNA damage, tumorigenicity, cell migration and adhesion were measured in human hepatoma HepG2 cells, and their anti-angiogenetic effects were determined in a 3D co-culture model of human umbilical vein endothelial cells (HUVECs) and pericytes. Results indicated that these metabolites at high doses decreased cancer cell viability, induced DNA damage and inhibited motility, and impaired endothelial cell migration and tube formation. Additionally, pre-treatment with low doses of SFN metabolites protected against H₂O₂ challenge. The activation of the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway and the induction of intracellular glutathione (GSH) played an important role in the cytoprotective effects of SFN metabolites. In conclusion, SFN metabolites exhibited similar cytotoxic and cytoprotective effects to SFN, which proves the necessity to study the mechanisms of action of not only SFN but also of its metabolites. Based on the different tissue distribution profiles of these metabolites, the most relevant chemical forms can be selected for targeted chemoprevention.
2013-01-01
Background Saccharomyces boulardii is a probiotic yeast routinely used to prevent and to treat gastrointestinal disorders, including the antibiotic-associated diarrhea caused by Clostridium difficile infections. However, only 1-3% of the yeast administered orally is recovered alive in the feces suggesting that this yeast is unable to survive the acidic environment of the gastrointestinal tract. Results We provide evidence that suggests that S. boulardii undergoes programmed cell death (PCD) in acidic environments, which is accompanied by the generation of reactive oxygen species and the appearance of caspase-like activity. To better understand the mechanism of cell death at the molecular level, we generated microarray gene expression profiles of S. boulardii cells cultured in an acidic environment. Significantly, functional annotation revealed that the up-regulated genes were significantly over-represented in cell death pathways Finally, we show that S-adenosyl-L-methionine (AdoMet), a commercially available, FDA-approved dietary supplement, enhances the viability of S. boulardii in acidic environments, most likely by preventing programmed cell death. Conclusions In toto, given the observation that many of the proven health benefits of S. boulardii are dependent on cell viability, our data suggests that taking S. boulardii and AdoMet together may be a more effective treatment for gastrointestinal disorders than taking the probiotic yeast alone. PMID:23402325
Antitumor activity of Brazilian red propolis fractions against Hep-2 cancer cell line.
Frozza, Caroline Olivieri da Silva; Santos, Denis Amilton; Rufatto, Luciane Corbellini; Minetto, Luciane; Scariot, Fernando Joel; Echeverrigaray, Sergio; Pich, Claus Tröger; Moura, Sidnei; Padilha, Francine Ferreira; Borsuk, Sibele; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana Kömmling; Dellagostin, Odir; Roesch-Ely, Mariana; Henriques, João Antonio Pêgas
2017-07-01
Continuous increases in the rates of tumor diseases have highlighted the need for identification of novel and inexpensive antitumor agents from natural sources. In this study, we investigated the effects of enriched fraction from hydroalcoholic Brazilian red propolis extract against Hep-2 cancer cell line. Initially 201 fractions were arranged in 12 groups according to their chromatographic characteristics (A-L). After an in vitro cell viability screening, J and L were further selected as promising enriched fractions for this study. The chemical characterization was performed and Biochanin A, Formononetin, and Liquiritigenin compounds were quantified. Through MTT viability assay and morphological changes observed by Giemsa and DAPI staining, the results showed that red propolis inhibited cancer cells growth. Flow cytometry results indicated effects that were partly mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA cleaved assay, increase at SUB G1-G0 phase in cell cycle analysis and loss of mitochondrial membrane potential. In conclusion, our results demonstrated that red propolis enriched fractions promoted apoptotic effects in human cancer cells through the mechanisms involving mitochondrial perturbation. Therefore, red propolis fractions contain candidate agents for adjuvant cancer treatment, which further studies should elucidate the comprehensive mechanistic pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Figueroa, Daniela; Asaduzzaman, Mohammad; Young, Fiona
2018-04-07
The detection of reactive oxygen species (ROS) using 2',7'-dichlorofluorescin diacetate (DCFDA) is commonly performed by a single measurement of fluorescence but this fails to capture a profile of ROS generation over time. This study aimed to develop a real-time monitoring method to increase the utility of the assay, to incorporate cytotoxicity screening and to describe the combined effects of DCFDA and the ROS generator, Ter-butyl hydrogen peroxide (TBHP). Breast cancer MCF-7 cells were loaded with DCFDA (0-50 μM) for 45 min, and then exposed to TBHP (0-50 μM). Fluorescence was recorded according to three different schedules: every hour for 6 h, or once after 6 h or 24 h. Viability was assessed in a crystal violet assay and cell morphology was examined by microscopy. TBHP caused a time and dose-dependent increase in ROS and the magnitude of the fluorescent signal was affected by the loading concentration of DCFDA. Reading the fluorescence every hour for 6 h did not diminish the emission signal. The most sensitive and reliable combination for this ROS assay was 10 μM DCFDA with 25 μM TBHP; since higher concentrations of DCFDA compromised cell viability. In conclusion we adapted a single point ROS assay to enable production of a profile of ROS generation over an extended 6 h period, and related this to cell viability and morphology. Published by Elsevier Inc.
Kurscheid, Sebastian; Lew-Tabor, Ala E; Rodriguez Valle, Manuel; Bruyeres, Anthea G; Doogan, Vivienne J; Munderloh, Ulrike G; Guerrero, Felix D; Barrero, Roberto A; Bellgard, Matthew I
2009-01-01
Background The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype. Results We screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying. Conclusion We have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects. PMID:19323841
Ayaki, Masahiko; Iwasawa, Atsuo; Niwano, Yoshimi
2012-01-01
We evaluated the cytotoxicity of antiglaucoma ophthalmic solutions preserved with the same concentration of benzalkonium chloride (BAK) in four cultured corneal and conjunctival cell lines. The viability of cell cultures was determined following the exposure of cells to timolol maleate, dorzolamide, and their fixed combination, Kosoputo(®) (MSD, a Japanese formulation of Cosopt(®) (Merck)), and two commercially available eyedrop solutions, 0.5% Timpotol(®) (containing 0.5% timolol maleate, MSD) and 1% Trusopt(®) (containing 1% dorzolamide, MSD) for varying exposure times and at various dilutions using the MTT and neutral red assays. All the three commercially available eyedrop solutions tested in this study were preserved with 0.005% BAK. The toxicity of each solution was compared using the % cell viability score (CVS) . Cell viability was also subjected to statistical analysis using ANOVA, Dunnett's multiple comparison tests and a chi-square test. %CVS50/%CVS40/80s for the tested solutions were 53/-13 for 0.5% Timoptol(®), 100/88 for preservative-free 0.5% timolol maleate, 50/ -10 for 1% Trusopt(®), 72/100 for preservative-free 1% dorzolamide, and 44/-17 for Kosoputo(®). The results of statistical analysis were consistent to them. In conclusion, Kosoputo(®) had greater cytotoxicity than each component; however, in actual use it may have the advantages of reduced toxicity (side effect) due to reduced instillation frequency, and better patient adherence to the treatment regimen as well as a comparable pressure reduction effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delijewski, Marcin; Wrześniok, Dorota; Beberok, Ar
Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine onmore » this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.« less
Assessment of cell concentration and viability of isolated hepatocytes using flow cytometry.
Wigg, Alan J; Phillips, John W; Wheatland, Loretta; Berry, Michael N
2003-06-01
The assessment of cell concentration and viability of freshly isolated hepatocyte preparations has been traditionally performed using manual counting with a Neubauer counting chamber and staining for trypan blue exclusion. Despite the simple and rapid nature of this assessment, concerns about the accuracy of these methods exist. Simple flow cytometry techniques which determine cell concentration and viability are available yet surprisingly have not been extensively used or validated with isolated hepatocyte preparations. We therefore investigated the use of flow cytometry using TRUCOUNT Tubes and propidium iodide staining to measure cell concentration and viability of isolated rat hepatocytes in suspension. Analysis using TRUCOUNT Tubes provided more accurate and reproducible measurement of cell concentration than manual cell counting. Hepatocyte viability, assessed using propidium iodide, correlated more closely than did trypan blue exclusion with all indicators of hepatocyte integrity and function measured (lactate dehydrogenase leakage, cytochrome p450 content, cellular ATP concentration, ammonia and lactate removal, urea and albumin synthesis). We conclude that flow cytometry techniques can be used to measure cell concentration and viability of isolated hepatocyte preparations. The techniques are simple, rapid, and more accurate than manual cell counting and trypan blue staining and the results are not affected by protein-containing media.
Saini, Divya; Gadicherla, Prahlad; Chandra, Prakash; Anandakrishna, Latha
2017-06-01
The viability of periodontal ligament (PDL) cells is a significant determinant of the long-term prognosis of replanted avulsed teeth. A storage medium is often required to maintain the viability of these cells during the extra-alveolar period. Many studies have been carried out to search for the most suitable storage medium for avulsed teeth, but an ideal solution has not yet been found. The purpose of the study was to compare and analyze the ability of coconut milk and probiotic milk to maintain PDL cell viability. In an in vitro setting, 69 caries free human premolars with normal periodontium that had been extracted for orthodontic purposes were randomly divided into two experimental groups on the basis of storage media used (i.e., coconut milk or probiotic milk) and a Hanks' balanced salt solution (HBSS) control group (23 samples per group). Immediately after extraction, the teeth were stored dry for 20 min and then immersed for 30 min in one of the storage media. The teeth were then subjected to collagenase-dispase assay and labeled with 0.5% trypan blue staining solution for determination of cell viability. The number of viable cells was counted under a light microscope and statistically analyzed using anova and post hoc Tukey test (P ≤ 0.05). Statistical analysis demonstrated there was a significant difference (P < 0.001) between coconut milk and probiotic milk as well as HBSS in maintaining cell viability. However, there was no significant difference between probiotic milk and HBSS in ability to maintain PDL cell viability (P > 0.05). Coconut milk may not be suitable as an interim transport media due to poor maintenance of cell viability. However, probiotic milk was able to maintain PDL cell viability as well as HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Viability of human fibroblasts in coconut water as a storage medium.
Moreira-Neto, J J S; Gondim, J O; Raddi, M S G; Pansani, C A
2009-09-01
To evaluate the effectiveness of a new storage medium for avulsed teeth, coconut water, in maintaining the viability of human fibroblasts. Cell viability after different time periods was evaluated in the following storage media: coconut water, coconut water with sodium bicarbonate, milk, saline and still mineral water. Human fibroblasts were seeded in Eagle's minimal essential medium (EMEM) supplemented with 7.5% foetal calf serum. After trypsinisation, 100 microL of culture medium containing approximately 10(4) cells mL(-1) were collected and pipetted into the wells of 96-well plates, which were incubated overnight in 5% CO(2) and 95% air mixture at 37 degrees C. EMEM was then replaced by the storage media and the plates were incubated at 37 degrees C for 1, 2 and 4 h. Cell viability was determined using the neutral red assay. The proportions of viable cells after exposure to the storage media were analysed statistically by anova and the least significant difference (LSD) test (alpha = 5%). Milk had the greatest capacity to maintain cell viability (P < 0.05), followed by coconut water with sodium bicarbonate and saline. Coconut water was significantly worse at maintaining cell viability compared to milk, coconut water with sodium bicarbonate and saline. The smallest number of viable cells was observed for mineral water (P < 0.05). Coconut water was worse than milk in maintaining human fibroblast cell viability.
BID is a critical factor controlling cell viability regulated by IFN-α.
Tsuno, Takaya; Mejido, Josef; Zhao, Tongmao; Phillips, Terry; Myers, Timothy G; Bekisz, Joseph; Zoon, Kathryn C
2012-01-01
Clinical applications of human interferon (IFN)-α have met with varying degrees of success. Nevertheless, key molecules in cell viability regulated by IFN-α have not been clearly identified. Our previous study indicated that IFN (α, β, and ω) receptor (IFNAR) 1/2- and IFN regulatory factor 9-RNA interference (RNAi) completely restored cell viability after IFN-α treatment in human ovarian adenocarcinoma OVCAR3 cells sensitive to IFN-α. In this study, IFNAR1/2- and IFN regulatory factor 9-RNAi inhibited the gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not of Fas ligand, after IFN-α treatment. In fact, TRAIL but not Fas ligand inhibited the viability of OVCAR3 cells. IFN-α notably upregulated the levels of TRAIL protein in the supernatant and on the membrane of OVCAR3 cells. After TRAIL signaling, caspase 8 inhibitor and BH3 interacting domain death agonist (BID)-RNAi significantly restored cell viability in response to IFN-α and TRAIL in OVCAR3 cells. Furthermore, BID-RNAi prevented both IFN-α and TRAIL from collapsing the mitochondrial membrane potential (ΔΨm). Finally, we provided important evidence that BID overexpression led to significant inhibition of cell viability after IFN-α or TRAIL treatments in human lung carcinoma A549 cells resistant to IFN-α. Thus, this study suggests that BID is crucial for cell viability regulated by IFN-α which can induce mitochondria-mediated apoptosis, indicating a notable potential to be a targeted therapy for IFN-α resistant tumors.
Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei
2016-09-16
3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and acceptable viability ranges, a combined parameters region was obtained. This study provides guidance for parameter optimization and the fine-tuning of 3D cell printing processes regarding both bioink printability and cell viability after bioplotting, especially for easily damaged cells, like ESCs.
An, Zhen; Qi, Yongmei; Huang, Dejun; Gu, Xueyan; Tian, Yihong; Li, Ping; Li, Hui; Zhang, Yingmei
2014-05-01
Epigallocatechin-3-gallat (EGCG), the major catechin in green tea, shows a potential protective effect against heavy metal toxicity to humans. Apoptosis is one of the key events in cadmium (Cd(2+))-induced cytotoxicity. Nevertheless, the study of EGCG on Cd(2+)-induced apoptosis is rarely reported. The objective of this study was to clarify the effect and detailed mechanism of EGCG on Cd(2+)-induced apoptosis. Normal human liver cells (HL-7702) were treated with Cd(2+) for 21 h, and then co-treated with EGCG for 3 h. Cell viability, apoptosis, intracellular reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP) and caspase-3 activity were detected. On the other hand, the chelation of Cd(2+) with EGCG was tested by UV-Vis spectroscopy analysis and Nuclear Magnetic Resonance ((1)H NMR) spectroscopy under neutral condition (pH 7.2). Cd(2+) significantly decreased the cell viability and induced apoptosis in HL-7702 cells. Conversely, EGCG co-treatment resulted in significant inhibition of Cd(2+)-induced reduction of cell viability and apoptosis, implying a rescue effect of EGCG against Cd(2+) poisoning. The protective effect most likely arises from scavenging ROS and maintaining redox homeostasis, as the generation of intracellular ROS and MDA is significantly reduced by EGCG, which further prevents MMP collapse and suppresses caspase-3 activity. However, no evidence is observed for the chelation of EGCG with Cd(2+) under neutral condition. Therefore, a clear conclusion from this work can be made that EGCG could inhibit Cd(2+)-induced apoptosis by acting as a ROS scavenger rather than a metal chelating agent.
Zhang, Yongping; Jiao, Guangling; Song, Cai; Gu, Shelly; Brown, Richard E.; Zhang, Junzeng; Zhang, Pingcheng; Gagnon, Jacques; Locke, Steven; Stefanova, Roumiana; Pelletier, Claude; Zhang, Yi; Lu, Hongyu
2017-01-01
Increased evidence suggests that marine unsaturated fatty acids (FAs) can protect neurons from amyloid-β (Aβ)-induced neurodegeneration. Nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC) and gas chromatography (GC) assays showed that the acetone extract 4-2A obtained from shrimp Pandalus borealis industry processing wastes contained 67.19% monounsaturated FAs and 16.84% polyunsaturated FAs. The present study evaluated the anti-oxidative and anti-inflammatory effects of 4-2A in Aβ25–35-insulted differentiated SH-SY5Y cells. Cell viability and cytotoxicity were measured by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Quantitative PCR and Western blotting were used to study the expression of neurotrophins, pro-inflammatory cytokines and apoptosis-related genes. Administration of 20 μM Aβ25–35 significantly reduced SH-SY5Y cell viability, the expression of nerve growth factor (NGF) and its tyrosine kinase TrkA receptor, as well as the level of glutathione, while increased reactive oxygen species (ROS), nitric oxide, tumor necrosis factor (TNF)-α, brain derived neurotrophic factor (BDNF) and its TrkB receptor. Aβ25–35 also increased the Bax/Bcl-2 ratio and Caspase-3 expression. Treatment with 4-2A significantly attenuated the Aβ25–35-induced changes in cell viability, ROS, GSH, NGF, TrkA, TNF-α, the Bax/Bcl-2 ratio and Caspase-3, except for nitric oxide, BDNF and TrKB. In conclusion, 4-2A effectively protected SH-SY5Y cells against Aβ-induced neuronal apoptosis/death by suppressing inflammation and oxidative stress and up-regulating NGF and TrKA expression. PMID:28327516
Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts
Verron, Elise; Masson, Martial; Khoshniat, Solmaz; Duplomb, Laurence; Wittrant, Yohann; Baud'huin, Marc; Badran, Zahi; Bujoli, Bruno; Janvier, Pascal; Scimeca, Jean-Claude; Bouler, Jean-Michel; Guicheux, Jérôme
2010-01-01
Background and purpose: Gallium (Ga) has been shown to be effective in the treatment of disorders associated with accelerated bone loss, including cancer-related hypercalcemia and Paget's disease. These clinical applications suggest that Ga could reduce bone resorption. However, few studies have studied the effects of Ga on osteoclastic resorption. Here, we have explored the effects of Ga on bone cells in vitro. Experimental approach: In different osteoclastic models [osteoclasts isolated from long bones of neonatal rabbits (RBC), murine RAW 264.7 cells and human CD14-positive cells], we have performed resorption activity tests, staining for tartrate resistant acid phosphatase (TRAP), real-time polymerase chain reaction analysis, viability and apoptotic assays. We also evaluated the effect of Ga on osteoblasts in terms of proliferation, viability and activity by using an osteoblastic cell line (MC3T3-E1) and primary mouse osteoblasts. Key results: Gallium dose-dependently (0–100 µM) inhibited the in vitro resorption activity of RBC and induced a significant decrease in the expression level of transcripts coding for osteoclastic markers in RAW 264.7 cells. Ga also dramatically reduced the formation of TRAP-positive multinucleated cells. Ga down-regulated in a dose-dependant manner the expression of the transcription factor NFATc1. However, Ga did not affect the viability or activity of primary and MC3T3-E1 osteoblasts. Conclusions and implications: Gallium exhibits a dose-dependent anti-osteoclastic effect by reducing in vitro osteoclastic resorption, differentiation and formation without negatively affecting osteoblasts. We provide evidence that this inhibitory mechanism involves down-regulation of NFATc1 expression, a master regulator of RANK-induced osteoclastic differentiation. PMID:20397300
2011-01-01
Background Numerous reports have identified therapeutic roles for plants and their extracts and constituents. The aim of this study was to assess the efficacies of three plant extracts for their potential antioxidant and anti-inflammatory activity in primary human skin fibroblasts. Methods Aqueous extracts and formulations of white tea, witch hazel and rose were subjected to assays to measure anti-collagenase, anti-elastase, trolox equivalent and catalase activities. Skin fibroblast cells were employed to determine the effect of each extract/formulation on IL-8 release induced by the addition of hydrogen peroxide. Microscopic examination along with Neutral Red viability testing was employed to ascertain the effects of hydrogen peroxide directly on cell viability. Results Considerable anti-collagenase, anti-elastase, and antioxidant activities were measured for all extracts apart from the witch hazel distillate which showed no activity in the collagenase assay or in the trolox equivalence assay. All of the extracts and products tested elicited a significant decrease in the amount of IL-8 produced by fibroblast cells compared to the control (p < 0.05). None of the test samples exhibited catalase activity or had a significant effect on the spontaneous secretion of IL-8 in the control cells which was further corroborated with the microscopy results and the Neutral Red viability test. Conclusions These data show that the extracts and products tested have a protective effect on fibroblast cells against hydrogen peroxide induced damage. This approach provides a potential method to evaluate the claims made for plant extracts and the products in which these extracts are found. PMID:21995704
Effect of Immunosuppressive Agents on Hepatocyte Apoptosis Post-Liver Transplantation
Lim, Eu Jin; Chin, Ruth; Nachbur, Ueli; Silke, John; Jia, Zhiyuan; Angus, Peter W.; Torresi, Joseph
2015-01-01
Introduction Immunosuppressants are used ubiquitously post-liver transplantation to prevent allograft rejection. However their effects on hepatocytes are unknown. Experimental data from non-liver cells indicate that immunosuppressants may promote cell death thereby driving an inflammatory response that promotes fibrosis and raises concerns that a similar effect may occur within the liver. We evaluated apoptosis within the liver tissue of post-liver transplant patients and correlated these findings with in vitro experiments investigating the effects of immunosuppressants on apoptosis in primary hepatocytes. Methods Hepatocyte apoptosis was assessed using immunohistochemistry for M30 CytoDEATH and cleaved PARP in human liver tissue. Primary mouse hepatocytes were treated with various combinations of cyclosporine, tacrolimus, sirolimus, or MMF. Cell viability and apoptosis were evaluated using crystal violet assays and Western immunoblots probed for cleaved PARP and cleaved caspase 3. Results Post-liver transplant patients had a 4.9-fold and 1.7-fold increase in M30 CytoDEATH and cleaved PARP compared to normal subjects. Cyclosporine and tacrolimus at therapeutic concentrations did not affect hepatocyte apoptosis, however when they were combined with MMF, cell death was significantly enhanced. Cell viability was reduced by 46% and 41%, cleaved PARP was increased 2.6-fold and 2.2-fold, and cleaved caspase 3 increased 2.2-fold and 1.8-fold following treatment with Cyclosporine/MMF and Tacrolimus/MMF respectively. By contrast, the sirolimus/MMF combination did not significantly reduce hepatocyte viability or promote apoptosis. Conclusion Commonly used immunosuppressive drug regimens employed after liver transplantation enhance hepatocyte cell death and may thus contribute to the increased liver fibrosis that occurs in a proportion of liver transplant recipients. PMID:26390404
Effect of Storage Temperature on Structure and Function of Cultured Human Oral Keratinocytes
Islam, Rakibul; Jackson, Catherine; Eidet, Jon R.; Messelt, Edward B.; Corraya, Rima Maria; Lyberg, Torstein; Griffith, May; Dartt, Darlene A.; Utheim, Tor P.
2015-01-01
Purpose/Aims To assess the effect of storage temperature on the viability, phenotype, metabolism, and morphology of cultured human oral keratinocytes (HOK). Materials and Methods Cultured HOK cells were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium (MEM) at nine temperatures in approximately 4°C increments from 4°C to 37°C for seven days. Cells were characterized for viability by calcein fluorescence, phenotype retention by immunocytochemistry, metabolic parameters (pH, glucose, lactate, and O2) within the storage medium by blood gas analysis, and morphology by scanning electron microscopy and light microscopy. Results Relative to the cultured, but non-stored control cells, a high percentage of viable cells were retained only in the 12°C and 16°C storage groups (85%±13% and 68%±10%, respectively). Expression of ABCG2, Bmi1, C/EBPδ, PCNA, cytokeratin 18, and caspase-3 were preserved after storage in the 5 groups between 4°C and 20°C, compared to the non-stored control. Glucose, pH and pO2 in the storage medium declined, whereas lactate increased with increasing storage temperature. Morphology was best preserved following storage of the three groups between 12°C, 16°C, and 20°C. Conclusion We conclude that storage temperatures of 12°C and 16°C were optimal for maintenance of cell viability, phenotype, and morphology of cultured HOK. The storage method described in the present study may be applicable for other cell types and tissues; thus its significance may extend beyond HOK and the field of ophthalmology. PMID:26052937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouyang, Z; Ngwa, W; Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
2016-06-15
Purpose: Cerium oxide nanoparticles (CONPs) have unique pH dependent properties such that they act as a radical modulator. These properties may be used in radiation therapy (RT) to protect normal tissue. This work investigates the selective radioprotection of CONPs in-vitro and potential for in-situ delivery of CONPs in prostate cancer RT. Methods: i) Normal human umbilical vein endothelial cells (HUVEC) and human prostate cancer cells (PC-3) were treated with 0 or 2 ng/mL CONPs (NP size: 5 nm). 2 Gy of 100 kVp radiation was delivered to the cells 4 hours after the CONP treatment. Cell viability was checked 48more » hours later using MTS assays. ii) A prostate tumor was modeled as a 2-cm diameter sphere. CONPs were proposed to be loaded in a hollow radiotherapy fiducial marker. The concentration profile for the CONPs within the tumor was modeled with a previously validated diffusion equation employed in other studies for nanoparticles 10 nm or less. Results: i) Without radiation, cell viability was above 90% when treated with 2 ng/mL CONPs for both HUVEC and PC-3. After irradiation, a slightly higher viability was observed in HUVEC with CONPs than the ones without CONPs, and this effect was not observed in PC-3. ii) Based on the calculations, 2 ng/mL of CONPs could be delivered to normal cells by diffusion with a 1 µg/mL initial concentration within two weeks. Conclusion: We conclude that CONPs can provide selective radioprotection. The delivery of needed concentrations of CONPs is feasible via in-situ release from radiotherapy biomaterials (e.g. fiducials) loaded with the CONPs.« less
Mooranian, Armin; Tackechi, Ryu; Jamieson, Emma; Morahan, Grant; Al-Salami, Hani
2017-06-01
Recently we demonstrated that microencapsulation of a murine pancreatic β-cell line using an alginate-ursodeoxycholic acid (UDCA) matrix produced microcapsules with good stability and cell viability. In this study, we investigated if translation of this formulation to microencapsulation of primary β-cells harvested from mature double-transgenic healthy mice would also generate stable microcapsules with good cell viability. Islets of Langerhans were isolated from Ngn3-GFP/RIP-DsRED mice by intraductal collagenase P digestion and density gradient centrifugation, dissociated into single cells and the β-cell population purified by Fluorescence Activated Cell Sorting. β-cells were microencapsulated using either alginate-poly-l-ornithine (F1; control) or alginate-poly-l-ornithine-UDCA (F2; test) formulations. Microcapsules were microscopically examined and microencapsulated cells were analyzed for viability, insulin and cytokine release, 2 days post-microencapsulation. Microcapsules showed good uniformity and morphological characteristics and even cell distribution within microcapsules with or without UDCA. Two days post microencapsulation cell viability, mitochondrial ATP and insulin production were shown to be optimized in the presence of UDCA whilst production of the proinflammatory cytokine IL-1β was reduced. Contradictory to our previous studies, UDCA did not reduce production of any other pro-inflammatory biomarkers. These results suggest that UDCA incorporation improves microcapsules' physical and morphological characteristics and improves the viability and function of encapsulated mature primary pancreatic β-cells.
NASA Astrophysics Data System (ADS)
Fisher, Jessica W.; Rylander, Marissa Nichole
2008-02-01
Laser therapies can provide a minimally invasive treatment alternative to surgical resection of tumors. However, the effectiveness of these therapies is limited due to nonspecific heating of target tissue which often leads to healthy tissue injury and extended treatment durations. These therapies can be further compromised due to heat shock protein (HSP) induction in tumor regions where non-lethal temperature elevation occurs, thereby imparting enhanced tumor cell viability and resistance to subsequent chemotherapy and radiation treatments. Introducing multi-walled nanotubes (MWNT) into target tissue prior to laser irradiation increases heating selectivity permitting more precise thermal energy delivery to the tumor region and enhances thermal deposition thereby increasing tumor injury and reducing HSP expression induction. This study investigated the impact of MWNT inclusion in untreated and laser irradiated monolayer cell culture and cell phantom model. Cell viability remained high for all samples with MWNT inclusion and cells integrated into alginate phantoms, demonstrating the non-toxic nature of both MWNTs and alginate phantom models. Following, laser irradiation samples with MWNT inclusion exhibited dramatic temperature elevations and decreased cell viability compared to samples without MWNT. In the cell monolayer studies, laser irradiation of samples with MWNT inclusion experienced up-regulated HSP27, 70 and 90 expression as compared to laser only or untreated samples due to greater temperature increases albeit below the threshold for cell death. Further tuning of laser parameters will permit effective cell killing and down-regulation of HSP. Due to optimal tuning of laser parameters and inclusion of MWNT in phantom models, extensive temperature elevations and cell death occurred, demonstrating MWNT-mediated laser therapy as a viable therapy option when parameters are optimized. In conclusion, MWNT-mediated laser therapies show great promise for effective tumor destruction, but require determination of appropriate MWNT characteristics and laser parameters for maximum tumor destruction.
NASA Astrophysics Data System (ADS)
Frösler, Jan; Panitz, Corinna; Wingender, Jost; Flemming, Hans-Curt; Rettberg, Petra
2017-05-01
Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions.
Kahya, Mehmet Cemal; Nazıroğlu, Mustafa; Çiğ, Bilal
2014-08-01
Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR + selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36 ± 0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.
Huperzine A derivative M3 protects PC12 cells against sodium nitroprusside-induced apoptosis
Ning, Na; Hu, Jin-feng; Yuan, Yu-he; Zhang, Xin-yuan; Dai, Jun-gui; Chen, Nai-hong
2012-01-01
Aim: To investigate the effects of M3, a derivative of huperzine A, on the apoptosis induced by sodium nitroprusside (SNP) in PC12 cells. Methods: Cell viability was detected using MTT method. Apoptosis was examined with annexin V/prodium iodide (PI) stain. The levels of reactive oxygen species (ROS) were measured using fluorophotometric quantitation. The amount of malonaldehyde (MDA) was determined with MDA detection kits. The expression of caspase-3 and Hsp70 were analyzed using Western blotting. Results: Exposure of PC12 cells to SNP (200 μmol/L) for 24 h decreased the cell viability to 69.0% of that in the control group. Pretreatment with M3 (10 μmol/L) or huperzine A (10 μmol/L) significantly protected the cells against SNP-induced injury and apoptosis; the ratio of apoptotic bodies in PC12 cells was decreased from 27.3% to 15.0%. Pretreatment with M3 (10 μmol/L) significantly decreased ROS and MDA levels, and increased the expression of Hsp70 in the cells. Quercetin (10 μmol/L) blocked the protective effect of M3, while did not influence on that of huperzine A. Conclusion: M3 protects PC12 cells against SNP-induced apoptosis, possible due to ROS scavenging and Hsp70 induction. PMID:22120967
Mononuclear cell secretome protects from experimental autoimmune myocarditis
Hoetzenecker, Konrad; Zimmermann, Matthias; Hoetzenecker, Wolfram; Schweiger, Thomas; Kollmann, Dagmar; Mildner, Michael; Hegedus, Balazs; Mitterbauer, Andreas; Hacker, Stefan; Birner, Peter; Gabriel, Christian; Gyöngyösi, Mariann; Blyszczuk, Przemyslaw; Eriksson, Urs; Ankersmit, Hendrik Jan
2015-01-01
Aims Supernatants of serum-free cultured mononuclear cells (MNC) contain a mix of immunomodulating factors (secretome), which have been shown to attenuate detrimental inflammatory responses following myocardial ischaemia. Inflammatory dilated cardiomyopathy (iDCM) is a common cause of heart failure in young patients. Experimental autoimmune myocarditis (EAM) is a CD4+ T cell-dependent model, which mirrors important pathogenic aspects of iDCM. The aim of this study was to determine the influence of MNC secretome on myocardial inflammation in the EAM model. Methods and results BALB/c mice were immunized twice with an alpha myosin heavy chain peptide together with Complete Freund adjuvant. Supernatants from mouse mononuclear cells were collected, dialysed, and injected i.p. at Day 0, Day 7, or Day 14, respectively. Myocarditis severity, T cell responses, and autoantibody formation were assessed at Day 21. The impact of MNC secretome on CD4+ T cell function and viability was evaluated using in vitro proliferation and cell viability assays. A single high-dose application of MNC secretome, injected at Day 14 after the first immunization, effectively attenuated myocardial inflammation. Mechanistically, MNC secretome induced caspase-8-dependent apoptosis in autoreactive CD4+ T cells. Conclusion MNC secretome abrogated myocardial inflammation in a CD4+ T cell-dependent animal model of autoimmune myocarditis. This anti-inflammatory effect of MNC secretome suggests a novel and simple potential treatment concept for inflammatory heart diseases. PMID:23321350
Effect of novobiocin on the viability of human gingival fibroblasts (HGF-1)
2014-01-01
Background Novobiocin is a coumarin antibiotic, which affects also eukaryotic cells inhibiting activity of Heat shock protein 90 (Hsp90). The Hsp90 represents a molecular chaperone critical for stabilization and activation of many proteins, particularly oncoproteins that drive cancer progression. Currently, Hsp90 inhibitors focus a significant attention since they form a potentially new class of drugs in therapy of cancer. However, in the process of tumorigenesis a significant role is played also by the microenvironment of the tumour, and, in particular, by cancer-associated fibroblasts (CAFs). This study aimed at examination of the effect played by novobiocin on viability of human gingival fibroblasts (HGF-1). Methods The studies were conducted using 24 h cultures of human gingival fibroblasts – HGF-1 (CRL-2014) in Chamber Slides, in presence of 0.1, 0.5, 1.0, 2.5 or 5.0 mM novobiocin. Cell viability was evaluated using fluorescence test, ATP assay and LDH release. Results Viability of HGF-1 was drastically reduced after 5 hour treatment with novobiocin in concentrations of 1 mM or higher. In turn, the percentage of LDH-releasing cells after 5 h did not differ from control value although it significantly increased after 10 h incubation with 1 mM and continued to increase till the 20th hour. Conclusions The obtained data indicate that novobiocin may induce death of human gingival fibroblasts. Therefore, application of the Hsp90 inhibitor in neoplastic therapy seems controversial: on one hand novobiocin reduces tumour-associated CAFs but, on the other, it may induce a significant destruction of periodontium. PMID:24887242
Liu, Hanyang; Zhou, Yan; Tang, Liming
2017-01-01
Caffeine is one of the most widely consumed substances found in beverages, and has demonstrated anticancer effects in several types of cancer. The present study aimed to examine the anticancer effects of caffeine on gastric cancer (GC) cells (MGC-803 and SGC-7901) in vitro, and to determine whether the apoptosis-related caspase-9/−3 pathway is associated with these effects. The sustained antiproliferative effects of caffeine on gastric cancer were also investigated. GC cell viability and proliferation were evaluated using cell counting and colony forming assays, following treatment with various concentrations of caffeine. Flow cytometry was performed to assess cell cycle dynamics and apoptosis. Western blot analysis was conducted to detect the activity of the caspase-9/−3 pathway. The results indicated that caffeine treatment significantly suppressed GC cell growth and viability and induced apoptosis by activating the caspase-9/−3 pathway. Furthermore, the anticancer effects of caffeine appeared to be sustained, as the caspase-9/−3 pathway remained active following caffeine withdrawal. In conclusion, caffeine may function as a sustained anticancer agent by activating the caspase-9/−3 pathway, which indicates that it may be useful as a therapeutic candidate in gastric cancer. PMID:28677810
Effect of Platelet Lysate on Human Cells Involved in Different Phases of Wound Healing
Briganti, Enrica; Sanguinetti, Elena; Magera, Angela; Al Kayal, Tamer; Feriani, Roberto; Di Stefano, Rossella; Soldani, Giorgio
2013-01-01
Background Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization). Methodology/Principal Findings Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points. Conclusion/Significance These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing. PMID:24386412
NASA Astrophysics Data System (ADS)
Angulo-Molina, Aracely; Méndez-Rojas, Miguel Ángel; Palacios-Hernández, Teresa; Contreras-López, Oscar Edel; Hirata-Flores, Gustavo Alonso; Flores-Alonso, Juan Carlos; Merino-Contreras, Saul; Valenzuela, Olivia; Hernández, Jesús; Reyes-Leyva, Julio
2014-08-01
The vitamin E analog α-tocopheryl succinate (α-TOS) selectively induces apoptosis in several cancer cells, but it is sensitive to esterases present in cervical cancer cells. Magnetite nanoparticles (Nps) were prepared by a reduction-coprecipitation method; their surface was silanized and conjugated to α-TOS to enhance its resistance. Morphology, size, and crystal structure were analyzed by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Chemical composition was analyzed by energy-dispersive X-ray spectroscopy; functional groups were determined by Fourier transform infrared spectroscopy; and α-TOS content was estimated by thermogravimetric analysis. The cytotoxic activity of α-TOS-Nps was evaluated in non-malignant fibroblasts and cervical cancer cells by means of the colorimetric MTT viability test. Intracellular localization was identified by confocal laser scanning microscopy. Characterization of α-TOS-Nps revealed sphere-like Nps with 15 nm average size, formed by mineral and organic constituents with high stability. α-TOS-Nps were internalized in the nucleus and selectively affected the viability of cervical cancer cells in a dose- and time-dependent manner but were biocompatible with non-malignant fibroblasts. In conclusion, functionalization of magnetite Nps protected the cytotoxic activity of α-TOS in non-sensitive cervical cancer cells.
Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang
2016-06-07
Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs.
Simple Perfusion Apparatus (SPA) for Manipulation, Tracking and Study of Oocytes and Embryos
Angione, Stephanie L.; Oulhen, Nathalie; Brayboy, Lynae M.; Tripathi, Anubhav; Wessel, Gary M.
2016-01-01
Objective To develop and implement a device and protocol for oocyte analysis at a single cell level. The device must be capable of high resolution imaging, temperature control, perfusion of media, drugs, sperm, and immunolabeling reagents all at defined flow-rates. Each oocyte and resultant embryo must remain spatially separated and defined. Design Experimental laboratory study Setting University and Academic Center for reproductive medicine. Patients/Animals Women with eggs retrieved for ICSI cycles, adult female FVBN and B6C3F1 mouse strains, sea stars. Intervention Real-time, longitudinal imaging of oocytes following fluorescent labeling, insemination, and viability tests. Main outcome measure(s) Cell and embryo viability, immunolabeling efficiency, live cell endocytosis quantitation, precise metrics of fertilization and embryonic development. Results Single oocytes were longitudinally imaged following significant changes in media, markers, endocytosis quantitation, and development, all with supreme control by microfluidics. Cells remained viable, enclosed, and separate for precision measurements, repeatability, and imaging. Conclusions We engineered a simple device to load, visualize, experiment, and effectively record individual oocytes and embryos, without loss of cells. Prolonged incubation capabilities provide longitudinal studies without need for transfer and potential loss of cells. This simple perfusion apparatus (SPA) provides for careful, precise, and flexible handling of precious samples facilitating clinical in vitro fertilization approaches. PMID:25450296
Anti-inflammatory effects of zinc in PMA-treated human gingival fibroblast cells
Kim, Sangwoo; Jeon, Sangmi; Hui, Zheng; Kim, Young; Im, Yeonggwan; Lim, Wonbong; Kim, Changsu; Choi, Hongran; Kim, Okjoon
2015-01-01
Objectives: Abnormal cellular immune response has been considered to be responsible for oral lesions in recurrent aphthous stomatitis. Zinc has been known to be an essential nutrient metal that is necessary for a broad range of biological activities including antioxidant, immune mediator, and anti-inflammatory drugs in oral mucosal disease. The objective of this study was to investigate the effects of zinc in a phorbol-12-myristate-13-acetate (PMA)-treated inflammatory model on human gingival fibroblast cells (hGFs). Study Design: Cells were pre-treated with zinc chloride, followed by PMA in hGFs. The effects were assessed on cell viability, cyclooxygenease-1,2(COX-1/2) protein expression, PGE2 release, ROS production and cytokine release, Results: The effects were assessed on cell viability, COX1/2 protein expression, PGE2 release, ROS production, cytokine release. The results showed that, in the presence of PMA, zinc treatment leads to reduce the production of ROS, which results in decrease of COX-2 expression and PGE2 release. Conclusions: Thus, we suggest that zinc treatment leads to the mitigation of oral inflammation and may prove to be an alternative treatment for recurrent aphthous stomatitis. Key words:Zinc, inflammatory response, cytokines, phorbol-12-myristate-13-acetate, gingival fibroblasts cells. PMID:25662537
Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhang, Yingjie; Wang, Xianwang
2009-02-01
Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.
Morphology based scoring of chromosomal instability and its correlation with cell viability.
Yadav, Shubhlata; Bhatia, Alka
2017-09-01
The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.
Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*
Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu
2016-01-01
Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675
2011-01-01
Background Sensitivity of cancer cells to recombinant arginine deiminase (rADI) depends on expression of argininosuccinate synthetase (AS), a rate-limiting enzyme in synthesis of arginine from citrulline. To understand the efficiency of RNA interfering of AS in sensitizing the resistant cancer cells to rADI, the down regulation of AS transiently and permanently were performed in vitro, respectively. Methods We studied the use of down-regulation of this enzyme by RNA interference in three human cancer cell lines (A375, HeLa, and MCF-7) as a way to restore sensitivity to rADI in resistant cells. The expression of AS at levels of mRNA and protein was determined to understand the effect of RNA interference. Cell viability, cell cycle, and possible mechanism of the restore sensitivity of AS RNA interference in rADI treated cancer cells were evaluated. Results AS DNA was present in all cancer cell lines studied, however, the expression of this enzyme at the mRNA and protein level was different. In two rADI-resistant cell lines, one with endogenous AS expression (MCF-7 cells) and one with induced AS expression (HeLa cells), AS small interference RNA (siRNA) inhibited 37-46% of the expression of AS in MCF-7 cells. ASsiRNA did not affect cell viability in MCF-7 which may be due to the certain amount of residual AS protein. In contrast, ASsiRNA down-regulated almost all AS expression in HeLa cells and caused cell death after rADI treatment. Permanently down-regulated AS expression by short hairpin RNA (shRNA) made MCF-7 cells become sensitive to rADI via the inhibition of 4E-BP1-regulated mTOR signaling pathway. Conclusions Our results demonstrate that rADI-resistance can be altered via AS RNA interference. Although transient enzyme down-regulation (siRNA) did not affect cell viability in MCF-7 cells, permanent down-regulation (shRNA) overcame the problem of rADI-resistance due to the more efficiency in AS silencing. PMID:21453546
Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.
Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José
2012-01-01
Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.
Komatsu, Hirotake; Cook, Colin; Wang, Chia-Hao; Medrano, Leonard; Lin, Henry; Kandeel, Fouad; Tai, Yu-Chong; Mullen, Yoko
2017-01-01
Background Type 1 diabetes is an autoimmune disease that destroys insulin-producing beta cells in the pancreas. Pancreatic islet transplantation could be an effective treatment option for type 1 diabetes once several issues are resolved, including donor shortage, prevention of islet necrosis and loss in pre- and post-transplantation, and optimization of immunosuppression. This study seeks to determine the cause of necrotic loss of isolated islets to improve transplant efficiency. Methodology The oxygen tension inside isolated human islets of different sizes was simulated under varying oxygen environments using a computational in silico model. In vitro human islet viability was also assessed after culturing in different oxygen conditions. Correlation between simulation data and experimentally measured islet viability was examined. Using these in vitro viability data of human islets, the effect of islet diameter and oxygen tension of the culture environment on islet viability was also analyzed using a logistic regression model. Principal findings Computational simulation clearly revealed the oxygen gradient inside the islet structure. We found that oxygen tension in the islet core was greatly lower (hypoxic) than that on the islet surface due to the oxygen consumption by the cells. The hypoxic core was expanded in the larger islets or in lower oxygen cultures. These findings were consistent with results from in vitro islet viability assays that measured central necrosis in the islet core, indicating that hypoxia is one of the major causes of central necrosis. The logistic regression analysis revealed a negative effect of large islet and low oxygen culture on islet survival. Conclusions/Significance Hypoxic core conditions, induced by the oxygen gradient inside islets, contribute to the development of central necrosis of human isolated islets. Supplying sufficient oxygen during culture could be an effective and reasonable method to maintain isolated islets viable. PMID:28832685
Angiotensin II improves random-flap viability in a rat model.
Okuyama, N; Roda, N; Sherman, R; Guerrero, A; Dougherty, W; Nguyen, T; diZerega, G; Rodgers, K
1999-03-01
Angiotensin II (AII) is a naturally occurring peptide that has been shown to be angiogenic, cause the proliferation of several primary cell types (including endothelial cells), accelerate the repair of dermal injuries, and increase production of growth factors and extracellular matrix. The effect of a single administration of AII on the viability and vascularity of a random flap was assessed in a rat model. In the control model, the viability of the distal portion of the flap was reduced consistently by postoperative day 8. Initially, AII was administered in an aqueous vehicle (phosphate-buffered saline [PBS]) and a viscous vehicle (10% carboxymethyl cellulose [CMC]). Administration of 1 mg per milliliter AII in PBS did not affect the viability of random flaps (1.2 x 7 cm) in this animal model. However, a single administration of a higher dose of AII in PBS (10 mg per milliliter) or 1 mg per milliliter AII in the CMC vehicle resulted in 67% of the grafts being fully viable at postsurgical day 12, in contrast to vehicle-treated control flaps, none of which were fully viable at day 12. Furthermore, the portion of the flap that was viable was increased significantly (p < or = 0.05). Subsequently, a study was conducted to assess the dose-response curve for AII in a CMC vehicle in this rat model. As the dose of AII was reduced, the percentage of animals with fully viable flaps and the percentage of the flap that was viable decreased correspondingly. Administration of 0.03 mg per milliliter AII and greater increased significantly (p < or = 0.05) the viability of the flaps. In conclusion, AII appears to be highly efficacious in increasing the percentage of distal flap surface area survival when administered as a single topical dose to the wound bed.
miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.
Yacoub, Radwa Alaa; Fawzy, Injie Omar; Assal, Reem Amr; Hosny, Karim Adel; Zekri, Abdel-Rahman Nabawy; Esmat, Gamal; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab
2016-12-28
Background and Aims: The role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. Methods: miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay. Results: miR-34a expression was up-regulated in HCC tissues. Moreover, miR-34a induced a large set of pro-apoptotic/anti-apoptotic genes, with a net result of triggering apoptosis and repressing cell viability. Conclusions: HCC-related differential expression of miR-34a could be etiology-based or stage-specific, and low expression of miR-34a may predict poor prognosis. This study's findings also emphasize the role of miR-34a in apoptosis.
Chio, Chung-Ching; Wei, Li; Chen, Tyng Guey; Lin, Chien-Min; Shieh, Ja-Ping; Yeh, Poh-Shiow; Chen, Ruei-Ming
2016-06-01
OBJECT Hypoxia can induce cell death or trigger adaptive mechanisms to guarantee cell survival. Neuron-derived orphan receptor 1 (NOR-1) works as an early-response protein in response to a variety of environmental stresses. In this study, the authors evaluated the roles of NOR-1 in hypoxia-induced neuronal insults. METHODS Neuro-2a cells were exposed to oxygen/glucose deprivation (OGD). Cell viability, cell morphology, cas-pase-3 activity, DNA fragmentation, and cell apoptosis were assayed to determine the mechanisms of OGD-induced neuronal insults. RNA and protein analyses were carried out to evaluate the effects of OGD on expressions of NOR-1, cAMP response element-binding (CREB), and cellular inhibitor of apoptosis protein 2 (cIAP2) genes. Translations of these gene expressions were knocked down using RNA interference. Mice subjected to traumatic brain injury (TBI) and NOR-1 was immunodetected. RESULTS Exposure of neuro-2a cells to OGD decreased cell viability in a time-dependent manner. Additionally, OGD led to cell shrinkage, DNA fragmentation, and cell apoptosis. In parallel, treatment of neuro-2a cells with OGD time dependently increased cellular NOR-1 mRNA and protein expressions. Interestingly, administration of TBI also augmented NOR-1 levels in the impacted regions of mice. As to the mechanism, exposure to OGD increased nuclear levels of the transcription factor CREB protein. Downregulating CREB expression using RNA interference simultaneously inhibited OGD-induced NOR-1 mRNA expression. Also, levels of cIAP2 mRNA and protein in neuro-2a cells were augmented by OGD. After reducing cIAP2 translation, OGD-induced cell death was reduced. Sequentially, application of NOR-1 small interfering RNA to neuro-2a cells significantly inhibited OGD-induced cIAP2 mRNA expression and concurrently alleviated hypoxia-induced alterations in cell viability, caspase-3 activation, DNA damage, and cell apoptosis. CONCLUSIONS This study shows that NOR-1 can transduce survival signals in neuronal cells responsible for hypoxiainduced apoptotic insults through activation of a CREB/cIAP2-dependent mechanism.
Live cell imaging reveals marked variability in myoblast proliferation and fate
2013-01-01
Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated. PMID:23638706
Čeponytė, Ugnė; Paškevičiūtė, Miglė; Petrikaitė, Vilma
2018-01-01
Purpose In this study, we evaluated the anticancer activity of non-steroidal anti-inflammatory drugs (NSAIDs) in BxPC-3 and MIA PaCa-2 pancreatic cancer cell cultures. Methods To test the effect of compounds on the viability of cells, the MTT assay was used. The activity of NSAIDs in 3D cell cultures was evaluated by measuring the size change of spheroids. The type of cell death was identified by cell staining with Hoechst 33342 and propidium iodide. To evaluate the effect on the colony-forming ability of cancer cells, the clonogenic assay was used. Results Five out of seven tested NSAIDs reduced the viability of BxPC-3 and MIA PaCa-2 cancer cells. Fenamates were more active against cyclooxygenase-2 expressing BxPC-3 than cyclooxygenase-2 non-expressing MIA PaCa-2 cell line. Fenamates and coxibs exerted higher activity in monolayer cultured cells, whereas salicylates were more active in 3D cultures. Fenamates and coxibs induced dose-dependent apoptosis and necrosis. NSAIDs also inhibited the colony-forming ability of cancer cells. Meclofenamic acid, niflumic acid, and parecoxib possessed higher activity on BxPC-3, and celecoxib possessed higher activity on MIA PaCa-2 cell colony formation. Conclusion Our results show that fenamates, coxibs, and salicylates possess anticancer activity on human pancreatic cancer BxPC-3 and MIA PaCa-2 cell cultures. PMID:29942156
Moura, Camilla Cristhian Gomes; Soares, Priscilla Barbosa Ferreira; de Paula Reis, Manuella Verdinelli; Fernandes Neto, Alfredo Júlio; Zanetta Barbosa, Darceny; Soares, Carlos José
2014-02-01
There is no consensus regarding the ability of coconut water and soy milk to maintain long-term cell viability. This study investigated the ability of pH-adjusted coconut water and soy milk to maintain the viability of periodontal ligament cells over a short and a longer period and compared these abilities with those of other solutions. Dog premolar teeth were extracted, dried for 30 min, and stored in the following media for 50 min or 24 h: long shelf-life whole milk (SWM), long shelf-life skim milk (SSM), Hank's Balanced Salt Solution (HBSS), soy milk (SM), and pH-adjusted coconut water (CW). The positive and two negative control groups corresponded to 0-min, 30-min (short-term), and 24-h (long-term) dry times, respectively. Cell viability was analyzed by trypan blue exclusion. Data were statistically analyzed using the Kruskal-Wallis test with post-analysis using the Dunn method. In the short-term experiment, the SSM resulted in significantly lower cell viability than SM and CW. At 24 h, SM and CW resulted in higher viability than HBSS and SSM and in comparable performance with the positive control group. Cell viability decreased over time, except in SM and CW. Soy milk and pH-adjusted coconut water showed promising results as storage solutions for avulsed teeth, preserving the viability for up to 24 h. © 2013 John Wiley & Sons A/S.
Holguin, Stefany Y; Anderson, Caleb F; Thadhani, Naresh N; Prausnitz, Mark R
2017-10-01
Exposure of cells and nanoparticles to near-infrared nanosecond pulsed laser light can lead to efficient intracellular delivery of molecules while maintaining high cell viability by a photoacoustic phenomenon known as transient nanoparticle energy transduction (TNET). Here, we examined the influence of cytoskeletal mechanics and plasma membrane fluidity on intracellular uptake of molecules and loss of cell viability due to TNET. We found that destabilization of actin filaments using latrunculin A led to greater uptake of molecules and less viability loss caused by TNET. Stabilization of actin filaments using jasplakinolide had no significant effect on uptake or viability loss caused by TNET. To study the role of plasma membrane fluidity, we increased fluidity by depletion of membrane cholesterol using methyl-β-cyclodextrin and decreased fluidity by enrichment of the membrane with cholesterol using water-soluble cholesterol. Neither of these membrane fluidity changes significantly altered cellular uptake or viability loss caused by TNET. We conclude that weakening mechanical integrity of the cytoskeleton can increase intracellular uptake and decrease loss of cell viability, while plasma membrane fluidity does not appear to play a significant role in uptake or viability loss caused by TNET. The positive effects of cytoskeletal weakening may be due to an enhanced ability of the cell to recover from the effects of TNET and maintain viability. Biotechnol. Bioeng. 2017;114: 2390-2399. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Zustiak, Silviya P.; Pubill, Stephanie; Ribeiro, Andreia; Leach, Jennie B.
2013-01-01
The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. PMID:24474590
Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I
2018-02-01
Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.
2011-01-01
Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a p value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed. PMID:21943045
2014-01-01
Background Frankincense (Boswellia carterii, known as Ru Xiang in Chinese) and sandalwood (Santalum album, known as Tan Xiang in Chinese) are cancer preventive and therapeutic agents in Chinese medicine. Their biologically active ingredients are usually extracted from frankincense by hydrodistillation and sandalwood by distillation. This study aims to investigate the anti-proliferative and pro-apoptotic activities of frankincense and sandalwood essential oils in cultured human bladder cancer cells. Methods The effects of frankincense (1,400–600 dilutions) (v/v) and sandalwood (16,000–7,000 dilutions) (v/v) essential oils on cell viability were studied in established human bladder cancer J82 cells and immortalized normal human bladder urothelial UROtsa cells using a colorimetric XTT cell viability assay. Genes that responded to essential oil treatments in human bladder cancer J82 cells were identified using the Illumina Expression BeadChip platform and analyzed for enriched functions and pathways. The chemical compositions of the essential oils were determined by gas chromatography–mass spectrometry. Results Human bladder cancer J82 cells were more sensitive to the pro-apoptotic effects of frankincense essential oil than the immortalized normal bladder UROtsa cells. In contrast, sandalwood essential oil exhibited a similar potency in suppressing the viability of both J82 and UROtsa cells. Although frankincense and sandalwood essential oils activated common pathways such as inflammatory interleukins (IL-6 signaling), each essential oil had a unique molecular action on the bladder cancer cells. Heat shock proteins and histone core proteins were activated by frankincense essential oil, whereas negative regulation of protein kinase activity and G protein-coupled receptors were activated by sandalwood essential oil treatment. Conclusion The effects of frankincense and sandalwood essential oils on J82 cells and UROtsa cells involved different mechanisms leading to cancer cell death. While frankincense essential oil elicited selective cancer cell death via NRF-2-mediated oxidative stress, sandalwood essential oil induced non-selective cell death via DNA damage and cell cycle arrest. PMID:25006348
Patzer, L; Hernando, N; Ziegler, U; Beck-Schimmer, B; Biber, J; Murer, H
2006-11-01
Renal Fanconi syndrome occurs in about 1-5% of all children treated with Ifosfamide (Ifo) and impairment of renal phosphate reabsorption in about 20-30% of them. Pathophysiological mechanisms of Ifo-induced nephropathy are ill defined. The aim has been to investigate whether Ifo metabolites affect the type IIa sodium-dependent phosphate transporter (NaPi-IIa) in viable opossum kidney cells. Ifo did not influence viability of cells or NaPi-IIa-mediated transport up to 1 mM/24 h. Incubation of confluent cells with chloroacetaldehyde (CAA) and 4-hydroperoxyIfosfamide (4-OH-Ifo) led to cell death by necrosis in a concentration-dependent manner. At low concentrations (50-100 microM/24 h), cell viability was normal but apical phosphate transport, NaPi-IIa protein, and -mRNA expression were significantly reduced. Coincubation with sodium-2-mercaptoethanesulfonate (MESNA) prevented the inhibitory action of CAA but not of 4-OH-Ifo; DiMESNA had no effect. Incubation with Ifosfamide-mustard (Ifo-mustard) did alter cell viability at concentrations above 500 microM/24 h. At lower concentrations (50-100 microM/24 h), it led to significant reduction in phosphate transport, NaPi-IIa protein, and mRNA expression. MESNA did not block these effects. The effect of Ifo-mustard was due to internalization of NaPi-IIa. Cyclophosphamide-mustard (CyP-mustard) did not have any influence on cell survival up to 1000 microM, but the inhibitory effect on phosphate transport and on NaPi-IIa protein was the same as found after Ifo-mustard. In conclusion, CAA, 4-OH-Ifo, and Ifo- and CyP-mustard are able to inhibit sodium-dependent phosphate cotransport in viable opossum kidney cells. The Ifo-mustard effect took place via internalization and reduction of de novo synthesis of NaPi-IIa. Therefore, it is possible that Ifo-mustard plays an important role in pathogenesis of Ifo-induced nephropathy.
Choi, Seung-il; Lee, Hyung Keun; Cho, Young Jae
2008-01-01
Purpose The present study investigated the effect of mitomycin C (MMC) on cell viability, apoptosis, and transforming growth factor beta-induced protein (TGFBIp) expression in cultured normal corneal fibroblasts and heterozygote or homozygote granular corneal dystrophy type II (GCD II) corneal fibroblasts. Methods Keratocytes were obtained from normal cornea or from heterozygote or homozygote GCD II patients after lamellar or penetrating keratoplasty. To measure cell viability, corneal fibroblasts were incubated with 0.02% MMC for 3 h, 6 h, and 24 h or with 0%, 0.01%, 0.02%, and 0.04% MMC for 24 h and then tested using lactate dehydrogenase (LDH) and 3-[4,5-demethylthiazol-2,5-diphenyl-2H-tetrazolium bromide] (MTT) assays. To measure apoptosis, cells were analyzed by FACS analysis and annexin V staining. Bcl-xL, Bax, and TGFBI mRNA expression was measured using reverse transcription polymerase chain reaction (RT–PCR) assays. Cellular and media levels of TGFBIp protein were measured by immunoblotting. Results MTT and LDH assays showed that MMC reduced cell viability in all three cell types in a dose-dependent and time-dependent manner (p<0.05). FACS analysis and annexin V staining showed that MMC caused apoptosis with GCD II homozygote cells being most affected. RT–PCR analysis showed that MMC decreased Bcl-xL mRNA expression and increased Bax mRNA expression in all cell types. RT–PCR and immunoblotting analysis showed that MMC reduced TGFBI mRNA levels and cellular and media TGFBIp protein levels in all cell types. Conclusions MMC induced apoptosis, and the effects of MMC were greatest in GCD II homozygote cells. MMC also reduced the production of TGFBIp in all three types of corneal fibroblasts. These findings may explain the additional therapeutic effect of MMC in GCD II patients. PMID:18615204
Shokoohinia, Yalda; Hosseinzadeh, Leila; Moieni-Arya, Maryam; Mostafaie, Ali; Mohammadi-Motlagh, Hamid-Reza
2014-01-01
Doxorubicin (DOX) is a potent, broad-spectrum chemotherapeutic drug used for treatment of several types of cancers. Despite its effectiveness, it has a wide range of toxic side effects, many of which most likely result from its inherent prooxidant activity. It has been reported that DOX has toxic effects on normal tissues, including brain tissue. In the current study, we investigated the protective effect of osthole isolated from Prangos ferulacea (L.) Lindl. on oxidative stress and apoptosis induced by DOX in PC12 as a neuronal model cell line. PC12 cells were pretreated with osthole 2 h after treatment with different concentrations of DOX. 24 h later, the cell viability, mitochondrial membrane potential (MMP), the activity of caspase-3, the expression ratio of Bax/Bcl-2, and the generation of intracellular ROS were detected. We found that pretreatment with osthole on PC12 cells significantly reduced the loss of cell viability, the activity of caspase-3, the increase in Bax/Bcl-2 ratio, and the generation of intracellular ROS induced by DOX. Moreover, pretreatment with osthole led to an increase in MMP in PC12 cells. In conclusion, our results indicated that pretreatment with nontoxic concentrations of osthole protected PC12 cells from DOX-mediated apoptosis by inhibition of ROS production. PMID:25013759
Su, Yu-Chieh; Li, Szu-Chin; Wu, Yin-Chi; Wang, Li-Min; Chao, K. S. Clifford; Liao, Hui-Fen
2013-01-01
IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted. PMID:23533494
Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen.
Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N; Abhari, Behnaz A; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N; Cinatl, Jindrich
2015-02-03
Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.
Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen
Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N.; Abhari, Behnaz A.; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G.; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N.; Cinatl, Jindrich
2015-01-01
Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells. PMID:25644037
Misumi, Ichiro; Yada, Takashi; Leong, Jo-Ann C; Schreck, Carl B
2009-02-01
We evaluated the direct effects of in vitro exposures to tributyltin (TBT), a widely used biocide, on the cell-mediated immune system of Chinook salmon (Oncorhynchus tshawytscha). Splenic and pronephric leukocytes isolated from juvenile Chinook salmon were exposed to TBT (0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg/l) in cell cultures for 24 h. Effects of TBT on cell viability, induction of apoptosis, and mitogenic responses were measured by flow cytometry. Splenic and pronephric leukocytes in the presence of TBT experienced a concentration-dependent decrease in viability in cell cultures. Apoptosis was detected as one of the mechanisms of cell death after TBT exposure. In addition, pronephric lymphocytes exhibited a greater sensitivity to TBT exposure than pronephric granulocytes. The functional ability of splenic B-cells to undergo blastogenesis upon lipopolysaccharide stimulation was also significantly inhibited in the presence of 0.05, 0.07, or 0.10 mg/l of TBT in the cell cultures. Flow cytometric assay using a fluorescent conjugated monoclonal antibody against salmon surface immunoglobulin was employed for the conclusive identification of B-cells in the Chinook salmon leukocytes. Our findings suggest that adverse effects of TBT on the function or development of fish immune systems could lead to an increase in disease susceptibility and its subsequent ecological implications.
The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes
NASA Astrophysics Data System (ADS)
Hawkins Evans, D.; Abrahamse, H.
2009-02-01
Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and chronic renal failure.
Sun, Peng; Wang, Ting; Chen, Lu; Yu, Bang-wei; Jia, Qi; Chen, Kai-xian; Fan, Hui-min; Li, Yi-ming; Wang, He-yao
2016-01-01
Aim: Cinnamon extracts rich in procyanidin oligomers have shown to improve pancreatic β-cell function in diabetic db/db mice. The aim of this study was to identify the active compounds in extracts from two species of cinnamon responsible for the pancreatic β-cell protection in vitro. Methods: Cinnamon extracts were prepared from Cinnamomum tamala (CT-E) and Cinnamomum cassia (CC-E). Six compounds procyanidin B2 (cpd1), (−)-epicatechin (cpd2), cinnamtannin B1 (cpd3), procyanidin C1 (cpd4), parameritannin A1 (cpd5) and cinnamtannin D1 (cpd6) were isolated from the extracts. INS-1 pancreatic β-cells were exposed to palmitic acid (PA) or H2O2 to induce lipotoxicity and oxidative stress. Cell viability and apoptosis as well as ROS levels were assessed. Glucose-stimulated insulin secretion was examined in PA-treated β-cells and murine islets. Results: CT-E, CC-E as well as the compounds, except cpd5, did not cause cytotoxicity in the β-cells up to the maximum dosage using in this experiment. CT-E and CC-E (12.5–50 μg/mL) dose-dependently increased cell viability in both PA- and H2O2-treated β-cells, and decreased ROS accumulation in H2O2-treated β-cells. CT-E caused more prominent β-cell protection than CC-E. Furthermore, CT-E (25 and 50 μg/mL) dose-dependently increased glucose-stimulated insulin secretion in PA-treated β-cells and murine islets, but CC-E had little effect. Among the 6 compounds, trimer procyanidins cpd3, cpd4 and cpd6 (12.5–50 μmol/L) dose-dependently increased the cell viability and decreased ROS accumulation in H2O2-treated β-cells. The trimer procyanidins also increased glucose-stimulated insulin secretion in PA-treated β-cells. Conclusion: Trimer procyanidins in the cinnamon extracts contribute to the pancreatic β-cell protection, thus to the anti-diabetic activity. PMID:27238208
Cytotoxic outcomes of orthodontic bands with and without silver solder in different cell lineages.
Jacoby, Letícia Spinelli; Rodrigues Junior, Valnês da Silva; Campos, Maria Martha; Macedo de Menezes, Luciane
2017-05-01
The safety of orthodontic materials is a matter of high interest. In this study, we aimed to assess the in-vitro cytotoxicity of orthodontic band extracts, with and without silver solder, by comparing the viability outcomes of the HaCat keratinocytes, the fibroblastic cell lineages HGF and MRC-5, and the kidney epithelial Vero cells. Sterilized orthodontic bands with and without silver solder joints were added to culture media (6 cm 2 /mL) and incubated for 24 hours at 37°C under continuous agitation. Subsequently, the cell cultures were exposed to the obtained extracts for 24 hours, and an assay was performed to evaluate the cell viability. Copper strip extracts were used as positive control devices. The extracts from orthodontic bands with silver solder joints significantly reduced the viability of the HaCat, MRC-5, and Vero cell lines, whereas the viability of HGF was not altered by this material. Conversely, the extracts of orthodontic bands without silver solder did not significantly modify the viability index of all evaluated cell lines. Except for HGF fibroblasts, all tested cell lines showed decreased viability percentages after exposure to extracts of orthodontic bands containing silver solder joints. These data show the relevance of testing the toxicity of orthodontic devices in different cell lines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wei; Gao, Yang; Chang, Na
The abnormality of nuclear receptor-related protein 1 (Nurr1) in expression and function can contribute to neurodegeneration of dopaminergic neurons and occurrence of Parkinson's disease (PD). However, its related mechanism in PD is still unknown. In this study, we found that Nurr1 was down-regulated and CCL2 was up-regulated in PD patients and PD mice. CCL2 promoted apoptosis and secretion of TNF-α and IL-1β in SH-SY5Y cells and inhibited cell viability while knockdown of CCL2 exerted the opposite effects. Nurr1 overexpression inhibited apoptosis, the release of TNF-α and IL-1β and promoted viability in α-Syn-treated SH-SY5Y cells, which was markedly promoted by CCL2more » antibody and dramatically reversed by CCL2. Nurr1 overexpression negatively regulated CCL2 expression in vivo and in vitro. Furthermore, Nurr1 overexpression remarkably relieved MPTP-induced movement disorder and spatial memory deficits and played neuroprotective and anti-inflammatory roles in MPTP-induced PD mice by down-regulating CCL2 in vivo. In conclusion, Nurr1 overexpression exerts neuroprotective and anti-inflammatory roles via down-regulating CCL2 in both in vivo and in vitro PD models, contributing to developing mechanism-based and neuroprotective strategies against PD. - Highlights: • Nurr1 was down-regulated and CCL2 was up-regulated in PD patients and PD mice. • Nurr1 overexpression inhibited apoptosis, release of TNF-α and IL-1β and promoted viability in α-Syn-treated SH-SY5Y cells. • CCL2 reversed the effect of Nurr1 overexpression on apoptosis, inflammatory cytokines secretion and viability. • Nurr1 overexpression negatively regulated CCL2 expression in vivo and in vitro. • Nurr1 overexpression remarkably relieved MPTP-induced movement disorder and spatial memory deficits.« less
The ATP/DNA Ratio Is a Better Indicator of Islet Cell Viability Than the ADP/ATP Ratio
Suszynski, T.M.; Wildey, G.M.; Falde, E.J.; Cline, G.W.; Maynard, K. Stewart; Ko, N.; Sotiris, J.; Naji, A.; Hering, B.J.; Papas, K.K.
2009-01-01
Real-time, accurate assessment of islet viability is critical for avoiding transplantation of nontherapeutic preparations. Measurements of the intracellular ADP/ATP ratio have been recently proposed as useful prospective estimates of islet cell viability and potency. However, dead cells may be rapidly depleted of both ATP and ADP, which would render the ratio incapable of accounting for dead cells. Since the DNA of dead cells is expected to remain stable over prolonged periods of time (days), we hypothesized that use of the ATP/DNA ratio would take into account dead cells and may be a better indicator of islet cell viability than the ADP/ATP ratio. We tested this hypothesis using mixtures of healthy and lethally heat-treated (HT) rat insulinoma cells and human islets. Measurements of ATP/DNA and ADP/ATP from the known mixtures of healthy and HT cells and islets were used to evaluate how well these parameters correlated with viability. The results indicated that ATP and ADP were rapidly (within 1 hour) depleted in HT cells. The fraction of HT cells in a mixture correlated linearly with the ATP/DNA ratio, whereas the ADP/ADP ratio was highly scattered, remaining effectively unchanged. Despite similar limitations in both ADP/ADP and ATP/DNA ratios, in that ATP levels may fluctuate significantly and reversibly with metabolic stress, the results indicated that ATP/DNA was a better measure of islet viability than the ADP/ATP ratio. PMID:18374063
Dendritic Cells Promote Pancreatic Viability in Mice with Acute Pancreatitis
Bedrosian, Andrea S.; Nguyen, Andrew H.; Hackman, Michael; Connolly, Michael K.; Malhotra, Ashim; Ibrahim, Junaid; Cieza-Rubio, Napoleon E.; Henning, Justin R.; Barilla, Rocky; Rehman, Adeel; Pachter, H. Leon; Medina-Zea, Marco V.; Cohen, Steven M.; Frey, Alan B.; Acehan, Devrim; Miller, George
2011-01-01
Background & Aims Acute pancreatitis increases morbidity and mortality from organ necrosis by mechanisms that are incompletely understood. Dendritic cells (DCs) can promote or suppress inflammation, depending on their subtype and context. We investigated the roles of DC in development of acute pancreatitis. Methods Acute pancreatitis was induced in CD11c.DTR mice using caerulein or L-arginine; DCs were depleted by administration of diphtheria toxin. Survival was analyzed using Kaplan-Meier analysis. Results Numbers of MHC II+CD11c+DC increased 100-fold in pancreas of mice with acute pancreatitis, to account for nearly 15% of intra-pancreatic leukocytes. Intra-pancreatic DC acquired an immune phenotype in mice with acute pancreatitis; they expressed higher levels of MHC II and CD86 and increased production of interleukin-6, membrane cofactor protein (MCP)-1, and tumor necrosis factor (TNF)-α. However, rather than inducing an organ-destructive inflammatory process, DC were required for pancreatic viability; the exocrine pancreas died in mice that were depleted of DC and challenged with caerulein or L-arginine. All mice with pancreatitis that were depleted of DC died from acinar cell death within 4 days. Depletion of DC from mice with pancreatitis resulted in neutrophil infiltration and increased levels of systemic markers of inflammation. However, the organ necrosis associated with depletion of DC did not require infiltrating neutrophils, activation of NF-κB, or signaling by mitogen-activated protein kinase or TNF-α. Conclusions DC are required for pancreatic viability in mice with acute pancreatitis and might protect organs against cell stress. PMID:21801698
Larsson, Marie C; Lerm, Maria; Ängeby, Kristian; Nordvall, Michaela; Juréen, Pontus; Schön, Thomas
2014-11-01
The intracellular (IC) effect of drugs against Mycobacterium tuberculosis (Mtb) is not well established but increasingly important to consider when combining current and future multidrug regimens into the best possible treatment strategies. For this purpose, we developed an IC model based on a genetically modified Mtb H37Rv strain, expressing the Vibrio harvei luciferase (H37Rv-lux) infecting the human macrophage like cell line THP-1. Cells were infected at a low multiplicity of infection (1:1) and subsequently exposed to isoniazid (INH), ethambutol (EMB), amikacin (AMI) or levofloxacin (LEV) for 5days in a 96-well format. Cell viability was evaluated by Calcein AM and was maintained throughout the experiment. The number of viable H37Rv-lux was determined by luminescence and verified by a colony forming unit analysis. The results were compared to the effects of the same drugs in broth cultures. AMI, EMB and LEV were significantly less effective intracellularly (MIC90: >4mg/L, 8mg/L and 2mg/L, respectively) compared to extracellularly (MIC90: 0.5mg/L for AMI and EMB; 0.25mg/L for LEV). The reverse was the case for INH (IC: 0.064mg/L vs EC: 0.25mg/L). In conclusion, this luciferase based method, in which monitoring of cell viability is included, has the potential to become a useful tool while evaluating the intracellular effects of anti-mycobacterial drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Leigh, Noel J.; Lawton, Ralph I.; Hershberger, Pamela A.; Goniewicz, Maciej L.
2018-01-01
Background E-cigarettes or electronic nicotine delivery systems (ENDS) are designed to deliver nicotine-containing aerosol via inhalation. Little is known about the health effects of flavored ENDS aerosol when inhaled. Methods Aerosol from ENDS was generated using a smoking-machine. Various types of ENDS devices or a tank system prefilled with liquids of different flavors, nicotine carrier, variable nicotine concentrations, and with modified battery output voltage were tested. A convenience sample of commercial fluids with flavor names of tobacco, piña colada, menthol, coffee and strawberry were used. Flavoring chemicals were identified using gas chromatography/mass spectrometry. H292 human bronchial epithelial cells were directly exposed to 55 puffs of freshly-generated ENDS aerosol, tobacco smoke, or air (controls) using an air-liquid interface system and the Health Canada intense smoking protocol. The following in vitro toxicological effects were assessed: 1) cell viability, 2) metabolic activity and 3) release of inflammatory mediators (cytokines). Results Exposure to ENDS aerosol resulted in decreased metabolic activity and cell viability and increased release of IL-1β, IL-6, IL-10, CXCL1, CXCL2 and CXCL10 compared to air controls. Cell viability and metabolic activity were more adversely affected by conventional cigarettes than most tested ENDS products. Product type, battery output voltage, and flavors significantly affected toxicity of ENDS aerosol, with a strawberry-flavored product being the most cytotoxic. Conclusions Our data suggest that characteristics of ENDS products, including flavors, may induce inhalation toxicity. Therefore, ENDS users should use the products with caution until more comprehensive studies are performed. PMID:27633767
Chan, Angel T.; Karakas, Mehmet F.; Vakrou, Styliani; Afzal, Junaid; Rittenbach, Andrew; Lin, Xiaoping; Wahl, Richard L.; Pomper, Martin G.; Steenbergen, Charles J.; Tsui, Benjamin M.W.; Elisseeff, Jennifer H.; Abraham, M. Roselle
2015-01-01
Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of 18FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels +/− CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (~6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels serve as ‘synthetic stem cell niches’ that rapidly restore metabolism of encapsulated stem cells, promote stem cell engraftment and angiogenesis. These first ever, tissue engineered metabolic scaffolds hold promise for clinical translation in conjunction with CDCs and possibly other stem cell types. PMID:26378976
Ahmadi, Houssein; Boroujeni, Mahdi Eskandarian; Sadeghi, Yousef; Abdollahifar, Mohammad Amin; Khodagholi, Fariba; Meftahi, Gholam Houssein; Hadipour, Mohammadmehdi; Bayat, Amir-Hossein; Shaerzadeh, Fatemeh; Aliaghaei, Abbas
2018-05-01
Huntington's disease (HD) is a genetically heritable disorder, linked with continuing cell loss and degeneration mostly in the striatum. Currently, cell therapy approaches in HD have essentially been focused on replenishing or shielding cells lost over the period of the disease. Herein, we sought to explore the in vitro and in vivo efficacy of primary rat Sertoli cells (SCs) and their paracrine effect against oxidative stress with emphasis on HD. Initially, SCs were isolated and immunophenotypically characterized by positive expression of GATA4. Besides, synthesis of neurotrophic factors of glial cell-derived neurotrophic factor and VEGF by SCs were proved. Next, PC12 cells were exposed to hydrogen peroxide in the presence of conditioned media (CM) collected from SC (SC-CM) and cell viability and neuritogenesis were determined. Bilateral striatal implantation of SC in 3-nitropropionic acid (3-NP)-lesioned rat models was performed, and 1 month later, post-graft analysis was done. According to our in vitro results, the CM of SC protected PC12 cells against oxidative stress and remarkably augmented cell viability and neurite outgrowth. Moreover, grafted SCs survived, exhibited decreases in both gliosis and inflammatory cytokine levels, and ameliorated motor coordination and muscle activity, together with an increase in striatal volume as well as in dendritic length of the striatum in HD rats. In conclusion, our results indicate that SCs provide a supportive environment, with potential therapeutic benefits aimed at HD.
2014-01-01
Background Cholesterol plays an important role in cancer development, drug resistance and chemoimmuno-sensitivity. Statins, cholesterol lowering drugs, can induce apoptosis, but also negatively interfere with CD-20 and rituximab-mediated activity. Our goal is to identify the alternative targets that could reduce cholesterol levels but do not interfere with CD-20 in chemo immunotherapy of chronic lymphocytic leukemia (CLL). Methods MEC-2 cells, a CLL cell line, and the peripheral blood mononuclear cells (PBMCs) from CLL patients were treated with cholesterol lowering agents, and analyzed the effect of these agents on cholesterol levels, CD-20 expression and distribution, and cell viability in the presence or absence of fludarabine, rituximab or their combinations. Results We found that MEC-2 cells treated with cholesterol lowering agents (BIBB-515, YM-53601 or TAK-475) reduced 20% of total cellular cholesterol levels, but also significantly promoted CD-20 surface expression. Furthermore, treatment of cells with fludarabine, rituximab or their combinations in the presence of BIBB-515, YM-53601 or TAK-475 enhanced MEC-2 cell chemoimmuno-sensitivity measured by cell viability. More importantly, these cholesterol lowering agents also significantly enhanced chemoimmuno-sensitivity of the PBMCs from CLL patients. Conclusion Our data demonstrate that BIBB-515, YM53601 and TAK-475 render chemoimmuno-therapy resistant MEC-2 cells sensitive to chemoimmuno-therapy and enhance CLL cell chemoimmuno-sensitivity without CD-20 epitope presentation or its downstream signaling. These results provide a novel strategy which could be applied to CLL treatment. PMID:25401046
Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.
Wang, Jun; Kang, Min; Wen, Qin; Qin, Yu-Tao; Wei, Zhu-Xin; Xiao, Jing-Jian; Wang, Ren-Sheng
2017-04-01
Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.
Poupel, Farhad; Aghaei, Mahmoud; Movahedian, Ahmad; Jafari, Seyyed Mehdi; Shahrestanaki, Mohammad Keyvanloo
2017-01-01
Background: Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and has antiproliferative effect. However, such effects of DHA have not yet been revealed for bladder cancer cells. Methods: We used as bladder cancer cell lines to examine the effect of DHA on the cell viability, cell apoptosis, and monitoring of mitochondrial membrane potential (ΔΨm) changes. Furthermore, the effect of DHA on the reactive oxygen species (ROS) production and cytochrome c release were also detected. We employed MTT assay to investigate the cell proliferation effect of DHA on the EJ-138 and HTB-9 human bladder cancer cells. Annexin/PI staining, caspase-3 activity assay, Bcl-2/Bax protein expression, mitochondrial membrane potential assay, cytochrome c release, and ROS analysis were used for apoptosis detection. Results: DHA significantly reduced cell viability in a dose-dependent manner. Cytotoxicity of DHA was suppressed by N-acetylcysteine. The growth inhibition effect of DHA was related to the induction of cell apoptosis, which were manifested by annexin V-FITC staining, activation of caspase-3. DHA also increased ROS generation, cytochrome c release, and loss of mitochondrial transmembrane potential (ΔΨm) in cells. In addition, the downregulation of regulatory protein Bcl-2 and upregulation of Bax protein by DHA were also observed. Conclusions: These findings demonstrated that DHA induces apoptosis through mitochondrial signaling pathway. These suggest that DHA may be a potential agent for induction of apoptosis in human bladder cancer cells. PMID:29114376
Fuller, Barry; Seldon, Clare; Davidson, Brian; Seifalian, Alexander
2013-01-01
Background: Although hepatocytes have a remarkable regenerative power, the rapidity of acute liver failure makes liver transplantation the only definitive treatment. Attempts to incorporate engineered three-dimensional liver tissue in bioartificial liver devices or in implantable tissue constructs, to treat or bridge patients to self-recovery, were met with many challenges, amongst which is to find suitable polymeric matrices. We studied the feasibility of utilising nanocomposite polymers in three-dimensional scaffolds for hepatocytes. Materials and methods: Hepatocytes (HepG2) were seeded on a flat sheet and in three-dimensional scaffolds made of a nanocomposite polymer (Polyhedral Oligomeric Silsesquioxane [POSS]-modified polycaprolactone urea urethane) alone as well as with porogen particles, i.e. glucose, sodium bicarbonate and sodium chloride. The scaffold architecture, cell attachment and morphology were studied with scanning electron microscopy, and we assessed cell viability and functionality. Results: Cell attachment to the scaffolds was demonstrated. The scaffold made with glucose particles as porogen showed a narrower range of pore size with higher porosity and better inter-pore communications and seemed to encourage near normal cell morphology. There was a steady increase of albumin secretion throughout the experiment while the control (monolayer cell culture) showed a steep decrease after day 7. At the end of the experiment, there was no significant difference in viability and functionality between the scaffolds and the control. Conclusion: In this initial study, porogen particles were used to modify the scaffolds produced from the novel polymer. Although there was no significance against the control in functionality and viability, the demonstrable attachment on scanning electron microscopy suggest potential roles for this polymer and in particular for scaffolds made with glucose particles in liver tissue engineering. PMID:22532408
Wagner, Alixandra; Eldawud, Reem; White, Andrew; Agarwal, Sushant; Stueckle, Todd A.; Sierros, Konstantinos A.; Rojanasakul, Yon; Gupta, Rakesh K.; Dinu, Cerasela Zoica
2016-01-01
Background Montmorillonite is a type of nanoclay that originates from the clay fraction of the soil and is incorporated into polymers to form nanocomposites with enhanced mechanical strength, barrier, and flammability properties used for food packaging, automotive, and medical devices. However, with implementation in such consumer applications, the interaction of montmorillonite-based composites or derived byproducts with biological systems needs to be investigated. Methods Herein we examined the potential of Cloisite Na+ (pristine) and Cloisite 30B (organically modified montmorillonite nanoclay) and their thermally degraded byproducts’ to induce toxicity in model human lung epithelial cells. The experimental set-up mimicked biological exposure in manufacturing and disposal areas and employed cellular treatments with occupationally relevant doses of nanoclays previously characterized using spectroscopical and microscopical approaches. For nanoclay-cellular interactions and for cellular analyses respectively, biosensorial-based analytical platforms were used, with induced cellular changes being confirmed via live cell counts, viability assays, and cell imaging. Results Our analysis of byproducts’ chemical and physical properties revealed both structural and functional changes. Real-time high throughput analyses of exposed cellular systems confirmed that nanoclay induced significant toxic effects, with Cloisite 30B showing time-dependent decreases in live cell count and cellular viability relative to control and pristine nanoclay, respectively. Byproducts produced less toxic effects; all treatments caused alterations in the cell morphology upon exposure. Conclusions Our morphological, behavioral, and viability cellular changes show that nanoclays have the potential to produce toxic effects when used both in manufacturing or disposal environments. General significance The reported toxicological mechanisms prove the extensibility of a biosensorial-based platform for cellular behavior analysis upon treatment with a variety of nanomaterials. PMID:27612663
2012-01-01
Background Mesenchymal stem cells (MSCs) are increasingly used as therapeutic agents as well as research tools in regenerative medicine. Development of technologies which allow storing and banking of MSC with minimal loss of cell viability, differentiation capacity, and function is required for clinical and research applications. Cryopreservation is the most effective way to preserve cells long term, but it involves potentially cytotoxic compounds and processing steps. Here, we investigate the effect of decreasing dimethyl sulfoxide (DMSO) concentrations in cryosolution by substituting with hydroxyethyl starch (HES) of different molecular weights using different freezing rates. Post-thaw viability, phenotype and osteogenic differentiation capacity of MSCs were analysed. Results The study confirms that, for rat MSC, cryopreservation effects need to be assessed some time after, rather than immediately after thawing. MSCs cryopreserved with HES maintain their characteristic cell surface marker expression as well as the osteogenic, adipogenic and chondrogenic differentiation potential. HES alone does not provide sufficient cryoprotection for rat MSCs, but provides good cryoprotection in combination with DMSO, permitting the DMSO content to be reduced to 5%. There are indications that such a combination would seem useful not just for the clinical disadvantages of DMSO but also based on a tendency for reduced osteogenic differentiation capacity of rat MSC cryopreserved with high DMSO concentration. HES molecular weight appears to play only a minor role in its capacity to act as a cryopreservation solution for MSC. The use of a ‘straight freeze’ protocol is no less effective in maintaining post-thaw viability of MSC compared to controlled rate freezing methods. Conclusion A 5% DMSO / 5% HES solution cryopreservation solution using a ‘straight freeze’ approach can be recommended for rat MSC. PMID:22889198
Niu, Junzhi; Han, Lin; Gong, Fen
2016-08-15
BACKGROUND This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. MATERIAL AND METHODS From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. RESULTS Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. CONCLUSIONS Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway.
Niu, Junzhi; Han, Lin; Gong, Fen
2016-01-01
Background This study aimed to explore the therapeutic effect of external application of ligustrazine combined with holistic nursing on pressure sores, as well as the underlying mechanism. Material/Methods From February 2014 to March 2015, a total of 32 patients with Phase II and Phase III pressure sores were enrolled and randomly assigned to an experimental group or a control group. The clinical data were comparable between the 2 groups. In addition to holistic nursing, the patients in the experimental group received 4 weeks of continuous external application of ligustrazine, whereas patients in the control group received compound clotrimazole cream. Therapeutic effect and healing time were recorded. HaCaT cells were used as an in vitro model for mechanism analysis of the effect of ligustrazine in treating pressure sores. After culturing with different concentrations of ligustrazine or the inhibitor of AKT (LY294002) for 72 h, cell viability, clone formation numbers, and levels of phosphatidyl inositol 3-kinase (PI3K), p-AKT, and p-mammalian target of rapamycin (mTOR) were determined. Results Compared to the control group, the total effective rate in the experimental group was significantly higher, and the healing time was significantly reduced. Cell viability and clone formation numbers were significantly upregulated by ligustrazine in a dose-dependent manner. Both the cell viability and clone formation numbers were significantly inhibited by application of LY294002. Conclusions Our results suggest that ligustrazine combined with holistic nursing is an effective treatment of pressure sores. The protective effect may be associated with the promotion of cell growth by activation of the PI3K/AKT pathway. PMID:27523814
Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean
2016-10-01
To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.
Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer
2017-01-01
The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. A total of 15 systemically healthy individuals between the age group of 15-25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7 th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7 th day. The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant ( P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant ( P > 0.05) when compared to the cells cultured with culture media. The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells.
Wang, Juan; Wei, Yun; Zhao, Shasha; Zhou, Ying; He, Wei; Zhang, Yang; Deng, Wensheng
2017-01-01
Mammalian cells are very important experimental materials and widely used in biological and medical research fields. It is often required that mammalian cells are transported from one laboratory to another to meet with various researches. Conventional methods for cell shipment are laborious and costive despite of maintaining high viability. In this study we aimed to develop a simple and low-cost method for cell shipment by investigating the viabilities of different cell lines treated at different temperatures. We show that the viability of mammalian cells incubated at 1°C or 5°C significantly reduced when compared with that at 16°C or 22°C. Colony formation assays revealed that preservation of mammalian cells at 1°C or 5°C led to a poorer recovery than that at 16°C or 22°C. The data from proliferation and apoptotic assays confirmed that M2 cells could continue to proliferate at 16°C or 22°C, but massive death was caused by apoptosis at 1°C or 5°C. The morphology of mammalian cells treated under hypothermia showed little difference from that of the untreated cells. Quantitative RT-PCR and alkaline phosphatase staining confirmed that hypothermic treatment did not change the identity of mouse embryonic stem cells. A case study showed that mammalian cells directly suspended in culture medium were able to be shipped for long distance and maintained a high level of viability and recovery. Our findings not only broaden the understanding to the effect of hypothermia on the viability of mammalian cells, but also provide an alternative approach for cell shipment.
La Peyre, M.K.; Casas, S.M.; Gayle, W.; La Peyre, Jerome F.
2010-01-01
Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25. ppt) to 10 ??C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 ??C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7. ppt cultures acclimated to each temperature and then transferred to 3.5. ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30. days (3.5. ppt, 2 ??C: 0% viability), 60. days (3.5. ppt, 10 ??C: 0% viability) and 90. days (7. ppt, 2 ??C: 0.6 ?? 0.7%; 7. ppt, 10 ??C: 0.2 ?? 0.2%). ?? 2010 .
Metallinou, Chryssa; Köster, Frank; Diedrich, Klaus; Nikolettos, Nikos; Asimakopoulos, Byron
2012-01-01
We investigated the effects of the gonadotropin-releasing hormone (GnRH) agonist triptorelin as well the GnRH antagonist cetrorelix those of on the viability and steroidogenesis in human granulosa luteinized (hGL) cell cultures. The hGL cells were obtained from 34 women undergoing ovarian stimulation for IVF treatment. The cells were cultured for 48 h with or without 1 nM or 3 nM of cetrorelix or triptorelin in serum-free media. The cell viability was evaluated by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The concentrations of estradiol and progesterone in culture supernatants were measured by ELISA. Treatment with triptorelin slightly increased cell viability, whereas treatment with 3 nM cetrorelix led to a significant decrease. Estradiol concentrations were reduced with 3 nM triptorelin. Cultures treated with high-dose of either cetrorelix or triptorelin tended to secrete less progesterone than controls. Cetrorelix significantly reduces the viability of hGL cells. Triptorelin and cetrorelix may have minor effects on steroidogenesis. These results suggest that GnRH analogues may influence ovarian functions.
Zhao, Zhenxin; Xie, Jun; Liu, Bo; Ge, Xianping; Song, Changyou; Ren, Mingchun; Zhou, Qunlan; Miao, Linghong; Zhang, Huimin; Shan, Fan; Yang, Zhenfei
2017-03-01
We determined the effects of emodin on the cell viability, respiratory burst activity, mRNA levels of antioxidative enzymes (Cu-Zn SOD, CAT and NOX2), and gene expressions of the Nrf2-Keap1 signaling molecules in the peripheral blood leukocytes of blunt snout bream. Triplicate groups of cultured cells were treated with different concentrations of emodin (0.04-25 μg/ml) for 24 h. Results showed that the emodin caused a dramatic loss in cell viability, and occurred in a dose-dependent manner. Emodin exposure (1-25 μg/ml) were significantly induced the ROS generation compared to the control. The respiratory burst and NADPH oxidase activities were significantly induced at a concentration of 0.20 μg/ml, and inhibited at 25 μg/ml. Besides, mRNA levels of antioxidant enzyme genes were dramatically regulated by emodin exposure for 24 h. During low concentrations of exposure, mRNA levels of Cu-Zn SOD in the cells treated with 0.04, 0.20 μg/ml, CAT, NOX2 and Nrf2 in the cells treated with 1 μg/ml were sharply increased, respectively. Whereas, high concentrations were dramatically down-regulated the gene expressions of CAT in the cells treated with 5, 25 μg/ml and NOX2 in the cells treated with 25 μg/ml. Furthermore, sharp increase in Keap1and Bach1 expression levels were observed a dose-dependent manner. In conclusion, this study demonstrated that emodin could induce antioxidant defenses which were involved in cytotoxic activities, respiratory burst and the transcriptional regulation levels of antioxidant enzymes and Nrf2-Keap1 signaling molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model.
Steves, Alyse N; Turry, Adam; Gill, Brittany; Clarkson-Townsend, Danielle; Bradner, Joshua M; Bachli, Ian; Caudle, W Michael; Miller, Gary W; Chan, Anthony W S; Easley, Charles A
2018-06-18
Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.
2011-01-01
Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and protamine may be applicable to patients, since both ferumoxides and protamine are approved for human use. PMID:21542946
Zhang, Xi-Feng; Huang, Feng-Hua; Zhang, Guo-Liang; Bai, Ding-Ping; Massimo, De Felici; Huang, Yi-Fan; Gurunathan, Sangiliyandi
2017-01-01
Background Recently, there has been much interest in the field of nanomedicine to improve prevention, diagnosis, and treatment. Combination therapy seems to be most effective when two different molecules that work by different mechanisms are combined at low dose, thereby decreasing the possibility of drug resistance and occurrence of unbearable side effects. Based on this consideration, the study was designed to investigate the combination effect of reduced graphene oxide-silver nanoparticles (rGO-AgNPs) and trichostatin A (TSA) in human ovarian cancer cells (SKOV3). Methods The rGO-AgNPs were synthesized using a biomolecule called lycopene, and the resultant product was characterized by various analytical techniques. The combination effect of rGO-Ag and TSA was investigated in SKOV3 cells using various cellular assays such as cell viability, cytotoxicity, and immunofluorescence analysis. Results AgNPs were uniformly distributed on the surface of graphene sheet with an average size between 10 and 50 nm. rGO-Ag and TSA were found to inhibit cell viability in a dose-dependent manner. The combination of rGO-Ag and TSA at low concentration showed a significant effect on cell viability, and increased cytotoxicity by increasing the level of malondialdehyde and decreasing the level of glutathione, and also causing mitochondrial dysfunction. Furthermore, the combination of rGO-Ag and TSA had a more pronounced effect on DNA fragmentation and double-strand breaks, and eventually induced apoptosis. Conclusion This study is the first to report that the combination of rGO-Ag and TSA can cause potential cytotoxicity and also induce significantly greater cell death compared to either rGO-Ag alone or TSA alone in SKOV3 cells by various mechanisms including reactive oxygen species generation, mitochondrial dysfunction, and DNA damage. Therefore, this combination chemotherapy could be possibly used in advanced cancers that are not suitable for radiation therapy or surgical treatment and facilitate overcoming tumor resistance and disease progression. PMID:29075115
2011-01-01
Background Oxymatrine, an isolated extract from traditional Chinese herb Sophora Flavescens Ait, has been traditionally used for therapy of anti-hepatitis B virus, anti-inflammation and anti-anaphylaxis. The present study was to investigate the anti-cancer effect of oxymatrine on human pancreatic cancer PANC-1 cells, and its possible molecular mechanism. Methods The effect of oxymatrine on the viability and apoptosis was examined by methyl thiazolyl tetrazolium and flow cytometry analysis. The expression of Bax, Bcl-2, Bcl-x (L/S), Bid, Bad, HIAP-1, HIAP-2, XIAP, NAIP, Livin and Survivin genes was accessed by RT-PCR. The levels of cytochrome c and caspase 3 protein were assessed by Western blotting. Results Oxymatrine inhibited cell viability and induced apoptosis of PANC-1 cells in a time- and dose-dependent manner. This was accompanied by down-regulated expression of Livin and Survivin genes while the Bax/Bcl-2 ratio was upregulated. Furthermore, oxymatrine treatment led to the release of cytochrome c and activation of caspase-3 proteins. Conclusion Oxymatrine can induce apoptotic cell death of human pancreatic cancer, which might be attributed to the regulation of Bcl-2 and IAP families, release of mitochondrial cytochrome c and activation of caspase-3. PMID:21714853
Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter
2016-01-01
Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue. PMID:27200182
Johnen, Sandra; Meißner, Frank; Krug, Mario; Baltz, Thomas; Endler, Ingolf; Mokwa, Wilfried; Walter, Peter
2016-01-01
Background. To analyze the biocompatibility of vertically aligned multiwalled carbon nanotubes (MWCNT), used as nanomodification to optimize the properties of prostheses-embedded microelectrodes that induce electrical stimulation of surviving retinal cells. Methods. MWCNT were synthesized on silicon wafers. Their growth was achieved by iron particles (Fe) or mixtures of iron-platinum (Fe-Pt) and iron-titanium (Fe-Ti) acting as catalysts. Viability, growth, adhesion, and gene expression of L-929 and retinal precursor (R28) cells were analyzed after nondirect and direct contact. Results. Nondirect contact had almost no influence on cell growth, as measured in comparison to reference materials with defined levels of cytotoxicity. Both cell types exhibited good proliferation properties on each MWCNT-coated wafer. Viability ranged from 95.9 to 99.8%, in which better survival was observed for nonfunctionalized MWCNT generated with the Fe-Pt and Fe-Ti catalyst mixtures. R28 cells grown on the MWCNT-coated wafers showed a decreased gene expression associated with neural and glial properties. Expression of the cell cycle-related genes CCNC, MYC, and TP53 was slightly downregulated. Cultivation on plasma-treated MWCNT did not lead to additional changes. Conclusions. All tested MWCNT-covered slices showed good biocompatibility profiles, confirming that this nanotechnology is a promising tool to improve prostheses bearing electrodes which connect with retinal tissue.
NASA Astrophysics Data System (ADS)
Koleva, Vanya; Dragoeva, Asya; Stoyanova, Zheni; Yordanova, Zhenia; Ali, Selime; Uzunov, Nikolay M.; Melendez-Alafort, Laura; Rosato, Antonio; Enchev, Dobromir D.
2018-03-01
Medicinal plants produce various secondary metabolites as a part of their chemical defence and survival in nature. These compounds have a wide range of biological activities. Nowadays, medicinal plants are used as source of allelochemicals and new effective anticancer agents. Our previous studies revealed allelopathic potential of water extracts of Adonis vernalis L. (Ranunculaceae), Origanum vulgare ssp. vulgare L. and Nepeta nuda subsp. nuda (Lamiaceae). Present study aimed to evaluate the effect of the same extracts in vitro on human hepatoma cell line SK-HEP-1. Cell proliferation/viability was assessed using Premixed WST-1 Cell Proliferation Reagent. Adonis water extract (1.83mg/ml) had notable negative influence on cancer cell line tested. Oregano (3.5 mg/ml) also exerted negative effect, but to a lesser degree. On the contrary, nepeta water extract (6.59 mg/ml) had an opposite effect, stimulating cell proliferation. One possible explanation could be the type of extraction: after treatment with nepeta methanol extract (6.59 mg/ml) cell viability was significantly reduced. In conclusion, Adonis vernalis and Nepeta nuda subsp. nuda possess metabolites with growth inhibitory effect on human hepatoma cell line SK-HEP-1. Further research is needed to clarify biological activity of lower concentrations which are appropriate to enable the design of new anticancer drugs.
Keshavarz-Pakseresht, Behta; Shandiz, Seyed Ataollah Sadat; Baghbani-arani, Fahimeh
2017-01-01
Aim: The present study investigated the anti-tumor activity of Imatinib mesylate through modulation of NM23 gene expression in human hepatocellular carcinoma (HepG2) cell line. Background: Hepatocellular carcinoma (HCC) is considered to be the third leading cause of cancer related death worldwide. Down regulation of NM23, a metastasis suppressor gene, has been associated with several types of malignant cancer. Recently, effects of Imatinib mesylate, a first member of tyrosine kinases inhibitors, were indicated in research and treatment of different malignant tumors. Methods: Cell viability was quantitated by MTT assay after HepG2 cells exposure to Imatinib mesylate at various concentrations of 0, 1.56, 3.125, 6.25, 12.5, 25,50μM for 24 hours. Also, quantitative real time PCR technique was applied for the detection of NM23 gene expression in HepG2 cell line. Results: There was a dose dependent increase in the cytotoxicity effect of imatinib. The real time PCR results demonstrated that inhibitory effect of Imatinib mesylate on viability via up regulation of NM23 gene expression compared to GAPDH gene (internal control gene) in cancer cells. Conclusion: According to our findings, imatinib can modulate metastasis by enhancing Nm23 gene expression in human hepatocellular carcinoma (HepG2) cell line. PMID:28331561
Hastings, Jordan; Kenealey, Jason
2017-01-01
Avenanthramides (AVN) are a relatively unstudied family of phytochemicals that could be novel chemotherapeutics. These compounds, found in oats, are non-toxic to healthy cells and have been shown to reduce viability of human colon and liver cancers in vitro. However, these studies do not elucidate a molecular mechanism for individual AVN. In this study we aim to see the effects of AVN on MDA-MB-231 breast cancer cells. An MTT assay was used to determine cell viability. Staining and analysis with a flow cytometer was used to identify cell cycle progression and apoptosis. FloJo software was used to analyze the cytometric data. In all experiments, statistical significance was determined by a two-tailed t test. This study demonstrates that AVN-A, B, and C individually reduce viability in the MDA-MB-231 breast cancer cell line. AVN-C has the most potent decrease in tumor cell viability, decreasing viable cells to below 25% at 400 µM when compared to control after 96 h. We demonstrate that treatment with AVN-C causes DNA fragmentation and accumulation of over 90% of cells into a sub G 1 cell cycle population. Further, we conclude that AVN-C treated cells activate apoptosis because 97% of treated cells stain positive for annexin V while 91% have caspase-3/7 activity, a late marker of apoptosis. Breast cancer cells treated with AVN-C have a decrease in cell viability, an increase in the sub G 1 population, and stain positive for both annexin V and caspase activity, indicating that AVN-C induces apoptosis in breast cancer cells. These compounds may be able to act as chemotherapeutics as demonstrated through future in vivo studies.
Kang, Seungbum; Choi, Hyunsu; Rho, Chang Rae
2016-12-01
This study compared the effects of 3 antivascular endothelial growth factor (VEGF) agents (bevacizumab, ranibizumab, and aflibercept) on corneal epithelial cell viability and wound healing using human corneal epithelial cells (HCECs). To determine the cytotoxic effects of anti-VEGF agents on HCECs, HCEC viability was determined at various concentrations of these agents. An in vitro migration assay was used to investigate the migration of HCECs treated with 3 anti-VEGF agents. The protein level of extracellular signal-regulated kinase was used to evaluate the effect of anti-VEGF treatment on cell proliferation. The protein levels of p38 mitogen-activated protein kinase (MAPK) were analyzed by Western blotting to investigate cell migration. After 24 or 48 h of exposure, aflibercept treatment showed no apparent effect on cell viability; however, bevacizumab and ranibizumab treatment decreased cell viability at high concentrations (1 and 2 mg/mL). A migration assay showed that HCEC migration was different among the 3 anti-VEGF treatment groups. Bevacizumab significantly delayed HCEC migration. Western blotting showed that bevacizumab treatment decreased the expression levels of phosphorylated p38 MAPK. Bevacizumab, the most widely used and investigated anti-VEGF agent, decreased epithelial cell migration and viability. Anti-VEGF agents other than bevacizumab might therefore be better for treating corneal neovascularization complicated with epithelial defects.
Improvement in the Viability of Cryopreserved Cells by Microencapsulation
NASA Astrophysics Data System (ADS)
Matsumoto, Yoshifumi; Morinaga, Yukihiro; Ujihira, Masanobu; Oka, Kotaro; Tanishita, Kazuo
The advantages of microencapsulated cells over those of suspended cells were evaluated for improving viability in cryopreservation. Rat pheochromocytoma (PC12) cells were selected as the test biological cells and then microencapsulated in alginate-polylysine-alginate membranes. These microencapsulated PC12 cells were frozen by differential scanning calorimetry (DSC) at various cooling rates, from 0.5 to 10°C/min. Their latent heat was measured during freezing from 4 to -80°C. The post-thaw viability was evaluated by dopamine-concentration measurement and by trypan blue exclusion assay. Results showed that at cooling rates of 0.5 and 1°C/min, the latent heat of microencapsulated PC12 cells was lower than that of suspended cells. This lower latent heat is caused by the fact that the extra-microcapsule froze and the intra-capsule remained unfrozen due to the formation of ice crystals in the extra-capsule space. The post-thaw viability of microencapsulated PC12 cells was improved when the cooling rate was 0.5 or 1°C/min, compared with that of suspended cells. Therefore, in microencapsulated PC12 cells, maintaining the intra-microcapsules in an unfrozen state during freezing reduces the solution effect and thus improves the post-thaw viability.
Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício
2016-12-01
Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.
Horst, Camila Hillesheim; Titze-De-Almeida, Ricardo; Titze-De-Almeida, Simoneide Souza
2017-01-01
The loss of dopaminergic neurons and the resultant motor impairment are hallmarks of Parkinson's disease. The SH-SY5Y cell line is a model of dopaminergic neurons, and allows for the study of dopaminergic neuronal injury. Previous studies have revealed changes in Ether à go-go 1 (Eag1) potassium channel expression during p53-induced SH-SY5Y apoptosis, and the regulatory involvement of microRNA-34a (miR-34a) was demonstrated. In the present study, the involvement of Eag1 and miR-34a in rotenone-induced SH-SY5Y cell injury was investigated. Rotenone is a neurotoxin, which is often used to generate models of Parkinson's disease, since it causes the death of nigrostriatal neurons by inducing intracellular aggregation of alpha synuclein and ubiquitin. In the present study, rotenone resulted in a dose-dependent decrease in cell viability, as revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue cell counting assays. In addition, Eag1 was demonstrated to be constitutively expressed by SH-SY5Y cells, and involved in cell viability. Suppression of Eag1 with astemizole resulted in a dose-dependent decrease in cell viability, as revealed by MTT assay. Astemizole also enhanced the severity of rotenone-induced injury in SH-SY5Y cells. RNA interference against Eag1, using synthetic small interfering RNAs (siRNAs), corroborated this finding, as siRNAs potentiated rotenone-induced injury. Eag1-targeted siRNAs (kv10.1-3 or EAG1hum_287) resulted in a statistically significant 16.4–23.5% increase in vulnerability to rotenone. An increased number of apoptotic nuclei were observed in cells transfected with EAG1hum_287. Notably, this siRNA intensified rotenone-induced apoptosis, as revealed by an increase in caspase 3/7 activity. Conversely, a miR-34a inhibitor was demonstrated to exert neuroprotective effects. The viability of cells exposed to rotenone for 24 or 48 h and treated with miR-34a inhibitor was restored by 8.4–8.8%. In conclusion, Eag1 potassium channels and miR-34a are involved in the response to rotenone-induced injury in SH-SY5Y cells. The neuroprotective effect of mir-34a inhibitors merits further investigations in animal models of Parkinson's disease. PMID:28259991
Aberrant meiotic behavior in Agave tequilana Weber var. azul
Ruvalcaba-Ruiz, Domingo; Rodríguez-Garay, Benjamin
2002-01-01
Background Agave tequilana Weber var. azul, is the only one variety permitted by federal law in México to be used for tequila production which is the most popular contemporary alcoholic beverage made from agave and recognized worldwide. Despite the economic, genetic, and ornamental value of the plant, it has not been subjected to detailed cytogenetic research, which could lead to a better understanding of its reproduction for future genetic improvement. The objective of this work was to study the meiotic behavior in pollen mother cells and its implications on the pollen viability in Agave tequilana Weber var. azul. Results The analysis of Pollen Mother Cells in anaphase I (A-I) showed 82.56% of cells with a normal anaphase and, 17.44% with an irregular anaphase. In which 5.28% corresponded to cells with side arm bridges (SAB); 3.68% cells with one bridge and one fragment; 2.58% of irregular anaphase showed cells with one or two lagging chromosomes and 2.95% showed one acentric fragment; cells with two bridges and cells with two bridges and one acentric fragment were observed in frequencies of 1.60% and 1.35% respectively. In anaphase II some cells showed bridges and fragments too. Aberrant A-I cells had many shrunken or empty pollen grains (42.00%) and 58.00 % viable pollen. Conclusion The observed meiotic irregularities suggest that structural chromosome aberrations have occurred, such as heterozygous inversions, sister chromatid exchanges, deletions and duplications which in turn are reflected in a low pollen viability. PMID:12396234
Chen, Yu-Jen; Huang, Yu-Chuen; Tsai, Tung-Hu
2014-01-01
The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (Wasabi), a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557) are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu's stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH) activity was used as a marker for cancer stem cells (CSC). Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells. PMID:24575144
Chen, Yu-Jen; Huang, Yu-Chuen; Tsai, Tung-Hu; Liao, Hui-Fen
2014-01-01
The naturally occurring compound 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) was isolated from Wasabia japonica (Wasabi), a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenyl)hexyl isothiocyanate (I7447) and 6-(methylsulfonyl)hexyl isothiocyanate (I7557) are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu's stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH) activity was used as a marker for cancer stem cells (CSC). Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells.
Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena
2017-01-01
Background Essential oils from the aerial parts (leaves, twigs and berries) of Pistacia lentiscus (PLEO) have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity. Methods Increasing concentrations of PLEO (0.01–0.1% v/v, 80–800 μg/ml) were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS), the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line. Results A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells. Conclusion Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology. PMID:28196126
Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.
Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P
2016-11-01
Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca 2+ signaling ([Ca 2+ ] i ), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca 2+ ] i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca 2+ ] i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response. © 2016 Society for Endocrinology.
Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser
NASA Astrophysics Data System (ADS)
Schneckenburger, Herbert; Hendinger, Anita; Sailer, Reinhard; Gschwend, Michael H.; Strauss, Wolfgang S.; Bauer, Manfred; Schuetze, Karin
2000-01-01
Viability of cultivated Chinese hamster ovary cells in optical tweezers was measured after exposure to various light doses of red high power laser diodes ((lambda) equals 670 - 680 nm) and a Nd:yttrium-aluminum-garnet laser ((lambda) equals 1064 nm). When using a radiant exposure of 2.4 GJ/cm2, a reduction of colony formation up to a factor 2 (670 - 680 nm) or 1.6 (1064 nm) as well as a delay of cell growth were detected in comparison with nonirradiated controls. In contrast, no cell damage was found at an exposure of 340 MJ/cm2 applied at 1064 nm. Cell viabilities were correlated with fluorescence excitation spectra and with literature data of wavelength dependent cloning efficiencies. Fluorescence excitation maxima of the coenzymes NAD(P)H and flavins were detected at 365 and 450 nm, respectively. This is half of the wavelengths of the maxima of cell inactivation, suggesting that two-photon absorption by these coenzymes may contribute to cellular damage. Two-photon excitation of NAD(P)H and flavins may also affect cell viability after exposure to 670 - 680 nm, whereas one-photon excitation of water molecules seems to limit cell viability at 1064 nm.
Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian
2016-01-01
A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL’s effect on intestinal mucus barrier function. PMID:27364593
Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel
2012-01-01
Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.
Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway.
Su, Jin; Yan, Yan; Qu, Jingkun; Xue, Xuewen; Liu, Zi; Cai, Hui
2017-03-01
Emodin is a phytochemical with potent anticancer activities against various human malignant cancer types, including lung cancer; however, the molecular mechanisms underlying the effects of emodin remain unclear. In the present study, the A549 and H1299 human non-small lung cancer cell lines were treated with emodin and the induced molecular effects were investigated. Changes in cell viability were evaluated by MTT assay, Hoechst staining was used to indicate the apoptotic cells, and western blotting was utilized to assess endoplasmic reticulum (ER) stress and signaling changes. RNA interference was also employed to further examine the role of tribbles homolog 3 (TRIB3) in the emodin-induced apoptosis of lung cancer cells. Emodin was found to reduce the viability of lung cancer cells and induce apoptosis in a concentration-dependent manner. Emodin-induced apoptosis was impaired by inhibition of ER stress using 4-phenylbutyrate (4-PBA). ER stress and TRIB3/nuclear factor-κB signaling was activated in emodin-treated lung cancer cells. Emodin-induced apoptosis was reduced by TRIB3 knockdown in A549 cells, whereas ER stress was not reduced. In vivo assays verified the significance of these results, revealing that emodin inhibited lung cancer growth and that the inhibitory effects were reduced by inhibition of ER stress with 4-PBA. In conclusion, the results suggest that TRIB3 signaling is associated with emodin-induced ER stress-mediated apoptosis in lung cancer cells.
Pauksch, Linda; Hartmann, Sonja; Szalay, Gabor; Alt, Volker; Lips, Katrin S
2014-01-01
Peri-prosthetic infections caused by multidrug resistant bacteria have become a serious problem in surgery and orthopedics. The aim is to introduce biomaterials that avoid implant-related infections caused by multiresistant bacteria. The efficacy of silver nanoparticles (AgNP) against a broad spectrum of bacteria and against multiresistant pathogens has been repeatedly described. In the present study polymethylmethacrylate (PMMA) bone cement functionalized with AgNP and/or gentamicin were tested regarding their biocompatibility with bone forming cells. Therefore, influences on viability, cell number and differentiation of primary human mesenchymal stem cells (MSCs) and MSCs cultured in osteogenic differentiation media (MSC-OM) caused by the implant materials were studied. Furthermore, the growth behavior and the morphology of the cells on the testing material were observed. Finally, we examined the induction of cell stress, regarding antioxidative defense and endoplasmatic reticulum stress. We demonstrated similar cytocompatibility of PMMA loaded with AgNP compared to plain PMMA or PMMA loaded with gentamicin. There was no decrease in cell number, viability and osteogenic differentiation and no induction of cell stress for all three PMMA variants after 21 days. Addition of gentamicin to AgNP-loaded PMMA led to a slight decrease in osteogenic differentiation. Also an increase in cell stress was detectable for PMMA loaded with gentamicin and AgNP. In conclusion, supplementation of PMMA bone cement with gentamicin, AgNP, and both results in bone implants with an antibacterial potency and suitable cytocompatibility in MSCs and MSC-OM.
Zhang, Chong-Yu; Sun, Xin-Yuan; Ouyang, Jian-Ming; Gui, Bao-Song
2017-01-01
Objective This study aimed to investigate the damage mechanism of nanosized hydroxyapatite (nano-HAp) on mouse aortic smooth muscle cells (MOVASs) and the injury-inhibiting effects of diethyl citrate (Et2Cit) and sodium citrate (Na3Cit) to develop new drugs that can simultaneously induce anticoagulation and inhibit vascular calcification. Methods The change in cell viability was evaluated using a cell proliferation assay kit, and the amount of lactate dehydrogenase (LDH) released was measured using an LDH kit. Intracellular reactive oxygen species (ROS) and mitochondrial damage were detected by DCFH-DA staining and JC-1 staining. Cell apoptosis and necrosis were detected by Annexin V staining. Intracellular calcium concentration and lysosomal integrity were measured using Fluo-4/AM and acridine orange, respectively. Results Nano-HAp decreased cell viability and damaged the cell membrane, resulting in the release of a large amount of LDH. Nano-HAp entered the cells and damaged the mitochondria, and then induced cell apoptosis by producing a large amount of ROS. In addition, nano-HAp increased the intracellular Ca2+ concentration, leading to lysosomal rupture and cell necrosis. On addition of the anticoagulant Et2Cit or Na3Cit, cell viability and mitochondrial membrane potential increased, whereas the amount of LDH released, ROS, and apoptosis rate decreased. Et2 Cit and Na3Cit could also chelate with Ca+ to inhibit the intracellular Ca2+ elevations induced by nano-HAp, prevent lysosomal rupture, and reduce cell necrosis. High concentrations of Et2Cit and Na3Cit exhibited strong inhibitory effects. The inhibitory capacity of Na3Cit was stronger than that of Et2Cit at similar concentrations. Conclusion Both Et2Cit and Na3Cit significantly reduced the cytotoxicity of nano-HAp on MOVASs and inhibited the apoptosis and necrosis induced by nano-HAp crystals. The chelating function of citrate resulted in both anticoagulation and binding to HAp. Et2Cit and Na3Cit may play a role as anticoagulants in reducing injury to the vascular wall caused by nano-HAp. PMID:29238189
Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François
2015-01-01
We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274
Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes
Krech, Till; DeTemple, Daphne; Jäger, Mark D.; Lehner, Frank; Manns, Michael P.; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W. R.
2014-01-01
Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent a valuable source of metabolically competent PHH which are comparable in viability and function to cells obtained from specimens following partial liver resection. PMID:24999631
Pianigiani, E; Tognetti, L; Ierardi, F; Mariotti, G; Rubegni, P; Cevenini, G; Perotti, R; Fimiani, M
2016-06-01
Skin allografts from cadaver donors are an important resource for treating extensive burns, slow-healing wounds and chronic ulcers. A high level of cell viability of cryopreserved allografts is often required, especially in burn surgery, in Italy. Thus, we aimed to determine which conditions enable procurement of highly viable skin in our Regional Skin Bank of Siena. For this purpose, we assessed cell viability of cryopreserved skin allografts procured between 2011 and 2013 from 127 consecutive skin donors, before and after freezing (at day 15, 180, and 365). For each skin donor, we collected data concerning clinical history (age, sex, smoking, phototype, dyslipidemia, diabetes, cause of death), donation process (multi-tissue or multi-organ) and timing of skin procurement (assessment of intervals such as death-harvesting, harvesting-banking, death-banking). All these variables were analysed in the whole case study (127 donors) and in different groups (e.g. multi-organ donors, non refrigerated multi-tissue donors, refrigerated multi-tissue donors) for correlations with cell viability. Our results indicated that cryopreserved skin allografts with higher cell viability were obtained from female, non smoker, heartbeating donors died of cerebral haemorrhage, and were harvested within 2 h of aortic clamping and banked within 12 h of harvesting (13-14 h from clamping). Age, cause of death and dyslipidaemia or diabetes did not appear to influence cell viability. To maintain acceptable cell viability, our skin bank needs to reduce the time interval between harvesting and banking, especially for refrigerated donors.
Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants.
Berninger, Teresa; González López, Óscar; Bejarano, Ana; Preininger, Claudia; Sessitsch, Angela
2018-03-01
The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Reduced graphene oxide–silver nanoparticle nanocomposite: a potential anticancer nanotherapy
Gurunathan, Sangiliyandi; Han, Jae Woong; Park, Jung Hyun; Kim, Eunsu; Choi, Yun-Jung; Kwon, Deug-Nam; Kim, Jin-Hoi
2015-01-01
Background Graphene and graphene-based nanocomposites are used in various research areas including sensing, energy storage, and catalysis. The mechanical, thermal, electrical, and biological properties render graphene-based nanocomposites of metallic nanoparticles useful for several biomedical applications. Epithelial ovarian carcinoma is the fifth most deadly cancer in women; most tumors initially respond to chemotherapy, but eventually acquire chemoresistance. Consequently, the development of novel molecules for cancer therapy is essential. This study was designed to develop a simple, non-toxic, environmentally friendly method for the synthesis of reduced graphene oxide–silver (rGO–Ag) nanoparticle nanocomposites using Tilia amurensis plant extracts as reducing and stabilizing agents. The anticancer properties of rGO–Ag were evaluated in ovarian cancer cells. Methods The synthesized rGO–Ag nanocomposite was characterized using various analytical techniques. The anticancer properties of the rGO–Ag nanocomposite were evaluated using a series of assays such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, cellular levels of malonaldehyde and glutathione, caspase-3 activity, and DNA fragmentation in ovarian cancer cells (A2780). Results AgNPs with an average size of 20 nm were uniformly dispersed on graphene sheets. The data obtained from the biochemical assays indicate that the rGO–Ag nanocomposite significantly inhibited cell viability in A2780 ovarian cancer cells and increased lactate dehydrogenase leakage, reactive oxygen species generation, caspase-3 activity, and DNA fragmentation compared with other tested nanomaterials such as graphene oxide, rGO, and AgNPs. Conclusion T. amurensis plant extract-mediated rGO–Ag nanocomposites could facilitate the large-scale production of graphene-based nanocomposites; rGO–Ag showed a significant inhibiting effect on cell viability compared to graphene oxide, rGO, and silver nanoparticles. The nanocomposites could be effective non-toxic therapeutic agents for the treatment of both cancer and cancer stem cells. PMID:26491296
NASA Astrophysics Data System (ADS)
Catros, Sylvain; Guillotin, Bertrand; Bačáková, Markéta; Fricain, Jean-Christophe; Guillemot, Fabien
2011-04-01
Biofabrication of three dimensional tissues by Laser-Assisted Bioprinting (LAB) implies to develop specific strategies for assembling the extracellular matrix (ECM) and cells. Possible strategies consist in (i) printing cells onto or in the depth of ECM layer and/or (ii) printing bioinks containing both cells and ECM-like printable biomaterial. The aim of this article was to evaluate combinatorial effects of laser pulse energy, ECM thickness and viscosity of the bioink on cell viability. A LAB workstation was used to print Ea.hy926 endothelial cells onto a quartz substrate covered with a film of ECM mimicking Matrigel™. Hence, effect of laser energy, Matrigel™ film thickness and bioink viscosity was addressed for different experimental conditions (8-24 μJ, 20-100 μm and 40-110 mPa s, respectively). Cell viability was assessed by live/dead assay performed 24 h post-printing. Results show that increasing the laser energy tends to augment the cell mortality while increasing the thickness of the Matrigel™ film and the viscosity of the bioink support cell viability. Hence, critical printing parameters influencing high cell viability have been related to the cell landing conditions and more specifically to the intensity of the cell impacts occurring at the air-ECM interface and at the ECM-glass interface.
Garrido, Angela Delfina Bittencourt; de Cara, Sueli Patricia Harumi Miyagi; Marques, Marcia Martins; Sponchiado, Emílio Carlos; Garcia, Lucas da Fonseca Roberti; de Sousa-Neto, Manoel Damião
2015-01-01
Background: The constant development of new root canal sealers has allowed the solution of a large number of clinical cases in endodontics, however, cytotoxicity of such sealers must be tested before their validation as filling materials. The aim of this study was to evaluate the cytotoxic effect of a new Copaiba oil-based root canal sealer (Biosealer [BS]) on osteoblast-like Osteo-1 cells. Materials and Methods: The experimental groups were formed according to the culture medium conditioned with the tested sealers, as follows: Control group (CG) (culture medium without conditioning); Sealer 26 (S26) - culture medium + S26; Endofill (EF) - culture medium + EF; AH Plus (AHP) - culture medium + AHP; and BS - culture medium + BS (Copaiba oil-based sealer). The conditioned culture medium was placed in contact with 2 × 104 cells cultivated on 60 mm diameter Petri dishes for 24 h. Then, hemocytometer count was performed to evaluate cellular viability, using Trypan Blue assay. The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for cellular viability were statistically analyzed (1-way ANOVA, Tukey's test - P < 0.05), with a significance level of 5%. Results: S26, EF and AHP presented decreased cellular viability considerably, with statistical significance compared with CG (P < 0.05). BS maintained cellular viability similar to CG (P > 0.05). Conclusion: The Copaiba oil-based root canal sealer presented promising results in terms of cytotoxicity which indicated its usefulness as a root canal sealer. PMID:25878676
Bruno, J B; Lima-Verde, I B; Celestino, J J H; Lima, L F; Matos, M H T; Faustino, L R; Donato, M A M; Peixoto, C A; Campello, C C; Silva, J R V; Figueiredo, J R
2016-08-01
This study aimed to evaluate mRNA levels of angiotensin II (ANG II) receptors (AGTR1 and AGTR2) in caprine follicles and to investigate the influence of ANG II on the viability and in vitro growth of preantral follicles. Real-time polymerase chain reaction (PCR) was used to quantify AGTR1 and AGTR2 mRNA levels in the different follicular stages. For culture, caprine ovaries were collected, cut into 13 fragments and then either directly fixed for histological and ultrastructural analysis (fresh control) or placed in culture for 1 or 7 days in α-minumum essential medium plus (α-MEM+) with 0, 1, 5, 10, 50 or 100 ng/ml ANG II. Then, the fragments were destined to morphological, viability and ultrastructural analysis. The results showed that primordial follicles had higher levels of AGTR1 and AGTR2 mRNA than secondary follicles. Granulosa/theca cells from antral follicles had higher levels of AGTR1 mRNA than their respective cumulus-oocyte complex (COCs). After 7 days of culture, ANG II (10 or 50 ng/ml) maintained the percentages of normal follicles compared with α-MEM+. Fluorescence and ultrastructural microscopy confirmed follicular integrity in ANG II (10 ng/ml). In conclusion, a high expression of AGTR1 and AGTR2 is observed in primordial follicles. Granulosa/theca cells from antral follicles had higher levels of AGTR1 mRNA. Finally, 10 ng/ml ANG II maintained the viability of caprine preantral follicles after in vitro culture.
The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...
Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay
The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...
An, Rong; Wang, Yisong; Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe
2016-05-17
Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients.
Grollino, Maria Giuseppa; Raschellà, Giuseppe; Cordelli, Eugenia; Villani, Paola; Pieraccioli, Marco; Paximadas, Irene; Malandrino, Salvatore; Bonassi, Stefano; Pacchierotti, Francesca
2017-11-01
The use of Ginkgo biloba leaf extract as nutraceutical is becoming increasingly common. As a consequence, the definition of a reliable toxicological profile is a priority for its safe utilization. Recently, contrasting data have been reported on the carcinogenic potential of Ginkgo biloba extract in rodent liver. We measured viability, Reactive Oxygen Species (ROS), apoptosis, colony-forming efficiency, genotoxicity by comet assay, and gene expression changes associated with hepato-carcinogenicity in human cells of hepatic origin (HepG2 and THLE-2) treated with different concentrations (0.0005-1.2 mg/mL) of Ginkgoselect ® Plus. Our analyses highlighted a decrease of cell viability, not due to apoptosis, after treatment with high doses of the extract, which was likely due to ROS generation by a chemical reaction between extract polyphenols and some components of the culture medium. Comet assay did not detect genotoxic effect at any extract concentration. Finally, the array analysis detected a slight decrease in the expression of only one gene (IGFBP3) in Ginkgo-treated THLE-2 cells as opposed to changes in 28 genes in Aflatoxin B1 treated-cells. In conclusion, our results did not detect any significant genotoxic or biologically relevant cytotoxic effects and gross changes in gene expression using the Ginkgo extract in the hepatic cells tested. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Seghatoleslam, Atefeh; Hemmati, Mina; Ebadat, Saeedeh; Movahedi, Bahram; Mostafavi-Pour, Zohreh
2016-01-01
Background: Macrophage immune responses are affected by the secretory proteins of Mycobacterium tuberculosis (Mtb). This study aimed to examine the immune responses of macrophages to Mtb secretory antigens, namely ESAT-6, CFP-10, and ESAT-6/CFP-10. Methods: THP-1 cells (a human monocytic cell line) were cultured and differentiated to macrophages by phorbol 12-myristate 13-acetate. The cytotoxicity of the recombinant Mtb proteins was assessed using the MTT assay. Two important immune responses of macrophages, namely NO and ROS production, were measured in response to the ESAT-6, CFP-10, and ESAT-6/CFP-10 antigens. The data were analyzed using one-way ANOVA with SPSS, version 16, and considered significant at P<0.05. Results: The results showed that the ESAT-6, CFP-10, and ESAT-6/CFP-10 proteins markedly reduced macrophage immune response. The treatment of the THP-1-differentiated cells with ESAT-6, CFP-10, and ESAT-6/CFP-10 reduced NO and ROS production. The treated THP-1-differentiated cells exhibited less inducible NO synthase activity than did the untreated cells. No toxic effect on macrophage viability was observed for the applied proteins at the different concentrations. Conclusion: It seems that the decline in macrophage immune response is due to the suppression of NO and ROS production pathways without any effect on cell viability. PMID:27365551
Zhang, Di; Ren, Li; Chen, Guan-Qun; Zhang, Jie; Reed, Barbara M; Shen, Xiao-Hui
2015-09-01
Oxidative stress and apoptosis-like programmed cell death, induced in part by H 2 O 2 , are two key factors that damage cells during plant cryopreservation. Their inhibition can improve cell viability. We hypothesized that oxidative stress and apoptosis-like event induced by ROS seriously impact plant cell viability during cryopreservation. This study documented changes in cell morphology and ultrastructure, and detected dynamic changes in ROS components (O 2 (·-) , H2O2 and OH·), antioxidant systems, and programmed cell death (PCD) events during embryonic callus cryopreservation of Agapanthus praecox. Plasmolysis, organelle ultrastructure changes, and increases in malondialdehyde (a membrane lipid peroxidation product) suggested that oxidative damage and PCD events occurred at several early cryopreservation steps. PCD events including autophagy, apoptosis-like, and necrosis also occurred at later stages of cryopreservation, and most were apoptosis. H2O2 is the most important ROS molecule mediating oxidative damage and affecting cell viability, and catalase and AsA-GSH cycle are involved in scavenging the intracellular H2O2 and protecting the cells against stress damage in the whole process. Gene expression studies verified changes of antioxidant system and PCD-related genes at the main steps of the cryopreservation process that correlated with improved cell viability. Reducing oxidative stress or inhibition of apoptosis-like event by deactivating proteases improved cryopreserved cell viability from 49.14 to 86.85 % and 89.91 %, respectively. These results verify our model of ROS-induced oxidative stress and apoptosis-like event in plant cryopreservation. This study provided a novel insight into cell stress response mechanisms in cryopreservation.
Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina
2017-12-01
Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.
Gurunathan, Sangiliyandi; Han, Jae Woong; Dayem, Ahmed Abdal; Eppakayala, Vasuki; Kim, Jin-Hoi
2012-01-01
Background Graphene holds great promise for potential use in next-generation electronic and photonic devices due to its unique high carrier mobility, good optical transparency, large surface area, and biocompatibility. The aim of this study was to investigate the antibacterial effects of graphene oxide (GO) and reduced graphene oxide (rGO) in Pseudomonas aeruginosa. In this work, we used a novel reducing agent, betamercaptoethanol (BME), for synthesis of graphene to avoid the use of toxic materials. To uncover the impacts of GO and rGO on human health, the antibacterial activity of two types of graphene-based material toward a bacterial model P. aeruginosa was studied and compared. Methods The synthesized GO and rGO was characterized by ultraviolet-visible absorption spectroscopy, particle-size analyzer, X-ray diffraction, scanning electron microscopy and Raman spectroscopy. Further, to explain the antimicrobial activity of graphene oxide and reduced graphene oxide, we employed various assays, such as cell growth, cell viability, reactive oxygen species generation, and DNA fragmentation. Results Ultraviolet-visible spectra of the samples confirmed the transition of GO into graphene. Dynamic light-scattering analyses showed the average size among the two types of graphene materials. X-ray diffraction data validated the structure of graphene sheets, and high-resolution scanning electron microscopy was employed to investigate the morphologies of prepared graphene. Raman spectroscopy data indicated the removal of oxygen-containing functional groups from the surface of GO and the formation of graphene. The exposure of cells to GO and rGO induced the production of superoxide radical anion and loss of cell viability. Results suggest that the antibacterial activities are contributed to by loss of cell viability, induced oxidative stress, and DNA fragmentation. Conclusion The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and time-dependent manner. Exposure to GO and rGO induced significant production of superoxide radical anion compared to control. GO and rGO showed dose-dependent antibacterial activity against P. aeruginosa cells through the generation of reactive oxygen species, leading to cell death, which was further confirmed through resulting nuclear fragmentation. The data presented here are novel in that they prove that GO and rGO are effective bactericidal agents against P. aeruginosa, which would be used as a future antibacterial agent. PMID:23226696
L929 cell cytotoxicity associated with experimental and commercial dental flosses
NASA Astrophysics Data System (ADS)
Tua-ngam, P.; Supanitayanon, L.; Dechkunakorn, S.; Anuwongnukroh, N.; Srikhirin, T.; Roongrujimek, P.
2017-11-01
This aim of the study was to investigate the cytotoxicity of two commercial and two experimental dental flosses. Two commercial, Oral B® Essential Floss (nylon-waxed) and Thai Silk Floss (silk-waxed), and two experimental, Floss X (nylon-waxed) and Floss Xu (nylon-unwaxed) dental flosses were used. The cytotoxic assay was performed by using cell cultures (L929) which were subjected to cell viability test with methyl-tetrazolium. Each floss specimen (0.4 g) was placed in 1 ml of Minimum Essential Medium at 37°C with 5% CO2 at 100% humidity in an incubator for 24 hours. After incubation, the cell mitochondrial activity was evaluated for detecting viable cells using optical density as per the guidelines of ISO 10993-5:2009(E). Cytotoxic effects were evaluated by measuring percentage of cell viability at 3 points of time- 5 mins, 30 mins, and 1 hr. The results showed that two commercial dental flosses and Floss X had cell viability about 90% at the three time points; however, the experimental Floss Xu presented 80% cell viability at 5 min and <70% cell viability at 30 min and 1 hr. The results concluded that the commercial dental flosses and the experimental dental floss with wax tested in this study were acceptable for clinical use.
Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo
2016-12-01
To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.
NASA Technical Reports Server (NTRS)
Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.
2000-01-01
BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.
Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda
2017-06-01
Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.
Gallorini, Marialucia; Berardi, Anna C; Berardocco, Martina; Gissi, Clarissa; Maffulli, Nicola; Cataldi, Amelia; Oliva, Francesco
2017-01-01
Hyaluronic Acid (HA) has been already approved by Food and Drug Administration (FDA) for osteoarthritis (OA), while its use in the treatment of tendinopathy is still debated. The aim of this study was to evaluate the effects of two different HA on human rotator cuff tendon derived cells in terms of cell viability, proliferation and apoptosis. An in vitro model was developed on human tendon derived cells from rotator cuff tears to study the effects of two different HA preparations: Sinovial HL® (High-Low molecular weight) (MW: 80-100 kDa) and KDa Sinovial Forte SF (MW: 800-1200), at various concentrations. Tendon derived cells morphology was evaluated after 0, 7 and 14 d of culture. Viability and proliferation were analyzed after 0, 24, and 48 h of culture and apoptosis occurrence was assessed after 24 h of culture. All the HAPs tested here increased viability and proliferation, in a dose-dependent manner and they reduced apoptosis at early stages (24 h) compared to control cells (without HAPs). HAPs enhanced viability and proliferation and counteracted apoptosis in tendon derived cells.
Study of wettability and cell viability of H implanted stainless steel
NASA Astrophysics Data System (ADS)
Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur
2018-03-01
In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.
An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong
2015-01-01
Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn’t change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein. PMID:25695503
An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong
2015-01-01
Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.
Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells
Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro
2013-01-01
Purpose To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Methods Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5′-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT–PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Results Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Conclusions Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM. PMID:23378720
Schmelzer, Eva; Finoli, Anthony; Nettleship, Ian; Gerlach, Jörg C
2015-04-01
The construction and long-term maintenance of three-dimensional in vitro bone marrow models is of great interest but still quite challenging. Here we describe the use of a multi-compartment hollow-fiber membrane based three-dimensional perfusion bioreactor for long-term culture of whole human bone marrow mononuclear cells. We also investigated bioreactors with incorporated open-porous foamed hydroxyapatite scaffolds, mimicking the in vivo bone matrix. Cells in bioreactors with and without scaffolds were cultured to 6 weeks and compared to Petri dish controls. Cells were analyzed for gene expression, surface markers by flow cytometry, metabolic activity, hematopoietic potential, viability, and attachment by immunocytochemistry. Cells in bioreactors were metabolic active during long-term culture. The percentages of hematopoietic stem cell and mature endothelial cell fractions were maintained in bioreactors. The expression of most of the analyzed genes stabilized and increased after long-term culture of 6 weeks. Compared to Petri dish culture controls, bioreactor perfusion culture improved in both the short and long-term, the colony formation unit capacity of hematopoietic progenitors. Cells attached to the ample surface area provided by hydroxyapatite scaffolds. The implementation of a hydroxyapatite scaffold did not influence colony formation capacity, percentages of cell type specific fractions, gene expression, cell viability or metabolic turnover when compared to control cells cultured in bioreactors without scaffolds. In conclusion, three-dimensional perfusion bioreactor culture enables long-term maintenance of primary human bone marrow cells, with hydroxyapatite scaffolds providing an in vivo-like scaffold for three-dimensional culture. © 2015 Wiley Periodicals, Inc.
Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário
2017-01-01
The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.
Sadeghi, Arian; Ullenhag, Gustav; Wagenius, Gunnar; Tötterman, Thomas H; Eriksson, Fredrik
2013-06-01
Successful cell therapy relies on the identification and mass expansion of functional cells for infusion. Cryopreservation of cells is an inevitable step in most cell therapies which also entails consequences for the frozen cells. This study assessed the impact of cryopreservation and the widely used protocol for rapid expansion of T lymphocytes. The effects on cell viability, immunocompetence and the impact on apoptotic and immunosuppressive marker expression were analyzed using validated assays. Cryopreservation of lymphocytes during the rapid expansion protocol did not affect cell viability. Lymphocytes that underwent mass expansion or culture in high dose IL-2 were unable to respond to PHA stimulation by intracellular ATP production immediately after thawing (ATP = 16 ± 11 ng/ml). However, their reactivity to PHA was regained within 48 hours of recovery (ATP = 356 ± 61 ng/ml). Analysis of mRNA levels revealed downregulation of TGF-β and IL-10 at all time points. Culture in high dose IL-2 led to upregulation of p73 and BCL-2 mRNA levels while FoxP3 expression was elevated after culture in IL-2 and artificial TCR stimuli. FoxP3 levels decreased after short-term recovery without IL-2 or stimulation. Antigen specificity, as determined by IFNγ secretion, was unaffected by cryopreservation but was completely lost after addition of high dose IL-2 and artificial TCR stimuli. In conclusion, allowing short-time recovery of mass expanded and cryopreserved cells before reinfusion could enhance the outcome of adoptive cell therapy as the cells regain immune competence and specificity.
Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W.; Ras, Mat; Allbritton, Nancy L.; Sims, Christopher E.; Venugopalan, Vasan
2012-01-01
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass–pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s−1 through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s−1 and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells. PMID:22158840
Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W; Ras, Mat; Allbritton, Nancy L; Sims, Christopher E; Venugopalan, Vasan
2012-06-07
We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass-pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s(-1) through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s(-1) and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells.
A Field-Portable Cell Analyzer without a Microscope and Reagents.
Seo, Dongmin; Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha; Seo, Sungkyu
2017-12-29
This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm³ and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer ( de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis.
Blake, Joseph M; Nicoud, Ian B; Weber, Daniel; Voorhies, Howard; Guthrie, Katherine A; Heimfeld, Shelly; Delaney, Colleen
2012-08-01
CD34(+) enrichment from cord blood units (CBU) is used increasingly in clinical applications involving ex vivo expansion. The CliniMACS instrument from Miltenyi Biotec is a current good manufacturing practice (cGMP) immunomagnetic selection system primarily designed for processing larger numbers of cells: a standard tubing set (TS) can process a maximum of 60 billion cells, while the larger capacity tubing set (LS) will handle 120 billion cells. In comparison, most CBU contain only 1-2 billion cells, raising a question regarding the optimal tubing set for CBU CD34(+) enrichment. We compared CD34(+) cell recovery and overall viability after CliniMACS processing of fresh CBU with either TS or LS. Forty-six freshly collected CBU (≤ 36 h) were processed for CD34(+) enrichment; 22 consecutive units were selected using TS and a subsequent 24 processed with LS. Cell counts and immunophenotyping were performed pre- and post-selection to assess total nucleated cells (TNC), viability and CD34(+) cell content. Two-sample t-tests of mean CD34(+) recovery and viability revealed significant differences in favor of LS (CD34(+) recovery, LS = 56%, TS = 45%, P = 0.003; viability, LS = 74%, TS = 59%, P = 0.011). Stepwise linear regression, considering pre-processing unit age, viability, TNC and CD34(+) purity, demonstrated statistically significant correlations only with the tubing set used and age of unit. For CD34(+) enrichment from fresh CBU, LS provided higher post-selection viability and more efficient recovery. In this case, a lower maximum TNC specification of TS was not predictive of better performance. The same may hold for smaller scale enrichment of other cell types with the CliniMACS instrument.
Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola
2011-09-01
Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.
We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwovenmore » scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.« less
2012-01-01
Background In vitro fabricated tissue engineered vascular constructs could provide an alternative to conventional substitutes. A crucial factor for tissue engineering of vascular constructs is an appropriate cell source. Vascular cells from the human umbilical cord can be directly isolated and cryopreserved until needed. Currently no cell bank for human vascular cells is available. Therefore, the establishment of a future human vascular cell bank conforming to good manufacturing practice (GMP) conditions is desirable for therapeutic applications such as tissue engineered cardiovascular constructs. Materials and methods A fundamental step was the adaption of conventional research and development starting materials to GMP compliant starting materials. Human umbilical cord artery derived cells (HUCAC) and human umbilical vein endothelial cells (HUVEC) were isolated, cultivated, cryopreserved (short- and long-term) directly after primary culture and recultivated subsequently. Cell viability, expression of cellular markers and proliferation potential of fresh and cryopreserved cells were studied using trypan blue staining, flow cytometry analysis, immunofluorescence staining and proliferation assays. Statistical analyses were performed using Student’s t-test. Results Sufficient numbers of isolated cells with acceptable viabilities and homogenous expression of cellular markers confirmed that the isolation procedure was successful using GMP compliant starting materials. The influence of cryopreservation was marginal, because cryopreserved cells mostly maintain phenotypic and functional characteristics similar to those of fresh cells. Phenotypic studies revealed that fresh cultivated and cryopreserved HUCAC were positive for alpha smooth muscle actin, CD90, CD105, CD73, CD29, CD44, CD166 and negative for smoothelin. HUVEC expressed CD31, CD146, CD105 and CD144 but not alpha smooth muscle actin. Functional analysis demonstrated acceptable viability and sufficient proliferation properties of cryopreserved HUCAC and HUVEC. Conclusion Adaptation of cell isolation, cultivation and cryopreservation to GMP compliant starting materials was successful. Cryopreservation did not influence cell properties with lasting impact, confirming that the application of vascular cells from the human umbilical cord is feasible for cell banking. A specific cellular marker expression profile was established for HUCAC and HUVEC using flow cytometry analysis, applicable as a GMP compliant quality control. Use of these cells for the future fabrication of advanced therapy medicinal products GMP conditions are required by the regulatory authority. PMID:22591741
Zaccara, Ivana Maria; Ginani, Fernanda; Mota-Filho, Haroldo Gurgel; Henriques, Águida Cristina Gomes; Barboza, Carlos Augusto Galvão
2015-12-01
A positive effect of low-level laser irradiation (LLLI) on the proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). The aim of this study was to identify the lowest energy density able to promote the proliferation of DPSCs and to maintain cell viability. Human DPSCs were isolated from two healthy third molars. In the third passage, the cells were irradiated or not (control) with an InGaAlP diode laser at 0 and 48 h using two different energy densities (0.5 and 1.0 J/cm²). Cell proliferation and viability and mitochondrial activity were evaluated at intervals of 24, 48, 72, and 96 h after the first laser application. Apoptosis- and cell cycle-related events were analyzed by flow cytometry. The group irradiated with an energy density of 1.0 J/cm² exhibited an increase of cell proliferation, with a statistically significant difference (p < 0.05) compared to the control group at 72 and 96 h. No significant changes in cell viability were observed throughout the experiment. The distribution of cells in the cell cycle phases was consistent with proliferating cells in all three groups. We concluded that LLLI, particularly a dose of 1.0 J/cm², contributed to the growth of DPSCs and maintenance of its viability. This fact indicates this therapy to be an important future tool for tissue engineering and regenerative medicine involving stem cells.
Preparing Platelet-Rich Plasma with Whole Blood Harvested Intraoperatively During Spinal Fusion.
Shen, Bin; Zhang, Zheng; Zhou, Ning-Feng; Huang, Yu-Feng; Bao, Yu-Jie; Wu, De-Sheng; Zhang, Ya-Dong
2017-07-22
BACKGROUND Platelet-rich plasma (PRP) has gained growing popularity in use in spinal fusion procedures in the last decade. Substantial intraoperative blood loss is frequently accompanied with spinal fusion, and it is unknown whether blood harvested intraoperatively qualifies for PRP preparation. MATERIAL AND METHODS Whole blood was harvested intraoperatively and venous blood was collected by venipuncture. Then, we investigated the platelet concentrations in whole blood and PRP, the concentration of growth factors in PRP, and the effects of PRP on the proliferation and viability of human bone marrow-derived mesenchymal stem cells (HBMSCs). RESULTS Our results revealed that intraoperatively harvested whole blood and whole blood collected by venipuncture were similar in platelet concentration. In addition, PRP formulations prepared from both kinds of whole blood were similar in concentration of platelet and growth factors. Additional analysis showed that the similar concentrations of growth factors resulted from the similar platelet concentrations of whole blood and PRP between the two groups. Moreover, these two kinds of PRP formulations had similar effects on promoting cell proliferation and enhancing cell viability. CONCLUSIONS Therefore, intraoperatively harvested whole blood may be a potential option for preparing PRP spinal fusion.
Pure cultures and characterization of yak Sertoli cells.
Zhang, Hua; Liu, Ben; Qiu, Yuan; Fan, Jiang feng; Yu, Si jiu
2013-12-01
The culture of primary Sertoli cells has become an important resource in the study of their function. However, their use is limited because of contamination of isolated cells with other testicular cells, mainly germ cells. The aim was to establish technique to obtain pure yak Sertoli cells as well as to study the growth kinetics and biological characteristics of Sertoli cells in vitro. Two-step enzyme digestion was used to separate and culture yak Sertoli cells. Cultured using starvation method and the hypotonic treatment were also invented to get pure yak Sertoli cells. Furthermore, the purification of Yak Sertoli cells were identified according to their characteristics, such as bipolar corpuscular around the nucleus and expression of Fasl, in addition to their morphology. The average viability of the Sertoli cells was 97% before freezing and 94.5% after thawing, indicating that cryopreservation in liquid nitrogen had little influence on the viability of Sertoli cells. The growth tendency of yak Sertoli cells was similar to an S-shaped growth curve. Purified yak Sertoli cells frequently exhibited bipolar corpuscula in nucleus after Feulgen staining, and did have a positive reaction of Fasl by the immunocytochemical identification. After recovery chromosomal analysis of Sertoli cells had a normal chromosomal number of 60, comprising 29 pairs of autosomes and one pair of sex chromosomes. Assays for bacteria, fungi and mycoplasmas were negative. In conclusion, yak Sertoli cells have been successfully purified and cultured in vitro, and maintain stable biological characteristics after thawing. Therefore, it will not only preserve the genetic resources of yaks at the cellular level, but also provide valuable materials for transgenic research and feeder layer and nuclear donor cells in yak somatic cell cloning technology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium
NASA Astrophysics Data System (ADS)
Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun
2011-06-01
The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).
Kamocki, K.; Nör, J. E.; Bottino, M. C.
2014-01-01
Aim To evaluate both the drug release profile and the effects on human dental pulp stem cells’ (hDPSC) proliferation and viability of novel bi-mix antibiotic-containing scaffolds intended for use as a drug-delivery system for root canal disinfection prior to regenerative endodontics. Methodology Polydioxanone (PDS)-based fibrous scaffolds containing both metronidazole (MET) and ciprofloxacin (CIP) at selected ratios were synthesized via electrospinning. Fibre diameter was evaluated based on scanning electron microscopy (SEM) images. Pure PDS scaffolds and a saturated CIP/MET solution (i.e. 50 mg of each antibiotic in 1 mL) (hereafter referred to as DAP) served as both negative (non-toxic) and positive (toxic) controls, respectively. High performance liquid chromatography (HPLC) was done to investigate the amount of drug(s) released from the scaffolds. WST-1® proliferation assay was used to evaluate the effect of the scaffolds on cell proliferation. LIVE/DEAD® assay was used to qualitatively assess cell viability. Data obtained from drug release and proliferation assays were statistically analysed at the 5% significance level. Results A burst release of CIP and MET was noted within the first 24 h, followed by a sustained maintenance of the drug(s) concentration for 14 days. A concentration-dependent trend was noticed upon hDPSCs’ exposure to all CIP-containing scaffolds, where increasing the CIP concentration resulted in reduced cell proliferation (P<0.05) and viability. In groups exposed to pure MET or pure PDS scaffolds, no changes in proliferation were observed. Conclusions Synthesized antibiotic-containing scaffolds had significantly lower effects on hDPSCs proliferation when compared to the saturated CIP/MET solution (DAP). PMID:25425048
Cryopreservation of Hepatocyte Microbeads for Clinical Transplantation
Jitraruch, Suttiruk; Hughes, Robin D.; Filippi, Celine; Lehec, Sharon C.; Glover, Leanne; Mitry, Ragai R.
2017-01-01
Intraperitoneal transplantation of hepatocyte microbeads is an attractive option for the management of acute liver failure. Encapsulation of hepatocytes in alginate microbeads supports their function and prevents immune attack of the cells. Establishment of banked cryopreserved hepatocyte microbeads is important for emergency use. The aim of this study was to develop an optimized protocol for cryopreservation of hepatocyte microbeads for clinical transplantation using modified freezing solutions. Four freezing solutions with potential for clinical application were investigated. Human and rat hepatocytes cryopreserved with University of Wisconsin (UW)/10% dimethyl sulfoxide (DMSO)/5% (300 mM) glucose and CryoStor CS10 showed better postthawing cell viability, attachment, and hepatocyte functions than with histidine–tryptophan–ketoglutarate/10% DMSO/5% glucose and Bambanker. The 2 freezing solutions that gave better results were studied with human and rat hepatocytes microbeads. Similar effects on cryopreserved microbead morphology (external and ultrastructural), viability, and hepatocyte-functions post thawing were observed over 7 d in culture. UW/DMSO/glucose, as a basal freezing medium, was used to investigate the additional effects of cytoprotectants: a pan-caspase inhibitor (benzyloxycarbonyl-Val-Ala-dl-Asp-fluoromethylketone [ZVAD]), an antioxidant (desferoxamine [DFO]), and a buffering and mechanical protectant (human serum albumin [HSA]) on RMBs. ZVAD (60 µM) had a beneficial effect on cell viability that was greater than with DFO (1 mM), HSA (2%), and basal freezing medium alone. Improvements in the ultrastructure of encapsulated hepatocytes and a lower degree of cell apoptosis were observed with all 3 cytoprotectants, with ZVAD tending to provide the greatest effect. Cytochrome P450 activity was significantly higher in the 3 cytoprotectant groups than with fresh microbeads. In conclusion, developing an optimized cryopreservation protocol by adding cytoprotectants such as ZVAD could improve the outcome of cryopreserved hepatocyte microbeads for future clinical use. PMID:28901189
Chae, Yooeun; Kim, Dokyung; An, Youn-Joo
2016-12-01
Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨ m ) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨ m ) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F - ) with magnesium ions (Mg 2+ ) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Protective effect of Hibiscus sabdariffa against serum/glucose deprivation-induced PC12 cells injury
Bakhtiari, Elham; Hosseini, Azar; Mousavi, Seyed Hadi
2015-01-01
Objectives: Findings natural products with antioxidant and antiapoptotic properties has been one of the interesting challenges in the search for the treatment of neurodegenerative diseases including ischemic stroke. Serum/glucose deprivation (SGD) has been used as a model for the understanding of the molecular mechanisms of neuronal damage during ischemia in vitro and for the expansion of neuroprotective drugs against ischemia-induced brain injury. Recent studies showed that Hibiscus sabdariffa exert pharmacological actions such as potent antioxidant. Therefore, in this study we investigated the protective effect of extract of H. sabdariffa against SGD-induced PC12 cells injury. Materials and Methods: Cells were pretreated with different concentrations of H. sabdariffa extract (HSE) for 2 hr, and then exposed to SGD condition for 6, 12 and 18 hr. Results: SGD caused a major reduction in cell viability after 6, 12, and 18 hr as compared with control cells (p< 0.001). Pretreatment with HSE (30-500 𝜇g/mL) significantly increased cell viability following SGD insult for 6, 12 and 18 hr. A significant increase in cell apoptosis was seen in cells under SGD condition after 12hr as compared with control cells (p< 0.001). Pretreatment with HSE significantly decreased cell apoptosis subsequent SGD conditionafter12hr at concentration of 60, 125 and 250. Conclusion: These data showed that HSE had a protective property under SGD condition in PC12 cells, suggesting that H. sabdariffa has the potential to be used as a new therapeutic approach for neurodegenerative disorders. PMID:26101756
Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells
Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.
2014-01-01
Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388
Viability and Virulence of Experimentally Stressed Nonculturable Salmonella typhimurium
Caro, Audrey; Got, Patrice; Lesne, Jean; Binard, Sylvie; Baleux, Bernard
1999-01-01
Maintenance of pathogenicity of viable but nonculturable Salmonella typhimurium cells experimentally stressed with UV-C and seawater, was investigated relative to the viability level of the cellular population. Pathogenicity, tested in a mouse model, was lost concomitantly with culturability, whereas cell viability remained undamaged, as determined by respiratory activity and cytoplasmic membrane and genomic integrities. PMID:10388726
Rentsch, Jakob; Freitag, Helma; Detjen, Katharina; Briest, Franziska; Möbs, Markus; Weissmann, Victoria; Siegmund, Britta; Auernhammer, Christoph J.; Aristizabal Prada, Elke Tatjana; Lauseker, Michael; Grossman, Ashley; Exner, Samantha; Fischer, Christian; Grötzinger, Carsten
2017-01-01
Background/Aims The therapeutic options for metastatic neuroendocrine tumors (NETs) are limited. As PI3K signaling is often activated in NETs, we have assessed the effects of selective PI3Kp110α inhibition by the novel agent BYL719 on cell viability, colony formation, apoptosis, cell cycle, signaling pathways, differentiation and secretion in pancreatic (BON-1, QGP-1) and pulmonary (H727) NET cell lines. Methods Cell viability was investigated by WST-1 assay, colony formation by clonogenic assay, apoptosis by caspase3/7 assay, the cell cycle by FACS, cell signaling by Western blot analysis, expression of chromogranin A and somatostatin receptors 1/2/5 by RT-qPCR, and chromogranin A secretion by ELISA. Results BYL719 dose-dependently decreased cell viability and colony formation with the highest sensitivity in BON-1, followed by H727, and lowest sensitivity in QGP-1 cells. BYL719 induced apoptosis and G0/G1 cell cycle arrest associated with increased p27 expression. Western blots showed inhibition of PI3K downstream targets to a varying degree in the different cell lines, but IGF1R activation. The most sensitive BON-1 cells displayed a significant, and H727 cells a non-significant, GSK3 inhibition after BYL719 treatment, but these effects do not appear to be mediated through the IGF1R. In contrast, the most resistant QGP-1 cells showed no GSK3 inhibition, but a modest activation, which would partially counteract the other anti-proliferative effects. Accordingly, BYL719 enhanced neuroendocrine differentiation with the strongest effect in BON-1, followed by H727 cells indicated by induction of chromogranin A and somatostatin receptor 1/2 mRNA-synthesis, but not in QGP-1 cells. In BON-1 and QGP-1 cells, the BYL719/everolimus combination was synergistic through simultaneous AKT/mTORC1 inhibition, and significantly increased somatostatin receptor 2 transcription compared to each drug separately. Conclusion Our results suggest that the agent BYL719 could be a novel therapeutic approach to the treatment of NETs that may sensitize NET cells to somatostatin analogs, and that if there is resistance to its action this may be overcome by combination with everolimus. PMID:28800359
Chen, Rui; Grosche, Antje; Reichenbach, Andreas; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon
2014-01-01
Purpose Vegetable polyphenols (bioflavonoids) have been suggested to represent promising drugs for treating cancer and retinal diseases. We compared the effects of various bioflavonoids (epigallocatechin-3-gallate [EGCG], luteolin, apigenin, myricetin, quercetin, and cyanidin) on the physiological properties and viability of cultured human retinal pigment epithelial (RPE) cells. Methods Human RPE cells were obtained from several donors within 48 h of death. Secretion of vascular endothelial growth factor (VEGF) was determined with enzyme-linked immunosorbent assay. Messenger ribonucleic acid levels were determined with real-time reverse transcription polymerase chain reaction. Cellular proliferation was investigated with a bromodeoxyuridine immunoassay, and chemotaxis was examined with a Boyden chamber assay. The number of viable cells was determined by Trypan Blue exclusion. Apoptosis and necrosis rates were determined with a DNA fragmentation enzyme-linked immunosorbent assay. The phosphorylation level of signaling proteins was revealed by western blotting. Results With the exception of EGCG, all flavonoids tested decreased dose-dependently the RPE cell proliferation, migration, and secretion of VEGF. EGCG inhibited the secretion of VEGF evoked by CoCl2-induced hypoxia. The gene expression of VEGF was reduced by myricetin at low concentrations and elevated at higher concentrations. Luteolin, apigenin, myricetin, and quercetin induced significant decreases in the cell viability at higher concentration, by triggering cellular necrosis. Cyanidin reduced the rate of RPE cell necrosis. Myricetin caused caspase-3 independent RPE cell necrosis mediated by free radical generation and activation of calpain and phospholipase A2. The myricetin- and quercetin-induced RPE cell necrosis was partially inhibited by necrostatin-1, a blocker of programmed necrosis. Most flavonoids tested diminished the phosphorylation levels of extracellular signal-regulated kinases 1/2 and Akt proteins. Conclusions The intake of luteolin, apigenin, myricetin, and quercetin as supplemental cancer therapy or in treating retinal diseases should be accompanied by careful monitoring of the retinal function. The possible beneficial effects of EGCG and cyanidin, which had little effect on RPE cell viability, in treating retinal diseases should be examined in further investigations. PMID:24623967
Pivonello, Claudia; Rousaki, Panagoula; Negri, Mariarosaria; Sarnataro, Maddalena; Napolitano, Maria; Marino, Federica Zito; Patalano, Roberta; De Martino, Maria Cristina; Sciammarella, Concetta; Faggiano, Antongiulio; Rocco, Gaetano; Franco, Renato; Kaltsas, Gregory A; Colao, Annamaria; Pivonello, Rosario
2017-06-01
Somatostatin analogues and mTOR inhibitors have been used as medical therapy in lung carcinoids with variable results. No data are available on dopamine agonists as treatment for lung carcinoids. The main aim of the current study was to evaluate the effect of the combined treatment of somatostatin analogue octreotide and the dopamine agonist cabergoline with mTOR inhibitors in an in vitro model of typical lung carcinoids: the NCI-H727 cell line. In NCI-H727 cell line, reverse transcriptase-quantitative polymerase chain reaction and immunofluorescence were assessed to characterize the expression of the somatostatin receptor 2 and 5, dopamine receptor 2 and mTOR pathway components. Fifteen typical lung carcinoids tissue samples have been used for somatostatin receptor 2, dopamine receptor 2, and the main mTOR pathway component p70S6K expression and localization by immunohistochemistry. Cell viability, fluorescence-activated cell sorting analysis and western blot have been assessed to test the pharmacological effects of octreotide, cabergoline and mTOR inhibitors, and to evaluate the activation of specific cell signaling pathways in NCI-H727 cell line. NCI-H727 cell line expressed somatostatin receptor 2, somatostatin receptor 5 and dopamine receptor 2 and all mTOR pathway components at messenger and protein levels. Somatostatin receptor 2, dopamine receptor 2, and p70S6K (non phosphorylated and phosphorylated) proteins were expressed in most typical lung carcinoids tissue samples. Octreotide and cabergoline did not reduce cell viability as single agents but, when combined with mTOR inhibitors, they potentiate mTOR inhibitors effect after long-term exposure, reducing Akt and ERK phosphorylation, mTOR escape mechanisms, and increasing the expression DNA-damage-inducible transcript 4, an mTOR suppressor. In conclusion, the single use of octreotide and cabergoline is not sufficient to block cell viability but the combined approach of these agents with mTOR inhibitors might reduce the mTOR inhibitors-induced escape mechanisms and/or activate the endogenous mTOR suppressor, potentiating the effect of the mTOR inhibitors in an in vitro model of typical lung carcinoids.
Photodynamic synchrotron x-ray therapy in Glioma cell using superparamagnetic iron nanoparticle
NASA Astrophysics Data System (ADS)
Kim, Hong-Tae; Kim, Ki-Hong; Choi, Gi-Hwan; Jheon, Sanghoon; Park, Sung-Hwan; Kim, Bong-Il; Hyodo, Kazuyuki; Ando, Masami; Kim, Jong-Ki
2009-06-01
In order to evaluate cytotoxic effects of secondary Auger electron emission(Photon Activation Therapy:PAT) from alginate-coated iron nanoparticles(Alg-SNP), Alg-SNP-uptaken C6 glioma cell lines were irradiated with 6.89/7.2 Kev synchrotron X-ray. 0-125 Gy were irradiated on three experimental groups including No-SNP group incubating without SNP as control group, 6hr-SNP group incubating with SNP for 6hr and ON-SNP group incubating with SNP overnight. Irradiated cells were stained with Acridine Orange(AO) and Edithium Bromide(EB) to count their viability with fluorescent microscopy in comparison with control groups. AO stained in damaged DNA, giving FL color change in X-ray plus SNP group. EB did not or less enter inside the cell nucleus of control group. In contrast, EB entered inside the cell nucleus of Alg-SNP group which means more damage compared with Control groups. The results of MTT assay demonstrated a X-ray dose-dependent reduction generally in cell viability in the experimental groups. 3 or 9 times increase in cell survival loss rate was observed at 6hr-SNP and ON-SNP groups, respectively compared to No-SNP control group in first experiment that was done to test cell survival rate at relatively lower dose, from 0 to 50 Gy. In second experiment X-ray dose was increased to 125 Gy. Survival loss was sharply decreased in a relatively lower dose from 5 to 25 Gy, and then demonstrated an exponentially decreasing behavior with a convergence until 125 Gy for each group. This observation suggests PAT effects on the cell directly by X-ray in the presence of Alg-SNP occurs within lower X-ray dose, and conventional X-ray radiation effect becomes dominant in higher X-ray dose. The cell viability loss of ON-SNP group was three times higher compared with that of 6hr-SNP group. In conclusion, it is possible to design photodynamic X-ray therapy study using a monochromatic x-ray energy and metal nanoparticle as x-ray sensitizer, which may enable new X-ray PDT to disseminated tumors without side effects to normal surrounding tissue.
Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan
2016-10-01
Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.
Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M
2017-01-01
The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.
Martins, Christine Men; Hamanaka, Elizane Ferreira; Hoshida, Thayse Yumi; Sell, Ana Maria; Hidalgo, Mirian Marubayashi; Silveira, Catarina Soares; Poi, Wilson Roberto
2016-01-01
Tooth replantation success depends on the condition of cementum periodontal ligament after tooth avulsion; which is influenced by storage medium. The dragon's blood (Croton lechleri) sap has been suggested as a promising medium because it supports collagen formation and exhibits healing, anti-inflammatory and antimicrobial properties. Thus, the aim of this study was to evaluate the efficacy of dragon's blood sap as a storage medium for avulsed teeth through evaluation of functional and metabolic cell viability. This in vitro study compared the efficacy of different storage media to maintain the viability of human peripheral blood mononuclear and periodontal ligament cells. A 10% dragon's blood sap was tested while PBS was selected as its control. Ultra pasteurized whole milk was used for comparison as a commonly used storage medium. DMEM and distilled water were the positive and negative controls, respectively. The viability was assessed through trypan blue exclusion test and colorimetric MTT assay after 1, 3, 6, 10 and 24 h of incubation. The dragon's blood sap showed promising results due to its considerable maintenance of cell viability. For trypan blue test, the dragon's blood sap was similar to milk (p<0.05) and both presented the highest viability values. For MTT, the dragon's blood sap showed better results than all storage media, even better than milk (p<0.05). It was concluded that the dragon's blood sap was as effective as milk, the gold standard for storage medium. The experimental sap preserved the membrane of all cells and the functional viability of periodontal ligament cells.
Interference of Peritoneal Dialysis Fluids with Cell Cycle Mechanisms
Büchel, Janine; Bartosova, Maria; Eich, Gwendolyn; Wittenberger, Timo; Klein-Hitpass, Ludger; Steppan, Sonja; Hackert, Thilo; Schaefer, Franz; Passlick-Deetjen, Jutta; Schmitt, Claus P.
2015-01-01
♦ Introduction: Peritoneal dialysis fluids (PDF) differ with respect to osmotic and buffer compound, and pH and glucose degradation products (GDP) content. The impact on peritoneal membrane integrity is still insufficiently described. We assessed global genomic effects of PDF in primary human peritoneal mesothelial cells (PMC) by whole genome analyses, quantitative real-time polymerase chain reaction (RT-PCR) and functional measurements. ♦ Methods: PMC isolated from omentum of non-uremic patients were incubated with conventional single chamber PDF (CPDF), lactate- (LPDF), bicarbonate- (BPDF) and bicarbonate/lactate-buffered double-chamber PDF (BLPDF), icodextrin (IPDF) and amino acid PDF (APDF), diluted 1:1 with medium. Affymetrix GeneChip U133Plus2.0 (Affymetrix, CA, USA) and quantitative RT-PCR were applied; cell viability was assessed by proliferation assays. ♦ Results: The number of differentially expressed genes compared to medium was 464 with APDF, 208 with CPDF, 169 with IPDF, 71 with LPDF, 45 with BPDF and 42 with BLPDF. Out of these genes 74%, 73%, 79%, 72%, 47% and 57% were downregulated. Gene Ontology (GO) term annotations mainly revealed associations with cell cycle (p = 10-35), cell division, mitosis, and DNA replication. One hundred and eighteen out of 249 probe sets detecting genes involved in cell cycle/division were suppressed, with APDF-treated PMC being affected the most regarding absolute number and degree, followed by CPDF and IPDF. Bicarbonate-containing PDF and BLPDF-treated PMC were affected the least. Quantitative RT-PCR measurements confirmed microarray findings for key cell cycle genes (CDK1/CCNB1/CCNE2/AURKA/KIF11/KIF14). Suppression was lowest for BPDF and BLPDF, they upregulated CCNE2 and SMC4. All PDF upregulated 3 out of 4 assessed cell cycle repressors (p53/BAX/p21). Cell viability scores confirmed gene expression results, being 79% of medium for LPDF, 101% for BLPDF, 51% for CPDF and 23% for IPDF. Amino acid-containing PDF (84%) incubated cells were as viable as BPDF (86%). ♦ Conclusion: In conclusion, PD solutions substantially differ with regard to their gene regulating profile and impact on vital functions of PMC, i.e. on cells known to be essential for peritoneal membrane homeostasis. PMID:25082841
The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.
Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H
2015-10-01
To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Molecular Viability Testing of UV-Inactivated Bacteria.
Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A
2017-05-15
PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.
Geng, Dianzhong; Song, Xiaohua; Ning, Fangling; Song, Qianhua; Yin, Honghua
2015-05-01
Previous studies confirmed that high-risk human papillomavirus (HR-HPV) infection is a risk factor of cervical cancer, and the infection was associated with significantly reduced miR-34a expression during carcinogenesis. However, the downstream targets of miR-34a and their roles are still not well understood. This study explored the regulative role of miR-34a on E2F3 and survivin expression and the viability and invasion of HPV-positive cervical cancer cells. MiR-34a and survivin expression in 56 cases of HR-HPV-positive patients, 28 cases of HR-HPV-negative patients, and 28 normal cases without HR-HPV infections were measured. Human papillomavirus-18-positive HeLa cervical cancer cells and HPV-16-positive SiHa cells were used to explore the effect of miR-34a on cell viability and invasion. The molecular target of miR-34a was also explored in cervical cancer cells. The results showed that miR-34a overexpression could inhibit HPV-positive cancer cell viability, whereas its downregulation promoted cell viability. E2F3 is a direct target of miR-34a in HPV-positive cervical cancer cells. By targeting E2F3, miR-34a could regulate the expression of survivin. Thus, through regulating E2F3 and survivin, miR-34a could reduce the viability and invasion of HPV-positive cervical cancer cells. This study confirmed a novel miR-34a-E2F3-survivin axis in the tumor suppressor role of miR-34a in cervical cancer.
Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne
2014-12-01
The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Gálvez-Martín, Patricia; Hmadcha, Abdelkrim; Soria, Bernat; Calpena-Campmany, Ana C; Clares-Naveros, Beatriz
2014-04-01
Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1×10(6) cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. Copyright © 2013 Elsevier B.V. All rights reserved.
Raposo do Amaral, Alexandre S.; Pawlick, Rena L.; Rodrigues, Erika; Costal, Flavia; Pepper, Andrew; Ferreira Galvão, Flávio H.; Correa-Giannella, Maria Lucia; Shapiro, A. M.James
2013-01-01
Background The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage. Methodology/Principal Findings In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets. Conclusions/Significance GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation. PMID:23424628
Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen
2013-10-01
The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina
2016-07-01
Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.
Liu, Sen; Zhang, Qing-Song; Hester, William; O’Brien, Michael J.; Savoie, Felix H.; You, Zongbing
2013-01-01
Background Bupivacaine and supraphysiologic temperature can independently reduce cell viability of articular chondrocytes. In combination these two deleterious factors could further impair cell viability. Hypothesis Hyaluronan may protect chondrocytes from death induced by bupivacaine at supraphysiologic temperatures. Study Design Controlled laboratory study. Methods Bovine articular chondrocytes were treated with hyaluronan at physiologic (37°C) and supraphysiologic temperatures (45°C and 50°C) for one hour, and then exposed to bupivacaine for one hour at room temperature. Cell viability was assessed at three time points: immediately after treatment, six hours later, and twenty-four hours later using flow cytometry and fluorescence microscopy. The effects of hyaluronan on the levels of sulfated glycosaminoglycan in the chondrocytes were determined using Alcian blue staining. Results (1) Bupivacaine alone did not induce noticeable chondrocyte death at 37°C; (2) bupivacaine and temperature synergistically increased chondrocyte death, that is, when the chondrocytes were conditioned to 45°C and 50°C, 0.25% and 0.5% bupivacaine increased the cell death rate by 131% to 383% in comparison to the phosphate-buffered saline control group; and, (3) addition of hyaluronan reduced chondrocyte death rates to approximately 14% and 25% at 45°C and 50°C, respectively. Hyaluronan’s protective effects were still observed at six and twenty-four hours after bupivacaine treatment at 45°C. However, at 50°C, hyaluronan delayed but did not prevent the cell death caused by bupivacaine. One-hour treatment with hyaluronan significantly increased sulfated glycosaminoglycan levels in the chondrocytes. Conclusions Bupivacaine and supraphysiologic temperature synergistically increase chondrocyte death and hyaluronan may protect articular chondrocytes from death caused by bupivacaine. Clinical Relevance This study provides a rationale to perform pre-clinical and clinical studies to evaluate whether intra-articular injection of a mixture of bupivacaine and hyaluronan after arthroscopic surgery may protect against bupivacaine’s chondrotoxicity. PMID:22427617
Godefroy, David; Riancho, Luisa; Rostène, William; Baudouin, Christophe; Brignole-Baudouin, Françoise
2012-01-01
Purpose Benzalkonium chloride (BAK), the most commonly used preservative in eye drops, is known to induce ocular irritation symptoms and dry eye in long-term treated patients and animal models. As tear film hyperosmolarity is diagnostic of some types of dry eye disease, we determined in vitro on conjunctival epithelial cells the cytoxicity of BAK in hyperosmolar conditions through cell viability, apoptosis, and oxidative stress assays. Methods The Wong Kilbourne derivative of Chang conjunctival epithelial cells were cultured for 24 h or 48 h either in NaCl-induced hyperosmolar conditions (400–425–500 mOsM), in low concentrations of BAK (10−4%, 3.10−4%, and 5.10−4%), or in combination of both. We investigated cell viability through lysosomal integrity evaluation, cell death (cell membrane permeability and chromatin condensation), and oxidative stress (reactive oxygen species, superoxide anion) using spectrofluorimetry. Immunohistochemistry was performed for cytoskeleton shrinkage (phalloidin staining), mitochondrial permeability transition pore (cytochrome c release), the apoptosis effector active caspase-3, and the caspase-independent apoptosis factor AIF. We also observed early effects induced by the experimental conditions on the conjunctival cell layers using phase contrast imaging of live cells. Results As compared to standard culture solutions, hyperosmolar stress potentiated BAK cytotoxicity on conjunctival cells through the induction of oxidative stress; reduction of cell viability; cell membrane permeability increase; cell shrinkage with cell blebbing, as shown in phase contrast imaging of live cells; and chromatin condensation. Like BAK, but to a much lesser extent, hyperosmolarity increased cell death in a concentration-dependent manner through a caspase-dependent apoptosis characterized by a release of cytochrome c in the cytoplasm from mitochondria and the activation of caspase-3. Moreover, the caspase-independent apoptosis factor AIF was found translocated from mitochondria to the nucleus in both conditions. Conclusions This study showed increased cytotoxic effects of BAK in hyperosmotic conditions, with characteristic cell death processes, namely caspase-dependent and independent apoptosis and oxidative stress. As BAK is known to disrupt tear film, which could promote evaporative dry eye and tear hyperosmolarity, BAK could promote the conditions enhancing its own cytotoxicity. This in vitro hyperosmolarity model thus highlights the risk of inducing a vicious cycle and the importance of avoiding BAK in patients with dry eye conditions. PMID:22529703
Martins, S M M K; De Andrade, A F C; Zaffalon, F G; Bressan, F F; Pugine, S M P; Melo, M P; Chiaratti, M R; Marino, C T; Moretti, A S; Arruda, R P
2015-02-01
This study evaluated the effects of dietary organic selenium (Se) on viability of chilled boar semen. Twelve boars were divided into three groups: control (CON), 0.3 mg kg(-1) sodium selenite; inorganic (INO), 0.5 mg kg(-1) sodium selenite and organic (ORG), 0.5 mg kg(-1) Se yeast. The experiment was conducted within 10 weeks, and analysis was performed fortnightly, in storage semen by 72 h. No effect was observed on motility; however, straightness and linearity percentages were higher (P < 0.05) in the animals receiving CON diet compared with INO group. Percentages of cells with both plasma and acrosomal intact membranes, lipidic membrane peroxidation and mitochondrial membrane potential were similar on all treatments. Animals receiving CON diet presented higher (P < 0.05) values of ATP when compared with INO group. The PHGPx was higher (P < 0.05) in animals that received ORG in comparison with INO group. In conclusion, organic selenium supplementation increases PHGPx but does not improve chilled semen viability in 72 h. © 2014 Blackwell Verlag GmbH.
Effects of Fluid Shear Stress on Cancer Stem Cell Viability
NASA Astrophysics Data System (ADS)
Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun
2014-11-01
Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.
Kirchner, Jasmin; Vissi, Emese; Gross, Sascha; Szoor, Balazs; Rudenko, Andrey; Alphey, Luke; White-Cooper, Helen
2008-01-01
Background Protein phosphatase 1 (PP1) is involved in diverse cellular processes, and is targeted to substrates via interaction with many different protein binding partners. PP1 catalytic subunits (PP1c) fall into PP1α and PP1β subfamilies based on sequence analysis, however very few PP1c binding proteins have been demonstrated to discriminate between PP1α and PP1β. Results URI (unconventional prefoldin RPB5 interactor) is a conserved molecular chaperone implicated in a variety of cellular processes, including the transcriptional response to nutrient signalling and maintenance of DNA integrity. We show that Drosophila Uri binds PP1α with much higher affinity than PP1β, and that this ability to discriminate between PP1c forms is conserved to humans. Most Uri is cytoplasmic, however we found some protein associated with active RNAPII on chromatin. We generated a uri loss of function allele, and show that uri is essential for viability in Drosophila. uri mutants have transcriptional defects, reduced cell viability and differentiation in the germline, and accumulate DNA damage in their nuclei. Conclusion Uri is the first PP1α specific binding protein to be described in Drosophila. Uri protein plays a role in transcriptional regulation. Activity of uri is required to maintain DNA integrity and cell survival in normal development. PMID:18412953
Aydin, Kubra; Ekinci, Fatma Yesim; Korachi, May
2015-01-01
Background: The presence of certain oral pathogens at implant sites can hinder the osseointegration process. However, it is unclear how and by what microorganisms it happens. Objectives: This study investigated whether the presence of oral pathogens of Porphyromonas gingivalis and Prevotella intermedia individually, play a role in the failure of bone formation by determining the expression profiles of Transforming Growth Factor Beta (TGF-β/Bone Morphogenic Protein (BMP) and Toll-Like Receptor (TLR) pathways in challenged osteoblasts. Materials and Methods: Cell viability of P. gingivalis and P. intermedia challenged osteoblasts were determined by WST assay. Changes in osteoblast morphology and inhibition of mineralization were observed by Scanning Electron Microscopy (SEM) and Von Kossa staining, respectively. Expression of TGF-β and TLR pathway genes on challenged cells were identified by RT profiler array. Both P. gingivalis and P. intermedia challenges resulted in reduced viability and mineralization of osteoblasts. Results: Viability was reduced to 56.8% (P. gingivalis) and 52.75% (P. intermedia) at 1000 multiplicity. Amongst 48 genes examined, expressions of BMPER, SMAD1, IL8 and NFRKB were found to be highly upregulated by both bacterial challenges (Fold Change > 4). Conclusions: P. gingivalis and P. intermedia could play a role in implant failure by changing the expression profiles of genes related to bone formation and resorption. PMID:26034550
Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P
2006-02-01
Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.
Haydari, Sakineh; Safari, Manouchehr; Zarbakhsh, Sam; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein
2016-11-10
This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured. MTT assay was used to determine cell viability and proliferation rate. The level of BDNF was measured in the supernant of BMSCs culture by ELISA. The sedentary morphine-dependent mothers' pups showed a significant increase in the percentage cell viability and proliferation rate and also a significant decrease in the BDNF protein levels in BMSCs. The rat pups borne from exercising the control and morphine-dependent mothers exhibited an increase in the percentage viability, proliferation rate and BDNF levels of the BMSCs. This study showed that maternal exercise during pregnancy in morphine-dependent and non-dependent mothers, with increasing of BDNF levels increased the proliferation and viability of BMSCs in the rat pups. Also, chronic administration of morphine during pregnancy was able to increase the proliferation and viability of BMSCs in the rat pups. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS) and loss of mitochondrial membrane potential (ΔΨm) were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Results Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. Conclusion The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells. PMID:22264378
In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma
Fisher, T.; Golan, H.; Schiby, G.; PriChen, S.; Smoum, R.; Moshe, I.; Peshes-Yaloz, N.; Castiel, A.; Waldman, D.; Gallily, R.; Mechoulam, R.; Toren, A.
2016-01-01
Background Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. Methods We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ9-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. Results Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. Conclusions Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl. PMID:27022310
Fonseca-García, Abril; Mota-Morales, Josué D; Quintero-Ortega, Iraís A; García-Carvajal, Zaira Y; Martínez-López, V; Ruvalcaba, Erika; Landa-Solís, Carlos; Solis, Lilia; Ibarra, Clemente; Gutiérrez, María C; Terrones, Mauricio; Sanchez, Isaac C; del Monte, Francisco; Velasquillo, María C; Luna-Bárcenas, G
2014-10-01
This work describes the preparation and characterization of biomimetic chitosan/multiwall carbon nanotubes/nano-hydroxyapatite (CTS/MWCNT/nHAp) scaffolds and their viability for bone tissue engineering applications. The cryogenic process ice segregation-induced self-assembly (ISISA) was used to fabricate 3D biomimetic CTS scaffolds. Proper combination of cryogenics, freeze-drying, nature and molecular ratio of solutes give rise to 3D porous interconnected scaffolds with clusters of nHAp distributed along the scaffold surface. The effect of doping in CNT (e.g. with oxygen and nitrogen atoms) on cell viability was tested. Under the same processing conditions, pore size was in the range of 20-150 μm and irrespective on the type of CNT. Studies on cell viability with scaffolds were carried out using human cells from periosteum biopsy. Prior to cell seeding, the immunophenotype of mesenchymal periosteum or periosteum-derived stem cells (MSCs-PCs) was characterized by flow cytometric analysis using fluorescence-activated and characteristic cell surface markers for MSCs-PCs. The characterized MSCs-PCs maintained their periosteal potential in cell cultures until the 2nd passage from primary cell culture. Thus, the biomimetic CTS/MWCNT/nHAp scaffolds demonstrated good biocompatibility and cell viability in all cases such that it can be considered as promising biomaterials for bone tissue engineering. © 2013 Wiley Periodicals, Inc.
Zhang, Yi; Zhu, Hua; Jin, Huanying; Wang, Yinting; Shao, Xiayan; Kong, Jingsi; Huang, Wenhao; Hong, Yan; Li, Chunli; Gao, Feng; Chen, Liang; Wang, Feng; Lu, Yao
2015-01-01
To investigate the impact of cryopreservation duration of umbilical cord blood (UCB) on quality of hematopoietic stem cell and outcome of clinical transplantation. 605 units of UCB which had been used in clinical transplantation were previously cryopreserved for 820 (88-2651) days in average. UCB was detected for total nucleated cell count, CD34+ cells count, cell recovery rate, cell viability and CFU-GM after thawing. No statistical correlation was found between cryopreservation duration and cell recovery rate, cell viability. CFU-GM decreased along with the extension of cryopreservation duration (P=0.011), ranging between 109.6 and 105.7/1 × 10⁵. There was no significant difference on hematopoietic reconstitution time, graft failure, acute GVHD and overall survival among groups with different cryopreservation duration. Cryopreservation duration has no significant effect on cell recovery rate, cell viability and clinical transplantation outcome. Extension of cryopreservation duration may reduce CFU-GM of stem cells with fluctaion still in normal range. UCB could maintain cell viability and function to achieve satisfactory clinical transplantation outcome even when thawed after 3 to 7 years' cryopreservation.
Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Yazdankhah, Meysam; Ai, Jafar; Khakbiz, Mehrdad; Faghihi, Faezeh; Tajerian, Roksana; Bayat, Neda
2017-05-01
Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.
Quality testing of an innovative cascade separation system for multiple cell separation
NASA Astrophysics Data System (ADS)
Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila
2012-03-01
Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.
Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury
Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori
2010-01-01
BACKGROUND AND PURPOSE Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. EXPERIMENTAL APPROACH Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. KEY RESULTS NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor α-glycyrrhetinic acid (α-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of α-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by α-GA. CONCLUSION AND IMPLICATIONS Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury. PMID:20649601
Development of a Cell Sheet Transportation Technique for Regenerative Medicine
Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo
2014-01-01
Purpose: A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. Material and Methods: We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. Results: During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. Conclusion: The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies. PMID:24044382
Mycoplasma agalactiae Induces Cytopathic Effects in Infected Cells Cultured In Vitro
Hegde, Shrilakshmi; Hegde, Shivanand Manjunath; Rosengarten, Renate; Chopra-Dewasthaly, Rohini
2016-01-01
Mycoplasma agalactiae is the etiological agent of the contagious agalactia syndrome in sheep and goats and causes significant economic losses worldwide. Yet the mechanism of pathogenesis is largely unknown. Even whole-genome sequence analysis of its pathogenic type strain did not lead to any conclusions regarding its virulence or pathogenicity factors. Although inflammation and tissue destruction at the local site of M. agalactiae infection are largely considered as effects of the host immune response, the direct effect of the agent on host cells is not completely understood. The aim of this study was to investigate the effect of M. agalactiae infection on the quality and viability of host cells in vitro. Changes in cell morphology including cell elongation, cytoplasm shrinkage and membrane blebbing were observed in infected HeLa cells. Chromatin condensation and increased caspase-3 cleavage in infected HeLa cells 48 h after infection suggests an apoptosis-like phenomenon in M. agalactiae-infected cells. In compliance with these results, decreased viability and cell lysis of M. agalactiae-infected HeLa cells was also observed. Measurement of the amount of LDH released after M. agalactiae infection revealed a time- and dose-dependent increase in HeLa cell lysis. A significant decrease in LDH released after gentamicin treatment of infected cells confirmed the major role of cytadherent M. agalactiae in inducing host cell lysis. This is the first study illustrating M. agalactiae’s induction of cytopathic effects in infected HeLa cells. Further detailed investigation of infected host tissue for apoptotic markers might demonstrate the association between M. agalactiae-induced host cell lysis and the tissue destruction observed during M. agalactiae natural infection. PMID:27662492
Yu, Cheng-Chia; Lai, Yi-Yeh; Chen, Pei-Ni
2014-01-01
Background Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. Methodology/Principal Findings In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis. Conclusions These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies. PMID:25000169
Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures
Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M
2012-01-01
Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297
Fatani, Eman Jameel; Almutairi, Hamed H; Alharbi, Ali O; Alnakhli, Yasser Obaidallah; Divakar, Darshan Devang; Muzaheed; Alkheraif, Abdulaziz Abdullah; Khan, Aftab Ahmed
2017-11-01
Orthodontic brackets made from stainless steel were introduced in dentistry, though they have less ability in reducing enamel demineralization and are not successful in preventing microbial as well as biofilm growth. In this study, we evaluated the significant role of different brackets in reducing enamel demineralization indirectly. Results from different tests indicate the significant reduction in adhesion, biofilm formation and slow growth of tested bacterial species on brackets coated with Ag + TiO2 and found to be statistically significant lower than control. There was no loss in cell viability in all brackets indicating that the cells are biocompatible with different bracket materials. Scanning electron microscopy showed less bacteria attached with the surface coated with Ag + TiO2 indicated that bacteria were losing adherent nature on coated surface. In conclusion, TiO2+Ag coating on stainless steel brackets possessed anti-adherent properties and also have demonstrable antibacterial properties therefore helps in preventing dental caries and plaque accumulation indirectly. The cell compatibility of TiO2+Ag coated brackets is superior to the uncoated samples therefore can be used in orthodontics as it not only provide suitable antimicrobial activity and resistance to biofilm formation but also sustained the cell viability of human gingival fibroblast (HGF) cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing
2018-04-01
Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.
Avci, Pinar; Freire, Fernanda; Banvolgyi, Andras; Mylonakis, Eleftherios; Wikonkal, Norbert M; Hamblin, Michael R
2016-01-01
Aim: Ascorbate can inhibit growth and even decrease viability of various microbial species including Candida albicans. However the optimum conditions and the mechanism of action are unclear. Materials/methodology: Candida albicans shaken for 90 min in a buffered solution of ascorbate (90 mM) gave a 5-log reduction of cell viability, while there was no killing without shaking, in growth media with different carbon sources or at 4°C. Killing was inhibited by the iron chelator 2,2′-bipyridyl. Hydroxyphenyl fluorescein probe showed the intracellular generation of hydroxyl radicals. Results/conclusion: Ascorbate-mediated killing of C. albicans depends on oxygenation and metabolism, involves iron-catalyzed generation of hydroxyl radicals via Fenton reaction and depletion of intracellular NADH. Ascorbate could serve as a component of a topical antifungal therapy. PMID:27855492
Cao, Ting-Ting; Zhang, Yu-Qing
2015-09-01
Cell cultures often require the addition of animal serum and other supplements. In this study, silk sericin, a bioactive protein, recovered from the waste of silk floss production was hydrolysed into three pepsin-degraded sericin peptides with different ranges of molecular mass. Normal animal cells, tumour cells and hybridoma cells were cultured systematically in FBS culture media containing sericin as a supplement or serum substitute. The culture test and microscopic observation of L929 cells showed that the smaller molecular weight of the degraded sericin is most suitable for cell culture. The cell culture results showed that with the degradation of sericin, for normal mouse fibroblast L929 cells, addition of 0.75 % sericin into FBS culture medium yields cell viability that is superior to FBS culture medium alone. When all serum was replaced by sericin, cell viability in the sericin medium could reach about one half of that in FBS medium. When in a medium containing a mixture of FBS: sericin (6:4, v/v), the cell culture effect is about 80 %. For the cultures of four tumour and one hybridoma cells, regardless of the molecular weight range, these degraded sericin peptides could substitute all serum in FBS media. The cell viability and proliferation of these tumour and hybridoma cells are equivalent or superior to that in FBS medium. In other words, cell viability and proliferation of these tumour and hybridoma cells in sericin media are more preferable to serum media. The mechanism of the sericin protein to promote cell growth and proliferation will be further investigated later.
Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping
2015-01-16
The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.
A cell transportation solution that preserves live circulating tumor cells in patient blood samples.
Stefansson, Steingrimur; Adams, Daniel L; Ershler, William B; Le, Huyen; Ho, David H
2016-05-06
Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after days of storage. Therefore, we suggest an effective and economical transportation of cancer patient blood samples containing live CTCs can be achieved.
Tagboto, S; Griffiths, A Paul
2007-01-01
Background It is well recognised that there is often a disparity between the structural changes observed in the kidney following renal injury and the function of the organ. For this reason, we carried out studies to explore possible means of studying and quantifying the severity of renal ischaemic damage using a laboratory model. Methods To do this, freshly isolated rabbit kidney tissue was subjected to warm (37°C) or cold (1°C) ischaemia for 20 hours. Following this, the tissue was stained using Haematoxylin and Eosin (H+E), Periodic Schiff reagent (PAS) and the novel monoclonal antibody CD10 stain. Additionally, ischaemic damage to the kidneys was assessed by biochemical tests of tissue viability using formazan-based colorimetry. Results CD 10 antibody intensely stained the brush border of control kidney tissue with mild or no cytoplasmic staining. Cell injury was accompanied by a redistribution of CD10 into the lumen and cell cytoplasm. There was good correlation between a score of histological damage using the CD 10 monoclonal antibody stain and the biochemical assessment of viability. Similarly, a score of histological damage using traditional PAS staining correlated well with that using the CD10 antibody stain. In particular, the biochemical assay and the monoclonal antibody staining techniques were able to demonstrate the efficacy of Soltran (this solution is used cold to preserve freshly isolated human kidneys prior to transplantation) in preserving renal tissue at cold temperatures compared to other randomly selected solutions. Conclusion We conclude that the techniques described using the CD10 monoclonal antibody stain may be helpful in the diagnosis and assessment of ischaemic renal damage. In addition, biochemical tests of viability may have an important role in routine histopathological work by giving additional information about cellular viability which may have implications on the function of the organ. PMID:17531101
Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C
2015-07-27
The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Twelve adult swine underwent ischemia-reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI-positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the restorative potential of the injured heart. This in vivo multimodality imaging platform represents a novel, real-time method of tracking PIR viability and stem cell engraftment while providing a mechanistic explanation of the therapeutic efficacy of cardiovascular stem cells. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Shin, Jeong-Hun; Jun, Seung-Lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun
2012-12-01
This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle () to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. In the sovereign, minister, assistant and courier principle (), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle.
A Field-Portable Cell Analyzer without a Microscope and Reagents
Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha
2017-01-01
This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm3 and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer (de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis. PMID:29286336
Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M
2016-03-01
It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.
Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat
2013-01-01
The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.
Hemadi, Masoud; Saki, Ghasem; Rajabzadeh, Asghar; Khodadadi, Ali; Sarkaki, Alireza
2013-01-01
AIMS: A variety of stress factors are known to inhibit male reproductive functions. So this study was conducted in order to investigate the effects of honey and vitamin E on the germinative and somatic cells of testes of rats exposed to noise stress. MATERIALS AND METHODS: Mature male wistar rats (n = 24) were randomly grouped as follows: Group 1 (honey + noise stress), 2 (vitamin E + noise stress), 3 (noise stress,) and 4 as the control group. In groups 1, 2, and 3, rats were exposed to noise stress. In groups 1 and 2, rats also were given honey and vitamin E, respectively, orally for 50 days. After that, the germinative and somatic cells of testes parenchyma were isolated by digesting the whole testes by a standard method. Next, viability, apoptosis, and necrosis of the cells were evaluated by TUNEL kit and flow cytometry. RESULTS: The rates of apoptosis and necrosis of the testicular cells were increased (P = 0.003 and P = 0.001, respectively), but viability of these cells decreased in testes of rats exposed to noise stress (P = 0.003). However, administration of honey and vitamin E were significantly helpful in keeping the cells of testis parenchyma alive, which suffers from noise pollution (P < 0.05 and P < 0.05, respectively). CONCLUSIONS: Noise stress has negative influences on the cells of testicular tissue by increasing apoptotic and necrotic cells. However, the associated enhancement in healthy cells suggests that honey and vitamin E have positive influences on the testis parenchyma. PMID:23869153
Bommareddy, Ajay; Rule, Brittny; VanWert, Adam L; Santha, Sreevidya; Dwivedi, Chandradhar
2012-06-15
The anticancer effects of α-santalol, a major component of sandalwood oil, have been reported against the development of certain cancers such as skin cancer both in vitro and in vivo. The primary objectives of the current study were to investigate the cancer preventive properties of α-santalol on human prostate cancer cells PC-3 (androgen independent and P-53 null) and LNCaP (androgen dependent and P-53 wild-type), and determine the possible mechanisms of its action. The effect of α-santalol on cell viability was determined by trypan blue dye exclusion assay. Apoptosis induction was confirmed by analysis of cytoplasmic histone-associated DNA fragmentation using both an apoptotic ELISA kit and a DAPI fluorescence assay. Caspase-3 activity was determined using caspase-3 (active) ELISA kit. PARP cleavage was analyzed using immunoblotting. α-Santalol at 25-75 μM decreased cell viability in both cell lines in a concentration and time dependent manner. Treatment of prostate cancer cells with α-santalol resulted in induction of apoptosis as evidenced by DNA fragmentation and nuclear staining of apoptotic cells by DAPI. α-Santalol treatment also resulted in activation of caspase-3 activity and PARP cleavage. The α-santalol-induced apoptotic cell death and activation of caspase-3 was significantly attenuated in the presence of pharmacological inhibitors of caspase-8 and caspase-9. In conclusion, the present study reveals the apoptotic effects of α-santalol in inhibiting the growth of human prostate cancer cells. Copyright © 2012 Elsevier GmbH. All rights reserved.
Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells
García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J.
2014-01-01
Background/Aims Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD. PMID:24575118
Chen, Xi; Li, Kai; Zhao, Guoqing
2018-04-18
BACKGROUND Propofol has antitumor effects against various cancers. However, the mechanism of action of propofol in HeLa human cervical cancer cells has not been elucidated. MATERIAL AND METHODS We treated HeLa human cervical cancer cells with different concentrations of propofol. Cell viability was evaluated with Cell Counting Kit-8 and apoptosis was analyzed by annexin V-fluorescein isothiocyanate and propidium iodide staining and flow cytometry. Autophagosome formation was evaluated based on microtubule-associated protein light chain (LC)3 conversion and light chain 3 puncta formation. Autophagosome clearance was assessed according to p62 protein level and autolysosome generation. RESULTS We found that propofol decreased cell viability and increased autophagosome generation in HeLa cells. Autophagosome formation was evaluated based on LC3 conversion and LC3 puncta formation. Autophagosome clearance was assessed according to p62 protein level. The AMPK/mTOR signaling pathway was found to be activated in propofol-induced autophagosome accumulation. Fluorescence analysis using LysoTracker dye revealed that propofol blocked autophagosome-lysosome fusion. Administration of rapamycin increased autophagosome clearance in propofol-treated HeLa cells. Additionally, propofol induced endoplasmic reticulum (ER) stress and disrupted intracellular Ca2+ balance, thereby enhancing autophagosome accumulation. Suppressing ER stress by treatment with tauroursodeoxycholic acid (TUDCA) enhanced these effects, suggesting that the cytotoxicity of propofol is related to induction of ER stress. CONCLUSIONS This study is the first to provide evidence that propofol-mediated autophagy regulation is an underlying part of the mechanism by which propofol regulates HeLa cells progression.
Ulusoy, Ayça Tuba; Kalyoncuoglu, Elif; Kaya, Senay; Cehreli, Zafer Cavit
2016-08-01
The purpose of this study was to evaluate the effectiveness of goat milk as a storage media for maintenance of periodontal ligament (PDL) cell viability of avulsed teeth and compare it with commonly used and/or investigated storage media. PDL cells were obtained from the root surface of healthy premolars and were cultured in Eagle's maintenance medium (EMM). Cell cultures were treated with the following storage media: tap water (negative control); EMM (positive control); Hank's balanced salt solution; ultra high temperature (UHT) long-shelf-life lactose-free cow milk; UHT long-shelf-life whole cow milk; UHT long-shelf-life skimmed cow milk; UHT long-shelf-life soy milk; UHT long-shelf-life goat milk, UHT long-shelf-life follow on milk with probiotic, 20% propolis, and egg white. Culture plates were incubated with experimental media at 20°C for 1, 3, 6, 12, and 24 h. PDL cell viability was assessed by tetrazolium salt-based colorimetric (MTT) assay at each test period. One-way anova was used to evaluate the effects of storage solutions at each time point, followed by post hoc Duncan's multiple comparison test (P = 0.05). A dendrogram was constructed to show the arrangement of hierarchical clustering. Goat milk displayed the highest capacity to maintain cell viability at all test intervals (P < 0.001). Between 3 and 24 h, milk with the probiotic showed the lowest time-dependent PDL cell viability among all test media (P < 0.001). Compared with all milks, HBSS performed significantly less effectively in maintaining PDL cell viability during the entire test period (P < 0.001). Based on PDL viability, goat milk can be recommended as a suitable storage medium for avulsed teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.
Falah, Mizied; Rayan, Anwar; Srouji, Samer
2015-09-01
In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis
van Waardenburg, Robert C.A.M.
2016-01-01
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H493R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1−/− and Atm−/− mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3’- and 5’-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways. PMID:27747316
Tyrosyl-DNA Phosphodiesterase I a critical survival factor for neuronal development and homeostasis.
van Waardenburg, Robert C A M
2016-01-01
Tyrosyl-DNA phosphodiesterase I (TDP1), like most DNA repair associated proteins, is not essential for cell viability. However, dysfunctioning TDP1 or ATM (ataxia telangiectasia mutated) results in autosomal recessive neuropathology with similar phenotypes, including cerebellar atrophy. Dual inactivation of TDP1 and ATM causes synthetic lethality. A TDP1H 493 R catalytic mutant is associated with spinocerebellar ataxia with axonal neuropathy (SCAN1), and stabilizes the TDP1 catalytic obligatory enzyme-DNA covalent complex. The ATM kinase activates proteins early on in response to DNA damage. Tdp1-/- and Atm-/- mice exhibit accumulation of DNA topoisomerase I-DNA covalent complexes (TOPO1-cc) explicitly in neuronal tissue during development. TDP1 resolves 3'- and 5'-DNA adducts including trapped TOPO1-cc and TOPO1 protease resistant peptide-DNA complex. ATM appears to regulate the response to TOPO1-cc via a noncanonical function by regulating SUMO/ubiquitin-mediated TOPO1 degradation. In conclusion, TDP1 and ATM are critical factors for neuronal cell viability via two independent but cooperative pathways.
Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin
2017-06-01
To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.
Germain, Todd; Ansari, Megan; Pappas, Dimitri
2016-09-14
Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Jaekwang; Yun, Miyong; Kim, Eun‐Ok; Jung, Deok‐Beom; Won, Gunho; Kim, Bonglee; Jung, Ji Hoon
2016-01-01
Background and Purpose The TNF‐related apoptosis‐inducing ligand (TRAIL) is a promising anticancer agent due to its remarkable ability to selectively kill tumour cells. However, because most tumours exhibit resistance to TRAIL‐induced apoptosis, the development of combination therapies to overcome resistance to TRAIL is required for effective cancer therapy. Experimental Approach Cell viability and possible synergy between the plant pyranocoumarin decursin and TRAIL was measured by MTT assay and calcusyn software. Reactive oxygen species (ROS) and apoptosis were measured using dichlorodihydrofluorescein and annexin/propidium iodide in cell flow cytometry. Changes in protein levels were assessed with Western blotting. Key Results Combining decursin and TRAIL markedly decreased cell viability and increased apoptosis in TRAIL‐resistant non‐small‐cell lung cancer (NSCLC) cell lines. Decursin induced expression of the death receptor 5 (DR5). Inhibition of DR5 attenuated apoptotic cell death in decursin + TRAIL treated NSCLC cell lines. Interestingly, induction of DR5 and CCAAT/enhancer‐binding protein homologues protein by decursin was mediated through selective induction of the pancreatic endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4) branch of the endoplasmic reticulum stress response pathway. Furthermore, enhancement of PERK/ATF4 signalling by decursin was mediated by ROS generation in NSCLC cell lines, but not in normal human lung cells. Decursin also markedly down‐regulated expression of survivin and Bcl‐xL in TRAIL‐resistant NSCLC cells. Conclusions and Implications ROS generation by decursin selectively activated the PERK/ATF4 axis of the endoplasmic reticulum stress signalling pathway, leading to enhanced TRAIL sensitivity in TRAIL‐resistant NSCLC cell lines, partly via up‐regulation of DR5. PMID:26661339
2014-01-01
Background The anti-mullerian hormone (AMH) is a member of the transforming growth factor β (TGF-β) superfamily, which is responsible of the regression of the mullerian duct. AMH is expressed in the normal endometrium, where, acting in a paracrine fashion, negatively regulates cellular viability. Our objective was to evaluate the in vitro effects of the treatment with AMH of endometriosic cells. Methods AMH expression in human endometriosis glands was evaluated by immunohistochemistry. RT-PCR has been used to quantify the expression levels of AMH and AMH RII isoforms, as well as of cytochrome P450 in both endometriosis epithelial and stromal cells Effects of AMH and AMH-cleaved treatment in endometriosis cells were evaluated by flow-cytometry analysis. Finally, it has been evaluated the effect of plasmin-digested AMH on cytochrome P450 activity. Results AMH and AMH RII isoforms, as well as cytochrome P450, were expressed in both endometriosis epithelial and stromal cells. Treatment of endometriosis stromal and epithelial cell growth with AMH was able to induce a decrease in the percentage of cells in S phase and increase percentage of cells in G1 and G2 phase; coherently, decreased cell viability and increased percentage of cells death fraction was observed. The plasmin-digested AMH was able to suppress most of the cytochrome P450 activity, causing an increase of pre-G1 phase and of apoptosis induction treating with plasmin-digested AMH in both cell lines, most marked in the epithelial cells. Conclusions The data produced suggest a possible use of AMH as therapeutic agents in endometriosis. PMID:24886254
Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro
Liu, Daozhou; Cui, Han; Zhang, Bangle; Zhou, Siyuan; Yang, Tiehong; Mei, Qibing
2013-01-01
Background The clinic therapeutic effect of resveratrol is limited due to its low oral bioavailability. Piceid, a precursor of resveratrol, is the most abundant form of resveratrol in nature. A number of studies have hypothesized that piceid may have the same bioactivities like those of resveratrol. The aim of this work is to compare piceid with resveratrol in antioxidation and antiproliferation activities in vitro. Methods The antioxidative effects of resveratrol and piceid were evaluated by phenanthroline-Fe2+ method and H2O2-induced oxidative injury cell model. The antiproliferation effects were determined by MTT method in human liver tumor HepG2 cells, human breast cancer MDA-MB-231 cells and MCF-7 cells. The effects of resveratrol and piceid on the cell cycle and the apoptosis were evaluated by flow cytometry. Additionally, the uptake profiles of resveratrol and piceid in cancer cells were observed using fluorescence microscopy and clarified by LC-MS/MS. Conclusion Piceid exhibited higher scavenging activity against hydroxyl radicals than resveratrol in vitro. Resveratrol showed a significant protective effect against H2O2-induced cell damage. What is more, resveratrol had biphasic effects on tumor cells. Resveratrol and piceid only showed significant cytotoxicity on tumor cells at high concentration (≥50 µmol/L), while low concentration of resveratrol (<30 µmol/L) increased the cell viability. The principal effect of resveratrol and piceid on the viability of tumor cells was caused by the cell cycle arrest, while the effect on apoptosis was relatively minor. The reason that piceid showed lower biological activity than resveratrol at the same concentration was probably because piceid was more difficult in being uptaken by cells. PMID:23342161
Gorokhova, Elena; Mattsson, Lisa; Sundström, Annica M
2012-06-01
Two fluorescent dyes, TO-PRO-1 iodide and 5-CFDA-AM, were evaluated for LIVE/DEAD assessment of unicellular marine algae Brachiomonas submarina and Tetraselmis suecica. Epifluorescence microscopy was used to estimate cell viability in predetermined mixtures of viable and non-viable algal cells and validated using microplate growth assay as reference measurements. On average, 5-CFDA-AM underestimated live cell abundance by ~25% compared with viability estimated by the growth assay, whereas TO-PRO-1 iodide provided accurate viability estimates. Furthermore, viability estimates based on staining with TO-PRO-1 iodide were not affected by a storage period of up to one month in -80°C, making the assay a good candidate for routine assessment of phytoplankton populations in field and laboratory studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Anti-apoptosis Effect of Decoy Receptor 3 in Cholangiocarcinoma Cell Line TFK-1
Xu, Ying-Chen; Cui, Jing; Zhang, Li-Jun; Zhang, Dong-Xin; Xing, Bing-Chen; Huang, Xiong-Wei-Ye; Wu, Ji-Xiang; Liang, Chao-Jie; Li, Guang-Ming
2018-01-01
Background: Decoy receptor 3 (DcR3) is a protein with anti-apoptotic effect that belongs to the tumor necrosis factor receptor superfamily. DcR3 is highly expressed in a variety of malignant tumors including cholangiocarcinoma and its expression was found to be related to the clinical stage, the invasion, and the metastasis of the tumor. This in vitro study aimed to investigate the effect of downregulated expression of DcR3 on cell viability, cell apoptosis, and cell cycle in cholangiocarcinoma cell line TFK-1. Methods: Three different cell lines were cultured: human cholangiocarcinoma TFK-1, human biliary epithelial carcinoma HuCCT-1, and human cholangiocarcinoma RBE. The cholangiocarcinoma cell line with the highest expression of DcR3 was selected for further investigation. The expression of DcR3 was silenced/knocked down by transfection with DcR3-siRNA in the selected cell line. Various biological phenotype parameters such as cell viability, apoptosis, and cell cycle were observed. Results: The mRNA and protein levels of DcR3 were measured in the three cell lines, and TFK-1 was selected. After the treatment with DcR3-siRNA for 48 h, DcR3 mRNA and protein expression in the treatment group were 38.45% (P < 0.01) and 48.03% (P < 0.05) of that of the control, respectively. It was found that the cell viability decreased to 61.87% of the control group (P < 0.01) after the downregulation of DcR3 in cholangiocarcinoma cell line TFK-1 by transfection with DcR3-siRNA, while the percentage of apoptotic cells was 2.98 times as compared with the control group (P < 0.05). Compared with the control group the ratio of G0/G1 increased, and the ratio of G2/M decreased in the treatment group. However, the differences were not statistically significant. Conclusions: The effect of DcR3 on the growth and apoptosis of cholangiocarcinoma has been demonstrated. DcR3 is not only a predictive marker for malignant tumor but it is also likely to be a potential target for cancer gene therapy. Further studies should focus on exploring the binding ligand of DcR3, the signaling pathway involved, and the molecular mechanism for the regulation of DcR3 expression in cholangiocarcinoma. PMID:29271385
Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André
2012-01-01
Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101
Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H
2010-02-19
Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.
Chondrotoxicity of Liposomal Bupivacaine in Articular Chondrocytes: Preliminary Findings.
Shaw, K Aaron; Johnson, Peter C; Zumbrun, Steve; Chuang, Augustine H; Cameron, Craig D
2017-03-01
The chondrotoxicity of local anesthetics has been previously recognized. Recent introduction of a liposomal formulation of bupivacaine has been found to significantly improve postoperative pain control but its effect on chondrocyte viability has yet to be investigated with this new formulation. We sought to assess the in vitro chondrotoxicity of liposomal bupivacaine. Chondrocytes were isolated from articular cartilage from fresh stifle joints and grown in culture medium. Cultured chondrocyte-derived cells (CDCs) were treated with 0.9% normal saline solution, 0.5%, 0.25%, and 0.13% bupivacaine and ropivacaine, 1.3% liposomal bupivacaine for 1 hour. Following treatment, cells were washed and incubated in media for 23 hours. The CDCs were then harvested and viability was assessed by flow cytometry using SYTOX green dead cell stain. Treated CDCs demonstrated a dose-response effect for chondrocyte viability when treated with bupivacaine, ropivacaine, and liposomal bupivacaine. Liposomal bupivacaine demonstrated the highest chondrocyte viability following treatment. Ropivacaine demonstrated higher chondrocyte viability than bupivacaine. Following 1 hour of treatment, liposomal bupivacaine demonstrated the highest chondrocyte viability. Chondrocyte viability was inversely proportional to anesthetic concentration. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO
Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling
2017-01-01
Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells Materials and Methods: MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Results: Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Conclusion: Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug. PMID:28638890
Amigo-Benavent, M; Wang, S; Mateos, R; Sarriá, B; Bravo, L
2017-08-01
This work aimed at studying the effects of green coffee bean (GCBE) and yerba mate (YME) extracts, their main phenolic components (5-caffeoylquinic acid, 5-CQA; 3,5-dicaffeoylquinic acid, 3,5-DCQA) and metabolites (ferulic acid, FA; caffeic acid, CA; dihydrocaffeic acid, DHCA; and dihydroferulic acid, DHFA) along with caffeine (CAF) on the viability and proliferation of different human cell lines. Extracts (10-1000 μg/mL) and standards (10-1000 μM) were assayed in colon (Caco-2), lung (A549), oesophageal (OE-33), urinary bladder (T24) human carcinoma cells, and a non-cancer cell line (CCD-18Co). YME significantly reduced viability of cancer cells at all assayed concentrations, the higher doses also reducing cell proliferation. GCBE effects on cell viability were more effective at 100 and 1000 μg/mL, showing modest effects on cell proliferation. The highest doses of 5-CQA and 3,5-DCQA reduced cell viability and proliferation in all cell lines, whereas FA, DHCA and DHFA had lower and variable effects. Caffeine had no effect. Dietary-attainable concentrations (0.1, 1 and 10 μg/mL) of YME were tested for cytotoxicity and reactive oxygen species generation, showing no cytotoxic effect. Low concentrations of all tested compounds were non-cytotoxic to CCD-18Co cells. YME and to a lower degree GCBE, their phenolic components and metabolites may decrease cancer cell viability and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan
2016-11-01
Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.
de Oliveira, Edson R A; Lima, Bruna M M P; de Moura, Wlamir C; Nogueira, Ana Cristina M de A
2013-12-31
Type I interferons (IFNs) exert an array of important biological functions on the innate immune response and has become a useful tool in the treatment of various diseases. An increasing demand in the usage of recombinant IFNs, mainly due to the treatment of chronic hepatitis C infection, augmented the need of quality control for this biopharmaceutical. A traditional bioassay for IFN potency assessment is the cytopathic effect reduction antiviral assay where a given cell line is preserved by IFN from a lytic virus activity using the cell viability as a frequent measure of end point. However, type I IFNs induce other biological effects such as cell-cycle arrest and apoptosis that can influence directly on viability of many cell lines. Here, we standardized a cytopathic effect reduction antiviral assay using Hep-2C cell/mengovirus combination and studied a possible impact of cell viability variations caused by IFN-alpha 2b on responses generated on the antiviral assay. Using the four-parameter logistic model, we observed less correlation and less linearity on antiviral assay when responses from IFN-alpha 2b 1000 IU/ml were considered in the analysis. Cell viability tests with MTT revealed a clear cell growth inhibition of Hep-2C cells under stimulation with IFN-alpha 2b. Flow cytometric cell-cycle analysis and apoptosis assessment showed an increase of S+G2 phase and higher levels of apoptotic cells after treatment with IFN-alpha 2b 1000 IU/ml under our standardized antiviral assay procedure. Considering our studied dose range, we also observed strong STAT1 activation on Hep-2C cells after stimulation with the higher doses of IFN-alpha 2b. Our findings showed that the reduction of cell viability driven by IFN-alpha can cause a negative impact on antiviral assays. We assume that the cell death induction and the cell growth inhibition effect of IFNs should also be considered while employing antiviral assay protocols in a quality control routine and emphasizes the importance of new approaches for IFN potency determination. Copyright © 2013 Elsevier B.V. All rights reserved.
Button, D. K.; Schut, Frits; Quang, Pham; Martin, Ravonna; Robertson, Betsy R.
1993-01-01
Dilution culture, a method for growing the typical small bacteria from natural aquatic assemblages, has been developed. Each of 11 experimental trials of the technique was successful. Populations are measured, diluted to a small and known number of cells, inoculated into unamended sterilized seawater, and examined three times for the presence of 104 or more cells per ml over a 9-week interval. Mean viability for assemblage members is obtained from the frequency of growth, and many of the cultures produced are pure. Statistical formulations for determining viability and the frequency of pure culture production are derived. Formulations for associated errors are derived as well. Computer simulations of experiments agreed with computed values within the expected error, which verified the formulations. These led to strategies for optimizing viability determinations and pure culture production. Viabilities were usually between 2 and 60% and decreased with >5 mg of amino acids per liter as carbon. In view of difficulties in growing marine oligobacteria, these high values are noteworthy. Significant differences in population characteristics during growth, observed by high-resolution flow cytometry, suggested substantial population diversity. Growth of total populations as well as of cytometry-resolved subpopulations sometimes were truncated at levels of near 104 cells per ml, showing that viable cells could escape detection. Viability is therefore defined as the ability to grow to that population; true viabilities could be even higher. Doubling times, based on whole populations as well as individual subpopulations, were in the 1-day to 1-week range. Data were examined for changes in viability with dilution suggesting cell-cell interactions, but none could be confirmed. The frequency of pure culture production can be adjusted by inoculum size if the viability is known. These apparently pure cultures produced retained the size and apparent DNA-content characteristic of the bulk of the organisms in the parent seawater. Three cultures are now available, two of which have been carried for 3 years. The method is thus seen as a useful step for improving our understanding of typical aquatic organisms. PMID:16348896
Akan, Pinar; Kizildag, Servet; Ormen, Murat; Genc, Sermin; Oktem, Mehmet Ali; Fadiloglu, Meral
2009-01-15
Pregnenolone (P), the main precursor of the steroids, and its sulfate ester, pregnenolone sulfate (PS), are the major neurosteroids produced in the neural tissue. Many neuroendocrinological studies stressed the neuroprotective role of neurosteroids although it has been suggested that the inhibition of P and PS synthesis can delay neuronal cell death. The potential roles of P and PS in vital neuronal functions and in amyloid beta peptide (Abeta) toxicity are not clearly identified. This work aims to investigate the effects of P and PS on cell viability and Abeta peptide toxicity in a concentration and exposure time-dependent manner in rat PC-12 cells. The cells were treated with 20muM Abeta peptide 25-35 and variable concentrations of P and PS ranging from 0.5muM to 100muM. To examine the effects of steroid treatment on Abeta peptide toxicity, 0.5muM (low) and 50muM (high) neurosteroids were used. The cell viability and lactate dehydrogenase release of cells were evaluated after 24, 48 and 72h. Morphological changes of cells were also examined. The treatment with higher than 1muM concentrations of P and PS significantly decreased the cell viability comparing to untreated cells. At lower concentrations, P and PS had no toxic actions until 72h. The Abeta treatment resulted in a significant decrease in cell viability comparing to untreated cells. P showed a dose-dependent protective effect against Abeta peptide in PC-12 cells. But its sulfate ester did not have the same effect on Abeta peptide toxicity, even it significantly decreased cell viability in Abeta-treated cells. Consequently, the discrepant effects of P and PS on Abeta peptide toxicity may provide insight on the pathogenesis of Alzheimer's disease.
Bidad, Katayoon; Salehi, Eisa; Oraei, Mona; Saboor-Yaraghi, Ali-Akbar; Nicknam, Mohammad Hossein
2011-12-01
All-trans retinoic acid (ATRA), as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were separated from heparinized blood of healthy donors and were cultured in conditions, some with, some without ATRA. Viability was assessed by PI flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription factors (FOXP3, RORγt and T-bet) were examined by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM) caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not adversely affect cell viability and proliferation in comparison to culture medium without ATRA. Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared to culture medium without ATRA. ATRA could increase FOXP3+ and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+ T cells in terms of cell viability, proliferation and activation. We could also show that ATRA diverts the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.
Niknejad, Hassan; Deihim, Tina; Peirovi, Habibollah; Abolghasemi, Hassan
2013-08-01
Amniotic epithelial cells are a promising source for stem cell-based therapy through their potential capacity to differentiate into the cell lineages of all three germ layers. Long-term preservation is necessary to have a ready-to-use source of stem cells, when required. Reduced differentiation capability, decrease of viability and use of fetal bovine serum (FBS) are three drawbacks of clinical application of cryopreserved stem cells. In this study, we used human amniotic fluid instead of animal serum, and evaluated viability and multipotency of amniotic epithelial cells after cryopreservation in suspension and compared with those cryopreserved on their natural scaffold (in situ cryopreservation). There was no significant difference in viability of the cells cryopreserved in amniotic fluid and FBS. Also, the same results were achieved for expression of pluripotency marker OCT-4 when FBS was replaced by amniotic fluid in the samples with the same cryoprotectant. The cells cryopreserved in presence of scaffold had a higher level of viability compared to the cells cryopreserved in suspension. Although, the number of the cells expressed OCT-4 significantly decreased within cryopreservation in suspension, no decrease in expression of OCT-4 was observed when the cells cryopreserved with their natural scaffold. Upon culturing of post-thawed cells in specific lineage differentiating mediums, the markers of neuronal, hepatic, cardiomyocytic and pancreatic were found in differentiated cells. These results show that replacement of FBS by amniotic fluid and in situ cryopreservation of amniotic epithelial cells is an effective approach to overcome limitations related to long-term preservation including differentiation during cryopreservation and decrease of viability. Copyright © 2013 Elsevier Inc. All rights reserved.
Townson, Simon; Tagboto, Senyo; McGarry, Helen F; Egerton, Gillian L; Taylor, Mark J
2006-01-01
Background The filarial parasites of major importance in humans contain the symbiotic bacterium Wolbachia and recent studies have shown that targeting of these bacteria with antibiotics results in a reduction in worm viability, development, embryogenesis, and survival. Doxycycline has been effective in human trials, but there is a need to develop drugs that can be given for shorter periods and to pregnant women and children. The World Health Organisation-approved assay to screen for anti-filarial activity in vitro uses male Onchocerca gutturosa, with effects being determined by worm motility and viability as measured by reduction of MTT to MTT formazan. Here we have used this system to screen antibiotics for anti-filarial activity. In addition we have determined the contribution of Wolbachia depletion to the MTT reduction assay. Methods Adult male O. gutturosa were cultured on a monkey kidney cell (LLCMK 2) feeder layer in 24-well plates with antibiotics and antibiotic combinations (6 to 10 worms per group). The macrofilaricide CGP 6140 (Amocarzine) was used as a positive control. Worm viability was assessed by two methods, (i) motility levels and (ii) MTT/formazan colorimetry. Worm motility was scored on a scale of 0 (immotile) to 10 (maximum) every 5 days up to 40 days. On day 40 worm viability was evaluated by MTT/formazan colorimetry, and results were expressed as a mean percentage reduction compared with untreated control values at day 40. To determine the contribution of Wolbachia to the MTT assay, the MTT formazan formation of an insect cell-line (C6/36) with or without insect Wolbachia infection and treated or untreated with tetracycline was compared. Results Antibiotics with known anti-Wolbachia activity were efficacious in this system. Rifampicin (5 × 10-5M) was the most effective anti-mycobacterial agent; clofazimine (1.25 × 10-5M and 3.13 × 10-6M) produced a gradual reduction in motility and by 40 days had reduced worm viability. The other anti-mycobacterial drugs tested had limited or no activity. Doxycycline (5 × 10-5M) was filaricidal, but minocycline was more effective and at a lower concentration (5 × 10-5M and 1.25 × 10-5M). Inactive compounds included erythromycin, oxytetracycline, trimethoprim and sulphamethoxazole. The MTT assay on the insect cell-line showed that Wolbachia made a significant contribution to the metabolic activity within the cells, which could be reduced when they were exposed to tetracycline. Conclusion The O. gutturosa adult male screen for anti-filarial drug activity is also valid for the screening of antibiotics for anti-Wolbachia activity. In agreement with previous findings, rifampicin and doxycycline were effective; however, the most active antibiotic was minocycline. Wolbachia contributed to the formation of MTT formazan in the MTT assay of viability and is therefore not exclusively a measure of worm viability and indicates that Wolbachia contributes directly to the metabolic activity of the nematode. PMID:16563157
Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi
2017-02-15
We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of impact of two decontamination solutions on the viability of the cells in human amnion.
Smeringaiova, Ingrida; Trosan, Peter; Mrstinova, Miluse Berka; Matecha, Jan; Burkert, Jan; Bednar, Jan; Jirsova, Katerina
2017-09-01
Human amniotic membrane (HAM) is used as an allograft in regenerative medicine or as a source of pluripotent cells for stem cell research. Various decontamination protocols and solutions are used to sterilize HAM before its application, but little is known about the toxicity of disinfectants on HAM cells. In this study, we tested two decontamination solutions, commercial (BASE·128) and laboratory decontamination solution (LDS), with an analogous content of antimycotic/antibiotics for their cytotoxic effect on HAM epithelial (EC) and mesenchymal stromal cells (MSC). HAM was processed in a standard way, placed on nitrocellulose scaffold, and decontaminated, following three protocols: (1) 6 h, 37 °C; (2) 24 h, room temperature; (3) 24 h, 4 °C. The viability of EC was assessed via trypan blue staining. The apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The mean % (±SD) of dead EC (%DEC) from six fresh placentas was 12.9 ± 18.1. Decontamination increased %DEC compared to culture medium. Decontamination with BASE·128 for 6 h, 37 °C led to the highest EC viability (81.7%). Treatment with LDS at 24 h, 4 °C resulted in the lowest EC viability (55.9%) in the set. MSC were more affected by apoptosis than EC. Although the BASE·128 expresses lower toxicity compared to LDS, we present LDS as an alternative decontamination solution with a satisfactory preservation of cell viability. The basic formula of LDS will be optimised by enrichment with nutrient components, such as glucose or vitamins, to improve cell viability.
Hussain, Arif; Sharma, Chhavi; Khan, Saniyah; Shah, Kruti; Haque, Shafiul
2015-01-01
Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Q; Lum, JJ; Isabelle, M
Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, andmore » experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.« less
Gomis, J; Cuello, C; Sanchez-Osorio, J; Gil, M A; Parrilla, I; Angel, M A; Vazquez, J M; Roca, J; Martinez, E A
2013-04-01
This study was aimed to determine the effect of forskolin on the viability of in vivo-derived porcine embryos vitrified by the superfine open pulled straw (SOPS) or solid surface vitrification (SSV) methods at the 2-cell, 4-cell, and blastocyst stages. Zygotes, 2- to 4-cell embryos, and morulae were obtained from superovulated sows. After collection, embryos were cultured for 24h with 0 or 10 μM forskolin and then vitrified using the SOPS and SSV method, or not vitrified (fresh controls). Fresh and vitrified-warmed 2-cells, 4-cells, and blastocysts were cultured for additional 96 h, 72 h and 24 h, respectively. At the end of the culture, embryos were evaluated for progression to the blastocyst stage and total cell number. The vitrification method did not affect any of the parameters evaluated for any embryo stage. Forskolin increased (P<0.01) the blastocyst formation and the final developmental stage of vitrified 2- and 4-cell embryos. However, these embryos exhibited lower (P<0.003) blastocyst formation rates than their fresh counterparts. The total cell number and hatching rate were similar in both groups (vitrified and fresh) of 2- and 4-cell embryos. Vitrified blastocysts exhibited viabilities, final developmental stages, hatching rates, and total cell numbers that were similar to those of their fresh counterparts, regardless of the addition of forskolin. In conclusion, the SOPS and SSV methods are suitable for the cryopreservation of in vivo-derived 2- to 4-cell porcine embryos. Pre-treatment with forskolin for 24h before vitrification improves the cryotolerance of 2- and 4-cell porcine embryos. Copyright © 2013 Elsevier Inc. All rights reserved.
Rahayu, Budi; Baktiyani, Siti Candra Windu; Nurdiana, Nurdiana
2016-01-01
This study aims to investigate whether an ethanolic extract of Theobroma cacao bean is able to increase cell viability and decrease IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Endothelial cells were obtained from human umbilical vascular endothelial cells. At confluency, endothelial cells were divided into six groups, which included control (untreated), endothelial cells exposed to plasma from normal pregnancy, endothelial cells exposed to 2% plasma from preeclamptic patients (PP), endothelial cells exposed to PP in the presence of ethanolic extract of T. cacao (PP+TC) at the following three doses: 25, 50, and 100 ppm. The analysis was performed in silico using the Hex 8.0, LigPlus and LigandScout 3.1 software. Analysis on IL-6 and sVCAM-1 levels were done by enzyme linked immunosorbent assay (ELISA). We found that seven of them could bind to the protein NFκB (catechin, leucoanthocyanidin, niacin, phenylethylamine, theobromine, theophylline, and thiamin). This increase in IL-6 was significantly (P<0.05) attenuated by both the 50 and 100 ppm treatments of T. cacao extract. Plasma from PP significantly increased sVCAM-1 levels compared to untreated cells. This increase in sVCAM-1 was significantly attenuated by all doses of the extract. In conclusion, T. cacao extract prohibits the increase in IL-6 and sVCAM-1 in endothelial cells induced by plasma from preeclamptic patients. Therefore this may provide a herbal therapy for attenuating the endothelial dysfunction found in preeclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.
Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D.; Wang, Ping; Reynolds, Mark A.; Zhao, Liang; Xu, Hockin H.K.
2017-01-01
Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p < 0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p > 0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14 d was 14-fold that at 1 d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810
Nanotoxicological Effects of SiO2 Nanoparticles on Spodoptera frugiperda Sf9 Cells.
Santo-Orihuela, Pablo L; Foglia, Maria L; Targovnik, Alexandra M; Miranda, Maria V; Desimone, Martin F
2016-01-01
The application of silica nanoparticles (NPs) in the biomedical field experienced a great development. The driving forces for these and future developments are the possibility to design NPs with homogeneous size and structure amenable to specific grafting. Moreover, it is possible to tune the characteristics of the NPs to meet the requirements of each specific cell and desired application. Herein, we analyzed the effect of silica NPs of various sizes and surface charge on the viability of Spodoptera frugiperda cells (Sf9 cell line) with the aim of extending the knowledge of possible toxicity of the NPs in the environment and development of new tools for insect control. Moreover, these results will also contribute to develop more effective systems for gene vectors delivery and recombinant proteins expression. Bare silica NPs of 14 nm, 380 nm and 1430 nm as well as amine-modified silica NPs of 131 nm and 448 nm were obtained by the Stöber method. The NPs were characterized by DLS and zeta potential measurements. The cell viability was assessed by the MTT test. It was observed that the 14 nm NPs possess the highest toxic effect. Indeed, after 24 h, the viability of the cells exposed to the lower concentration of NPs (0.12 mg/ml) was about 40% of the value obtained for the control cells not exposed to NPs. Moreover, the exposure to other negative charged NPs also causes a lower activity when compared with the control. Alternatively, lower concentrations of positive charged NPs (i.e.: 0.12 or 0.6 mg/ml) demonstrated to stimulate the proliferation of the cells and higher concentrations (i.e.: 7.2 mg/ml) did not present significant differences with the control. In conclusion, we have demonstrated that the NPs possess an effect that is highly influenced by the size, charge and concentration. Although, silica NPs are being used in the biomedical field, these results contribute to further understanding the risk that could be associated to nanoparticles and how these can be modified in order to meet the requirements of each desired application.
Effects of low-level laser therapy on stem cells from human exfoliated deciduous teeth
FERNANDES, Ana Paula; JUNQUEIRA, Marina de Azevedo; MARQUES, Nádia Carolina Teixeira; MACHADO, Maria Aparecida Andrade Moreira; SANTOS, Carlos Ferreira; OLIVEIRA, Thais Marchini; SAKAI, Vivien Thiemy
2016-01-01
ABSTRACT Low-Level Laser Therapy stimulates the proliferation of a variety of types of cells. However, very little is known about its effect on stem cells from human exfoliated deciduous teeth (SHED). Objective This study aimed to evaluate the influence of different laser therapy energy densities on SHED viability and proliferation. Material and Methods SHED were irradiated according to the groups: I (1.2 J/cm2 - 0.5 mW – 10 s), II (2.5 J/cm2 – 10 mW – 10 s), III (3.7 J/cm2 – 15 mW – 10 s), IV (5.0 J/cm2 – 20 mW – 10 s), V (6.2 J/cm2 – 25 mW – 10 s), and VI (not irradiated – control group). Cell viability was assessed 6 and 24 h after irradiation measuring the mitochondrial activity and using the Crystal Violet assay. Cell proliferation was assessed after 24, 48, and 72 h of irradiation by SRB assay. Results MTT assay demonstrated differences from 6 to 24 hours after irradiation. After 24 h, groups I and IV showed higher absorbance values than those of control group. Crystal Violet assay showed statistically differences in the absorbance rate from 6 to 24 h after irradiation for groups III and VI. At 24 h after irradiation, Group III absorbance rate was greater than that of groups I, II, and IV. Group VI absorbance rate was greater than that of groups I and IV. SRB assay showed that the group I had higher rates than those of groups II, III, V, and VI, at 24 h after irradiation. After 48 h, group I exhibited the greatest cell proliferation rate followed by groups III, V, and VI. After 72 h, group III exhibited the lowest cell proliferation rate than those of groups II, IV, and V. Conclusions The Low-Level Laser Therapy energy densities used in this study did not cause loss of cell viability and stimulated SHED proliferation within the parameters described in this study. PMID:27556203
Silva, Igor Henrique Morais; de Andrade, Samantha Cardoso; de Faria, Andreza Barkokebas Santos; Fonsêca, Deborah Daniela Diniz; Gueiros, Luiz Alcino Monteiro; Carvalho, Alessandra Albuquerque Tavares; da Silva, Wylla Tatiana Ferreira; de Castro, Raul Manhães; Leão, Jair Carneiro
2016-12-01
The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) with different parameters and wavelengths on nitric oxide (NO) release and cell viability. Irradiation was performed with Ga-Al-As laser, continuous mode and wavelengths of 660 and 808 nm at different energy and power densities. For each wavelength, powers of 30, 50, and 100 mW and times of 10, 30, and 60 s were used. NO release was measured using Griess reaction, and cell viability was evaluated by mitochondrial reduction of bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to formazan. LLLT promoted statistically significant changes in NO release and MTT value only at the wavelength of 660 nm (p < 0.05). LLLT also promoted an increase in the NO release and cell viability when the energy densities 64 (p = 0.04) and 214 J/cm 2 (p = 0.012), respectively, were used. LLLT has a significant impact on NO release without affecting cell viability, but the significance of these findings in the inflammatory response needs to be further studied.
Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna
2013-09-01
The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.
Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability.
Jacobsson, S O; Rongård, E; Stridh, M; Tiger, G; Fowler, C J
2000-12-15
In the present study, the effects of the combination of tamoxifen ((Z)-2[p-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethylamine citrate) and three cannabinoids (Delta(9)-tetrahydrocannabinol [Delta(9)-THC], cannabidiol, and anandamide [AEA]) upon the viability of C6 rat glioma cells was assessed at different incubation times and using different culturing concentrations of foetal bovine serum (FBS). Consistent with previous data for human glioblastoma cells, the tamoxifen sensitivity of the cells was increased as the FBS content of the culture medium was reduced from 10 to 0.4 and 0%. The cells expressed protein kinase C alpha and calmodulin (the concentration of which did not change significantly as the FBS concentration was reduced), but did not express estrogen receptors. Delta(9)-THC and cannabidiol, but not AEA, produced a modest reduction in cell viability after 6 days of incubation in serum-free medium, whereas no effects were seen in 10% FBS-containing medium. There was no observed synergy between the effects of tamoxifen and the cannabinoids upon cell viability.
Mayer, Fabiana Quoos; Baldo, Guilherme; de Carvalho, Talita Giacomet; Lagranha, Valeska Lizzi; Giugliani, Roberto; Matte, Ursula
2010-05-01
Here, we show the effects of cryopreservation and hypothermic storage upon cell viability and enzyme release in alginate beads containing baby hamster kidney cells overexpressing alpha-L-iduronidase (IDUA), the enzyme deficient in mucopolysaccharidosis type I. In addition, we compared two different concentrations of alginate gel (1% and 1.5%) in respect to enzyme release from the beads and their shape and integrity. Our results indicate that in both alginate concentrations, the enzyme is released in lower amounts compared with nonencapsulated cells. Alginate 1% beads presented increased levels of IDUA release, although this group presented more deformities when compared with alginate 1.5% beads. Importantly, both encapsulated groups presented higher cell viability after long cryopreservation period and hypothermic storage. In addition, alginate 1.5% beads presented higher enzyme release after freezing protocols. Taken together, our findings suggest a benefic effect of alginate upon cell viability and functionality. These results may have important application for treatment of both genetic and nongenetic diseases using microencapsulation-based artificial organs.
Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S
2016-06-01
Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.
Validation of in vitro assays in three-dimensional human dermal constructs.
Idrees, Ayesha; Chiono, Valeria; Ciardelli, Gianluca; Shah, Siegfried; Viebahn, Richard; Zhang, Xiang; Salber, Jochen
2018-05-01
Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially "murine in vitro dermal construct" based on L929 cells was generated, leading to the development of "human in vitro dermal construct" consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue ® , RealTime-Glo ™ MT, and CellTiter-Glo ® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the "shaking time" to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.
Liu, Guo; Zhang, Wenhao
2018-06-11
Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may induce cancer, immunosuppression, photoaging, and inflammation. The long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in multiple human biological processes. However, its role in UVB-induced keratinocyte injury is unclear. This study was performed to investigate the effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6. Cell viability was measured using trypan blue exclusion method and cell apoptosis using flow cytometry and western blot. ELISA was used to measure the concentrations of TNF-α and IL-6. Western blot was used to measure the expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway proteins. UVB induced HaCaT cell injury by inhibiting cell viability and promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted the expression of HOTAIR. HOTAIR suppression increased cell viability and decreased apoptosis and expression of inflammatory factors in UVB-treated cells. HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased cell viability and increased cell apoptosis and expression of inflammatory factors in UVB-treated cells by upregulating PKR. Overexpression of PKR decreased cell viability and promoted cell apoptosis in UVB-treated cells. Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings identified an essential role of HOTAIR in promoting UVB-induced apoptosis and inflammatory injury by up-regulating PKR in keratinocytes.
Influence of Waveform on Cell Viability during Ultrasound Exposure
NASA Astrophysics Data System (ADS)
Saliev, Timur; Feril, Loreto B.; McLean, Donald A.; Tachibana, Katsuro; Campbell, Paul A.
2011-09-01
We examined the role of ultrasound standing waves, and their travelling wave counterparts, on cell viability in an in-vitro insonation apparatus. Furthermore, the effect of distinct waveforms (sine and top-hat) was also explored, together with the role of microbubble presence. Measurements of cell viability in standing wave scenarios demonstrated a relatively higher rate of lysis (63.13±10.89% remaining viable) compared with the travelling wave data, where 96.22±4.0% remained viable. Significant differences were also seen as a function of waveform, where insonations employing top-hat wave shapes resulted in an average end stage viability of 30.31±5.71% compared with 61.94±14.28% in the sinusoidal counterparts.
Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.
Chaytor, Jennifer L; Tokarew, Jacqueline M; Wu, Luke K; Leclère, Mathieu; Tam, Roger Y; Capicciotti, Chantelle J; Guolla, Louise; von Moos, Elisabeth; Findlay, C Scott; Allan, David S; Ben, Robert N
2012-01-01
The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220 mM solutions of disaccharides; however, the best cell viability was obtained when a 200 mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.
Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.
Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Andersson-Svahn, Helene
2017-01-01
The potential of using droplet microfluidics for screening mammalian cell factories has been limited by the difficulty in achieving continuous cell division during cultivation in droplets. Here, we report the influence of droplet size on mammalian cell division and viability during cultivation in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped after 24 h, whereas continuous cell division was observed in 180 and 320 pL droplets for 72 h. The viability of the cells cultivated in the 33 pL droplets also dropped to about 50% in 72 h. In contrast, the viability of the cells in the larger droplets was above 90% even after 72 h of cultivation, making them a more suitable droplet size for 72-h cultivation. This study shows a direct correlation of microfluidic droplet size to the division and viability of mammalian cells. This highlights the importance of selecting suitable droplet size for mammalian cell factory screening assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong
2012-10-01
To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, P<0.05], and octanol preconditioning significantly attenuated the cell swelling [(113∓6)%, P<0.05]. SI/R caused a significant reduction of the cell viability compared to the control cells [(19∓2)% vs (45∓3)%, P<0.01], and octanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, P<0.01]. Connexin 43-formed hemichannels are involved in the regulation of cardiomyocyte volumes induced by SI/R challenge, and octanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.
Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich
2013-12-01
Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3(r)CDDP(1000) in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases.
Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich
2013-01-01
Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases. PMID:24466371
Harvey, Benjamin S; Ohlsson, Katharina S; Mååg, Jesper L V; Musgrave, Ian F; Smid, Scott D
2012-01-01
Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer's protein, β-amyloid (Aβ) in neuronal cell lines. PC12 or SH-SY5Y cells were selectively exposed to either hydrogen peroxide, tert-butyl hydroperoxide or Aβ, alone or in the presence of the CB1 specific agonist arachidonyl-2'-chloroethylamide (ACEA), CB2 specific agonist JWH-015, anandamide or cannabidiol. Cannabidiol improved cell viability in response to tert-butyl hydroperoxide in PC12 and SH-SY5Y cells, while hydrogen peroxide-mediated toxicity was unaffected by cannabidiol pretreatment. Aβ exposure evoked a loss of cell viability in PC12 cells. Of the cannabinoids tested, only anandamide was able to inhibit Aβ-evoked neurotoxicity. ACEA had no effect on Aβ-evoked neurotoxicity, suggesting a CB1 receptor-independent effect of anandamide. JWH-015 pretreatment was also without protective influence on PC12 cells from either pro-oxidant or Aβ exposure. None of the cannabinoids directly inhibited or disrupted preformed Aβ fibrils and aggregates. In conclusion, the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation. The protective effect of cannabidiol against oxidative stress does not confer protection against Aβ exposure, suggesting divergent pathways for neuroprotection of these two cannabinoids. Copyright © 2011 Elsevier Inc. All rights reserved.
Du, Yatao; Zhang, Huihui; Lu, Jun; Holmgren, Arne
2012-01-01
Thioredoxin reductase 1 (TrxR1) in cytosol is the only known reductant of oxidized thioredoxin 1 (Trx1) in vivo so far. We and others found that aurothioglucose (ATG), a well known active-site inhibitor of TrxR1, inhibited TrxR1 activity in HeLa cell cytosol but had no effect on the viability of the cells. Using a redox Western blot analysis, no change was observed in redox state of Trx1, which was mainly fully reduced with five sulfhydryl groups. In contrast, auranofin killed cells and oxidized Trx1, also targeting mitochondrial TrxR2 and Trx2. Combining ATG with ebselen gave a strong synergistic effect, leading to Trx1 oxidation, reactive oxygen species accumulation, and cell death. We hypothesized that there should exist a backup system to reduce Trx1 when only TrxR1 activity was lost. Our results showed that physiological concentrations of glutathione, NADPH, and glutathione reductase reduced Trx1 in vitro and that the reaction was strongly stimulated by glutaredoxin1. Simultaneous depletion of TrxR activity by ATG and glutathione by buthionine sulfoximine led to overoxidation of Trx1 and loss of HeLa cell viability. In conclusion, the glutaredoxin system and glutathione have a backup role to keep Trx1 reduced in cells with loss of TrxR1 activity. Monitoring the redox state of Trx1 shows that cell death occurs when Trx1 is oxidized, followed by general protein oxidation catalyzed by the disulfide form of thioredoxin. PMID:22977247
Erices, Rafaela; Bravo, Maria Loreto; Gonzalez, Pamela; Oliva, Bárbara; Racordon, Dusan; Garrido, Marcelo; Ibañez, Carolina; Kato, Sumie; Brañes, Jorge; Pizarro, Javier; Barriga, Maria Isabel; Barra, Alejandro; Bravo, Erasmo; Alonso, Catalina; Bustamente, Eva; Cuello, Mauricio A; Owen, Gareth I
2013-12-01
The use of the type 2 diabetics drug metformin has been correlated with enhanced progression-free survival in ovarian cancer. The literature has speculated that this enhancement is due to the high concentration of metformin directly causing cancer cell death. However, this explanation does not fit with clinical data reporting that the women exposed to constant micromolar concentrations of metformin, as present in the treatment of diabetes, respond better to chemotherapy. Herein, our aim was to examine whether micromolar concentrations of metformin alone could bring about cancer cell death and whether micromolar metformin could increase the cytotoxic effect of commonly used chemotherapies in A2780 and SKOV3 cell lines and primary cultured cancer cells isolated from the peritoneal fluid of patients with advanced ovarian cancer. Our results in cell lines demonstrate that no significant loss of viability or change in cell cycle was observed with micromolar metformin alone; however, we observed cytotoxicity with micromolar metformin in combination with chemotherapy at concentrations where the chemotherapy alone produced no loss in viability. We demonstrate that previous exposure and maintenance of metformin in conjunction with carboplatin produces a synergistic enhancement in cytotoxicity of A2780 and SKOV3 cells (55% and 43%, respectively). Furthermore, in 5 (44%) of the 11 ovarian cancer primary cultures, micromolar metformin improved the cytotoxic response to carboplatin but not paclitaxel or doxorubicin. In conclusion, we present data that support the need for a clinical study to evaluate the adjuvant maintenance or prescription of currently approved doses of metformin during the chemotherapeutic treatment of ovarian cancer.
Márquez, Laura B; Velázquez, Natalia; Repetto, Horacio A; Paton, Adrienne W; Paton, James C; Ibarra, Cristina; Silberstein, Claudia
2014-01-01
Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.
SU-F-T-59: The Effect of Radiotherapy Dose On Immunoadjuvants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreau, M; Yasmin-Karim, S; Hao, Y
Purpose: Combining radiotherapy with immunotherapy is a promising approach to enhance treatment outcomes for cancer patients. This in-vitro study investigated which radiotherapy doses could adversely affect the function of anti-CD40 mAb, which is one of the key immunoadjuvants under investigations for priming such combination therapy. Methods: Human monocyte derived THP-1 cells were treated with 100ng/mL of PMA in chamber slides to differentiate into macrophage. The THP-1 differentiated macrophages were treated with 2uL/ml of the anti-CD40 mAb and incubated at 37°C and 5% CO2 for 24 hours. Anti-CD40 mAb treated cells were then irradiated at different doses of x-rays: (0, 2,more » 4, 6, 8, and 12) Gy using the Small Animal Radiotherapy Research Platform (SARRP). After radiation, the cells were left at 4°C for 2 hours followed by immunofluorescence assay. A Nikon inverted live-cell imaging system with fluorescence microscope was used to image the cells mounted on a slide fixed with Dapi. For comparison, an ELISA assay was performed with the antibody added to 3mL of PBS in multiple 10mm dishes. The 10mm dishes were irradiated at different x-ray dose: (0, 2, 4, 6, 8. 10, 12, and 15) Gy using the SARRP. Results: The anti-CD40 mAb activating the macrophages starts to lose their viability due to radiation dose between 8Gy to 12Gy as indicated by the immunofluorescence assay. The ELISA assay, also indicated that such high doses could lead to loss of the mAb’s viability. Conclusion: This work suggests that high doses like those employed during Stereotactic Ablative Radiotherapy may affect the viability of immunoadjuvants such as anti-CD 40. This study avails in-vivo experiments combining radiotherapy with anti-cd40 to get synergistic outcomes, including in the treatment of metastatic disease.« less
2010-01-01
Background Opioid receptors and endogenous opioid peptides act not only in the control of nociceptive pathways, indeed several reports demonstrate the effects of opiates on sperm cell motility and morphology suggesting the importance of these receptors in the modulation of reproduction in mammals. In this study we investigated the expression of delta opioid receptors on equine spermatozoa by western blot/indirect immunofluorescence and its relationship with sperm cell physiology. Methods We analyzed viability, motility, capacitation, acrosome reaction and mitochondrial activity in the presence of naltrindole and DPDPE by means of a computer assisted sperm analyzer and a fluorescent confocal microscope. The evaluation of viability, capacitation and acrosome reaction was carried out by the double CTC/Hoechst staining, whereas mitochondrial activity was assessed by means of MitoTracker Orange dye. Results We showed that in equine sperm cells, delta opioid receptor is expressed as a doublet of 65 and 50 kDa molecular mass and is localized in the mid piece of tail; we also demonstrated that naltrindole, a delta opioid receptor antagonist, could be utilized in modulating several physiological parameters of the equine spermatozoon in a dose-dependent way. We also found that low concentrations of the antagonist increase sperm motility whereas high concentrations show the opposite effect. Moreover low concentrations hamper capacitation, acrosome reaction and viability even if the percentage of cells with active mitochondria seems to be increased; the opposite effect is exerted at high concentrations. We have also observed that the delta opioid receptor agonist DPDPE is scarcely involved in affecting the same parameters at the employed concentrations. Conclusions The results described in this paper add new important details in the comprehension of the mammalian sperm physiology and suggest new insights for improving reproduction and for optimizing equine breeding. PMID:20579355
Measurement of cell viability in in vitro cultures.
Castro-Concha, Lizbeth A; Escobedo, Rosa María; Miranda-Ham, María de Lourdes
2006-01-01
An overview of the methods for assessing cell viability in in vitro cultures is presented. The protocols of four of the most commonly used assays are described in detail, so the readers may be able to determine which assay is suitable for their own projects using plant cell cultures.
Hydrogen Supplementation of Preservation Solution Improves Viability of Osteochondral Grafts
Yamada, Takuya; Onuma, Kenji; Kuzuno, Jun; Ujihira, Masanobu; Kurokawa, Ryosuke; Sakai, Rina; Takaso, Masashi
2014-01-01
Allogenic osteochondral tissue (OCT) is used for the treatment of large cartilage defects. Typically, OCTs collected during the disease-screening period are preserved at 4°C; however, the gradual reduction in cell viability during cold preservation adversely affects transplantation outcomes. Therefore, improved storage methods that maintain the cell viability of OCTs are needed to increase the availability of high-quality OCTs and improve treatment outcomes. Here, we evaluated whether long-term hydrogen delivery to preservation solution improved the viability of rat OCTs during cold preservation. Hydrogen-supplemented Dulbecco's Modified Eagles Medium (DMEM) and University of Wisconsin (UW) solution both significantly improved the cell viability of OCTs during preservation at 4°C for 21 days compared to nonsupplemented media. However, the long-term cold preservation of OCTs in DMEM containing hydrogen was associated with the most optimal maintenance of chondrocytes with respect to viability and morphology. Our findings demonstrate that OCTs preserved in DMEM supplemented with hydrogen are a promising material for the repair of large cartilage defects in the clinical setting. PMID:25506061
Minnelide: A Novel Therapeutic That Promotes Apoptosis in Non-Small Cell Lung Carcinoma In Vivo
Rousalova, Ilona; Banerjee, Sulagna; Sangwan, Veena; Evenson, Kristen; McCauley, Joel A.; Kratzke, Robert; Vickers, Selwyn M.; Saluja, Ashok; D’Cunha, Jonathan
2013-01-01
Background Minnelide, a pro-drug of triptolide, has recently emerged as a potent anticancer agent. The precise mechanisms of its cytotoxic effects remain unclear. Methods Cell viability was studied using CCK8 assay. Cell proliferation was measured real-time on cultured cells using Electric Cell Substrate Impedence Sensing (ECIS). Apoptosis was assayed by Caspase activity on cultured lung cancer cells and TUNEL staining on tissue sections. Expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA, APAF-1) was estimated by qRTPCR. Effect of Minnelide on proliferative cells in the tissue was estimated by Ki-67 staining of animal tissue sections. Results In this study, we investigated in vitro and in vivo antitumor effects of triptolide/Minnelide in non-small cell lung carcinoma (NSCLC). Triptolide/Minnelide exhibited anti-proliferative effects and induced apoptosis in NSCLC cell lines and NSCLC mouse models. Triptolide/Minnelide significantly down-regulated the expression of pro-survival and anti-apoptotic genes (HSP70, BIRC5, BIRC4, BIRC2, UACA) and up-regulated pro-apoptotic APAF-1 gene, in part, via attenuating the NF-κB signaling activity. Conclusion In conclusion, our results provide supporting mechanistic evidence for Minnelide as a potential in NSCLC. PMID:24143232
Comparison of different particles and methods for magnetic isolation of circulating tumor cells
NASA Astrophysics Data System (ADS)
Sieben, S.; Bergemann, C.; Lübbe, A.; Brockmann, B.; Rescheleit, D.
2001-01-01
A more effective method for tumor cell separation from peripheral blood was established. The results of optimized magnetic particles verified by analyzing yield, purity and viability of isolated epithelial tumor cells were compared with a commercial kit for immunomagnetic cell separation. Porous silica particles of 230 nm were found to give best recovery rates and high viability of extracted cells.
Ferreira, Luiz Eduardo Nunes; Muniz, Bruno Vilela; Dos Santos, Cleiton Pita; Volpato, Maria Cristina; de Paula, Eneida; Groppo, Francisco Carlos
2016-06-01
The aim of this study was to observe the effect multilamellar liposomes (MLV) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in the in-vitro effects of lidocaine in cell viability, pro-inflammatory cytokines and prostaglandin E2 release of both human keratinocytes (HaCaT) and gingival fibroblasts (HGF) cells. HaCaT and HGF cells were exposed to lidocaine 100-1 μm in plain, MLV and HP-β-CD formulations for 6 h or 24 h. The formulation effects in cell viability were measured by XTT assay and by fluorescent labelling. Cytokines (IL-8, IL-6 and TNF-α) and PGE2 release were quantified by ELISA. MLV and HP-β-CD formulations did not affect the HaCaT viability, which was significantly decreased by plain lidocaine after 24 h of exposure. Both drug carriers increased all cytokines released by HGF after 24-h exposure, and none of the carriers was able to reduce the PGE2 release induced by lidocaine. The effect of drug carrier in the lidocaine effects was dependent on the cell type, concentration and time of exposure. MLV and HP-β-CD showed benefits in improving cell viability; however, both of them showed a tendency to increase cytokine release when compared to the plain solution. © 2016 Royal Pharmaceutical Society.
Wang, Hai-bing; Ma, Xiao-qiong
2015-01-01
Aim: β, β-Dimethylacrylshikonin (DMAS) is an anticancer compound extracted from the roots of Lithospermum erythrorhizon. In the present study, we investigated the effects of DMAS on human lung adenocarcinoma cells in vitro and explored the mechanisms of its anti-cancer action. Methods: Human lung adenocarcinoma A549 cells were tested. Cell viability was assessed using an MTT assay, and cell apoptosis was evaluated with flow cytometry and DAPI staining. The expression of the related proteins was detected using Western blotting. The mitochondrial membrane potential was measured using a JC-1 kit, and subcellular distribution of cytochrome c was analyzed using immunofluorescence staining. Results: Treatment of A549 cells with DMAS suppressed the cell viability in dose- and time-dependent manners (the IC50 value was 14.22 and 10.61 μmol/L, respectively, at 24 and 48 h). DMAS (7.5, 10, and 15 μmol/L) dose-dependently induced apoptosis, down-regulated cIAP-2 and XIAP expression, and up-regulated Bax and Bak expression in the cells. Furthermore, DMAS resulted in loss of mitochondrial membrane potential and release of cytochrome c in the cells, and activated caspase-9, caspase-8, and caspase-3, and subsequently cleaved PARP, which was abolished by pretreatment with Z-VAD-FMK, a pan-caspase inhibitor. DMAS induced sustained p38 phosphorylation in the cells, while pretreatment with SB203580, a specific p38 inhibitor, blocked DMAS-induced p38 activation and apoptosis. Conclusion: DMAS inhibits the growth of human lung adenocarcinoma A549 cells in vitro via activation of p38 signaling pathway. PMID:25434989
Yang, Chuan-bin; Pei, Wei-jing; Zhao, Jia; Cheng, Yuan-yuan; Zheng, Xiao-hui; Rong, Jian-hui
2014-01-01
Aim: To investigate the effects of bornyl caffeate discovered in several species of plant on human breast cancer cells in vitro and the underlying mechanisms. Methods: Human breast cancer cell line MCF-7 and other tumor cell lines (T47D, HepG2, HeLa, and PC12) were tested. Cell viability was determined using MTT assay, and apoptosis was defined by monitoring the morphology of the nuclei and staining with Annexin V-FITC. Mitochondrial membrane potential (MMP) was measured using JC-1 under fluorescence microscopy. Intracellular reactive oxygen species (ROS) were assessed by flow cytometry. The expression of apoptosis-associated proteins was determined by Western blotting analysis. Results: Bornyl caffeate (10, 25, and 50 μmol/L) suppressed the viability of MCF-7 cells in dose- and time-dependent manners, but neither caffeic acid nor borneol showed cytotoxicity at a concentration of 50 μmol/L. Bornyl caffeate also exerted cytotoxicity to HepG2, Hela, T47D, and PC12 cells. Bornyl caffeate dose-dependently induced apoptosis of MCF-7 cells, increased the expression of Bax and decreased the expression of Bcl-xl, resulting in the disruption of MMP and subsequent activation of caspase-3. Moreover, bornyl caffeate triggered the formation of ROS and activated p38 and c-Jun JNK. In MCF-7 cells, the cytotoxicity of bornyl caffeate was significantly attenuated by SB203580 (p38 inhibitor), SP600125 (JNK inhibitor), z-VAD (pan-caspase inhibitor) or the thiol antioxidant L-NAC. Conclusion: Bornyl caffeate exerts non-selective cytotoxicity against cancer cells of different origin in vitro. The compound induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. PMID:24335836
Shahbazi-Gahrouei, D.; Hashemi-Beni, B.; Ahmadi, Z.
2016-01-01
Background: As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. Stem cells are undifferentiated biological cells that can differentiate into specialized cells. Adipose tissue represents an abundant and accessible source of adult stem cells. The aim of this study is to investigate the effects of GSM 900 MHz on growth and proliferation of mesenchymal stem cells derived from adipose tissue within the specific distance and intensity. Materials and Methods: ADSCs were exposed to GSM mobile phones 900 MHz with intensity of 354.6 µW/cm2 square waves (217 Hz pulse frequency, 50% duty cycle), during different exposure times ranging from 6 to 21 min/day for 5 days at 20 cm distance from the antenna. MTT assay was used to determine the growth and metabolism of cells and trypan blue test was also done for cell viability. Statistical analyses were carried out using analysis of one way ANOVA. P<0.05 was considered to be statistically significant. Results: The proliferation rates of human ADSCs in all exposure groups were significantly lower than control groups (P<0.05) except in the group of 6 minutes/day which did not show any significant difference with control groups. Conclusion: The results show that 900 MHz RF signal radiation from antenna can reduce cell viability and proliferation rates of human ADSCs regarding the duration of exposure. PMID:28144594
Park, Sang Eun; Kim, Ha-Gyeong; Kim, Dong Eun; Jung, Yoo Jung; Kim, Yunlim; Jeong, Seong-Yun; Choi, Eun Kyung; Hwang, Jung Jin; Kim, Choung-Soo
2018-04-01
Backgrounds Since most patients with castration-resistant prostate cancer (CRPC) develop resistance to its standard therapy docetaxel, many studies have attempted to identify novel combination treatment to meet the large clinical unmet need. In this study, we examined whether histone deacetylase inhibitors (HDACIs) enhanced the effect of docetaxel on AR signaling in CRPC cells harboring AR and its splice variants. Methods HDACIs (vorinostat and CG200745) were tested for their ability to enhance the effects of docetaxel on cell viability and inhibition of AR signaling in CRPC 22Rv1 and VCaP cells by using CellTiter-Glo™ Luminescent cell viability assay, synergy index analysis and Western blotting. The nuclear localization of AR was examined via immunocytochemical staining in 22Rv1 cells and primary tumor cells from a patient with CRPC. Results Combination treatment with HDACIs (vorinostat or CG200745) and docetaxel synergistically inhibited the growth of 22Rv1 and VCaP cells. Consistently, the combination treatment decreased the levels of full-length AR (AR-FL), AR splice variants (AR-Vs), prostate-specific antigen (PSA), and anti-apoptotic Bcl-2 proteins more efficiently compared with docetaxel or vorinostat alone. Moreover, the combination treatment accelerated the acetylation and bundling of tubulin, which significantly inhibited the nuclear accumulation of AR in 22Rv1 cells. The cytoplasmic colocalization of AR-FL and AR-V7 with microtubule bundles increased after combination treatment in primary tumor cells from a patient with CRPC. Conclusions The results suggested that docetaxel, in combination with HDACIs, suppressed the expression and nuclear translocation of AR-FL and AR-Vs and showed synergistic anti-proliferative effect in CRPC cells. This combination therapy may be useful for the treatment of patients with CRPC.
Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat
2013-01-01
The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603
Luo, Li; Gao, Wei; Wang, Jinghui; Wang, Dingxue; Peng, Xiaobo; Jia, Zhaoyang; Jiang, Ye; Li, Gongzhuo; Tang, Dongxin; Wang, Yajie
2018-05-15
BACKGROUND This study aimed to investigate the mechanism of CHEK2 gene dysfunction in drug resistance of triple negative breast cancer (TNBC) cells. MATERIAL AND METHODS To perform our study, a stable CHEK2 wild type (CHEK2 WT) or CHEK2 Y390C mutation (CHEK2 Y390C) expressed MDA-MB-231 cell line was established. MTT assay, cell apoptosis assay and cell cycle assay were carried out to analyze the cell viability, apoptosis, and cell cycle respectively. Western blotting and qRT-PCR were applied for related protein and gene expression detection. RESULTS We found that the IC50 value of DDP (Cisplatin) to CHEK2 Y390C expressed MDA-MB-231 cells was significantly higher than that of the CHEK2 WT expressed cells and the control cells. After treatment with DDP for 48 h, cells expressing CHEK2 WT showed lower cell viability than that of the CHEK2 Y390C expressed cells and the control cells; compared with the CHEK2 Y390C expressed cells and the control cells, cells expressing CHEK2 WT showed significant G1/S arrest. Meanwhile, we found that compared with the CHEK2 Y390C expressed cells and the control cells, cell apoptosis was significantly increased in CHEK2 WT expressed cells. Moreover, our results suggested that cells expressing CHEK2 WT showed higher level of p-CDC25A, p-p53, p21, Bax, PUMA, and Noxa than that of the CHEK2 Y390C expressed cells and the control cells. CONCLUSIONS Our findings indicated that CHEK2 Y390C mutation induced the drug resistance of TNBC cells to chemotherapeutic drugs through administrating cell apoptosis and cell cycle arrest via regulating p53 activation and CHEK2-p53 apoptosis pathway.
Kim, Jua; Gilbert, Jeremy L
2018-05-01
Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm 2 ) and not for higher cell densities (20,000-30,000 cells/cm 2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018. © 2018 Wiley Periodicals, Inc.
Activation of macrophages by an exopolysaccharide isolated from Antarctic Psychrobacter sp. B-3
NASA Astrophysics Data System (ADS)
Yu, Leiye; Sun, Guojie; Wei, Jingfang; Wang, Yingze; Du, Chao; Li, Jiang
2016-09-01
An exopolysaccharide (EPS) was isolated and purified from an Antarctic psychrophilic bacterium B-3, identified as Psychrobacter sp., and the activation of RAW264.7 cells by B-3 EPS was investigated. The results show that B-3 EPS, over a certain concentration range, promoted cell viability, nitric oxide production, tumor necrosis factor (TNF)α secretion, and phagocytic ability. Furthermore, TAK-242, an inhibitor of the toll-like receptor 4 (TLR4) significantly reduced nitric oxide production by these cells after stimulation with B-3 EPS. Moreover, B-3 EPS induced p65 phosphorylation and IκBα degradation in these cells. In conclusion, B-3 EPS might have activated RAW264.7 cells by combining with TLR4 on cell surface and triggering activation of NF-κB signaling pathways, implying that this EPS could activate macrophages and regulate initial immune response.
Noh, Hyangsoon; Yan, Jun; Hong, Sungguan; Kong, Ling-Yuan; Gabrusiewicz, Konrad; Xia, Xueqing; Heimberger, Amy B; Li, Shulin
2016-11-01
Intracellular vimentin overexpression has been associated with epithelial-mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.
Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter
2014-01-01
In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Long non-coding RNA HULC promotes UVB-induced injury by up-regulation of BNIP3 in keratinocytes.
Zhao, Li; Man, Yigang; Liu, Shumei
2018-08-01
Ultraviolet radiation b (UVB) is a common high-energy radiation which can lead to cell damage and even skin cancer. The mechanisms of lncRNAs in various diseases have attracted much attention of researchers. Herein, we investigated the effects and regulations of lncRNA highly up-regulated in liver cancer (HULC) on UVB-induced injury in HaCaT cells. The HaCaT cells were exposed to UVB at a wavelength of 280-320 nm. Cell viability was detected at different times (0, 3, 6, 12 and 24 h) after UVB treatment. Cells were transfected with sh-HULC, pc-HULC, sh-BNIP3 (Bcl-2 interacting protein 3) or pc-BNIP3, respectively. ZM 39,923 HCl was used as JAK/STAT(1/3) inhibitor. Cell viability and apoptosis were tested by trypan blue dye and flow cytometry analysis, respectively. The expression levels of autophagy-related factors were analyzed by Western blot assay. The expression changes of HULC and BNIP3 were measured by qRT-PCR. We found that UVB decreased cell viability, increased apoptosis and autophagy, and up-regulated the expression of HULC in HaCaT cells. Overexpression of HULC reduced cell viability, enhanced apoptosis and autophagy, and up-regulated BNIP3 expression by activating JAK/STAT(1/3) signaling pathway. Finally, BNIP3 suppression increased cell viability, reduced apoptosis and autophagy via the deactivation of mTOR signaling pathway. The results demonstrated that lncRNA HULC up-regulated BNIP3 and activated JAK/STAT(1/3) signaling pathway to accelerate UVB-induced cell damage in HaCaT cells. This study provides a possible target for the clinical treatment of UVB-induced keratinocyte injury. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Iwahashi, Shuichi; Ishibashi, Hiroki; Utsunomiya, Tohru; Morine, Yuji; Ochir, Tovuu Lkhaguva; Hanaoka, Jun; Mori, Hiroki; Ikemoto, Tetsuya; Imura, Satoru; Shimada, Mitsuo
2011-02-01
Histone deacetylase (HDAC) is well known to be associated with tumorigenesis through epigenetic regulation, and its inhibitors (HDACIs) induce differentiation and apoptosis of tumor cells. We examined the therapeutic effects of valproic acid (VPA, a HDACI) with a combination of 5-fluorouracil (5-FU) in vitro. A human pancreas cancer cell line (SUIT-2) and a cholangiocarcinoma cell line (HuCCT1) were used. Cell viabilities were evaluated by a cell proliferation assay. We determined the anticancer effects of VPA combined with 5-FU in these cell lines. Pancreas cancer (SUIT-2): No effect of 5-FU (1.0 µM) was observed, but 17% and 30% of proliferation-inhibitory effects were recognized in a dose of 2.5 or 5.0 µM, respectively. Cell viability was only weakly reduced by VPA (0.5 mM). However, in combination of 5-FU (1.0 µM) with VPA (0.5 mM), 19% of inhibitory effect was observed. Cholangiocarcinoma (HuCCT1): 5-FU (1.0 µM) did not suppress the cell viability, but 5-FU (2.5 µM) suppressed by 23%. VPA (0.5 mM) did not suppress the cell viability, while VPA (1.0 mM) weakly decreased it by 11%. Combination of 5-FU (1.0 µM) and VPA (0.5 mM) markedly reduced the cell viability by 30%. VPA augmented the anti-tumor effects of 5-FU in cancer cell lines. Therefore, a combination therapy of 5-FU plus VPA may be a promising therapeutic option for patients with pancreas cancer and cholangiocarcinoma.
Rebelo, Thalia M; Vania, Leila; Ferreira, Eloise; Weiss, Stefan F T
2018-07-01
The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis. Copyright © 2018. Published by Elsevier Inc.
Micro-RNA-181a suppresses progestin-promoted breast cancer cell growth.
Gu, Muqing; Wang, Lijuan; Yang, Chun; Li, Xue; Jia, Chanwei; Croteau, Stephane; Ruan, Xiangyan; Hardy, Pierre
2018-08-01
Recent investigations have indicated that hormone therapy may increase the risk of breast cancer (BC), and the addition of synthetic progestins may play a critical role in this. Several studies have pointed out the important role of progesterone receptor membrane component 1 (PGRMC1) in the development of BC, especially with hormone therapy using progestins. Although the deregulation of microRNA-181a (miR-181a) is often associated with human BC, the effect of miR-181a on PGRMC1 expression during hormone therapy has not been investigated. Cell viability assay and apoptosis assay were performed to investigate the pro-BC effect of progestin (norethisterone, NET) and anti-BC effect of miR-181a on MCF-7 cells. Quantitative RT-PCR and Western blot analysis were used to evaluate gene expressions in the NET-treated MCF-7 cells. NET dose-dependently increased BC cell viability and this effect was accompanied by increased expression of PGRMC1. Overexpression of miR-181a strongly reduced the cell viability of MCF-7 cells, mainly through increased apoptosis, which was evidenced by substantially increased gene expression of pro-apoptosis factors such as BAX and CASPASE 9 in miR-181a overexpressed cells. Importantly, miR-181a abrogated NET-stimulated cell viability and PGRMC1 expression. We provide evidence that miR-181a promotes MCF-7 cell apoptosis. Moreover, miR-181a suppressed NET-provoked cell viability and PGRMC1 expression in MCF-7 cells. These data may suggest a therapeutic strategy of using miR-181a to reduce BC risk in progestin hormone replacement therapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Yu, Q; Shi, H; Wang, J
1995-01-01
A simultaneous double-staining procedure using fluorescein diacetate (FDA) and propidium iodide (PI) is discribed for use in the determination of isolated cochlear outer hair cell viability. With exciter light, viable cells fluoresce bright green, while nonviable cells are bright red. In cell culture and cytotoxicity studies, double-staining with FDA-PI is a accurate method to discriminate between live and nonviable cells.
Zhu, Longbao; Ge, Fei; Yang, Liangjun; Li, Wanzhen; Wei, Shenghua; Tao, Yugui; Du, Guocheng
2017-04-28
BACKGROUND Alginate is a natural polysaccharide obtained from brown algae and has been shown to have numerous applications in biomedical science, such as wound healing, delivery of bioactive agents, and cell transplantation. Ovalbumin (OVA) peptide 323-339 has been reported to be involved in immune response. MATERIAL AND METHODS This work investigated the use of alginate particles as a carrier and adjuvant for the immune therapy of cancer. Alginate particles loaded with OVA peptide were produced via emulsion. A tumor model was established in C57BL/6J mice via subcutaneous injection of 3×105 B16-OVA tumor cells. The effect of alginate/OVA peptide on cell viability was analyzed by use of the CCK-8 assay kit. Activation of macrophages was examined by checking cell surface makers CD40 and CD86 by FACs. RESULTS Alginate/OVA peptide inhibited tumor progression more effectively than using the peptide alone. The viability and uptake study illustrated that this particle is safe and non-toxic. The activation study demonstrated that alginate particles can promote the activation of surface markers on macrophages. ELISA assay showed that the particles with peptide can promote the secretion of inflammatory and effector cytokines from macrophages. CONCLUSIONS This study demonstrated that alginate has dual functions in immune therapy of cancer, serving both as a carrier and an adjuvant.
Ji, Yuejia; Zhu, Mengxiang; Gong, Yu; Tang, Haoyu; Li, Juan; Cao, Yi
2017-01-01
Thermoresponsive polymers have gained extensive attention as biomedical materials especially for targeted drug delivery systems. We have recently developed water-soluble polypeptide-based thermoresponsive polymers that exhibit lower critical solution temperature (LCST)- or upper critical solution temperature (UCST)-type phase behaviours. In this study, the toxicity of these polymers to human umbilical vein endothelial cells (HUVECs) was investigated to assess the safety and biocompatibility. Up to 100 μg/ml, thermoresponsive polymers did not induce cytotoxicity to HUVECs, showing as unaltered mitochondrial viability assessed as cell counting kit-8 (CCK-8) assay and membrane integrity assessed as lactate dehydrogenase (LDH) assay. Inflammatory response, assessed as the release of chemokine-soluble monocyte chemotactic protein 1 (sMCP-1) and interleukin-8 (IL-8) as well as cytokine IL-6, was not significantly affected by the polymers. In addition, 1 μM thapsigargin (TG), an endoplasmic reticulum (ER) stress inducer, significantly decreased mitochondrial viability, but did not affect membrane integrity or inflammatory response. The presence of thermoresponsive polymers with LCST-type phase behaviour did not further affect the effects of TG. In conclusion, the thermoresponsive polymers used in this study are not toxic to endothelial cells and therefore could be further considered as safe materials for biomedical applications. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Uremic toxins enhance statin-induced cytotoxicity in differentiated human rhabdomyosarcoma cells.
Uchiyama, Hitoshi; Tsujimoto, Masayuki; Shinmoto, Tadakazu; Ogino, Hitomi; Oda, Tomoko; Yoshida, Takuya; Furukubo, Taku; Izumi, Satoshi; Yamakawa, Tomoyuki; Tachiki, Hidehisa; Minegaki, Tetsuya; Nishiguchi, Kohshi
2014-09-03
The risk of myopathy and rhabdomyolysis is considerably increased in statin users with end-stage renal failure (ESRF). Uremic toxins, which accumulate in patients with ESRF, exert cytotoxic effects that are mediated by various mechanisms. Therefore, accumulation of uremic toxins might increase statin-induced cytotoxicity. The purpose of this study was to determine the effect of four uremic toxins-hippuric acid, 3-carboxy-4-methyl-5-propyl-2-furanpropionate, indole-3-acetic acid, and 3-indoxyl sulfate-on statin-induced myopathy. Differentiated rhabdomyosarcoma cells were pre-treated with the uremic toxins for seven days, and then the cells were treated with pravastatin or simvastatin. Cell viability and apoptosis were assessed by viability assays and flow cytometry. Pre-treatment with uremic toxins increased statin- but not cisplatin-induced cytotoxicity (p < 0.05 vs. untreated). In addition, the pre-treatment increased statin-induced apoptosis, which is one of the cytotoxic factors (p < 0.05 vs. untreated). However, mevalonate, farnesol, and geranylgeraniol reversed the effects of uremic toxins and lowered statin-induced cytotoxicity (p < 0.05 vs. untreated). These results demonstrate that uremic toxins enhance statin-induced apoptosis and cytotoxicity. The mechanism underlying this effect might be associated with small G-protein geranylgeranylation. In conclusion, the increased severity of statin-induced rhabdomyolysis in patients with ESRF is likely due to the accumulation of uremic toxins.
Espina, Miguel; Jülke, Henriette; Brehm, Walter; Ribitsch, Iris; Winter, Karsten
2016-01-01
Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (<40%) for all freezing protocols at −20 °C or −80 °C, particularly with bone marrow supernatant or plasma and DMSO. In part III, various cell concentrations also had no significant influence on any of the evaluated parameters. Chondrogenic differentiation showed a trend towards being decreased for all transport conditions, compared to control cells. Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. The unusual low viability after all freezing protocols is in contrast to previous equine studies. Potential causes are differences in the freezing, but also in thawing method. Also, the selected container (glass syringe) may have impacted viability. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation. PMID:27019778
Penha, Fernando M.; Pons, Marianne; Costa, Elaine Fiod; Barros, Nilana Meza Tenório; Rodrigues, Eduardo B.; Cardoso, Emmerson Badaró; Dib, Eduardo; Maia, Mauricio; Marin-Castaño, Maria E.; Farah, Michel Eid
2013-01-01
Purpose To investigate the in vitro effect of four vital dyes on toxicity and apoptosis in a human retinal pigment epithelial (RPE) cell line. Methods ARPE-19 cells were exposed to brilliant blue (BriB), methyl blue (MetB), acid violet (AcV) and indocyanine green (ICG). Balanced salt solution was used as control. Five different concentrations of each dye (1, 0.5, 0.25, 0.05 and 0.005 mg/mL) and two exposure times (3 and 30 min) were tested. Cell viability was determined by cell count and MTS assay and cell toxicity by LDH assay. Real-time PCR and Western blotting were used to access the apoptosis process. Results ICG significantly reduced cell viability after 3 minutes of exposure at all concentrations (p<0.01). BriB was safe at concentrations up to 0.25 mg/mL and MetB at concentrations up to 0.5 mg/mL, while AcV was safe up to 0.05 mg/ml, after 3 minutes of exposure. Toxicity was higher, when the cells were treated for 30 minutes. Expression of Bax, cytochrome c and caspase-9 was upregulated at the mRNA and protein level after ICG exposure, while Bcl-2 was downregulated. AcV and MetB were similar to control. However, BriB resulted in upregulation of Bcl-2, an antiapoptotic protein. Conclusions The safest dye used on RPE cells was MetB followed by BriB and AcV. ICG was toxic at all concentrations and exposure times tested. Moreover, ICG was the only dye that induced apoptosis in ARPE-19 cells. BriB significantly increased Bcl-2 protein levels, which might protect against the apoptosis process. PMID:23675521
Sappington, Daniel R.; Siegel, Eric R.; Hiatt, Gloria; Desai, Abhishek; Penney, Rosalind B.; Jamshidi-Parsian, Azemat; Griffin, Robert J.; Boysen, Gunnar
2016-01-01
Background Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Glutamine provides additional carbon and nitrogen sources for cell growth. The first step in glutamine utilization is its conversion to glutamate by glutaminase (GLS). Glutamate is a precursor for glutathione synthesis, and we investigated the hypothesis that glutamine drives glutathione synthesis and thereby contributes to cellular defense systems. Methods The importance of glutamine for glutathione synthesis was studied in H460 and A549 lung cancer cell lines using glutamine-free medium and Bis-2-(5-phenyl-acetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) a GLS inhibitor. Metabolic activities were determined by targeted mass spectrometry. Results A significant correlation between glutamine consumption and glutathione excretion was demonstrated in H460 and A549 tumor cells. Culturing in the presence of [13C5]glutamine demonstrated that by 12 hrs >50% of excreted glutathione is derived from glutamine. Culturing in glutamine-free medium or treatment with BPTES, a glutaminase (GLS)-specific inhibitor, reduced cell proliferation and viability, and abolished glutathione excretion. Treatment with glutathione-ester prevented BPTES induced cytotoxicity. Inhibition of GLS markedly radiosensitized the lung tumor cell lines, suggesting an important role of glutamine-derived glutathione in determining radiation sensitivity. Conclusions We demonstrate here for the first time that a significant amount of extracellular glutathione is directly derived from glutamine. This finding adds yet another important function to the already known glutamine dependence of tumor cells and probably tumors as well. General significance Glutamine is essential for synthesis and excretion of glutathione to promote cell growth and viability. PMID:26825773
Liu, Kuo-Ching; Lin, Ya-Jing; Hsiao, Yung-Ting; Lin, Meng-Liang; Yang, Jiun-Long; Huang, Yi-Ping; Chu, Yung-Lin; Chung, Jing-Gung
2017-11-01
Tetrandrine is an alkaloid extracted from a traditional China medicine plant, and is considered part of food therapy as well. In addition, it has been widely reported to induce apoptotic cell death in many human cancer cells. However, the mechanism of Tetrandrine on human nasopharyngeal carcinoma cells (NPC) is still questioned. In our study, we examined whether Tetrandrine can induce apoptosis of NPC-TW 039 cells. We found that cell morphology was changed after treatment with different concentrations of Tetrandrine. Further, we indicated that the NPC-TW 039 cells viability decreased in a Tetrandrine dose-dependent manner. We also found that tetrandrine induced cell cycle arrest in G 0 /G 1 phase. Tetrandrine induced DNA condensation by DAPI staining as well. In addition, we found that Tetrandrine induced Ca 2+ release in the cytosol. At the same time, endoplasmic reticulum (ER) stress occurred. Then we used western blotting to examine the protein expression which is associated with mitochondria-mediated apoptotic pathways and caspase-dependent pathways. To further examine whether Ca 2+ was released or not with Tetrandrine induced-apoptosis, we used the chelator of Ca 2+ and showed that cell viability increased. At the same time, caspase-3 expression was decreased. Furthermore, confocal microscopy examination revealed that Tetrandrine induced expression of ER stress-related proteins GADD153 and GRP78. Our results indicate that Tetrandrine induces apoptosis through calcium-mediated ER stress and caspase pathway in NPC-TW 039 cells. In conclusion, Tetrandrine may could be used for treatment of human nasopharyngeal carcinoma in future. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Anticancer effects of β-elemene with hyperthermia in lung cancer cells
Wu, Zhibing; Wang, Ting; Zhang, Yanmei; Zheng, Zhishuang; Yu, Shuhuan; Jing, Saisai; Chen, Sumei; Jiang, Hao; Ma, Shenglin
2017-01-01
β-elemene is a novel, plant-derived anticancer drug, which has been used to target multiple solid tumor types. Hyperthermia is an adjuvant therapeutic modality to treat cancer. However, the underlying mechanisms associated with the efficacy of these two treatments are largely unknown. The aim of the present study was to evaluate the effects of β-elemene combined with hyperthermia in lung cancer cell lines. An MTT assay was used to determine cell viability. The cell cycle and apoptosis were analyzed using flow cytometry. The morphology of cells during apoptosis was determined using a transmission electron microscope. The expression levels of P21, survivin, caspase-9, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) mRNA were detected using quantitative polymerase chain reaction. β-elemene with hyperthermia treatment significantly inhibited the viability and increased the apoptosis rate of A549 cells compared with β-elemene treatment alone (P<0.01), and significantly decreased the proportion of cells in S phase compared with the control (P<0.01). Morphological observation using transmission electron microscopy indicated cross-sectional features of apoptosis: Chromatin condensation, reduced integrity of the plasma membrane, increased cellular granularity, nuclear collapse and the formation of apoptotic bodies. β-elemene with hyperthermia treatment significantly promoted P21 and Bax mRNA expression (P<0.01) and significantly decreased caspase-9, Bcl-2 and survivin mRNA expression (P<0.01) in A549 cells. In conclusion, β-elemene with hyperthermia has a significant inhibitory effect on A549 cells. This occurs through reducing S phase and inducing apoptosis, via an increase in P21 and Bax expression and a decrease in caspase-9, Bcl-2 and survivin expression. PMID:28588670
2012-01-01
Background Edible plants such as Cratoxylum formosum (Jack) Dyer, Curcumin longa Lin, Momordica charantia Lin and Moringa oleifera Lam have long been believed in Thai culture to relieve ulcers and the symptoms of liver disease. However, little is known about their anti-liver cancer properties and antiviral activity against hepatitis B virus (HBV). The aim of this study was to investigate the anti-liver cancer and anti-HBV activities of crude extracts from these edible plants on human liver cancer cells. Methods Plant samples were prepared and extracted using buffer and hydro-alcoholic solvents. The MTT assay was performed to investigate the effects of the plant extracts on the cell viability of HepG2 cells. The inhibitory effect on replication of HBV was analysed by determining the level of HBV covalently closed circular DNA (cccDNA) in transiently transfected HepG2 cells with the DNA expression plasmid of the HBV genome using a quantitative real-time PCR. Results Buffer and hydroalcoholic extracts from C. formosum (leaf) reduced cell viability of HepG2 cells and they also inhibited HBV cccDNA. Crude extracts from C. longa (bulb) in both solvents did not have any cytotoxic effects on the HepG2 cells, but they significantly decreased the level of HBV cccDNA. Buffer extracts from the leaves of M. charantia and the fruits of M. oleifera showed to have anti-HBV activity and also a mild cytotoxicity effect on the HepG2 cells. In addition, leaves of M. Oleifera extracted by hydroalcoholic solvent drastically decreased the level of cccDNA in transiently transfected HepG2 cells. Conclusion Some crude extracts of edible plants contain compounds that demonstrate anti-liver cancer and anti-HBV activities. PMID:23216691
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, Hamdy A.A., E-mail: hamdyaali@yahoo.com; Khafagy, Rasha M.
2011-05-01
TCDD, as an endocrine disruptor, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underlying the testicular effects of TCDD, the potential toxicity of TCDD on Sertoli cells was investigated. Furthermore, the study aims to delineate whether mitochondrial fractions of Sertoli cells are involved in mediating the testicular effects of TCDD. Adult rat Sertoli cells were incubated with (5, 10 or 15 nM) of TCDD for 6, 12 or 24 h. Cell viability, lactate and LDH leakage into media along with lipid peroxidation, ROS generation, SOD, CAT, GPx, GR, {gamma}-GT and {beta}-glucuronidase activities, GSH content and {Delta}{psi}{submore » m} were measured. Superoxide anion production, COX and cardiolipin content were measured in mitochondrial fractions. Cell viability was significantly decreased while lactate and LDH leakage into media were increased. ROS generation along with lipid peroxidation was also increased. SOD, CAT, GPx, GR activities and GSH content were significantly decreased. {gamma}-GT and {beta}-glucuronidase activities were also decreased. Superoxide anion production was increased while COX activity and cardiolipin content were decreased in mitochondrial fractions. Moreover, the {Delta}{psi}{sub m} was significantly decreased as measured in Sertoli cells. In conclusion, TCDD impairs Sertoli cell functions and this effect is, at least in part, attributed to oxidative stress. We have also found that TCDD increases mitochondrial superoxide anion production and decreases {Delta}{psi}{sub m}, COX activity and mitochondrial cardiolipin content. Our findings suggest that mitochondria may play an important role in ROS production, leading to the TCDD-induced oxidative stress response and resulting toxicological consequences in rat Sertoli cells.« less
Brueckner, Mandy; Jankuhn, Steffen; Jülke, Eva-Maria; Reibetanz, Uta
2018-01-01
Background Drug delivery systems (DDS) and their interaction with cells are a controversial topic in the development of therapeutic concepts and approaches. On one hand, DDS are very useful for protected and targeted transport of defined dosages of active agents. On the other hand, their physicochemical properties such as material, size, shape, charge, or stiffness have a huge impact on cellular uptake and intracellular processing. Additionally, even identical DDS can undergo a completely diverse interaction with different cell types. However, quite often in in vitro DDS/cell interaction experiments, those aspects are not considered and DDS and cells are randomly chosen. Methods and results Hence, our investigations provide an insight into layer-by-layer designed microcarriers with modifications of only some of the most important parameters (surface charge, stiffness, and applied microcarrier/cell ratio) and their influence on cellular uptake and viability. We also considered the interaction of these differently equipped DDS with several cell types and investigated professional phagocytes (neutrophil granulocytes; macrophages) as well as non-professional phagocytes (epithelial cells) under comparable conditions. We found that even small modifications such as layer-by-layer (LbL)-microcarriers with positive or negative surface charge, or LbL-microcarriers with solid core or as hollow capsules but equipped with the same surface properties, show significant differences in interaction and viability, and several cell types react very differently to the offered DDS. Conclusion As a consequence, the properties of the DDS have to be carefully chosen with respect to the addressed cell type with the aim to efficiently transport a desired agent. PMID:29670351
Rakesh Minocha; Carolyn McQuattie; Wayne Fagerberg; Stephanie Long; Eun Woon Noh
2001-01-01
The effects of Al on red spruce (Picea rubens Sarg.) cell suspension cultures were examined using biochemical, stereo-logical and microscopic methods. Exposure to Al for 24-48 h resulted in a loss of cell viability, inhibition of growth and a significant decrease in mitochondrial activity. Soluble protein content increased in cells treated with Al....
Ciftci, Ihsan Hakki; Esme, Hidir; Sahin, Dursun Ali; Solak, Okan; Sezer, Murat; Dilek, Osman Nuri
2007-01-01
BACKGROUND: Use of effective scolicidal agents during puncture, aspiration or injection of a scolicidal agent and reaspiration (PAIR) and surgery for hydatid cysts are essential to reduce the recurrence rate. In this in vitro study, we tried to determine the scolicidal property of a new agent, octenidine dihydrochloride, and of various agents in different concentrations and exposure times. MATERIAL AND METHODS: Echinococcus granulosus protoscoleces were obtained from six patients with liver (n=3) and lung (n=3) hydatid cysts. Various concentrations of octenidine dihydrochloride (0.1%, 0.01% and 0.001% diluted form), povidone iodine (10%, 1% and 0.1% diluted) and 20% saline were used in this study. Viability of protoscoleces was determined with dye-uptake (0.1% eosin) and flame cell activity. RESULTS: Octenidine dihydrochloride 0.1% had strong scolicidal effect in 15 min and octenidine dihydrochloride 0.01% in 30 min. Sixty percent of protoscoleces lost viability at 5 min with octenidine dihydrochloride 0.1%. Viability ratio decreased to 20% at 10 min, and all of them died at 15 min. Povidone iodine 10% and 1% had strong scolicidal effects after 15- and 30 min of exposure, respectively. Saline 20% killed all the protoscoleces in 30-min exposure. CONCLUSION: Because of the rapid and strong scolocidal effectiveness of octenidine dihydrochloride on protoscoleces, it may be used as a scolocidal agent during both perioperative and in the PAIR method. PMID:17595938
Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M
2006-01-01
Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.
Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram
2017-04-15
Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.
Arana-Argáez, Víctor Ermilo; Chan-Zapata, Ivan; Canul-Canche, Jaqueline; Fernández-Martín, Karla; Martín-Quintal, Zhelmy; Torres-Romero, Julio Cesar; Coral-Martínez, Tania Isolina; Lara-Riegos, Julio Cesar; Ramírez-Camacho, Mario Alberto
2017-01-01
Background: The aim of this work was to evaluate the immunomodulatory effect of the methanol extract (MeOH) from Chrysophyllum cainito leaves on the MΦs functions. Material and Methods: Peritoneal murine MΦs isolated from Balb/c mice were treated with the MeOH extract and stimulated with LPS. The effect on the phagocytosis was evaluated by flow cytometry assay. The nitric oxide (NO) and hydrogen peroxide (H2O2) production was measured by the Griess reagent and phenol red reaction, respectively. Levels of IL-6 and TNF-α was measured using an ELISA kit. Viability of MΦs and Vero cells was determined by the MTT method. Results: The MeOH extract of C. cainito leaves inhibited significantly the phagocytosis, and decreased IL-6 and TNF-α production as well as NO and H2O2 released by the MΦs, in a concentration-dependent manner. In addition, MeOH extract of C. cainito showed low cytotoxicity effect against the cells. Conclusion: These results suggest that MeOH extract of C. cainito leaves has an immunosuppressive effect on murine MΦs, without effects on cell viability. GC-MS chromatogram analysis of MeOH extract showed that lupeol acetate and alpha-amyrin acetate are the principal compounds. PMID:28480396
Biocompatibility Evaluation of Four Dentin Adhesives Used as Indirect Pulp Capping Materials
Cortés, Olga; Bernabé, Antonia
2017-01-01
Background In many cases, the indirect pulp treatment (IPT) is an acceptable treatment for deciduous teeth with reversible pulp inflammation. Various medicaments have been used for IPT, ranging from calcium hydroxide and glass ionomers to dentin adhesives. Objective This in vitro trial aimed to measure cytotoxicity in a cell culture, comparing the following four adhesives: Xeno® V (XE), Excite® F DSC (EX), Adhese® OneF (AD) and Prime & Bond NT (PB). Materials and methods The adhesives were prepared according to the manufacturer’s instructions. After 24 hours of exposure, the cell viability was evaluated using a photometrical test (MTT test). Data were subjected to analysis of variance (ANOVA). Results Adhesives, the main component of which was 2-hydroxyethyl methacrylate (HEMA), were found to be less cytotoxic, while those that included the monomer urethane dimethacrylate (UDMA were the most cytotoxic) in their composition. The effects on cell viability assay varied between the adhesives assayed with statistically significant differences. Conclusions The results may support the argument that Adhese® OneF is the least cytotoxic of the adhesives assayed, and may be considered as an adhesive agent for indirect pulp treatment. However, Prime and Bond NT showed a reduced biocompatibility under the same conditions. PMID:28827848
Targeting PIM kinase enhances the activity of sunitinib in renal cell carcinoma
Mahalingam, D; Espitia, C M; Medina, E C; Esquivel, J A; Kelly, K R; Bearss, D; Choy, G; Taverna, P; Carew, J S; Giles, F J; Nawrocki, S T
2011-01-01
Background: Upregulation of PIM kinase expression has been reported in many malignancies, suggesting that inhibition of PIM kinase activity may be an attractive therapeutic strategy. We hypothesised that inhibition of PIM kinase activity with SGI-1776, a novel small molecule inhibitor of PIM kinase activity, would reduce the viability of renal cell carcinoma (RCC) cells and enhance the activity of sunitinib. Methods: Immunoblotting, qRT–PCR, and gene expression arrays were carried out to identify genes modulated by SGI-1776 treatment. The anticancer activity of SGI-1776 and sunitinib was determined by viability and apoptosis assays and in tumour xenografts in vivo. Results: Treatment with SGI-1776 led to a decrease in phosphorylated and total c-Myc levels, which resulted in the modulation of c-Myc target genes. SGI-1776 in combination with sunitinib induced a further reduction in c-Myc levels, which was associated with enhanced anticancer activity. siRNA-mediated knockdown of c-Myc demonstrated that its expression has a key role in regulating the sensitivity to the combination of SGI-1776 and sunitinib. Importantly, the combination significantly reduced tumour burden in two RCC xenograft models compared with single-agent therapy and was very well tolerated. Conclusion: These data indicate that targeting PIM kinase signalling is a promising treatment strategy for RCC. PMID:22015557
Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan
2017-01-01
Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L -1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L -1 , equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. Multifeed SSCF was further developed by means of a flocculating yeast and a temperature-reduction profile. Ethanol toxicity is intensified in the presence of lignocellulosic inhibitors at temperatures that are beneficial to hydrolysis in high-gravity SSCF. The counteracting effects of temperature on cell viability and hydrolysis call for more tolerant microorganisms, enzyme systems with lower temperature optimum, or full optimization of the multifeed strategy with temperature profile.
NASA Astrophysics Data System (ADS)
Deng, Xiaofeng; Xiong, Li; Wen, Yu; Liu, Zhongtao; Pei, Dongni; Huang, Yaxun; Miao, Xiongying
2014-03-01
Background and aims: Nanoparticles have been explored recently as an efficient delivery system for photosensitizers in photodynamic therapy. In this study, polyhematoporphyrin (C34H38N4NaO5,) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. We evaluate the efficacy and safety of polyhematoporphyrin-loaded HSNP with hepatobiliary malignant cells and in vivo models. Methods: Human liver cancer, cholangiocarcinoma and gallbladder cancer cells were cultured with the HSNP and cellular viability was determined by MTT assay. Apoptotic and necrotic cells were measured by flow cytometry. Finally, we investigate its effect in vivo. Results: In MTT assay, the cell viability of QBC939, Huh-7, GBC-SD and HepG2 cells of the HSNP was 6.4+/-1.3%, 6.5+/-1.2%, 3.7+/-1.2% and 4.7+/-2.0%, respectively, which were significant different from that of free polyhematoporphyrin 62.4+/-4.7%, 62.5+/-6.0%, 33.4+/-6.5% and 44.3+/-1.9%. Flow cytometry demonstrated the laser-induced cell death with polyhematoporphyrin-loaded HSNP was much more severe. Similarly, in vivo results of each kind of cell revealed 14 days post-photoradiated, tumor sizes of the HSNP group were significantly smaller. Administration of the HSNP without illumination cannot cause killing effect both in vitro and in vivo experiments. Conclusions: HSNP is a desirable delivery system in photodynamic therapy for hepatobiliary malignacies, with improved aqueous solubility, stability and transport efficiency of photosensitizers.
Fujita, Minoru; Mehra, Ruhina; Lee, Seung Eun; Roh, Danny S.; Long, Cassandra; Funderburgh, James L.; Ayares, David L.; Cooper, David K. C.; Hara, Hidetaka
2013-01-01
Purpose The possibility of providing cultured corneal endothelial cells (CECs) for clinical transplantation has gained much attention. However, the worldwide need for human (h) donor corneas far exceeds supply. The pig (p) might provide an alternative source. The aim of this study was to compare the proliferative capacity of CECs from wild-type (WT) pigs, genetically-engineered (GE) pigs, and humans. Methods The following CECs were cultured – hCECs from donors (i) ≤36 years (young), (ii) ≥49 years (old), and WT pCECs from (iii) neonatal (<5 days), (iv) young (<2 months), and (v) old (>20 months) pigs, and CECs from young (vi) GE pigs (GTKO/CD46 and GTKO/CD46/CD55). Proliferative capacity of CECs was assessed by direct cell counting over 15 days of culture and by BrdU assay. Cell viability during culture was assessed by annexin V staining. The MTT assay assessed cell metabolic activity. Results There was significantly lower proliferative capacity of old CECs than of young CECs (p<0.01) in both pigs and humans. There was no significant difference in proliferative capacity/metabolic activity between young pCECs and young hCECs. However, there was a significantly higher percentage of cell death in hCECs compared to pCECs during culture (p<0.01). Young GE pCECs showed similar proliferative capacity/cell viability/metabolic activity to young WT pCECs. Conclusions Because of the greater availability of young pigs and the excellent proliferative capacity of cultured GE pCECs, GE pigs could provide a source of CECs for clinical transplantation. PMID:23258190
MALAT1 affects ovarian cancer cell behavior and patient survival
Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong
2018-01-01
Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187
EphA2 Targeted Chemotherapy Using an Antibody Drug Conjugate in Endometrial Carcinoma
Lee, Jeong-Won; Stone, Rebecca L.; Lee, Sun Joo; Nam, Eun Ji; Roh, Ju-Won; Nick, Alpa M.; Han, Hee-Dong; Shahzad, Mian M.K.; Kim, Hye-Sun; Mangala, Lingegowda S.; Jennings, Nicholas B.; Mao, Shenlan; Gooya, John; Jackson, Dowdy; Coleman, Robert L.; Sood, Anil K.
2013-01-01
Purpose EphA2 overexpression is frequently observed in endometrial cancers, and is predictive of poor clinical outcome. Here, we utilize an antibody drug conjugate (MEDI-547) composed of a fully human monoclonal antibody against both human and murine EphA2 (1C1) and the tubulin polymerization inhibitor, monomethylauristatin F (MMAF). Experimental design EphA2 expression was examined in endometrial cancer cell lines by Western Blot. Specificity of MEDI-547 was examined by antibody degradation and internalization assays. Viability and apoptosis were investigated in endometrial cancer cell lines and orthotopic tumor models. Results EphA2 was expressed in the Hec-1A and Ishikawa cells, but was absent in the SPEC-2 cells. Antibody degradation and internalization assays showed that the antibody drug conjugate decreased EphA2 protein levels and was internalized in EphA2 positive cells (Hec-1A and Ishikawa). Moreover, in vitro cytotoxicity and apoptosis assays demonstrated that the antibody drug conjugate decreased viability and increased apoptosis of Hec-1A and Ishikawa cells. In vivo therapy experiments in mouse orthotopic models with this antibody drug conjugate resulted in 86 to 88% growth inhibition (P < 0.001) in the orthotopic Hec-1A and Ishikawa models compared to controls. Moreover, the mice treated with this antibody drug conjugate had a lower incidence of distant metastasis compared with controls. The anti-tumor effects of the therapy were related to decreased proliferation and increased apoptosis of tumor and associated endothelial cells. Conclusions The preclinical data for endometrial cancer treatment using MEDI-547 demonstrate substantial anti-tumor activity. PMID:20388851
Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F
2011-01-01
Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.
Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.
Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo
2017-03-01
The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.
Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming
2016-01-01
Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone formation. PMID:27382277
Ng, Wei Long; Yeong, Wai Yee; Naing, May Win
2017-01-01
Drop-on-demand (DOD) bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP) macromolecules. Different PVP-based bio-inks (0%–3% w/v) were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh), which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v). Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process. PMID:28772551
Ng, Wei Long; Yeong, Wai Yee; Naing, May Win
2017-02-16
Drop-on-demand (DOD) bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP) macromolecules. Different PVP-based bio-inks (0%-3% w/v) were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh), which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v). Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process.
Ward, Sara Jane; McAllister, Sean D; Kawamura, Rumi; Murase, Ryuchi; Neelakantan, Harshini; Walker, Ellen A
2014-01-01
Background and Purpose Paclitaxel (PAC) is associated with chemotherapy-induced neuropathic pain (CIPN) that can lead to the cessation of treatment in cancer patients even in the absence of alternate therapies. We previously reported that chronic administration of the non-psychoactive cannabinoid cannabidiol (CBD) prevents PAC-induced mechanical and thermal sensitivity in mice. Hence, we sought to determine receptor mechanisms by which CBD inhibits CIPN and whether CBD negatively effects nervous system function or chemotherapy efficacy. Experimental Approach The ability of acute CBD pretreatment to prevent PAC-induced mechanical sensitivity was assessed, as was the effect of CBD on place conditioning and on an operant-conditioned learning and memory task. The potential interaction of CBD and PAC on breast cancer cell viability was determined using the MTT assay. Key Results PAC-induced mechanical sensitivity was prevented by administration of CBD (2.5 – 10 mg·kg−1) in female C57Bl/6 mice. This effect was reversed by co-administration of the 5-HT1A antagonist WAY 100635, but not the CB1 antagonist SR141716 or the CB2 antagonist SR144528. CBD produced no conditioned rewarding effects and did not affect conditioned learning and memory. Also, CBD + PAC combinations produce additive to synergistic inhibition of breast cancer cell viability. Conclusions and Implications Our data suggest that CBD is protective against PAC-induced neurotoxicity mediated in part by the 5-HT1A receptor system. Furthermore, CBD treatment was devoid of conditioned rewarding effects or cognitive impairment and did not attenuate PAC-induced inhibition of breast cancer cell viability. Hence, adjunct treatment with CBD during PAC chemotherapy may be safe and effective in the prevention or attenuation of CIPN. PMID:24117398
Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg
2013-01-01
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343
Thermosensitive nanospheres with a gold layer revealed as low-cytotoxic drug vehicles.
Qin, Jian; Jo, Yun Suk; Ihm, Jong Eun; Kim, Do Kyung; Muhammed, Mamoun
2005-09-27
In this paper, the positive effect of a gold layer on cell viability is demonstrated by examining the results given by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfop henyl)-2H-tetrazolium (MTS) assay and two-color cell fluorescence viability (TCCV) assay. These cytotoxicity tests were performed with human cervical adenocarcinoma cells (HeLa cell line) and transformed African green monkey kidney fibroblast cells (Cos-7 cell line). To fabricate the nanostructures as drug vehicles, first, poly(l,l-lactide-co-ethylene glycol) (PLLA-PEG) and poly(N-isopropylacrylamide-co-D,D-lactide) (PNIPAAm-PDLA) were synthesized, and then two kinds of thermosensitive nanospheres comprising "shell-in-shell" structures without a gold layer (PLLA-PEG@PNIPAAm-PDLA) and with a gold layer (Au@PLLA-PEG@PNIPAAm-PDLA) were constructed by a modified double-emulsion method (MDEM). Both of them displayed a unique thermosensitive character exhibiting the lower critical solubility temperature (LCST) at 36.7 degrees C which was confirmed by UV-vis spectroscopy and differential scanning calorimetry (DSC). The release profiles of entrapped bovine serum albumin (BSA) were monitored at 22 and 37 degrees C, respectively, to reveal the thermal dependence on the release rate. In cell viability tests, both PLLA-PEG@PNIPAAm-PDLA and Au@PLLA-PEG@PNIPAAm-PDLA showed excellent cell viability, and furthermore, Au@PLLA-PEG@PNIPAAm-PDLA, particularly at high doses, exhibited more enhanced cell viability than PLLA-PEG@PNIPAAm-PDLA. This effect is mainly attributed to the gold layer which binds the protein molecules first and consequently facilitates transmembrane uptake of essential nutrients in the cell media, resulting in favorable cell proliferation.
Karayazi Atici, Ödül; Urbanska, Anna; Gopinathan, Sesha Gopal; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S
2018-02-01
Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents. Copyright © 2018 Endocrine Society.
Angelini, Daniel J; Harris, Jacquelyn V; Burton, Laura L; Rastogi, Pooja R; Smith, Lisa S; Rastogi, Vipin K
2018-03-01
Environmental surface sampling is crucial in determining the zones of contamination and overall threat assessment. Viability retention of sampled material is central to such assessments. A systematic study was completed to determine viability of vegetative cells under nonpermissive storage conditions. Despite major gains in nucleic acid sequencing technologies, initial positive identification of threats must be made through direct culture of the sampled material using classical microbiological methods. Solutions have been developed to preserve the viability of pathogens contained within clinical samples, but many have not been examined for their ability to preserve biological agents. The purpose of this study was to systematically examine existing preservation materials that can retain the viability of Bacillus anthracis vegetative cells stored under nonpermissive temperatures. The results show effectiveness of five of seventeen solutions, which are capable of retaining viability of a sporulation deficient strain of B. anthracis Sterne when stored under nonrefrigerated conditions. © 2017 American Academy of Forensic Sciences.
Lee, Jong Suk; Park, Su-Young; Thapa, Dinesh; Kim, Ah Ra; Shin, Heung-Mook; Kim, Jung-Ae
2011-01-01
Vascular inflammation has been implicated in the progression of cardiovascular diseases such as atherosclerosis. In the present study, we found that HMC05, an extract from eight different herbal mixtures, dose-dependently inhibited tumor necrosis factor-α (TNF-α)-induced adhesion of monocytes to endothelial cells. Such inhibitory effect of HMC05 correlated with suppressed expression of monocyte chemoattractant protein-1, CC chemokine receptor 2, vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1. In addition, HMC05 significantly inhibited production of reactive oxygen species (ROS) and nuclear factor (NF)-κB activation by TNF-α. Those inhibitory effects of HMC05 (1–10 μg mL−1) on the TNF-α-induced inflammatory event was similar to those of berberine (1–10 μM), which is a major component of HMC05 and one of herbal compounds known to have vasorelaxing and lipid-lowering activities. However, berberine significantly reduced the viability of HUVECs in a time- and concentration-dependent manner. In contrast, HMC05 (1–10 μg ml−1) did not affect the cell viability for up to 48 h treatment. In conclusion, we propose that HMC05 may be a safe and potent herbal formula against vascular inflammation, and its action may be attributable to the inhibition of ROS- and NF-κB-dependent expression of adhesion molecules and chemokines. PMID:19736220
Heravi, Farzin; Ramezani, Mohammad; Poosti, Maryam; Hosseini, Mohsen; Shajiei, Arezoo; Ahrari, Farzaneh
2013-01-01
Background and aims. Incorporation of nano-particles to orthodontic bonding systems has been considered to prevent enamel demineralization around appliances. This study investigated cytotoxicity of Transbond XT adhesive containing 1 wt% titanium dioxide (TiO2) nano-particles. Materials and methods. Ten composite disks were prepared from each of the conventional and TiO2-containg composites and aged for 1, 3, 5, 7 and 14 days in Dulbecco's Modified Eagle's Medium (DMEM). The extracts were obtained and exposed to culture media of human gingival fibroblasts (HGF) and mouse L929 fibroblasts. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results. Both adhesives were moderately toxic for HGF cells on the first day of the experiment, but the TiO2-containing adhesive produced significantly lower toxicity than the pure adhesive (P<0.05). No significant differences were found in cell viability percentages between the two groups on the other days (P>0.05). There was a significant reduction in cell toxicity with increasing pre-incubation time (P<0.001). L929 cells showed similar toxicity trends, but lower sensitivity to detect cytotoxicity of dental composites. Conclusion. The orthodontic adhesive containing TiO2 nano-particles indicated comparable or even lower toxicity than its nano-particle-free counterpart, indicating that incorporation of 1 wt% TiO2 nano-particles to the composite structure does not result in additional health hazards compared to that occurring with the pure adhesive.
Har, Chan Hooi; Keong, Chan Kok
2005-01-01
The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.
Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.
Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M
2015-02-01
To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.
Yamagishi, Reiko; Aihara, Makoto
2014-01-01
Astaxanthin is a type of carotenoid known to have strong antioxidant effects. The purpose of this study was to investigate whether astaxanthin confers a neuroprotective effect against glutamate stress, oxidative stress, and hypoxia-induced apoptotic or necrotic cell death in primary cultures of rat retinal ganglion cells (RGCs). Purified rat RGCs were exposed to three kinds of stressors induced by 25 μM glutamate for 72 h, B27 medium without an antioxidant for 4 h, and a reduced oxygen level of 5% for 12 h. Each assay was repeated 12 times, with or without 1 nM, 10 nM, and 100 nM astaxanthin. The number of live RGCs was then counted using a cell viability assay. RGC viability in each condition was evaluated and compared with controls. In addition, we measured apoptosis and DNA damage. We found that under glutamate stress, RGC viability was reduced to 58%. Cultures with 1 nM, 10 nM, and 100 nM astaxanthin showed an increase in RGC viability of 63%, 74%, and 84%, respectively. Under oxidative stress, RGC viability was reduced to 40%, and astaxanthin administration resulted in increased viability of 43%, 50%, and 67%, respectively. Under hypoxia, RGC viability was reduced to 66%, and astaxanthin administration resulted in a significant increase in viability to 67%, 77%, and 93%, respectively. These results indicate that 100 nM astaxanthin leads to a statistically significant increase in RGC viability under the three kinds of stressors tested, compared to controls (Dunnett's test, p<0.05). The apoptotic activity of RGCs under glutamate stress increased to 32%, but was reduced to 15% with 100 nM astaxanthin administration. Glutamate stress led to a 58% increase in DNA damage, which was reduced to 43% when cultured with 100 nM astaxanthin. Thus, 100 nM astaxanthin showed a statistically significant reduction in apoptosis and DNA damage in RGCs (Wilcoxon rank-sum test, p<0.05). Our results suggest that astaxanthin has a neuroprotective effect against RGC death induced by glutamate stress, oxidative stress, and hypoxia, which induce apoptotic and necrotic cell death.
Supercooling as a Viable Non-Freezing Cell Preservation Method of Rat Hepatocytes
Usta, O. Berk; Kim, Yeonhee; Ozer, Sinan; Bruinsma, Bote G.; Lee, Jungwoo; Demir, Esin; Berendsen, Tim A.; Puts, Catheleyne F.; Izamis, Maria-Louisa; Uygun, Korkut; Uygun, Basak E.; Yarmush, Martin L.
2013-01-01
Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials. PMID:23874947
Martínez-Montemayor, Michelle M.; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis. A.; Dharmawardhane, Suranganie F.
2011-01-01
Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic. PMID:21888505
Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona
2015-01-01
We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.
NASA Astrophysics Data System (ADS)
Bagnaninchi, Pierre O.; Holmes, Christina; Drummond, Nicola; Daoud, Jamal; Tabrizian, Maryam
2011-08-01
Cell viability assays are essential tools for cell biology. They assess healthy cells in a sample and enable the quantification of cellular responses to reagents of interest. Noninvasive and label-free assays are desirable in two-dimensional (2D) and three-dimensional (3D) cell culture to facilitate time-course viability studies. Cellular micromotion, emanating from cell to substrate distance variations, has been demonstrated as a marker of cell viability with electric cell-substrate impedance sensing (ECIS). In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be associated with cellular micromotion. An OCPM has been developed around a Thorlabs engine (λo = 930 nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC micromotion was confirmed by ECIS analysis. Live and fixed ADSCs were then investigated in 2D and 3D with OCPM. Significant differences were found in phase fluctuations between the different conditions. This study indicated that OCPM could potentially assess cell vitality in 2D and in 3D microstructures.
Lai, Xiaodong; Guo, Yanchun; Guo, Zhitao; Liu, Ruibao; Wang, Xunguo; Wang, Fang
2016-12-01
miR‑574‑5p has been reported involved in the pathogenesis of numerous human malignancies such as colorectal and lung cancer. In this study, we aimed to explore the roles of REL and miR‑574 in the recurrence of prostate cancer (PCa) and to identify the underlying molecular mechanisms. Our literature search found that miR‑574 is regulated in cancer stem cells (CSCs), and next we used the microRNA (miRNA) database (www.mirdb.org) to find REL as a target of miR‑574. Luciferase assay was performed to verify the miRNA/target relationship. Oligo-transfection, real‑time PCR and western blot analysis were used to support the conclusions. We validated REL to be the direct gene via luciferase reporter assay system, and real‑time PCR and western blot analysis were also conducted to study the mRNA and protein expression level of REL between different groups (recurrence and non‑recurrence) or cells treated with scramble control, miR‑574 mimics, REL siRNA and miR‑574 inhibitors, indicating the negative regulatory relationship between miR‑574 and REL. We also investigated the relative viability of prostate CSCs when transfected with scramble control, miR‑574 mimics, REL siRNA and miR‑574 inhibitors to validate miR‑574 to be positively interfering with the viability of prostate CSCs. We then investigated the relative apoptosis of prostate CSCs when transfected with scramble control, miR‑574 mimics, REL siRNA and miR‑574 inhibitors. The results showed miR‑574 inhibited apoptosis. In conclusion, miR‑574 might be a novel prognostic and therapeutic target in the management of PCa recurrence.
Giannoni, Paolo; Scaglione, Silvia; Quarto, Rodolfo; Narcisi, Roberto; Parodi, Manuela; Balleari, Enrico; Barbieri, Federica; Pattarozzi, Alessandra; Florio, Tullio; Ferrini, Silvano; Corte, Giorgio; de Totero, Daniela
2011-01-01
Background Chronic lymphocytic leukemia cells are characterized by an apparent longevity in vivo which is lost when they are cultured in vitro. Cellular interactions and factors provided by the microenvironment appear essential to cell survival and may protect leukemic cells from the cytotoxicity of conventional therapies. Understanding the cross-talk between leukemic cells and stroma is of interest for identifying signals supporting disease progression and for developing novel therapeutic strategies. Design and Methods Different cell types, sharing a common mesenchymal origin and representative of various bone marrow components, were used to challenge the viability of leukemic cells in co-cultures and in contact-free culture systems. Using a bioinformatic approach we searched for genes shared by lineages prolonging leukemic cell survival and further analyzed their biological role in signal transduction experiments. Results Human bone marrow stromal cells, fibroblasts, trabecular bone-derived cells and an osteoblast-like cell line strongly enhanced survival of leukemic cells, while endothelial cells and chondrocytes did not. Gene expression profile analysis indicated two soluble factors, hepatocyte growth factor and CXCL12, as potentially involved. We demonstrated that hepatocyte growth factor and CXCL12 are produced only by mesenchymal lineages that sustain the survival of leukemic cells. Indeed chronic lymphocytic leukemic cells express a functional hepatocyte growth factor receptor (c-MET) and hepatocyte growth factor enhanced the viability of these cells through STAT3 phosphorylation, which was blocked by a c-MET tyrosine kinase inhibitor. The role of hepatocyte growth factor was confirmed by its short interfering RNA-mediated knock-down in mesenchymal cells. Conclusions The finding that hepatocyte growth factor prolongs the survival of chronic lymphocytic leukemic cells is novel and we suggest that the interaction between hepatocyte growth factor-producing mesenchymal and neoplastic cells contributes to maintenance of the leukemic clone. PMID:21486864
Cannabidiol Reduces Leukemic Cell Size - But Is It Important?
Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L
2017-01-01
The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro . However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent.