Sample records for cell viability decrease

  1. Laser and Non-Coherent Light Effect on Peripheral Blood Normal and Acute Lymphoblastic Leukemic Cells by Using Different Types of Photosensitizers

    NASA Astrophysics Data System (ADS)

    El Batanouny, Mohamed H.; Khorshid, Amira M.; Arsanyos, Sonya F.; Shaheen, Hesham M.; Abdel Wahab, Nahed; Amin, Sherif N.; El Rouby, Mahmoud N.; Morsy, Mona I.

    2010-04-01

    Photodynamic therapy (PDT) is a novel treatment modality of cancer and non-cancerous conditions that are generally characterized by an overgrowth of unwanted or abnormal cells. Irradiation of photosensitizer loaded cells or tissues leads via the photochemical reactions of excited photosensitizer molecules to the production of singlet oxygen and free radicals, which initiate cell death. Many types of compounds have been tested as photosensitizers, such as methylene blue (MB) and photopherin seemed to be very promising. This study involved 26 cases of acute lymphoblastic leukemia and 15 normal volunteers as a control group. The cell viability was measured by Light microscope and flowcytometer. Mode of cell death was detected by flowcytometer and electron microscope in selected cases. The viability percentage of normal peripheral blood mononuclear cells (PBMC) incubated with methylene blue (MB) alone or combined with photo irradiation with diode laser (as measured by light microscope) was significantly lower than that of untreated cases either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. There was a significantly lower viability percentage of normal cells incubated with MB and photoirradiated with diode laser compared to normal cells treated with MB alone for either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. The decrease in viability was more enhanced with increasing the incubation time. For normal cells incubated with photopherin either for 1/2 an hour or 1 hour, there was a weak cytotoxic effect compared to the effect on untreated cells. There was a significant decrease in viability percentage of cells incubated with photopherin either for 1/2 an hour or 1 hour and photoirradiated with He:Ne laser compared to normal untreated cells. The decrease in the cell viability percentage was significantly lower with the use of PDT (photopherin and He:Ne laser ) compared to either photopherin alone or He:Ne laser alone. The decrease in viability was more enhanced with increasing the incubation time. The same effects reported on normal cells were detected on leukemic cells on comparing different methods used. However a more pronounced decrease in cell viability was detected. The most efficient ways of decreasing viability of leukemic cells with much less effect on normal cells was the use of PDT of cell incubation with MB for 1 hour then photoirradiation with diode laser and PDT of cell incubation with photopherin for 1 hour then photoirradiation with He:Ne laser. Flowcytometer (FCM) was more sensitivite than the light microscope in detecting the decrease in cell viability, it also helped in determining the mode of cell death weather apoptosis, necrosis or combined apoptosis and necrosis. Apoptotic cell percentage was higher in PDT of MB and Diode laser or photopherin and He:Ne laser, treated ALL cells compared to untreated ALL cells after 1 hour but was significantly lower after 24 hours post irradiation. A significant increase in necrotic, combined necrotic and apoptotic cell percentages either measured 1 hour or 24 hours post PDT, compared to untreated ALL cells and PDT treated normal cells. Electron microscope helped in detecting early cellular apoptotic changes occurring in response to different therapeutic modalities used in this study. In conclusion, PDT proved to be an effective clinical modality in decreasing the number of leukemic cells when irradiated in vitro with appropriate laser and photosensitizer system. Both PDT systems used in this study were efficient in inducing cell death of leukemic cells compared to untreated leukemic cells. However, photopherin PDT system was more efficient in decreasing the cell viability. A significant decrease in viability percentage was detected when studying the effect of PDT on leukemic cells compared to that on normal cells. This suggests that PDT when applied clinically will selectively differentiate between leukemic cells and normal cells, offering a successful component in ALL therapy.

  2. The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells

    PubMed Central

    Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai

    2015-01-01

    Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165

  3. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    PubMed

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Effect of berberine on the viability of adipose tissue-derived mesenchymal stem cells in nutrients deficient condition.

    PubMed

    Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar

    2018-03-01

    This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.

  5. Curcumin and Viscum album Extract Decrease Proliferation and Cell Viability of Soft-Tissue Sarcoma Cells: An In Vitro Analysis of Eight Cell Lines Using Real-Time Monitoring and Colorimetric Assays.

    PubMed

    Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M

    2017-01-01

    The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.

  6. Differential Effects of Bevacizumab, Ranibizumab, and Aflibercept on the Viability and Wound Healing of Corneal Epithelial Cells.

    PubMed

    Kang, Seungbum; Choi, Hyunsu; Rho, Chang Rae

    2016-12-01

    This study compared the effects of 3 antivascular endothelial growth factor (VEGF) agents (bevacizumab, ranibizumab, and aflibercept) on corneal epithelial cell viability and wound healing using human corneal epithelial cells (HCECs). To determine the cytotoxic effects of anti-VEGF agents on HCECs, HCEC viability was determined at various concentrations of these agents. An in vitro migration assay was used to investigate the migration of HCECs treated with 3 anti-VEGF agents. The protein level of extracellular signal-regulated kinase was used to evaluate the effect of anti-VEGF treatment on cell proliferation. The protein levels of p38 mitogen-activated protein kinase (MAPK) were analyzed by Western blotting to investigate cell migration. After 24 or 48 h of exposure, aflibercept treatment showed no apparent effect on cell viability; however, bevacizumab and ranibizumab treatment decreased cell viability at high concentrations (1 and 2 mg/mL). A migration assay showed that HCEC migration was different among the 3 anti-VEGF treatment groups. Bevacizumab significantly delayed HCEC migration. Western blotting showed that bevacizumab treatment decreased the expression levels of phosphorylated p38 MAPK. Bevacizumab, the most widely used and investigated anti-VEGF agent, decreased epithelial cell migration and viability. Anti-VEGF agents other than bevacizumab might therefore be better for treating corneal neovascularization complicated with epithelial defects.

  7. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I

    2018-02-01

    Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.

  8. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold.

    PubMed

    Niknejad, Hassan; Deihim, Tina; Peirovi, Habibollah; Abolghasemi, Hassan

    2013-08-01

    Amniotic epithelial cells are a promising source for stem cell-based therapy through their potential capacity to differentiate into the cell lineages of all three germ layers. Long-term preservation is necessary to have a ready-to-use source of stem cells, when required. Reduced differentiation capability, decrease of viability and use of fetal bovine serum (FBS) are three drawbacks of clinical application of cryopreserved stem cells. In this study, we used human amniotic fluid instead of animal serum, and evaluated viability and multipotency of amniotic epithelial cells after cryopreservation in suspension and compared with those cryopreserved on their natural scaffold (in situ cryopreservation). There was no significant difference in viability of the cells cryopreserved in amniotic fluid and FBS. Also, the same results were achieved for expression of pluripotency marker OCT-4 when FBS was replaced by amniotic fluid in the samples with the same cryoprotectant. The cells cryopreserved in presence of scaffold had a higher level of viability compared to the cells cryopreserved in suspension. Although, the number of the cells expressed OCT-4 significantly decreased within cryopreservation in suspension, no decrease in expression of OCT-4 was observed when the cells cryopreserved with their natural scaffold. Upon culturing of post-thawed cells in specific lineage differentiating mediums, the markers of neuronal, hepatic, cardiomyocytic and pancreatic were found in differentiated cells. These results show that replacement of FBS by amniotic fluid and in situ cryopreservation of amniotic epithelial cells is an effective approach to overcome limitations related to long-term preservation including differentiation during cryopreservation and decrease of viability. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Effect of fluoride on the cell viability, cell organelle potential, and photosynthetic capacity of freshwater and soil algae.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2016-12-01

    Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨ m ) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨ m ) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F - ) with magnesium ions (Mg 2+ ) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Avenanthramide-C reduces the viability of MDA-MB-231 breast cancer cells through an apoptotic mechanism.

    PubMed

    Hastings, Jordan; Kenealey, Jason

    2017-01-01

    Avenanthramides (AVN) are a relatively unstudied family of phytochemicals that could be novel chemotherapeutics. These compounds, found in oats, are non-toxic to healthy cells and have been shown to reduce viability of human colon and liver cancers in vitro. However, these studies do not elucidate a molecular mechanism for individual AVN. In this study we aim to see the effects of AVN on MDA-MB-231 breast cancer cells. An MTT assay was used to determine cell viability. Staining and analysis with a flow cytometer was used to identify cell cycle progression and apoptosis. FloJo software was used to analyze the cytometric data. In all experiments, statistical significance was determined by a two-tailed t test. This study demonstrates that AVN-A, B, and C individually reduce viability in the MDA-MB-231 breast cancer cell line. AVN-C has the most potent decrease in tumor cell viability, decreasing viable cells to below 25% at 400 µM when compared to control after 96 h. We demonstrate that treatment with AVN-C causes DNA fragmentation and accumulation of over 90% of cells into a sub G 1 cell cycle population. Further, we conclude that AVN-C treated cells activate apoptosis because 97% of treated cells stain positive for annexin V while 91% have caspase-3/7 activity, a late marker of apoptosis. Breast cancer cells treated with AVN-C have a decrease in cell viability, an increase in the sub G 1 population, and stain positive for both annexin V and caspase activity, indicating that AVN-C induces apoptosis in breast cancer cells. These compounds may be able to act as chemotherapeutics as demonstrated through future in vivo studies.

  11. Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder

    PubMed Central

    Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio

    2016-01-01

    Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915

  12. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy.

    PubMed

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Safwat, Akmal; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin.

  13. Morphological observation and analysis using automated image cytometry for the comparison of trypan blue and fluorescence-based viability detection method.

    PubMed

    Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean

    2015-05-01

    The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.

  14. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells.

    PubMed

    Tang, Zheng-Hai; Cao, Wen-Xiang; Wang, Zhao-Yu; Lu, Jia-Hong; Liu, Bo; Chen, Xiuping; Lu, Jin-Jian

    2017-08-01

    Chelerythrine (CHE), a natural benzo[c]phenanthridine alkaloid, shows anti-cancer effect through a number of mechanisms. Herein, the effect and mechanism of the CHE-induced autophagy, a type II programmed cell death, in non-small cell lung cancer (NSCLC) cells were studied for the first time. CHE induced cell viability decrease, colony formation inhibition, and apoptosis in a concentration-dependent manner in NSCLC A549 and NCI-H1299 cells. In addition, CHE triggered the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II). The CHE-induced expression of LC3-II was further increased in the combination treatment with chloroquine (CQ), an autophagy inhibitor, and large amounts of red-puncta were observed in the CHE-treated A549 cells with stable expression of mRFP-EGFP-LC3, indicating that CHE induces autophagy flux. Silence of beclin 1 reversed the CHE-induced expression of LC3-II. Inhibition of autophagy remarkably reversed the CHE-induced cell viability decrease and apoptosis in NCI-H1299 cells but not in A549 cells. Furthermore, CHE triggered reactive oxygen species (ROS) generation in both cell lines. A decreased level of ROS through pretreatment with N-acetyl-L-cysteine reversed the CHE-induced cell viability decrease, apoptosis, and autophagy. Taken together, CHE induced distinctive autophagy in A549 (accompanied autophagy) and NCI-H1299 (pro-death autophagy) cells and a decreased level of ROS reversed the effect of CHE in NSCLC cells in terms of cell viability, apoptosis, and autophagy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Propofol protects hippocampal neurons from apoptosis in ischemic brain injury by increasing GLT-1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.

    PubMed

    Gong, Hong-Yan; Zheng, Fang; Zhang, Chao; Chen, Xi-Yan; Liu, Jing-Jing; Yue, Xiu-Qin

    2016-09-01

    Ischemic brain injury (IBI) can cause nerve injury and is a leading cause of morbidity and mortality worldwide. The neuroprotective effects of propofol against IBI have been previously demonstrated. However, the neuroprotective effects of propofol on hippocampal neurons are not yet entirely clear. In the present study, models of IBI were established in hypoxia-exposed hippocampal neuronal cells. Cell viability assay and apoptosis assay were performed to examine the neuroprotective effects of propofol on hippocampal neurons in IBI. A significant decrease in cell viability and a significant increase in cell apoptosis were observed in the IBI group compared with the control group, accompanied by a decrease in glial glutamate transporter-1 (GLT‑1) expression as determined by RT-qPCR and western blot analysis. The effects of IBI were reversed by propofol treatment. The siRNA-mediated knockdown of GLT‑1 in the hypoxia-exposed hippocampal neuronal cells led to an increase in cell apoptosis, Jun N-terminal kinase (JNK) activation and N-methyl-D‑aspartate (NMDA) receptor (NR1 and NR2B) activation, as well as to a decrease in cell viability and a decrease in Akt activation. The effects of RNA interference-mediated GLT‑1 gene silencing on cell viability, JNK activation, NMDAR activation, cell apoptosis and Akt activation in the hippocampal neuronal cells were slightly reversed by propofol treatment. The JNK agonist, anisomycin, and the Akt inhibitor, LY294002, both significantly blocked the effects of propofol on hippocampal neuronal cell viability and apoptosis in IBI. The decrease in JNK activation and the increase in Akt activation caused by GLT‑1 overexpression were reversed by NMDA. Collectively, our findings suggest that propofol treatment protects hippocampal neurons against IBI by enhancing GLT‑1 expression and inhibiting the activation of NMDAR via the JNK/Akt signaling pathway.

  16. The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability

    NASA Astrophysics Data System (ADS)

    Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan

    2011-06-01

    The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.

  17. Role of cytoskeletal mechanics and cell membrane fluidity in the intracellular delivery of molecules mediated by laser-activated carbon nanoparticles.

    PubMed

    Holguin, Stefany Y; Anderson, Caleb F; Thadhani, Naresh N; Prausnitz, Mark R

    2017-10-01

    Exposure of cells and nanoparticles to near-infrared nanosecond pulsed laser light can lead to efficient intracellular delivery of molecules while maintaining high cell viability by a photoacoustic phenomenon known as transient nanoparticle energy transduction (TNET). Here, we examined the influence of cytoskeletal mechanics and plasma membrane fluidity on intracellular uptake of molecules and loss of cell viability due to TNET. We found that destabilization of actin filaments using latrunculin A led to greater uptake of molecules and less viability loss caused by TNET. Stabilization of actin filaments using jasplakinolide had no significant effect on uptake or viability loss caused by TNET. To study the role of plasma membrane fluidity, we increased fluidity by depletion of membrane cholesterol using methyl-β-cyclodextrin and decreased fluidity by enrichment of the membrane with cholesterol using water-soluble cholesterol. Neither of these membrane fluidity changes significantly altered cellular uptake or viability loss caused by TNET. We conclude that weakening mechanical integrity of the cytoskeleton can increase intracellular uptake and decrease loss of cell viability, while plasma membrane fluidity does not appear to play a significant role in uptake or viability loss caused by TNET. The positive effects of cytoskeletal weakening may be due to an enhanced ability of the cell to recover from the effects of TNET and maintain viability. Biotechnol. Bioeng. 2017;114: 2390-2399. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Cytotoxic Effects of Dimorfolido-N-Trichloroacetylphosphorylamide and Dimorfolido-N-Benzoylphosphorylamide in Combination with C60 Fullerene on Leukemic Cells and Docking Study of Their Interaction with DNA.

    PubMed

    Prylutska, S; Grynyuk, I; Grebinyk, A; Hurmach, V; Shatrava, Iu; Sliva, T; Amirkhanov, V; Prylutskyy, Yu; Matyshevska, O; Slobodyanik, M; Frohme, M; Ritter, U

    2017-12-01

    Dimorfolido-N-trichloroacetylphosphorylamide (HL1) and dimorfolido-N-benzoylphosphorylamide (HL2) as representatives of carbacylamidophosphates were synthesized and identified by the methods of IR, 1 H, and 31 P NMR spectroscopy. In vitro HL1 and HL2 at 1 mM concentration caused cell specific and time-dependent decrease of leukemic cell viability. Compounds caused the similar gradual decrease of Jurkat cells viability at 72 h (by 35%). HL1 had earlier and more profound toxic effect as compared to HL2 regardless on leukemic cell line. Viability of Molt-16 and CCRF-CEM cells under the action of HL1 was decreased at 24 h (by 32 and 45%, respectively) with no substantial further reducing up to 72 h. Toxic effect of HL2 was detected only at 72 h of incubation of Jurkat and Molt-16 cells (cell viability was decreased by 40 and 45%, respectively).It was shown that C 60 fullerene enhanced the toxic effect of HL2 on leukemic cells. Viability of Jurkat and CCRF-CEM cells at combined action of C 60 fullerene and HL2 was decreased at 72 h (by 20 and 24%, respectively) in comparison with the effect of HL2 taken separately.In silico study showed that HL1 and HL2 can interact with DNA and form complexes with DNA both separately and in combination with C 60 fullerene. More stable complexes are formed when DNA interacts with HL1 or C 60  + HL2 structure. Strong stacking interactions can be formed between HL2 and C 60 fullerene. Differences in the types of identified bonds and ways of binding can determine distinction in cytotoxic effects of studied compounds.

  19. The combined influence of sub-optimal temperature and salinity on the in vitro viability of Perkinsus marinus, a protistan parasite of the eastern oyster Crassostrea virginica

    USGS Publications Warehouse

    La Peyre, M.K.; Casas, S.M.; Gayle, W.; La Peyre, Jerome F.

    2010-01-01

    Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25. ppt) to 10 ??C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 ??C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7. ppt cultures acclimated to each temperature and then transferred to 3.5. ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30. days (3.5. ppt, 2 ??C: 0% viability), 60. days (3.5. ppt, 10 ??C: 0% viability) and 90. days (7. ppt, 2 ??C: 0.6 ?? 0.7%; 7. ppt, 10 ??C: 0.2 ?? 0.2%). ?? 2010 .

  20. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.

    PubMed

    Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M

    2015-02-01

    To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.

  1. Pregnenolone protects the PC-12 cell line against amyloid beta peptide toxicity but its sulfate ester does not.

    PubMed

    Akan, Pinar; Kizildag, Servet; Ormen, Murat; Genc, Sermin; Oktem, Mehmet Ali; Fadiloglu, Meral

    2009-01-15

    Pregnenolone (P), the main precursor of the steroids, and its sulfate ester, pregnenolone sulfate (PS), are the major neurosteroids produced in the neural tissue. Many neuroendocrinological studies stressed the neuroprotective role of neurosteroids although it has been suggested that the inhibition of P and PS synthesis can delay neuronal cell death. The potential roles of P and PS in vital neuronal functions and in amyloid beta peptide (Abeta) toxicity are not clearly identified. This work aims to investigate the effects of P and PS on cell viability and Abeta peptide toxicity in a concentration and exposure time-dependent manner in rat PC-12 cells. The cells were treated with 20muM Abeta peptide 25-35 and variable concentrations of P and PS ranging from 0.5muM to 100muM. To examine the effects of steroid treatment on Abeta peptide toxicity, 0.5muM (low) and 50muM (high) neurosteroids were used. The cell viability and lactate dehydrogenase release of cells were evaluated after 24, 48 and 72h. Morphological changes of cells were also examined. The treatment with higher than 1muM concentrations of P and PS significantly decreased the cell viability comparing to untreated cells. At lower concentrations, P and PS had no toxic actions until 72h. The Abeta treatment resulted in a significant decrease in cell viability comparing to untreated cells. P showed a dose-dependent protective effect against Abeta peptide in PC-12 cells. But its sulfate ester did not have the same effect on Abeta peptide toxicity, even it significantly decreased cell viability in Abeta-treated cells. Consequently, the discrepant effects of P and PS on Abeta peptide toxicity may provide insight on the pathogenesis of Alzheimer's disease.

  2. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    NASA Astrophysics Data System (ADS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  3. Long non-coding RNA HOTAIR promotes UVB-induced apoptosis and inflammatory injury by up-regulation of PKR in keratinocytes.

    PubMed

    Liu, Guo; Zhang, Wenhao

    2018-06-11

    Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may induce cancer, immunosuppression, photoaging, and inflammation. The long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in multiple human biological processes. However, its role in UVB-induced keratinocyte injury is unclear. This study was performed to investigate the effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6. Cell viability was measured using trypan blue exclusion method and cell apoptosis using flow cytometry and western blot. ELISA was used to measure the concentrations of TNF-α and IL-6. Western blot was used to measure the expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway proteins. UVB induced HaCaT cell injury by inhibiting cell viability and promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted the expression of HOTAIR. HOTAIR suppression increased cell viability and decreased apoptosis and expression of inflammatory factors in UVB-treated cells. HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased cell viability and increased cell apoptosis and expression of inflammatory factors in UVB-treated cells by upregulating PKR. Overexpression of PKR decreased cell viability and promoted cell apoptosis in UVB-treated cells. Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings identified an essential role of HOTAIR in promoting UVB-induced apoptosis and inflammatory injury by up-regulating PKR in keratinocytes.

  4. Long term cryopreservation in 5% DMSO maintains unchanged CD34(+) cells viability and allows satisfactory hematological engraftment after peripheral blood stem cell transplantation.

    PubMed

    Abbruzzese, L; Agostini, F; Durante, C; Toffola, R T; Rupolo, M; Rossi, F M; Lleshi, A; Zanolin, S; Michieli, M; Mazzucato, M

    2013-07-01

    Peripheral blood stem cell cryopreservation is associated with cell damage and decreased viability. We evaluated the impact of up to 10 years of cryopreservation (5% DMSO) on viability of CD34(+) cells utilizing graft samples of consecutive patients (2002-2012) with different malignancies who underwent stem cell collection and transplantation. Viability of CD34(+) cells from oncohaematological patients measured after 5 weeks (97·2 ± 0·6%) or after 9-10 years of cryopreservation (95·9 ± 0·5%) was unaffected. Haemoglobin, granulocyte and platelet recovery after transplantation of long-term cryopreserved grafts occurred within 8-13 days. CD34(+) stem cells can be safely stored up to 9-10 years, without affecting cell viability and clinical effectiveness. © 2013 International Society of Blood Transfusion.

  5. Residual HEMA and TEGDMA Release and Cytotoxicity Evaluation of Resin-Modified Glass Ionomer Cement and Compomers Cured with Different Light Sources

    PubMed Central

    Botsali, Murat Selim; Kuşgöz, Adem; Altintaş, Subutay Han; Ülker, Hayriye Esra; Kiliç, Serdar; Başak, Feridun; Ülker, Mustafa

    2014-01-01

    The purpose of this study was first to evaluate the elution of 2-hydroxyethyl methacrylate (HEMA) and triethylene glycol dimethacrylate (TEGDMA) monomers from resin-modified glass ionomer cement (RMGIC) and compomers cured with halogen and light-emitting diode (LED) light-curing units (LCUs). The effect of cured materials on the viability of L929 fibroblast cells was also evaluated. One RMGIC (Ketac N100) and two compomers (Dyract Extra and Twinkystar) were tested. Materials were prepared in teflon disks and light-cured with LED or halogen LCUs. The residual monomers of resin materials in solution were identified using high-performance liquid chromatography. The fibroblast cells' viability was analyzed using MTT assay. The type of LCU did not have a significant effect on the elution of HEMA and TEGDMA. A greater amount of HEMA than TEGMDA was eluted. The amount of TEGDMA eluted from Twinkystar was greater than Dyract Extra (P < 0.05) when cured with a halogen LCU. All material-LCU combinations decreased the fibroblast cells' viability more than the control group (P < 0.01), except for Dyract Extra cured with a halogen LCU (P > 0.05). Curing with the LED LCU decreased the cells' viability more than curing with the halogen LCU for compomers. For Ketac N100, the halogen LCU decreased the cells' viability more than the LED LCU. PMID:24592149

  6. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging

    PubMed Central

    Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua

    2017-01-01

    Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL-PS-associated inhibition of ultraviolet B (UVB)-induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence-associated β-galactosidase staining (SA-β-gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) −1 and C-telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP-1 protein expression, and increased cellular ROS levels compared with non-exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL-PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP-1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL-PS untreated cells. These results demonstrate that GL-PS protects fibroblasts against photoaging by eliminating UVB-induced ROS. This finding indicates GL-PS treatment may serve as a novel strategy for antiphotoaging. PMID:27959406

  7. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone

    PubMed Central

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL’s effect on intestinal mucus barrier function. PMID:27364593

  8. The effect of 'allergenic' and 'nonallergenic' antibiotics on dog keratinocyte viability in vitro.

    PubMed

    Voie, Katrine L; Lucas, Benjamin E; Schaeffer, David; Kim, Dewey; Campbell, Karen L; Lavergne, Sidonie N

    2013-10-01

    Immune-mediated adverse drug reactions (drug hypersensitivity) are relatively common in veterinary medicine, but their pathogenesis is not well understood. For an unknown reason, delayed drug hypersensitivity often targets the skin. Antibiotics, especially β-lactams and sulfonamides, are commonly associated with these adverse events. The 'danger theory' hypothesizes that 'danger' signals, such as drug-induced cell death, might be part of the pathogenesis of drug hypersensitivity reactions. The goal of this study was to determine whether antibiotics that are commonly associated with cutaneous drug hypersensitivity (allergenic) decrease canine keratinocyte viability in vitro more than antibiotics that rarely cause such reactions (nonallergenic). Immortalized canine keratinocytes (CPEK cells) were exposed to a therapeutic range of drug concentrations of four 'allergenic' antibiotics (two β-lactams, i.e. amoxicillin and cefalexin, and two sulfonamides, i.e. sulfamethoxazole and sulfadimethoxine) or two 'nonallergenic' antibiotics (enrofloxacin and amikacin) over 48 h (2, 4, 8, 24 and 48 h). The reactive nitroso metabolite of sulfamethoxazole was also tested. Cefalexin (2 mmol/L) significantly decreased cell viability after 48 h (28 ± 7%; P = 0.035). The nitroso metabolite of sulfamethoxazole (100 μmol/L) decreased cell viability after 2 h (21 ± 7%; P = 0.049), but cell numbers were increased after 8 h (22 ± 6%; P = 0.018). In addition, enrofloxacin (500 μmol/L) also significantly decreased cell viability by 37% (±6%; P = 0.0035) at 24 h and by 70% (±8%; P < 0.001) at 48 h. It appears that the effect of drugs on the in vitro viability of dog keratinocytes is not a good predictor of the 'allergenic' potential of an antibiotic. Further work is required to investigate other drug-induced 'danger' signals in dog keratinocytes exposed to 'allergenic' antibiotics in vitro. © 2013 ESVD and ACVD.

  9. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    PubMed

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  10. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism.

    PubMed

    Miyazaki, Tsuyoshi; Kobayashi, Shigeru; Takeno, Kenichi; Yayama, Takafumi; Meir, Adam; Baba, Hisatoshi

    2011-07-01

    A lot of studies on the effect of intra-articular injections are clinical, but many questions on the effect of lidocaine to articular chondrocytes remain unanswered. This study was performed to determine the effects of varying concentrations and exposure times of lidocaine on the viability and proteoglycan metabolism of chondrocytes in vitro. Cartilage was obtained from metatarsal joints of adult bovines. Chondrocytes in alginate beads were cultured in medium containing 6% fetal calf serum at 370 mOsmol at cell densities of 4 million cells/ml. They were then cultured for 24 h under 21% oxygen with 0.125, 0.25, 0.5, and 1% lidocaine and without lidocaine as control. The cell viability profile across intact beads was determined by manual counting using fluorescent probes and transmission electron microscopy. Lactate production was measured enzymatically as a marker of energy metabolism. Glycosaminoglycan (GAG) accumulation was measured using a modified dimethylmethylene blue assay. Cell viability decreased in a time- and dose-dependent manner in the concentration range of 0.125-1.0% lidocaine under the confocal microscope. Under the electron microscope, apoptosis increased as the concentration of lidocaine increased. GAG accumulation/tissue volume decreases as the concentration of lidocaine increased. However, GAG produced per million cells and the rate of lactate production per live cell were significantly higher for cells cultured at 0.5 and 1% lidocaine than the control group. Bovine chondrocytes cultured in alginate beads under high oxygen pressure are negatively influenced by increasing concentrations of lidocaine. Cell viability and proteoglycan production (GAG accumulation/tissue volume) decreased as the concentration of lidocaine increased. These data suggest caution in prolonged exposure of cartilage to high concentration lidocaine. Repeated joint injection of lidocaine potentially worsens osteoarthrosis by accelerating cartilage degradation.

  11. Fragrance chemicals lyral and lilial decrease viability of HaCat cells' by increasing free radical production and lowering intracellular ATP level: protection by antioxidants.

    PubMed

    Usta, Julnar; Hachem, Yassmine; El-Rifai, Omar; Bou-Moughlabey, Yolla; Echtay, Karim; Griffiths, David; Nakkash-Chmaisse, Hania; Makki, Rajaa Fakhoury

    2013-02-01

    We investigate in this study the biochemical effects on cells in culture of two commonly used fragrance chemicals: lyral and lilial. Whereas both chemicals exerted a significant effect on primary keratinocyte(s), HaCat cells, no effect was obtained with any of HepG2, Hek293, Caco2, NIH3T3, and MCF7 cells. Lyral and lilial: (a) decreased the viability of HaCat cells with a 50% cell death at 100 and 60 nM respectively; (b) decreased significantly in a dose dependant manner the intracellular ATP level following 12-h of treatment; (c) inhibited complexes I and II of electron transport chain in liver sub-mitochondrial particles; and (d) increased reactive oxygen species generation that was reversed by N-acetyl cysteine and trolox and the natural antioxidant lipoic acid, without influencing the level of free and/or oxidized glutathione. Lipoic acid protected HaCat cells against the decrease in viability induced by either compound. Dehydrogenation of lyral and lilial produce α,β-unsaturated aldehydes, that reacts with lipoic acid requiring proteins resulting in their inhibition. We propose lyral and lilial as toxic to mitochondria that have a direct effect on electron transport chain, increase ROS production, derange mitochondrial membrane potential, and decrease cellular ATP level, leading thus to cell death. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging.

    PubMed

    Zeng, Qinghai; Zhou, Fang; Lei, Li; Chen, Jing; Lu, Jianyun; Zhou, Jianda; Cao, Ke; Gao, Lihua; Xia, Fang; Ding, Shu; Huang, Lihua; Xiang, Hong; Wang, Jingjing; Xiao, Yangfan; Xiao, Rong; Huang, Jinhua

    2017-01-01

    Ganoderma lucidum has featured in traditional Chinese medicine for >1,000 years. Ganoderma polysaccharides (GL-PS), a major active ingredient in Ganoderma, confer immune regulation, antitumor effects and significant antioxidant effects. The aim of the present study was to investigate the efficacy and mechanism of GL‑PS‑associated inhibition of ultraviolet B (UVB)‑induced photoaging in human fibroblasts in vitro. Primary human skin fibroblasts were cultured, and a fibroblast photoaging model was built through exposure to UVB. Cell viability was measured by MTT assay. Aged cells were stained using a senescence‑associated β-galactosidase staining (SA‑β‑gal) kit. ELISA kits were used to analyze matrix metalloproteinase (MMP) ‑1 and C‑telopeptides of Type I collagen (CICP) protein levels in cellular supernatant. ROS levels were quantified by flow cytometry. Cells exposed to UVB had decreased cell viability, increased aged cells, decreased CICP protein expression, increased MMP‑1 protein expression, and increased cellular ROS levels compared with non‑exposed cells. However, cells exposed to UVB and treated with 10, 20 and 40 µg/ml GL‑PS demonstrated increased cell viability, decreased aged cells, increased CICP protein expression, decreased MMP‑1 protein expression, and decreased cellular ROS levels compared with UVB exposed/GL‑PS untreated cells. These results demonstrate that GL‑PS protects fibroblasts against photoaging by eliminating UVB‑induced ROS. This finding indicates GL‑PS treatment may serve as a novel strategy for antiphotoaging.

  13. Effects of aluminum in red spruce (Picea rubens) cell cultures: Cell growth and viability, mitochondrial activity, ultrastructure and potential sites of intracellular aluminum accumulation

    Treesearch

    Rakesh Minocha; Carolyn McQuattie; Wayne Fagerberg; Stephanie Long; Eun Woon Noh

    2001-01-01

    The effects of Al on red spruce (Picea rubens Sarg.) cell suspension cultures were examined using biochemical, stereo-logical and microscopic methods. Exposure to Al for 24-48 h resulted in a loss of cell viability, inhibition of growth and a significant decrease in mitochondrial activity. Soluble protein content increased in cells treated with Al....

  14. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of differentmore » concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.« less

  15. Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability.

    PubMed

    Moon, Young Jae; Yun, Chi-Young; Choi, Hwajung; Ka, Sun-O; Kim, Jung Ryul; Park, Byung-Hyun; Cho, Eui-Sic

    2016-09-02

    Regulation of osteoblast and osteocyte viability is essential for bone homeostasis. Smad4, a major transducer of bone morphogenetic protein and transforming growth factor-β signaling pathways, regulates apoptosis in various cell types through a mitochondrial pathway. However, it remains poorly understood whether Smad4 is necessary for the regulation of osteoblast and osteocyte viability. In this study, we analyzed Smad4Δ(Os) mice, in which Smad4 was subjected to tissue-specific disruption under the control of the 2.3-kb Col1a1 promoter, to understand the functional significance of Smad4 in regulating osteoblast/osteocyte viability during bone formation and remodeling. Smad4Δ(Os) mice showed a significant increase in osteoblast number and osteocyte density in the trabecular and cortical regions of the femur, whereas osteoclast activity was significantly decreased. The proliferation of osteoblasts/osteocytes did not alter, as shown by measuring 5'-bromo-2'deoxyuridine incorporation. By contrast, the percentage of TUNEL-positive cells decreased, together with a decrease in the Bax/Bcl-2 ratio and in the proteolytic cleavage of caspase 3, in Smad4Δ(Os) mice. Apoptosis in isolated calvaria cells from Smad4Δ(Os) mice decreased after differentiation, which was consistent with the results of the TUNEL assay and western blotting in Smad4Δ(Os) mice. Conversely, osteoblast cells overexpressing Smad4 showed increased apoptosis. In an apoptosis induction model of Smad4Δ(Os) mice, osteoblasts/osteocytes were more resistant to apoptosis than were control cells, and, consequently, bone remodeling was attenuated. These findings indicate that Smad4 has a significant role in regulating osteoblast/osteocyte viability and therefore controls bone homeostasis.

  16. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia.

    PubMed

    Gálvez-Martín, Patricia; Hmadcha, Abdelkrim; Soria, Bernat; Calpena-Campmany, Ana C; Clares-Naveros, Beatriz

    2014-04-01

    Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1×10(6) cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells

    PubMed Central

    ZHAO, BING; HU, MENGCAI

    2013-01-01

    Gallic acid is a trihydroxybenzoic acid, also known as 3,4,5-trihydroxybenzoic acid, which is present in plants worldwide, including Chinese medicinal herbs. Gallic acid has been shown to have cytotoxic effects in certain cancer cells, without damaging normal cells. The objective of the present study was to determine whether gallic acid is able to inhibit human cervical cancer cell viability, proliferation and invasion and suppress cervical cancer cell-mediated angiogenesis. Treatment of HeLa and HTB-35 human cancer cells with gallic acid decreased cell viability in a dose-dependent manner. BrdU proliferation and tube formation assays indicated that gallic acid significantly decreased human cervical cancer cell proliferation and tube formation in human umbilical vein endothelial cells, respectively. Additionally, gallic acid decreased HeLa and HTB-35 cell invasion in vitro. Western blot analysis demonstrated that the expression of ADAM17, EGFR, p-Akt and p-Erk was suppressed by gallic acid in the HeLa and HTB-35 cell lines. These data indicate that the suppression of ADAM17 and the downregulation of the EGFR, Akt/p-Akt and Erk/p-Erk signaling pathways may contribute to the suppression of cancer progression by Gallic acid. Gallic acid may be a valuable candidate for the treatment of cervical cancer. PMID:24843386

  18. The role of adrenergic activation on murine luteal cell viability and progesterone production.

    PubMed

    Wang, Jing; Tang, Min; Jiang, Huaide; Wu, Bing; Cai, Wei; Hu, Chuan; Bao, Riqiang; Dong, Qiming; Xiao, Li; Li, Gang; Zhang, Chunping

    2016-09-15

    Sympathetic innervations exist in mammalian CL. The action of catecholaminergic system on luteal cells has been the focus of a variety of studies. Norepinephrine (NE) increased progesterone secretion of cattle luteal cells by activating β-adrenoceptors. In this study, murine luteal cells were treated with NE and isoprenaline (ISO). We found that NE increased the viability of murine luteal cells and ISO decreased the viability of luteal cells. Both NE and ISO promoted the progesterone production. Nonselective β-adrenergic antagonist, propranolol reversed the effect of ISO on cell viability but did not reverse the effect of NE on cell viability. Propranolol blocked the influence of NE and ISO on progesterone production. These results reveal that the increase of luteal cell viability induced by NE is not dependent on β-adrenergic activation. α-Adrenergic activation possibly contributes to it. Both NE and ISO increased progesterone production through activating β-adrenergic receptor. Further study showed that CyclinD2 is involved in the increase of luteal cell induced by NE. 3β-Hydroxysteroid dehydrogenase, LHR, steroidogenic acute regulatory protein (StAR), and PGF2α contribute to the progesterone production induced by NE and ISO. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Lifeguard inhibition of Fas-mediated apoptosis: A possible mechanism for explaining the cisplatin resistance of triple-negative breast cancer cells.

    PubMed

    Radin, Daniel; Lippa, Arnold; Patel, Parth; Leonardi, Donna

    2016-02-01

    Triple-negative breast cancer does not express estrogen receptor-α, progesterone or the HER2 receptor making hormone or antibody therapy ineffective. Cisplatin may initiate p73-dependent apoptosis in p53 mutant cell lines through Fas trimerization and Caspase-8 activation and Bax up regulation and subsequent Caspase-9 activation. The triple-negative breast cancer, MDA-MB-231, overexpresses the protein Lifeguard, which inhibits Fas-mediated apoptosis by inhibiting Caspase-8 activation after Fas trimerization. The relationship between Fas, Lifeguard and cisplatin is investigated by down regulating Lifeguard via shRNA. Results demonstrate that cisplatin's efficacy increases when Lifeguard is down regulated. Lifeguard Knockdown MDA-MB-231 continue to decrease in cell viability from 24 to 48h after cisplatin treatment while no additional decrease in viability is observed in the Wild-Type MDA over the same period. Higher Caspase-8 activity in the Lifeguard knockdown MDA after cisplatin administration could explain the significant decrease in cell viability from 24 to 48h. This cell type is also more sensitive to Fas ligand-mediated reductions in cell viability, confirming Lifeguard's anti-apoptotic function through the Fas receptor. This research suggests that the efficacy of chemotherapy acting through the Fas pathway would increase if Lifeguard were not overexpressed to inhibit Fas-mediated apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Withagulatin A inhibits hepatic stellate cell viability and procollagen I production through Akt and Smad signaling pathways

    PubMed Central

    Liu, Qiong; Chen, Jing; Wang, Xu; Yu, Liang; Hu, Li-hong; Shen, Xu

    2010-01-01

    Aim: To investigate the effects of the natural product Withagulatin A on hepatic stellate cell (HSC) viability and type I procollagen production. The potential mechanism underlying the pharmacological actions was also explored. Methods: The effect of Withagulatin A on cell viability was evaluated in HSC and LX-2 cells using a sulforhodamine B (SRB) assay. Cell cycle distribution was analyzed using flow cytometry. Type I procollagen gene expression was determined using real-time PCR. Regulation of signaling molecules by Withagulatin A was detected using Western blotting. Results: Primary rat HSCs and the human hepatic stellate cell line LX-2 treated with Withagulatin A (0.625-20 μmol/L) underwent a dose-dependent decrease in cell viability, which was associated with S phase arrest and the induction of cell apoptosis. In addition, the natural product decreased phosphorylation of the Akt/mTOR/p70S6K pathway that controls cell proliferation and survival. Furthermore, Withagulatin A (1, 2 μmol/L) inhibited transforming growth factor-β (TGF-β) stimulated type I procollagen gene expression, which was attributable to the suppression of TGF-β stimulated Smad2 and Smad3 phosphorylation. Conclusion: Our results demonstrated that Withagulatin A potently inhibited HSC viability and type I procollagen production, thereby implying that this natural product has potential use in the development of anti-fibrogenic reagents for the treatment of hepatic fibrosis. PMID:20644552

  1. Involvement of polyubiquitin chains via specific chain linkages in stress response in mammalian cells.

    PubMed

    Fujimuro, Masahiro; Nishiya, Tadashi; Nomura, Yasuyuki; Yokosawa, Hideyoshi

    2005-12-01

    Polyubiquitination plays key roles in various proteasome-dependent and independent cellular events. To elucidate roles in stress response of polyubiquitin chains formed via specific chain linkages in mammalian cells, we established NIH3T3 stable cell lines that are capable of conditionally expressing K29R, K48R and K63R ubiquitin mutants, in which the Lys29, Lys48 and Lys63 residues of ubiquitin had been changed to Arg, and we examined the effects of various stresses on their cell viabilities. The expression of K63R ubiquitin mutant decreased viability of the cells post-exposed to ethanol, H(2)O(2) and methyl methanesulfonate (MMS), while that of K48R mutant decreased viability of the cells post-exposed to heat shock as well as ethanol, H(2)O(2) and MMS. Thus, these results suggest that polyubiquitin chains formed via specific chain linkages are involved in the respective stress responses in mammalian cells.

  2. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    PubMed

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  3. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro.

    PubMed

    Blancas-Mosqueda, Marisol; Zapata-Benavides, Pablo; Zamora-Ávila, Diana; Saavedra-Alonso, Santiago; Manilla-Muñoz, Edgar; Franco-Molina, Moisés; DE LA Peña, Carmen Mondragón; Rodríguez-Padilla, Cristina

    2012-11-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133(+) cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment.

  4. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    PubMed Central

    Martínez-Montemayor, Michelle M.; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis. A.; Dharmawardhane, Suranganie F.

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic. PMID:21888505

  5. Effect of sodium hypochlorite on human pulp cells: an in vitro study

    PubMed Central

    Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.

    2014-01-01

    Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446

  6. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Lili; Shanghai R and D Centre for Standardization of Traditional Chinese Medicines, Shanghai 201203; Chen Ying

    2008-09-15

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability.more » Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.« less

  7. Effect of all-trans retinoic acid (ATRA) on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells.

    PubMed

    Bidad, Katayoon; Salehi, Eisa; Oraei, Mona; Saboor-Yaraghi, Ali-Akbar; Nicknam, Mohammad Hossein

    2011-12-01

    All-trans retinoic acid (ATRA), as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were separated from heparinized blood of healthy donors and were cultured in conditions, some with, some without ATRA. Viability was assessed by PI flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription factors (FOXP3, RORγt and T-bet) were examined by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM) caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not adversely affect cell viability and proliferation in comparison to culture medium without ATRA. Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared to culture medium without ATRA. ATRA could increase FOXP3+ and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+ T cells in terms of cell viability, proliferation and activation. We could also show that ATRA diverts the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.

  8. Gallium containing composites as a tunable material to understand neuronal behavior under variable stiffness and radiation conditions.

    PubMed

    Berg, Nora G; Pearce, Brady L; Rohrbaugh, Nathaniel; Jiang, Lin; Nolan, Michael W; Ivanisevic, Albena

    2017-02-01

    We report a composite biomaterial containing nanostructured GaOOH and Matrigel™ that can be modulated with respect to its stiffness and radiosensitization properties. A variety of concentrations of GaOOH were added to the composite to alter the mechanical properties of the material as well as to tune the radiosensitizing properties to the composite. PC-12 cells were used to study the combined effects of different stimuli on cell behavior. NGF was given to the cells to record their morphology as well as viability. An increase in the substrate stiffness caused an increase in neurite outgrowth but a decrease in cell viability. In addition, increasing the radiation dose decreased neurite outgrowth but increased cell viability when radiosensitizing particles were present. A subtractive effect between radiosensitizing and mechanical stimuli was observed when PC-12 cells were grown on the GaOOH containing composite. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. [Effect of cadmium chloride on immigration of mouse neural stem cell].

    PubMed

    Zhang, Yuyuan; Wang, Qunan; Chai, Xiaoyu; Shen, Zhongzhou; Gao, Liuwei

    2015-01-01

    To investigate the effects of cadmium chloride on cytoactive and immigration of mouse neural stem cell (mNSC). MTT assay was used to detect cytoactive at 24 hours. The immigration of mNSC was determined by immunofluorescence staining. Compared with control, CdCl2 treatment at 10.0 μmol/L for 24 h resulted in a decrease in cellular viability (70.08 ± 6.21)% (P < 0.05). Compared with control, Aa/Ab and Dm/Db display decreasing tendency in a dose-dependent manner (r(s Aa/Ab) = - 0.90, γ(s Dm/Db) = - 0.90, P < 0.05) after CdCl2 treatment at 0.1 - 10.0 μmol/L for 24 h. Cadmium chloride treatment inhibits immigration of mNSC, and shows negative effect on cell viability. Meanwhile, the effect of cadmium chloride on immigration is more obvious than cell viability at the same concentration for same treatment time.

  10. Curcumin enhances the anticancer effects of trichostatin a in breast cancer cells.

    PubMed

    Yan, Guang; Graham, Kimmer; Lanza-Jacoby, Susan

    2013-05-01

    Breast cancer patients with HER-2 positive or estrogen receptor negative tumors have a poor prognosis because these tumors are aggressive and respond poorly to standard therapies. Histone deacetylase (HDAC) inhibitors have been shown to decreased cell survival, which suggests that HDAC inhibitors may be developed for preventing and treating breast cancer. Curcumin has anti-inflammatory and proapoptotic effects in cancer cells. We determined whether the HDAC inhibitor, Tricostatin A (TSA) in combination with curcumin would produce greater antiproliferative and apoptotic effects than either agent alone. Increasing the concentration of curcumin from 10 to 20 µM enhanced the growth inhibitory effects of the combination in SkBr3 and 435eB breast cancer cells, which was accompanied by decreased viability along with decreased phosphorylation of ERK and Akt. The decreased cell viability observed in SkBr3 cells when curcumin was combined with TSA led to a G0/G1 cell cycle arrest and increased p21 and p27, and decreased Cyclin D1 protein expression. The combination induced cleavage of caspase 3 and poly(ADP-ribose) polymerase-1, suggesting that cell death occurred by apoptosis. There were no changes in protein expression of Bcl2, Bax, or Bcl-xL and decreased expression of p53. The combination increased protein expression of phosphorylated JNK and phosphorylated p38. Pharmacological inhibition of JNK, but not p38, attenuated the decreased viability induced by the curcumin and TSA combination. We conclude that p53 independent apoptosis induced by combining curcumin and TSA involves JNK activation. These findings provide a rationale for exploring the potential benefits of the combination of curcumin with TSA for treatment of breast cancer. Copyright © 2012 Wiley Periodicals, Inc.

  11. Newly Developed Neutralized pH Icodextrin Dialysis Fluid: Nonclinical Evaluation.

    PubMed

    Yamaguchi, Naoya; Miyamoto, Keiichi; Murata, Tomohiro; Ishikawa, Eiji; Horiuchi, Takashi

    2016-08-01

    A two-compartment system (NICOPELIQ; NICO, Terumo Co., Tokyo, Japan) has recently been developed to neutralize icodextrin peritoneal dialysis fluid (PDF). In this study, a nonclinical evaluation of NICO was carried out to evaluate biocompatibility as well as water transport ability. Glucose degradation products (GDPs) in the icodextrin PDFs were analyzed via high-performance liquid chromatography (HPLC). The cell viability of human peritoneal mesothelial cells derived from peritoneal dialysis effluent (PDE-HPMCs) was evaluated as well as the amount of lactate dehydrogenase (LDH) released after exposure to different PDFs (NICO and EXTRANEAL [EX, Baxter Healthcare Corp., Chicago, IL, USA]) and neutralized pH glucose PDF MIDPELIQ 250 (M250, Terumo). The water transport ability of NICO, EX, and M250 was tested using dialysis tube membranes with various pore sizes: 1, 2, 6-8, and 12-16 kDa. Although cell viability decreased by 30% after 30 min exposure to NICO, it was maintained for 6 h while a significant decrease was observed after 6 h exposure to EX. However, following adjustment of the pH to the same pre-exposure pH value, there was no significant difference in cell viability within the same pH group despite a doubling of the difference in the total amount of GDPs (44.6 ± 8.6 µM in NICO and 91.9 ± 9.5 µM in EX, respectively). In contrast, a significant decrease in cell viability was observed when the pH decreased to less than pH 6. Levels of released LDH, a cytotoxic marker, were within 5% after a 6-h exposure of NICO to PDE-HPMCs. There was no significant difference in water transport ability represented as overall osmotic gradients between NICO and EX. In conclusion, neutralization of icodextrin PDF is beneficial for maintaining cell viability and minimizing LDH release while water transport ability is comparable to the conventional icodextrin PDF. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Osthole induces apoptosis, suppresses cell-cycle progression and proliferation of cancer cells.

    PubMed

    Jarząb, Agata; Grabarska, Aneta; Kiełbus, Michał; Jeleniewicz, Witold; Dmoszyńska-Graniczka, Magdalena; Skalicka-Woźniak, Krystyna; Sieniawska, Elwira; Polberg, Krzysztof; Stepulak, Andrzej

    2014-11-01

    The aim of the present study was to determine the effects of osthole on cell proliferation and viability, cell-cycle progression and induction of apoptosis in human laryngeal cancer RK33 and human medulloblastoma TE671 cell lines. Cell viability was measured by means of the MTT method and cell proliferation by the 5-bromo-2-deoxyuridine (BrdU) incorporation assay. Cell-cycle progression was determined by flow cytometry, and induction of apoptosis by release of oligonucleosomes to the cytosol. The gene expression was estimated by a quantitative polymerase chain reaction (qPCR) method. High-performance counter-current chromatography (HPCCC) was applied for isolation of osthole from fruits of Mutellina purpurea. Osthole decreased proliferation and cell viability of cancer cells in a dose-dependent manner. The tested compound induced apoptosis, increased the cell numbers in G1 and decreased cell number in S/G2 phases of the cell cycle, differentially regulating CDKN1A and TP53 gene expression depending on cancer cell type. Osthole could be considered as a potential compound for cancer therapy and chemoprevention. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Once the Light Touch to the Brain: Cytotoxic Effects of Low-Dose Gamma-Ray, Laser Light, and Visible Light on Rat Neuronal Cell Culture

    PubMed Central

    Cakir, Murteza; Colak, Abdullah; Calikoglu, Cagatay; Taspinar, Numan; Sagsoz, Mustafa Erdem; Kadioglu, Hakan Hadi; Hacimuftuoglu, Ahmet; Seven, Sabriye

    2016-01-01

    Objective: We aimed to evaluate the effects of gamma-ray, laser light, and visible light, which neurons are commonly exposed to during treatment of various cranial diseases, on the viability of neurons. Materials and Methods: Neuronal cell culture was prepared from the frontal cortex of 9 newborn rats. Cultured cells were irradiated with gamma-ray for 1–10 min by 152Eu, 241Am, and 132Ba isotopes, visible light for 1–160 min, and laser light for 0.2–2 seconds. The MTT tetrazolium reduction assay was used to assess the number of viable cells in the neuronal cell cultures. Wavelength dispersive X-ray fluorescence spectrometer was used to determine Na, K, and Ca levels in cellular fluid obtained from neuronal cell culture plaques. Results: Under low-dose radiation with 152Eu, 241Am, and 132Ba isotopes, cell viability insignificantly decreased with time (p>0.05). On the other hand, exposure to visible light produced statistically significant decrease in cell viability at both short- (1–10 min) and long-term (20–160 min). Cell viability did not change with 2 seconds of laser exposure. Na, K, and Ca levels significantly decreased with gamma-ray and visible light. The level of oxidative stress markers significantly changed with gamma-ray. Conclusion: In conclusion, while low dose gamma-ray has slight to moderate apoptotic effect in neuronal cell cultures by oxidative stress, long-term visible light induces remarkable apoptosis and cell death. Laser light has no significant effect on neurons. Further genetic studies are needed to clarify the chronic effect of visible light on neuronal development and functions. PMID:27551168

  14. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  15. Nur77 inhibits oxLDL induced apoptosis of macrophages via the p38 MAPK signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Qin; Han, Fei; Peng, Shi

    2016-03-18

    The interaction between macrophages and oxLDL plays a crucial role in the initiation and progression of atherosclerosis. As a key initiator in a number of plaque promoting processes, oxLDL induces variable effects such as cell apoptosis or proliferation. Orphan nuclear receptor Nur77 is potently induced in macrophages by diverse stimuli, suggesting that it is of importance in vascular inflammation resulting in atherosclerosis, but whether Nur77 induction is detrimental or protective is unclear. In our study, we explore the role of Nur77 in the regulation of oxLDL-induced macrophage apoptosis and the signaling pathways that are involved. We found that oxLDL inducedmore » Nur77 expression in a dose and time dependent fashion, and cell viability was decreased in parallel. To determine whether Nur77 induction contributes to the loss of cell viability or is a protective mechanism, the effect of Nur77 overexpression was examined. Importantly, Nur77 overexpression inhibited the oxLDL-induced decrease of cell viability, inhibited the production of apoptotic bodies and restored DNA synthesis following oxLDL exposure. Furthermore, we found that Nur77 induction is mediated through the p38 MAPK signaling pathway. After pretreatment with SB203580, cell viability was decreased, the expression of CyclinA2 and PCNA was attenuated and the percentage of cell apoptosis was enhanced. Likewise, Nur77 overexpression increased the expression of the cell cycle genes PCNA and p21, and attenuated the increase in caspase-3. On the other hand, knockdown of Nur77 expression by specific siRNA resulted in the increased expression of caspase 3. The results demonstrate that Nur77 is induced by oxLDL via the p38 MAPK signaling pathway, which is involved in the regulation of cell survival. Nur77 enhanced cell survival via suppressing apoptosis, without affecting cell proliferation of activated macrophages, which may be beneficial in patients with atherosclerosis. - Highlights: • oxLDL could induce Nur77 expression. • Nur77 overexpression inhibited oxLDL-induced cell viability, production of apoptotic bodies and restored DNA synthesis. • Cell viability, CyclinA2 and PCNA expression and cell apoptosis were mediated through the p38 MAPK signaling pathway. • Nur77 overexpression mediated the expression of genes PCNA, p21, and caspase-3.« less

  16. Lipoic Acid Decreases the Viability of Breast Cancer Cells and Activity of PTP1B and SHP2.

    PubMed

    Kuban-Jankowska, Alicja; Gorska-Ponikowska, Magdalena; Wozniak, Michal

    2017-06-01

    Protein tyrosine phosphatases PTP1B and SHP2 are potential targets for anticancer therapy, because of the essential role they play in the development of tumors. PTP1B and SHP2 are overexpressed in breast cancer cells, thus inhibition of their activity can be potentially effective in breast cancer therapy. Lipoic acid has been previously reported to inhibit the proliferation of colon, breast and thyroid cancer cells. We investigated the effect of alpha-lipoic acid (ALA) and its reduced form of dihydrolipoic acid (DHLA) on the viability of MCF-7 cancer cells and on the enzymatic activity of PTP1B and SHP2 phosphatases. ALA and DHLA decrease the activity of PTP1B and SHP2, and have inhibitory effects on the viability and proliferation of breast cancer cells. ALA and DHLA can be considered as potential agents for the adjunctive treatment of breast cancer. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. RITA displays anti-tumor activity in medulloblastomas independent of TP53 status.

    PubMed

    Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H; Künkele, Annette

    2017-04-25

    Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40-70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma.

  18. RITA displays anti-tumor activity in medulloblastomas independent of TP53 status

    PubMed Central

    Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E.; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H.; Künkele, Annette

    2017-01-01

    Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40–70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma. PMID:28427187

  19. CD133 antisense suppresses cancer cell growth and increases sensitivity to cisplatin in vitro

    PubMed Central

    BLANCAS-MOSQUEDA, MARISOL; ZAPATA-BENAVIDES, PABLO; ZAMORA-ÁVILA, DIANA; SAAVEDRA-ALONSO, SANTIAGO; MANILLA-MUÑOZ, EDGAR; FRANCO-MOLINA, MOISÉS; DE LA PEÑA, CARMEN MONDRAGÓN; RODRÍGUEZ-PADILLA, CRISTINA

    2012-01-01

    The increased incidence of cancer in recent years is associated with a high rate of mortality. Numerous types of cancer have a low percentage of CD133+ cells, which have similar features to stem cells. The CD133 molecule is involved in apoptosis and cell proliferation. The aim of this study was to determine the biological effect of CD133 suppression and its role in the chemosensitization of cancer cell lines. RT-PCR and immunocytochemical analyses indicated that CD133 was expressed in the cancer cell lines B16F10, MCF7 and INER51. Downregulation of CD133 by transfection with an antisense sequence (As-CD133) resulted in a decrease in cancer cell viability of up to 52, 47 and 22% in B16F10, MCF-7 and INER51 cancer cell lines, respectively. This decreased viability appeared to be due to the induction of apoptosis. In addition, treatment with As-CD133 in combination with cisplatin had a synergic effect in all of the cancer cell lines analyzed, and in particular, significantly decreased the viability of B16F10 cancer cells compared with each treatment separately (3.1% viability for the combined treatment compared with 48% for 0.4 μg As-CD133 and 25% for 5 ng/μl cisplatin; P<0.05). The results indicate that the downregulation of CD133 by antisense is a potential therapeutic target for cancer and has a synergistic effect when administered with minimal doses of the chemotherapeutic drug cisplatin, suggesting that this combination strategy may be applied in cancer treatment. PMID:23226746

  20. The effects of cetrorelix and triptorelin on the viability and steroidogenesis of cultured human granulosa luteinized cells.

    PubMed

    Metallinou, Chryssa; Köster, Frank; Diedrich, Klaus; Nikolettos, Nikos; Asimakopoulos, Byron

    2012-01-01

    We investigated the effects of the gonadotropin-releasing hormone (GnRH) agonist triptorelin as well the GnRH antagonist cetrorelix those of on the viability and steroidogenesis in human granulosa luteinized (hGL) cell cultures. The hGL cells were obtained from 34 women undergoing ovarian stimulation for IVF treatment. The cells were cultured for 48 h with or without 1 nM or 3 nM of cetrorelix or triptorelin in serum-free media. The cell viability was evaluated by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The concentrations of estradiol and progesterone in culture supernatants were measured by ELISA. Treatment with triptorelin slightly increased cell viability, whereas treatment with 3 nM cetrorelix led to a significant decrease. Estradiol concentrations were reduced with 3 nM triptorelin. Cultures treated with high-dose of either cetrorelix or triptorelin tended to secrete less progesterone than controls. Cetrorelix significantly reduces the viability of hGL cells. Triptorelin and cetrorelix may have minor effects on steroidogenesis. These results suggest that GnRH analogues may influence ovarian functions.

  1. Procyanidins from evening primrose (Oenothera paradoxa) defatted seeds inhibit invasiveness of breast cancer cells and modulate the expression of selected genes involved in angiogenesis, metastasis, and apoptosis.

    PubMed

    Lewandowska, Urszula; Szewczyk, Karolina; Owczarek, Katarzyna; Hrabec, Zbigniew; Podsędek, Anna; Sosnowska, Dorota; Hrabec, Elżbieta

    2013-01-01

    There is a growing interest in plant polyphenols (including flavanols) that exhibit pleiotropic biological activities such as antiinflammatory, antioxidant, and anticancer effects. Here, we report for the first time the inhibition of MDA-MB-231 breast cancer cell viability and invasiveness by an evening primrose flavanol preparation (EPFP). We observed a decrease in MDA-MB-231 viability of 50% vs. a control after 72 h of incubation with EPFP at a concentration of 58 μM gallic acid equivalents (GAE) and an inhibition of their invasiveness of 65% vs. a control at 75 μM GAE after 48 h of incubation. EPFP caused a 10-fold reduction in matrix metalloproteinase-9 (MMP-9) activity at 100 μM GAE. Furthermore, through modulation of mRNA expression, EPFP reduced the expression levels of the following proteins: antiapoptotic Bcl-2, angiogenic vascular endothelial growth factor (VEGF), and 2 transcription factors (c-Jun, c-Fos). Moreover, analysis by flow cytometry revealed that EPFP induced apoptosis in MDA-MB-231 cells. In conclusion, our data shows that EPFP inhibits cell viability by increasing apoptosis and decreases cell invasiveness by decreasing angiogenesis.

  2. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods

    PubMed Central

    Fernandez Cabada, Tamara; Sanchez Lopez de Pablo, Cristina; Martinez Serrano, Alberto; del Pozo Guerrero, Francisco; Serrano Olmedo, Jose Javier; Ramos Gomez, Milagros

    2012-01-01

    Background Metallic nanorods are promising agents for a wide range of biomedical applications. In this study, we developed an optical hyperthermia method capable of inducing in vitro death of glioblastoma cells. Methods The procedure used was based on irradiation of gold nanorods with a continuous wave laser. This kind of nanoparticle converts absorbed light into localized heat within a short period of time due to the surface plasmon resonance effect. The effectiveness of the method was determined by measuring changes in cell viability after laser irradiation of glioblastoma cells in the presence of gold nanorods. Results Laser irradiation in the presence of gold nanorods induced a significant decrease in cell viability, while no decrease in cell viability was observed with laser irradiation or incubation with gold nanorods alone. The mechanism of cell death mediated by gold nanorods during photothermal ablation was analyzed, indicating that treatment compromised the integrity of the cell membrane instead of initiating the process of programmed cell death. Conclusion The use of gold nanorods in hyperthermal therapies is very effective in eliminating glioblastoma cells, and therefore represents an important area of research for therapeutic development. PMID:22619509

  3. Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.

    PubMed

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José

    2012-01-01

    Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.

  4. Effects of Pseudomonas aeruginosa virulence factor pyocyanin on human urothelial cell function and viability.

    PubMed

    McDermott, Catherine; Chess-Williams, Russ; Grant, Gary D; Perkins, Anthony V; McFarland, Amelia J; Davey, Andrew K; Anoopkumar-Dukie, Shailendra

    2012-03-01

    We determined the effects of Pseudomonas aeruginosa virulence factor pyocyanin on human urothelial cell viability and function in vitro. RT4 urothelial cells were treated with pyocyanin (1 to 100 μM) for 24 hours. After exposure the treatment effects were measured according to certain end points, including changes in urothelial cell viability, reactive oxygen species formation, caspase-3 activity, basal and stimulated adenosine triphosphate release, SA-β-gal activity and detection of acidic vesicular organelles. The 24-hour pyocyanin treatment resulted in a concentration dependent decrease in cell viability at concentrations of 25 μM or greater, and increases in reactive oxygen species formation and caspase-3 activity at 25 μM or greater. Basal adenosine triphosphate release was significantly decreased at all tested pyocyanin concentrations while stimulated adenosine triphosphate release was significantly inhibited at pyocyanin concentrations of 12.5 μM or greater with no significant stimulated release at 100 μM. Pyocyanin treated RT4 cells showed morphological characteristics associated with cellular senescence, including SA-β-gal expression. This effect was not evident at 100 μM pyocyanin and may have been due to apoptotic cell death, as indicated by increased caspase-3 activity. An increase in acridine orange stained vesicular-like organelles was observed in RT4 urothelial cells after pyocyanin treatment. Exposure to pyocyanin alters urothelial cell viability, reactive oxygen species production and caspase-3 activity. Treatment also results in cellular senescence, which may affect the ability of urothelium to repair during infection. The virulence factor depressed stimulated adenosine triphosphate release, which to our knowledge is a novel finding with implications for awareness of bladder filling in patients with P. aeruginosa urinary tract infection. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi

    2016-06-01

    During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.

  6. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of moremore » red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic vacuoles, autophagy, cell viability decrease, and apoptosis.« less

  7. The Effects of Cell Phone Waves (900 MHz-GSM Band) on Sperm Parameters and Total Antioxidant Capacity in Rats.

    PubMed

    Ghanbari, Masoud; Mortazavi, Seyed Bagher; Khavanin, Ali; Khazaei, Mozafar

    2013-04-01

    There is tremendous concern regarding the possible adverse effects of cell phone microwaves. Contradictory results, however, have been reported for the effects of these waves on the body. In the present study, the effect of cell phone microwaves on sperm parameters and total antioxidant capacity was investigated with regard to the duration of exposure and the frequency of these waves. This experimental study was performed on 28 adult male Wistar rats (200-250 g). The animals were randomly assigned to four groups (n=7): i. control; ii. two-week exposure to cell phone-simulated waves; iii. three-week exposure to cell phonesimulated waves; and iv. two-week exposure to cell phone antenna waves. In all groups, sperm analysis was performed based on standard methods and we determined the mean sperm total antioxidant capacity according to the ferric reducing ability of plasma (FRAP) method. Data were analyzed by one-way ANOVA followed by Tukey's test using SPSS version 16 software. The results indicated that sperm viability, motility, and total antioxidant capacity in all exposure groups decreased significantly compared to the control group (p<0.05). Increasing the duration of exposure from 2 to 3 weeks caused a statistically significant decrease in sperm viability and motility (p<0.05). Exposure to cell phone waves can decrease sperm viability and motility in rats. These waves can also decrease sperm total antioxidant capacity in rats and result in oxidative stress.

  8. A potential bioactive hard-stock fat replacer comprised of a molecular gel.

    PubMed

    Rogers, Michael A; Spagnuolo, Paul A; Wang, Tzu-Min; Angka, Leonard

    2017-05-01

    Short-chain ceramides, such as N -acetoyl-d-erythro-sphingosine (C2), have a remarkable ability to structure edible oils, such as canola oil, into self-standing organogels without any added saturated or trans fats. These short-chain ceramides are ubiquitously found in foods ranging from eggs to soybeans. As the ceramide fatty acid chain length increases, there is an increase in the melting temperature of the organogel and a decrease in the elastic modulus. Gelation ability is lost at 2 wt% when the fatty acid chain length increases to six carbons; however, organogels form at 5 wt% up to 18 carbons. Short-chain ceramides, C2, decrease cell viability of colon, prostate, ovarian, and leukemia cell lines, while ceramides with long-chain fatty acids, C18, do not affect the viability of these cancer cell lines. This suggests that a bioactive spreadable fat, with no trans or added saturated fat, with the potential to alter the viability of cancer cell growth, is possible.

  9. Expression of cytosolic NADP(+)-dependent isocitrate dehydrogenase in melanocytes and its role as an antioxidant.

    PubMed

    Kim, Ji Young; Shin, Jae Yong; Kim, Miri; Hann, Seung-Kyung; Oh, Sang Ho

    2012-02-01

    Cytosolic NADP(+)-dependent ICDH (IDPc) has an antioxidant effect as a supplier of NADPH to the cytosol, which is needed for the production of glutathione. To evaluate the expression of IDPc in melanocytes and to elucidate its role as an antioxidant. The knock-down of IDPc expression in immortalized mouse melanocyte cell lines (melan-a) was performed using the short interfering RNA (siRNA)-targeted gene silencing method. After confirming the silencing of IDPc expression with mRNA and protein levels, viability, apoptosis and necrosis, as well as ROS production in IDPc-silenced melanocytes were monitored under conditions of oxidative stress and non-stress. Also, the ratio of oxidized glutathione to total glutathione was examined, and whether the addition of glutathione recovered cell viability, decreased by oxidant stress, was checked. The expression of IDPc in both primary human melanocytes and melan-a cells was confirmed by Western blot and RT-PCR. The silencing of IDPc expression by transfecting IDPc siRNA in melan-a cells was observed by Western blotting and real-time RT-PCR. IDPc knock-down cells showed significantly decreased cell viability and an increased number of cells under apoptosis and necrosis. IDPc siRNA-treated melanocytes demonstrated a higher intensity of DCFDA after the addition of H(2)O(2) compared with scrambled siRNA-treated melanocytes, and a lower ratio of reduced glutathione to oxidized glutathione were observed in IDPc siRNA transfected melanocytes. In addition, the addition of glutathione recovered cell viability, which was previously decreased after incubation with H(2)O(2). This study suggests that decreased IDPc expression renders melanocytes more vulnerable to oxidative stress, and IDPc plays an important antioxidant function in melanocytes. Copyright © 2011 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells.

    PubMed

    Poma, Anna; Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn't differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.

  11. Cytotoxic outcomes of orthodontic bands with and without silver solder in different cell lineages.

    PubMed

    Jacoby, Letícia Spinelli; Rodrigues Junior, Valnês da Silva; Campos, Maria Martha; Macedo de Menezes, Luciane

    2017-05-01

    The safety of orthodontic materials is a matter of high interest. In this study, we aimed to assess the in-vitro cytotoxicity of orthodontic band extracts, with and without silver solder, by comparing the viability outcomes of the HaCat keratinocytes, the fibroblastic cell lineages HGF and MRC-5, and the kidney epithelial Vero cells. Sterilized orthodontic bands with and without silver solder joints were added to culture media (6 cm 2 /mL) and incubated for 24 hours at 37°C under continuous agitation. Subsequently, the cell cultures were exposed to the obtained extracts for 24 hours, and an assay was performed to evaluate the cell viability. Copper strip extracts were used as positive control devices. The extracts from orthodontic bands with silver solder joints significantly reduced the viability of the HaCat, MRC-5, and Vero cell lines, whereas the viability of HGF was not altered by this material. Conversely, the extracts of orthodontic bands without silver solder did not significantly modify the viability index of all evaluated cell lines. Except for HGF fibroblasts, all tested cell lines showed decreased viability percentages after exposure to extracts of orthodontic bands containing silver solder joints. These data show the relevance of testing the toxicity of orthodontic devices in different cell lines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern

    PubMed Central

    2013-01-01

    Background Bioactive molecules have received increasing attention due to their nutraceutical attributes and anticancer, antioxidant, antiproliferative and apoptosis-inducing properties. This study aimed to investigate the biological properties of carotenoids extracted from Archaea. Methods Halophilic Archaea strains were isolated from the brine of a local crystallizer pond (TS7) of a solar saltern at Sfax, Tunisia. The most carotenoid-producing strain (M8) was investigated on heptoma cell line (HepG2), and its viability was assessed by the MTT-test. The cells were incubated with different sub-lethal extract rates, with carotenoid concentrations ranging from 0.2 to 1.5 μM. Antioxidant activity was evaluated through exposing the cells to sub-lethal extract concentrations for 24 hours and then to oxidative stress induced by 60 μM arachidonic acid and 50 μM H2O2. Results Compared to non-treated cells, bacterial carotenoid extracts inhibited HepG2 cell viability (50%). A time and dose effect was observed, with cell viability undergoing a significant (P < 0.05) decrease with extract concentration. After exposure to oxidative stress, control cells underwent a significant (P < 0.05) decrease in viability as compared to the non-treated cells. Conclusions The bacterial extracts under investigation were noted to exhibit the strongest free radical scavenging activity with high carotenoid concentrations. The carotenoid extract also showed significant antiproliferative activity against HepG2 human cancer cell lines. PMID:24090008

  13. Potential of coconut water and soy milk for use as storage media to preserve the viability of periodontal ligament cells: an in vitro study.

    PubMed

    Moura, Camilla Cristhian Gomes; Soares, Priscilla Barbosa Ferreira; de Paula Reis, Manuella Verdinelli; Fernandes Neto, Alfredo Júlio; Zanetta Barbosa, Darceny; Soares, Carlos José

    2014-02-01

    There is no consensus regarding the ability of coconut water and soy milk to maintain long-term cell viability. This study investigated the ability of pH-adjusted coconut water and soy milk to maintain the viability of periodontal ligament cells over a short and a longer period and compared these abilities with those of other solutions. Dog premolar teeth were extracted, dried for 30 min, and stored in the following media for 50 min or 24 h: long shelf-life whole milk (SWM), long shelf-life skim milk (SSM), Hank's Balanced Salt Solution (HBSS), soy milk (SM), and pH-adjusted coconut water (CW). The positive and two negative control groups corresponded to 0-min, 30-min (short-term), and 24-h (long-term) dry times, respectively. Cell viability was analyzed by trypan blue exclusion. Data were statistically analyzed using the Kruskal-Wallis test with post-analysis using the Dunn method. In the short-term experiment, the SSM resulted in significantly lower cell viability than SM and CW. At 24 h, SM and CW resulted in higher viability than HBSS and SSM and in comparable performance with the positive control group. Cell viability decreased over time, except in SM and CW. Soy milk and pH-adjusted coconut water showed promising results as storage solutions for avulsed teeth, preserving the viability for up to 24 h. © 2013 John Wiley & Sons A/S.

  14. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.

    PubMed

    Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri

    2015-08-07

    A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.

  15. In Vitro Model for Predicting the Protective Effect of Ultraviolet-Blocking Contact Lens in Human Corneal Epithelial Cells.

    PubMed

    Abengózar-Vela, Antonio; Arroyo, Cristina; Reinoso, Roberto; Enríquez-de-Salamanca, Amalia; Corell, Alfredo; González-García, María Jesús

    2015-01-01

    To develop an in vitro method to determine the protective effect of UV-blocking contact lenses (CLs) in human corneal epithelial (HCE) cells exposed to UV-B radiation. SV-40-transformed HCE cells were covered with non-UV-blocking CL, UV-blocking CL or not covered, and exposed to UV-B radiation. As control, HCE cells were covered with both types of CLs or not covered, but not exposed to UV-B radiation. Cell viability at 24, 48 and 72 h, after UV-B exposure and removing CLs, was determined by alamarBlue(®) assay. Percentage of live, dead and apoptotic cells was also assessed by flow cytometry after 24 h of UV-B exposure. Intracellular reactive oxygen species (ROS) production after 1 h of exposure was assessed using the dye H(2)DCF-DA. Cell viability significantly decreased, apoptotic cells and intracellular ROS production significantly increased when UVB-exposed cells were covered with non-UV-blocking CL or not covered compared to non-irradiated cells. When cells were covered with UV-blocking CL, cell viability significantly increased and apoptotic cells and intracellular ROS production did not increase compared to exposed cells. UV-B radiation induces cell death by apoptosis, increases ROS production and decreases viable cells. UV-blocking CL is able to avoid these effects increasing cell viability and protecting HCE cells from apoptosis and ROS production induced by UV-B radiation. This in vitro model is an alternative to in vivo methods to determine the protective effect of UV-blocking ophthalmic biomaterials because it is a quicker, cheaper and reliable model that avoids the use of animals.

  16. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    PubMed

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a variety of applications such as drug development or cell therapies. . © 2018 IOP Publishing Ltd.

  17. [Partial purification of peptides present in the Tityus macrochirus (Buthidae) scorpion venom and preliminary assessment of their cytotoxicity].

    PubMed

    Rincón-Cortés, Clara Andrea; Reyes-Montaño, Edgar Antonio; Vega-Castro, Nohora Angélica

    2017-06-01

    Scorpion venom contains peptides with neurotoxic action primarily active on ion channels in the nervous system of insects and mammals. They are also characterized as cytolytic and anticancer, biological characteristics that have not yet been reported for the Tityus macrochirus venom. To assess if the total T. macrochirus venom and the fraction of partially purified peptides decrease the viability of various tumor-derived cell lines. The scorpion venom was collected by electrical stimulation and, subsequently, subjected to chromatography, electrophoresis, and ultrafiltration with Amicon Ultra 0.5® membranes for the partial identification and purification of its peptides. The cytotoxic activity of the venom and the peptides fraction trials on tumor-derived cell lines were carried out by the MTT method. The T. macrochirus scorpion venom has peptides with molecular weights ranging between 3 and 10 kDa. They were partially purified using the ultrafiltration technique, and assessed by the RP-HPLC method. Cytotoxicity trials with the whole T. macrochirus venom showed a higher viability decrease on the PC3 cell line compared to the other cell lines assessed, while the partially purified peptides decreased the HeLa cell line viability. Peptides in the T. macrochirus scorpion venom showed cytotoxic activity on some tumorderived cell lines. We observed some degree of selectivity against other cell lines assessed.

  18. Curcumin Rescues a PINK1 Knock Down SH-SY5Y Cellular Model of Parkinson's Disease from Mitochondrial Dysfunction and Cell Death.

    PubMed

    van der Merwe, Celia; van Dyk, Hayley Christy; Engelbrecht, Lize; van der Westhuizen, Francois Hendrikus; Kinnear, Craig; Loos, Ben; Bardien, Soraya

    2017-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Mutations in the PINK1 gene result in an autosomal recessive form of early-onset PD. PINK1 plays a vital role in mitochondrial quality control via the removal of dysfunctional mitochondria. The aim of the present study was to create a cellular model of PD using siRNA-mediated knock down of PINK1 in SH-SY5Y neuroblastoma cells The possible protective effects of curcumin, known for its many beneficial properties including antioxidant and anti-inflammatory effects, was tested on this model in the presence and absence of paraquat, an additional stressor. PINK1 siRNA and control cells were separated into four treatment groups: (i) untreated, (ii) treated with paraquat, (iii) pre-treated with curcumin then treated with paraquat, or (iv) treated with curcumin. Various parameters of cellular and mitochondrial function were then measured. The PINK1 siRNA cells exhibited significantly decreased cell viability, mitochondrial membrane potential (MMP), mitochondrial respiration and ATP production, and increased apoptosis. Paraquat-treated cells exhibited decreased cell viability, increased apoptosis, a more fragmented mitochondrial network and decreased MMP. Curcumin pre-treatment followed by paraquat exposure rescued cell viability and increased MMP and mitochondrial respiration in control cells, and significantly decreased apoptosis and increased MMP and maximal respiration in PINK1 siRNA cells. These results highlight a protective effect of curcumin against mitochondrial dysfunction and apoptosis in PINK1-deficient and paraquat-exposed cells. More studies are warranted to further elucidate the potential neuroprotective properties of curcumin.

  19. Alpha-ketoglutarate enhances freeze-thaw tolerance and prevents carbohydrate-induced cell death of the yeast Saccharomyces cerevisiae.

    PubMed

    Bayliak, Maria M; Hrynkiv, Olha V; Knyhynytska, Roksolana V; Lushchak, Volodymyr I

    2018-01-01

    Stress resistance and fermentative capability are important quality characteristics of baker's yeast. In the present study, we examined protective effects of exogenous alpha-ketoglutarate (AKG), an intermediate of the tricarboxylic acid cycle and amino acid metabolism, against freeze-thaw and carbohydrate-induced stresses in the yeast Saccharomyces cerevisiae. Growth on AKG-supplemented medium prevented a loss of viability and improved fermentative capacity of yeast cells after freeze-thaw treatment. The cells grown in the presence of AKG had higher levels of amino acids (e.g., proline), higher metabolic activity and total antioxidant capacity, and higher activities of catalase, NADP-dependent glutamate dehydrogenase and glutamine synthase compared to control ones. Both synthesis of amino acids and enhancement of antioxidant system capacity could be involved in AKG-improved freeze-thaw tolerance in S. cerevisiae. Cell viability dramatically decreased under incubation of stationary-phase yeast cells in 2% glucose or fructose solutions (in the absence of the other nutrients) as compared with incubation in distilled water or in 10 mM AKG solution. The decrease in cell viability was accompanied by acidification of the medium, and decrease in cellular respiration, aconitase activity, and levels of total protein and free amino acids. The supplementation with 10 mM AKG effectively prevented carbohydrate-induced yeast death. Protective mechanisms of AKG could be associated with the intensification of respiration and prevention of decreasing protein level as well as with direct antioxidant AKG action.

  20. Differential effects of trichostatin A on gelatinase A expression in 3T3 fibroblasts and HT-1080 fibrosarcoma cells: implications for use of TSA in cancer therapy.

    PubMed

    Ailenberg, Menachem; Silverman, Mel

    2003-03-07

    Trichostatin A (TSA) is a histone deacetylase (HDAC) inhibitor with potential in cancer therapeutics. In a recent communication, we demonstrated that TSA is a selective, potent inhibitor of gelatinase A in 3T3 fibroblasts. In the present study, we extend these observations and examine the effects of TSA in 3T3 fibroblasts compared to HT-1080 fibrosarcoma cells with respect to gelatinase A expression, cell viability, and apoptosis. We find that while expression of gelatinase A in 3T3 fibroblasts is exquisitely sensitive to inhibition by TSA, expression of this enzyme in HT-1080 cells is minimally affected by this compound. Moreover, we show that TSA is pro-apoptotic in HT-1080 cells, but is anti-apoptotic in 3T3 cells. We propose a two-pronged model for the therapeutic action of TSA. On the one hand TSA selectively decreases cancer cell viability, while enhancing the viability of stromal cells. On the other hand, by selectively decreasing gelatinase A expression in stromal but not cancer cells, TSA acts to control metastatic potential by reducing the ability of metastatic cells to recruit stromal cells to secrete gelatinase A.

  1. Hydrolytically Degradable Poly(Ethylene Glycol) Hydrogel Scaffolds as a Cell Delivery Vehicle: Characterization of PC12 Cell Response

    PubMed Central

    Zustiak, Silviya P.; Pubill, Stephanie; Ribeiro, Andreia; Leach, Jennie B.

    2013-01-01

    The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. PMID:24474590

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burch, S.W.; Goven, A.J.; Fitzpatrick, L.C.

    An in vitro assay has been developed for rapid (48 h) evaluation of cytotoxic effects of exposure (24 h) of earthworm coelomocytes. The assay, inhibition of phagocytosis (24 h) of stained yeast cells and cell viability, links a traditional soil bioassay organism (Lumbricus terrestris) with a laboratory protocol for use in evaluating physical/chemical fractions resulting from terrestrial TIE manipulations. The assay was developed using copper sulfate as a reference toxicant. Copper exposures as low as 2--4 pg/ml. resulted in 20--60% inhibition of phagocytosis without significant decrease in cell viability. Exposures above 10 pg/ml resulted in reduced cell viability and inhibitionmore » of phagocytosis. The assay was successfully applied to terrestrial TIE fractions derived from extractions of soil from a PCP contaminated wood treatment site.« less

  3. Diterpenoid natural compound C4 (Crassin) exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species.

    PubMed

    Richards, Cathy E; Vellanki, Sri H; Smith, Yvonne E; Hopkins, Ann M

    2018-02-01

    Triple-negative breast cancers (TNBC) lack expression of three common cell surface receptors, i.e., estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). Accordingly, TNBCs are associated with fewer treatment options and a relatively poor prognosis. Having screened a National Cancer Institute natural compound library, the purpose of this study was to investigate the bioactivity of compound C4 (Crassin) in TNBC cells. Cell viability assays were performed in two TNBC cell lines, MDA-MB-231 and 4T1, following C4 treatment in the presence or absence of the antioxidant N-acetyl-L-cysteine (NAC). Phosphorylation of Akt and ERK was assessed by Western blotting. Apoptosis, necrosis, autophagy, necroptosis, ferroptosis and cytostasis assays were performed to explain viability deficits resulting from C4 exposure. We found that the viability of the TNBC cells tested decreased in a concentration- and time-dependent fashion following C4 treatment. This decrease coincided with an unexpected increase in the expression of the cell survival effectors pAkt and pERK. In addition, we found that both the decreased cell viability and the increased pAkt/pERK levels could be rescued by the antioxidant NAC, suggesting a central role for reactive oxygen species (ROS) in the mechanism of action of C4. Necrosis, apoptosis, necroptosis and ferroptosis could be ruled out as cell death mechanisms. Instead, we found that C4 induced cytostasis downstream of ROS activation. Finally, we observed a synergistic effect between C4 and the chemotherapeutic drug doxorubicin in TNBC cells. From our in vitro data we conclude that C4 exerts cytostatic effects on triple-negative breast cancer cells via a pathway involving reactive oxygen species. Its potential value in combination with cytotoxic therapies merits deeper investigation in pre-clinical models.

  4. Effects of Lidocaine-Mediated CPEB3 Upregulation in Human Hepatocellular Carcinoma Cell Proliferation In Vitro

    PubMed Central

    Liu, Hongjun; Wang, Yiru; Chen, Bing

    2018-01-01

    Lidocaine displays antitumor activity by inducing apoptosis and suppressing tumor growth in human hepatocellular carcinoma (HepG2) cells in vitro. However, the molecular mechanism underlying lidocaine-mediated antitumor activity is unclear. In this study, HepG2 cells were treated with lidocaine, and cell proliferation and colony-forming ability were assessed. The expression level of cytoplasmic polyadenylation element binding protein 3 (CPEB3) was detected by real-time quantitative PCR and western blot. Lidocaine treatment resulted in decreased HepG2 cell viability and colony formation in a dose-dependent manner. In hepatocellular carcinoma patient samples, CPEB3 was downregulated and was associated with poor prognosis and high-grade malignancy. Additionally, CPEB3 was a critical mediator of lidocaine-induced repression of HepG2 cell proliferation. These results demonstrated that lidocaine decreased cell viability and colony-forming ability of HepG2 cells by upregulating CPEB3 expression.

  5. Moringa oleifera's Nutritious Aqueous Leaf Extract Has Anticancerous Effects by Compromising Mitochondrial Viability in an ROS-Dependent Manner.

    PubMed

    Madi, Niveen; Dany, Mohammed; Abdoun, Salah; Usta, Julnar

    2016-01-01

    Moringa oleifera (MO) is an important dietary component for many populations in West Africa and the Indian subcontinent. In addition to its highly nutritious value, almost all parts of this plant have been widely used in folk medicine in curing infectious, cardiovascular, gastrointestinal, hepatic, and other diseases. Evidence-based research supported its versatile medicinal properties; however, more rigorous research is required to establish it in cancer therapy. As such, in this study we aim to investigate the in vitro anticancerous effect of Moringa oleifera's aqueous leaf extract. Moringa extract was prepared by soaking pulverized leaves in hot water mimicking the people's mode of the leaf drink preparation. Several assays were used to study the effect of different percentage concentrations of the extract on viability of A549 cells; levels of adenosine triphosphate (ATP), reactive oxygen species (ROS), and glutathione (GSH) generated; as well as percentage of lactate dehydrogenase (LDH) released at different time points. In addition to mitochondrial membrane potential, apoptotic events were assessed using western blotting for apoptotic markers and immunoflourescent flourescent labeled inhibitor of caspases (FLICA) assay. MO extract treatment resulted in a significant decrease in mitochondrial membrane potential (1 hour) and ATP levels (3 hours), followed by an increase in (6 hours) ROS, caspase activation, proapoptotic proteins expression (p53, SMAC/Diablo, AIF), and PARP-1 cleavage. This eventually resulted in decreased GSH levels and a decrease in viability. The cytotoxic effect was prevented upon pretreatment with antioxidant N-acetyl-cysteine. MO decreased as well the viability of HepG2, CaCo2, Jurkat, and HEK293 cells. Our findings identify a plant extract with an anticancerous effect on cancer cell lines. MO extract exerts its cytotoxic effect in A549 cancer cells by affecting mitochondrial viability and inducing apoptosis in an ROS-dependent manner.

  6. Evaluation of Melatonin Effect on Human Breast Cancer Stem Cells Using a Threedimensional Growth Method of Mammospheres.

    PubMed

    Lopes, Juliana Ramos; da Silva Kavagutti, Mayume; de Medeiros, Felipe Arthur Faustino; de Campos Zuccari, Debora Aparecida Pires

    2017-01-01

    The high rates of women&#039;s death from breast cancer occur due to acquired resistance by patients to certain treatments, enabling the recurrence and/or tumor growth, invasion and metastasis. It has been demonstrated that the presence of cancer stem cells in human tumors, as responsible for recurrence and resistance to therapy. Studies have identified OCT4 as responsible for self-renewal and maintenance of pluripotency of stem cells. Thus, it is interesting to study potential drugs that target this specific population in breast cancer. Melatonin, appears to have oncostatic effects on cancer cells, however, little is known about its therapeutic effect on cancer stem cells. Evaluate the viability and the expression of OCT4 in breast cancer stem cells, MCF-7 and MDA-MB- 231, after melatonin treatment. The cells were grown in a 3-dimensional model of mammospheres, representing the breast cancer stem cell population and treated or not with melatonin. The cell viability of mammospheres were evaluated by MTT assay and the OCT4 expression, a cancer stem cells marker, was verified by immunocitochemistry. Our results demonstrated that the melatonin treatment decreased the cell viability of MCF-7 and MDAMB- 231 mammospheres. Furthermore, it was observed that in both cell lines, the expression of OCT4 was decreased in melatonin-treated cells compared to the control group. This fact suggests that melatonin is effective against breast cancer stem cells inhibiting the cell viability via OCT 4. Based on that, we believe that melatonin has a high potential to be used as an alternative treatment for breast cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastoma multiforme cells

    PubMed Central

    Hinzmann, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Jagiełło, Joanna; Koziński, Rafał; Wierzbicki, Mateusz; Grodzik, Marta; Lipińska, Ludwika; Sawosz, Ewa; Chwalibog, Andrè

    2014-01-01

    The carbon-based nanomaterial family consists of nanoparticles containing allotropes of carbon, which may have a number of interactions with biological systems. The objective of this study was to evaluate the toxicity of nanoparticles comprised of pristine graphene, reduced graphene oxide, graphene oxide, graphite, and ultradispersed detonation diamond in a U87 cell line. The scope of the work consisted of structural analysis of the nanoparticles using transmission electron microscopy, evaluation of cell morphology, and assessment of cell viability by Trypan blue assay and level of DNA fragmentation of U87 cells after 24 hours of incubation with 50 μg/mL carbon nanoparticles. DNA fragmentation was studied using single-cell gel electrophoresis. Incubation with nanoparticles containing the allotropes of carbon did not alter the morphology of the U87 cancer cells. However, incubation with pristine graphene and reduced graphene oxide led to a significant decrease in cell viability, whereas incubation with graphene oxide, graphite, and ultradispersed detonation diamond led to a smaller decrease in cell viability. The results of a comet assay demonstrated that pristine graphene, reduced graphene oxide, graphite, and ultradispersed detonation diamond caused DNA damage and were therefore genotoxic in U87 cells, whereas graphene oxide was not. PMID:24876774

  8. Molecular size and origin do not influence the harmful side effects of hydroxyethyl starch on human proximal tubule cells (HK-2) in vitro.

    PubMed

    Bruno, Raphael R; Neuhaus, Winfried; Roewer, Norbert; Wunder, Christian; Schick, Martin A

    2014-09-01

    Recently, clinical trials revealed renal impairment induced by hydroxyethyl starch (HES) in septic patients. In prior studies, we managed to demonstrate that HES accumulated in renal proximal tubule cells (PTCs). The related pathomechanism has not yet been discovered. To validate our hypothesis that the HES molecule itself is harmful, regardless of its molecule size or origin, we conducted a comprehensive study to elucidate the influences of different HES preparations on PTC viability in vitro. Cell viability of human PTC was measured with a cytotoxicity assay, quantifying the reduction of tetrazolium salt to colored formazan. Experiments were performed by assessing the influence of different carrier solutions of HES (balanced, nonbalanced, culture medium), different average molecular weights (70, 130, 200 kDa), different origins (potato or corn derived), and various durations of incubation (2-21 hours). Furthermore, HES 130/0.4 was fractionated by ultrafiltration, and the impact on cell viability of average single-size fractions with <3, 3 to 10, 10 to 30, 30 to 50, 50 to 100, and >100 kDa was investigated. We also tested the possible synergistic effects of inflammation induced by tumor necrosis factor-α. All tested HES solutions, regardless of origin or carrier matrix, decreased cell viability in an equivalent, dose-dependent manner. Coincubation with tumor necrosis factor-α did not reduce HES-induced reduction of cell viability. Minor differences were detected comparing 70, 130, and 200 kDa preparations. Analysis of fractionated HES revealed that each fraction decreased cell viability. Even small HES molecules (10-30 kDa) were significantly deleterious. For the first time, we were able to show that only the total mass of HES molecules applied is responsible for the harmful impact on renal PTC in vitro. Neither molecular size nor their origin showed any relevance.

  9. [Impact of cryopreservation duration of 605 units umbilical cord blood on quality of hematopoietic stem cell and outcome of clinical transplantation].

    PubMed

    Zhang, Yi; Zhu, Hua; Jin, Huanying; Wang, Yinting; Shao, Xiayan; Kong, Jingsi; Huang, Wenhao; Hong, Yan; Li, Chunli; Gao, Feng; Chen, Liang; Wang, Feng; Lu, Yao

    2015-01-01

    To investigate the impact of cryopreservation duration of umbilical cord blood (UCB) on quality of hematopoietic stem cell and outcome of clinical transplantation. 605 units of UCB which had been used in clinical transplantation were previously cryopreserved for 820 (88-2651) days in average. UCB was detected for total nucleated cell count, CD34+ cells count, cell recovery rate, cell viability and CFU-GM after thawing. No statistical correlation was found between cryopreservation duration and cell recovery rate, cell viability. CFU-GM decreased along with the extension of cryopreservation duration (P=0.011), ranging between 109.6 and 105.7/1 × 10⁵. There was no significant difference on hematopoietic reconstitution time, graft failure, acute GVHD and overall survival among groups with different cryopreservation duration. Cryopreservation duration has no significant effect on cell recovery rate, cell viability and clinical transplantation outcome. Extension of cryopreservation duration may reduce CFU-GM of stem cells with fluctaion still in normal range. UCB could maintain cell viability and function to achieve satisfactory clinical transplantation outcome even when thawed after 3 to 7 years' cryopreservation.

  10. Impact of a compound droplet on a flat surface: A model for single cell epitaxy.

    PubMed

    Tasoglu, Savas; Kaynak, Gozde; Szeri, Andrew J; Demirci, Utkan; Muradoglu, Metin

    2010-08-01

    The impact and spreading of a compound viscous droplet on a flat surface are studied computationally using a front-tracking method as a model for the single cell epitaxy. This is a technology developed to create two-dimensional and three-dimensional tissue constructs cell by cell by printing cell-encapsulating droplets precisely on a substrate using an existing ink-jet printing method. The success of cell printing mainly depends on the cell viability during the printing process, which requires a deeper understanding of the impact dynamics of encapsulated cells onto a solid surface. The present study is a first step in developing a model for deposition of cell-encapsulating droplets. The inner droplet representing the cell, the encapsulating droplet, and the ambient fluid are all assumed to be Newtonian. Simulations are performed for a range of dimensionless parameters to probe the deformation and rate of deformation of the encapsulated cell, which are both hypothesized to be related to cell damage. The deformation of the inner droplet consistently increases: as the Reynolds number increases; as the diameter ratio of the encapsulating droplet to the cell decreases; as the ratio of surface tensions of the air-solution interface to the solution-cell interface increases; as the viscosity ratio of the cell to encapsulating droplet decreases; or as the equilibrium contact angle decreases. It is observed that maximum deformation for a range of Weber numbers has (at least) one local minimum at We=2. Thereafter, the effects of cell deformation on viability are estimated by employing a correlation based on the experimental data of compression of cells between parallel plates. These results provide insight into achieving optimal parameter ranges for maximal cell viability during cell printing.

  11. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks.

    PubMed

    Salinas, Chelsea N; Cole, Brook B; Kasko, Andrea M; Anseth, Kristi S

    2007-05-01

    Chondrogenesis of human mesenchymal stem cells (hMSCs) encapsulated in poly(ethylene glycol) (PEG)-based hydrogels was studied in the presence and absence of 5 ng/mL transforming growth factor beta and chondrogenic medium to better understand the role of the gel environment on this process. The lack of any cell-polymer interactions led to decreasing cell viability, as measured using adenosine triphosphate, over a 14-day period. The extent of chondrogenic differentiation was evaluated by immunostaining, and although viability dramatically decreased, cells cultured in chondrogenic differentiation medium expressed higher levels of collagen type II. Cells cultured in hMSC control medium remained undifferentiated and continued to express CD105, a MSC marker. To increase cell survival, arginine-glycine-aspartic acid-serine (RGDS) was incorporated into gels using a novel mixed-mode thiol-ene reaction by synthesizing a cysteine-cysteine-arginine-glycine-aspartic acid-serine-cysteine-cysteine-glycine, N-terminus to C-terminus peptide sequence with pendant cysteine residues. A concentration of 5 mM RGDS incorporated into the network maintained 75% viability in control cultures. Further studies demonstrated that 5-mM RGDS chondrogenic cultures had greater gene expression for aggrecan and collagen II in conjunction with producing twice as much glycosaminoglycan as 0-mM chondrogenic cultures and 7 times that of control cultures. Incorporation of this peptide sequence not only allows for sustained viability, but also contributes to initiating chondrogenesis.

  12. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    PubMed

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  14. Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography.

    PubMed

    Kukula-Koch, Wirginia; Grabarska, Aneta; Łuszczki, Jarogniew; Czernicka, Lidia; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jarząb, Agata; Audo, Gregoire; Upadhyay, Shakti; Głowniak, Kazimierz; Stepulak, Andrzej

    2018-05-01

    Three curcuminoids: bisdemethoxycurcumin, demethoxycurcumin, and curcumin from turmeric were successfully separated by a high capacity solvent system composed of heptane: chloroform: methanol: water mixture (5: 6: 3: 2 v/v/v/v) tailored for centrifugal partition chromatographs at K-values of 0.504, 1.057, 1.644, respectively. These three ferulic acid derivatives obtained at a purity rate exceeding 95% were analysed by an HPLC-MS spectrometer. Turmeric extract inhibited the proliferation/viability of A549 human lung cancer, HT29 colon cancer, and T98G glioblastoma cell lines in (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay (MTT). Single curcuminoids significantly decreased the viability/proliferation of lung cancer cells in a dose-dependent manner. However, total extract displayed the superior anticancer activity in the investigated cell lines. Crude extract in combination with cisplatin augmented the decrease in the viability of cancer cells compared with single compound treatment in A549 lung cancer cells. Total extract of Curcuma longa could be regarded as being more effective against lung cancer cells in vitro than its separated compounds. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Mechanisms of action of cannabidiol in adoptively transferred experimental autoimmune encephalomyelitis.

    PubMed

    González-García, Coral; Torres, Irene Moreno; García-Hernández, Ruth; Campos-Ruíz, Lucía; Esparragoza, Luis Rodríguez; Coronado, María José; Grande, Aranzazu García; García-Merino, Antonio; Sánchez López, Antonio J

    2017-12-01

    Cannabidiol (CBD) is one of the most important compounds in Cannabis sativa, lacks psychotropic effects, and possesses a high number of therapeutic properties including the amelioration of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyse the relative efficacy of CBD in adoptively transferred EAE (at-EAE), a model that allows better delineation of the effector phase of EAE. Splenocytes and lymph nodes from mice with actively induced EAE were cultured in the presence of MOG 35-55 and IL-12 and inoculated intraperitoneally in recipient female C57BL/6J mice. The effects of CBD were evaluated using clinical scores and magnetic resonance imaging (MRI). In the central nervous system, the extent of cell infiltration, axonal damage, demyelination, microglial activation and cannabinoid receptors expression was assessed by immunohistochemistry. Lymph cell viability, apoptosis, oxidative stress and IL-6 production were measured in vitro. Preventive intraperitoneal treatment with CBD ameliorated the clinical signs of at-EAE, and this improvement was accompanied by a reduction of the apparent diffusion coefficient in the subiculum area of the brain. Inflammatory infiltration, axonal damage, and demyelination were reduced, and cannabinoid receptor expression was modulated. Incubation with CBD decreased encephalitogenic cell viability, increasing early apoptosis and reactive oxygen species (ROS) and decreasing IL-6 production. The reduction in viability was not mediated by CB 1 , CB 2 or GPR55 receptors. CBD markedly improved the clinical signs of at-EAE and reduced infiltration, demyelination and axonal damage. The CBD-mediated decrease in the viability of encephalitogenic cells involves ROS generation, apoptosis and a decrease in IL-6 production and may contribute to the therapeutic effect of this compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  17. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo.

    PubMed

    Utsumi, Fumi; Kajiyama, Hiroaki; Nakamura, Kae; Tanaka, Hiromasa; Mizuno, Masaaki; Ishikawa, Kenji; Kondo, Hiroki; Kano, Hiroyuki; Hori, Masaru; Kikkawa, Fumitaka

    2013-01-01

    Nonequilibrium atmospheric pressure plasma (NEAPP) therapy has recently been focused on as a novel medical practice. Using cells with acquired paclitaxel/cisplatin resistance, we elucidated effects of indirect NEAPP-activated medium (NEAPP-AM) exposure on cell viability and tumor growth in vitro and in vivo. Using chronic paclitaxel/cisplatin-resistant ovarian cancer cells, we applied indirect NEAPP-exposed medium to cells and xenografted tumors in a mouse model. Furthermore, we examined the role of reactive oxygen species (ROS) or their scavengers in the above-mentioned EOC cells. We assessed the viability of NOS2 and NOS3 cells exposed to NEAPP-AM, which was prepared beforehand by irradiation with NEAPP for the indicated time. In NOS2 cells, viability decreased by approximately 30% after NEAPP-AM 120-sec treatment (P<0.01). The growth-inhibitory effects of NEAPP-AM were completely inhibited by N-acetyl cysteine treatment, while L-buthionine-[S, R]-sulfoximine, an inhibitor of the ROS scavenger used with NEAPP-AM, decreased cell viability by 85% after NEAPP-AM 60-sec treatment(P<0.05) and by 52% after 120 sec, compared to the control (P<0.01). In the murine subcutaneous tumor-formation model, NEAPP-AM injection resulted in an average inhibition of the NOS2 cell-inoculated tumor by 66% (P<0.05) and NOS2TR cell-inoculated tumor by 52% (P<0.05), as compared with the control. We demonstrated that plasma-activated medium also had an anti-tumor effect on chemo-resistant cells in vitro and in vivo. Indirect plasma therapy is a promising treatment option for EOC and may contribute to a better patient prognosis in the future.

  18. Analysis of poration-induced changes in cells from laser-activated plasmonic substrates

    PubMed Central

    Saklayen, Nabiha; Kalies, Stefan; Madrid, Marinna; Nuzzo, Valeria; Huber, Marinus; Shen, Weilu; Sinanan-Singh, Jasmine; Heinemann, Dag; Heisterkamp, Alexander; Mazur, Eric

    2017-01-01

    Laser-exposed plasmonic substrates permeabilize the plasma membrane of cells when in close contact to deliver cell-impermeable cargo. While studies have determined the cargo delivery efficiency and viability of laser-exposed plasmonic substrates, morphological changes in a cell have not been quantified. We porated myoblast C2C12 cells on a plasmonic pyramid array using a 532-nm laser with 850-ps pulse length and time-lapse fluorescence imaging to quantify cellular changes. We obtain a poration efficiency of 80%, viability of 90%, and a pore radius of 20 nm. We quantified area changes in the plasma membrane attached to the substrate (10% decrease), nucleus (5 – 10% decrease), and cytoplasm (5 – 10% decrease) over 1 h after laser treatment. Cytoskeleton fibers show a change of 50% in the alignment, or coherency, of fibers, which stabilizes after 10 mins. We investigate structural and morphological changes due to the poration process to enable the safe development of this technique for therapeutic applications. PMID:29082100

  19. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions.

    PubMed

    Yang, Yonggang; Sun, Guoping; Guo, Jun; Xu, Meiying

    2011-07-01

    Biofilms formation capacities of Shewanella species in microbial fuel cells (MFCs) and their roles in current generation have been documented to be species-dependent. Understandings of the biofilms growth and metabolism are essential to optimize the current generation of MFCs. Shewanella decolorationis S12 was used in both closed-circuit and open-circuit MFCs in this study. The anodic S. decolorationis S12 biofilms could generate fivefold more current than the planktonic cells, playing a dominant role in current generation. Anodic biofilms viability was sustained at 98 ± 1.2% in closed-circuit while biofilms viability in open-circuit decreased to 72 ± 7% within 96 h. The unviable domain in open-circuit MFCs biofilms majorly located at the inner layer of biofilm. The decreased biofilms viability in open-circuit MFCs could be recovered by switching into closed-circuit, indicating that the current-generating anode in MFCs could serve as a favorable electron acceptor and provide sufficient energy to support cell growth and metabolism inside biofilms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  1. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    PubMed

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  2. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer

    PubMed Central

    Poff, AM; Ari, C; Arnold, P; Seyfried, TN; D’Agostino, DP

    2014-01-01

    Cancer cells express an abnormal metabolism characterized by increased glucose consumption owing to genetic mutations and mitochondrial dysfunction. Previous studies indicate that unlike healthy tissues, cancer cells are unable to effectively use ketone bodies for energy. Furthermore, ketones inhibit the proliferation and viability of cultured tumor cells. As the Warburg effect is especially prominent in metastatic cells, we hypothesized that dietary ketone supplementation would inhibit metastatic cancer progression in vivo. Proliferation and viability were measured in the highly metastatic VM-M3 cells cultured in the presence and absence of β-hydroxybutyrate (βHB). Adult male inbred VM mice were implanted subcutaneously with firefly luciferase-tagged syngeneic VM-M3 cells. Mice were fed a standard diet supplemented with either 1,3-butanediol (BD) or a ketone ester (KE), which are metabolized to the ketone bodies βHB and acetoacetate. Tumor growth was monitored by in vivo bioluminescent imaging. Survival time, tumor growth rate, blood glucose, blood βHB and body weight were measured throughout the survival study. Ketone supplementation decreased proliferation and viability of the VM-M3 cells grown in vitro, even in the presence of high glucose. Dietary ketone supplementation with BD and KE prolonged survival in VM-M3 mice with systemic metastatic cancer by 51 and 69%, respectively (p < 0.05). Ketone administration elicited anticancer effects in vitro and in vivo independent of glucose levels or calorie restriction. The use of supplemental ketone precursors as a cancer treatment should be further investigated in animal models to determine potential for future clinical use. PMID:24615175

  3. Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro.

    PubMed

    Tilgase, Andra; Patetko, Liene; Blāķe, Ilze; Ramata-Stunda, Anna; Borodušķis, Mārtiņš; Alberts, Pēteris

    2018-01-01

    Background: The role of oncolytic viruses in cancer treatment is increasingly studied. The first oncolytic virus (Rigvir®, ECHO-7) was registered in Latvia over a decade ago. In a recent retrospective study Rigvir® decreased mortality 4.39-6.57-fold in stage IB-IIC melanoma patients. The aims of the present study are to test the effect of Rigvir® on cell line viability in vitro and to visualize the cellular presence of Rigvir® by immunocytochemistry. Methods: The cytolytic effect of Rigvir® on the viability of FM-9, RD, AGS, A549, HDFa, HPAF‑II, MSC, MCF7, HaCaT, and Sk-Mel-28 cell lines was measured using live cell imaging. PBMC viability was measured using flow cytometry. The presence of ECHO-7 virus was visualized using immunocytochemistry. Statistical difference between treatment groups was calculated using two-way ANOVA. Results: Rigvir® (10%, volume/volume) reduced cell viability in FM-9, RD, AGS, A549, HDFa, HPAF‑II and MSC cell lines by 67-100%. HaCaT cell viability was partly affected while Rigvir® had no effect on MCF7, Sk-Mel-28 and PBMC viability. Detection of ECHO-7 by immunocytochemistry in FM-9, RD, AGS, A549, HDFa, HPAF-II and Sk-Mel-28 cell lines suggests that the presence of Rigvir® in the cells preceded or coincided with the time of reduction of cell viability. Rigvir® (10%) had no effect on live PBMC count. Conclusions: The results suggest that Rigvir® in vitro reduces the viability of cells of human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma, pancreas adenocarcinoma but not in PBMC. The presence of Rigvir® in the sensitive cells was confirmed using anti-ECHO-7 antibodies. The present results suggest that a mechanism of action for the clinical benefit of Rigvir® is its cytolytic properties. The present results suggest that the effect of Rigvir® could be tested in other cancers besides melanoma. Further studies of possible Rigvir® entry receptors are needed.

  4. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  5. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells

    PubMed Central

    Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn’t differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication. PMID:28886142

  6. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    PubMed

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular second messenger signal coupling of 5HTR2A is different between normal and malignant cells, warranting further research to investigate its potential as a novel therapeutic target for canine osteosarcoma.

  7. Engineering of cell-laden gelatin-based microgels for cell delivery and immobilization in regenerative therapies.

    PubMed

    Blocki, Anna; Löper, Farina; Chirico, Nino; Neffe, Axel T; Jung, Friedrich; Stamm, Christof; Lendlein, Andreas

    2017-01-01

    Cell-based therapies often face the challenge of low cell retention and viability upon transplantation. Hence, biomaterials, which can immobilize transplanted cells, while at the same time support cell viability, are essential for successful clinical application. Noteworthy, biomaterials in the micrometer range such as microcapsules or microspheres have the advantage of a minimally invasive introduction into tissue.Hence, we established an approach to generate gelatin-based cell carriers in the form of microspherical hydrogels. Fibroblasts were microencapsulated in glycidylmethacrylate (GMA)-functionalized gelatin by photopolymerization. While the degree of GMA-functionalization was kept constant, the hydrogel cross-linking density was adjusted by varying the time of irradiation or the average gelatin-chain length.Stable microspheres were synthesized from 10 wt% GMA-gelatin solutions for all irradiation periods tested (0.5 -2 min). Evaluation of cell viability revealed that microgels with the same weight content of biopolymer but with decreased cross-linking densities and thus decreased storage and E modulus, resulted in best cell support. Noteworthy, encapsulated cells partially migrated out of the microspheres and attached to the spherical surface.10 wt% GMA-gelatin-based hydrogels with E moduli comparable to the native cellular niche proved to be a promising biomaterial suitable for the production of cell-laden microspheres and shall be evaluated further for biomedical application.

  8. Effects of Normothermic Conditioned Microwave Irradiation on Cultured Cells Using an Irradiation System with Semiconductor Oscillator and Thermo-regulatory Applicator

    PubMed Central

    Asano, Mamiko; Sakaguchi, Minoru; Tanaka, Satoshi; Kashimura, Keiichiro; Mitani, Tomohiko; Kawase, Masaya; Matsumura, Hitoshi; Yamaguchi, Takako; Fujita, Yoshikazu; Tabuse, Katsuyoshi

    2017-01-01

    We investigated the effects of microwave irradiation under normothermic conditions on cultured cells. For this study, we developed an irradiation system constituted with semiconductor microwave oscillator (2.45 GHz) and thermos-regulatory applicator, which could irradiate microwaves at varied output powers to maintain the temperature of cultured cells at 37 °C. Seven out of eight types of cultured cells were killed by microwave irradiation, where four were not affected by thermal treatment at 42.5 °C. Since the dielectric properties such as ε’, ε” and tanδ showed similar values at 2.45 GHz among cell types and media, the degree of microwave energy absorbed by cells might be almost the same among cell types. Thus, the vulnerability of cells to microwave irradiation might be different among cell types. In HL-60 cells, which were the most sensitive to microwave irradiation, the viability decreased as irradiation time and irradiation output increased; accordingly, the decrease in viability was correlated to an increase in total joule. However, when a high or low amount of joules per minute was supplied, the correlation between cellular viability and total joules became relatively weak. It is hypothesized that kinds of cancer cells are efficiently killed by respective specific output of microwave under normothermic cellular conditions. PMID:28145466

  9. Quercetin protects against radiocontrast medium toxicity in human renal proximal tubular cells.

    PubMed

    Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Serra, Raffaele; Russo, Domenico; De Sarro, Giovambattista; Michael, Ashour

    2018-05-01

    Radiocontrast media (RCM)-induced acute kidney injury (CI-AKI) is a major clinical problem whose pathophysiology is not well understood. Direct toxic effects on renal cells, possibly mediated by reactive oxygen species, have been postulated as contributing to CI-AKI. We investigated the effect of quercetin on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. Quercetin is the most widely studied flavonoid, and the most abundant flavonol present in foods. It has been suggested to have many health benefits, including angioprotective properties and anti-cancer effects. These beneficial effects have been attributed to its antioxidant properties and its ability to modulate cell signaling pathways. Incubation of HK-2 cells with 100 μM quercetin caused a decrease in cell viability and pre-treatment of HK-2 cells with 100 μM quercetin followed by incubation with 75 mgI/ml sodium diatrizoate for 2 hr caused a decrease in cell viability which was worse than in cells treated with diatrizoate alone. However, further incubation of the cells (for 22 hr) after removal of the diatrizoate and quercetin caused a recovery in cell viability in those cells previously treated with quercetin + diatrizoate and quercetin alone. Analysis of signaling molecules by Western blotting showed that in RCM-treated cells receiving initial pre-treatment with quercetin, followed by its removal, an increase in phosphorylation of Akt (Ser473), pSTAT3 (Tyr705), and FoxO3a (Thr32) as well as an induction of Pim-1 and decrease in PARP1 cleavage were observed. Quercetin may alleviate the longer-term toxic effects of RCM toxicity and its possible beneficial effects should be further investigated. © 2017 Wiley Periodicals, Inc.

  10. In vitro effects of 0 to 120 Grays of irradiation on bone viability and release of growth factors.

    PubMed

    Sawada, Kosaku; Fujioka-Kobayashi, Masako; Kobayashi, Eizaburo; Brömme, Jens O; Schaller, Benoit; Miron, Richard J

    2016-07-04

    High dose radiation therapy is commonly used in maxillofacial surgeries to treat a number of head and neck tumors. Despite its widespread use, little information is available regarding the effects of irradiation on bone cell viability and release of growth factors following dose-dependent irradiation. Bone samples were collected from porcine mandibular cortical bone and irradiated at doses of 0, 7.5, 15, 30, 60 and 120 Grays. Thereafter, cell viability was quantified, and the release of growth factors including TGFβ1, BMP2, VEGF, IL1β and RANKL were investigated over time. It was observed that at only 7.5Gy of irradiation, over 85 % of cells were non-vital and by 60 Gy, all cells underwent apoptosis. Furthermore, over a 7-fold decrease in VEGF and a 2-fold decrease in TGFβ1 were observed following irradiation at all tested doses. Little change was observed for BMP2 and IL1β whereas RANKL was significantly increased for all irradiated samples. These results demonstrate the pronounced effects of irradiation on bone-cell vitality and subsequent release of growth factors. Interestingly, the largest observed change in gene expression was the 7-fold decrease in VEGF protein following irradiation. Future research aimed at improving our understanding of bone following irradiation is necessary to further improve future clinical treatments.

  11. [Endoplasmic reticulum stress mediates lipopolysaccharide-induced apoptosis in rat hepatocyte].

    PubMed

    Ji, Ying-Lei; Yan, Jun; Wang, Yan-Sha; Liu, Yi-Chang; Gu, Zhen-Yong

    2014-02-01

    To investigate the role of endoplasmic reticulum stress (ERS) in lipopolysaccharide (LPS)-induced hepatocyte apoptosis. Cells of the rat hepatocyte line BRL were cultured. The hepatocytes were treated with LPS, ERS inducer thapsigargin (TG), and ERS inhibitor 4-phenylbutyric acid (4-PBA), respectively or in their different combination. The cell viability was measured by MTT assay. The cyto-nuclear morphological changes of apoptosis cells were detected by the fluorescent dye Hoechst 33258. The apoptosis rate was assessed by flow cytometry with Annexin V-FITC/PI double-staining. Expressions of GRP78 as ERS marker protein, CHOP, caspase-12 and cleaved-caspase-3 as ERS related protein were detected by Western blotting. LPS could cause a decrease in cell viability and an increase in apoptosis rate in a dose- and time-dependent manner. The expression of GRP78, CHOP, caspase-12 and cleaved-caspase-3 proteins were significantly increased with LPS treatment. TG led to a marked decrease in cell viability and an increase in apoptosis rate, which aggravated the hepatocyte injury induced by LPS; whereas 4-PBA alleviated LPS-induced apoptosis. ERS mediates LPS-induced hepatocyte injuries, indicating that ERS may play a vital role in the pathogenesis of LPS-induced hepatocyte injuries.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuncharin, Yanin; Sangphech, Naunpun; Kueanjinda, Patipark

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomalmore » translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing DN-MAML exhibited loss of phospho-I{kappa}B{alpha}, decreased total I{kappa}B{alpha} and nuclear localization of NF-{kappa}B p65, which suggests that the NF-{kappa}B pathway is hyperactivated. Furthermore, increased level of cleaved Notch1 was detected when DN-MAML was expressed. When DN-MAML-overexpressing cells were treated with GSI, significantly decreased cell viability was observed, indicating that inhibition of Notch signaling using GSI treatment and DN-MAML expression negatively affects cell viability. Taken together, targeting Notch signaling using DN-MAML and GSI treatment may present a novel method to control cell viability in cervical cancer cells.« less

  13. Effects of the organophosphate insecticides phosmet and chlorpyrifos on trophoblast JEG-3 cell death, proliferation and inflammatory molecule production.

    PubMed

    Guiñazú, Natalia; Rena, Viviana; Genti-Raimondi, Susana; Rivero, Virginia; Magnarelli, Gladis

    2012-04-01

    Epidemiological data have associated environmental organophosphate insecticide (OP) exposure during pregnancy with fetal growth deficits. To better understand OP injury that may adversely affect pregnancy, we used the JEG-3 choriocarcinoma cell line, which provide a recognized in vitro model to study placental function. The effects of the OP phosmet (Pm) and chlorpyrifos (Cp) on JEG-3 cells viability, proliferation, cell cycle and inflammatory molecule production were evaluated. Both insecticides affected cellular viability in a concentration- and time-dependent manner, inducing apoptosis and decreasing [(3)H]-thymidine incorporation. However, only Pm reduced DNA synthesis independently of cellular death and decreased the cell percentage at the S-phase. Unlike apoptosis, TNFα production varied with the concentration tested, suggesting that other TNFα independent mechanisms might trigger cell death. No induction of the inflammatory molecule nitric oxide was detected. The mRNA levels of pro-inflammatory IL-6, IL-17 and the anti-inflammatory IL-13 cytokines were differentially modulated. These findings show that Pm and Cp generate a specific toxicity signature, altering cell viability and inducing an inflammatory cytokine profile, suggesting that trophoblasts may represent a possible target for OP adverse effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Doxorubicin induces ZAKα overexpression with a subsequent enhancement of apoptosis and attenuation of survivability in human osteosarcoma cells.

    PubMed

    Fu, Chien-Yao; Tseng, Yan-Shen; Chen, Ming-Cheng; Hsu, Hsi-Hsien; Yang, Jaw-Ji; Tu, Chuan-Chou; Lin, Yueh-Min; Viswanadha, Vijaya Padma; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Human osteosarcoma (OS) is a malignant cancer of the bone. It exhibits a characteristic malignant osteoblastic transformation and produces a diseased osteoid. A previous study demonstrated that doxorubicin (DOX) chemotherapy decreases human OS cell proliferation and might enhance the relative RNA expression of ZAK. However, the impact of ZAKα overexpression on the OS cell proliferation that is inhibited by DOX and the molecular mechanism underlying this effect are not yet known. ZAK is a protein kinase of the MAPKKK family and functions to promote apoptosis. In our study, we found that ZAKα overexpression induced an apoptotic effect in human OS cells. Treatment of human OS cells with DOX enhanced ZAKα expression and decreased cancer cell viability while increasing apoptosis of human OS cells. In the meantime, suppression of ZAKα expression using shRNA and inhibitor D1771 both suppressed the DOX therapeutic effect. These findings reveal a novel molecular mechanism underlying the DOX effect on human OS cells. Taken together, our findings demonstrate that ZAKα enhances the apoptotic effect and decreases cell viability in DOX-treated human OS cells. © 2017 Wiley Periodicals, Inc.

  15. The Effects of Cyclic Hydrostatic Pressure on Chondrogenesis and Viability of Human Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells in Three-Dimensional Agarose Constructs

    PubMed Central

    Puetzer, Jennifer; Williams, John; Gillies, Allison; Bernacki, Susan

    2013-01-01

    This study investigates the effects of cyclic hydrostatic pressure (CHP) on chondrogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3-D) agarose constructs maintained in a complete growth medium without soluble chondrogenic inducing factors. hASCs were seeded in 2% agarose hydrogels and exposed to 7.5 MPa CHP for 4 h per day at a frequency of 1 Hz for up to 21 days. On days 0, 7, 14, and 21, the expression levels of collagen II, Sox9, aggrecan, and cartilage oligomeric matrix protein (COMP) were examined by real-time reverse transcriptase–polymerase chain reaction analysis. Gene expression analysis found collagen II mRNA expression in only the CHP-loaded construct at day 14 and at no other time during the study. CHP-loaded hASCs exhibited upregulated mRNA expression of Sox9, aggrecan, and COMP at day 7 relative to unloaded controls, suggesting that CHP initiated chondrogenic differentiation of hASCs in a manner similar to human bone marrow-derived mesenchymal stem cells (hMSC). By day 14, however, loaded hASC constructs exhibited significantly lower mRNA expression of the chondrogenic markers than unloaded controls. Additionally, by day 21, the samples exhibited little measurable mRNA expression at all, suggesting a decreased viability. Histological analysis validated the lack of mRNA expression at day 21 for both the loaded and unloaded control samples with a visible decrease in the cell number and change in morphology. A comparative study with hASCs and hMSCs further examined long-term cell viability in 3-D agarose constructs of both cell types. Decreased cell metabolic activity was observed throughout the 21-day experimental period in both the CHP-loaded and control constructs of both hMSCs and hASCs, suggesting a decrease in cell metabolic activity, alluding to a decrease in cell viability. This suggests that a 2% agarose hydrogel may not optimally support hASC or hMSC viability in a complete growth medium in the absence of soluble chondrogenic inducing factors over long culture durations. This is the first study to examine the ability of mechanical stimuli alone, in the absence of chondrogenic factors transforming growth factor beta (TGF-β)3, TGF-β1 and/or bone morphogenetic protein 6 (BMP6) to induce hASC chondrogenic differentiation. The findings of this study suggest that CHP initiates hASC chondrogenic differentiation, even in the absence of soluble chondrogenic inductive factors, confirming the importance of considering both mechanical stimuli and appropriate 3-D culture for cartilage tissue engineering using hASCs. PMID:22871265

  16. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage.

    PubMed

    Wang, Kai; Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis.

  17. Effects of Chinese Propolis in Protecting Bovine Mammary Epithelial Cells against Mastitis Pathogens-Induced Cell Damage

    PubMed Central

    Jin, Xiao-Lu; Shen, Xiao-Ge; Sun, Li-Ping; Wu, Li-Ming; Wei, Jiang-Qin; Marcucci, Maria Cristina; Hu, Fu-Liang; Liu, Jian-Xin

    2016-01-01

    Chinese propolis (CP), an important hive product, can alleviate inflammatory responses. However, little is known regarding the potential of propolis treatment for mastitis control. To investigate the anti-inflammatory effects of CP on bovine mammary epithelial cells (MAC-T), we used a range of pathogens to induce cellular inflammatory damage. Cell viability was determined and expressions of inflammatory/antioxidant genes were measured. Using a cell-based reporter assay system, we evaluated CP and its primary constituents on the NF-κB and Nrf2-ARE transcription activation. MAC-T cells treated with bacterial endotoxin (lipopolysaccharide, LPS), heat-inactivated Escherichia coli, and Staphylococcus aureus exhibited significant decreases in cell viability while TNF-α and lipoteichoic acid (LTA) did not. Pretreatment with CP prevented losses in cell viability associated with the addition of killed bacteria or bacterial endotoxins. There were also corresponding decreases in expressions of proinflammatory IL-6 and TNF-α mRNA. Compared with the mastitis challenged cells, enhanced expressions of antioxidant genes HO-1, Txnrd-1, and GCLM were observed in CP-treated cells. CP and its polyphenolic active components (primarily caffeic acid phenethyl ester and quercetin) had strong inhibitive effects against NF-κB activation and increased the transcriptional activity of Nrf2-ARE. These findings suggest that propolis may be valuable in the control of bovine mastitis. PMID:27433029

  18. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression.

    PubMed

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  19. Effects of exogenous zinc on cell cycle, apoptosis and viability of MDAMB231, HepG2 and 293 T cells.

    PubMed

    Wang, Yan-hong; Li, Ke-jin; Mao, Li; Hu, Xin; Zhao, Wen-jie; Hu, An; Lian, Hong-zhen; Zheng, Wei-juan

    2013-09-01

    As a non-toxic metal to humans, zinc is essential for cell proliferation, differentiation, regulation of DNA synthesis, genomic stability and mitosis. Zinc homeostasis in cells, which is crucial for normal cellular functioning, is maintained by various protein families including ZnT (zinc transporter/SLC30A) and ZIP (Zrt-, Irt-like proteins/SLC39A) that decrease and increase cytosolic zinc availability, respectively. In this study, we investigated the influences of a specific concentration range of ZnSO4 on cell cycle and apoptosis by flow cytometry, and cell viability by MTT method in MDAMB231, HepG2 and 293 T cell lines. Fluorescent sensors NBD-TPEA and the counterstain for nuclei Hoechst 33342 were used to stain the treated cells for observing the localisation and amount of Zn(2+) via laser scanning confocal microscope. It was found that the influence manners of ZnSO4 on cell cycle, apoptosis and cell viability in various cell lines were different and corresponding to the changes of Zn(2+) content of the three cell lines, respectively. The significant increase on intracelluar zinc content of MDAMB231 cells resulted in cell death, G1 and G2/M cell cycle arrest and increased apoptotic fraction. Additionally, the mRNA expression levels of ZnT and ZIP families in the three cell lines, when treated with high concentration of ZnSO4, increased and decreased corresponding to their functions, respectively.

  20. Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout.

    PubMed

    Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2011-09-01

    Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.

  1. The synthetic ligand of peroxisome proliferator-activated receptor-gamma ciglitazone affects human glioblastoma cell lines.

    PubMed

    Strakova, Nicol; Ehrmann, Jiri; Dzubak, Petr; Bouchal, Jan; Kolar, Zdenek

    2004-06-01

    Glioblastoma multiforme is the most common malignant brain tumor in adults, and it is among the most lethal of all cancers. Recent studies have shown that ligand activation of peroxisome proliferator-activated receptor (PPAR)-gamma can induce differentiation and inhibit proliferation of several cancer cells. In this study, we have investigated whether one PPARgamma ligand in particular, ciglitazone, inhibits cell viability and, additionally, whether it affects the cell cycle and apoptosis of human glioblastoma cell lines T98G, U-87 MG, A172, and U-118 MG. All glioblastoma cell lines were found to express PPARgamma protein, and following treatment with ciglitazone, localization was unchanged. Ciglitazone inhibited viability in a dose-dependent manner in all four tested glioblastoma cells after 24 h of treatment. Analysis of the cell cycle showed arrest in the G(1) phase and partial block in G(2)/M phase of the cell cycle. Cyclin D1 and cyclin B expression was decreased. Phosphorylation of Rb protein dropped as well. We found that ciglitazone was followed by increased expression of p27(Kip1) and p21(Waf1/Cip1). It also led to apoptosis induction: bax expression in T98G was elevated. Expression of the antiapoptotic protein bcl-2 was reduced in U-118 MG and U-87 MG and showed a slight decrease in A172 cells. Flow cytometry confirmed the induction of apoptosis. Moreover, PPARgamma ligand decreased telomerase activity in U-87 MG and U-118 MG cell lines. Our results demonstrate that ciglitazone inhibits the viability of human glioblastoma cell lines via induction of apoptosis; as a result, this ligand may offer potential new therapy for the treatment of central nervous system neoplasms.

  2. Effects of voluntary exercise on the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups born from morphine- dependent mothers during pregnancy.

    PubMed

    Haydari, Sakineh; Safari, Manouchehr; Zarbakhsh, Sam; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein

    2016-11-10

    This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured. MTT assay was used to determine cell viability and proliferation rate. The level of BDNF was measured in the supernant of BMSCs culture by ELISA. The sedentary morphine-dependent mothers' pups showed a significant increase in the percentage cell viability and proliferation rate and also a significant decrease in the BDNF protein levels in BMSCs. The rat pups borne from exercising the control and morphine-dependent mothers exhibited an increase in the percentage viability, proliferation rate and BDNF levels of the BMSCs. This study showed that maternal exercise during pregnancy in morphine-dependent and non-dependent mothers, with increasing of BDNF levels increased the proliferation and viability of BMSCs in the rat pups. Also, chronic administration of morphine during pregnancy was able to increase the proliferation and viability of BMSCs in the rat pups. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. The lncRNA CASC9 and RNA binding protein HNRNPL form a complex and co-regulate genes linked to AKT signaling.

    PubMed

    Klingenberg, Marcel; Groß, Matthias; Goyal, Ashish; Polycarpou-Schwarz, Maria; Miersch, Thilo; Ernst, Anne-Sophie; Leupold, Jörg; Patil, Nitin; Warnken, Uwe; Allgayer, Heike; Longerich, Thomas; Schirmacher, Peter; Boutros, Michael; Diederichs, Sven

    2018-05-23

    The identification of viability-associated long non-coding RNAs (lncRNA) might be a promising rationale for new therapeutic approaches in liver cancer. Here, we applied the first RNAi screening approach in hepatocellular carcinoma (HCC) cell lines to find viability-associated lncRNAs. Among the multiple identified lncRNAs with a significant impact on HCC cell viability, we selected CASC9 (Cancer Susceptibility 9) due to the strength of its phenotype, expression, and upregulation in HCC versus normal liver. CASC9 regulated viability across multiple HCC cell lines as shown by CRISPR interference, single siRNA- and siPOOL-mediated depletion of CASC9. Further, CASC9 depletion caused an increase in apoptosis and decrease of proliferation. We identified the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a CASC9 interacting protein by RNA affinity purification (RAP) and validated it by native RNA immunoprecipitation (RIP). Knockdown of HNRNPL mimicked the loss-of-viability phenotype observed upon CASC9 depletion. Analysis of the proteome (SILAC) of CASC9- and HNRNPL-depleted cells revealed a set of co-regulated genes which implied a role of the CASC9:HNRNPL complex in AKT-signaling and DNA damage sensing. CASC9 expression levels were elevated in patient-derived tumor samples compared to normal control tissue and had a significant association with overall survival of HCC patients. In a xenograft chicken chorioallantoic membrane model, we measured a decreased tumor size after knockdown of CASC9. Taken together, we provide a comprehensive list of viability-associated lncRNAs in HCC. We identified the CASC9:HNRNPL complex as a clinically relevant viability-associated lncRNA/protein complex which affects AKT-signaling and DNA damage sensing in HCC. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  4. Molecular effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120 on T and B-cell acute lymphoblastic leukaemia.

    PubMed

    Pereira, João Kleber Novais; Machado-Neto, João Agostinho; Lopes, Matheus Rodrigues; Morini, Beatriz Corey; Traina, Fabiola; Costa, Fernando Ferreira; Saad, Sara Teresinha Olalla; Favaro, Patricia

    2015-09-01

    Constitutive activation of the PI3K pathway in T cell acute lymphoblastic leukaemia (T-ALL) has been reported and in a mouse model, PI3K activation, together with MYC, cooperates in Burkitt lymphoma (BL) pathogenesis. We investigated the effects of NVP-BKM120, a potent pan-class I PI3K inhibitor, in lymphoblastic leukaemia cell lines. Effects of NVP-BKM120 on cell viability, clonogenicity, apoptosis, cell cycle, cell signalling and autophagy were assessed in vitro on T-ALL (Jurkat and MOLT-4) and BL (Daudi and NAMALWA) cell lines. NVP-BKM120 treatment decreased cell viability and clonogenic growth in all tested cells. Moreover, the drug arrested cell cycling in association with a decrease in Cyclin B1 protein levels, and increased apoptosis. Immunoblotting analysis of cells treated with the drug revealed decreased phosphorylation, in a dose-dependent manner, of AKT, mTOR, P70S6K and 4EBP1, with stable total protein levels. Additionally, we observed a dose-dependent decrease in BAD phosphorylation, in association with augmented BAX:BCL2 ratio. Quantification of autophagy showed a dose-dependent increase in acidic vesicular organelles in all cells tested. In summary, our present study establishes that NVP-BKM120 presents an effective antitumour activity against T-ALL and BL cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus

    PubMed Central

    Pan, Hongmiao; Feng, Jinhui; Cerniglia, Carl E.

    2018-01-01

    Azo dyes are widely used in the plastic, paper, cosmetics, food, and pharmaceutical industries. Some metabolites of these dyes are potentially genotoxic. The toxic effects of azo dyes and their potential reduction metabolites on Staphylococcus aureus ATCC BAA 1556 were studied. When the cultures were incubated with 6, 18, and 36 μg/ml of Orange II and Sudan III for 48 h, 76.3, 68.5, and 61.7% of Orange II and 97.8, 93.9, and 75.8% of Sudan III were reduced by the bacterium, respectively. In the presence of 36 μg/ml Sudan III, the cell viability of the bacterium decreased to 61.9% after 48 h of incubation, whereas the cell viability of the control culture without the dye was 71.5%. Moreover, the optical density of the bacterial cultures at 10 h decreased from 0.74 to 0.55, indicating that Sudan III is able to inhibit growth of the bacterium. However, Orange II had no significant effects on either cell growth or cell viability of the bacterium at the tested concentrations. 1-Amino-2-naphthol, a metabolite common to Orange II and Sudan III, was capable of inhibiting cell growth of the bacterium at 1 μg/ml and completely stopped bacterial cell growth at 24–48 μg/ml. On the other hand, the other metabolites of Orange II and Sudan III, namely sulfanilic acid, p-phenylenediamine, and aniline, showed no significant effects on cell growth. p-Phenylenediamine exhibited a synergistic effect with 1-amino-2-naphthol on cell growth inhibition. All of the dye metabolites had no significant effects on cell viability of the bacterium. PMID:21451978

  6. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    PubMed

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2016-01-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. © 2014 Wiley Periodicals, Inc.

  7. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells.

    PubMed

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian

    2017-04-15

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-l-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Protective effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on adriamycin-induced toxicity of human renal tubular epithelial cell (HK-2).

    PubMed

    Tian, Ting; Li, Jin; Wang, Meng-Ying; Xie, Xian-Fei; Li, Qi-Xiong

    2012-05-15

    20-Hydroxyeicosatetraenoic acid is a cytochrome P4504A11 metabolite of arachidonic acid that plays an important role in the regulation of human renal functions. In the present study, we investigated the role of 20-hydroxyeicosatetraenoic acid on adriamycin induced toxicity in human renal tubular epithelial cells. Results showed that cell viability was decreased significantly and lactate dehydrogenase activity was increased significantly in a concentration-dependent manner when human renal tubular epithelial cells were incubated with adriamycin (10⁻⁷-10⁻³ mol/l) for 24h. In contrast, 20-hydroxyeicosatetraenoic acid (0.1, 1, 10, 50 μmol/l) increased cell survival and decreased lactate dehydrogenase activity concentration dependently in human renal tubular epithelial cells. When 20-hydroxyeicosatetraenoic acid (10, 50 μmol/l) was co-administered with adriamycin (10⁻³ mol/l), it significantly increased cell viability and decreased lactate dehydrogenase activity. On the other hand, N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET-0016) (1 μM), a selective inhibitor of 20-hydroxyeicosatetraenoic acid synthesizing enzyme exaggerated cell viability reduction and lactate dehydrogenase activity augmentation induced by adriamycin. Adriamycin suppressed the expression of cytochrome P4504A11 gene and its protein production in human renal tubular epithelial cells. Furthermore, adriamycin was more effective than N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine at lowering the expression of cytochrome P4504A11 gene and its protein. These results suggest that 20-hydroxyeicosatetraenoic acid may protect adriamycin-induced toxicity of human renal tubular epithelial cells, meanwhile, adriamycin-induced toxicity of human renal tubular epithelial cells possibly involves inhibiting cytochrome P4504A11 expression. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Increasing Antiproliferative Properties of Endocannabinoids in N1E-115 Neuroblastoma Cells through Inhibition of Their Metabolism

    PubMed Central

    Hamtiaux, Laurie; Hansoulle, Laurie; Dauguet, Nicolas; Muccioli, Giulio G.; Gallez, Bernard; Lambert, Didier M.

    2011-01-01

    The antitumoral properties of endocannabinoids received a particular attention these last few years. Indeed, these endogenous molecules have been reported to exert cytostatic, apoptotic and antiangiogenic effects in different tumor cell lines and tumor xenografts. Therefore, we investigated the cytotoxicity of three N-acylethanolamines – N-arachidonoylethanolamine (anandamide, AEA), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA) - which were all able to time- and dose-dependently reduce the viability of murine N1E-115 neuroblastoma cells. Moreover, several inhibitors of FAAH and NAAA, whose presence was confirmed by RT-PCR in the cell line, induced cell cytotoxicity and favored the decrease in cell viability caused by N-acylethanolamines. The most cytotoxic treatment was achieved by the co-incubation of AEA with the selective FAAH inhibitor URB597, which drastically reduced cell viability partly by inhibiting AEA hydrolysis and consequently increasing AEA levels. This combination of molecules synergistically decreased cell proliferation without inducing cell apoptosis or necrosis. We found that these effects are independent of cannabinoid, TRPV1, PPARα, PPARγ or GPR55 receptors activation but seem to occur through a lipid raft-dependent mechanism. These findings further highlight the interest of targeting the endocannabinoid system to treat cancer. More particularly, this emphasizes the great potential benefit of designing novel anti-cancerous therapies based on the association of endocannabinoids and inhibitors of their hydrolysis. PMID:22046372

  10. Genetic expression of adipose derived stem cell and smooth muscle cell markers to monitor differentiation potential following low intensity laser irradiation

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2014-02-01

    Mesenchymal stem cells (MSCs) have the capacity to differentiate into a variety of cell types that could potentially be used in tissue engineering and regenerative medicine. Low intensity laser irradiation (LILI) has been shown to induce a significant increase in cell viability and proliferation. Growth factors such as retinoic acid (RA) and transforming growth factor β1 (TGF-β1) play important roles in the differentiation of cells. The aim of this study was to investigate whether LILI in combination with growth factors could induce the differentiation of adipose derived stem cells (ADSCs) cocultured with smooth muscle cells (SMCs). The study used primary and continuous ADSC cell lines and a SMC line (SKUT-1) as control. Cells were co-cultured directly at a ratio of 1:1 using established methods, with and without growth factors and then exposed to LILI at 5 J/cm2 using a 636 nm diode laser. The cellular morphology, viability and proliferation of the co-cultures were assessed over a period of one week. The study also monitored the expression of cell specific markers over the same period of time. Genetic expression of the markers for both adipose derived stem cells (β1 Integrin and Thymidine 1) and smooth muscle cells (Heavy Myosin Chain) was monitored using flow cytometry. Cell viability and proliferation increased significantly in the co-cultured groups that were exposed to laser alone, as well as in combination with growth factors. Furthermore, there was a significant decrease in the expression of stem cell markers in the ADSCs over time. The results indicate that LILI in combination with growth factors not only increases the viability and proliferation of co-cultured cells but also decreases the expression of ADSC stem cell markers. This could indicate the possible differentiation of ADSCs into SMCs.

  11. Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.

    PubMed

    Falah, Mizied; Rayan, Anwar; Srouji, Samer

    2015-09-01

    In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization

    PubMed Central

    Timofeeva, Olga; Pasquale, Elena B.; Hirsch, Kellen; MacDonald, Tobey J.; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel

    2015-01-01

    The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target. PMID:25879388

  13. Knockdown of EphB1 receptor decreases medulloblastoma cell growth and migration and increases cellular radiosensitization.

    PubMed

    Bhatia, Shilpa; Baig, Nimrah A; Timofeeva, Olga; Pasquale, Elena B; Hirsch, Kellen; MacDonald, Tobey J; Dritschilo, Anatoly; Lee, Yi Chien; Henkemeyer, Mark; Rood, Brian; Jung, Mira; Wang, Xiao-Jing; Kool, Marcel; Rodriguez, Olga; Albanese, Chris; Karam, Sana D

    2015-04-20

    The expression of members of the Eph family of receptor tyrosine kinases and their ephrin ligands is frequently dysregulated in medulloblastomas. We assessed the expression and functional role of EphB1 in medulloblastoma cell lines and engineered mouse models. mRNA and protein expression profiling showed expression of EphB1 receptor in the human medulloblastoma cell lines DAOY and UW228. EphB1 downregulation reduced cell growth and viability, decreased the expression of important cell cycle regulators, and increased the percentage of cells in G1 phase of the cell cycle. It also modulated the expression of proliferation, and cell survival markers. In addition, EphB1 knockdown in DAOY cells resulted in significant decrease in migration, which correlated with decreased β1-integrin expression and levels of phosphorylated Src. Furthermore, EphB1 knockdown enhanced cellular radiosensitization of medulloblastoma cells in culture and in a genetically engineered mouse medulloblastoma model. Using genetically engineered mouse models, we established that genetic loss of EphB1 resulted in a significant delay in tumor recurrence following irradiation compared to EphB1-expressing control tumors. Taken together, our findings establish that EphB1 plays a key role in medulloblastoma cell growth, viability, migration, and radiation sensitivity, making EphB1 a promising therapeutic target.

  14. Comparison of liposomal and 2-hydroxypropyl-β-cyclodextrin-lidocaine on cell viability and inflammatory response in human keratinocytes and gingival fibroblasts.

    PubMed

    Ferreira, Luiz Eduardo Nunes; Muniz, Bruno Vilela; Dos Santos, Cleiton Pita; Volpato, Maria Cristina; de Paula, Eneida; Groppo, Francisco Carlos

    2016-06-01

    The aim of this study was to observe the effect multilamellar liposomes (MLV) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in the in-vitro effects of lidocaine in cell viability, pro-inflammatory cytokines and prostaglandin E2 release of both human keratinocytes (HaCaT) and gingival fibroblasts (HGF) cells. HaCaT and HGF cells were exposed to lidocaine 100-1 μm in plain, MLV and HP-β-CD formulations for 6 h or 24 h. The formulation effects in cell viability were measured by XTT assay and by fluorescent labelling. Cytokines (IL-8, IL-6 and TNF-α) and PGE2 release were quantified by ELISA. MLV and HP-β-CD formulations did not affect the HaCaT viability, which was significantly decreased by plain lidocaine after 24 h of exposure. Both drug carriers increased all cytokines released by HGF after 24-h exposure, and none of the carriers was able to reduce the PGE2 release induced by lidocaine. The effect of drug carrier in the lidocaine effects was dependent on the cell type, concentration and time of exposure. MLV and HP-β-CD showed benefits in improving cell viability; however, both of them showed a tendency to increase cytokine release when compared to the plain solution. © 2016 Royal Pharmaceutical Society.

  15. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla.

    PubMed

    Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2014-12-01

    The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells.

    PubMed

    Petit, Laetitia; Gibert, Maryse; Gourch, Abdelkader; Bens, Marcelle; Vandewalle, Alain; Popoff, Michel R

    2003-03-01

    Epsilon toxin is produced by Clostridium perfringens types B and D which are responsible for fatal intestinal diseases in animals. The main biological activity of epsilon toxin is the production of oedema in various organs. We have previously found that epsilon toxin forms a large membrane complex in MDCK cells which is not internalized into cell, and induces cell volume enlargement and loss of cell viability (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., Popoff, M. R. (1997) J Bacteriol 179, 6480-6487). Here, we show that epsilon toxin is very potent to decrease the trans-epithelial electrical resistance of polarized MDCK cells grown on filters without altering the organization of the junctional complexes. The dose-dependent decrease in trans-epithelial electrical resistance, more marked when the toxin was applied to the apical side than to the basal side of MDCK cells, was associated with a moderate increase of the paracellular permeability to low-molecular-weight compounds but not to macromolecules. Epsilon toxin probably acts by forming large membrane pores which permit the flux of ions and other molecules such as the entry of propidium iodide and finally to the loss of cell viability.

  17. Parallel effect of 4-octylphenol and cyclic adenosine monophosphate (cAMP) alters steroidogenesis, cell viability and ROS production in mice Leydig cells.

    PubMed

    Jambor, Tomas; Greifova, Hana; Kovacik, Anton; Kovacikova, Eva; Tvrda, Eva; Forgacs, Zsolt; Massanyi, Peter; Lukac, Norbert

    2018-05-01

    Over the last decade, there is growing incidence of male reproductive malfunctions. It has been documented that numerous environmental contaminants, such as endocrine disruptors (EDs) may adversely affect the reproductive functions of humans as well as wildlife species. The aim of this in vitro study was to examine the effects of 4-octylphenol (4-OP) on the steroidogenesis in mice Leydig cells. We evaluated the impact of this endocrine disruptor on the cholesterol levels and hormone secretion in a primary culture. Subsequently, we determined the cell viability and generation of reactive oxygen species (ROS) following 4-OP treatment. Isolated mice Leydig cells were cultured in the presence of different 4-OP concentrations (0.04-5.0 μg/mL) and 1 mM cyclic adenosine-monophosphate during 44 h. Cholesterol levels were determined from the culture medium using photometry. Quantification of steroid secretion was performed by enzyme-linked immunosorbent assay. The cell viability was assessed using the metabolic activity assay, while ROS production was assessed by the chemiluminescence technique. Slightly increased cholesterol levels were recorded following exposure to the whole applied range of 4-OP, without significant changes (P>0.05). In contrast, the secretion of steroid hormones, specifically dehydroepiandrosterone, androstenedione, and testosterone was decreased following exposure to 4-OP. Experimental doses of 4-OP did not affect cell viability significantly; however a moderate decrease was recorded following the higher doses (2.5 and 5.0 μg/mL) of 4-OP. Furthermore, relative treatment of 4-OP (5.0 μg/mL) caused a significant (P < 0.001) ROS overproduction in the exposed cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Increased frequency of sister chromatid exchanges and decrease in cell viability and proliferation kinetics in human peripheral blood lymphocytes after in vitro exposure to whole bee venom.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera

    2010-10-01

    The present study was aimed to investigate the impact of bee venom on frequency of sister chromatid exchanges (SCE) and viability in human peripheral blood lymphocytes in vitro. In addition, the proportion of lymphocytes that undergo one, two or three cell divisions as well as proliferative rate index (PRI) have been determined. Aqueous solution of whole bee venom was added to whole blood samples in concentrations ranging from 0.1 microg/mL to 20 microg/mL in different lengths of time. Results showed that whole bee venom inhibited cell viability, resulting in a 22.86 +/- 1.14% and 51.21 +/- 0.58% reduction of viable cells at 1 hour and 6 hours, respectively. The mean SCE per cell in all the exposed samples was significantly higher than in the corresponding controls. In addition, the percentage of high frequency cells (HFC) for each sample was estimated using the pooled distribution of all SCE measurements. This parameter was also significantly higher compared to the control. Inhibition of proliferation was statistically significant for both exposure times and concentrations and was time and dose dependent. These data indicate that whole bee venom inhibited cell proliferation, resulting in a 36.87 +/- 5.89% and 38.43 +/- 1.96% reduction of proliferation at 1 hour and 6 hours, respectively. In conclusion, this report demonstrated that whole bee venom is capable of inducing DNA alterations by virtue of increasing sister chromatid exchanges in addition to the cell viability decrease and inhibition of proliferation kinetics in human peripheral blood lymphocytes in vitro.

  19. Propofol inhibits invasion and proliferation of C6 glioma cells by regulating the Ca2+ permeable AMPA receptor-system xc- pathway.

    PubMed

    Wang, Xin-Yue; Li, Yan-Li; Wang, Hai-Yun; Zhu, Min; Guo, Di; Wang, Guo-Lin; Gao, Ying-Tang; Yang, Zhuo; Li, Tang; Yang, Chen-Yi; Chen, Yi-Meng

    2017-10-01

    Anesthetics are documented to affect tumors; therefore, we studied the antiglioma effect of propofol on proliferation and invasiveness of glioma cells and explored the underlying mechanism. C6 glioma cells were cultured and treated with propofol, and cell viability, invasiveness, and migration were measured. Glutamate release was measured using an enzyme-catalyzed kinetic reaction. xCT protein and α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR2 subunit protein expression was assessed with Western blot analysis and immunofluorescent staining. We observed that propofol significantly inhibited C6 glioma cell viability, invasiveness, and migration and decreased glutamate release. An agonist of the cystine/glutamate antiporter system (system x c - ), N-acetylcysteine (NAC), reversed propofol's effects, and propofol could inhibit C6 glioma cell proliferation by adding excess exogenous glutamate (100μM). Finally, propofol increased the surface expression of GluR2, but decreased surface expression of xCT. The effects of propofol on surface expression of GluR2 and xCT could be rescued by (R, S)-AMPA, an agonist of Ca 2+ permeable AMPA receptor (CPAR). Thus, propofol can inhibit cell viability, invasiveness, and migration of C6 glioma cells, and the CPAR-system x c - pathway contributes to these events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Both Leukotoxin and Poly-N-Acetylglucosamine Surface Polysaccharide Protect Aggregatibacter actinomycetemcomitans Cells from Macrophage Killing

    PubMed Central

    Venketaraman, Vishwanath; Lin, Albert K.; Le, Amy; Kachlany, Scott C.; Connell, Nancy D.; Kaplan, Jeffrey B.

    2008-01-01

    Two virulence factors produced by the periodontopathogen Aggregatibacter actinomycetemcomitans are leukotoxin, a secreted lipoprotein that kills human polymorphonuclear leukocytes and macrophages, and poly-N-acetylglucosamine (PGA), a surface polysaccharide that mediates intercellular adhesion, biofilm formation and detergent resistance. In this study we examined the roles of leukotoxin and PGA in protecting A. actinomycetemcomitans cells from killing by the human macrophage cell line THP-1. Monolayers of THP-1 cells were infected with single-cell suspensions of a wild-type A. actinomycetemcomitans strain, or of isogenic leukotoxin or PGA mutant strains. After 48 h, viable bacteria were enumerated by dilution plating, macrophage morphology was evaluated microscopically, and macrophage viability was measured by a Trypan blue dye exclusion assay. The number of A. actinomycetemcomitans CFUs increased approximately 2-fold in wells infected with the wild-type strain, but decreased by approximately 70–90% in wells infected with the leukotoxin and PGA mutant strains. Infection with the wild-type or leukotoxin mutant strain caused a significant decrease in THP-1 cell viability, whereas infection with the PGA mutant strain did not result in any detectable changes in THP-1 viability. Pre-treatment of wild-type A. actinomycetemcomitans cells with the PGA-hydrolyzing enzyme dispersin B rendered them sensitive to killing by THP-1 cells. We concluded that both leukotoxin and PGA are necessary for evasion of macrophage killing by A. actinomycetemcomitans. PMID:18573331

  1. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells.

    PubMed

    Wang, Chuo-Li; Teo, Ka Yaw; Han, Bumsoo

    2008-08-01

    One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl-water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl-glycine-water mixture has two distinct eutectic phase change events - binary eutectic solidification of water-glycine, and ternary eutectic solidification of NaCl-glycine-water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n=9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to -8.5 degrees C decreased from 85.9+/-1.8% to 38.5+/-1.0% on the occurrence of binary eutectic solidification of glycine-water (n=3 for each group). With 20% glycine supplement, the viability of the cells frozen to -8.5 degrees C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to -15 degrees C, the viability drastically decreased from 62.5+/-2.0% to 3.6+/-0.7% (n=3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water-glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.

  2. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    PubMed

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  3. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  4. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB.

    PubMed

    Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu

    2016-10-01

    In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling.

  5. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB

    PubMed Central

    Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu

    2016-01-01

    In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling. PMID:27698868

  6. When does the lung die? Kfc, cell viability, and adenine nucleotide changes in the circulation-arrested rat lung.

    PubMed

    Jones, D R; Becker, R M; Hoffmann, S C; Lemasters, J J; Egan, T M

    1997-07-01

    Lungs harvested from cadaveric circulation-arrested donors may increase the donor pool for lung transplantation. To determine the degree and time course of ischemia-reperfusion injury, we evaluated the effect of O2 ventilation on capillary permeability [capillary filtration coefficient (Kfc)], cell viability, and total adenine nucleotide (TAN) levels in in situ circulation-arrested rat lungs. Kfc increased with increasing postmortem ischemic time (r = 0.88). Lungs ventilated with O2 1 h postmortem had similar Kfc and wet-to-dry ratios as controls. Nonventilated lungs had threefold (P < 0.05) and sevenfold (P < 0.0001) increases in Kfc at 30 and 60 min postmortem compared with controls. Cell viability decreased in all groups except for 30-min postmortem O2-ventilated lungs. TAN levels decreased with increasing ischemic time, particularly in nonventilated lungs. Loss of adenine nucleotides correlated with increasing Kfc values (r = 0.76). This study indicates that lungs retrieved 1 h postmortem may have normal Kfc with preharvest O2 ventilation. The relationship between Kfc and TAN suggests that vascular permeability may be related to lung TAN levels.

  7. Antiproliferative and cytotoxic effects of green coffee and yerba mate extracts, their main hydroxycinnamic acids, methylxanthine and metabolites in different human cell lines.

    PubMed

    Amigo-Benavent, M; Wang, S; Mateos, R; Sarriá, B; Bravo, L

    2017-08-01

    This work aimed at studying the effects of green coffee bean (GCBE) and yerba mate (YME) extracts, their main phenolic components (5-caffeoylquinic acid, 5-CQA; 3,5-dicaffeoylquinic acid, 3,5-DCQA) and metabolites (ferulic acid, FA; caffeic acid, CA; dihydrocaffeic acid, DHCA; and dihydroferulic acid, DHFA) along with caffeine (CAF) on the viability and proliferation of different human cell lines. Extracts (10-1000 μg/mL) and standards (10-1000 μM) were assayed in colon (Caco-2), lung (A549), oesophageal (OE-33), urinary bladder (T24) human carcinoma cells, and a non-cancer cell line (CCD-18Co). YME significantly reduced viability of cancer cells at all assayed concentrations, the higher doses also reducing cell proliferation. GCBE effects on cell viability were more effective at 100 and 1000 μg/mL, showing modest effects on cell proliferation. The highest doses of 5-CQA and 3,5-DCQA reduced cell viability and proliferation in all cell lines, whereas FA, DHCA and DHFA had lower and variable effects. Caffeine had no effect. Dietary-attainable concentrations (0.1, 1 and 10 μg/mL) of YME were tested for cytotoxicity and reactive oxygen species generation, showing no cytotoxic effect. Low concentrations of all tested compounds were non-cytotoxic to CCD-18Co cells. YME and to a lower degree GCBE, their phenolic components and metabolites may decrease cancer cell viability and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro.

    PubMed

    Sekhejane, Palesa R; Houreld, Nicolette N; Abrahamse, Heidi

    2011-08-01

    This study investigated the effect of low-intensity laser irradiation (LILI) on pro-inflammatory cytokines involved in wound healing processes in diabetes and hypoxia. Diabetes is associated with impaired wound healing and a prolonged inflammatory phase. Pro-inflammatory cytokines such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-6 are elevated in diabetes. LILI has been reported to accelerate wound healing and decrease inflammatory cytokines. A human skin fibroblast cell line (WS1) was used in vitro. Cells were exposed to various insults, namely, wounding, and a diabetic or hypoxic environment. Experimental cells were exposed to an energy density of 5  J/cm(2) using a continuous wave 636-nm diode laser at an average power of 95  mW, an illuminated area of 9.05  cm(2), and an irradiance of 11 mW/cm(2) (irradiation time, 476  sec). The effect of laser irradiation on cytokine expression was examined at 1 or 24  h post-irradiation. Cellular morphology, viability, proliferation, and cytokine expression (IL-1β, IL-6, and TNF-α) were investigated. Translocation of nuclear factor-kappa B (NF-κB) was also determined. There was a higher rate of migration in irradiated wounded cultures, and irradiated hypoxic cells showed an improvement in cellular morphology. All cell models showed an increase in proliferation. Normal wounded cells showed a decrease in apoptosis, TNF-α, and IL-1β. Diabetic wounded cells showed an increase in viability and a decrease in apoptosis and IL-1β, whereas hypoxic cells showed an increase in viability and IL-6, and a decrease in apoptosis and TNF-α. NF-κB was translocated into the nucleus post-irradiation. Phototherapy resulted in hastened wound closure, increased proliferation, and normalization of cellular function. The decrease in the different pro-inflammatory cytokines and NF-κB translocation was model and time dependent. Overall, laser irradiation resulted in a reduction in inflammatory cytokines and directed cells into the cell survival pathway.

  9. Cardiac peroxisome proliferator-activated receptor-γ expression is modulated by oxidative stress in acutely infrasound-exposed cardiomyocytes.

    PubMed

    Pei, Zhaohui; Meng, Rongsen; Zhuang, Zhiqiang; Zhao, Yiqiao; Liu, Fangpeng; Zhu, Miao-Zhang; Li, Ruiman

    2013-12-01

    The aim of the present study was to examine the effects of acute infrasound exposure on oxidative damage and investigate the underlying mechanisms in rat cardiomyocytes. Neonatal rat cardiomyocytes were cultured and exposed to infrasound for several days. In the study, the expression of CAT, GPx, SOD1, and SOD2 and their activities in rat cardiomyocytes in infrasound exposure groups were significantly decreased compared to those in the various time controls, along with significantly higher levels of O2 (-) and H2O2. Decreased cardiac cell viability was not observed in various time controls. A significant reduction in cardiac cell viability was observed in the infrasound group compared to the control, while significantly increased cardiac cell viability was observed in the infrasound exposure and rosiglitazone pretreatment group. Compared to the control, rosiglitazone significantly upregulated CAT, GPx, SOD1, and SOD2 expression and their activities in rat cardiomyocytes exposed to infrasound, while the levels of O2 (-) or H2O2 were significantly decreased. A potential link between a significant downregulation of PPAR-γ expression in rat cardiomyocytes in the infrasound group was compared to the control and infrasound-induced oxidative stress. These findings indicate that infrasound can induce oxidative damage in rat cardiomyocytes by inactivating PPAR-γ.

  10. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal-Limbal and Human Conjunctival Epithelial Cells.

    PubMed

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin

    2017-06-01

    To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.

  11. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal–Limbal and Human Conjunctival Epithelial Cells

    PubMed Central

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline

    2017-01-01

    Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036

  12. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers

    NASA Astrophysics Data System (ADS)

    Pereira, M. M.; Raposo, N. R. B.; Brayner, R.; Teixeira, E. M.; Oliveira, V.; Quintão, C. C. R.; Camargo, L. S. A.; Mattoso, L. H. C.; Brandão, H. M.

    2013-02-01

    Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml-1) did not cause cell death; however, at concentrations above 200 μg ml-1, the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml-1) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml-1) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.

  13. Galangin Induces Apoptosis in MCF-7 Human Breast Cancer Cells Through Mitochondrial Pathway and Phosphatidylinositol 3-Kinase/Akt Inhibition.

    PubMed

    Liu, Dan; You, Pengtao; Luo, Yan; Yang, Min; Liu, Yanwen

    2018-06-07

    The study aimed to investigate the molecular mechanism of inhibition of proliferation and apoptosis induction by galangin against MCF-7 human breast cancer cells. Cell Counting Kit-8 assay was used to assess cell viability and flow cytometry was used to detect cell apoptosis. The expression level of apoptosis-related proteins (cleaved-caspase-9, cleaved-caspase-8, cleaved-caspase-3, Bad, cleaved-Bid, Bcl-2, Bax, p-phosphatidylinositol 3-kinase [PI3K], and p-Akt) and cell cycle-related proteins (cyclin D3, cyclin B1, cyclin-dependent kinases CDK1, CDK2, CDK4, p21, p27, p53) were evaluated by Western blotting. Galangin increased the expression of Bax and decreased the expression of Bcl-2 in a concentration-dependent manner, inhibited cell viability, and induced apoptosis. Meanwhile, the expression of cleavage of caspase-9, caspase-8, caspase-3, Bid, and Bad increased significantly while the expression of p-PI3K and p-Akt proteins decreased. In addition, the protein levels of cyclin D3, cyclin B1, CDK1, CDK2, and CDK4 were downregulated while the expression levels of p21, p27, and p53 were upregulated significantly. Galangin could suppress the viability of MCF-7 cells and induce cell apoptosis via the mitochondrial pathway and PI3K/Akt inhibition as well as cell cycle arrest. © 2018 S. Karger AG, Basel.

  14. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  15. Paraoxon and Pyridostigmine Interfere with Neural Stem Cell Differentiation

    PubMed Central

    Berríos, Verónica O.; Boukli, Nawal M.; Rodriguez, Jose W.; Negraes, Priscilla D.; Schwindt, Telma T.; Trujillo, Cleber A.; Oliveira, Sophia L. B.; Cubano, Luis A.; Ferchmin, P. A.; Eterovic, Vesna A.; Ulrich, Henning; Martins, Antonio H.

    2015-01-01

    Acetylcholinesterase (AChE) inhibition has been described as the main mechanism of organophosphate (OP)-evoked toxicity. OPs represent a human health threat, because chronic exposure to low doses can damage the developing brain, and acute exposure can produce long-lasting damage to adult brains, despite post-exposure medical countermeasures. Although the main mechanism of OP toxicity is AChE inhibition, several lines of evidence suggest that OPs also act by other mechanisms. We hypothesized that rat neural progenitor cells extracted on embryonic day 14.5 would be affected by constant inhibition of AChE from chronic exposure to OP or pyri-dostigmine (a reversible AChE blocker) during differentiation. In this work, the OP paraoxon decreased cell viability in concentrations >50 μM, as measured with the MTT assay; however, this effect was not dose-dependent. Reduced viability could not be attributed to blockade of AChE activity, since treatment with 200 μM pyri-dostigmine did not affect cell viability, even after 6 days. Although changes in protein expression patterns were noted in both treatments, the distribution of differentiated phenotypes, such as the percentages of neurons and glial cells, was not altered, as determined by flow cytometry. Since paraoxon and pyridostigmine each decreased neurite outgrowth (but did not prevent differentiation), we infer that developmental patterns may have been affected. PMID:25758980

  16. Paraoxon and Pyridostigmine Interfere with Neural Stem Cell Differentiation.

    PubMed

    Berríos, Verónica O; Boukli, Nawal M; Rodriguez, Jose W; Negraes, Priscilla D; Schwindt, Telma T; Trujillo, Cleber A; Oliveira, Sophia L B; Cubano, Luis A; Ferchmin, P A; Eterović, Vesna A; Ulrich, Henning; Martins, Antonio H

    2015-10-01

    Acetylcholinesterase (AChE) inhibition has been described as the main mechanism of organophosphate (OP)-evoked toxicity. OPs represent a human health threat, because chronic exposure to low doses can damage the developing brain, and acute exposure can produce long-lasting damage to adult brains, despite post-exposure medical countermeasures. Although the main mechanism of OP toxicity is AChE inhibition, several lines of evidence suggest that OPs also act by other mechanisms. We hypothesized that rat neural progenitor cells extracted on embryonic day 14.5 would be affected by constant inhibition of AChE from chronic exposure to OP or pyridostigmine (a reversible AChE blocker) during differentiation. In this work, the OP paraoxon decreased cell viability in concentrations >50 μM, as measured with the MTT assay; however, this effect was not dose-dependent. Reduced viability could not be attributed to blockade of AChE activity, since treatment with 200 µM pyridostigmine did not affect cell viability, even after 6 days. Although changes in protein expression patterns were noted in both treatments, the distribution of differentiated phenotypes, such as the percentages of neurons and glial cells, was not altered, as determined by flow cytometry. Since paraoxon and pyridostigmine each decreased neurite outgrowth (but did not prevent differentiation), we infer that developmental patterns may have been affected.

  17. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons.

    PubMed

    Filipak Neto, Francisco; Cardoso da Silva, Ludiana; Liebel, Samuel; Voigt, Carmen Lúcia; Oliveira Ribeiro, Ciro Alberto de

    2018-01-01

    The nanotechnology has revolutionized the global market with silver nanoparticles (AgNP) occupying a prominent position due to their remarkable anti-bacterial properties. However, there is no data about the adverse and toxic effects of associations of AgNP and ubiquitous compounds, such as polycyclic aromatic hydrocarbons (PAH). In the current study, we investigated the responses of HepG2 cells to realistic concentrations of AgNP (0.09, 0.9, and 9 ng ml -1 ) and mixture of PAH (30 and 300 ng ml -1 ), separately and in association. Cell viability and cytotoxicity (neutral red retention and MTT production assays) and proliferation (crystal violet [CV] assay), xenobiotic efflux transporter activity (rhodamine B accumulation assay), ROS levels (dichlorodihydrofluorescein diacetate assay), and lipid peroxidation (pyrenylphosphine-1-diphenyl assay) were analyzed. There was no decreases of cell viability after exposure to AgNP, PAH and most of AgNP + PAH associations, but increases of cell viability/number (CV assay) occurred. Efflux transporter activity was not affected, with exception of one AgNP + PAH associations, ROS levels increased, but lipid peroxidation decreased. Some toxicological interactions occurred, particularly for the highest concentrations of AgNP and PAH, but there is no evidence that these interactions increased the toxicity of AgNP and PAH.

  18. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells.

    PubMed

    Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon

    2017-06-01

    Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca 2+ ] i ) by releasing Ca 2+ from intracellular stores and via Ca 2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca 2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca 2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. [BMB Reports 2017; 50(6): 323-328].

  19. Effects of chlorogenic acid on intracellular calcium regulation in lysophosphatidylcholine-treated endothelial cells

    PubMed Central

    Jung, Hye-Jin; Im, Seung-Soon; Song, Dae-Kyu; Bae, Jae-Hoon

    2017-01-01

    Lysophosphatidylcholine (LPC) is a major phospholipid component of oxidized low-density lipoprotein (ox-LDL) and is implicated in its atherogenic activity. This study investigated the effects of LPC on cell viability, intracellular calcium homeostasis, and the protective mechanisms of chlorogenic acid (CGA) in human umbilical vein endothelial cells (HUVECs). LPC increased intracellular calcium ([Ca2+]i) by releasing Ca2+ from intracellular stores and via Ca2+ influx through store-operated channels (SOCs). LPC also increased the generation of reactive oxygen species (ROS) and decreased cell viability. The mRNA expression of Transient receptor potential canonical (TRPC) channel 1 was increased significantly by LPC treatment and suppressed by CGA. CGA inhibited LPC-induced Ca2+ influx and ROS generation, and restored cell viability. These results suggested that CGA inhibits SOC-mediated Ca2+ influx and ROS generation by attenuating TRPC1 expression in LPC-treated HUVECs. Therefore, CGA might protect endothelial cells against LPC injury, thereby inhibiting atherosclerosis. PMID:28088946

  20. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells.

    PubMed

    Pei, Yanxi; Wu, Bo; Cao, Qiuhui; Wu, Lingyun; Yang, Guangdong

    2011-12-15

    Hydrogen sulfide (H(2)S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H(2)S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H(2)S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H(2)S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H(2)S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H(2)S-producing enzyme in prostate. CSE overexpression enhanced H(2)S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H(2)S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H(2)S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H(2)S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Cytotoxic Effects of the Radiocontrast Agent Iotrolan and Anesthetic Agents Bupivacaine and Lidocaine in Three-Dimensional Cultures of Human Intervertebral Disc Nucleus Pulposus Cells: Identification of the Apoptotic Pathways

    PubMed Central

    Iwasaki, Koji; Sudo, Hideki; Yamada, Katsuhisa; Ito, Manabu; Iwasaki, Norimasa

    2014-01-01

    Background Discography and discoblock are imaging procedures used to diagnose discogenic low back pain. Although needle puncture of the intervertebral disc (IVD) itself induces disc degeneration, the agents used in these procedures may also have harmful effects on IVD cells. The purpose of this study was to analyze whether radiocontrast agents and local anesthetic agents have detrimental effects on human nucleus pulposus (NP) cells. Methods Healthy human NP cells were cultured for 7 days in three-dimensional (3D) cell–alginate bead composites, and were then exposed to clinically relevant doses of a radiocontrast agent (iotrolan) or local anesthetic (lidocaine or bupivacaine). Cell viability and apoptosis were measured by confocal microscopy and flow cytometry. On the basis of caspase expression profiles, the apoptotic pathways activated by the agents were identified by Western blot analysis. Results The radiocontrast agent iotrolan did not affect NP cell viability or induce apoptosis. In contrast, both the anesthetic agents significantly decreased cell viability and increased the apoptotic cell number in a time- and dose-dependent manner. After 120 min, 2% lidocaine and 0.5% bupivacaine decreased percent live cells to 13% and 10%, respectively (p<0.05). The number of apoptotic cells was doubled by increasing lidocaine dosage from 1% to 2% (23% and 42%) and bupivacaine from 0.25% to 0.50% (25% and 48%) (p<0.05). Western blot analysis revealed that both anesthetic agents upregulated cleaved caspase-3 and caspase-8, whereas only bupivacaine upregulated cleaved caspase-9. Conclusions/Significance The present study demonstrates that iotrolan does not affect the viability of healthy human NP cells. In contrast, the two anesthetic agents commonly used in discography or discoblock may cause extensive damage to IVDs by inducing apoptotic cell death. PMID:24642945

  2. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway.

    PubMed

    Jung, Dawoon E; Park, Soo Been; Kim, Kahee; Kim, Chanyang; Song, Si Young

    2017-09-07

    Cholangiocarcinoma is a devastating malignancy with fatal complications that exhibits low response and resistance to chemotherapy. Here, we evaluated the anticancer effects of CG200745, a novel histone deacetylase inhibitor, either alone or in combination with standard chemotherapy drugs in cholangiocarcinoma cells. CG200745 dose-dependently reduced the viability of cholangiocarcinoma cells in vitro and decreased tumour volume and weight in a xenograft model. Administering CG200745 along with other chemotherapeutic agents including gemcitabine, 5-fluorouracil (5-FU), cisplatin, oxaliplatin, or gemcitabine plus cisplatin further decreased cholangiocarcinoma cell viability, with a combination index < 1 that indicated synergistic action. CG200745 also enhanced the sensitivity of gemcitabine-resistant cells to gemcitabine and 5-FU, thereby decreasing cell viability and inducing apoptosis. This was accompanied by downregulation of YAP, TEAD4, TGF-β2, SMAD3, NOTCH3, HES5, Axl, and Gas6 and upregulation of the miRNAs miR-22-3p, miR-22-5p, miR-194-5p, miR-194-3p, miR-194-5p, miR-210-3p, and miR-509-3p. The Ingenuity Pathway Analysis revealed that CG200745 mainly targets the Hippo signalling pathway by inducing miR-509-3p expression. Thus, CG200745 inhibits cholangiocarcinoma growth in vitro and in vivo, and acts synergistically when administered in combination with standard chemotherapeutic agents, enabling dose reduction. CG200745 is therefore expected to improve the outcome of cholangiocarcinoma patients who exhibit resistance to conventional therapies.

  3. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment

    PubMed Central

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-01-01

    Background and Aims Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Methods Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Key Results Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. Conclusions A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. PMID:26041732

  4. In vitro effects of docosahexaenoic and eicosapentaenoic acid on human meibomian gland epithelial cells.

    PubMed

    Hampel, Ulrike; Krüger, Magret; Kunnen, Carolina; Garreis, Fabian; Willcox, Mark; Paulsen, Friedrich

    2015-11-01

    To investigate the effect of ω-3 fatty acids on human meibomian gland epithelial cells (HMGECs, cell line) in vitro. HMGECs were stimulated with docosahexaenoic acid (DHA) or combinations with eicosapentaenoic acid (EPA) and acetyl sialic acid (ASA). Sudan III fat staining, viability and proliferation assays, electric cell-substrate impedance sensing, real-time PCR for gene expression of cyclooxygenase-2 and 15-lipoxygenase and ELISAs for resolvin D1 (RvD1), IFNγ, TNFα and IL-6 were applied. Lipid droplet accumulation and viability was increased by 100 μM DHA in the presence or absence of EPA in serum cultured HMGECs. In contrast, HMGECs cultured with DHA and EPA under serum-free conditions showed minimal lipid accumulation, decreased proliferation and viability. Normalized impedance was significantly reduced in serum-free cultured HMGECs when stimulated with DHA and EPA. HMGECs cultured in serum containing medium showed increased normalized impedance under DHA and EPA stimulation compared to DHA or EPA alone or controls. IL-6 and IFNγ were downregulated in HMGECs treated for 72 h with DHA and EPA. In general, TNFα, IFNγ and IL-6 levels were decreased after 72 h compared to 24 h in serum containing medium with or without DHA or EPA. The concentration of RvD1 was elevated 2-fold after DHA treatment. Cyclooxygenase-2 gene expression decreased compared to controls during DHA stimulation after 72 h. Treatment with DHA and ASA revealed a decreased 15-lipoxygenase gene expression which was reduced after three days of DHA incubation. DHA and EPA supplementation affected HMGECs in vitro and supported anti-inflammatory effects by influencing cytokine levels, decreasing COX-2 expression and increasing the production of RvD1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Echinococcus multilocularis vesicular fluid inhibits activation and proliferation of natural killer cells.

    PubMed

    Bellanger, Anne-Pauline; Mougey, Valentine; Pallandre, Jean-Rene; Gbaguidi-Haore, Houssein; Godet, Yann; Millon, Laurence

    2017-08-25

    Alveolar echinococcosis is a severe chronic helminthic disease that mimics slow-growing liver cancer. The immune evasion strategy of Echinococcus multilocularis Leuckart, 1863 remains poorly understood. The aim of this study was to investigate in vitro the impact of E. multilocularis vesicular fluid (Em-VF) on peripheral blood mononuclear cells (PBMC) and on natural killer (NK) cells. PBMC and NK cells were exposed to Em-VF (1 µg/ml) during six days. The effect of Em-VF was assessed on CD69, viability and proliferation, and on and transforming growth factor β (TGF-β), interferon γ (IFN-γ), interleukin 17 (IL-17) and interleukin 10, using flow cytometry and ELISA, respectively. Exposure to Em-VF had no bearing on PBMC's viability, proliferation and expression of CD69. In contrast, higher levels of IL-17 at day three and of TGF-β at day six were observed in PBMC supernatant after exposure to Em-VF (p < 0.05, Wilcoxon signed-rank test). Exposure to Em-VF induced a significant decrease of CD69 expression of NK cells at day three and a significant decrease of proliferation of NK cells at day six (p < 0.05, Wilcoxon signed-rank test). In contrast, NK cells viability and levels of cytokines did not vary significantly over Em-VF stimulation. Exposure to Em-VF had a significant bearing on activation and proliferation of NK cells. NK cells may play an important role in the immune response of the host against E. multilocularis.

  6. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  7. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma.

    PubMed

    Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-24

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.

  8. Therapeutic potential of the metabolic modulator phenformin in targeting the stem cell compartment in melanoma

    PubMed Central

    Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia

    2017-01-01

    Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292

  9. Vitamin E, γ-tocotrienol, Protects Against Buthionine Sulfoximine-Induced Cell Death by Scavenging Free Radicals in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Tan, Jen-Kit; Then, Sue-Mian; Mazlan, Musalmah; Jamal, Rahman; Ngah, Wan Zurinah Wan

    2016-01-01

    The induction of reactive oxygen species (ROS) to selectively kill cancer cells is an important feature of radiotherapy and various chemotherapies. Depletion of glutathione can induce apoptosis in cancer cells or sensitize them to anticancer treatments intended to modulate ROS levels. In contrast, antioxidants protect cancer cells from oxidative stress-induced cell death by scavenging ROS. The role of exogenous antioxidants in cancer cells under oxidative insults remains controversial and unclear. This study aimed to identify protective pathways modulated by γ-tocotrienol (γT3), an isomer of vitamin E, in human neuroblastoma SH-SY5Y cells under oxidative stress. Using buthionine sulfoximine (BSO) as an inhibitor of glutathione synthesis, we found that BSO treatment reduced the viability of SH-SY5Y cells. BSO induced cell death by increasing apoptosis, decreased the level of reduced glutathione (GSH), and increased ROS levels in SH-SY5Y cells. Addition of γT3 increased the viability of BSO-treated cells, suppressed apoptosis, and decreased the ROS level induced by BSO, while the GSH level was unaffected. These results suggest that decreasing GSH levels by BSO increased ROS levels, leading to apoptosis in SH-SY5Y cells. γT3 attenuated the BSO-induced cell death by scavenging free radicals.

  10. Acrylamide-induced apoptosis in rat primary astrocytes and human astrocytoma cell lines.

    PubMed

    Lee, Jiann-Gwu; Wang, Yan-Shiu; Chou, Chin-Cheng

    2014-06-01

    This study aimed to evaluate the acrylamide (ACR)-induced apoptotic effects on rat primary astrocytes and three human astrocytoma-derived cell lines (U-1240 MG, U-87 MG, and U-251 MG). As determined through the MTT assay, treatment with 1 and 2 mM ACR for 24-72 h resulted in decreased cell viability in all cells. Decreases in cell viability could be blocked in all cells with the exception of U-251 MG cells by Z-DEVD FMK. ACR-induced dose-dependent apoptotic effects were also demonstrated by increases in the sub-G1 phase cell population in all cells. The decreased expressions of pro-caspase 3, 8, and 9 and the interruption of the mitochondrial membrane potential were observed in all cells. Exposure to 2 mM ACR for 48 h resulted in increased Bax/Bcl-2 ratios in primary astrocytes and U-87 MG cells, whereas the overexpression of Bcl-2 was observed in U-1240 MG and U-251 MG cells. The ACR-induced increases in the levels of p53 and pp53 in primary astrocytes could be attenuated by caffeine. These results suggest the existence of a common apoptotic pathway among all cell types and that U-87 MG cells may be a suitable substitute in vitro model for primary astrocytes in future studies on ACR-induced neurotoxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Anticancer and anti-inflammatory activities of some dietary cucurbits.

    PubMed

    Sharma, Dhara; Rawat, Indu; Goel, H C

    2015-04-01

    In this study, we investigated few dietary cucurbits for anticancer activity by monitoring cytotoxic (MTT and LDH assays), apoptotic (caspase-3 and annexin-V assays), and also their anti-inflammatory effects by IL-8 cytokine assay. Aqua-alcoholic (50:50) whole extracts of cucurbits [Lagenaria siceraria (Ls), Luffa cylindrica (Lc) and Cucurbita pepo (Cp)] were evaluated in colon cancer cells (HT-29 and HCT-15) and were compared with isolated biomolecule, cucurbitacin-B (Cbit-B). MTT and LDH assays revealed that the cucurbit extracts and Cbit-B, in a concentration dependent manner, decreased the viability of HT-29 and HCT-15 cells substantially. The viability of lymphocytes was, however, only marginally decreased, yielding a potential advantage over the tumor cells. Caspase-3 assay revealed maximum apoptosis with Ls while annexin V assay demonstrated maximum efficacy of Lc in this context. These cucurbits have also shown decreased secretion of IL-8, thereby revealing their anti-inflammatory capability. The results have demonstrated the therapeutic potential of dietary cucurbits in inhibiting cancer and inflammatory cytokine.

  12. Effects of short-chain chlorinated paraffins exposure on the viability and metabolism of human hepatoma HepG2 cells.

    PubMed

    Geng, Ningbo; Zhang, Haijun; Zhang, Baoqin; Wu, Ping; Wang, Feidi; Yu, Zhengkun; Chen, Jiping

    2015-03-03

    Short-chain chlorinated paraffins (SCCPs) have attracted considerable attention for their characteristic of persistent organic pollutants. However, very limited information is available for their toxic effects at environmentally relevant doses, limiting the evaluation of their health risks. In this study, cell viability assay and targeted metabolomic approach was used to evaluate the environmental dose (<100 μg/L) effect of SCCPs on HepG2 cells. Cell viability was found to be decreased with increases in exposure dose of SCCPs. Exposure for 48 h to C10-CPs resulted in a significant reduction in cell viability compared with 24 h, even at 1 μg/L. SCCPs exposure altered the intracellular redox status and caused significant metabolic disruptions. As a kind of peroxisome proliferator, SCCPs specifically stimulated the β-oxidation of unsaturated fatty acids and long-chain fatty acids. Meanwhile, SCCPs exposure disturbed glycolysis and amino acid metabolism, and led to the up-regulation of glutamate metabolism and urea cycle. The toxic effects of SCCPs might mainly involve the perturbation of energy production, protein biosynthesis, fatty acid metabolism, and ammonia recycling.

  13. Effects of demethoxycurcumin on the viability and apoptosis of skin cancer cells.

    PubMed

    Wu, Yaoqun; Zhang, Pei; Yang, Hongyun; Ge, Yong; Xin, Yong

    2017-07-01

    The present study investigated the effects and mechanisms of demethoxycurcumin (DMC) on a human skin squamous cell carcinoma cell line, A431, and a human keratinocyte cell line, HaCaT. A431 and HaCaT cells were cultured in vitro. The effects of DMC treatment on cell viability were analyzed using the Cell Counting kit‑8 (CCK‑8) assay; cell cycle distribution was analyzed by flow cytometry; apoptosis was assessed by flow cytometry and Hoechst 33258 staining; and the protein expression levels of cytochrome c, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (BAX), caspase‑9 and caspase‑3 were evaluated by western blotting. CCK‑8 assay results demonstrated that DMC treatment significantly inhibited viability of A431 and HaCaT cells in a dose‑dependent manner. Flow cytometric analysis confirmed that DMC treatment induced apoptosis in a dose‑dependent manner, and significantly increased the proportion of cells in G2/M phase. Western blot analysis indicated that the protein expression levels of Bcl‑2 were decreased, whereas the expression levels of BAX, caspase‑9, caspase‑3 and cytochrome c were increased following DMC treatment compared with in untreated cells. In conclusion, DMC treatment significantly inhibited viability of A431 and HaCaT cells, and induced cell cycle arrest in G2/M phase. The present study indicated that DMC may induce apoptosis of skin cancer cells through a caspase‑dependent pathway.

  14. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells.

    PubMed

    Radziun, E; Dudkiewicz Wilczyńska, J; Książek, I; Nowak, K; Anuszewska, E L; Kunicki, A; Olszyna, A; Ząbkowski, T

    2011-12-01

    The rapid development of nanotechnology raises both enthusiasm and anxiety among researchers, which is related to the safety use of the manufactured materials. Thus, the aim of this study was to investigate the effect of aluminium oxide nanoparticles on the viability of selected mammalian cells in vitro. The aluminium oxide nanoparticles were characterised using SEM and BET analyses. Based on Zeta (ζ) potential measurements and particle size distribution, the tested suspensions of aluminium oxide nanoparticles in water and nutrient solutions with or without FBS were classified as unstable. Cell viability, the degree of apoptosis induction and nanoparticles internalization into the cells were assessed after 24 h of cell exposure to Al2O3 nanoparticles. Our results confirm the ability of aluminium oxide nanoparticles to penetrate through the membranes of L929 and BJ cells. Despite this, there was no significant increase in apoptosis or decrease in cell viability observed, suggesting that aluminium oxide nanoparticles in the tested range of concentrations has no cytotoxic effects on the selected mammalian cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: a multi-biomarker approach.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera

    2011-09-01

    The aim of this study was to evaluate cytogenotoxic effects of bee venom to human lymphocytes and take a look into the mechanisms behind them. Bee venom was tested in concentrations ranging from 0.1μg/ml to 20μg/ml over different lengths of time. Cell viability, type of the cell death, and morphological alterations were evaluated using phase-contrast and fluorescent microscopy in addition to DNA diffusion assay, whereas cytogenotoxic effects were assessed with the micronucleus test. DNA damage and its relation to oxidative stress were evaluated combining the standard alkaline and the Fpg-modified comet assay. Our results showed lower cell viability, morphological cell alterations, cytogenotoxicity, and dominantly necrotic type of cell death in human lymphocytes after treatment with bee venom. All the effects were time- and dose-dependent. These results provide an insight into the effects of bee venom on the cell structure that could be relevant for therapeutic purposes. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Activin receptor-like kinase 5 inhibition reverses impairment of endothelial cell viability by endogenous islet mesenchymal stromal cells.

    PubMed

    Clarkin, Claire E; King, Aileen J; Dhadda, Paramjeet; Chagastelles, Pedro; Nardi, Nance; Wheeler-Jones, Caroline P; Jones, Peter M

    2013-03-01

    Following islet transplantation, islet graft revascularization is compromised due to loss of endothelial cells (ECs) during islet culture. TGF-β signaling pathways are essential for vascular homeostasis but their importance for islet EC function is unclear. We have identified a population of multipotent mesenchymal stromal cells (MSCs) within islets and investigated how modulation of TGF-β signaling by these cells influences islet EC viability. Cultured islets exhibited reduced expression of EC markers (VEGFR2, VE-cadherin and CD31), which was associated with diminished but sustained expression of endoglin a marker of both ECs and MSCs. Double fluorescent labeling of islets in situ with the EC marker CD31 disclosed a population of CD31-negative cells which were positive for endoglin. In vitro coculture of microvascular ECs with endoglin-positive, CD31-negative islet MSCs reduced VEGFR2 protein expression, disrupted EC angiogenic behavior, and increased EC detachment. Medium conditioned by islet MSCs significantly decreased EC viability and increased EC caspase 3/7 activity. EC:MSC cocultures showed enhanced Smad2 phosphorylation consistent with altered ALK5 signaling. Pharmacological inhibition of ALK5 activity with SB431542 (SB) improved EC survival upon contact with MSCs, and SB-treated cultured islets retained EC marker expression and sensitivity to exogenous VEGF164 . Thus, endoglin-expressing islet MSCs influence EC ALK5 signaling in vitro, which decreases EC viability, and changes in ALK5 activity in whole cultured islets contribute to islet EC loss. Modifying TGF-β signaling may enable maintenance of islet ECs during islet isolation and thus improve islet graft revascularization post-transplantation. Copyright © 2013 AlphaMed Press.

  17. Differential eosinophil and mast cell regulation: Mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65

    PubMed Central

    Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.

    2014-01-01

    Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990

  18. Long non-coding RNA HULC promotes UVB-induced injury by up-regulation of BNIP3 in keratinocytes.

    PubMed

    Zhao, Li; Man, Yigang; Liu, Shumei

    2018-08-01

    Ultraviolet radiation b (UVB) is a common high-energy radiation which can lead to cell damage and even skin cancer. The mechanisms of lncRNAs in various diseases have attracted much attention of researchers. Herein, we investigated the effects and regulations of lncRNA highly up-regulated in liver cancer (HULC) on UVB-induced injury in HaCaT cells. The HaCaT cells were exposed to UVB at a wavelength of 280-320 nm. Cell viability was detected at different times (0, 3, 6, 12 and 24 h) after UVB treatment. Cells were transfected with sh-HULC, pc-HULC, sh-BNIP3 (Bcl-2 interacting protein 3) or pc-BNIP3, respectively. ZM 39,923 HCl was used as JAK/STAT(1/3) inhibitor. Cell viability and apoptosis were tested by trypan blue dye and flow cytometry analysis, respectively. The expression levels of autophagy-related factors were analyzed by Western blot assay. The expression changes of HULC and BNIP3 were measured by qRT-PCR. We found that UVB decreased cell viability, increased apoptosis and autophagy, and up-regulated the expression of HULC in HaCaT cells. Overexpression of HULC reduced cell viability, enhanced apoptosis and autophagy, and up-regulated BNIP3 expression by activating JAK/STAT(1/3) signaling pathway. Finally, BNIP3 suppression increased cell viability, reduced apoptosis and autophagy via the deactivation of mTOR signaling pathway. The results demonstrated that lncRNA HULC up-regulated BNIP3 and activated JAK/STAT(1/3) signaling pathway to accelerate UVB-induced cell damage in HaCaT cells. This study provides a possible target for the clinical treatment of UVB-induced keratinocyte injury. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Effect of histone deacetylase inhibitor in combination with 5-fluorouracil on pancreas cancer and cholangiocarcinoma cell lines.

    PubMed

    Iwahashi, Shuichi; Ishibashi, Hiroki; Utsunomiya, Tohru; Morine, Yuji; Ochir, Tovuu Lkhaguva; Hanaoka, Jun; Mori, Hiroki; Ikemoto, Tetsuya; Imura, Satoru; Shimada, Mitsuo

    2011-02-01

    Histone deacetylase (HDAC) is well known to be associated with tumorigenesis through epigenetic regulation, and its inhibitors (HDACIs) induce differentiation and apoptosis of tumor cells. We examined the therapeutic effects of valproic acid (VPA, a HDACI) with a combination of 5-fluorouracil (5-FU) in vitro. A human pancreas cancer cell line (SUIT-2) and a cholangiocarcinoma cell line (HuCCT1) were used. Cell viabilities were evaluated by a cell proliferation assay. We determined the anticancer effects of VPA combined with 5-FU in these cell lines. Pancreas cancer (SUIT-2): No effect of 5-FU (1.0 µM) was observed, but 17% and 30% of proliferation-inhibitory effects were recognized in a dose of 2.5 or 5.0 µM, respectively. Cell viability was only weakly reduced by VPA (0.5 mM). However, in combination of 5-FU (1.0 µM) with VPA (0.5 mM), 19% of inhibitory effect was observed. Cholangiocarcinoma (HuCCT1): 5-FU (1.0 µM) did not suppress the cell viability, but 5-FU (2.5 µM) suppressed by 23%. VPA (0.5 mM) did not suppress the cell viability, while VPA (1.0 mM) weakly decreased it by 11%. Combination of 5-FU (1.0 µM) and VPA (0.5 mM) markedly reduced the cell viability by 30%. VPA augmented the anti-tumor effects of 5-FU in cancer cell lines. Therefore, a combination therapy of 5-FU plus VPA may be a promising therapeutic option for patients with pancreas cancer and cholangiocarcinoma.

  20. Hypericum caprifoliatum and Hypericum connatum affect human trophoblast-like cells differentiation and Ca2+ influx

    PubMed Central

    da Conceição, Aline O.; von Poser, Gilsane Lino; Barbeau, Benoit; Lafond, Julie

    2014-01-01

    Objective To study the effect of crude methanol and n-hexane extracts of Hypericum connatum (H. connatum) and Hypericum caprifoliatum on trophoblast-like cells. Methods BeWo and JEG-3 trophoblast-like cells were submitted to different extract concentrations (1, 5, 10 and 15 µg/mL) and evaluated in relation to cell viability and in vitro trophoblast differentiation and function. Cell viability was evaluated using WST-1 reagent. Differentiation was measured by luciferase production, hCG production/release, and mitogen-activated protein kinase signaling pathway activation. The function of the trophoblast-like cells was measured by 45Ca2+ influx evaluation. Results The results showed a decrease in cell viability/proliferation. Both plants and different extracts induced a significant decrease in hCG production/release and luciferase production. H. connatum did not cause mitogen-activated protein kinase signaling pathway disturbance; however, Hypericum caprifoliatum n-hexane extract at 15 µg/mL inhibited extracellular signal-regulated kinase 1/2 activation. The significant increase in Ca2+ influx by JEG-3 cells was seen after short and long incubation times with H. connatum methanolic extract at 15 µg/mL. Conclusions The results indicated that these two Hypericum species extracts can interfere on trophoblast differentiation and Ca2+ influx, according to their molecular diversity. Although in vivo experiments are necessary to establish their action on placental formation and function, this study suggests that attention must be paid to the potential toxic effect of these plants. PMID:25182721

  1. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression.

    PubMed

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-05-23

    Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27(kip-1) increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27(kip-1).

  2. Attenuation of Oxidative Stress-Induced Cell Apoptosis in Schwann RSC96 Cells by Ocimum Gratissimum Aqueous Extract

    PubMed Central

    Chao, Pei-Yu; Lin, James A.; Ye, Je-Chiuan; Hwang, Jin-Ming; Ting, Wei-Jen; Huang, Chih-Yang; Liu, Jer-Yuh

    2017-01-01

    Objectives:Cell transplantation therapy of Schwann cells (SCs) is a promising therapeutic strategy after spinal cord injury. However, challenges such as oxidative stress hinder satisfactory cell viability and intervention for enhancing SCs survival is critical throughout the transplantation procedures. Ocimum gratissimum, widely used as a folk medicine in many countries, has therapeutic and anti-oxidative properties and may protect SCs survival. Methods:We examined the protective effects of aqueous O. gratissimum extract (OGE) against cell damage caused by H2O2-induced oxidative stress in RSC96 Schwann cells. Results:Our results showed that the RSC96 cells, damaged by H2O2 oxidative stress, decreased their viability up to 32% after treatment with different concentrations of up to 300 μM H2O2, but OGE pretreatment (150 or 200 μg/mL) increased cell viability by approximately 62% or 66%, respectively. Cell cycle analysis indicated a high (43%) sub-G1 cell population in the H2O2-treated RSC96 cells compared with untreated cells (1%); whereas OGE pretreatment (150 and 200 μg/mL) of RSC96 cells significantly reduced the sub-G1 cells (7% and 8%, respectively). Furthermore, Western blot analysis revealed that OGE pretreatment inhibited H2O2-induced apoptotic protein caspase-3 activation and PARP cleavage, as well as it reversed Bax up-regulation and Bcl-2 down-regulation. The amelioration of OGE of cell stress and stress-induced apoptosis was proved by the HSP70 and HSP72 decrease. Conclusion: Our data suggest that OGE may minimize the cytotoxic effects of H2O2-induced SCs apoptosis by modulating the apoptotic pathway and could potentially supplement cell transplantation therapy. PMID:28824312

  3. Safety profiles of anti-VEGF drugs: bevacizumab, ranibizumab, aflibercept and ziv-aflibercept on human retinal pigment epithelium cells in culture

    PubMed Central

    Malik, Deepika; Tarek, Mohamed; Caceres del Carpio, Javier; Ramirez, Claudio; Boyer, David; Kenney, M Cristina; Kuppermann, Baruch D

    2014-01-01

    Purpose To compare the safety profiles of antivascular endothelial growth factor (VEGF) drugs ranibizumab, bevacizumab, aflibercept and ziv-aflibercept on retinal pigment epithelium cells in culture. Methods Human retinal pigment epithelium cells (ARPE-19) were exposed for 24 h to four anti-VEGF drugs at 1/2×, 1×, 2× and 10× clinical concentrations. Cell viability and mitochondrial membrane potential assay were performed to evaluate early apoptotic changes and rate of overall cell death. Results Cell viability decreased at 10× concentrations in bevacizumab (82.38%, p=0.0001), aflibercept (82.68%, p=0.0002) and ziv-aflibercept (77.25%, p<0.0001), but not at lower concentrations. However, no changes were seen in cell viability in ranibizumab-treated cells at all concentrations including 10×. Mitochondrial membrane potential was slightly decreased in 10× ranibizumab-treated cells (89.61%, p=0.0006) and 2× and 10× aflibercept-treated cells (88.76%, 81.46%; p<0.01, respectively). A larger reduction in mitochondrial membrane potential was seen at 1×, 2× and 10× concentrations of bevacizumab (86.53%, 74.38%, 66.67%; p<0.01) and ziv-aflibercept (73.50%, 64.83% and 49.65% p<0.01) suggestive of early apoptosis at lower doses, including the clinical doses. Conclusions At clinical doses, neither ranibizumab nor aflibercept produced evidence of mitochondrial toxicity or cell death. However, bevacizumab and ziv-aflibercept showed mild mitochondrial toxicity at clinically relevant doses. PMID:24836865

  4. Uncoupling reproduction from metabolism extends chronological lifespan in yeast

    PubMed Central

    Nagarajan, Saisubramanian; Kruckeberg, Arthur L.; Schmidt, Karen H.; Kroll, Evgueny; Hamilton, Morgan; McInnerney, Kate; Summers, Ryan; Taylor, Timothy; Rosenzweig, Frank

    2014-01-01

    Studies of replicative and chronological lifespan in Saccharomyces cerevisiae have advanced understanding of longevity in all eukaryotes. Chronological lifespan in this species is defined as the age-dependent viability of nondividing cells. To date this parameter has only been estimated under calorie restriction, mimicked by starvation. Because postmitotic cells in higher eukaryotes often do not starve, we developed a model yeast system to study cells as they age in the absence of calorie restriction. Yeast cells were encapsulated in a matrix consisting of calcium alginate to form ∼3 mm beads that were packed into bioreactors and fed ad libitum. Under these conditions cells ceased to divide, became heat shock and zymolyase resistant, yet retained high fermentative capacity. Over the course of 17 d, immobilized yeast cells maintained >95% viability, whereas the viability of starving, freely suspended (planktonic) cells decreased to <10%. Immobilized cells exhibited a stable pattern of gene expression that differed markedly from growing or starving planktonic cells, highly expressing genes in glycolysis, cell wall remodeling, and stress resistance, but decreasing transcription of genes in the tricarboxylic acid cycle, and genes that regulate the cell cycle, including master cyclins CDC28 and CLN1. Stress resistance transcription factor MSN4 and its upstream effector RIM15 are conspicuously up-regulated in the immobilized state, and an immobilized rim15 knockout strain fails to exhibit the long-lived, growth-arrested phenotype, suggesting that altered regulation of the Rim15-mediated nutrient-sensing pathway plays an important role in extending yeast chronological lifespan under calorie-unrestricted conditions. PMID:24706810

  5. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced cytotoxicity accompanied by oxidative stress in rat Sertoli cells: Possible role of mitochondrial fractions of Sertoli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, Hamdy A.A., E-mail: hamdyaali@yahoo.com; Khafagy, Rasha M.

    2011-05-01

    TCDD, as an endocrine disruptor, is known to impair testicular functions and fertility. To elucidate the mechanism(s) underlying the testicular effects of TCDD, the potential toxicity of TCDD on Sertoli cells was investigated. Furthermore, the study aims to delineate whether mitochondrial fractions of Sertoli cells are involved in mediating the testicular effects of TCDD. Adult rat Sertoli cells were incubated with (5, 10 or 15 nM) of TCDD for 6, 12 or 24 h. Cell viability, lactate and LDH leakage into media along with lipid peroxidation, ROS generation, SOD, CAT, GPx, GR, {gamma}-GT and {beta}-glucuronidase activities, GSH content and {Delta}{psi}{submore » m} were measured. Superoxide anion production, COX and cardiolipin content were measured in mitochondrial fractions. Cell viability was significantly decreased while lactate and LDH leakage into media were increased. ROS generation along with lipid peroxidation was also increased. SOD, CAT, GPx, GR activities and GSH content were significantly decreased. {gamma}-GT and {beta}-glucuronidase activities were also decreased. Superoxide anion production was increased while COX activity and cardiolipin content were decreased in mitochondrial fractions. Moreover, the {Delta}{psi}{sub m} was significantly decreased as measured in Sertoli cells. In conclusion, TCDD impairs Sertoli cell functions and this effect is, at least in part, attributed to oxidative stress. We have also found that TCDD increases mitochondrial superoxide anion production and decreases {Delta}{psi}{sub m}, COX activity and mitochondrial cardiolipin content. Our findings suggest that mitochondria may play an important role in ROS production, leading to the TCDD-induced oxidative stress response and resulting toxicological consequences in rat Sertoli cells.« less

  6. Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle (君臣佐使論)

    PubMed Central

    Shin, Jeong-Hun; Jun, Seung-lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun

    2012-01-01

    Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論) to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle. PMID:25780653

  7. Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle ().

    PubMed

    Shin, Jeong-Hun; Jun, Seung-Lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun

    2012-12-01

    This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle () to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. In the sovereign, minister, assistant and courier principle (), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle.

  8. Protective role of edaravone against cisplatin-induced ototoxicity in an auditory cell line.

    PubMed

    Im, Gi Jung; Chang, Jiwon; Lee, Sehee; Choi, June; Jung, Hak Hyun; Lee, Hyung Min; Ryu, Sung Hoon; Park, Su Kyoung; Kim, Jin Hwan; Kim, Hyung-Jong

    2015-12-01

    Edaravone is a neuroprotective agent with a potent free radical scavenging and antioxidant actions. In the present study we investigated the influence of edaravone on cisplatin ototoxicity in auditory cells. Cell viability was determined using a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cell proliferation assay. Oxidative stress and apoptosis were assessed by reactive oxygen species (ROS) measurement, Hoechst 33258 staining, caspase-3 activity assay, and immunoblotting of PARP. Pretreatment with 100 μM of edaravone prior to application of 15 μM of cisplatin increased cell viability after 48 h of incubation in HEI-OC1 cells (from 51.9% to 64. 6% viability) and also, attenuated the cisplatin-induced increase in reactive oxygen species (ROS) (from 2.3 fold to 1.9 fold). Edaravone also decreased the activation of caspase-3 and reduced levels of cleaved poly-ADP-ribose polymerase (PARP). We propose that edaravone protects against cisplatin-induced ototoxicity by preventing apoptosis, and limiting ROS production in HEI-OC1 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Antioxidant Activity and Cytotoxicity Effect of Cocoa Beans Subjected to Different Processing Conditions in Human Lung Carcinoma Cells

    PubMed Central

    Bauer, Deborah; de Abreu, Joel Pimentel; Oliveira, Hilana Salete Silva; Goes-Neto, Aristoteles; Koblitz, Maria Gabriela Bello

    2016-01-01

    Lung cancer is a common malignancy in men and the second leading cause of cancer-related mortality in men in the western world. Phenolic cocoa ingredients have a strong antioxidative activity and the potential to have a protective effect against cancer. In the present study, we have evaluated the influence of cocoa beans subjected to different processing conditions on cell viability and apoptosis of human lung cancer cells (A549). We measured the viability of lung cells treated with cocoa beans, unroasted slates (US), roasted slates (RS), unroasted well fermented (UWF) cocoa, and roasted well fermented (RWF) cocoa for 24 h. Using an MTT assay, we observed a decrease in the viability of A549 cells after treatment with cocoa bean extracts. Flow cytometer analysis revealed that cocoa beans increased the percentage of cells in sub-G1 phase and promoted up to twofold increase of apoptotic cells when compared to the control group. Taken together, the present study suggests that cocoa beans may have a protective effect against lung cancer. PMID:27034742

  10. Effects of long-term cryopreservation on peripheral blood progenitor cells.

    PubMed

    Vosganian, Gregory S; Waalen, Jill; Kim, Kevin; Jhatakia, Sejal; Schram, Ethan; Lee, Tracey; Riddell, Dan; Mason, James R

    2012-11-01

    The long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA). We randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture. An age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity. Cryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34(+) cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.

  11. In vitro effects of preserved and unpreserved anti-allergic drugs on human corneal epithelial cells.

    PubMed

    Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-11-01

    Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures.

  12. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells.

    PubMed

    Sasaki, Natsuki; Nakamura, Masayuki; Kodama, Akiko; Urata, Yuka; Shiokawa, Nari; Hayashi, Takehiro; Sano, Akira

    2016-11-01

    The autophagy pathway has recently been implicated in several neurodegenerative diseases. Recently, it was reported that chorein-depleted cells showed accumulation of autophagic markers and impaired autophagic flux. Here, we demonstrate that chorein overexpression preserves cell viability from starvation-induced cell death in human embryonic kidney 293 (HEK293) cells. Subsequent coimmunoprecipitation and reverse coimmunoprecipitation assays using extracts from chorein that stably overexpressed HEK293 cells revealed that chorein interacts with α-tubulin and histone deacetylase 6, a known α-tubulin deacetylater and central component of basal autophagy. Indeed, acetylated α-tubulin immunoreactivity was significantly decreased in chorein that stably overexpressed HEK293 cells. These results suggest that chorein/histone deacetylase 6/α-tubulin interactions may play an important role in starvation-induced cell stress, and their disruption may be one of the molecular pathogenic mechanisms of chorea-acanthocytosis.-Sasaki, N., Nakamura, M., Kodama, A., Urata, Y., Shiokawa, N., Hayashi, T., Sano, A. Chorein interacts with α-tubulin and histone deacetylase 6, and overexpression preserves cell viability during nutrient deprivation in human embryonic kidney 293 cells. © FASEB.

  13. Viability and DNA fragmentation of rainbow trout embryos (Oncorhynchus mykiss) obtained from eggs stored at 4 °C.

    PubMed

    Ubilla, A; Valdebenito, I; Árias, M E; Risopatrón, J

    2016-05-01

    In vitro storage of salmonid eggs leads to aging of the cells causing a decline in quality and reducing their capacity to develop and produce embryos. The quality of salmonid embryos is assessed by morphologic analyses; however, data on the application of biomarkers to determine the cell viability and DNA integrity of embryos in these species are limited. The aim of this study was to evaluate the effect on embryo development, viability and DNA fragmentation in the embryonic cells of in vitro storage time at 4 °C of rainbow trout (Oncorhynchus mykiss) eggs. The embryos were obtained by IVF from eggs stored for 0 (control), 48, and 96 hours at 4 °C. At 72 hours after fertilization, dechorionated embryos were examined to determine percentages of developed embryos (embryos with normal cell division morphology), viability (LIVE/DEAD sperm viability kit), and DNA integrity (terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay). The percentage of developing embryos decreased (P < 0.05) with storage time of the eggs (95.10 ± 2.55; 88.14 ± 4.50; 79.99 ± 6.60 for 0, 48, and 96 hours, respectively). Similarly, cell viability decreased (P < 0.05; 96.07 ± 7.15; 80.42 ± 8.55; 77.47 ± 7.88 for 0, 48, and 96 hours, respectively), and an increase (P < 0.05) in DNA fragmentation in the embryos was observed at 96-hour storage. A positive correlation was found between cell DNA fragmentation and storage time (r = 0.8173; P < 0.0001). The results revealed that terminal deoxynucleotidyl transferase [TdT] dUTP nick-end labeling assay technique is reliable mean to assess the state of the DNA in salmonid embryos and that in vitro eggs storage for 96h reduces embryo development and cell DNA integrity. DNA integrity evaluation constitutes a biomarker of the quality of the ova and resulting embryos so as to predict their capacity to produce good-quality embryos in salmonids, particularly under culture conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of alpha-tocopherol on bovine in vitro fertilization.

    PubMed

    Marques, A; Santos, P; Antunes, G; Chaveiro, A; Moreira da Silva, F

    2010-02-01

    The objectives of this work are to determine if exogenous supplementation with alpha-tocopherol increases the in vitro fertilization (IVF) rate of bovine oocytes and improves viability of selected spermatozoa after 'swim-up'. The percentage of fertilized oocytes was significantly but negatively correlated (r = -0.941, p < 0.01) with the concentration of alpha-tocopherol. The control resulted in 95% of fertilized oocytes, which decreased as follows: 25 microM alpha-tocopherol (alpha25) 86%, 50 microM alpha-tocopherol (alpha50) 74%, 100 microM alpha-tocopherol (alpha100) 66% and 200 microM alpha-tocopherol (alpha200) 56%. Relatively to sperm viability after 'swim-up' with alpha-tocopherol supplementation, this antioxidant proved to have a beneficial effect as its concentration increased up to alpha50, decreasing for the concentrations of alpha100 and alpha200. Control resulted in 83% of live cells and 16% of dead cells; alpha25 resulted in 88% of live cells and 12% of dead cells; alpha50 resulted in 91% of live cells and 9% of dead cells; alpha100 resulted in 67% of live cells and 33% of dead cells; and finally alpha200 resulted in 57% of live cells and 42% of dead cells. In summary, the present study allows to conclude that, in our conditions, supplementation with the antioxidant alpha-tocopherol in IVF of bovine oocytes has a detrimental effect on fertilization rates. Nevertheless, exogenous supplementation with alpha-tocopherol at a concentration of 50 mM in the sperm-TALP media during the 'swim-up' technique has a significant beneficial effect on the selected spermatozoa viability.

  15. Cytokinetic study of MCF-7 cells treated with commercial and recombinant bromelain.

    PubMed

    Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun

    2014-01-01

    Breast cancer is a leading cause of death in women. The available chemotherapy drugs have been associated with many side effects. Bromelain has novel medicinal qualities including anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Commercially available bromelain is obtained through tedious methods; therefore, recombinant bromelain may provide a cheaper and simpler choice with similar quality. This study aimed to assess the effects of commercial and recombinant bromelain on the cytokinetic behavior of MCF-7 breast cancer cells and their potential as therapeutic alternatives in cancer treatment. Cytotoxic activities of commercial and recombinant bromelain were determined using (sulforhodamine) SRB assay. Next, cell viability assays were conducted to determine effects of commercial and recombinant bromelain on MCF-7 cell cytokinetic behavior. Finally, the established growth kinetic data were used to modify a model that predicts the effects of commercial and recombinant bromelain on MCF-7 cells. Commercial and recombinant bromelain exerted strong effects towards decreasing the cell viability of MCF-7 cells with IC50 values of 5.13 μg/mL and 6.25 μg/mL, respectively, compared to taxol with an IC50 value of 0.063 μg/mL. The present results indicate that commercial and recombinant bromelain both have anti-proliferative activity, reduced the number of cell generations from 3.92 to 2.81 for commercial bromelain and to 2.86 for recombinant bromelain, while with taxol reduction was to 3.12. Microscopic observation of bromelain-treated MCF-7 cells demonstrated detachment. Inhibition activity was verified with growth rates decreased dynamically from 0.009 h-1 to 0.0059 h-1 for commercial bromelain and to 0.0063 h-1 for recombinant bromelain. Commercial and recombinant bromelain both affect cytokinetics of MCF-7 cells by decreasing cell viability, demonstrating similar strength to taxol.

  16. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma.

    PubMed

    Lin, Chongxiang; Tu, Chengwei; Ma, Yike; Ye, Pengcheng; Shao, Xia; Yang, Zhaoan; Fang, Yiming

    2017-10-01

    Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Diphenyldifluoroketone (EF24) is a curcumin analog that has been demonstrated to improve anticancer activity; however, its therapeutic potential and mechanisms in oral cancer remain unknown. In the present study, the effect of EF24 on apoptosis induction and its potential underlying mechanism in the CAL‑27 human OSCC cell line was investigated. To achieve this, various concentrations of cisplatin or EF24 were administrated to CAL‑27 cells for 24 h, and cell viability, apoptotic DNA fragmentation, and cleaved caspase 3 and 9 levels were evaluated. To investigate the potential underlying mechanism, the levels of mitogen‑activated protein kinase kinase 1 (MEK1) and extracellular signal‑regulated kinase (ERK), two key proteins in the mitogen‑activated protein kinase/ERK signaling pathway, were additionally examined. The results indicated that EF24 and cisplatin treatment decreased cell viability. EF24 treatment increased the levels of activated caspase 3 and 9, and decreased the phosphorylated forms of MEK1 and ERK. Sequential treatments of EF24 and 12‑phorbol‑13‑myristate acetate, a MAPK/ERK activator, resulted in a significant increase of activated MEK1 and ERK, and reversed cell viability. These results suggested that EF24 has potent anti‑tumor activity in OSCC via deactivation of the MAPK/ERK signaling pathway. Further analyses using animal models are required to confirm these findings in vivo.

  17. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    PubMed Central

    Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher

    2017-01-01

    Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546

  18. Effect of photobiomodulation on viability and proliferation of stem cells from exfoliated deciduous teeth under different nutritional conditions

    NASA Astrophysics Data System (ADS)

    Morato de Souza, Letícia; Guilherme Roque Rinco, Ugo; Aparecida Tavares Aguiar, Daniela; Aparecido de Almeida Junior, Luciano; Cosme-Silva, Leopoldo; Marchini Oliveira, Thais; Teixeira Marques, Nádia Carolina; Thiemy Sakai, Vivien

    2018-02-01

    This study aimed to evaluate the effect of different doses of low-level laser irradiation on the viability and proliferation of stem cells from exfoliated deciduous teeth (SHED) cultured under nutritional deficit (cellular stress) or regular nutritional conditions. SHED underwent irradiation by a red laser between 1.2 and 6.2 J cm-2. Prior to the irradiation, all groups received culture medium (MEMα, Eagle’s minimum essential medium alpha modification) supplemented with 1% of fetal bovine serum (FBS) for 1 h. After the irradiation, cells received MEMα supplemented with 10% of FBS (regular nutrition) or 1% of FBS (nutritional deficit). Cell viability and proliferation were respectively determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assays 6 and 24 h after irradiation (P  <  0.05). At 24 h, SHED under nutritional deficit showed lower viability and proliferation after 1.2 J cm-2 irradiation. All of the irradiated groups revealed significantly higher viability and proliferation in SHED maintained under nutritional deficit than in regular nutritional conditions, except in the 3.7 and 6.2 J cm-2 groups by MTT assay. In the crystal violet assay, SHED irradiated with 1.2 J cm-2 showed no difference between the different nutritional conditions. Decrease of FBS concentration in the culture medium seems to enhance the sensitivity of SHED to the effects of photobiomodulation therapy. Nutritional stress conditions improved cell viability and proliferation of SHED after laser irradiation, except for 1.2 J cm-2.

  19. Viability and Isolation of Marine Bacteria by Dilution Culture: Theory, Procedures, and Initial Results

    PubMed Central

    Button, D. K.; Schut, Frits; Quang, Pham; Martin, Ravonna; Robertson, Betsy R.

    1993-01-01

    Dilution culture, a method for growing the typical small bacteria from natural aquatic assemblages, has been developed. Each of 11 experimental trials of the technique was successful. Populations are measured, diluted to a small and known number of cells, inoculated into unamended sterilized seawater, and examined three times for the presence of 104 or more cells per ml over a 9-week interval. Mean viability for assemblage members is obtained from the frequency of growth, and many of the cultures produced are pure. Statistical formulations for determining viability and the frequency of pure culture production are derived. Formulations for associated errors are derived as well. Computer simulations of experiments agreed with computed values within the expected error, which verified the formulations. These led to strategies for optimizing viability determinations and pure culture production. Viabilities were usually between 2 and 60% and decreased with >5 mg of amino acids per liter as carbon. In view of difficulties in growing marine oligobacteria, these high values are noteworthy. Significant differences in population characteristics during growth, observed by high-resolution flow cytometry, suggested substantial population diversity. Growth of total populations as well as of cytometry-resolved subpopulations sometimes were truncated at levels of near 104 cells per ml, showing that viable cells could escape detection. Viability is therefore defined as the ability to grow to that population; true viabilities could be even higher. Doubling times, based on whole populations as well as individual subpopulations, were in the 1-day to 1-week range. Data were examined for changes in viability with dilution suggesting cell-cell interactions, but none could be confirmed. The frequency of pure culture production can be adjusted by inoculum size if the viability is known. These apparently pure cultures produced retained the size and apparent DNA-content characteristic of the bulk of the organisms in the parent seawater. Three cultures are now available, two of which have been carried for 3 years. The method is thus seen as a useful step for improving our understanding of typical aquatic organisms. PMID:16348896

  20. The effect of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow‑derived mesenchymal stem cells.

    PubMed

    Javanmard, F; Azadbakht, M; Pourmoradi, M

    2016-01-01

    In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.

  1. The effect of five artificial sweeteners on Caco-2, HT-29 and HEK-293 cells.

    PubMed

    van Eyk, Armorel Diane

    2015-01-01

    Artificial sweeteners (AS) have been associated with tumor development (including colon cancer) in both animals and humans although evidence has been conflicting. Additional research was thus conducted by studying the effects of 5 AS on the morphology, cell proliferation and DNA in cells by utilizing Caco-2, HT-29 (colon) and HEK-293 (kidney) cell lines. Cells were exposed to sodium cyclamate, sodium saccharin, sucralose and acesulfame-K (0-50 mM) and aspartame (0-35 mM) over 24, 48 and 72 hours. Morphological changes were presented photographically and % cell viability was determined by using the MTT cell viability assay. Possible DNA damage (comet assay) induced by the AS (0.1, 1 and 10 mM, treated for 24, 48 and 72 hours) was studied. The appearance of "comets" was scored from no damage to severe damage (0-4). Cells became flatter and less well defined at higher AS concentrations (>10 mM). At concentrations >10 mM, decreased cell viability was noted with both increasing concentration and increasing incubation time for all cell lines tested. In general, HEK-293 cells seemed to be less affected then the colon cancer cells. Sucralose and sodium saccharin seemed to elicit the greatest degree of DNA fragmentation of all the sweeteners tested in all the cell lines used. Morphological cell alterations, cell viability and DNA fragmentation seemed to be more in the colon cancer cells. Further studies have to be performed to clarify mechanisms involved causing these alterations in mammalian cells.

  2. TNF-α inhibits SCF, ghrelin, and substance P expressions through the NF-κB pathway activation in interstitial cells of Cajal.

    PubMed

    Ren, Keyu; Yong, Chunming; Yuan, Hao; Cao, Bin; Zhao, Kun; Wang, Jin

    2018-01-01

    Ulcerative colitis is a chronic inflammatory disease of the colon where intestinal motility is disturbed. Interstitial cells of Cajal (ICC) are required to maintain normal intestinal motility. In the present study, we assessed the effect of tumor necrosis factor-alpha (TNF-α) on viability and apoptosis of ICC, as well as on the expression of stem cell factor (SCF), ghrelin, and substance P. ICC were derived from the small intestines of Swiss albino mice. Cell viability and apoptosis were measured using CCK-8 assay and flow cytometry, respectively. ELISA was used to measure the concentrations of IL-1β, IL-6, ghrelin, substance P, and endothelin-1. Quantitative RT-PCR was used to measure the expression of SCF. Western blotting was used to measure the expression of apoptosis-related proteins, interleukins, SCF, and NF-κB signaling pathway proteins. TNF-α induced inflammatory injury in ICC by decreasing cell viability and increasing apoptosis and levels of IL-1β and IL-6. TNF-α decreased the levels of SCF, ghrelin, and substance P, but had no effect on endothelin-1. TNF-α down-regulated expressions of SCF, ghrelin, and substance P by activating the NF-κB pathway in ICC. In conclusion, TNF-α down-regulated the expressions of SCF, ghrelin, and substance P via the activation of the NF-κB pathway in ICC.

  3. Survivin Modulates Squamous Cell Carcinoma-Derived Stem-Like Cell Proliferation, Viability and Tumor Formation in Vivo

    PubMed Central

    Lotti, Roberta; Palazzo, Elisabetta; Petrachi, Tiziana; Dallaglio, Katiuscia; Saltari, Annalisa; Truzzi, Francesca; Quadri, Marika; Puviani, Mario; Maiorana, Antonino; Marconi, Alessandra; Pincelli, Carlo

    2016-01-01

    Squamous Cell Carcinoma-derived Stem-like Cells (SCC-SC) originate from alterations in keratinocyte stem cells (KSC) gene expression and sustain tumor development, invasion and recurrence. Since survivin, a KSC marker, is highly expressed in SCC-SC, we evaluate its role in SCC-SC cell growth and SCC models. Survivin silencing by siRNA decreases clonal growth of SCC keratinocytes and viability of total, rapidly adhering (RAD) and non-RAD (NRAD) cells from primary SCC. Similarly, survivin silencing reduces the expression of stem cell markers (OCT4, NOTCH1, CD133, β1-integrin), while it increases the level of differentiation markers (K10, involucrin). Moreover, survivin silencing improves the malignant phenotype of SCC 3D-reconstruct, as demonstrated by reduced epidermal thickness, lower Ki-67 positive cell number, and decreased expression of MMP9 and psoriasin. Furthermore, survivin depletion by siRNA in RasG12V-IκBα-derived tumors leads to smaller tumor formation characterized by lower mitotic index and reduced expression of the tumor-associated marker HIF1α, VEGF and CD51. Therefore, our results indicate survivin as a key gene in regulating SCC cancer stem cell formation and cSCC development. PMID:26771605

  4. PI3K and Bcl-2 inhibition primes glioblastoma cells to apoptosis through downregulation of Mcl-1 and Phospho-BAD.

    PubMed

    Pareja, Fresia; Macleod, David; Shu, Chang; Crary, John F; Canoll, Peter D; Ross, Alonzo H; Siegelin, Markus D

    2014-07-01

    Glioblastoma multiforme (GBM) is a highly malignant human brain neoplasm with limited therapeutic options. GBMs display a deregulated apoptotic pathway with high levels of the antiapoptotic Bcl-2 family of proteins and overt activity of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Therefore, combined interference of the PI3K pathway and the Bcl-2 family of proteins is a reasonable therapeutic strategy. ABT-263 (Navitoclax), an orally available small-molecule Bcl-2 inhibitor, and GDC-0941, a PI3K inhibitor, were used to treat established glioblastoma and glioblastoma neurosphere cells, alone or in combination. Although GDC-0941 alone had a modest effect on cell viability, treatment with ABT-263 displayed a marked reduction of cell viability and induction of apoptotic cell death. Moreover, combinatorial therapy using ABT-263 and GDC-0941 showed an enhanced effect, with a further decrease in cellular viability. Furthermore, combination treatment abrogated the ability of stem cell-like glioma cells to form neurospheres. ABT-263 and GDC-0941, in combination, resulted in a consistent and significant increase of Annexin V positive cells and loss of mitochondrial membrane potential compared with either monotherapy. The combination treatment led to enhanced cleavage of both initiator and effector caspases. Mechanistically, GDC-0941 depleted pAKT (Serine 473) levels and suppressed Mcl-1 protein levels, lowering the threshold for the cytotoxic actions of ABT-263. GDC-0941 decreased Mcl-1 in a posttranslational manner and significantly decreased the half-life of Mcl-1 protein. Ectopic expression of human Mcl-1 mitigated apoptotic cell death induced by the drug combination. Furthermore, GDC-0941 modulated the phosphorylation status of BAD, thereby further enhancing ABT-263-mediated cell death. Combination therapy with ABT-263 and GDC-0941 has novel therapeutic potential by specifically targeting aberrantly active, deregulated pathways in GBM, overcoming endogenous resistance to apoptosis. ©2014 American Association for Cancer Research.

  5. Influence of polyphenol extract from evening primrose (Oenothera paradoxa) seeds on human prostate and breast cancer cell lines.

    PubMed

    Lewandowska, Urszula; Owczarek, Katarzyna; Szewczyk, Karolina; Podsędek, Anna; Koziołkiewicz, Maria; Hrabec, Elżbieta

    2014-02-03

    There is growing interest in plant polyphenols which exhibit pleiotropic biological activities, including anti-inflammatory, antioxidant, and anticancer effects. The objective of our study was to evaluate the influence of an evening primrose extract (EPE) from defatted seeds on viability and invasiveness of three human cell lines: PNT1A (normal prostate cells), DU145 (prostate cancer cells) and MDA-MB-231 (breast cancer cells). The results revealed that after 72 h of incubation the tested extract reduced the viability of DU 145 and MDA-MB-231 with IC50 equal to 14.5 μg/mL for both cell lines. In contrast, EPE did not inhibit the viability of normal prostate cells. Furthermore, EPE reduced PNT1A and MDA-MB-231 cell invasiveness; at the concentration of 21.75 μg/mL the suppression of invasion reached 92% and 47%, respectively (versus control). Additionally, zymographic analysis revealed that after 48 h of incubation EPE inhibited metalloproteinase-2 (MMP-2) and metalloproteinase-9 (MMP-9) activities in a dose-dependent manner. For PNT1A the activities of MMP-2 and MMP-9 decreased 4- and 2-fold, respectively, at EPE concentration of 29 μg/mL. In the case of MDA-MB-231 and DU 145 the decrease in MMP-9 activity at EPE concentration of 29 μg/mL was 5.5-fold and almost 1.9-fold, respectively. In conclusion, this study suggests that EPE may exhibit antimigratory, anti-invasive and antimetastatic potential towards prostate and breast cancer cell lines.

  6. [Cytotoxicity induced by gasoline engine exhausts associated with oxidative stress].

    PubMed

    Che, Wangjun; Zhang, Zunzhen; Wu, Mei; Wang, Ling

    2008-09-01

    To evaluate the relationship between cytotoxic effects of the extracts of condensate, particulates and semivolatile organic compounds from gasoline engine exhausts (EGE) and oxidative stress. After A549 cells were treated with various concentrations of EGE for 2h, and cell viabilities were detected induced by EGE were examined by MTT assay. Meanwhile, the reactive oxygen species (ROS) in A549 cells induced by EGE were examined, 2',7'-dichlorodihy-drofluorescin diacetate (DCFH-DA) was used to catch ROS and its level measured by value of pixel fluorescence intensity. Furthermore, A549 cells pretreated with different concentrations of glutathione (GSH) were exposed to various concentrations of EGE for 2h, and then cell viabilities were examined. Viabilities of A549 cells significantly decreased in comparison to the solvent group when the concentrations of EGE were more than 3.9 ml/ml (P < 0.05). There were a dose-response relationships between the viabilities and the concentration of EGE (r = -0.81, P < 0.01). At the concentrations of 31.3 ml/ml and 62.5 ml/ml, the values of pixel fluorescence intensity were (125.0 +/- 19.2) and (168.9 +/- 16.9), which were significantly higher than those of control (8.5 +/- 1.4). In addition, the viabilities of cells pretreated with GSH gradually increased with the increases of the concentrations of GSH. There were also a significant difference between the pretreated and non-pretreated group at the concentrations of 0.5 mmol/L and 1.0 mmol/L. Oxidative stress could be one of the mechanisms of cytotoxic effects of EGE.

  7. Biological Function of Ribosomal Protein L10 on Cell Behavior in Human Epithelial Ovarian Cancer

    PubMed Central

    Shi, Jimin; Zhang, Lingyun; Zhou, Daibing; Zhang, Jinguo; Lin, Qunbo; Guan, Wencai; Zhang, Jihong; Ren, Weimin; Xu, Guoxiong

    2018-01-01

    Ribosomal protein L10 (RPL10) is one of large ribosomal proteins and plays a role in Wilms' tumor and premature ovarian failure. However, the function of RPL10 in human epithelial ovarian cancer (EOC) remains unknown. The purpose of this study was to examine the expression level and function of RPL10 in EOC. RPL10 protein expression was detected by immunohistochemistry and Western blot. The association RPL10 expression with clinical features was analyzed. Loss-of-function and gain-of-function approaches were applied in cellular assays, including cell viability, migration, invasion, and apoptosis. Our study demonstrated for the first time that RPL10 was upregulated in human EOC compared with normal ovarian tissues. Knockdown of RPL10 inhibited cell viability, migration, and invasion, and increased cell apoptosis. On the contrary, upregulation of RPL10 increased cell viability, migration, invasion, and decreased cell apoptosis. Furthermore, miR-143-3p regulated RPL10 expression. Our data indicate that RPL10 is a potential tissue biomarker of patients with EOC and may be a therapeutic target of ovarian cancer. PMID:29556332

  8. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage.

    PubMed

    Karayazi Atici, Ödül; Urbanska, Anna; Gopinathan, Sesha Gopal; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S

    2018-02-01

    Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents. Copyright © 2018 Endocrine Society.

  9. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  10. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy

    PubMed Central

    Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying

    2015-01-01

    AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718

  11. The novel kinase inhibitor ponatinib is an effective anti-angiogenic agent against neuroblastoma.

    PubMed

    Whittle, Sarah B; Patel, Kalyani; Zhang, Linna; Woodfield, Sarah E; Du, Michael; Smith, Valeria; Zage, Peter E

    2016-12-01

    Background High-risk neuroblastoma has poor outcomes with high rates of relapse despite aggressive treatment, and novel therapies are needed to improve these outcomes. Ponatinib is a multi-tyrosine kinase inhibitor that targets many pathways implicated in neuroblastoma pathogenesis. We hypothesized that ponatinib would be effective against neuroblastoma in preclinical models. Methods We evaluated the effects of ponatinib on survival and migration of human neuroblastoma cells in vitro. Using orthotopic xenograft mouse models of human neuroblastoma, we analyzed tumors treated with ponatinib for growth, gross and histologic appearance, and vascularity. Results Ponatinib treatment of neuroblastoma cells resulted in decreased cell viability and migration in vitro. In mice with orthotopic xenograft neuroblastoma tumors, treatment with ponatinib resulted in decreased growth and vascularity. Conclusions Ponatinib reduces neuroblastoma cell viability in vitro and reduces tumor growth and vascularity in vivo. The antitumor effects of ponatinib suggest its potential as a novel therapeutic agent for neuroblastoma, and further preclinical testing is warranted.

  12. In vitro cytotoxicity of Fe-Cr-Nb-B magnetic nanoparticles under high frequency electromagnetic field

    NASA Astrophysics Data System (ADS)

    Chiriac, Horia; Petreus, Tudor; Carasevici, Eugen; Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta

    2015-04-01

    The heating potential, cytotoxicity, and efficiency of Fe68.2Cr11.5Nb0.3B20 magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe68.2Cr11.5Nb0.3B20 MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell-particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  13. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway.

    PubMed

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-11-07

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.

  14. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    PubMed Central

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-01-01

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993

  15. Protective influence of hyaluronic acid on focal adhesion kinase activity in human skin fibroblasts exposed to ethanol.

    PubMed

    Donejko, Magdalena; Rysiak, Edyta; Galicka, Elżbieta; Terlikowski, Robert; Głażewska, Edyta Katarzyna; Przylipiak, Andrzej

    2017-01-01

    The aim of this study was to evaluate the effect of ethanol and hyaluronic acid (HA) on cell survival and apoptosis in cultured human skin fibroblasts. Regarding the mechanism of ethanol action on human skin fibroblasts, we investigated cell viability and apoptosis, expression of focal adhesion kinase (FAK), and the influence of HA on those processes. Studies were conducted in confluent human skin fibroblast cultures that were treated with 25 mM, 50 mM, and 100 mM ethanol or with ethanol and 500 µg/mL HA. Cell viability was examined using methyl thiazolyl tetrazolium (MTT) assay and NC-300 Nucleo-Counter. Imaging of the cells using a fluorescence microscope Pathway 855 was performed to measure FAK expression. Depending on the dosage, ethanol decreased cell viability and activated the process of apoptosis in human skin fibroblasts. HA prevented the negative influence of ethanol on cell viability and prevented apoptosis. The analysis of fluorescence imaging using BD Pathway 855 High-Content Bioimager showed the inhibition of FAK migration to the cell nucleus, depending on the increasing concentration of ethanol. This study proves that downregulation of signaling pathway of FAK is involved in ethanol-induced apoptosis in human skin fibroblasts. The work also indicates a protective influence of HA on FAK activity in human skin fibroblasts exposed to ethanol.

  16. Huperzine A derivative M3 protects PC12 cells against sodium nitroprusside-induced apoptosis

    PubMed Central

    Ning, Na; Hu, Jin-feng; Yuan, Yu-he; Zhang, Xin-yuan; Dai, Jun-gui; Chen, Nai-hong

    2012-01-01

    Aim: To investigate the effects of M3, a derivative of huperzine A, on the apoptosis induced by sodium nitroprusside (SNP) in PC12 cells. Methods: Cell viability was detected using MTT method. Apoptosis was examined with annexin V/prodium iodide (PI) stain. The levels of reactive oxygen species (ROS) were measured using fluorophotometric quantitation. The amount of malonaldehyde (MDA) was determined with MDA detection kits. The expression of caspase-3 and Hsp70 were analyzed using Western blotting. Results: Exposure of PC12 cells to SNP (200 μmol/L) for 24 h decreased the cell viability to 69.0% of that in the control group. Pretreatment with M3 (10 μmol/L) or huperzine A (10 μmol/L) significantly protected the cells against SNP-induced injury and apoptosis; the ratio of apoptotic bodies in PC12 cells was decreased from 27.3% to 15.0%. Pretreatment with M3 (10 μmol/L) significantly decreased ROS and MDA levels, and increased the expression of Hsp70 in the cells. Quercetin (10 μmol/L) blocked the protective effect of M3, while did not influence on that of huperzine A. Conclusion: M3 protects PC12 cells against SNP-induced apoptosis, possible due to ROS scavenging and Hsp70 induction. PMID:22120967

  17. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions

    PubMed Central

    Tanti, N.C.; Jones, L.; Sheardown, H.

    2010-01-01

    Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate  (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012

  18. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions.

    PubMed

    Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H

    2010-02-19

    Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.

  19. Advanced Glycation End-Products Induce Apoptosis in Pancreatic Islet Endothelial Cells via NF-κB-Activated Cyclooxygenase-2/Prostaglandin E2 Up-Regulation

    PubMed Central

    Lan, Kuo-Cheng; Chiu, Chen-Yuan; Kao, Chia-Wei; Huang, Kuo-How; Wang, Ching-Chia; Huang, Kuo-Tong; Tsai, Keh-Sung

    2015-01-01

    Microvascular complications eventually affect nearly all patients with diabetes. Advanced glycation end-products (AGEs) resulting from hyperglycemia are a complex and heterogeneous group of compounds that accumulate in the plasma and tissues in diabetic patients. They are responsible for both endothelial dysfunction and diabetic vasculopathy. The aim of this study was to investigate the cytotoxicity of AGEs on pancreatic islet microvascular endothelial cells. The mechanism underlying the apoptotic effect of AGEs in pancreatic islet endothelial cell line MS1 was explored. The results showed that AGEs significantly decreased MS1 cell viability and induced MS1 cell apoptosis in a dose-dependent manner. AGEs dose-dependently increased the expressions of cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase in MS1 cells. Treatment of MS1 cells with AGEs also resulted in increased nuclear factor (NF)-κB-p65 phosphorylation and cyclooxygenase (COX)-2 expression. However, AGEs did not affect the expressions of endoplasmic reticulum (ER) stress-related molecules in MS1 cells. Pretreatment with NS398 (a COX-2 inhibitor) to inhibit prostaglandin E2 (PGE2) production reversed the induction of cleaved caspase-3, cleaved PARP, and MS1 cell viability. Moreover, AGEs significantly increased the receptor for AGEs (RAGE) protein expression in MS1 cells, which could be reversed by RAGE neutralizing antibody. RAGE Neutralizing antibody could also reverse the induction of cleaved caspase-3 and cleaved PARP and decreased cell viability induced by AGEs. These results implicate the involvement of NF-κB-activated COX-2/PGE2 up-regulation in AGEs/RAGE-induced islet endothelial cell apoptosis and cytotoxicity. These findings may provide insight into the pathological processes within the pancreatic islet microvasculature induced by AGEs accumulation. PMID:25898207

  20. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.

    PubMed

    Marcos-Campos, I; Asín, L; Torres, T E; Marquina, C; Tres, A; Ibarra, M R; Goya, G F

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH(2)(+)) or negative (COOH(-)) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  1. Insulin Exhibits an Antiproliferative and Hypertrophic Effect in First Trimester Human Extravillous Trophoblasts.

    PubMed

    Silva, Cláudia; Nunes, Catarina; Correia-Branco, Ana; Araújo, João R; Martel, Fátima

    2017-04-01

    Our aim was to investigate the effect of high levels of glucose, insulin, leptin, and tumor necrosis factor alpha, biomarkers of diabetes in pregnancy, in the process of placentation, using as a cell model a first trimester extravillous human trophoblast cell line (HTR8/SVneo cells). Exposure of HTR8/SVneo cells for 24 hours to either glucose (20 mmol/L) or leptin (25-100 ng/mL) did not cause significant changes in cell proliferation and viability. Tumor necrosis factor alpha (24 hours; 10-100 ng/L) caused a small decrease (10%) in cell proliferation and an increase (9%) in cell viability; however, both effects disappeared when exposure time was increased. Insulin (24 hours; 1-10 nmol/L) caused a concentration- and time-dependent decrease (10%-20%) in cell proliferation; the effect of insulin (10 nmol/L) was more pronounced after a 48 hours exposure (35%). In contrast, exposure to insulin (10 nmol/L; 48 hours) showed no significant effect on cell viability, apoptosis, and migration capacity. Insulin appears to cause hypertrophy of HTR8/SVneo cells as it reduces the cell mitotic index while increasing the culture protein content. The antiproliferative effect of insulin seems to involve activation of mammalian target of rapamycin, phosphoinositide 3-kinase, and p38 mitogen-activated protein kinase. Finally, simvastatin and the polyphenol quercetin potentiated the antiproliferative effect of insulin; on the contrary, the polyphenol resveratrol, the polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids, and folic acid were not able to change it. In conclusion, we show that insulin has an antiproliferative and hypertrophic effect on a first trimester extravillous human trophoblast cell line. So insulin might affect the process of placentation.

  2. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells.

    PubMed

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-06-07

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs.

  3. Flow cytometric analysis of crayfish haemocytes activated by lipopolysaccharides

    USGS Publications Warehouse

    Cardenas, W.; Dankert, J.R.; Jenkins, J.A.

    2004-01-01

    Lipopolysaccharides (LPS) from Gram-negative bacteria are strong stimulators of white river crayfish, Procambarus zonangulus, haemocytes in vitro. Following haemocyte treatment with LPS and with LPS from rough mutant R5 (LPS Rc) from Salmonella minnesota, flow cytometric analysis revealed a conspicuous and reproducible decrease in cell size as compared to control haemocytes. These LPS molecules also caused a reduction in haemocyte viability as assessed by flow cytometry with the fluorescent dyes calcein-AM and ethidium homodimer. The onset of cell size reduction was gradual and occurred prior to cell death. Haemocytes treated with LPS from S. minnesota without the Lipid A moiety (detoxified LPS) decreased in size without a reduction of viability. The action of LPS on crayfish haemocytes appeared to be related to the activation of the prophenoloxidase system because phenoloxidase (PO)-specific activity in the supernatants from control and detoxified LPS-treated cells was significantly lower than that from LPS and LPS-Rc treated cells (P < 0.05). Furthermore, addition of trypsin inhibitor to the LPS treatments caused noticeable delays in cell size and viability changes. These patterns of cellular activation by LPS formulations indicated that crayfish haemocytes react differently to the polysaccharide and lipid A moieties of LPS, where lipid A is cytotoxic and the polysaccharide portion is stimulatory. These effects concur with the general pattern of mammalian cell activation by LPS, thereby indicting commone innate immune recognition mechanisms to bacterial antigens between cells from mammals and invertebrates. These definitive molecular approaches used to verify and identify mechanisms of invertbrate haemocyte responses to LPS could be applied with other glycoconjugates, soluble mediators, or xenobiotic compounds.

  4. Can artificial tears prevent Acanthamoeba keratitis? An in vitro approach.

    PubMed

    Magnet, Angela; Gomes, Thiago Santos; Pardinas, Carmen; Garcia de Blas, Natalia; Sadaba, Cruz; Carrillo, Eugenia; Izquierdo, Fernando; Del Castillo, José Manuel Benítez; Hurtado, Carolina; Del Aguila, Carmen; Fenoy, Soledad

    2018-01-22

    The use of contact lenses has increased in recent years as has the incidence of Dry Eye Syndrome, partly due to their use. Artificial tears are the most common treatment option. Since these changes can facilitate Acanthamoeba infection, the present study has been designed to evaluate the effect of three artificial tears treatments in the viability of Acanthamoeba genotype T4 trophozoites. Optava Fusion™, Oculotect®, and Artelac® Splash were selected due to their formulation. Viability was assessed using two staining methods, Trypan Blue stain and CTC stain at different time intervals (2, 4, 6, 8 and 24 h). Trypan Blue viability was obtained by manual count with light microscopy while the CTC stain was determined using flow cytometry. Trypan Blue staining results demonstrated a decrease in viability for Optava Fusion™ and Artelac® Splash during the first 4 h of incubation. After, this effect seems to lose strength. In the case of Oculotect®, complete cell death was observed after 2 h. Using flow cytometry analysis, Optava Fusion™ and Oculotect® exhibited the same effect observed with Trypan Blue staining. However, Artelac® Splash revealed decreasing cell respiratory activity after four hours, with no damage to the cell membrane. The present study uses, for the first time, CTC stain analyzed by flow cytometry to establish Acanthamoeba viability demonstrating its usefulness and complementarity with the traditional stain, Trypan Blue. Artelac® Splash, with no preservatives, and Optava Fusion TM, with Purite®, have not shown any useful amoebicidal activity. On the contrary, promising results presented by Ocultect®, with BAK, open up a new possibility for Acanthamoeba keratitis prophylaxis and treatment although in vivo studies should be carried out.

  5. PACAP Protects Adult Neural Stem Cells from the Neurotoxic Effect of Ketamine Associated with Decreased Apoptosis, ER Stress and mTOR Pathway Activation

    PubMed Central

    Mansouri, Shiva; Agartz, Ingrid; Ögren, Sven-Ove; Patrone, Cesare; Lundberg, Mathias

    2017-01-01

    Ketamine administration is a well-established approach to mimic experimentally some aspects of schizophrenia. Adult neurogenesis dysregulation is associated with psychiatric disorders, including schizophrenia. The potential role of neurogenesis in the ketamine-induced phenotype is largely unknown. Recent results from human genetic studies have shown the pituitary adenylate cyclase-activating polypeptide (PACAP) gene is a risk factor for schizophrenia. Its potential role on the regulation of neurogenesis in experimental model of schizophrenia remains to be investigated. We aimed to determine whether ketamine affects the viability of adult neural stem cells (NSC). We also investigated whether the detrimental effect mediated by ketamine could be counteracted by PACAP. NSCs were isolated from the subventricular zone of the mouse and exposed to ketamine with/without PACAP. After 24 hours, cell viability, potential involvement of apoptosis, endoplasmic reticulum (ER) stress, mTOR and AMPA pathway activation were assessed by quantitative RT-PCR and Western blot analysis. We show that ketamine impairs NSC viability in correlation with increased apoptosis, ER stress and mTOR activation. The results also suggest that the effect of ketamine occurs via AMPA receptor activation. Finally, we show that PACAP counteracted the decreased NSC viability induced by ketamine via the specific activation of the PAC-1 receptor subtype. Our study shows that the NSC viability may be negatively affected by ketamine with putative importance for the development of a schizophrenia phenotype in the ketamine induced animal model of schizophrenia. The neuroprotective effect via PAC-1 activation suggests a potentially novel pharmacological target for the treatment of schizophrenia, via neurogenesis normalization. PMID:28125634

  6. Over-expression of Trxo1 increases the viability of tobacco BY-2 cells under H2O2 treatment.

    PubMed

    Ortiz-Espín, Ana; Locato, Vittoria; Camejo, Daymi; Schiermeyer, Andreas; De Gara, Laura; Sevilla, Francisca; Jiménez, Ana

    2015-09-01

    Reactive oxygen species (ROS), especially hydrogen peroxide, play a critical role in the regulation of plant development and in the induction of plant defence responses during stress adaptation, as well as in plant cell death. The antioxidant system is responsible for controlling ROS levels in these processes but redox homeostasis is also a key factor in plant cell metabolism under normal and stress situations. Thioredoxins (Trxs) are ubiquitous small proteins found in different cell compartments, including mitochondria and nuclei (Trxo1), and are involved in the regulation of target proteins through reduction of disulphide bonds, although their role under oxidative stress has been less well studied. This study describes over-expression of a Trxo1 for the first time, using a cell-culture model subjected to an oxidative treatment provoked by H2O2. Control and over-expressing PsTrxo1 tobacco (Nicotiana tabacum) BY-2 cells were treated with 35 mm H2O2 and the effects were analysed by studying the growth dynamics of the cultures together with oxidative stress parameters, as well as several components of the antioxidant systems involved in the metabolism of H2O2. Analysis of different hallmarks of programmed cell death was also carried out. Over-expression of PsTrxo1 caused significant differences in the response of TBY-2 cells to high concentrations of H2O2, namely higher and maintained viability in over-expressing cells, whilst the control line presented a severe decrease in viability and marked indications of oxidative stress, with generalized cell death after 3 d of treatment. In over-expressing cells, an increase in catalase activity, decreases in H2O2 and nitric oxide contents and maintenance of the glutathione redox state were observed. A decreased content of endogenous H2O2 may be responsible in part for the delayed cell death found in over-expressing cells, in which changes in oxidative parameters and antioxidants were less extended after the oxidative treatment. It is concluded that PsTrxo1 transformation protects TBY-2 cells from exogenous H2O2, thus increasing their viability via a process in which not only antioxidants but also Trxo1 seem to be involved. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Punicalagin and (-)-Epigallocatechin-3-Gallate Rescue Cell Viability and Attenuate Inflammatory Responses of Human Epidermal Keratinocytes Exposed to Airborne Particulate Matter PM10.

    PubMed

    Seok, Jin Kyung; Lee, Jeong-Won; Kim, Young Mi; Boo, Yong Chool

    2018-01-01

    Airborne particulate matter with a diameter of < 10 µm (PM10) causes oxidative damage, inflammation, and premature skin aging. In this study, we evaluated whether polyphenolic antioxidants attenuate the inflammatory responses of PM10-exposed keratinocytes. Primary human epidermal keratinocytes were exposed in vitro to PM10 in the absence or presence of punicalagin and (-)-epigallocatechin-3-gallate (EGCG), which are the major polyphenolic antioxidants found in pomegranate and green tea, respectively. Assays were performed to determine cell viability, production of reactive oxygen species (ROS), and expression of NADPH oxidases (NOX), proinflammatory cytokines, and matrix metalloproteinase (MMP)-1. PM10 decreased cell viability and increased ROS production in a dose-dependent manner. It also increased the expression levels of NOX-1, NOX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and MMP-1. Punicalagin was not cytotoxic up to 300 μM, and (-)-EGCG was cytotoxic above 30 μM, respectively. Further, punicalagin (3-30 μM) and EGCG (3-10 μM) rescued the viability of PM10-exposed cells. They also attenuated ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1 stimulated by PM10. This study demonstrates that polyphenolic antioxidants, such as punicalagin and (-)-EGCG, rescue keratinocyte viability and attenuate the inflammatory responses of these cells due to airborne particles. © 2018 S. Karger AG, Basel.

  8. Modulating the internalization of bacille Calmette-Guérin by cathelicidin in bladder cancer cells.

    PubMed

    Choi, Se Young; Kim, Soon-Ja; Chi, Byung Hoon; Kwon, Jong Kyou; Chang, In Ho

    2015-04-01

    To confirm the role of cathelicidin (LL-37) in the internalization of bacille Calmette-Guérin (BCG) into bladder cancer cells. Enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction analysis evaluated the changes in protein and messenger ribonucleic acid (RNA) expression with BCG incubation after LL-37 pretreatment in 5637 and T24 human bladder cancer cells. The internalization rate was evaluated by a double immunofluorescence assay, and confocal microscopy confirmed the function of LL-37 in BCG internalization. We also investigated the difference in internalization rates and cell viability between LL-37, anti-LL-37 antibody, and LL-37 plus anti-LL-37 antibody. The levels of LL-37 increased after BCG exposure in bladder cancer cells in dose- and time-dependent manners. Increasing LL-37 levels using recombinant LL-37 protein further dose dependently decreased BCG internalization in both cell lines. The internalization rates of BCG after LL-37 instillation were lower compared with the controls, and the internalization rate of BCG after anti-LL-37 antibody instillation was significantly higher compared with the controls in both cell lines (P <.05). Viability of LL-37 plus BCG group was higher compared with the BCG-alone group. The anti-LL-37 antibody plus BCG group had decreased cell viability compared with the BCG-alone group in both cell lines. Bladder cancer cells produce cathelicidin when infected with BCG and upregulate cathelicidin to defend against BCG by inhibiting its internalization. Blocking the action of cathelicidin may increase the internalization and effectiveness of BCG in reducing bladder cancer cell proliferation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The effects of wood dusts on the redox status and cell death in mouse macrophages (RAW 264.7) and human leukocytes in vitro.

    PubMed

    Naarala, J; Kasanen, J-P; Pasanen, P; Pasanen, A-L; Liimatainen, A; Pennanen, S; Liesivuori, J

    2003-07-11

    Wood dusts are classified as carcinogenic to humans and also produce other toxic, allergic, and acute effects in woodworkers. However, little is known about causative agents in wood dusts and their mechanisms of action. The effects of different tree species and particle size for biological activity were studied. The differences in the production of reactive oxygen species (ROS) and cell death (necrotic and apoptotic) between mouse macrophage (RAW 264.7) cells and human polymorphonuclear leukocytes (PMNL) for pine, birch, and beech dust exposures were investigated in vitro. The pine and birch dust exposure (1-100 microg/ml) produced concentration-dependent ROS production in both the cells, which was one order of magnitude higher with pine dust. The ROS production was faster in human PNML than murine RAW cells. The higher concentrations (500 and/or 1000 microg/ml) decreased ROS formation. With pine and birch dust exposure, this was probably due to the necrotic cell death. The pine dust concentrations of 500 and 1000 microg/ml were cytotoxic to human PMNL. The beech dust exposure activated the ROS production and decreased the cell viability only at the highest concentrations, being least potent of the three dusts. A sign of the apoptotic cell death in the murine RAW cells was observed at the pine dust concentration of 100 microg/ml. The exposure to the birch and beech dusts with a smaller particle size (<5 microm) produced greater ROS production than exposure to the corresponding dust with a wide range of particle sizes. However, changing the particle size did not affect the cell viability. The results indicate that the type of wood dust (tree species and possibly particle size) has a significant impact on the function and viability of phagocytic cells.

  10. Long-Term Quality Control Program Plan for Cord Blood Banks in Korea: A Pilot Study for Cryopreservation Stability.

    PubMed

    Seo, Soo Hyun; Shin, Sue; Roh, Eun Youn; Song, Eun Young; Oh, Sohee; Kim, Byoung Jae; Yoon, Jong Hyun

    2017-03-01

    Maintaining the quality of cryopreserved cord blood is crucial. In this pilot study, we describe the results of the internal quality control program for a cord blood bank thus far. Donated cord blood units unsuitable for transplantation were selected for internal quality control once a month. One unit of cord blood, aliquoted into 21 capillaries, was cryopreserved and thawed annually to analyze the total nucleated cell count, CD34⁺ cell count, cell viability test, and colony-forming units assay. No significant differences in the variables (total nucleated cell count, cell viability, CD34⁺ cell count) were observed between samples cryopreserved for one and two years. Upon comparing the variables before cryopreservation and post thawing with the capillaries of one year of storage, cell viability and CD34⁺ cell counts decreased significantly. The use of cord blood samples in capillaries, which can be easily stored for a long period, was similar to the methods used for testing segments attached to the cord blood unit. The results of this study may be useful for determining the period during which the quality of cryopreserved cord blood units used for transplantation is maintained.

  11. Long-Term Quality Control Program Plan for Cord Blood Banks in Korea: A Pilot Study for Cryopreservation Stability

    PubMed Central

    Seo, Soo Hyun; Shin, Sue; Roh, Eun Youn; Song, Eun Young; Oh, Sohee; Kim, Byoung Jae

    2017-01-01

    Background Maintaining the quality of cryopreserved cord blood is crucial. In this pilot study, we describe the results of the internal quality control program for a cord blood bank thus far. Methods Donated cord blood units unsuitable for transplantation were selected for internal quality control once a month. One unit of cord blood, aliquoted into 21 capillaries, was cryopreserved and thawed annually to analyze the total nucleated cell count, CD34+ cell count, cell viability test, and colony-forming units assay. Results No significant differences in the variables (total nucleated cell count, cell viability, CD34+ cell count) were observed between samples cryopreserved for one and two years. Upon comparing the variables before cryopreservation and post thawing with the capillaries of one year of storage, cell viability and CD34+ cell counts decreased significantly. The use of cord blood samples in capillaries, which can be easily stored for a long period, was similar to the methods used for testing segments attached to the cord blood unit. Conclusions The results of this study may be useful for determining the period during which the quality of cryopreserved cord blood units used for transplantation is maintained. PMID:28028998

  12. Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

    PubMed Central

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Kanamori, Toshiyuki

    2015-01-01

    This paper describes the generation of “click-crosslinkable“ and “photodegaradable“ gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-μm widths for line patterns and 20-μm diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability. PMID:26450015

  13. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.

    PubMed

    Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László

    2016-03-20

    This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.

  14. In Vitro Effects of Preserved and Unpreserved Anti-Allergic Drugs on Human Corneal Epithelial Cells

    PubMed Central

    Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-01-01

    Abstract Purpose: Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Methods: Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. Results: The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. Conclusions: The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures. PMID:25100331

  15. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions

    PubMed Central

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja

    2018-01-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec−1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec−1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production—as elicited by an inhibitor of the respiratory chain, antimycin A—can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions. PMID:29390882

  16. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions.

    PubMed

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja; Rauen, Ursula

    2017-12-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/10 6 cells after cold storage, 5 ± 3 nmol/10 6 cells after rewarming vs. control 29 ± 6 nmol/10 6 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec -1 per 10 6 cells after rewarming vs. control 232 ± 83 pmol sec -1 per 10 6 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/10 6 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.

  17. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yanxi; College of Life Science, Shanxi University, Taiyuan; Wu, Bo

    2011-12-15

    Hydrogen sulfide (H{sub 2}S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H{sub 2}S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H{sub 2}S donor) decreased the viability ofmore » PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H{sub 2}S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H{sub 2}S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H{sub 2}S-producing enzyme in prostate. CSE overexpression enhanced H{sub 2}S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H{sub 2}S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H{sub 2}S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H{sub 2}S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Highlights: Black-Right-Pointing-Pointer A large amount of H{sub 2}S is released from sulforaphane. Black-Right-Pointing-Pointer H{sub 2}S mediates the anti-survival effect of sulforaphane on human prostate cancer cells. Black-Right-Pointing-Pointer Cystathionine gamma-lyase is a major H{sub 2}S-producing enzyme in prostate tissues. Black-Right-Pointing-Pointer p38 MAPK and JNK contribute to H{sub 2}S and sulforaphane-reduced viability in prostate cancer cells.« less

  18. EPHA2 blockade overcomes acquired resistance to EGFR kinase inhibitors in lung cancer

    PubMed Central

    Amato, Katherine R.; Wang, Shan; Tan, Li; Hastings, Andrew K.; Song, Wenqiang; Lovly, Christine M.; Meador, Catherine B.; Ye, Fei; Lu, Pengcheng; Balko, Justin M.; Colvin, Daniel C.; Cates, Justin M.; Pao, William; Gray, Nathanael S.; Chen, Jin

    2015-01-01

    Despite the success of treating EGFR mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKIs), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib resistant tumor cells harboring EGFRT790M mutations in vitro and inhibited tumor growth and progression in an inducible EGFRL858R+T790M mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small molecule inhibitor, ALW-II-41-27, decreased both survival and proliferation of erlotinib resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third generation EGFR TKI, AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI resistant, EGFR mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI resistant tumors. PMID:26744526

  19. LncRNA-LET inhibits cell viability, migration and EMT while induces apoptosis by up-regulation of TIMP2 in human granulosa-like tumor cell line KGN.

    PubMed

    Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua

    2018-04-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Synthesis of a Tyr-Tyr Dipeptide Library and Evaluation Against Tumor Cells.

    PubMed

    Vasconcelos, Stanley Ns; Sciani, Juliana M; Lisboa, Nicole Mambeli; Stefani, Helio A

    2018-03-09

    Structural component of proteins and peptides, amino acids have been used as building blocks in the synthesis of more complex molecules with antitumor activity against several types of cancer. The search for new anticancer compounds is ongoing, especially for cancers that are very aggressive and have poor prognoses, such as leukemia. Here, we report a method to synthesize Tyr-Tyr dipeptides via sonochemistry reactions followed by functionalization of these Tyr-Tyr dipeptides with Suzuki-Miyaura and Sonogashira cross-coupling reactions in good yields. Twelve different Tyr-Tyr dipeptides were investigated against three cell lines: HaCaT; Jurkat-E6; and A2058. Some of Tyr-Tyr dipeptides showed activity against Jurkat-E6 leukaemia cells at low concentration, decreasing their viability, but not against non-tumor HaCaT cells, suggesting a cytotoxicity specific to tumor cells. All dipeptides were able to decrease the viability of Jurkat cell line, however the A2058 cell line did not respond well to treatment with the peptides. Some of the modified Tyr-Tyr dipeptides presented selective activity on leukemic tumor cells. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A study of the effects of citrate-coated silver nanoparticles on RAW 264.7 cells using a toolbox of cytotoxic endpoints

    NASA Astrophysics Data System (ADS)

    Bastos, V.; Duarte, I. F.; Santos, C.; Oliveira, H.

    2017-05-01

    Citrate-coated silver nanoparticles (citrate-AgNPs) are among the most commonly used nanomaterials, widely present in industrial and biomedical products. In this study, the cytotoxicity of 30-nm citrate-AgNPs on the macrophage cell line RAW 264.7 was evaluated, using a battery of cytotoxicity endpoints (viability, oxidative stress, and cytostaticity/clastogenicity), at 24 and 48 h of exposure. Citrate-AgNPs decreased cell proliferation and viability only at 75 μg/mL, suggesting a low sensitivity of RAW cells to lower doses of these AgNPs. After 24 h of exposure, ROS content decreased in cells exposed to 60 μg/mL AgNPs (IC20 value), corroborating the high tolerance of these cells to citrate-AgNPs. However, these cells suffered an impairment of the cell cycle, shown by an increase at the sub-G1 phase. This increase of the sub-G1 population was correlated with an increase of DNA fragmentation, suggesting an increase of apoptosis. Thus, our data are important to understand the effects of low concentrations (IC20) of citrate-AgNPs on in vitro vital macrophage functions.

  2. Characterization of MUDENG, a novel anti-apoptotic protein

    PubMed Central

    Choi, J-H; Lim, J-B; Wickramanayake, D D; Wagley, Y; Kim, J; Lee, H-C; Seo, H G; Kim, T-H; Oh, J-W

    2016-01-01

    MUDENG (Mu-2-related death-inducing gene, MuD) is revealed to be involved in cell death signaling. Astrocytes, the major glial cell type in the central nervous system, are a source of brain tumors. In this study, we examined MuD expression and function in human astroglioma cells. Stimulation of U251-MG cells with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resulted in a 40% decrease in cell viability and a 33% decrease in MuD protein levels, although not in MuD mRNA levels. To study the functional relevance of MuD expression, stable transfectants expressing high levels of MuD were generated. Stimulation of these transfectants with TRAIL resulted in enhanced cell survival (77% for stable and 46% for control transfectants). Depletion of MuD led to a marked reduction upon TRAIL stimulation in cell viability (22% in MuD-depleted cells and 54% in control cells). In addition, we observed that MuD depletion increased the susceptibility of the cells to TRAIL by enhancing the cleavage of caspase-3/-9 and BH3-interacting domain death agonist (Bid). A unique 25-kDa fragment of B-cell lymphoma 2 (Bcl-2) lacking BH4 was observed 60–180 min post TRAIL treatment in MuD-depleted cells, suggesting that Bcl-2 is converted from its anti-apoptotic form to the truncated pro-apoptotic form. Importantly, the TRAIL-mediated decrease in cell viability in MuD-depleted cells was abrogated upon Bid depletion, indicating that the role of MuD in apoptotic signaling takes place at the Bid and Bcl-2 junction. MuD localizes predominantly in the endoplasmic reticulum and partly in the mitochondria and its amounts are reduced 6 h post TRAIL stimulation, presumably via caspase-3-mediated MuD cleavage. Collectively, these results suggest that MuD, a novel signaling protein, not only possesses an anti-apoptotic function but may also constitute an important target for the design of ideal candidates for combinatorial treatment strategies for glioma cells. PMID:27136675

  3. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro

    PubMed Central

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-01-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. PMID:23593935

  4. Astaxanthin Inhibits Proliferation of Human Gastric Cancer Cell Lines by Interrupting Cell Cycle Progression

    PubMed Central

    Kim, Jung Ha; Park, Jong-Jae; Lee, Beom Jae; Joo, Moon Kyung; Chun, Hoon Jai; Lee, Sang Woo; Bak, Young-Tae

    2016-01-01

    Background/Aims Astaxanthin is a carotenoid pigment that has antioxidant, antitumoral, and anti-inflammatory properties. In this in vitro study, we investigated the mechanism of anticancer effects of astaxanthin in gastric carcinoma cell lines. Methods The human gastric adenocarcinoma cell lines AGS, KATO-III, MKN-45, and SNU-1 were treated with various concentrations of astaxanthin. A cell viability test, cell cycle analysis, and immunoblotting were performed. Results The viability of each cancer cell line was suppressed by astaxanthin in a dose-dependent manner with significantly decreased proliferation in KATO-III and SNU-1 cells. Astaxanthin increased the number of cells in the G0/G1 phase but reduced the proportion of S phase KATO-III and SNU-1 cells. Phosphorylated extracellular signal-regulated kinase (ERK) was decreased in an inverse dose-dependent correlation with astaxanthin concentration, and the expression of p27kip-1 increased the KATO-III and SNU-1 cell lines in an astaxanthin dose-dependent manner. Conclusions Astaxanthin inhibits proliferation by interrupting cell cycle progression in KATO-III and SNU-1 gastric cancer cells. This may be caused by the inhibition of the phosphorylation of ERK and the enhanced expression of p27kip-1. PMID:26470770

  5. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    PubMed

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are potential biomarkers for glioblastoma therapy.

  6. Inhibitory effects of mouse bone marrow mesenchymal stem cell soup on staurospurine-induced cell death in MCF-7 and AGS.

    PubMed

    Zhaleh, M; Azadbakht, M; Bidmeshki Pour, A

    2017-01-01

    Staurospurine induces apoptosis in cell line. Bone Marrow Mesenchymal stem cells Soup is a promising tool for cell proliferation via a variety of secreted factors. In this study, we examined the effects of BMSCs Soup on Staurospurine induced-cell death in MCF-7 and AGS cells. There were three Groups: Group I: no incubation with BM Soup; Group II: incubated with 24 h BM Soup; Group III: incubation with 48 h BM Soup. There were two treatments in each group. The treatments were 1μM Staurospurine (Treatment 1) and 0.0 μM Staurospurine (Treatment 2). The cells were cultured in culture medium containing 0.2 % BSA. We obtained the cell viability, cell death and NO concentration. Our results showed that BM soup administration for 48 hours protectsed against 1μM staurosporine concentration induced cell death and reduced cell toxicity in MCF-7 and AGS cells. Cell viability and cell toxicity assay showed that BM soup in time dependent manner increased cell viability (p < 0.05) and cell death assay showed that cell death in time dependent manner was decreased(p < 0.05). Our data showed that BM soup with increasing NO concentration reduced staurospurine induced cell death and cell cytotoxicity (p < 0.05). It's concluded that BMSCs soup suppressed staurospurine-induced cytotoxicity activity process in MCF-7 and AGS cells (Fig. 9, Ref. 79).

  7. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Gan, Nanqin; Liu, Jin; Zheng, Lingling; Li, Lin; Song, Lirong

    2017-03-01

    Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15°C or 4°C, with illumination) or darkness, and subsequent recovery in standard conditions (25°C with illumination). On exposure to 15°C, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15°C. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15°C. M. aeruginosa cells exposed to lower temperature light stress (4°C) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield ( F v/ F m) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.

  8. Viability and biomass of Micrococcus luteus DE2008 at different salinity concentrations determined by specific fluorochromes and CLSM-image analysis.

    PubMed

    Puyen, Zully M; Villagrasa, Eduard; Maldonado, Juan; Esteve, Isabel; Solé, Antonio

    2012-01-01

    In previous studies, our group developed a method based on Confocal Laser Scanning Microscopy and Image Analysis (CLSM-IA) to analyze the diversity and biomass of cyanobacteria in microbial mats. However, this method cannot be applied to heterotrophic microorganisms, as these do not have autofluorescence. In this article, we present a method that combines CLSM-IA and Hoechst 33342 and SYTOX Green fluorochromes (FLU-CLSM-IA) to determine the viability and biomass of Micrococcus luteus DE2008, isolated from a saline microbial mat (Ebro Delta, Tarragona, Spain). The method has been applied to assess the effect of salinity on this microorganism. A reduction in viability and biomass (live cells) was observed as the salt concentration increases. The largest effect was at 100‰ NaCl with a cell death of 27.25% and a decrease in total and individual biomass of 39.75 and 0.009 mgC/cm(3), respectively, both with respect to optimal growth (10 ‰ NaCl). On the other hand, another important contribution of this article was that combining the FLU-CLSM-IA results with those achieved by plate counts enabled us to determine, for first time, the viability and the total biomass of the "dormant cells" (66.75% of viability and 40.59 mgC/cm(3) of total biomass at 100‰ NaCl). FLU-CLSM-IA is an efficient, fast, and reliable method for making a total count of cells at pixel level, including the dormant cells, to evaluate the viability and the biomass of a hetetrophic microorganism, M. luteus DE2008.

  9. Application of Albumin-embedded Magnetic Nanoheaters for Release of Etoposide in Integrated Chemotherapy and Hyperthermia of U87-MG Glioma Cells.

    PubMed

    Babincová, Melánia; Vrbovská, Hana; Sourivong, Paul; Babinec, Peter; Durdík, Štefan

    2018-05-01

    Malignant gliomas remain refractory to several therapeutic approaches and the requirement for novel treatment modalities is critical to combat this disease. Etoposide is a topoisomerase-II inhibitor, which promotes DNA damage and apoptosis of cancer cells. In this study, we prepared albumin with embedded magnetic nanoparticles and etoposide for in vitro evaluation of combined hyperthermia and chemotherapy. Magnetic nanoparticles were prepared by a modified co-precipitation method in the presence of human serum albumin and etoposide. A cellular proliferation assay was used to determine the effects of these nanostructures on the viability of U87 glioma cells in an alternating magnetic field. The in vitro experiments showed that cell viability decreased to 59.4% after heat treatment alone and to 53.8% on that with free etoposide, while combined treatment resulted in 7.8% cell viability. Integrating hyperthermia and chemotherapy using albumin co-embedded magnetic nanoheaters and etoposide may represent a promising therapeutic option for glioblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.

    PubMed

    Wang, Jun; Kang, Min; Wen, Qin; Qin, Yu-Tao; Wei, Zhu-Xin; Xiao, Jing-Jian; Wang, Ren-Sheng

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.

  11. Protective Role of Selenium Compounds on the Proliferation, Apoptosis, and Angiogenesis of a Canine Breast Cancer Cell Line.

    PubMed

    Liu, Yuzhi; Li, Wenyu; Guo, Mengyao; Li, Chengye; Qiu, Changwei

    2016-01-01

    We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p < 0.05), and the cell viability of the CTX + MSA group was lower than that of CTX and MSA groups (p < 0.05). Moreover, the inhibitory effect of selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p < 0.01). The protein and mRNA expression levels of vascular endothelial growth factor-alpha (VEGF-alpha), angiopoietin-2 (Ang-2), and hypoxia inducible factor-1 alpha (HIF-1 alpha) were downregulated in each group, while that of phosphatase and tensin homolog (PTEN) were upregulated (p < 0.05). In conclusion, these three selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.

  12. IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms

    PubMed Central

    de Melo Campos, Paula; Machado-Neto, João A.; Eide, Christopher A.; Savage, Samantha L.; Scopim-Ribeiro, Renata; da Silva Souza Duarte, Adriana; Favaro, Patricia; Lorand-Metze, Irene; Costa, Fernando F.; Tognon, Cristina E.; Druker, Brian J.; Saad, Sara T. Olalla; Traina, Fabiola

    2016-01-01

    The recurrent V617F mutation in JAK2 (JAK2V617F) has emerged as the primary contributor to the pathogenesis of myeloproliferative neoplasms (MPN). However, the lack of complete response in most patients treated with the JAK1/2 inhibitor, ruxolitinib, indicates the need for identifying pathways that cooperate with JAK2. Activated JAK2 was found to be associated with the insulin receptor substrate 2 (IRS2) in non-hematological cells. We identified JAK2/IRS2 binding in JAK2V617F HEL cells, but not in the JAK2WT U937 cell line. In HEL cells, IRS2 silencing decreased STAT5 phosphorylation, reduced cell viability and increased apoptosis; these effects were enhanced when IRS2 silencing was combined with ruxolitinib. In U937 cells, IRS2 silencing neither reduced cell viability nor induced apoptosis. IRS1/2 pharmacological inhibition in primary MPN samples reduced cell viability in JAK2V617F-positive but not JAK2WT specimens; combination with ruxolitinib had additive effects. IRS2 expression was significantly higher in CD34+ cells from essential thrombocythemia patients compared to healthy donors, and in JAK2V617F MPN patients when compared to JAK2WT. Our data indicate that IRS2 is a binding partner of JAK2V617F in MPN. IRS2 contributes to increased cell viability and reduced apoptosis in JAK2-mutated cells. Combined pharmacological inhibition of IRS2 and JAK2 may have a potential clinical application in MPN. PMID:26755644

  13. Hemochromatosis Enhances Tumor Progression via Upregulation of Intracellular Iron in Head and Neck Cancer

    PubMed Central

    Lenarduzzi, Michelle; Hui, Angela B. Y.; Yue, Shijun; Ito, Emma; Shi, Wei; Williams, Justin; Bruce, Jeff; Sakemura-Nakatsugawa, Noriko; Xu, Wei; Schimmer, Aaron; Liu, Fei-Fei

    2013-01-01

    Introduction Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC. Experimental Design Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry. Results In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression. Conclusions Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management. PMID:23991213

  14. Enhancing the effect of 4MeV electron beam using gold nanoparticles in breast cancer cells.

    PubMed

    Mehrnia, Somayeh Sadat; Hashemi, Bijan; Mowla, Seyed Javad; Arbabi, Azim

    2017-03-01

    Gold nanoparticles (GNPs) have been applied as radiosensitizer in radiotherapy. Limited reports have shown that GNPs may be effective as a dose enhancer agent for electron radiation therapy. Some Monte Carlo Simulation studies have shown that selecting suitable size of GNPs and electron energies are critical for effective dose enhancement. The aim of this study was to assess possible radiosensitization effect of GNPs on cancer cell treated with 4MeV electron beams. Approximately 10nm GNPs were synthesized and characterized by electron microscope and dynamic light scattering. MCF-7 and MDA-MB-231 breast cancer cells were used and their viability was measured by MTT assay. Radiosensitization effect of GNPs under 4MeV electron beams was measured by clonogenic assay. The result showed a concentration dependent uptake of GNPs without reducing cell viability at concentrations ≤50mg/L. Incubation of cancer cells with GNPs caused a significant decrease in their viability following exposure to electron beams as well as a decrease in their survival fraction when compared to control. The sensitizer enhancement ratio (SER) by electron beams in MCF-7 cells was 1.43 and 1.40 in presence of 25 and 50mg/L GNPs, respectively. For MDA-MB-231 cells, it was 1.62 in presence of 25mg/L GNPs. Our data demonstrated the significant dose enhancement of the GNPs in combination with 4MeV electron beams that could be applicable for the treatment of superficial tumors and intra operative radiation therapy. Copyright © 2017. Published by Elsevier Ltd.

  15. A Rhodiola rosea root extract protects skeletal muscle cells against chemically induced oxidative stress by modulating heat shock protein 70 (HSP70) expression.

    PubMed

    Hernández-Santana, Aaron; Pérez-López, Verónica; Zubeldia, Jose María; Jiménez-del-Rio, Miguel

    2014-04-01

    Rhodiola rosea is a perennial plant in the Crassulaceae family, recently postulated to exert its adaptogenic functions partially by modulating the expression of molecular factors such as heat shock proteins (HSP). The aim of this study was to analyze the efficacy of a Rhodiola rosea extract (Rhodiolife) in protecting murine skeletal muscle cells (C2 C12 myotubes) from chemically induced oxidative stress and to establish whether modulation of HSP70 expression is observed. C2 C12 cells treated with Rhodiolife did not experience any loss of viability (p > 0.05) at concentrations of 1-100 µg/mL for up to 24 h. In control cultures, viability decreased 25% following exposure to 2 mM H2 O2 (1 h). However, no significant decrease in viability in cells pre-treated with extract at concentrations as low as 1 µg/mL was observed. HSP70 mRNA levels were up-regulated two-fold in cell cultures treated with Rhodiolife (10 µg/mL), and expression was further enhanced by exposure to H2 O2 (six-fold, p < 0.05). HSP70 protein levels were maintained in pre-treated cell cultures compared to controls but was significantly lower (-50%) in cells lacking treatment exposed to H2 O2 . The present results indicate that Rhodiolife protects C2 C12 myotubes against peroxide-induced oxidative stress through the modulation of the molecular chaperone HSP70. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla

    2017-09-01

    Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.

  17. Preparation of guinea pig macrophage for electrophoretic experiments in space

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Methods of storage and cultivation of macrophage cells in preparation for space experiments were investigated. Results show that freezing and thawing immediately after extraction did not cause any change in viability or electrophoretic mobility of the cells. A prolonged storage at -80 C did cause cell damage as indicated by a 95% reduction in variable cells. Cell damage was decreased when Glycerol or Dimethyl Sulfoxide (DMSO) was added as a cryogenic protective agent. A 100% viability was observed in cultivation experiments after two weeks due to the additional serum. Results from gamma-glutamyl transpeptidase study showed a zero activity rate. It is suggested that a flat stationary field be used for the collection and use of macrophage. It was found that a 24-hour delay in obtaining macrophage cells helps to maintain a pure culture.

  18. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity.

    PubMed

    Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro

    2015-10-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Dexmedetomidine Protects Neural Stem Cells from Ketamine-Induced Injury.

    PubMed

    Lu, Pan; Lei, Shan; Li, Weisong; Lu, Yang; Zheng, Juan; Wang, Ning; Xia, Yongjun; Lu, Haixia; Chen, Xinlin; Liu, Yong; Zhang, Peng-Bo

    2018-06-19

    Ketamine inhibits the proliferation of neural stem cells (NSCs) and disturbs normal neurogenesis. Dexmedetomidine provides neuroprotection against volatile anesthetic-induced neuroapoptosis and cognitive impairment in the developing brain. Whether it may protect NSCs from ketamine-induced injury remains unknown. In this study, we investigated the protective effects of dexmedetomidine on ketamine-exposed NSCs and explored the mechanisms potentially involved. Primary NSC cultures were characterized using immunofluorescence. Cell viability was determined using a Cell Counting Kit 8 assay. Proliferation and apoptosis were assessed with BrdU incorporation and TUNEL assays, respectively. Protein levels of cleaved caspase-3, phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase-3β (p-GSK-3β) were quantified using western blotting. Ket-amine significantly decreased NSC viability and proliferation and increased their apoptosis. Dexmedetomidine increased NSC proliferation and decreased their apoptosis in a dose-dependent manner. Furthermore, dexmedetomidine pretreatment notably augmented the viability and proliferation of ketamine-exposed NSCs and reduced their apoptosis. Moreover, dexmedetomidine lessened caspase-3 activation and increased p-Akt and p-GSK-3β levels in NSCs exposed to ketamine. The protective effects of dexmedetomidine on ketamine-exposed NSCs could be partly reversed by the PI3K inhibitor LY294002. Collectively, these findings indicate that dexmedetomidine may protect NSCs from ketamine-induced injury via the PI3K/Akt/GSK-3β signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. PINK1 alleviates myocardial hypoxia-reoxygenation injury by ameliorating mitochondrial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Qiu, Liangxian; Liu, Xiping

    PTEN inducible kinase-1 (PINK1) mutant induces mitochondrial dysfunction of cells, resulting in an inherited form of Parkinson's disease. However its exact role in the cardiomyocytes is unclear. The present study examined the function of PINK1 in hypoxia-reoxygenation (H/R) induced H9c2 cell damage and its potential mechanism. The H/R model in H9c2 cells was established by 6 h of hypoxia and 12 h of reoxygenation. The CCK8 and LDH assay indicated that the cell viability was obviously reduced after H/R. The expression of PINK1 was decreased in H/R-induced H9c2 cells compared with control group. The vector overexpressing PINK1 was constructed to transfect intomore » H/R-induced H9c2 cells. Our results showed that cell viability was increased, cell apoptosis and caspase 3, cytochrome C (Cyto C) levels were decreased after LV-PINK1 transfection. Furthermore, PINK1 overexpression stabilized electron transport chain (ETC) activity, increased ATP production, mPTP opening and mitochondrial membrane potential (MMP), inhibited ROS-generating mitochondria, implying PINK1 alleviates H/R induced mitochondrial dysfunction in cardiomyocytes. In addition, the TRAP-1 siRNA was transfected into PINK1 treated H9c2 cells after H/R to detected the molecular mechanism of PINK1 protecting cardiomyocytes. The results indicated that silence of TRAP-1 reversed the effects of PINK1 in H/R-induced H9c2 cells. In conclusion, these results suggest that PINK1 overexpression alleviates H/R-induced cell damage of H9c2 cells by phosphorylation of TRAP-1, and that is a valid approach for protection from myocardial I/R injury. - Highlights: • Effects of H/R on cell viability and PINK1 expression in H9c2 cells. • Effects of PINK1 on cell viability in H9c2 cells with H/R model. • Effects of PINK1 on mitochondrial dysfunction in H9c2 cells with H/R model. • PINK1 ameliorates H/R-induced H9c2 cells injury by activating p-TRAP-1.« less

  1. T-LAK cell-originated protein kinase presents a novel therapeutic target in FLT3-ITD mutated acute myeloid leukemia.

    PubMed

    Alachkar, Houda; Mutonga, Martin; Malnassy, Gregory; Park, Jae-Hyun; Fulton, Noreen; Woods, Alex; Meng, Liping; Kline, Justin; Raca, Gordana; Odenike, Olatoyosi; Takamatsu, Naofumi; Miyamoto, Takashi; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2015-10-20

    Gain-of-function mutations of FLT3 (FLT3-ITD), comprises up to 30% of normal karyotype acute myeloid leukemia (AML) and is associated with an adverse prognosis. Current FLT3 kinase inhibitors have been tested extensively, but have not yet resulted in a survival benefit and novel therapies are awaited. Here we show that T-LAK cell-originated protein kinase (TOPK), a mitotic kinase highly expressed in and correlated with more aggressive phenotype in several types of cancer, is expressed in AML but not in normal CD34+ cells and that TOPK knockdown decreased cell viability and induced apoptosis. Treatment of AML cells with TOPK inhibitor (OTS514) resulted in a dose-dependent decrease in cell viability with lower IC50 in FLT3-mutated cells, including blasts obtained from patients relapsed after FLT3-inhibitor treatment. Using a MV4-11-engrafted mouse model, we found that mice treated with 7.5 mg/kg IV daily for 3 weeks survived significantly longer than vehicle treated mice (median survival 46 vs 29 days, P < 0.001). Importantly, we identified TOPK as a FLT3-ITD and CEBPA regulated kinase, and that modulating TOPK expression or activity resulted in significant decrease of FLT3 expression and CEBPA phosphorylation. Thus, targeting TOPK in FLT3-ITD AML represents a novel therapeutic approach for this adverse risk subset of AML.

  2. Viability and Functionality of Cryopreserved Peripheral Blood Mononuclear Cells in Pediatric Dengue

    PubMed Central

    Perdomo-Celis, Federico; Salgado, Doris M.; Castañeda, Diana M.

    2016-01-01

    Cryopreserved peripheral blood mononuclear cells (PBMCs) are widely used in studies of dengue. In this disease, elevated frequency of apoptotic PBMCs has been described, and molecules such as soluble tumor necrosis factor (TNF)-related apoptosis-inducing ligands (sTRAIL) are involved. This effect of dengue may affect the efficiency of PBMC cryopreservation. Here, we evaluate the viability (trypan blue dye exclusion and amine-reactive dye staining) and functionality (frequency of gamma interferon [IFN-γ]-producing T cells after polyclonal stimulation) of fresh and cryopreserved PBMCs from children with dengue (in acute and convalescence phases), children with other febrile illnesses, and healthy children as controls. Plasma sTRAIL levels were also evaluated. The frequencies of nonviable PBMCs detected by the two viability assays were positively correlated (r = 0.74; P < 0.0001). Cryopreservation particularly affected the PBMCs of children with dengue, who had a higher frequency of nonviable cells than healthy children and children with other febrile illnesses (P ≤ 0.02), and PBMC viability levels were restored in the convalescent phase. In the acute phase, an increased frequency of CD3+ CD8+ amine-positive cells was found before cryopreservation (P = 0.01). Except for B cells in the acute phase, cryopreservation usually did not affect the relative frequencies of viable PBMC subpopulations. Dengue infection reduced the frequency of IFN-γ-producing CD3+ cells after stimulation compared with healthy controls and convalescent-phase patients (P ≤ 0.003), and plasma sTRAIL correlated with this decreased frequency in dengue (rho = −0.56; P = 0.01). Natural dengue infection in children can affect the viability and functionality of cryopreserved PBMCs. PMID:26961858

  3. Effects of silk sericin on the proliferation and apoptosis of colon cancer cells.

    PubMed

    Kaewkorn, Waraporn; Limpeanchob, Nanteetip; Tiyaboonchai, Waree; Pongcharoen, Sutatip; Sutheerawattananonda, Manote

    2012-01-01

    Sericin is a silk protein woven from silkworm cocoons (Bombyx mori). In animal model, sericin has been reported to have anti-tumoral action against colon cancer. The mechanisms underlying the activity of sericin against cancer cells are not fully understood. The present study investigated the effects of sericin on human colorectal cancer SW480 cells compared to normal colonic mucosal FHC cells. Since the size of the sericin protein may be important for its activity, two ranges of molecular weight were tested. Sericin was found to decrease SW480 and FHC cell viability. The small sericin had higher anti-proliferative effects than that of the large sericin in both cell types. Increased apoptosis of SW480 cells is associated with increased caspase-3 activity and decreased Bcl-2 expression. The anti-proliferative effect of sericin was accompanied by cell cycle arrest at the S phase. Thus, sericin reduced SW480 cell viability by inducing cell apoptosis via caspase-3 activation and down-regulation of Bcl-2 expression. The present study provides scientific data that support the protective effect of silk sericin against cancer cells of the colon and suggests that this protein may have significant health benefits and could potentially be developed as a dietary supplement for colon cancer prevention.

  4. In Vitro Impact of Conditioned Medium From Demineralized Freeze-Dried Bone on Human Umbilical Endothelial Cells.

    PubMed

    Harnik, Branko; Miron, Richard J; Buser, Daniel; Gruber, Reinhard

    2017-03-01

    Angiogenesis is essential for the consolidation of bone allografts. The underlying molecular mechanism, however, remains unclear. Soluble factors released from demineralized freeze-dried bone target mesenchymal cells; however, their effect on endothelial cells has not been investigated so far. The aim of the present study was therefore to examine the effect of conditioned medium from demineralized freeze-dried bone on human umbilical endothelial cells in vitro. Conditioned medium was first prepared from demineralized freeze-dried bone following 24 hours incubation at room temperature to produce demineralized bone conditioned media. Thereafter, conditioned medium was used to stimulate human umbilical vein endothelial cells in vitro by determining the cell response based on viability, proliferation, expression of apoptotic genes, a Boyden chamber to determine cell migration, and the formation of branches. The authors report here that conditioned medium decreased viability and proliferation of endothelial cells. Neither of the apoptotic marker genes was significantly altered when endothelial cells were exposed to conditioned medium. The Boyden chamber revealed that endothelial cells migrate toward conditioned medium. Moreover, conditioned medium moderately stimulated the formation of branches. These findings support the concept that conditioned medium from demineralized freeze-dried bone targets endothelial cells by decreasing their proliferation and enhancing their motility under these in vitro conditions.

  5. Ovarian Expression, Localization, and Function of Tissue Inhibitor of Metalloproteinase 3 (TIMP3) During the Periovulatory Period of the Human Menstrual Cycle1

    PubMed Central

    Rosewell, Katherine L.; Li, Feixue; Puttabyatappa, Muraly; Akin, James W.; Brännström, Mats; Curry, Thomas E.

    2013-01-01

    ABSTRACT Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability. PMID:24048576

  6. Ovarian expression, localization, and function of tissue inhibitor of metalloproteinase 3 (TIMP3) during the periovulatory period of the human menstrual cycle.

    PubMed

    Rosewell, Katherine L; Li, Feixue; Puttabyatappa, Muraly; Akin, James W; Brännström, Mats; Curry, Thomas E

    2013-11-01

    Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.

  7. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway.

    PubMed

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-05-01

    Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Lidocaine (0.005%-0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50-800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway.

  8. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway

    PubMed Central

    Lee, Yoon-Jin; Kim, Soo A; Lee, Sang-Han

    2016-01-01

    Aim: Intra-articular injection of local anesthetics (LAs) is a common procedure for therapeutic purposes. However, LAs have been found toxic to articular cartilage, and hyaluronan may attenuate this toxicity. In this study we investigated whether hyaluronan attenuated lidocaine-induced chondrotoxicity, and if so, to elucidate the underlying mechanisms. Methods: Human chondrocyte cell line SW1353 and newly isolated murine chondrocytes were incubated in culture medium containing hyaluronan and/or lidocaine for 72 h. Cell viability was evaluated using MTT assay. Cell apoptosis was detected with DAPI staining, caspase 3/7 activity assay and flow cytometry. Cell cycle distributions, ROS levels and mitochondrial membrane potential (ΔΨm) were determined using flow cytometry. The expression of p53 and p53-regulated gene products was measured with Western blotting. Results: Lidocaine (0.005%−0.03%) dose-dependently decreased the viability of SW1353 cells. This local anesthetic (0.015%, 0.025%) induced apoptosis, G2/M phase arrest and loss of ΔΨm, and markedly increased ROS production in SW1353 cells. Hyaluronan (50−800 μg/mL) alone did not affect the cell viability, but co-treatment with hyaluronan (200 μg/mL) significantly attenuated lidocaine-induced apoptosis and other abnormalities in SW1353 cells. Furthermore, co-treatment with lidocaine and hyaluronan significantly decreased the levels of p53 and its transcription targets Bax and p21 in SW1353 cells, although treatment with lidocaine alone did not significantly change these proteins. Similar results were obtained in ex vivo cultured murine chondrocytes. Conclusion: Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro through inhibiting the p53-dependent mitochondrial apoptotic pathway. PMID:27041463

  9. Quantification of cell response to polymeric composites using a two-dimensional gradient platform.

    PubMed

    Lin, Nancy J; Hu, Haiqing; Sung, Lipin; Lin-Gibson, Sheng

    2009-07-01

    A simple and straightforward screening process to assess the toxicity and corresponding cell response of dental composites would be useful prior to extensive in vitro or in vivo characterization. To this end, gradient composite samples were prepared with variations in filler content/type and in degree of conversion (DC). The DC was determined using near infrared spectroscopy (NIR), and the surface morphology was evaluated by laser scanning confocal microscopy (LSCM). RAW 264.7 macrophage-like cells were cultured directly on the composite gradient samples, and cell viability, density, and area were measured at 24 h. All three measures of cell response varied as a function of material properties. For instance, compositions with higher filler content had no reduction in cell viability or cell density, even at low conversions of 52%, whereas significant decreases in viability and density were present when the filler content was 35% or below (by mass). The overall results demonstrate the complexity of the cell-material interactions, with properties including DC, filler type, filler mass ratio, and surface morphology influencing the cell response. The combinatorial approach described herein enables simultaneous screening of multiple compositions and material properties, providing a more thorough characterization of cell response for the improved selection of biocompatible composite formulations and processing conditions.

  10. Green Fluorescent Protein as a Novel Indicator of Antimicrobial Susceptibility in Aureobasidium pullulans

    PubMed Central

    Webb, Jeremy S.; Barratt, Sarah R.; Sabev, Hristo; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Handley, Pauline S.; Robson, Geoffrey D.

    2001-01-01

    Presently there is no method available that allows noninvasive and real-time monitoring of fungal susceptibility to antimicrobial compounds. The green fluorescent protein (GFP) of the jellyfish Aequoria victoria was tested as a potential reporter molecule for this purpose. Aureobasidium pullulans was transformed to express cytosolic GFP using the vector pTEFEGFP (A. J. Vanden Wymelenberg, D. Cullen, R. N. Spear, B. Schoenike, and J. H. Andrews, BioTechniques 23:686–690, 1997). The transformed strain Ap1 gfp showed bright fluorescence that was amenable to quantification using fluorescence spectrophotometry. Fluorescence levels in Ap1 gfp blastospore suspensions were directly proportional to the number of viable cells determined by CFU plate counts (r2 > 0.99). The relationship between cell viability and GFP fluorescence was investigated by adding a range of concentrations of each of the biocides sodium hypochlorite and 2-n-octylisothiozolin-3-one (OIT) to suspensions of Ap1 gfp blastospores (pH 5 buffer). These biocides each caused a rapid (<25-min) loss of fluorescence of greater than 90% when used at concentrations of 150 μg of available chlorine ml−1 and 500 μg ml−1, respectively. Further, loss of GFP fluorescence from A. pullulans cells was highly correlated with a decrease in the number of viable cells (r2 > 0.92). Losses of GFP fluorescence and cell viability were highly dependent on external pH; maximum losses of fluorescence and viability occurred at pH 4, while reduction of GFP fluorescence was absent at pH 8.0 and was associated with a lower reduction in viability. When A. pullulans was attached to the surface of plasticized poly(vinylchloride) containing 500 ppm of OIT, fluorescence decreased more slowly than in cell suspensions, with >95% loss of fluorescence after 27 h. This technique should have broad applications in testing the susceptibility of A. pullulans and other fungal species to antimicrobial compounds. PMID:11722914

  11. Long Noncoding RNA H19 Inhibits Cell Viability, Migration, and Invasion Via Downregulation of IRS-1 in Thyroid Cancer Cells

    PubMed Central

    Wang, Peng; Xu, Weimin; Liu, Haixia; Bu, Qingao; Sun, Diwen

    2017-01-01

    Thyroid cancer is a common endocrine gland malignancy which exhibited rapid increased incidence worldwide in recent decades. This study was aimed to investigate the role of long noncoding RNA H19 in thyroid cancer. Long noncoding RNA H19 was overexpressed or knockdown in thyroid cancer cells SW579 and TPC-1, and the expression of long noncoding RNA H19 was detected by real-time polymerase chain reaction. The cell viability, migration, and invasion were determined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay, Transwell assay, and wound healing assay, respectively. Furthermore, cell apoptosis was analyzed by flow cytometry, and expressions of some factors that were related to phosphatidyl inositide 3-kinases/protein kinase B and nuclear factor κB signal pathway were measured by Western blotting. This study revealed that cell viability and migration/invasion of SW579 and TPC-1 were significantly decreased by long noncoding RNA H19 overexpression compared with the control group (P < .05), whereas cell apoptosis was statistically increased (P < .001). Meanwhile, cell viability and migration/invasion were significantly increased after long noncoding RNA H19 knockdown (P < .05). Furthermore, long noncoding RNA H19 negatively regulated the expression of insulin receptor substrate 1 and thus effect on cell proliferation and apoptosis. Insulin receptor substrate 1 regulated the activation of phosphatidyl inositide 3-kinases/AKT and nuclear factor κB signal pathways. In conclusion, long noncoding RNA H19 could suppress cell viability, migration, and invasion via downregulation of insulin receptor substrate 1 in SW579 and TPC-1 cells. These results suggested the important role of long noncoding RNA H19 in thyroid cancer, and long noncoding RNA H19 might be a potential target of thyroid cancer treatment. PMID:29332545

  12. The Proteins from Sika deer antler as potential modulators on cisplatin-induced cytotoxicity in human embryonic kidney 293 cells.

    PubMed

    Yang, Huihai; Li, Wei; Wang, Lulu; He, Xiaofeng; Sun, Hang; Zhang, Jing

    2017-07-31

    Our study aimed to investigate the protective role of SDAPR on cisplatin-induced cytotoxicity and its' possible mechanism in HEK293 cells. Cell viability was measured by MTT assay. Oxidative stress (SOD, GSH, LDH and MDA), inflammatory factors (TNF-α and IL-6) and apoptosis-related proteins (caspase-3, Bax, Bcl-2) expression were measured. The apoptotic cells were observed by TUNEL staining. Our study results indicated that non-cytotoxic levels of SDAPR significantly increased viability rate (LD 50 value of cisplatin is 20 μM), which improved antioxidant defence, attenuated apoptosis by decreasing expression levels of cleaved-caspase-3 and Bax, increasing Bcl-2 expression and inhibiting apoptotic positive cells in HEK 293 cells. In addition, SDAPR treatment markedly inhibited the levels of TNF-α and IL-6. In conclusion, Sika deer antler protein, a potential modulator, could alleviate cisplatin-induced cytotoxicity in HEK 293 cells.

  13. Adenylate kinase 2 (AK2) promotes cell proliferation in insect development

    PubMed Central

    2012-01-01

    Background Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development. PMID:23020757

  14. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    PubMed

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  15. Fenretinide

    PubMed Central

    Pavone, Mary Ellen; Malpani, Saurabh S.; Dyson, Matthew; Kim, J. Julie; Bulun, Serdar E.

    2016-01-01

    Objective: Fenretinide is a synthetic retinoid analogue that promotes apoptosis but has decreased toxicity when compared to other retinoids. We have previously shown that retinoic acid (RA) production in endometriotic tissue is decreased, resulting in reduced estrogen metabolism and apoptotic resistance. We hypothesize fenretinide may induce apoptosis in endometriotic cells and tissues, thereby reducing disease burden. Materials and Methods: Primary endometriotic stromal cells were collected, isolated, cultured, and treated with fenretinide in doses from 0 to 20 µmol/L. Cell count, viability, and immunoblots were performed to examine apoptosis. Quantitative reverse transcription-polymerase chain reaction from endometriotic cells treated with fenretinide was used to examine expression of genes involved in RA signaling including stimulated by RA 6 (STRA6), cellular RA binding protein 2 (CRABP2), and fatty acid binding protein 5 (FABP5). Endometriotic tissue was xenografted subcutaneously into the flanks of mice which were treated with fenretinide for 2 weeks, after which the mice were killed and lesion volumes calculated. Statistical analysis was performed using t test and analysis of variance. Results: Treatment with fenretinide significantly decreased total cell count (doses 5-20 µL) and viability (doses 10-20 µmol/L). Fenretinide increased protein levels of the apoptotic marker poly (ADP ribose) polymerase (starting at 10 µmol/L) and decreased proliferation marker proliferating cell nuclear antigen (10 µmol/L, starting at 8-day treatment). Examination of genes involved in retinoid uptake and action showed that treatment induced STRA6 expression while expression of CRABP2 and FABP5 remained unchanged. Fenretinide also significantly decreased the endometriotic lesion xenograft volume. Conclusions: Fenretinide increases STRA6 expression thereby potentially reversing the pathological loss of retinoid availability. Treatment with this compound induces apoptosis. In vivo treatments decrease lesion volume. Targeting the RA signaling pathway may be a promising novel treatment for women with endometriosis. PMID:26919975

  16. The Impact of Glyphosate, Its Metabolites and Impurities on Viability, ATP Level and Morphological changes in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kwiatkowska, Marta; Jarosiewicz, Paweł; Michałowicz, Jaromir; Koter-Michalak, Maria; Huras, Bogumiła; Bukowska, Bożena

    2016-01-01

    The toxicity of herbicides to animals and human is an issue of worldwide concern. The present study has been undertaken to assess toxic effect of widely used pesticide—glyphosate, its metabolites: aminomethylphosphonic acid (AMPA) and methylphosphonic acid and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA), N-methylglyphosate, hydroxymethylphosphonic acid and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs). We have evaluated the effect of those compounds on viability, ATP level, size (FSC-A parameter) and granulation (SSC-A parameter) of the cells studied. Human peripheral blood mononuclear cells were exposed to different concentrations of glyphosate, its metabolites and impurities (0.01–10 mM) for 4 and 24 h. It was found that investigated compounds caused statistically significant decrease in viability and ATP level of PBMCs. The strongest changes in cell viability and ATP level were observed after 24 h incubation of PBMCs with bis-(phosphonomethyl)amine, and particularly PMIDA. Moreover, all studied compounds changed cell granularity, while PMIDA and bis-(phosphonomethyl)amine altered PBMCs size. It may be concluded that bis-(phosphonomethyl)amine, and PMIDA caused a slightly stronger damage to PBMCs than did glyphosate. Changes in the parameters studied in PBMCs were observed only at high concentrations of the compounds examined, which clearly shows that they may occur in this cell type only as a result of acute poisoning of human organism with these substances. PMID:27280764

  17. Investigation of selective induction of breast cancer cells to death with treatment of plasma-activated medium

    NASA Astrophysics Data System (ADS)

    Hashizume, Hiroshi; Tanaka, Hiromasa; Nakamura, Kae; Kano, Hiroyuki; Ishikawa, Kenji; Kikkawa, Fumitaka; Mizuno, Masaaki; Hori, Masaru

    2015-09-01

    The applications of plasma in medicine have much attention. We previously showed that plasma-activated medium (PAM) induced glioblastoma cells to apoptosis. However, it has not been elucidated the selectivity of PAM in detail. In this study, we investigated the selective effect of PAM on the death of human breast normal and cancer cells, MCF10A and MCF7, respectively, and observed the selective death with fluorescent microscopy. For the investigation of cell viability with PAM treatment, we prepared various PAMs according to the strengths, and treated each of cells with PAMs. Week PAM treatment only decreased the viability of MCF7 cells, while strong PAM treatment significantly affected both viabilities of MCF7 and MCF10A cells. For the fluorescent observation, we prepared the mixture of MCF7 and fluorescent-probed MCF10A cells, and seeded them. After the treatment of PAMs, the images showed that only MCF7 cells damaged in the mixture with week PAM treatment. These results suggested that a specific range existed with the selective effect in the strength of PAM. This work was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' Grant No. 24108002 and 24108008 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  18. Effects of PPARα inhibition in head and neck paraganglioma cells.

    PubMed

    Florio, Rosalba; De Lellis, Laura; di Giacomo, Viviana; Di Marcantonio, Maria Carmela; Cristiano, Loredana; Basile, Mariangela; Verginelli, Fabio; Verzilli, Delfina; Ammazzalorso, Alessandra; Prasad, Sampath Chandra; Cataldi, Amelia; Sanna, Mario; Cimini, Annamaria; Mariani-Costantini, Renato; Mincione, Gabriella; Cama, Alessandro

    2017-01-01

    Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL.

  19. Suspended animation extends survival limits of Caenorhabditis elegans and Saccharomyces cerevisiae at low temperature.

    PubMed

    Chan, Kin; Goldmark, Jesse P; Roth, Mark B

    2010-07-01

    The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.

  20. FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation

    PubMed Central

    Szlachcic, Anna; Pala, Katarzyna; Zakrzewska, Malgorzata; Jakimowicz, Piotr; Wiedlocha, Antoni; Otlewski, Jacek

    2012-01-01

    Fibroblast growth factor receptors (FGFRs) are overexpressed in a wide variety of tumors, such as breast, bladder, and prostate cancer, and therefore they are attractive targets for different types of anticancer therapies. In this study, we designed, constructed, and characterized FGFR-targeted gold nanoconjugates suitable for infrared-induced thermal ablation (localized heating leading to cancer cell death) based on gold nanoparticles (AuNPs). We showed that a recombinant ligand of all FGFRs, human fibroblast growth factor 1 (FGF1), can be used as an agent targeting covalently bound AuNPs to cancer cells overexpressing FGFRs. To assure thermal stability, protease resistance, and prolonged half-life of the targeting protein, we employed highly stable FGF1 variant that retains the biological activities of the wild type FGF1. Novel FGF1 variant, AuNP conjugates are specifically internalized only by the cells expressing FGFRs, and they significantly reduce their viability after irradiation with near-infrared light (down to 40% of control cell viability), whereas the proliferation potential of cells lacking FGFRs is not affected. These results demonstrate the feasibility of FGF1-coated AuNPs for targeted cancer therapy. PMID:23226697

  1. Sulforaphane mitigates cadmium-induced toxicity pattern in human peripheral blood lymphocytes and monocytes.

    PubMed

    Alkharashi, Nouf Abdulkareem Omer; Periasamy, Vaiyapuri Subbarayan; Athinarayanan, Jegan; Alshatwi, Ali A

    2017-10-01

    Cadmium (Cd) is a highly toxic and widely distributed heavy metal that induces various diseases in humans through environmental exposure. Therefore, alleviation of Cd-induced toxicity in living organisms is necessary. In this study, we investigated the protective role of sulforaphane on Cd-induced toxicity in human peripheral blood lymphocytes and monocytes. Sulforaphane did not show any major reduction in the viability of lymphocytes and monocytes. However, Cd treatment at a concentration of 50μM induced around 69% cell death. Treatment of IC 10 -Cd and 100μM sulforaphane combination for 24 and 48h increased viability by 2 and 9% in cells subjected to Cd toxicity, respectively. In addition, IC 25 of Cd and 100μM sulforaphane combination recovered 17-20% of cell viability. Cd induced apoptotic and necrotic cell death. Sulforaphane treatment reduced Cd-induced cell death in lymphocytes and monocytes. Our results clearly indicate that when the cells were treated with Cd+sulforaphane combination, sulforaphane decreased the Cd-induced cytotoxic effect in lymphocytes and monocytes. In addition, sulforaphane concentration plays a major role in the alleviation of Cd-induced toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Suspended Animation Extends Survival Limits of Caenorhabditis elegans and Saccharomyces cerevisiae at Low Temperature

    PubMed Central

    Chan, Kin; Goldmark, Jesse P.

    2010-01-01

    The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment. PMID:20462960

  3. Glucose-dependent growth arrest of leukemia cells by MCT1 inhibition: Feeding Warburg's sweet tooth and blocking acid export as an anticancer strategy.

    PubMed

    Pivovarova, Aleksandra I; MacGregor, Gordon G

    2018-02-01

    This study aims to investigate the utilization of The Warburg Effect, cancer's "sweet tooth" and natural greed for glucose to enhance the effect of monocarboxylate transporter inhibition on cellular acidification. By simulating hyperglycemia with high glucose we may increase the effectiveness of inhibition of lactate and proton export on the dysregulation of cell pH homeostasis causing cell death or disruption of growth in cancer cells. MCT1 and MCT4 expression was determined in MCF7 and K562 cell lines using RT-PCR. Cell viability, growth, intracellular pH and cell cycle analysis was measured in the cell lines grown in 5 mM and 25 mM glucose containing media in the presence and absence of the MCT1 inhibitor AR-C155858 (1 μM) and the NHE1 inhibitor cariporide (10 μM). The MCT1 inhibitor, AR-C155858 had minimal effect on the viability, growth and intracellular pH of MCT4 expressing MCF7 cells. AR-C155858 had no effect on the viability of the MCT1 expressing K562 cells, but decreased intracellular pH and cell proliferation, by a glucose-dependent mechanism. Inhibition of NHE1 on its own had a no effect on cell growth, but together with AR-C155858 showed an additive effect on inhibition of cell growth. In cancer cells that only express MCT1, increased glucose concentrations in the presence of an MCT1 inhibitor decreased intracellular pH and reduced cell growth by G1 phase cell-cycle arrest. Thus we propose a transient hyperglycemic-clamp in combination with proton export inhibitors be evaluated as an adjunct to cancer treatment in clinical studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    PubMed

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    PubMed Central

    Leite de Oliveira, Felipe; Soares, Nathália; de Mattos, Rômulo Medina; Hecht, Fábio; Dezonne, Rômulo Sperduto; Vairo, Leandro; Goldenberg, Regina Coeli dos Santos; Gomes, Flávia Carvalho Alcântara; de Carvalho, Denise Pires; Gadelha, Mônica R.; Nasciutti, Luiz Eurico; Miranda-Alves, Leandro

    2013-01-01

    Pituitary adenomas comprise approximately 10–15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing’s disease. PMID:23667519

  6. Acute Ischemia Induced by High-Density Culture Increases Cytokine Expression and Diminishes the Function and Viability of Highly Purified Human Islets of Langerhans.

    PubMed

    Smith, Kate E; Kelly, Amy C; Min, Catherine G; Weber, Craig S; McCarthy, Fiona M; Steyn, Leah V; Badarinarayana, Vasudeo; Stanton, J Brett; Kitzmann, Jennifer P; Strop, Peter; Gruessner, Angelika C; Lynch, Ronald M; Limesand, Sean W; Papas, Klearchos K

    2017-11-01

    Encapsulation devices have the potential to enable cell-based insulin replacement therapies (such as human islet or stem cell-derived β cell transplantation) without immunosuppression. However, reasonably sized encapsulation devices promote ischemia due to high β cell densities creating prohibitively large diffusional distances for nutrients. It is hypothesized that even acute ischemic exposure will compromise the therapeutic potential of cell-based insulin replacement. In this study, the acute effects of high-density ischemia were investigated in human islets to develop a detailed profile of early ischemia induced changes and targets for intervention. Human islets were exposed in a pairwise model simulating high-density encapsulation to normoxic or ischemic culture for 12 hours, after which viability and function were measured. RNA sequencing was conducted to assess transcriptome-wide changes in gene expression. Islet viability after acute ischemic exposure was reduced compared to normoxic culture conditions (P < 0.01). Insulin secretion was also diminished, with ischemic β cells losing their insulin secretory response to stimulatory glucose levels (P < 0.01). RNA sequencing revealed 657 differentially expressed genes following ischemia, with many that are associated with increased inflammatory and hypoxia-response signaling and decreased nutrient transport and metabolism. In order for cell-based insulin replacement to be applied as a treatment for type 1 diabetes, oxygen and nutrient delivery to β cells will need to be maintained. We demonstrate that even brief ischemic exposure such as would be experienced in encapsulation devices damages islet viability and β cell function and leads to increased inflammatory signaling.

  7. Anaerobic glycolysis protection against 1-methy-4-phenylpyridinium (MPP+) toxicity in C6 glioma cells.

    PubMed

    Williams, Zakia R; Goodman, Carl B; Soliman, Karam F A

    2007-06-01

    The neurotoxin 1-methy-4-phenylpyridinium (MPP(+)) is used for its' capacity to induce Parkinsonism through its inhibitory effects on mitochondrial complex I. This inhibition disrupts cellular energy formation and aerobic glycolysis. The objective of this study was to demonstrate that the toxic effect of mitochondrial aerobic pathway inhibition with MPP(+ )can be reduced by stimulating anaerobic glycolysis using glucose supplementation. In this study, C6 Glioma cell viability was examined in the presence of different concentrations of MPP alone and with the addition of glucose. The results obtained indicate that there was a significant increase (P < 0.001) in cell viability in cells treated with glucose and MPP(+ )verses cells treated with MPP(+ )alone. Fluorometric analysis using 100 microM Rhodamine 123 indicated mitochondrial membrane potential was not restored in MPP(+ )treated cells with glucose; however, normal cell viability was confirmed using 2 microg/ml Fluorescein diacetate. This dual fluorescence indicated mitochondrial damage from MPP(+ )while glucose augmented cell survival. Further confirmation of cell survival upon damage to the mitochondria was evident in TUNEL staining. Positive staining was prominent only in MPP(+) treatment groups alone, while control and co-treated groups exhibited little to no TUNEL staining. ATP measurements of all MPP(+) treated groups exhibited a significant (P < 0.001) decrease verses control. Groups co-treated with MPP(+ )and glucose revealed a significant increase (250 microM group: P < 0.001) in ATP. It was concluded from this study that glucose supplementation was able to sustain cellular viability and ATP production through anaerobic glycolysis despite the inhibitory effect of MPP(+ )on aerobic glycolysis.

  8. Toxicity of Neurons Treated with Herbicides and Neuroprotection by Mitochondria-Targeted Antioxidant SS31

    PubMed Central

    Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Mao, Peizhong; Reddy, Arubala P.; Shirendeb, Ulziibat; Park, Byung; Reddy, P. Hemachandra

    2011-01-01

    The purpose of this study was to determine the neurotoxicity of two commonly used herbicides: picloram and triclopyr and the neuroprotective effects of the mitochondria-targeted antioxidant, SS31. Using mouse neuroblastoma (N2a) cells and primary neurons from C57BL/6 mice, we investigated the toxicity of these herbicides, and protective effects of SS1 peptide against picloram and triclopyr toxicity. We measured total RNA content, cell viability and mRNA expression of peroxiredoxins, neuroprotective genes, mitochondrial-encoded electron transport chain (ETC) genes in N2a cells treated with herbicides and SS31. Using primary neurons from C57BL/6 mice, neuronal survival was studied in neurons treated with herbicides, in neurons pretreated with SS31 plus treated with herbicides, neurons treated with SS31 alone, and untreated neurons. Significantly decreased total RNA content, and cell viability in N2a cells treated with picloram and triclopyr were found compared to untreated N2a cells. Decreased mRNA expression of neuroprotective genes, and ETC genes in cells treated with herbicides was found compared to untreated cells. Decreased mRNA expression of peroxiredoxins 1–6 in N2a cells treated with picloram was found, suggesting that picloram affects the antioxidant enzymes in N2a cells. Immunofluorescence analysis of primary neurons revealed that decreased neuronal branching and degenerating neurons in neurons treated with picloram and triclopyr. However, neurons pretreated with SS31 prevented degenerative process caused by herbicides. Based on these results, we propose that herbicides—picloram and triclopyr appear to damage neurons, and the SS31 peptide appears to protect neurons from herbicide toxicity. PMID:21318024

  9. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells.

    PubMed

    Fresta, Claudia G; Chakraborty, Aishik; Wijesinghe, Manjula B; Amorini, Angela M; Lazzarino, Giacomo; Lazzarino, Giuseppe; Tavazzi, Barbara; Lunte, Susan M; Caraci, Filippo; Dhar, Prajnaparamita; Caruso, Giuseppe

    2018-02-14

    Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.

  10. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells.

    PubMed

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  11. A Small-molecule Inhibitor, 5′-O-Tritylthymidine, targets FAK and Mdm-2 Interaction, and Blocks Breast and Colon Tumorigenesis in vivo

    PubMed Central

    Golubovskaya, Vita; Palma, Nadia L.; Zheng, Min; Ho, Baotran; Magis, Andrew; Ostrov, David; Cance, William G.

    2013-01-01

    Focal Adhesion Kinase (FAK) is overexpressed in many types of tumors and plays an important role in survival. We developed a novel approach, targeting FAK-protein interactions by computer modeling and screening of NCI small molecule drug database. In this report we targeted FAK and Mdm-2 protein interaction to decrease tumor growth. By macromolecular modeling we found a model of FAK and Mdm-2 interaction and performed screening of >200,000 small molecule compounds from NCI database with drug-like characteristics, targeting the FAK-Mdm-2 interaction. We identified 5′-O-Tritylthymidine, called M13 compound that significantly decreased viability in different cancer cells. M13 was docked into the pocket of FAK and Mdm-2 interaction and was directly bound to the FAK-N terminal domain by ForteBio Octet assay. In addition, M13 compound affected FAK and Mdm-2 levels and decreased complex of FAK and Mdm-2 proteins in breast and colon cancer cells. M13 re-activated p53 activity inhibited by FAK with Mdm-2 promoter. M13 decreased viability, clonogenicity, increased detachment and apoptosis in a dose-dependent manner in BT474 breast and in HCT116 colon cancer cells in vitro. M13 decreased FAK, activated p53 and caspase-8 in both cell lines. In addition, M13 decreased breast and colon tumor growth in vivo. M13 activated p53 and decreased FAK in tumor samples consistent with decreased tumor growth. The data demonstrate a novel approach for targeting FAK and Mdm-2 protein interaction, provide a model of FAK and Mdm-2 interaction, identify M13 compound targeting this interaction and decreasing tumor growth that is critical for future targeted therapeutics. PMID:22292771

  12. Cell viability of mycorrhiza helper bacteria solid inoculant in different carrier material

    NASA Astrophysics Data System (ADS)

    Asyiah, Iis Nur; Hindersah, Reginawanti; Harni, Rita

    2018-02-01

    Roots of food crops are colonized by nonpathogenic mycorrhizal fungi which show natural ability to control plant pathogen. Mycorrhizal establishment in plant roots is affected by rhizobacteria, known as mycorrhiza helper bacteria (MHB), which has synergetic effects on mycorrhizal associations. Laboratory experiment has been conducted to assess the best carrier material to develop well-qualified MHB of Pseudomonas diminuta and Bacillus subtilis solid inoculant. Carrier materials were 100 mesh organic matter of agricultural waste. Different spore concentration of both bacterial liquid inoculants were grown on three kinds of 100-mesh organic matter and stored at room temperature up to 90 days. Cell viability of both MHB were counted by serial dilution plate method by using specific medium. The results showed that sugar cane baggase ash was the best carrier material to maintain cell viability for both MHB. However, the population of Pseudomonas diminuta and Bacillus subtilis in sugar cane baggase ash were slightly decreased after 90 days. The use of sugarcane baggase ash for solid MHB inoculant development could be suggested.

  13. Substance P Receptor Signaling Mediates Doxorubicin-Induced Cardiomyocyte Apoptosis and Triple-Negative Breast Cancer Chemoresistance

    PubMed Central

    Robinson, Prema; Kasembeli, Moses; Bharadwaj, Uddalak; Engineer, Nikita; Eckols, Kris T.; Tweardy, David J.

    2016-01-01

    Doxorubicin (DOX), an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC), DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP), a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS). Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2) and a TNBC cell line (MDA-MB 231) with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance. PMID:26981525

  14. Shikonin inhibits the cell viability, adhesion, invasion and migration of the human gastric cancer cell line MGC-803 via the Toll-like receptor 2/nuclear factor-kappa B pathway.

    PubMed

    Liu, Ji Ping; Liu, Dan; Gu, Jun Fei; Zhu, Mao Mao; Cui, Li

    2015-08-01

    Shikonin is an active naphthoquinone pigment isolated from the root of Lithospermum erythrorhizon. This study was designed to explore the inhibition of Shikonin on cell viability, adhesion, migration and invasion ability of gastric cancer (GC) and its possible mechanism. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed for cell viability and adhesion ability of MGC-803 cells. Cell scratch repair experiments were conducted for the determination of migration ability while transwell assay for cell invasion ability. Western blot analysis and real-time polymerase chain reaction assay were used for the detection of protein and mRNA expressions. Fifty per cent inhibitory concentration of Shikonin on MGC-803 cells was 1.854 μm. Shikonin (1 μm) inhibited significantly the adhesion, invasion and migratory ability of MGC-803 cells. Interestingly, Shikonin in the presence or absence of anti-Toll-like receptor 2 (TLR2) antibody (2 μg) and nuclear factor-kappa B (NF-κB) inhibitor MG-132 (10 μm) could decrease these ability of MGC-803 cells markedly, as well as the expression levels of matrix metalloproteinases (MMP)-2, MMP-7, TLR2 and p65 NF-κB. In addition, the co-incubation of Shikonin and anti-TLR2/MG-132 has a significant stronger activity than anti-TLR2 or MG-132 alone. The results indicated that Shikonin could suppress the cell viability, adhesion, invasion and migratory ability of MGC-803 cells through TLR2- or NF-κB-mediated pathway. Our findings provide novel information for the treatment of Shikonin on GC. © 2015 Royal Pharmaceutical Society.

  15. Effects of Plasma Rich in Growth Factors and Platelet-Rich Fibrin on Proliferation and Viability of Human Gingival Fibroblasts

    PubMed Central

    Vahabi, Surena; Vaziri, Shahram; Torshabi, Maryam

    2015-01-01

    Objectives: Platelet preparations are commonly used to enhance bone and soft tissue regeneration. Considering the existing controversies on the efficacy of platelet products for tissue regeneration, more in vitro studies are required. The aim of the present study was to compare the in vitro effects of plasma rich in growth factors (PRGF) and platelet-rich fibrin (PRF) on proliferation and viability of human gingival fibroblasts (HGFs). Materials and Methods: Anitua’s PRGF and Choukran’s PRF were prepared according to the standard protocols. After culture periods of 24, 48 and 72 hours, proliferation of HGFs was evaluated by the methyl thiazol tetrazolium assay. Statistical analysis was performed using one-way ANOVA followed by Tukey-Kramer’s multiple comparisons and P-values<0.05 were considered statistically significant. Results: PRGF treatment induced statistically significant (P<0.001) proliferation of HGF cells compared to the negative control (100% viability) at 24, 48 and 72 hours in values of 123%±2.25%, 102%±2.8% and 101%±3.92%, respectively. The PRF membrane treatment of HGF cells had a statistically significant effect on cell proliferation (21%±1.73%, P<0.001) at 24 hours compared to the negative control. However, at 48 and 72 hours after treatment, PRF had a negative effect on HGF cell proliferation and caused 38% and 60% decrease in viability and proliferation compared to the negative control, respectively. The HGF cell proliferation was significantly higher in PRGF than in PRF group (P< 0.001). Conclusion: This study demonstrated that PRGF had a strong stimulatory effect on HGF cell viability and proliferation compared to PRF. PMID:26877740

  16. HPLC Separation of Vitamin E and Its Oxidation Products and Effects of Oxidized Tocotrienols on the Viability of MCF-7 Breast Cancer Cells in Vitro.

    PubMed

    Drotleff, Astrid M; Büsing, Anne; Willenberg, Ina; Empl, Michael T; Steinberg, Pablo; Ternes, Waldemar

    2015-10-14

    Tocotrienols, a vitamin E subgroup, exert potent anticancer effects, but easily degrade due to oxidation. Eight vitamin E reference compounds, α-, β-, γ-, or δ-tocopherols or -tocotrienols, were thermally oxidized in n-hexane. The corresponding predominantly dimeric oxidation products were separated from the parent compounds by diol-modified normal-phase HPLC-UV and characterized by mass spectroscopy. The composition of test compounds, that is, α-tocotrienol, γ-tocotrienol, or palm tocotrienol-rich fraction (TRF), before and after thermal oxidation was determined by HPLC-DAD, and MCF-7 cells were treated with both nonoxidized and oxidized test compounds for 72 h. Whereas all nonoxidized test compounds (0-100 μM) led to dose-dependent decreases in cell viability, equimolar oxidized α-tocotrienol had a weaker effect, and oxidized TRF had no such effect. However, the IC50 value of oxidized γ-tocotrienol was lower (85 μM) than that of nonoxidized γ-tocotrienol (134 μM), thereby suggesting that γ-tocotrienol oxidation products are able to reduce tumor cell viability in vitro.

  17. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

    PubMed Central

    Espina, Miguel; Jülke, Henriette; Brehm, Walter; Ribitsch, Iris; Winter, Karsten

    2016-01-01

    Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (<40%) for all freezing protocols at −20 °C or −80 °C, particularly with bone marrow supernatant or plasma and DMSO. In part III, various cell concentrations also had no significant influence on any of the evaluated parameters. Chondrogenic differentiation showed a trend towards being decreased for all transport conditions, compared to control cells. Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. The unusual low viability after all freezing protocols is in contrast to previous equine studies. Potential causes are differences in the freezing, but also in thawing method. Also, the selected container (glass syringe) may have impacted viability. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation. PMID:27019778

  18. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury.

    PubMed

    Mei, Chen; He, Sha-Sha; Yin, Peng; Xu, Lei; Shi, Ya-Ran; Yu, Xiao-Hong; Lyu, An; Liu, Feng-Hua; Jiang, Lin-Shu

    2016-06-01

    Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock.

  19. Thrombomodulin exerts cytoprotective effect on low-dose UVB-irradiated HaCaT cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Masahiro; Laboratory of Vascular Medicine, Department of Cardiovascular and Respiratory Disorders Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520; Kawahara, Ko-ichi

    Thrombomodulin (TM) is an endothelial cell surface anticoagulant glycoprotein that performs antimetastatic, angiogenic, adhesive, and anti-inflammatory functions in various tissues. It is also expressed in epidermal keratinocytes. We found that a physiological dose (10 mJ/cm{sup 2}) of mid-wavelength ultraviolet irradiation (UVB) significantly induced TM expression via the p38mitogen-activated protein kinase (MAPK)/cyclic AMP response element (CRE) signaling pathway in the epidermal keratinocyte cell line HaCaT; this shows that TM regulates the survival of HaCaT cells. SB203580, a p38MAPK inhibitor, significantly decreased TM expression and the viability of cells exposed to UVB. Furthermore, overexpression of TM markedly increased cell viability, and itmore » was abrogated by TM small interfering RNA (siRNA), suggesting that TM may play an important role in exerting cytoprotective effect on epidermal keratinocytes against low-dose UVB.« less

  20. Molecular Mechanisms of Toxicity and Cell Damage by Chemicals in a Human Pancreatic Beta Cell Line, 1.1B4.

    PubMed

    Vasu, Srividya; McClenaghan, Neville H; Flatt, Peter R

    2016-10-01

    Mechanisms of toxicity and cell damage were investigated in novel clonal human pancreatic beta cell line, 1.1B4, after exposure to streptozotocin, alloxan, ninhydrin, and hydrogen peroxide. Viability, DNA damage, insulin secretion/content, [Ca]i, and glucokinase/hexokinase, mRNA expression were measured by MTT assay, comet assay, radioimmunoassay, fluorometric imaging plate reader, enzyme-coupled photometry, and real-time polymerase chain reaction, respectively. Chemicals significantly reduced 1.1B4 cell viability in a time/concentration-dependent manner. Chronic 18-hour exposure decreased cellular insulin, glucokinase, and hexokinase activities. Chemicals decreased transcription of INS, GCK, PCSK1, PCSK2, and GJA1 (involved in secretory function). Insulin release and [Ca]i responses to nutrients and membrane-depolarizing agents were impaired. Streptozotocin and alloxan up-regulated transcription of genes, SOD1 and SOD2 (antioxidant enzymes). Ninhydrin and hydrogen peroxide up-regulated SOD2 transcription, whereas alloxan and hydrogen peroxide increased CAT transcription. Chemicals induced DNA damage, apoptosis, and increased caspase 3/7 activity. Streptozotocin and alloxan decreased transcription of BCL2 while increasing transcription of BAX. Chemicals did not affect transcription of HSPA4 and HSPA5 and nitrite production. 1.1B4 cells represent a useful model of human beta cells. Chemicals impaired 1.1B4 cell secretory function and activated antioxidant defense and apoptotic pathways without activating endoplasmic reticulum stress response/nitrosative stress.

  1. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer.

    PubMed

    Amato, Katherine R; Wang, Shan; Tan, Li; Hastings, Andrew K; Song, Wenqiang; Lovly, Christine M; Meador, Catherine B; Ye, Fei; Lu, Pengcheng; Balko, Justin M; Colvin, Daniel C; Cates, Justin M; Pao, William; Gray, Nathanael S; Chen, Jin

    2016-01-15

    Despite the success of treating EGFR-mutant lung cancer patients with EGFR tyrosine kinase inhibitors (TKI), all patients eventually acquire resistance to these therapies. Although various resistance mechanisms have been described, there are currently no FDA-approved therapies that target alternative mechanisms to treat lung tumors with acquired resistance to first-line EGFR TKI agents. Here we found that EPHA2 is overexpressed in EGFR TKI-resistant tumor cells. Loss of EPHA2 reduced the viability of erlotinib-resistant tumor cells harboring EGFR(T790M) mutations in vitro and inhibited tumor growth and progression in an inducible EGFR(L858R+T790M)-mutant lung cancer model in vivo. Targeting EPHA2 in erlotinib-resistant cells decreased S6K1-mediated phosphorylation of cell death agonist BAD, resulting in reduced tumor cell proliferation and increased apoptosis. Furthermore, pharmacologic inhibition of EPHA2 by the small-molecule inhibitor ALW-II-41-27 decreased both survival and proliferation of erlotinib-resistant tumor cells and inhibited tumor growth in vivo. ALW-II-41-27 was also effective in decreasing viability of cells with acquired resistance to the third-generation EGFR TKI AZD9291. Collectively, these data define a role for EPHA2 in the maintenance of cell survival of TKI-resistant, EGFR-mutant lung cancer and indicate that EPHA2 may serve as a useful therapeutic target in TKI-resistant tumors. ©2016 American Association for Cancer Research.

  2. Inhibition of connective tissue growth factor (CTGF/CCN2) in gallbladder cancer cells leads to decreased growth in vitro.

    PubMed

    Garcia, Patricia; Leal, Pamela; Ili, Carmen; Brebi, Priscilla; Alvarez, Hector; Roa, Juan C

    2013-06-01

    Gallbladder cancer (GBC) is an aggressive neoplasm associated with late diagnosis, unsatisfactory treatment and poor prognosis. Previous work showed that connective tissue growth factor (CTGF) expression is increased in this malignancy. This matricellular protein plays an important role in various cellular processes and its involvement in the tumorigenesis of several human cancers has been demonstrated. However, the precise function of CTGF expression in cancer cells is yet to be determined. The aim of this study was to evaluate the CTGF expression in gallbladder cancer cell lines, and its effect on cell viability, colony formation and in vitro cell migration. CTGF expression was evaluated in seven GBC cell lines by Western blot assay. Endogenous CTGF expression was downregulated by lentiviral shRNA directed against CTGF mRNA in G-415 cells, and the effects on cell viability, anchorage-independent growth and migration was assessed by comparing them to scrambled vector-transfected cells. Knockdown of CTGF resulted in significant reduction in cell viability, colony formation and anchorage-independent growth (P < 0.05). An increased p27 expression was observed in G-415 cells with loss of CTGF function. Our results suggest that high expression of this protein in gallbladder cancer may confer a growth advantage for neoplastic cells. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  3. Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment

    PubMed Central

    Karthikeyan, Aparna; Gupta, Neelima; Tang, Carol; Mallilankaraman, Karthik; Silambarasan, Maskomani; Shi, Meng; Lu, Lei; Ang, Beng Ti; Ling, Eng-Ang; Dheen, S. Thameem

    2018-01-01

    Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells treated with the medium from control microglial cells. Taken together, the present study suggests that microglial SMAD4 which is epigenetically regulated by miR-146a promotes microglial migration in gliomas and glioma cell viability.

  4. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2006-04-01

    replication in yeast cells. In the prior reporting period we demonstrated that re-replication induces a rapid and significant decrease in cell viability...repair, DNA replication, checkpoint, cell cycle, yeast , RAD9 16. SECURITY CLASSIFICATION OF: 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON...initiation, our laboratory has been able to conditionally induce varying amounts of re- replication in yeast cells. Effectively, cells enter, but do not

  5. Nanospheric Chemotherapeutic and Chemoprotective Agents

    DTIC Science & Technology

    2008-09-01

    Rutgers scientists led by Prof. Joachim Kohn and TyRx Pharma, Inc., announced the FDA’s clearance of a new medical device for hernia repair that...significant decrease of the cell metabolic activity of KB cervical carcinoma cells was detected, confirming that these nanospheres do not induce any short...term cytotoxicity. Cell viability was analyzed by MTS colorimetric assay after 3 days. Figure 11: Metabolic activity of KB cervical carcinoma cells

  6. Role of cytoskeleton and elastic moduli in cellular response to nanosecond pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Thompson, Gary L.; Roth, Caleb; Tolstykh, Gleb; Kuipers, Marjorie; Ibey, Bennett L.

    2013-02-01

    Nanosecond pulsed electric fields (nsPEFs) are known to increase cell membrane permeability to small molecules in accordance with dosages. As previous work has focused on nsPEF exposures in whole cells, electrodeformation may contribute to this induced-permeabilization in addition to other biological mechanisms. Here, we hypothesize that cellular elasticity, based upon the cytoskeleton, affects nsPEF-induced decrease in cellular viability. Young's moduli of various types of cells have been calculated from atomic force microscopy (AFM) force curve data, showing that CHO cells are stiffer than non-adherent U937 and Jurkat cells, which are more susceptible to nsPEF exposure. To distinguish any cytoskeletal foundation for these observations, various cytoskeletal reagents were applied. Inhibiting actin polymerization significantly decreased membrane integrity, as determined by relative propidium uptake and phosphatidylserine externalization, upon exposure at 150 kV/cm with 100 pulses of 10 ns pulse width. Exposure in the presence of other drugs resulted in insignificant changes in membrane integrity and 24-hour viability. However, Jurkat cells showed greater lethality than latrunculin-treated CHO cells of comparable elasticity. From these results, it is postulated that cellular elasticity rooted in actin-membrane interaction is only a minor contributor to the differing responses of adherent and non-adherent cells to nsPEF insults.

  7. mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib.

    PubMed

    Hanly, Elyse K; Bednarczyk, Robert B; Tuli, Neha Y; Moscatello, Augustine L; Halicka, H Dorota; Li, Jiangwei; Geliebter, Jan; Darzynkiewicz, Zbigniew; Tiwari, Raj K

    2015-11-24

    Treatment options for advanced metastatic thyroid cancer patients are limited. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials although cellular resistance occurs. Combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. We used an in vitro model to examine combination treatment with vemurafenib and mammalian target of rapamycin (mTOR) inhibitors, metformin and rapamycin. Cellular viability and apoptosis were analyzed in thyroid cell lines by trypan blue exclusion and TUNEL assays. Combination of vemurafenib and metformin decreased cell viability and increased apoptosis in both BCPAP papillary thyroid cancer cells and 8505c anaplastic thyroid cancer cells. This combination was also found to be active in vemurafenib-resistant BCPAP cells. Changes in expression of signaling molecules such as decreased mTOR expression in BCPAP and enhanced inhibition of phospho-MAPK in resistant BCPAP and 8505c were observed. The second combination of vemurafenib and rapamycin amplified cell death in BCPAP cells. We conclude that combination of BRAFV600E and mTOR inhibition forms the basis of a treatment regimen that should be further investigated in in vivo model systems. Metformin or rapamycin adjuvant treatment may provide clinical benefits with minimal side effects to BRAFV600E-positive advanced thyroid cancer patients treated with vemurafenib.

  8. mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib

    PubMed Central

    Hanly, Elyse K.; Bednarczyk, Robert B.; Tuli, Neha Y.; Moscatello, Augustine L.; Halicka, H. Dorota; Li, Jiangwei; Geliebter, Jan; Darzynkiewicz, Zbigniew; Tiwari, Raj K.

    2015-01-01

    Treatment options for advanced metastatic thyroid cancer patients are limited. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials although cellular resistance occurs. Combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. We used an in vitro model to examine combination treatment with vemurafenib and mammalian target of rapamycin (mTOR) inhibitors, metformin and rapamycin. Cellular viability and apoptosis were analyzed in thyroid cell lines by trypan blue exclusion and TUNEL assays. Combination of vemurafenib and metformin decreased cell viability and increased apoptosis in both BCPAP papillary thyroid cancer cells and 8505c anaplastic thyroid cancer cells. This combination was also found to be active in vemurafenib-resistant BCPAP cells. Changes in expression of signaling molecules such as decreased mTOR expression in BCPAP and enhanced inhibition of phospho-MAPK in resistant BCPAP and 8505c were observed. The second combination of vemurafenib and rapamycin amplified cell death in BCPAP cells. We conclude that combination of BRAFV600E and mTOR inhibition forms the basis of a treatment regimen that should be further investigated in in vivo model systems. Metformin or rapamycin adjuvant treatment may provide clinical benefits with minimal side effects to BRAFV600E-positive advanced thyroid cancer patients treated with vemurafenib. PMID:26284586

  9. Protective effect of aged garlic extract (AGE) on the apoptosis of intestinal epithelial cells caused by methotrexate.

    PubMed

    Li, Tiesong; Ito, Kousei; Sumi, Shin-Ichiro; Fuwa, Toru; Horie, Toshiharu

    2009-04-01

    Methotrexate (MTX) causes intestinal damage, resulting in diarrhea. The side effects often disturb the cancer chemotherapy. We previously reported that AGE protected the small intestine of rats from the MTX-induced damage. In the present paper, the mechanism of the protection of AGE against the MTX-induced damage of small intestine was investigated, using IEC-6 cells originating from rat jejunum crypt. The viability and apoptosis of IEC-6 cells were examined in the presence of MTX and/or AGE. The viability of IEC-6 cells exposed to MTX was decreased by the increase of MTX concentration. The MTX-induced loss of viable IEC-6 cells was almost completely prevented by the presence of more than 0.1% AGE. In IEC-6 cells exposed to MTX, the cromatin condensation, DNA fragmentation, caspase-3 activation and cytochrome c release were observed. These were preserved to the control levels by the presence of AGE. MTX markedly decreased intracellular GSH in IEC-6 cells, but the presence of AGE in IEC-6 cells with MTX preserved intracellular GSH to the control level. IEC-6 cells in G2/M stage markedly decreased 72 h after the MTX treatment, which was preserved to the control level by the presence of AGE. These results indicated that AGE protected IEC-6 cells from the MTX-induced damage. The MTX-induced apoptosis of IEC-6 cells was shown to be depressed by AGE. AGE may be useful for the cancer chemotherapy with MTX, since AGE reduces the MTX-induced intestinal damage.

  10. Metabolic Abnormalities Detected in Phase II Evaluation of Doxycycline in Dogs with Multicentric B-Cell Lymphoma

    PubMed Central

    Hume, Kelly R.; Sylvester, Skylar R.; Borlle, Lucia; Balkman, Cheryl E.; McCleary-Wheeler, Angela L.; Pulvino, Mary; Casulo, Carla; Zhao, Jiyong

    2018-01-01

    Doxycycline has antiproliferative effects in human lymphoma cells and in murine xenografts. We hypothesized that doxycycline would decrease canine lymphoma cell viability and prospectively evaluated its clinical tolerability in client-owned dogs with spontaneous, nodal, multicentric, substage a, B-cell lymphoma, not previously treated with chemotherapy. Treatment duration ranged from 1 to 8 weeks (median and mean, 3 weeks). Dogs were treated with either 10 (n = 6) or 7.5 (n = 7) mg/kg by mouth twice daily. One dog had a stable disease for 6 weeks. No complete or partial tumor responses were observed. Five dogs developed grade 3 and/or 4 metabolic abnormalities suggestive of hepatopathy with elevations in bilirubin, ALT, ALP, and/or AST. To evaluate the absorption of oral doxycycline in our study population, serum concentrations in 10 treated dogs were determined using liquid chromatography tandem mass spectrometry. Serum levels were variable and ranged from 3.6 to 16.6 µg/ml (median, 7.6 µg/ml; mean, 8.8 µg/ml). To evaluate the effect of doxycycline on canine lymphoma cell viability in vitro, trypan blue exclusion assay was performed on canine B-cell lymphoma cell lines (17-71 and CLBL) and primary B-cell lymphoma cells from the nodal tissue of four dogs. A doxycycline concentration of 6 µg/ml decreased canine lymphoma cell viability by 80%, compared to matched, untreated, control cells (mixed model analysis, p < 0.0001; Wilcoxon signed rank test, p = 0.0313). Although the short-term administration of oral doxycycline is not associated with the remission of canine lymphoma, combination therapy may be worthwhile if future research determines that doxycycline can alter cell survival pathways in canine lymphoma cells. Due to the potential for metabolic abnormalities, close monitoring is recommended with the use of this drug in tumor-bearing dogs. Additional research is needed to assess the tolerability of chronic doxycycline therapy. PMID:29536017

  11. Saturated and unsaturated fatty acids differentially regulate in vitro and ex vivo placental antioxidant capacity.

    PubMed

    Manuel, Clarence R; Charron, Maureen J; Ashby, Charles R; Reznik, Sandra E

    2018-05-07

    Complications from prematurity are the leading cause of death among children under 5 years of age. Although clinical studies have shown a positive correlation between maternal high-fat diet (HFD) and preterm birth (PTB), the underlying mechanisms remain to be elucidated. Furthermore, it remains unclear how fatty acid type influences the effects of bacterial endotoxins. HTR-8/SVneo trophoblasts were cultured in either 0.5 mmol L -1 palmitic acid (PA) or linoleic acid (LA) in the absence or presence of 100 μg mL -1 of lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Murine placental explants were cultured in either 2 mmol L -1 PA or LA, and cell viability, total antioxidant capacity (TAC), lipid peroxidation, H 2 O 2 , heme oxygenase-1 (HO-1), and nuclear erythroid 2-related factor 2 (Nrf-2) and nuclear factor-kappa light-chain enhancer of activated B cells (NF-κB) transcription factor activity assays were assessed. Palmitic acid significantly (i) increased cell death, (ii) decreased TAC, and (iii) increased lipid peroxidation; but did not significantly increase HO-1. In contrast, LA maintained cell viability and significantly increased TAC and HO-1. In addition, incubating placental explants with PA significantly increased NF-κB activity. Co-incubating cells with PA and LPS or LTA significantly potentiated H 2 O 2 production and increased lipid peroxidation. Co-incubating cells with PA and LTA synergistically impaired TAC, and LTA decreased TAC more so than LPS. Co-incubation with PA/LA and LPS/LTA decreased HO-1 levels compared to treatment with either fatty acid alone. Our findings suggest that saturated and unsaturated fats differentially regulate placental viability, antioxidant capacity, and inflammation and the actions of gram-positive and gram-negative endotoxins. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Lactate calcium salt affects the viability of colorectal cancer cells via betaine homeostasis.

    PubMed

    Jang, Yeong-Su; Jo, Young-Kwon; Sim, Jae Jun; Ji, Eunhee; Jeong, Keun-Yeong; Kim, Hwan Mook

    2016-02-15

    Betaine plays an important role in cellular homeostasis. However, the physiological roles of betaine-γ-aminobutyric acid (GABA) transporter (BGT-1) are still being disputed in cancer. In this study, we tried to find the possibility of the antitumor effect on colorectal cancer (CRC) cell via lactate calcium salt (CaLa)-induced BGT-1 downregulation. The CRC cell viability and clonogenic assay was performed using different doses of BGT-1 inhibitor. The expression level of BGT-1 was measured following the treatment of 2.5mM CaLa. Betaine was treated to confirm the resistance of the antitumor activity by CaLa. Tumor growth was also measured using a xenograft animal model. Long-term exposure of 2.5mM CaLa clearly decreased the expression of BGT-1 in the CRC cells. As a result of the downregulation of BGT-1 expression, the clonogenic ability of CRC cells was also decreased in the 2.5mM CaLa-treated group. Reversely, the number of colonies and cell viability was increased by combination treatment with betaine and 2.5mM CaLa, as compared with a single treatment of 2.5mM CaLa. Tumor growth was significantly inhibited in the xenograft model depending on BGT-1 downregulation by 2.5mM CaLa treatment. These results support the idea that long-lasting calcium supplementation via CaLa contributes to disruption of betaine homeostasis in the CRC cells and is hypothesized to reduce the risk of CRC. In addition, it indicates the possibility of CaLa being a potential incorporating agent with existing therapeutics against CRC. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Docosahexaenoic acid attenuates oxidative stress and protects human gingival fibroblasts against cytotoxicity induced by hydrogen peroxide and butyric acid.

    PubMed

    Zgorzynska, Emilia; Wierzbicka-Ferszt, Anita; Dziedzic, Barbara; Witusik-Perkowska, Monika; Zwolinska, Anna; Janas, Anna; Walczewska, Anna

    2015-01-01

    The oxidative burst of the host cells associated with bacterial pathogen infection contributes to the destruction of periodontal tissue. The present study investigates the effect of docosahexaenoic acid (DHA) on human gingival fibroblast (HGF) viability and ROS generation. The cell viability by MTT assay, ROS level using H2DCF-DA probe, and protein thiol content were measured in HGFs after 24h preincubation with different concentrations of DHA followed by treatment with H2O2. The cell death rate was determined by Annexin V/propidium iodide staining, and mitochondrial membrane potential (ΔΨm) was examined by MitoTracker Red probe in H2O2- and butyric acid-treated HGFs. The fatty acid composition of plasma membranes after incubation with DHA was determined by gas chromatography mass spectrometry. DHA preincubation in a dose-dependent manner increased the viability of HGFs exposed to H2O2 and decreased ROS generation compared to the control cells. In HGFs preincubated with 30μM DHA, the ΔΨm significantly increased in both H2O2- and butyric acid-treated cells. Moreover, incubation with DHA preserved the protein thiol level as effectively as N-acetylcysteine. Application of 50μM DHA increased the quantity of viable cells, decreased the number of necrotic cells after H2O2 treatment, and protected HGFs from apoptosis induced by butyric acid. DHA in the plasma membranes of these HGFs represented about 6% of the total amount of fatty acids. These results demonstrate that enrichment of HGFs with DHA reduces ROS generation and enhances the mitochondrial membrane potential protecting the fibroblasts against cytotoxic factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ginkgolide B Exerts Cardioprotective Properties against Doxorubicin-Induced Cardiotoxicity by Regulating Reactive Oxygen Species, Akt and Calcium Signaling Pathways In Vitro and In Vivo.

    PubMed

    Gao, Junqing; Chen, Tao; Zhao, Deqiang; Zheng, Jianpu; Liu, Zongjun

    2016-01-01

    The aim of this study was to evaluate the effect of Ginkgolide B (GB) on doxorubicin (DOX) induced cardiotoxicity in vitro and in vivo. Rat cardiomyocyte cell line H9c2 was pretreated with GB and subsequently subjected to doxorubicin treatment. Cell viability and cell apoptosis were assessed by MTT assay and Hoechst staining, respectively. Reactive oxygen species (ROS), Akt phosphorylation and intracellular calcium were equally determined in order to explore the underlying molecular mechanism. To verify the in vivo therapeutic effect of GB, we established a mouse model of cardiotoxicity and determined left ventricle ejection fraction (LVEF) and left ventricular mass (LVM). The in vitro experimental results indicated that pretreatment with GB significantly decreases the viability and apoptosis of H9c2 cells by decreasing ROS and intracellular calcium levels and activating Akt phosphorylation. In the in vivo study, we recorded an improved LVEF and a decreased LVM in the group of cardiotoxic rats treated with GB. Altogether, our findings anticipate that GB exerts a cardioprotective effect through possible regulation of the ROS, Akt and calcium pathways. The findings suggest that combination of GB with DOX in chemotherapy could help avoid the cardiotoxic side effects of GB.

  15. Sevoflurane post-conditioning protects primary rat cortical neurons against oxygen-glucose deprivation/resuscitation via down-regulation in mitochondrial apoptosis axis of Bid, Bim, Puma-Bax and Bak mediated by Erk1/2.

    PubMed

    Zhang, Li-Min; Zhao, Xiao-Chun; Sun, Wen-Bo; Li, Rui; Jiang, Xiao-Jing

    2015-10-15

    Temporal post-conditioning helps provide neuroprotection against brain injury secondary to ischemia-reperfusion and is considered an effective intervention, but the exact mechanism of sevoflurane post-conditioning is unclear. The essential axis involves activator Bid, Bim, Puma (BH3s), Bax, and Bak; activates the mitochondrial death program; and might be involved in a cell death signal. Extracellular signal-related kinases 1/2 (Erk1/2) play a pivotal role in cell growth and proliferation. We hypothesized that sevoflurane post-conditioning might inhibit Bid, Bim, Puma, Bax, and Bak expression and is activated by phosphor-Erk1/2 to decrease neuronal death. To test this hypothesis, we exposed primary cortical neuron cultures to oxygen-glucose deprivation for 1h, along with resuscitation for 24h (OGD/R). MTT assays, propidium iodide uptake (PI), JC-1 fluorescence, and Western blot indicated the following: decreased cell viability (P<0.05); increased cell death (P<0.05); decreased mitochondrial membrane potential (P<0.05); and decreased Bid, Bim, Puma, Bax, and Bak expression with OGD/R exposure. Inhibition of Erk1/2 phosphorylation could attenuate sevoflurane post-conditioning that mediated an increase in neuronal viability and mitochondrial membrane potential, as well as a decrease in cell death and Bid, Bim, Puma, Bax, and Bak expression after OGD/R treatment. The results demonstrated that sevoflurane post-conditioning caused a marked decrease in cortical neuronal death secondary to OGD/R exposure through the downregulation of the mitochondrial apoptosis axis involving Bid, Bim, Puma, Bax, and Bak that was mediated by the phosphorylation/activation of Erk1/2. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein.

    PubMed

    An, Bang; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2012-08-01

    In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.

  17. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro.

    PubMed

    Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi

    2016-11-01

    Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes

    PubMed Central

    Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance. PMID:28685011

  19. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    PubMed

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  20. Viability of lactic acid bacteria coated as synbiotic during storage and gastro-intestinal simulation

    NASA Astrophysics Data System (ADS)

    Jamilah, It; Priyani, Nunuk; Lusia Natalia, Santa

    2018-03-01

    Lactic acid bacteria (LAB) has been added to various food products as a probiotic agent because it has been known to provide beneficial health effects in humans. In the application of LAB, cell viability often decreased as influenced by environment stresses. Encapsulation technique is one of the cell protection techniques using a coating material. Effective coating material is required to produce maximum protection of LAB cells. In this study, candidate of probiotic LAB (isolate US7) was encapsulated with alginate-mung bean flour and alginate-gram flour with inulin prebiotic by extrusion technique. Viability of encapsulated LAB cells were able to survive by up to 108CFU g‑1 after 4 weeks of storage at 4 °C. Beads were incubated in simulated liquid gastric acid (pH=2) for 2 hrs and simulated intestinal fluid (pH=6) for 3 hrs at 37 °C. The results showed that encapsulated LAB cells maintained the survival rate of 97% with the number of cells at 9.07 Log CFU g‑1in the simulated liquid gastric acid and then followed by releasing cells in simulated intestinal fluid. In general, this study indicates that encapsulation with alginate-mung bean flour and alginategram flour with inulin successfullyprotect probiotic bacteria against simulated human gastrointestinal conditions.

  1. Respective effects of oxygen and energy substrate deprivation on beta cell viability.

    PubMed

    Lablanche, Sandrine; Cottet-Rousselle, Cécile; Argaud, Laurent; Laporte, Camille; Lamarche, Frédéric; Richard, Marie-Jeanne; Berney, Thierry; Benhamou, Pierre-Yves; Fontaine, Eric

    2015-01-01

    Deficit in oxygen and energetic substrates delivery is a key factor in islet loss during islet transplantation. Permeability transition pore (PTP) is a mitochondrial channel involved in cell death. We have studied the respective effects of oxygen and energy substrate deprivation on beta cell viability as well as the involvement of oxidative stress and PTP opening. Energy substrate deprivation for 1h followed by incubation in normal conditions led to a cyclosporin A (CsA)-sensitive-PTP-opening in INS-1 cells and human islets. Such a procedure dramatically decreased INS-1 cells viability except when transient removal of energy substrates was performed in anoxia, in the presence of antioxidant N-acetylcysteine (NAC) or when CsA or metformin inhibited PTP opening. Superoxide production increased during removal of energy substrates and increased again when normal energy substrates were restored. NAC, anoxia or metformin prevented the two phases of oxidative stress while CsA prevented the second one only. Hypoxia or anoxia alone did not induce oxidative stress, PTP opening or cell death. In conclusion, energy substrate deprivation leads to an oxidative stress followed by PTP opening, triggering beta cell death. Pharmacological prevention of PTP opening during islet transplantation may be a suitable option to improve islet survival and graft success. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells.

    PubMed

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-06-22

    Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    PubMed

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  4. Concentrations of and application protocols for hydrogen peroxide bleaching gels: effects on pulp cell viability and whitening efficacy.

    PubMed

    Soares, Diana Gabriela; Basso, Fernanda Gonçalves; Hebling, Josimeri; de Souza Costa, Carlos Alberto

    2014-02-01

    To assess the whitening effectiveness and the trans-enamel/trans-dentinal toxicity of experimental tooth-bleaching protocols on pulp cells. Enamel/dentine discs individually adapted to trans-well devices were placed on cultured odontoblast-like cells (MDPC-23) or human dental pulp cells (HDPCs). The following groups were formed: G1 - no treatment (control); G2 to G4 - 35% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively; and G5 to G7 - 17.5% H2O2, 3 × 15, 1 × 15, and 1 × 5 min, respectively. Cell viability and morphology were evaluated immediately after bleaching (T1) and 72 h thereafter (T2). Oxidative stress and cell membrane damage were also assessed (T1). The amount of H2O2 in culture medium was quantified (Mann-Whitney; α=5%) and colour change (ΔE) of enamel was analysed after 3 sessions (Tukey's test; α=5%). Cell viability reduction, H2O2 diffusion, cell morphology alteration, oxidative stress, and cell membrane damage occurred in a concentration-/time-dependent fashion. The cell viability reduction was significant in all groups for HDPCs and only for G2, G3, and G5 in MDPC-23 cells compared with G1. Significant cell viability and morphology recovery were observed in all groups at T2, except for G2 in HDPCs. The highest ΔE value was found in G2. However, all groups presented significant ΔE increases compared with G1. Shortening the contact time of a 35%-H2O2 gel for 5 min, or reducing its concentration to 17.5% and applying it for 45, 15, or 5 min produce gradual tooth colour change associated with reduced trans-enamel and trans-dentinal cytotoxicity to pulp cells. The experimental protocols tested in the present study provided significant tooth-bleaching improvement associated with decreased toxicity to pulp cells, which may be an interesting alternative to be tested in clinical situations intended to reduce tooth sensitivity and pulp damage. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Glutathione Ethyl Ester Supplementation during Pancreatic Islet Isolation Improves Viability and Transplant Outcomes in a Murine Marginal Islet Mass Model

    PubMed Central

    Raposo do Amaral, Alexandre S.; Pawlick, Rena L.; Rodrigues, Erika; Costal, Flavia; Pepper, Andrew; Ferreira Galvão, Flávio H.; Correa-Giannella, Maria Lucia; Shapiro, A. M.James

    2013-01-01

    Background The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage. Methodology/Principal Findings In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets. Conclusions/Significance GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation. PMID:23424628

  6. T-LAK cell-originated protein kinase presents a novel therapeutic target in FLT3-ITD mutated acute myeloid leukemia

    PubMed Central

    Alachkar, Houda; Mutonga, Martin; Malnassy, Gregory; Park, Jae-Hyun; Fulton, Noreen; Woods, Alex; Meng, Liping; Kline, Justin; Raca, Gordana; Odenike, Olatoyosi; Takamatsu, Naofumi; Miyamoto, Takashi; Matsuo, Yo; Stock, Wendy; Nakamura, Yusuke

    2015-01-01

    Gain-of-function mutations of FLT3 (FLT3-ITD), comprises up to 30% of normal karyotype acute myeloid leukemia (AML) and is associated with an adverse prognosis. Current FLT3 kinase inhibitors have been tested extensively, but have not yet resulted in a survival benefit and novel therapies are awaited. Here we show that T-LAK cell-originated protein kinase (TOPK), a mitotic kinase highly expressed in and correlated with more aggressive phenotype in several types of cancer, is expressed in AML but not in normal CD34+ cells and that TOPK knockdown decreased cell viability and induced apoptosis. Treatment of AML cells with TOPK inhibitor (OTS514) resulted in a dose-dependent decrease in cell viability with lower IC50 in FLT3-mutated cells, including blasts obtained from patients relapsed after FLT3-inhibitor treatment. Using a MV4-11-engrafted mouse model, we found that mice treated with 7.5 mg/kg IV daily for 3 weeks survived significantly longer than vehicle treated mice (median survival 46 vs 29 days, P < 0.001). Importantly, we identified TOPK as a FLT3-ITD and CEBPA regulated kinase, and that modulating TOPK expression or activity resulted in significant decrease of FLT3 expression and CEBPA phosphorylation. Thus, targeting TOPK in FLT3-ITD AML represents a novel therapeutic approach for this adverse risk subset of AML. PMID:26450903

  7. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF‑1α/VEGF and NF‑κB/COX‑2 signaling pathways.

    PubMed

    Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng

    2017-04-01

    Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.

  8. Effect of nickel chloride on cell proliferation.

    PubMed

    D'Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico

    2012-01-01

    Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl(2)) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl(2) on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey's test. NiCl(2) induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl(2) caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl(2) concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl(2) caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl(2) exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death.

  9. Effect of Nickel Chloride on Cell Proliferation

    PubMed Central

    D’Antò, Vincenzo; Valletta, Rosa; Amato, Massimo; Schweikl, Helmut; Simeone, Michele; Paduano, Sergio; Rengo, Sandro; Spagnuolo, Gianrico

    2012-01-01

    Objective: Metal alloys used in dentistry and in other biomedical fields may release nickel ions in the oral environment. The release of nickel might influence the normal biological and physiological processes, including tissue wound healing, cell growth and proliferation. The aim of this study was to evaluate in vitro the effects of nickel ions on cell cycle, viability and proliferation. Materials and Methods: Human osteosarcoma cells (U2OS) and human keratinocytes (HaCat) were exposed to different nickel chloride (NiCl2) concentrations (0 - 5mM) for various periods exposure. The viability of cultured cells was estimated by flow cytometry using Annexin V-FITC and Propidium Iodide (PI). Cell proliferation was evaluated by using carboxyfluorescein diacetate succinimidyl ester (CFDA-SE) and flow cytometry. Finally, the effects of NiCl2 on cell cycle were assessed and quantified by flow cytometry. Statistical analysis was performed by means of ANOVA followed by Tukey’s test. Results: NiCl2 induced a dose and time dependent decrease in cell viability. After 24h, 1mM NiCl2 caused a similar and significant reduction of viability in U2OS and HaCat cells, while higher NiCl2 concentrations and longer exposure times showed a reduced cytotoxic effect in HaCat as compared to U2OS cells. Exposure to NiCl2 caused a dose- and time-dependent inhibition of cell proliferation in both cell lines tested, with a prominent effect on U2OS cells. Furthermore, both cell lines exposed to NiCl2 exhibited significant changes in cell cycle distribution after 24h exposure 2mM NiCl2, as compared to untreated cells (p<0.05). Conclusion: Our results indicate that release of nickel ions may affect cell proliferation. The inhibition of cell growth by NiCl2 is mediated by both cell cycle arrest and by induction of cell death. PMID:23198004

  10. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  11. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance

    PubMed Central

    Lee, Z-W; Teo, X-Y; Tay, E Y-W; Tan, C-H; Hagen, T; Moore, P K; Deng, L-W

    2014-01-01

    Background and Purpose Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2S) in cell survival. The present study investigated the effect of H2S on the viability of cancer and non-cancer cells. Experimental Approach Cancer and non-cancer cells were exposed to H2S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi) was determined by ratiometric pHi measurement using BCECF staining. Key Results Continuous, but not a single, exposure to H2S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. Conclusions and Implications Low and continuous exposure to H2S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy. PMID:24827113

  12. Effects of tocotrienols on cell viability and apoptosis in normal murine liver cells (BNL CL.2) and liver cancer cells (BNL 1ME A.7R.1), in vitro.

    PubMed

    Har, Chan Hooi; Keong, Chan Kok

    2005-01-01

    The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.

  13. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  14. Assessment of functional changes in nanoparticle-exposed neuroendocrine cells with amperometry: exploring the generalizability of nanoparticle-vesicle matrix interactions.

    PubMed

    Love, Sara A; Haynes, Christy L

    2010-09-01

    Using two of the most commonly synthesized noble metal nanoparticle preparations, citrate-reduced Au and Ag, the impacts of short-term accidental nanoparticle exposure are examined in primary culture murine adrenal medullary chromaffin cells. Transmission electron microscopy (TEM), inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Alamar Blue viability studies revealed that nanoparticles are taken up by cells but do not decrease cell viability within 48 hours of exposure. Carbon-fiber microelectrode amperometry (CFMA) examination of exocytosis in nanoparticle-exposed cells revealed that nanoparticle exposure does lead to decreased secretion of chemical messenger molecules, of up to 32.5% at 48 hours of Au exposure. The kinetics of intravesicular species liberation also slows after nanoparticle exposure, between 30 and 50% for Au and Ag, respectively. Repeated stimulation of exocytosis demonstrated that these effects persisted during subsequent stimulations, meaning that nanoparticles do not interfere directly with the vesicle recycling machinery but also that cellular function is unable to recover following vesicle content expulsion. By comparing these trends with parallel studies done using mast cells, it is clear that similar exocytosis perturbations occur across cell types following noble metal nanoparticle exposure, supporting a generalizable effect of nanoparticle-vesicle interactions.

  15. Effect of smokeless tobacco products on human oral bacteria growth and viability

    PubMed Central

    Liu, Min; Jin, Jinshan; Pan, Hongmiao; Feng, Jinhui; Cerniglia, Carl E.; Yang, Maocheng; Chen, Huizhong

    2017-01-01

    To evaluate the toxicity of smokeless tobacco products (STPs) on oral bacteria, seven smokeless tobacco aqueous extracts (STAEs) from major brands of STPs and three tobacco-specific N-nitrosamines (TSNAs) were used in a growth and viability test against 38 oral bacterial species or subspecies. All seven STAEs showed concentration-dependent effects on the growth and viability of tested oral bacteria under anaerobic culture conditions, although there were strain-to-strain variations. In the presence of 1 mg/ml STAEs, the growth of 4 strains decreased over 0.32–2.14 log10 fold, while 14 strains demonstrated enhanced growth of 0.3–1.76 log10 fold, and the growth of 21 strains was not significantly affected. In the presence of 10 mg/ml STAEs, the growth of 17 strains was inhibited 0.3–2.11 log10 fold, 18 strains showed enhanced growth of 0.3–0.97 log10 fold, and 4 strains were not significantly affected. In the presence of 50 mg/ml STAEs, the growth of 32 strains was inhibited 0.3–2.96 log10 fold, 8 strains showed enhanced growth of 0.3–1.0 log10 fold, and 2 strains were not significantly affected. All seven STAEs could promote the growth of 4 bacterial strains, including Eubacterium nodatum, Peptostreptococcus micros, Streptococcus anginosus, and Streptococcus constellatus. Exposure to STAEs modulated the viability of some bacterial strains, with 21.1–66.5% decrease for 4 strains at 1 mg/ml, 20.3–85.7% decrease for 10 strains at 10 mg/ml, 20.0–93.3% decrease for 27 strains at 50 mg/ml, and no significant effect for 11 strains at up to 50 mg/ml. STAEs from snuffs inhibited more tested bacterial strains than those from snus indicating that the snuffs may be more toxic to the oral bacteria than snus. For TSNAs, cell growth and viability of 34 tested strains were not significantly affected at up to 100 μg/ml; while the growth of P. micros was enhanced 0.31–0.54 log10 fold; the growth of Veillonella parvula was repressed 0.33–0.36 log10 fold; and the cell viabilities of 2 strains decreased 56.6–69.9%. The results demonstrate that STAEs affected the growth of some types of oral bacteria, which may affect the healthy ecological balance of oral bacteria in humans. On the other hand, TSNAs did not significantly affect the growth of the oral bacteria. PMID:27756619

  16. Influence of Mesenchymal Stem Cells Conditioned Media on Proliferation of Urinary Tract Cancer Cell Lines and Their Sensitivity to Ciprofloxacin.

    PubMed

    Maj, Malgorzata; Bajek, Anna; Nalejska, Ewelina; Porowinska, Dorota; Kloskowski, Tomasz; Gackowska, Lidia; Drewa, Tomasz

    2017-06-01

    Mesenchymal stem cells (MSCs) are known to interact with cancer cells through direct cell-to-cell contact and secretion of paracrine factors, although their exact influence on tumor progression in vivo remains unclear. To better understand how fetal and adult stem cells affect tumors, we analyzed viability of human renal (786-0) and bladder (T24) carcinoma cell lines cultured in conditioned media harvested from amniotic fluid-derived stem cells (AFSCs) and adipose-derived stem cells (ASCs). Both media reduced metabolic activity of 786-0 cells, however, decreased viability of T24 cells was noted only after incubation with conditioned medium from ASCs. To test the hypothesis that MSCs-secreted factors might be involved in chemoresistance acquisition, we further analyzed influence of mesenchymal stem cell conditioned media (MSC-CM) on cancer cells sensitivity to ciprofloxacin, that is considered as potential candidate agent for urinary tract cancers treatment. Significantly increased resistance to tested drug indicates that MSCs may protect cancer cells from chemotherapy. J. Cell. Biochem. 118: 1361-1368, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Dimethyl Sulfoxide (DMSO) Decreases Cell Proliferation and TNF-α, IFN-γ, and IL-2 Cytokines Production in Cultures of Peripheral Blood Lymphocytes.

    PubMed

    de Abreu Costa, Lucas; Henrique Fernandes Ottoni, Marcelo; Dos Santos, Michaelle Geralda; Meireles, Agnes Batista; Gomes de Almeida, Valéria; de Fátima Pereira, Wagner; Alves de Avelar-Freitas, Bethânia; Eustáquio Alvim Brito-Melo, Gustavo

    2017-11-10

    Dimethylsulfoxide (DMSO) is an amphipathic molecule composed of a polar domain characterized by the sulfinyl and two nonpolar methyl groups, for this reason it is able to solubilize polar and nonpolar substances and transpose hydrophobic barriers. DMSO is widely used to solubilize drugs of therapeutic applications and studies indicated that 10% v/v concentration did not modify culture viability when used to treat human peripheral blood mononuclear cells (PBMC). However, some DMSO concentrations could influence lymphocyte activation and present anti-inflammatory effects. Therefore, the objective of this study was to evaluate the effect of DMSO on lymphocyte activation parameters. Cell viability analysis, proliferation, and cytokine production were performed on PBMC from six healthy subjects by flow cytometry. The results indicated that 2.5% v/v DMSO concentrations did not modify lymphocytes viability. DMSO at 1% and 2% v/v concentrations reduced the relative proliferation index of lymphocytes and at 5% and 10% v/v concentrations reduced the percentage of total lymphocytes, cluster of differentiation 4⁺ (CD4⁺) T lymphocytes and CD8⁺ T lymphocytes interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) producers. Thus, it was concluded that DMSO has an in vitro anti-inflammatory effect by reducing lymphocyte activation demonstrated with proliferation reduction and the decrease of cytokine production.

  18. Effect of Selenate on Viability and Selenomethionine Accumulation of Chlorella sorokiniana Grown in Batch Culture

    PubMed Central

    Vílchez, Carlos; Torronteras, Rafael; Vigara, Javier; Gómez-Jacinto, Veronica; Janzer, Nora; Gómez-Ariza, José-Luis; Márová, Ivana

    2014-01-01

    The aim of this work was to study the effect of Se(+VI) on viability, cell morphology, and selenomethionine accumulation of the green alga Chlorella sorokiniana grown in batch cultures. Culture exposed to sublethal Se concentrations of 40 mg·L−1 (212 μM) decreased growth rates for about 25% compared to control. A selenate EC50 value of 45 mg·L−1 (238.2 μM) was determined. Results showed that chlorophyll and carotenoids contents were not affected by Se exposure, while oxygen evolution decreased by half. Ultrastructural studies revealed granular stroma, fingerprint-like appearance of thylakoids which did not compromise cell activity. Unlike control cultures, SDS PAGE electrophoresis of crude extracts from selenate-exposed cell cultures revealed appearance of a protein band identified as 53 kDa Rubisco large subunit of Chlorella sorokiniana, suggesting that selenate affects expression of the corresponding chloroplast gene as this subunit is encoded in the chloroplast DNA. Results revealed that the microalga was able to accumulate up to 140 mg·kg−1 of SeMet in 120 h of cultivation. This paper shows that Chlorella sorokiniana biomass can be enriched in the high value aminoacid SeMet in batch cultures, while keeping photochemical viability and carbon dioxide fixation activity intact, if exposed to suitable sublethal concentrations of Se. PMID:24688385

  19. Guanosine promotes cytotoxicity via adenosine receptors and induces apoptosis in temozolomide-treated A172 glioma cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine A; Lopes, Flávia G; Nedel, Cláudia B; Tasca, Carla Inês

    2017-09-01

    Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells. The chemotherapy allied to adjuvant drugs are being suggested as a novel approach in gliomas treatment. In this way, this study evaluated whether GUO presented cytotoxic effects on human glioma cells as well as GUO effects in association with a classical chemotherapeutic compound, TMZ. Classical parameters of tumor aggressiveness, as alterations on cell viability, type of cell death, migration, and parameters of glutamatergic transmission, were evaluated. GUO (500 and 1000 μM) decreases the A172 glioma cell viability after 24, 48, or 72 h of treatment. TMZ alone or GUO plus TMZ also reduced glioma cell viability similarly. GUO combined with TMZ showed a potentiation effect of increasing apoptosis in A172 glioma cells, and a similar pattern was observed in reducing mitochondrial membrane potential. GUO per se did not elevate the acidic vesicular organelles occurrence, but TMZ or GUO plus TMZ increased this autophagy hallmark. GUO did not alter glutamate transport per se, but it prevented TMZ-induced glutamate release. GUO or TMZ did not alter glutamine synthetase activity. Pharmacological blockade of glutamate receptors did not change GUO effect on glioma viability. GUO cytotoxicity was partially prevented by adenosine receptor (A 1 R and A 2A R) ligands. These results point to a cytotoxic effect of GUO on A172 glioma cells and suggest an anticancer effect of GUO as a putative adjuvant treatment, whose mechanism needs to be unraveled.

  20. [Effect of the Industrial Nanoparticles TiO 2 , SiO 2 and ZnO on Cell Viability and Gene Expression in Red Bone Marrow of Mus Musculus].

    PubMed

    Zarria-Romero, Jacquelyne; Osorio, Ana; Pino, José; Shiga, Betty; Vivas-Ruiz, Dan

    2017-01-01

    To evaluate the effect of ZnO, TiO2 and SiO2 nanoparticles on cell viability and expression of the interleukin 7, interleukin 3, and granulocyte-macrophage colony stimulating factor (GM-CSF) genes in Mus musculus. Red bone marrow was extracted from five Balb/c mice for the analysis of cell viability using the MTT test. The mice were divided into two groups of five each: one group was inoculated intraperitoneally with 0.5, 1.0, 2.5, 5.0, and 10 mg/kg of ZnO and SiO2 nanoparticles, respectively, and the other group was inoculated with 5.0, 10.0, 15.0, 20.0, and 25 mg/kg of TiO2 nanoparticles, respectively. Thirty hours later, RNA was extracted from the red bone marrow of the mice in both groups for gene expression analysis using quantitative PCR and RT-PCR. ZnO and SiO2 nanoparticles reduced cell viability in a dose-dependent manner by 37% and 26%, respectively, starting at a dose of 1 mg/kg. TiO2 nanoparticles at 5 mg/kg and 10 mg/kg reduced the gene expression of interleukins 7 and 3 by 55.3% and 70.2%, respectively, and SiO2 nanoparticles caused the greatest decrease (91%) in the expression of GM-CSF. ZnO nanoparticles reduced the expression of GM-CSF starting at doses of 20 mg/kg and 25 mg/kg. ZnO, SiO2 and TiO2 nanoparticles affect cell viability and gene expression in the mouse bone marrow.

  1. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line.

    PubMed

    Patel, Mikita; Yarlagadda, Vidhush; Adedoyin, Oreoluwa; Saini, Vikram; Assimos, Dean G; Holmes, Ross P; Mitchell, Tanecia

    2018-05-01

    Monocytes/macrophages are thought to be recruited to the renal interstitium during calcium oxalate (CaOx) kidney stone disease for crystal clearance. Mitochondria play an important role in monocyte function during the immune response. We recently determined that monocytes in patients with CaOx kidney stones have decreased mitochondrial function compared to healthy subjects. The objective of this study was to determine whether oxalate, a major constituent found in CaOx kidney stones, alters cell viability, mitochondrial function, and redox homeostasis in THP-1 cells, a human derived monocyte cell line. THP-1 cells were treated with varying concentrations of CaOx crystals (insoluble form) or sodium oxalate (NaOx; soluble form) for 24h. In addition, the effect of calcium phosphate (CaP) and cystine crystals was tested. CaOx crystals decreased cell viability and induced mitochondrial dysfunction and redox imbalance in THP-1 cells compared to control cells. However, NaOx only caused mitochondrial damage and redox imbalance in THP-1 cells. In contrast, both CaP and cystine crystals did not affect THP-1 cells. Separate experiments showed that elevated oxalate also induced mitochondrial dysfunction in primary monocytes from healthy subjects. These findings suggest that oxalate may play an important role in monocyte mitochondrial dysfunction in CaOx kidney stone disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival.

    PubMed

    Liang, Kang; Richardson, Joseph J; Doonan, Christian J; Mulet, Xavier; Ju, Yi; Cui, Jiwei; Caruso, Frank; Falcaro, Paolo

    2017-07-10

    A bioactive synthetic porous shell was engineered to enable cells to survive in an oligotrophic environment. Eukaryotic cells (yeast) were firstly coated with a β-galactosidase (β-gal), before crystallization of a metal-organic framework (MOF) film on the enzyme coating; thereby producing a bioactive porous synthetic shell. The β-gal was an essential component of the bioactive shell as it generated nutrients (that is, glucose and galactose) required for cell viability in nutrient-deficient media (lactose-based). Additionally, the porous MOF coating carried out other vital functions, such as 1) shielding the cells from cytotoxic compounds and radiation, 2) protecting the non-native enzymes (β-gal in this instance) from degradation and internalization, and 3) allowing for the diffusion of molecules essential for the survival of the cells. Indeed, this bioactive porous shell enabled the survival of cells in simulated extreme oligotrophic environments for more than 7 days, leading to a decrease in cell viability less than 30 %, versus a 99 % decrease for naked yeast. When returned to optimal growth conditions the bioactive porous exoskeleton could be removed and the cells regained full growth immediately. The construction of bioactive coatings represents a conceptually new and promising approach for the next-generation of cell-based research and application, and is an alternative to synthetic biology or genetic modification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Folic acid inhibits homocysteine-induced cell apoptosis in human umbilical vein endothelial cells.

    PubMed

    Cui, Shanshan; Li, Wen; Wang, Pengyan; Lv, Xin; Gao, Yuxia; Huang, Guowei

    2017-12-18

    Homocysteine may be responsible for vascular endothelial cell injury, which occurs early in the pathology of cardiovascular disease. Homocysteine metabolism requires enzymatic interaction with vitamins such as folic acid, vitamin B12, and vitamin B6. We hypothesized that folic acid alleviated homocysteine-induced vascular injury by regulating the metabolic pathway of apoptosis. Human umbilical vein endothelial cells were incubated for 48 h with folic acid at the concentrations of 0-1000 nmol/L, in combination with either 1000 μmol/L homocysteine or vehicle for the first 24 h. We then assessed cell viability and apoptosis by methyl thiazolyl tetrazolium assay and flow cytometry, respectively. To further investigate how folic acid influenced cell apoptosis, we also analyzed the activities of caspase-3/7 and the mRNA and protein expressions of BCL2, BAX, TP53, CASP3, and CASP8 in human umbilical vein endothelial cells. We showed that folic acid increased cell viability and decreased apoptosis in a dose-dependent manner, and that this effect was mediated by decreased caspase-3/7 activity, upregulated BCL2/BAX ratio, and downregulated TP53, CASP3, and CASP8 expressions. Thus, we conclude that folic acid inhibits cell apoptosis and ameliorates homocysteine toxicity by regulating the expression of apoptosis-related genes in human umbilical vein endothelial cells.

  4. Enrichment and Viability Inhibition of Circulating Tumor Cells on a Dual Acid-Responsive Composite Nanofiber Film.

    PubMed

    Wang, Wenqian; Cheng, Yaya; Li, Yansheng; Zhou, Hao; Xu, Li-Ping; Wen, Yongqiang; Zhao, Liang; Zhang, Xueji

    2017-04-06

    The formation and metastatic colonization of circulating tumor cells (CTCs) are responsible for the vast majority of cancer-related deaths. Over the last decade, drug-delivery systems (DDSs) have rapidly developed with the emergence of nanotechnology; however, most reported tumor-targeting DDSs are able to deliver drugs only to solid tumor cells and not CTCs. Herein, a novel DDS comprising a composite nanofiber film was constructed to inhibit the viability of CTCs. In this system, gold nanoparticles (Au NPs) were functionalized with doxorubicin (DOX) through an acid-responsive cleavable linker to obtain Au-DOX NPs. Then, the Au-DOX NPs were mixed in a solution of an acid-responsive polymer {i.e., poly[2-(dimethylamino)ethyl methacrylate]} to synthesize the nanofiber film through electrospinning technology. After that, the nanofiber film was modified with a specific antibody (i.e., anti-EpCAM) to enrich the concentration of CTCs on the film. Finally, the Au-DOX NPs were released from the nanofiber film, and they consequently inhibited the viability of CTCs by delivering DOX to the enriched CTCs. This composite nanofiber film was able to decrease the viability of CTCs significantly in the suspended and fluid states, and it is expected to limit the migration and proliferation of tumor cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Açaí (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against β-amyloid exposure in vitro.

    PubMed

    Wong, Daphne Yiu San; Musgrave, Ian Francis; Harvey, Benjamin Scott; Smid, Scott Darryl

    2013-11-27

    The native South American palm açaí berry (Euterpe oleraceae Mart.) has high polyphenolic and antioxidant levels. This study examined whether açaí berry extract afforded protection against β-amyloid (Aβ)-mediated loss of cell viability and oxidative stress associated with anti-fibrillar effects. PC12 cells were exposed to either Aβ1-42, Aβ25-35 or tert butyl hydroperoxide (t-BHP), alone or in the presence of açaí extract (0.5-50μg/ml). Thioflavin T (ThT) binding assay and transmission electron microscopy were used to determine effects of açaí extract on Aβ1-42 fibril morphology and compared to açaí phenolics gallic acid, cyanidin rutinoside and cyanidin glucoside. Exposure to Aβ1-42, Aβ25-35 or t-BHP decreased PC12 cell viability. Pretreatment with açaí extract significantly improved cell viability following Aβ1-42 exposure, however Aβ25-35 or t-BHP-mediated viability loss was unaltered. Açaí extract inhibited ThT fluorescence and disrupted Aβ1-42 fibril and aggregate morphology. In comparison with other phenolics, açaí was most effective at inhibiting Aβ1-42 aggregation. Inhibition of β-amyloid aggregation may underlie a neuroprotective effect of açaí. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    PubMed

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P < 0.05). Dex significantly decreased apoptotic cells compared with that of vehicle control cells by 50% (P < 0.05). Necrosis was not significantly different between treatment groups. Mechanistically, Dex treatment significantly increased phosphorylated Akt (P < 0.05), but protective effects of Dex were eliminated by an alpha-2a antagonist or Akt inhibitor (P < 0.05). Using a novel spinal cord neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells.

    PubMed

    Louvet, Loïc; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A

    2013-04-01

    Vascular calcification (VC) is prevalent in patients suffering from chronic kidney disease. Factors promoting calcification include abnormalities in mineral metabolism, particularly high phosphate levels. Inorganic phosphate (Pi) is a classical inducer of in vitro VC. Recently, an inverse relationship between serum magnesium concentrations and VC has been reported. The present study aimed to investigate the effects of magnesium on Pi-induced VC at the cellular level using primary HAVSMC. Alive and fixed HAVSMC were assessed during 14 days in the presence of Pi with increasing concentrations of magnesium (Mg(2+)) chloride. Mineralization was measured using quantification of calcium, von Kossa and alizarin red stainings. Cell viability and secretion of classical VC markers were also assessed using adequate tests. Involvement of transient receptor potential melastatin (TRPM) 7 was assessed using 2-aminoethoxy-diphenylborate (2-APB) inhibitor. Co-incubation with Mg(2+) significantly decreased Pi-induced VC in live HAVSMC, no effect was found in fixed cells. At potent concentrations in Pi-induced HAVSMC, Mg(2+) significantly improved cell viability and restored to basal level increased secretions of osteocalcin and matrix gla protein, whereas a decrease in osteopontin secretion was partially restored. The block of TRPM7 with 2-APB at 10(-4) M led to the inefficiency of Mg(2+) to prevent VC. Increasing Mg(2+) concentrations significantly reduced VC, improved cell viability and modulated secretion of VC markers during cell-mediated matrix mineralization clearly pointing to a cellular role for Mg(2+) and 2-APB further involved TRPM7 and a potential Mg(2+) entry to exert its effects. Further investigations are needed to shed light on additional cellular mechanism(s) by which Mg(2+) is able to prevent VC.

  8. Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (raphidophyceae) cultivated in artificial seawater medium

    PubMed Central

    Niestroy, Jeanette; Martínez, Alfonso Bárbara; Band-Schmidt, Christine J.

    2014-01-01

    In the present study, the effect on the chlorophyll a and the total protein content as well as the Chattonella spp. cell viability were examined after concentration-dependent exposure to CuCl2 and Aroclor 1242. The comparison between various raphidophyte strains provides an insight into the different susceptibilities to contaminants of Chattonella subsalsa (CSNAV-1), C. marina var. marina (CMCV-1) and C. marina var. ovata (COPV-2). The microalgae were cultivated in artificial seawater medium. Exponentially growing microalgae (8-10 days in culture) were used for exposure experiments. We observed in all three raphidophyte species cytotoxicity-mediated modifications beginning at concentrations of 150 and 200 µM of the heavy metal copper after 24 hours exposure. But interestingly, the three strains exhibited only slight differences in their susceptibility to CuCl2. C. subsalsa and C. marina var. marina cells were first affected at the chlorophyll a level and in cell viability. The total protein amount was reduced significantly only after exposure to 300 µM of CuCl2. However, C. marina var. ovata microalgae showed similar reduction curves for all three analysed cytotoxicity endpoints after heavy metal exposure. On the other hand, after Aroclor 1242 incubation the cytotoxic modification pattern indicated clearly the different susceptibilities of the three raphidophyte strains. C. subsalsa cells noticeably exhibited a decrease in the analysed pigment amount (30-20 % compared to that of the control) already after 0.007 mg/L PCB exposure. In contrast, cell viability and total protein content were slightly reduced and fell below the 50 % threshold after 0.7 and 3.3 mg/L of Aroclor 1242, respectively. Interestingly, C. marina var. ovata showed almost no cytotoxic modification caused by the PCB mixture. Only the concentration of 0.7 mg/L Aroclor 1242 clearly affected the cell viability. As opposed to that we observed a concentration-dependent decrease of cell viability and chlorophyll a amount in CMCV-1 microalgae. These observations confirmed that the susceptibility of the raphidophytes strains CSNAV-1, CMCV-1 and COPV-2 is contaminant-dependent. We showed differences even between two variants of Chattonella (Chattonella marina var. marina and C. marina var. ovata). Furthermore, we were able to show the different mode of action of two common pollutants by simple cytotoxic parameters like total protein and chlorophyll a content as well as by cell counting analysis. PMID:26417254

  9. Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (raphidophyceae) cultivated in artificial seawater medium.

    PubMed

    Niestroy, Jeanette; Martínez, Alfonso Bárbara; Band-Schmidt, Christine J

    2014-01-01

    In the present study, the effect on the chlorophyll a and the total protein content as well as the Chattonella spp. cell viability were examined after concentration-dependent exposure to CuCl2 and Aroclor 1242. The comparison between various raphidophyte strains provides an insight into the different susceptibilities to contaminants of Chattonella subsalsa (CSNAV-1), C. marina var. marina (CMCV-1) and C. marina var. ovata (COPV-2). The microalgae were cultivated in artificial seawater medium. Exponentially growing microalgae (8-10 days in culture) were used for exposure experiments. We observed in all three raphidophyte species cytotoxicity-mediated modifications beginning at concentrations of 150 and 200 µM of the heavy metal copper after 24 hours exposure. But interestingly, the three strains exhibited only slight differences in their susceptibility to CuCl2. C. subsalsa and C. marina var. marina cells were first affected at the chlorophyll a level and in cell viability. The total protein amount was reduced significantly only after exposure to 300 µM of CuCl2. However, C. marina var. ovata microalgae showed similar reduction curves for all three analysed cytotoxicity endpoints after heavy metal exposure. On the other hand, after Aroclor 1242 incubation the cytotoxic modification pattern indicated clearly the different susceptibilities of the three raphidophyte strains. C. subsalsa cells noticeably exhibited a decrease in the analysed pigment amount (30-20 % compared to that of the control) already after 0.007 mg/L PCB exposure. In contrast, cell viability and total protein content were slightly reduced and fell below the 50 % threshold after 0.7 and 3.3 mg/L of Aroclor 1242, respectively. Interestingly, C. marina var. ovata showed almost no cytotoxic modification caused by the PCB mixture. Only the concentration of 0.7 mg/L Aroclor 1242 clearly affected the cell viability. As opposed to that we observed a concentration-dependent decrease of cell viability and chlorophyll a amount in CMCV-1 microalgae. These observations confirmed that the susceptibility of the raphidophytes strains CSNAV-1, CMCV-1 and COPV-2 is contaminant-dependent. We showed differences even between two variants of Chattonella (Chattonella marina var. marina and C. marina var. ovata). Furthermore, we were able to show the different mode of action of two common pollutants by simple cytotoxic parameters like total protein and chlorophyll a content as well as by cell counting analysis.

  10. Dimethyloxalylglycine may be enhance the capacity of neural-like cells in treatment of Alzheimer disease.

    PubMed

    Ghasemi Moravej, Fahimeh; Vahabian, Mehrangiz; Soleimani Asl, Sara

    2016-06-01

    Although using differentiated stem cells is the best proposed option for the treatment of Alzheimer disease (AD), an efficient differentiation and cell therapy require enhanced cell survival and homing and decreased apoptosis. It seems that hypoxia preconditioning via Dimethyloxalylglycine (DMOG) may increase the capacity of MSC to induce neural like stem cells (NSCs). Furthermore, it can likely improve the viability of NSCs when transplanted into the brain of AD rats. © 2016 International Federation for Cell Biology.

  11. RADIATION INDUCED VIABILITY MUTATIONS IN THE HONEY BEE. Progress Report for 1961 and Renewal Proposal of Contract for 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.R.

    The spectrum of viability mutations ranging from dominant lethals to detrimentals in haploids that resulted from irradiating semen from a single haploid male was studied in the honey bee. From the decrease in viability of diploid progeny following irradiation of the spermatheca of the parental queen, it was calculated that one or more dominant lethals were induced in 60.8% of the sperm cells. In a separate test using the same dosage on an unrelated queen 60.9% dominant lethals were found. Recessive mutations and mutants with incomplete dominance were detected in haploid progeny of F-1 queens. (M.C.G.)

  12. Shape-Related Toxicity of Titanium Dioxide Nanofibres

    PubMed Central

    Allegri, Manfredi; Bianchi, Massimiliano G.; Chiu, Martina; Varet, Julia; Costa, Anna L.; Ortelli, Simona; Blosi, Magda; Bussolati, Ovidio; Poland, Craig A.; Bergamaschi, Enrico

    2016-01-01

    Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials. Given that several toxic effects of TiO2 nanofibres appear comparable to those observed with crocidolite, the possibility that they exert length dependent toxicity in vivo seems worthy of further investigation. PMID:26999274

  13. [Killing effects of PWZL plasmid-mediated double suicide gene on human lens epithelium cells].

    PubMed

    Yan, Xiao-ran; Wu, Hong; Yu, Hai-tao; Wang, Xiu; Zhang, Yu

    2008-04-01

    To investigate the killing efficiency of PWZL plasmid-mediated herpes simplex virus-thymidine kinase (TK) and E. coli cytosine deaminase (CD) on human lens epithelium cells followed by the treatment of prodrugs. PWZL plasmid was used as a vehicle, to transduce double suicide genes into the human lens epithelium in vitro, then the cells were treated with fluorocytosine (5-FC) and/or ganciclovir (GCV) at different concentrations. The cell growth of the lens epithelium cells was observed by light microscope. MTT analysis was used to estimate the cell survival rate and the bystander effect was analyzed simultaneously. The significance of difference between each group was treated by statistical tests. The CD and TK gene could be joined into PWZL plasmid successfully, and did not have any special effect on normal cells. There was no significant difference in cell viability between CD-TK transfected cells and control cells. Cell viability in cells treated with prodrugs was decreased in a time-dependent manner. At the end of the experiment, cell viability was lowest in GCV 10 mg/L +5-FC 60 mg/L group, GCV 10 mg/L + 5-FC 100 mg/L group and GCV 100 mg/L + 5-FC 100 mg/L group. There were no significant differences between these three groups (X2 = 1.25 , P > 0.01). Analysis of bystander effect indicated that the cell viability in GCV 100 mg/L + 5-FC 100 mg/L group and GCV 10 mg/L +5-FC 60 mg/L group was significantly lower than that in the controls (t = 10.26, 13.16; P < 0.01). PWZL plasmid can transfect the CD and TK genes into lens epithelium cells successfully and efficiently. CD and TK genes can be expressed steadily. Transfection of double suicide gene reduces the dosage of prodrugs required for killing cells. The combination of 5-FC with GCV shows the greatest killing effect and also has the bystander effect.

  14. Comparing the effects of tetrabromobisphenol-A, bisphenol A, and their potential replacement alternatives, TBBPA-bis(2,3-dibromopropyl ether) and bisphenol S, on cell viability and messenger ribonucleic acid expression in chicken embryonic hepatocytes.

    PubMed

    Ma, Melissa; Crump, Doug; Farmahin, Reza; Kennedy, Sean W

    2015-02-01

    A market for alternative brominated flame retardants (BFRs) has emerged recently due to the phase out of persistent and inherently toxic BFRs. Several of these replacement compounds have been detected in environmental matrices, including wild birds. A chicken embryonic hepatocyte (CEH) assay was utilized to assess the effects of the BFR, tetrabromobisphenol-A (TBBPA), and its replacement alternative, tetrabromobisphenol A bis(2,3-dibromopropyl ether [TBBPA-DBPE]) on cell viability and messenger ribonucleic acid (mRNA) expression. Bisphenol A (BPA) and 1 of its replacement alternatives, bisphenol S (BPS), were also screened for effects. Both TBBPA and BPA decreased CEH viability with calculated median lethal concentration (LC50) values of 40.6 μM and 61.7 μM, respectively. However, the replacement alternatives, TBBPA-DBPE and BPS, did not affect cell viability (up to 300 μM). Effects on mRNA expression were determined using an Avian ToxChip polymerse chain reaction (PCR) array and a real-time (RT)-PCR assay for the estrogen-responsive genes, apolipoproteinII (ApoII) and vitellogenin (Vtg). A luciferase reporter gene assay was used to assess dioxin-like effects. Tetrabromobisphenol-A altered mRNA levels of 4 genes from multiple toxicity pathways and increased luciferase activity in the luciferase reporter gene assay, whereas its alternative, TBBPA-DBPE, only altered 1 gene on the array, Cyp1a4, and increased luciferase activity. At 300 μM, a concentration that decreased cell viability for TBBPA and BPA, the BPA replacement, BPS, altered the greatest number of transcripts, including both ApoII and Vtg. Bisphenol A exposure did not alter any genes on the array but did up-regulate Vtg at 10 μM. Characterization of the potential toxicological and molecular-level effects of these compounds will ideally be useful to chemical regulators tasked with assessing the risk of new and existing chemicals. © 2014 SETAC.

  15. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    PubMed

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study.

  17. Endogenous GLP-1 as a key self-defense molecule against lipotoxicity in pancreatic islets.

    PubMed

    Huang, Chenghu; Yuan, Li; Cao, Shuyi

    2015-07-01

    The number of pro-α cells is known to increase in response to β cell injury and these cells then generate glucagon-like peptide-1 (GLP-1), thus attenuating the development of diabetes. The aim of the present study was to further examine the role and the mechanisms responsible for intra-islet GLP-1 production as a self-protective response against lipotoxicity. The levels of the key enzyme, prohormone convertase 1/3 (PC1/3), as well as the synthesis and release of GLP-1 in models of lipotoxicity were measured. Furthermore, islet viability, apoptosis, oxidative stress and inflammation, as well as islet structure were assessed after altering GLP-1 receptor signaling. Both prolonged exposure to palmitate and a high-fat diet facilitated PC1/3 expression, as well as the synthesis and release of GLP-1 induced by β cell injury and the generation of pro-α cells. Prolonged exposure to palmitate increased reactive oxygen species (ROS) production, and the antioxidant, N-acetylcysteine (NAC), partially prevented the detrimental effects induced by palmitate on β cells, resulting in decreased GLP-1 levels. Furthermore, the inhibition of GLP-1 receptor (GLP-1R) signaling by treatment with exendin‑(9-39) further decreased cell viability, increased cell apoptosis and caused a stronger inhibition of the β cell-specific transcription factor, pancreatic duodenal homeobox 1 (PDX1). Moreover, treatment with the GLP-1R agonist, liraglutide, normalized islet structure and function, resulting in a decrease in cell death and in the amelioration of β cell marker expression. Importantly, liraglutide maintained the oxidative balance and decreased inflammatory factor and p65 expression. Overall, our data demonstrate that an increase in the number of pro-α cells and the activation of the intra-islet GLP-1 system comprise a self-defense mechanism for enhancing β cell survival to combat lipid overload, which is in part mediated by oxidative stress and inflammation.

  18. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jae Hyeon; Hanyang Biomedical Research Institute, Seoul; Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition,more » we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by apoptosis ► CPF induces autophagy in SH-SY5Y cells ► Autophagy regulates CPF-induced apoptosis in SH-SY5Y cells.« less

  19. Plasma clots gelled by different amounts of calcium for stem cell delivery.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2013-01-01

    Freshly prepared autologous plasma clots may serve as a carrier matrix for expanded multipotent mesenchymal stromal cells (MSCs) or bone marrow cells. By varying the calcium concentration, plasma clots with different properties can be produced. The purpose of this in vitro study was to determine the optimal calcium concentrations for the clotting process, intra-clot cell viability, and clot lysis. Different plasma clots were prepared by adding an equal volume of RPMI1640 (with or without MSCs) to citrate plasma (either containing platelets or platelet-free). Clotting was initiated by the addition of CaCl(2) (10 g/100 ml H(2)O, 10 % solution). The final concentration of CaCl(2) ranged from 1 to 10 % by volume of plasma. Viability and distribution of the MSCs were analysed by calcein-AM/propidium iodide staining. MSC-embedded plasma clots were dissolved with trypsin (0.25 %), and recovered cells were further incubated for 1 week under cell culture conditions. The viability of MSCs embedded in clots formed by the addition of 1-8 % by volume CaCl2 was not affected by incubation of up to 1 week. In contrast, clots produced by higher volumes of CaCl(2) solutions (9-10 % by volume of plasma) showed decreased numbers of viable cells. Intra-clot cell proliferation was highest in clots produced by addition of 5 % CaCl(2) by plasma volume. Osteocalcin release was not influenced in platelet-free plasma but decreased in platelet-containing plasma. Morphological analysis of stained recovered MSCs revealed that lysis of the plasma clot did not affect cell morphology or subsequent spontaneous proliferation. Clot formation and clot stability can be controlled by changing the concentration of CaCl(2) added to plasma. The addition of 5 % CaCl(2) produced a plasma clot with optimal results for stem cell delivery.

  20. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells.

    PubMed

    Somasagara, Ranganatha R; Deep, Gagan; Shrotriya, Sangeeta; Patel, Manisha; Agarwal, Chapla; Agarwal, Rajesh

    2015-04-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy.

  1. Cell Specific Cytotoxicity and Uptake of Graphene Nanoribbons

    PubMed Central

    Chowdhury, Sayan Mullick; Lalwani, Gaurav; Zhang, Kevin; Yang, Jeong Yun; Neville, Kayla; Sitharaman, Balaji

    2012-01-01

    The synthesis of oxidized graphene nanoribbons (O-GNR) via longitudinal unzipping of carbon nanotubes opens avenues for their further development for a variety of biomedical applications. Evaluation of the cyto- and bio-compatibility is necessary to develop any new material for in vivo biomedical applications. In this study, we report the cytotoxicity screening of O-GNRs water-solubilized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)]), using six different assays, in four representative cell lines; Henrietta Lacks cells (HeLa) derived from cervical cancer tissue, National Institute of Health 3T3 mouse fibroblast cells (NIH-3T3), Sloan Kettering breast cancer cells (SKBR3) and Michigan cancer foundation-7 breast cancer cells (MCF7). These cell lines significantly differed in their response to O-GNR-PEG-DSPE formulations; assessed and evaluated using various endpoints (lactate dehydrogenase (LDH) release, cellular metabolism, lysosomal integrity and cell proliferation) for cytotoxicity. In general, all the cells showed a dose-dependent (10–400 μg/ml) and time-dependent (12–48 h) decrease in cell viability. However, the degree of cytotoxicity was significantly lower in MCF7 or SKBR3 cells compared to HeLa cells. These cells were 100% viable upto 48 hours, when incubated at 10μg/ml O-GNR-PEG-DSPE concentration, and showed decrease in cell viability above this concentration with ~78% of cells viable at the highest concentration (400 μg/ml). In contrast, significant cell death (5–25% cell death depending on the time point, and the assay) was observed for HeLa cells even at a low concentration of 10μg/ml. The decrease in cell viability was steep with increase in concentration with the CD50 values ≥ 100μg/ml depending on the assay, and time point. Transmission electron microscopy of the various cells treated with the O-GNR solutions show higher uptake of the O-GNR-PEG-DSPEs into HeLa cells compared to other cell types. Additional analysis indicates that this increased uptake is the dominant cause of the significantly higher toxicity exhibited by HeLa cells. The results suggest that water-solubilized O-GNR-PEG-DSPEs have a heterogeneous cell-specific cytotoxicity, and have significantly different cytotoxicity profile compared to graphene nanoparticles prepared by the modified Hummer’s method (graphene nanoparticles prepared by oxidation of graphite, and its mechanical exfoliation) or its variations. PMID:23072942

  2. Cell specific cytotoxicity and uptake of graphene nanoribbons.

    PubMed

    Mullick Chowdhury, Sayan; Lalwani, Gaurav; Zhang, Kevin; Yang, Jeong Y; Neville, Kayla; Sitharaman, Balaji

    2013-01-01

    The synthesis of oxidized graphene nanoribbons (O-GNR) via longitudinal unzipping of carbon nanotubes opens avenues for their further development for a variety of biomedical applications. Evaluation of the cyto- and bio-compatibility is necessary to develop any new material for in vivo biomedical applications. In this study, we report the cytotoxicity screening of O-GNRs water-solubilized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)]), using six different assays, in four representative cell lines; Henrietta Lacks cells (HeLa) derived from cervical cancer tissue, National Institute of Health 3T3 mouse fibroblast cells (NIH-3T3), Sloan Kettering breast cancer cells (SKBR3) and Michigan cancer foundation-7 breast cancer cells (MCF7). These cell lines significantly differed in their response to O-GNR-PEG-DSPE formulations; assessed and evaluated using various endpoints (lactate dehydrogenase (LDH) release, cellular metabolism, lysosomal integrity and cell proliferation) for cytotoxicity. In general, all the cells showed a dose-dependent (10-400 μg/ml) and time-dependent (12-48 h) decrease in cell viability. However, the degree of cytotoxicity was significantly lower in MCF7 or SKBR3 cells compared to HeLa cells. These cells were 100% viable upto 48 h, when incubated at 10 μg/ml O-GNR-PEG-DSPE concentration, and showed decrease in cell viability above this concentration with ~78% of cells viable at the highest concentration (400 μg/ml). In contrast, significant cell death (5-25% cell death depending on the time point, and the assay) was observed for HeLa cells even at a low concentration of 10 μg/ml. The decrease in cell viability was steep with increase in concentration with the CD(50) values ≥ 100 μg/ml depending on the assay, and time point. Transmission electron microscopy of the various cells treated with the O-GNR solutions show higher uptake of the O-GNR-PEG-DSPEs into HeLa cells compared to other cell types. Additional analysis indicates that this increased uptake is the dominant cause of the significantly higher toxicity exhibited by HeLa cells. The results suggest that water-solubilized O-GNR-PEG-DSPEs have a heterogenous cell-specific cytotoxicity, and have significantly different cytotoxicity profile compared to graphene nanoparticles prepared by the modified Hummer's method (graphene nanoparticles prepared by oxidation of graphite, and its mechanical exfoliation) or its variations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men.

    PubMed

    Safari, Hassan; Khanlarkhani, Neda; Sobhani, Aligholi; Najafi, Atefeh; Amidi, Fardin

    2017-07-05

    The neurotrophin family of proteins and their receptors act as important proliferative and pro-survival factors in differentiation of nerve cells and are thought to play key roles in the development of reproductive tissues and normal function of spermatozoa. The objective of the present study was to evaluate the effect of Brain-Derived Neurotrophic Factor (BDNF) on the sperm viability and motility, lipid peroxidation (LPO), mitochondrial activity and concentration of leptin, nitric oxide (NO) and insulin in normozoospermic men. Semen samples from 20 normozoospermic men were divided into three groups: (i) control, (ii) BDNF and (iii) BDNF + K252a. BDNF and K252a were added in the dose of 0.133 and 0.1 nM, respectively. Viability was assessed by eosin-nigrosin staining technique, and motility was observed by microscopy. NO concentration and mitochondrial activity were measured with flow cytometry, and LPO was analyzed using enzyme-linked immunosorbent assay (ELISA) kits. Results showed that exogenous BDNF at 0.133 nM could significantly (p < 0.05) influence viability, motility, NO concentration, mitochondrial activity and LPO content. Secretions of insulin and leptin by human sperm were increased in cells exposed to the exogenous BDNF, whereas viability, mitochondrial activity and insulin and leptin secretions were decreased in cells exposed to the K252.

  4. Sponge-supported cultures of primary head and neck tumors for an optimized preclinical model.

    PubMed

    Dohmen, Amy J C; Sanders, Joyce; Canisius, Sander; Jordanova, Ekaterina S; Aalbersberg, Else A; van den Brekel, Michiel W M; Neefjes, Jacques; Zuur, Charlotte L

    2018-05-18

    Treatment of advanced head and neck cancer is associated with low survival, high toxicity and a widely divergent individual response. The sponge-gel-supported histoculture model was previously developed to serve as a preclinical model for predicting individual treatment responses. We aimed to optimize the sponge-gel-supported histoculture model and provide more insight in cell specific behaviour by evaluating the tumor and its microenvironment using immunohistochemistry. We collected fresh tumor biopsies from 72 untreated patients and cultured them for 7 days. Biopsies from 57 patients (79%) were successfully cultured and 1451 tumor fragments (95.4%) were evaluated. Fragments were scored for percentage of tumor, tumor viability and proliferation, EGF-receptor expression and presence of T-cells and macrophages. Median tumor percentage increased from 53% at day 0 to 80% at day 7. Viability and proliferation decreased after 7 days, from 90% to 30% and from 30% to 10%, respectively. Addition of EGF, folic acid and hydrocortisone can lead to improved viability and proliferation, however this was not systematically observed. No patient subgroup could be identified with higher culture success rates. Immune cells were still present at day 7, illustrating that the tumor microenvironment is sustained. EGF supplementation did not increase viability and proliferation in patients overexpressing EGF-Receptor.

  5. A new type of quinoxalinone derivatives affects viability, invasion, and intracellular growth of Toxoplasma gondii tachyzoites in vitro.

    PubMed

    Rivera Fernández, Norma; Mondragón Castelán, Mónica; González Pozos, Sirenia; Ramírez Flores, Carlos J; Mondragón González, Ricardo; Gómez de León, Carmen T; Castro Elizalde, Kitzia N; Marrero Ponce, Yovani; Arán, Vicente J; Martins Alho, Miriam A; Mondragón Flores, Ricardo

    2016-05-01

    Quinoxalinone derivatives, identified as VAM2 compounds (7-nitroquinoxalin-2-ones), were evaluated against Toxoplasma gondii tachyzoites of the RH strain. The VAM2 compounds were previously synthesized based on the design obtained from an in silico prediction with the software TOMOCOMD-CARDD. From the ten VAM2 drugs tested, several showed a deleterious effect on tachyzoites. However, VAM2-2 showed the highest toxoplasmicidal activity generating a remarkable decrease in tachyzoite viability (in about 91 %) and a minimal alteration in the host cell. An evident inhibition of host cell invasion by tachyzoites previously treated with VAM2-2 was observed in a dose-dependent manner. In addition, remarkable alterations were observed in the pellicle parasite, such as swelling, roughness, and blebbing. Toxoplasma motility was inhibited, and subpellicular cytoskeleton integrity was altered, inducing a release of its components to the soluble fraction. VAM2-2 showed a clear and specific deleterious effect on tachyzoites viability, structural integrity, and invasive capabilities with limited effects in host cells morphology and viability. VAM2-2 minimum inhibitory concentration (MIC50) was determined as 3.3 μM ± 1.8. Effects of quinoxalinone derivatives on T. gondii provide the basis for a future therapeutical alternative in the treatment of toxoplasmosis.

  6. Mangiferin enhances the sensitivity of human multiple myeloma cells to anticancer drugs through suppression of the nuclear factor κB pathway.

    PubMed

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Kawamura, Ayako; Isoyama, Shota; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Matsuda, Hideaki; Satou, Takao; Nishida, Shozo

    2016-06-01

    Multiple myeloma (MM) is still an incurable hematological malignancy with a 5-year survival rate of ~35%, despite the use of various treatment options. The nuclear factor κB (NF-κB) pathway plays a crucial role in the pathogenesis of MM. Thus, inhibition of the NF-κB pathway is a potential target for the treatment of MM. In a previous study, we showed that mangiferin suppressed the nuclear translocation of NF-κB. However, the treatment of MM involves a combination of two or three drugs. In this study, we examined the effect of the combination of mangiferin and conventional anticancer drugs in an MM cell line. We showed that the combination of mangiferin and an anticancer drug decreased the viability of MM cell lines in comparison with each drug used separately. The decrease in the combination of mangiferin and an anticancer drug induced cell viability was attributed to increase the expression of p53 and Noxa and decreases the expression of XIAP, survivin, and Bcl-xL proteins via inhibition of NF-κB pathway. In addition, the combination treatment caused the induction of apoptosis, activation of caspase-3 and the accumulation of the cells in the sub-G1 phase of the cell cycle. Our findings suggest that the combination of mangiferin and an anticancer drug could be used as a new regime for the treatment of MM.

  7. Sildenafil Inhibits the Proliferation of Cultured Human Endothelial Cells

    PubMed Central

    Erdogan, Ali; Luedders, Doerte Wiebke; Muenz, Benedikt Manuel; Schaefer, Christian Alexander; Tillmanns, Harald; Wiecha, Johannes; Kuhlmann, Christoph Ruediger Wolfram

    2007-01-01

    The proliferation of endothelial cells plays a crucial role in the development of intraplaque angiogenesis (IPA). IPA is a major source of intraplaque hemorrhage and therefore contributes to the destabilization of atherosclerotic plaques. Therefore, the aim of the present study was to examine, whether sildenafil inhibits endothelial cell growth. The proliferation of human endothelial cells derived from umbilical cord veins (HUVEC) was examined on DNA level by measurements of (3H)-thymidine incorporation. Cell viability was analyzed using trypan blue staining. The proliferation of cultured human endothelial cells was significantly decreased by 1 μmol/l (-48.4%) and 10 μmol/l (-89.6%) sildenafil (n=10, p<0.05). This was not a cytotoxic effect, because cell viability was only reduced at sildenafil concentrations of 50 μmol/l or greater. In addition sildenafil significantly reduced endothelial proliferation induced by bFGF (n=10, p<0.05). The presented results demonstrate an antiangiogenic effect of sildenafil that might be useful in the prevention of atherosclerotic plaque vascularization. PMID:23675029

  8. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.

    PubMed

    McGoldrick, Trevor A; Lock, Edward A; Rodilla, Vicente; Hawksworth, Gabrielle M

    2003-07-01

    Proximal tubular cells from human (HPT) and rat (RPT) kidneys were isolated, grown to confluence and incubated with S-(1,2-dichlorovinyl)- l-cysteine (DCVC), S-(1,2,2-trichlorovinyl)- l-cysteine (TCVC), S-(1,1,2,2-tetrafluoroethyl)- l-cysteine (TFEC) and S-(2-chloro-1,1-difluorethyl)- l-cysteine (CDFEC), the cysteine conjugates of nephrotoxicants. The cultures were exposed to the conjugates for 12, 24 and 48 h and the toxicity determined using the MTT assay. All four conjugates caused dose-dependent toxicity to RPT cells over the range 50-1,000 microM, the order of toxicity being DCVC>TCVC>TFEC=CDFEC. The inclusion of aminooxyacetic acid (AOAA; 250 microM), an inhibitor of pyridoxal phosphate-dependent enzymes such as C-S lyase, afforded protection, indicating that C-S lyase has a role in the bioactivation of these conjugates. In HPT cultures only DCVC caused significant time- and dose-dependent toxicity. Exposure to DCVC (500 microM) for 48 h decreased cell viability to 7% of control cell values, whereas co-incubation of DCVC (500 microM) with AOAA (250 microM) resulted in cell viability of 71%. Human cultures were also exposed to S-(1,2-dichlorovinyl)-glutathione (DCVG). DCVG was toxic to HPT cells, but the onset of toxicity was delayed compared with the corresponding cysteine conjugate. AOAA afforded almost complete protection from DCVG toxicity. Acivicin (250 microM), an inhibitor of gamma-glutamyl transferase (gamma-GT), partially protected against DCVG (500 microM)-induced toxicity at 48 h (5% viability and 53% viability in the absence and presence of acivicin, respectively). These results suggest that DCVG requires processing by gamma-GT prior to bioactivation by C-S lyase in HPT cells. The activity of C-S lyase, using TFEC as a substrate, and glutamine transaminase K (GTK) was measured in rat and human cells with time in culture. C-S lyase activity in RPT and HPT cells decreased to approximately 30% of fresh cell values by the time the cells reached confluence (120 h), whereas the decline in GTK activity was less marked (50% of the fresh cell values at confluence). Rat cells had threefold higher activity than human cells at each time point. This higher activity may partly explain the differences in toxicity between rat and human proximal tubular cells in culture.

  9. Magnolol pretreatment attenuates heat stress-induced IEC-6 cell injury*

    PubMed Central

    Mei, Chen; He, Sha-sha; Yin, Peng; Xu, Lei; Shi, Ya-ran; Yu, Xiao-hong; Lyu, An; Liu, Feng-hua; Jiang, Lin-shu

    2016-01-01

    Objective: Heat stress (HS) is an important environmental stressor that adversely influences livestock during the summer. The aim of this study was to investigate whether magnolol protects against HS-induced intestinal epithelial cell injury. Materials and methods: An intestinal epithelial cell line (IEC-6) was subjected to HS at 42 °C, with and without magnolol pretreatment. Cell injury was detected by monitoring lactate dehydrogenase (LDH) release. MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was used to assess cell proliferation and viability, including identifying effective concentrations of magnolol. Flow cytometry confirmed G1-phase cell-cycle arrest and its alleviation by magnolol. Active DNA synthesis was measured by incorporation of nucleic acid 5-ethynyl-2'-deoxyuridine (EdU). G1-phase cell-cycle-related gene expression was assessed by real-time reverse transcription polymerase chain reaction (RT-PCR) and levels of G1-phase-related proteins by Western blotting. Results: HS induced IEC-6 cell injury and decreased cell viability, as demonstrated by data from LDH and MTS assays, respectively. Based on a number of criteria, IEC-6 cells subjected to HS were arrested in the G1 phase of the cell cycle. Magnolol pretreatment decreased HS-induced cell injury through relief of this cell-cycle arrest. Conclusions: Magnolol pretreatment attenuates HS-induced injury in IEC-6 cells. Magnolol is potentially promising as a protective strategy for HS in livestock. PMID:27256675

  10. Epigallocatechin gallate (EGCG) prevents H2O2-induced oxidative stress in primary rat retinal pigment epithelial cells.

    PubMed

    Cia, David; Vergnaud-Gauduchon, Juliette; Jacquemot, Nathalie; Doly, Michel

    2014-09-01

    To determine whether the green tea polyphenol epigallocatechin gallate (EGCG) could prevent H(2)O(2)-induced oxidative stress in primary rat retinal pigment epithelial cells. Primary cultures of retinal pigment epithelium (RPE) cells were established from Long-Evans newborn rats. RPE cells were pretreated with various concentrations of EGCG for 24 h before being exposed to hydrogen peroxide (H(2)O(2)) for 2 h to induce oxidative stress. Cell metabolic activity was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell death was quantified by flow cytometry using propidium iodide (PI). Treatment of RPE cells with EGCG alone does not affect the cell viability up to 50 µM. Exposure of RPE cells to 600 µM H(2)O(2) caused a significant decrease in cell viability; whereas pretreatment with 10, 25, and 50 µM EGCG significantly reduced this decrease in a dose-dependent manner. The proportion of PI-positive cells increased significantly in cultures treated with H(2)O(2) alone; whereas pretreatment of RPE cells with 50 µM EGCG significantly reduced H(2)O(2)-induced RPE cell death. Our study shows that EGCG pretreatment can protect primary rat RPE cells from H(2)O(2)-induced death. This suggests potential effect of EGCG in the prevention of retinal diseases associated with H(2)O(2)-induced oxidative stress.

  11. Purified Brominated Indole Derivatives from Dicathais orbita Induce Apoptosis and Cell Cycle Arrest in Colorectal Cancer Cell Lines

    PubMed Central

    Esmaeelian, Babak; Benkendorff, Kirsten; Johnston, Martin R.; Abbott, Catherine A.

    2013-01-01

    Dicathais orbita is a large Australian marine gastropod known to produce bioactive compounds with anticancer properties. In this research, we used bioassay guided fractionation from the egg mass extract of D. orbita using flash column chromatography and identified fractions containing tyrindoleninone and 6-bromoisatin as the most active against colon cancer cells HT29 and Caco-2. Liquid chromatography coupled with mass spectrometry (LCMS) and 1H NMR were used to characterize the purity and chemical composition of the isolated compounds. An MTT assay was used to determine effects on cell viability. Necrosis and apoptosis induction using caspase/LDH assay and flow cytometry (PI/Annexin-V) and cell cycle analysis were also investigated. Our results show that semi-purified 6-bromoisatin had the highest anti-cancer activity by inhibiting cell viability (IC50 = ~100 µM) and increasing caspase 3/7 activity in both of the cell lines at low concentration. The fraction containing 6-bromoisatin induced 77.6% apoptosis and arrested 25.7% of the cells in G2/M phase of cell cycle in HT29 cells. Tyrindoleninone was less potent but significantly decreased the viability of HT29 cells at IC50 = 390 µM and induced apoptosis at 195 µM by increasing caspase 3/7 activity in these cells. This research will facilitate the development of these molluscan natural products as novel complementary medicines for colorectal cancer. PMID:24152558

  12. The hormesis effect of plasma-elevated intracellular ROS on HaCaT cells

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Harding, Frances J.; Hong, Sung-Ha; Herrmann, Franziska; Voelcker, Nicolas H.; Short, Robert D.

    2015-12-01

    We have examined the link between ionized-gas plasma delivery of reactive oxygen species (ROS) to immortalized keratinocyte (HaCaT) cells and cell fate, defined in terms of cell viability versus death. Phospholipid vesicles were used as cell mimics to measure the possible intracellular ROS concentration, [ROSi], delivered by various plasma treatments. Cells were exposed to a helium cold atmospheric plasma (CAP) jet for different plasma exposure times (5-60 s) and gas flow rates (50-1000 ml min-1). Based upon the [ROSi] data we argue that plasma-generated ROS in the cell culture medium can readily diffuse into real cells. Plasma exposure that equated to an [ROSi] in the range of 3.81  ×  10-10-9.47  ×  10-8 M, measured at 1 h after the plasma exposure, resulted in increased cell viability at 72 h; whereas a higher [ROSi] at 1 h decreased cell viability after 72 h of culture. This may be because of the manner in which the ROS are delivered by the plasma: HaCaT cells better tolerate a low ROS flux over an extended plasma exposure period of 1 min, compared to a high flux delivered in a few seconds, although the final [ROSi] may be the same. Our results suggest that plasma stimulation of HaCaT cells follows the principle of hormesis.

  13. In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture.

    PubMed

    Wang, He; Wang, Jing J; Sanderson, Barbara J S

    2013-01-01

    The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.

  14. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  15. Downregulation of Sp1 by Minnelide leads to decrease in HSP70 and decrease in tumor burden of gastric cancer.

    PubMed

    Arora, Nivedita; Alsaied, Osama; Dauer, Patricia; Majumder, Kaustav; Modi, Shrey; Giri, Bhuwan; Dudeja, Vikas; Banerjee, Sulagna; Von Hoff, Daniel; Saluja, Ashok

    2017-01-01

    Gastric cancer is the third leading cause of cancer related mortality worldwide with poor survival rates. Even though a number of chemotherapeutic compounds have been used against this disease, stomach cancer has not been particularly sensitive to these drugs. In this study we have evaluated the effect of triptolide, a naturally derived diterpene triepoxide and its water soluble pro-drug Minnelide on several gastric adenocarcinoma cell lines both as monotherapy and in combination with CPT-11. Gastric cancer cell lines MKN28 and MKN45 were treated with varying doses of triptolide in vitro. Cell viability was measured using MTT based assay kit. Apoptotic cell death was assayed by measuring caspase activity. Effect of the triptolide pro-drug, Minnelide, was evaluated by implanting the gastric cancer cells subcutaneously in athymic nude mice. Gastric cancer cell lines MKN28 and MKN45 cells exhibited decreased cell viability and increased apoptosis when treated with varying doses of triptolide in vitro. When implanted in athymic nude mice, treatment with Minnelide reduced tumor burden in both MKN28 derived tumors as well as MKN45 derived tumors. Additionally, we also evaluated Minnelide as a single agent and in combination with CPT-11 in the NCI-N87 human gastric tumor xenograft model. Our results indicated that the combination of Minnelide with CPT-11 resulted in significantly smaller tumors compared to control. These studies are extremely encouraging as Minnelide is currently undergoing phase 1 clinical trials for gastrointestinal cancers.

  16. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis.

    PubMed

    Viola, Manuela; Brüggemann, Kathrin; Karousou, Evgenia; Caon, Ilaria; Caravà, Elena; Vigetti, Davide; Greve, Burkhard; Stock, Christian; De Luca, Giancarlo; Passi, Alberto; Götte, Martin

    2017-06-01

    Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.

  17. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells.

    PubMed

    Santofimia-Castaño, Patricia; Garcia-Sanchez, Lourdes; Ruy, Deborah Clea; Fernandez-Bermejo, Miguel; Salido, Gines M; Gonzalez, Antonio

    2014-09-17

    Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of extracorporeal shock wave lithotripsy on bacterial viability. Relationship to the treatment of struvite stones.

    PubMed

    Reid, G; Jewett, M A; Nickel, J C; McLean, R J; Bruce, A W

    1990-01-01

    The aim of this study was to determine whether extracorporeal shock wave lithotripsy (ESWL) affected the viability of the infecting bacteria within a simulated struvite stone matrix. A strain, Proteus mirabilis 28cii, was prepared in three forms: (1) suspended in saline and urine, (2) artificially encapsulated by suspending in agar beads and (3) artificially encapsulated and mineralised by suspending in agar beads with calcium carbonate crystals. The preparations were placed in capped vials partially immersed in degassed water and held in the focal point of the Siemens Lithostar and given 1,000 shocks. Subsequent viability testing showed that bacteria suspended in urine were greatly affected by shock treatments (55% loss in viability), but incorporation into agar beads negated this effect (even if the cells were exposed to 2000 shocks). Mineralisation of the beads with calcium carbonate crystals caused a decrease in viability of 82% that was significantly different from controls. However, this still left 2.3 X 10(8) viable organisms (82% of 2.8 X 10(8], easily enough to form the focus for further infections. A series of control experiments carried out using an ultrasonic cell sonicator probe gave comparable results to those obtained with ESWL. These results demonstrate the ESWL treatment of infected stones must be accompanied by antimicrobial coverage.

  19. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish*

    PubMed Central

    Zacharias, Triantafyllos; Kulej, Katarzyna; Wang, Kevin; Torggler, Raffaela; la Cour, Jonas M.

    2016-01-01

    Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish. PMID:27815504

  20. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells

    PubMed Central

    Jafarian, A.; Ghannadi, A.; Mohebi, B.

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents. PMID:25657780

  1. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells.

    PubMed

    Jafarian, A; Ghannadi, A; Mohebi, B

    2014-01-01

    Previous studies have indicated that some species of Cuscuta possess anticancer activity on various cell lines. Due to the lack of detailed researches on the cytotoxic effects of Cuscuta chinensis and Cuscuta epithymum, the aim of the present study was to evaluate cytotoxic effects of chloroform and hydroalcoholic extracts of these plants on the human breast carcinoma cell line (MDA-MB-468), human colorectal adenocarcinoma cell line (HT29) and human uterine cervical carcinoma (Hela). Using maceration method, different extracts of aerial parts of C. chinensis and C. epithymum were prepared. Extraction was performed using chloroform and ethanol/water (70/30). Total phenolic contents of the extracts were determined according to the Folin-Ciocalteu method. Using MTT assay, the cytotoxic activity of the extracts against HT29, Hela and MDA-MB-468 tumor cells was evaluated. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. The poly-phenolic content of the hydroalcoholic and chloroform extracts of C. chinensis and C. epithymum were 56.08 ± 4.11, 21.49 ± 2.00, 10.64 ± 0.86 and 4.81 ± 0.38, respectively. Our findings showed that the chloroform extracts of C. chinensis and C. epithyum significantly reduced the viability of Hela, HT-29 and MDA-MB-468 cells. Also, hydroalcoholic extracts of C. chinensis significantly decreased the viability of HT29, Hela and MDA-MB-468 cells. However, in the case of hydroalcoholic extracts of C. epithymum only significant decrease in the viability of MDA-MB-468 cells was observed (IC50 = 340 μg/ml). From these findings it can be concluded that C. chinensis and C. epithymum are good candidates for further study to find new possible cytotoxic agents.

  2. Goat milk with and without increased concentrations of lysozyme improves repair of intestinal cell damage induced by enteroaggregative Escherichia coli.

    PubMed

    Carvalho, Eunice B; Maga, Elizabeth A; Quetz, Josiane S; Lima, Ila F N; Magalhães, Hemerson Y F; Rodrigues, Felipe A R; Silva, Antônio V A; Prata, Mara M G; Cavalcante, Paloma A; Havt, Alexandre; Bertolini, Marcelo; Bertolini, Luciana R; Lima, Aldo A M

    2012-08-11

    Enteroaggregative Escherichia coli (EAEC) causes diarrhea, malnutrition and poor growth in children. Human breast milk decreases disease-causing bacteria by supplying nutrients and antimicrobial factors such as lysozyme. Goat milk with and without human lysozyme (HLZ) may improve the repair of intestinal barrier function damage induced by EAEC. This work investigates the effect of the milks on intestinal barrier function repair, bacterial adherence in Caco-2 and HEp-2 cells, intestinal cell proliferation, migration, viability and apoptosis in IEC-6 cells in the absence or presence of EAEC. Rat intestinal epithelial cells (IEC-6, ATCC, Rockville, MD) were used for proliferation, migration and viability assays and human colon adenocarcinoma (Caco-2, ATCC, Rockville, MD) and human larynx carcinoma (HEp-2, ATCC, Rockville, MD) cells were used for bacterial adhesion assays. Goats expressing HLZ in their milk were generated and express HLZ in milk at concentration of 270 μg/ml. Cells were incubated with pasteurized milk from either transgenic goats expressing HLZ or non-transgenic control goats in the presence and absence of EAEC strain 042 (O44:H18). Cellular proliferation was significantly greater in the presence of both HLZ transgenic and control goat milk compared to cells with no milk. Cellular migration was significantly decreased in the presence of EAEC alone but was restored in the presence of milk. Milk from HLZ transgenic goats had significantly more migration compared to control milk. Both milks significantly reduced EAEC adhesion to Caco-2 cells and transgenic milk resulted in less colonization than control milk using a HEp-2 assay. Both milks had significantly increased cellular viability as well as less apoptosis in both the absence and presence of EAEC. These data demonstrated that goat milk is able to repair intestinal barrier function damage induced by EAEC and that goat milk with a higher concentration of lysozyme offers additional protection.

  3. Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death.

    PubMed

    Lim, Sung-Chul; Han, Song Iy

    2015-09-01

    Carcinoma cells that have acquired drug resistance often exhibit cross-resistance to various other cytotoxic stimuli. Here, we investigated the effects of ursodeoxycholic acid (UDCA), a gastrointestinal tumor-suppressor, on a cisplatin‑resistant SNU601 gastric cancer subline (SNU601/R). While other anticancer drugs, including L-OHP, etoposide, and death ligand TRAIL, had minimal effects on the viability of these resistant cells, they were sensitive to UDCA. The UDCA‑induced reduction in the viability of the SNU601/R cells was accomplished through autophagy while the primary means of cell death in the parental SNU601 cells (SNU601/WT) was apoptosis. Previously, we demonstrated that the UDCA-triggered apoptosis of gastric cancer cells was regulated by a cell surface death receptor, TRAIL-R2/DR5, which was upregulated and re-distributed on lipid rafts. The UDCA stimulation of TRAIL-R2/DR5 also occurred in the SNU601/R cells despite the lack of apoptosis. In the present study, we found that CD95/Fas, another cell surface death receptor, was also translocated into lipid rafts in response to UDCA although it was not involved in the decrease in cell viability. Specifically, raft relocalization of CD95/Fas was triggered by UDCA in the SNU601/WT cells in which apoptosis occurred, but not in the SNU601/R cells where autophagic death occurred. Notably, UDCA reduced ATG5 levels, an essential component of autophagy, in the SNU601/WT, but not in the SNU601/R cell line. Moreover, in CD95/Fas-silenced SNU601/WT cells, UDCA did not decrease ATG5 levels and induced autophagic cell death rather than apoptosis. These results imply that raft‑distributed CD95/Fas may support UDCA-induced apoptosis via downregulation of ATG5 levels, preventing the autophagic pathway. Taken together, these results suggest that UDCA induces both apoptotic and autophagic cell death depending on the intracellular signaling environment, thereby conferring the advantage to overcome drug resistance through apoptotic defects.

  4. Electron Resonance Decay into a Biological Function: Decrease in Viability of E. coli Transformed by Plasmid DNA Irradiated with 0.5-18 eV Electrons.

    PubMed

    Kouass Sahbani, S; Cloutier, P; Bass, A D; Hunting, D J; Sanche, L

    2015-10-01

    Transient negative ions (TNIs) are ubiquitous in electron-molecule scattering at low electron impact energies (0-20 eV) and are particularly effective in damaging large biomolecules. Because ionizing radiation generates mostly 0-20 eV electrons, TNIs are expected to play important roles in cell mutagenesis and death during radiotherapeutic cancer treatment, although this hypothesis has never been directly verified. Here, we measure the efficiency of transforming E. coli bacteria by inserting into the cells, pGEM-3ZfL(-) plasmid DNA that confers resistance to the antibiotic ampicillin. Before transformation, plasmids are irradiated with electrons of specific energies between 0.5 and 18 eV. The loss of transformation efficiency plotted as a function of irradiation energy reveals TNIs at 5.5 and 9.5 eV, corresponding to similar states observed in the yields of DNA double strand breaks. We show that TNIs are detectable in the electron-energy dependence of a biological process and can decrease cell viability.

  5. Hydrogen peroxide-induced apoptosis of human lens epithelial cells is inhibited by parthenolide

    PubMed Central

    Shentu, Xing-Chao; Ping, Xi-Yuan; Cheng, Ya-Lan; Zhang, Xin; Tang, Ye-Lei; Tang, Xia-Jing

    2018-01-01

    AIM To explore the effect of parthenolide on hydrogen peroxide (H2O2)-induced apoptosis in human lens epithelial (HLE) cells. METHODS The morphology and number of apoptotic HLE cells were assessed using light microscopy and flow cytometry. Cell viability was tested by MTS assay. In addition, the expression of related proteins was measured by Western blot assay. RESULTS Apoptosis of HLE cells was induced by 200 µmol/L H2O2, and the viability of these cells was similar to the half maximal inhibitory concentration (IC50), as examined by MTS assay. In addition, cells were treated with either different concentrations (6.25, 12.5, 25 and 50 µmol/L) of parthenolide along with 200 µmol/L H2O2 or only 50 µmol/L parthenolide or 200 µmol/L H2O2 for 24h. Following treatment with higher concentrations of parthenolide (50 µmol/L), fewer HLE cells underwent H2O2-induced apoptosis, and cell viability was increased. Further, Western blot assay showed that the parthenolide treatment reduced the expression of caspase-3 and caspase-9, which are considered core apoptotic proteins, and decreased the levels of phosphorylated nuclear factor-κB (NF-κB), ERK1/2 [a member of the mitogen-activated protein kinase (MAPK) family], and Akt proteins in HLE cells. CONCLUSION Parthenolide may suppress H2O2-induced apoptosis in HLE cells by interfering with NF-κB, MAPKs, and Akt signaling. PMID:29375984

  6. Enhancing laser thermal-therapy using ultrasound-microbubbles and gold nanorods: In vitro investigation

    NASA Astrophysics Data System (ADS)

    Tarapacki, Christine; Kumaradas, Carl; Karshafian, Raffi

    2012-11-01

    Gold nanorods (GNR) in laser-induced thermal therapy can significantly increase light absorption, leading to a local temperature increase and causing irreversible cell damage. One of the key challenges in using GNR as a thermal therapy agent is to deliver a concentration of GNR to generate sufficient heat and cause cell death. In this study, ultrasound and microbubble induced sonoporation is used to enhance intracellular uptake of GNR and improve the therapeutic outcome of laserinduced thermal therapy. Acute myeloid leukemia (AML) cells in suspension (0.6 mL) were treated with ultrasound and microbubbles (USMB) at 1 MHz frequency, 16 microseconds pulse duration, 1 kHz pulse repetition frequency, 1 minute insonation time, varying acoustic pressures (0, 1.26 and 1.73 MPa) and 10 μL Definity microbubble agent with and without GNR (12 nm × 48 nm) at varying concentration (1.0×1010 to 2.5×1011 GNR/mL). The GNR were manufactured through wet chemical synthesis process and measured using Transmission Electron Microscopy (TEM) and Atomic Absorption Spectroscopy (AAS) for size and concentration respectively. Following ultrasound and microbubble treatment, cells were centrifuged to remove excess gold nanorods and treated in suspension with an 810 nm laser (Diomed 60 NIR) at 4 W for 5 minutes. A thermal camera (FLIR Thermovision A40) was positioned to monitor the sample temperature throughout laser treatment and cell viability was assessed using flow cytometry with propidium iodide. Cell viability of 18±2% was achieved with GNR+USMB (1.26 MPa) compared to 72±3% with GNR alone (12 hour incubation) and 99±0.2% with USMB (1.26 MPa) alone. With increasing GNR concentration during ultrasound and microbubble treatment, laser induced sample temperature increased and consequently cell viability decreased. Cell viability decreased from 92±1% at 1.0×1011 GNR/mL to 29±5% at 1.5×1011 GNR/mL concentration with corresponding maximum temperatures of 50°C and 54°C, respectively. The combined treatment of ultrasound-microbubble and gold nanorod laser induced thermal-therapy showed a synergistic enhancement of cell death in vitro. This study shows promise for an enhanced therapeutic effect with the combined treatment in vivo.

  7. N-Cadherin Maintains the Healthy Biology of Nucleus Pulposus Cells under High-Magnitude Compression.

    PubMed

    Wang, Zhenyu; Leng, Jiali; Zhao, Yuguang; Yu, Dehai; Xu, Feng; Song, Qingxu; Qu, Zhigang; Zhuang, Xinming; Liu, Yi

    2017-01-01

    Mechanical load can regulate disc nucleus pulposus (NP) biology in terms of cell viability, matrix homeostasis and cell phenotype. N-cadherin (N-CDH) is a molecular marker of NP cells. This study investigated the role of N-CDH in maintaining NP cell phenotype, NP matrix synthesis and NP cell viability under high-magnitude compression. Rat NP cells seeded on scaffolds were perfusion-cultured using a self-developed perfusion bioreactor for 5 days. NP cell biology in terms of cell apoptosis, matrix biosynthesis and cell phenotype was studied after the cells were subjected to different compressive magnitudes (low- and high-magnitudes: 2% and 20% compressive deformation, respectively). Non-loaded NP cells were used as controls. Lentivirus-mediated N-CDH overexpression was used to further investigate the role of N-CDH under high-magnitude compression. The 20% deformation compression condition significantly decreased N-CDH expression compared with the 2% deformation compression and control conditions. Meanwhile, 20% deformation compression increased the number of apoptotic NP cells, up-regulated the expression of Bax and cleaved-caspase-3 and down-regulated the expression of Bcl-2, matrix macromolecules (aggrecan and collagen II) and NP cell markers (glypican-3, CAXII and keratin-19) compared with 2% deformation compression. Additionally, N-CDH overexpression attenuated the effects of 20% deformation compression on NP cell biology in relation to the designated parameters. N-CDH helps to restore the cell viability, matrix biosynthesis and cellular phenotype of NP cells under high-magnitude compression. © 2017 The Author(s). Published by S. Karger AG, Basel.

  8. Mitochondrial Delivery of Doxorubicin Using MITO-Porter Kills Drug-Resistant Renal Cancer Cells via Mitochondrial Toxicity.

    PubMed

    Yamada, Yuma; Munechika, Reina; Kawamura, Eriko; Sakurai, Yu; Sato, Yusuke; Harashima, Hideyoshi

    2017-09-01

    Most anticancer drugs are intended to function in the nuclei of cancer cells. If an anticancer drug could be delivered to mitochondria, the source of cellular energy, this organelle would be destroyed, resulting in the arrest of the energy supply and the killing of the cancer cells. To achieve such an innovative strategy, a mitochondrial drug delivery system targeted to cancer cells will be required. We recently reported on the development of a MITO-Porter, a liposome for mitochondrial delivery. In this study, we validated the utility of such a cancer therapeutic strategy by delivering anticancer drugs directly to mitochondria. We succeeded in packaging doxorubicin (DOX) as a model cargo in MITO-Porter to produce a DOX-MITO-Porter. We evaluated cellular toxicity of OS-RC-2 cell, a type of DOX-resistant cancer cell, after delivering DOX to mitochondria using the MITO-Porter system. Cell viability was decreased by the DOX-MITO-Porter treatment, while cell viability was not decreased in the case of naked DOX and a conventional DOX liposomal formulation. We also found a relationship between cellular toxicity and mitochondrial toxicity. The use of a MITO-Porter system for mitochondrial delivery of a toxic agent represents a possible therapeutic strategy for treating drug-resistant cancers. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Fluorescent, Plasmonic, and Radiotherapeutic Properties of the 177Lu–Dendrimer-AuNP–Folate–Bombesin Nanoprobe Located Inside Cancer Cells

    PubMed Central

    Mendoza-Nava, Héctor; Ramírez, Flor de María; Ocampo-García, Blanca; Santos-Cuevas, Clara; Azorín-Vega, Erika; Jiménez-Mancilla, Nallely; Luna-Gutiérrez, Myrna; Isaac-Olivé, Keila

    2017-01-01

    The integration of fluorescence and plasmonic properties into one molecule is of importance in developing multifunctional imaging and therapy nanoprobes. The aim of this research was to evaluate the fluorescent properties and the plasmonic–photothermal, therapeutic, and radiotherapeutic potential of 177Lu–dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity (177Lu–DenAuNP–folate–bombesin) when it is internalized in T47D breast cancer cells. The intense near-Infrared (NIR) fluorescence emitted at 825 nm from the conjugate inside cells corroborated the usefulness of DenAuNP–folate–bombesin for optical imaging. After laser irradiation, the presence of the nanosystem in cells caused a significant increase in the temperature of the medium (46.8°C, compared to 39.1°C without DenAuNP–folate–bombesin, P < 0.05), resulting in a significant decrease in cell viability (down to 16.51% ± 1.52%) due to the 177Lu–DenAuNP–folate–bombesin plasmonic properties. After treatment with 177Lu–DenAuNP–folate–bombesin, the T47D cell viability decreased 90% because of the radiation-absorbed dose (63.16 ± 4.20 Gy) delivered inside the cells. The 177Lu–DenAuNP–folate–bombesin nanoprobe internalized in cancer cells exhibited properties suitable for optical imaging, plasmonic–photothermal therapy, and targeted radiotherapy. PMID:28654384

  10. Increase of Phosphatase and Tensin Homolog by Silymarin to Inhibit Human Pharynx Squamous Cancer

    PubMed Central

    Su, Chin-Hui; Chen, Li-Jen; Liao, Jyh Fei

    2013-01-01

    Abstract Silymarin is an active principle from the seeds of the milk thistle plant and is widely used as a hepatoprotective gent due to its antioxidant-like activity. In the present study, we evaluated the potential efficacy of silymarin against oral cancer and investigated its possible mechanism of action. Cell viability assay and western blotting analyses were used to identify silymarin-induced apoptotic cell death in human pharynx squamous cell carcinoma (FaDu) cells. The short interfering RNA (siRNA) is used to confirm the role of phosphatase and tensin homolog (PTEN) in silymarin-induced apoptosis. Treatment of FaDu cells with silymarin resulted in a significant decrease in cell viability (up to 70%). Silymarin inhibited the phosphorylation of Akt (over 10-fold) with an increase in expression of PTEN (five to sixfold). Consequently, the level of Bcl-2 expression was decreased five to sixfold and caspase 3 activated to induce apoptosis. Treatment with siRNA specific to PTEN gene diminished the action of silymarin. The results suggest that silymarin inhibits the Akt signaling pathway by increasing PTEN expression in FaDu cells and directly affects Bcl-2 family members. Also, we demonstrated the inhibitory activity of silymarin for oral cancer is related to cell survival. These mechanisms may in part explain the actions of silymarin and provide a rationale for the development of silymarin as an anticancer agent. PMID:23909904

  11. Evaluation of tellurium toxicity in transformed and non-transformed human colon cells.

    PubMed

    Vij, Puneet; Hardej, Diane

    2012-11-01

    Diphenyl ditelluride (DPDT) and tellurium tetrachloride (TeCl(4)) were evaluated for toxicity in transformed (HT-29, Caco-2) and non-transformed colon cells (CCD-18Co). Significant decreases in viability were observed with DPDT exposure in HT-29 (62.5-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM) and with TeCl(4) in HT-29 (31.25-1000 μM), Caco-2 (31.25-1000 μM) and CCD-18Co cells (500-1000 μM). Light microscopy confirmed viability analysis. Significant increases in caspase 3/7 and 9 activity were observed with DPDT in HT-29 (500-1000 μM) and CCD-18Co cells (1000 μM) indicating apoptosis. No significant increases in caspases were seen with TeCl(4) indicating necrosis. Apoptosis or necrosis was confirmed with fluorescent staining (FITC-Annexin, Hoechst 33342 and Ethidium Homodimer). Significant decreases in GSH/GSSG ratio were observed with DPDT in HT-29 (62.5-1000 μM), and CCD-18Co cells (1000 μM) and with TeCl(4) in HT-29 (62.5-1000 μM) and CCD-18Co cells (250-1000 μM). We concluded that cells treated with DPDT resulted in apoptosis and TeCl(4) treatment in necrosis. GSH/GSSG ratio shifts indicate oxidative mechanisms are involved. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter.

    PubMed

    Michael, S; Montag, M; Dott, W

    2013-12-01

    The objective of this study was to compare the toxicological effects of different source-related ambient PM10 samples in regard to their chemical composition. In this context we investigated airborne PM from different sites in Aachen, Germany. For the toxicological investigation human alveolar epithelial cells (A549) and murine macrophages (RAW264.7) were exposed from 0 to 96 h to increasing PM concentrations (0-100 μg/ml) followed by analyses of cell viability, pro-inflammatory and oxidative stress responses. The chemical analysis of these particles indicated the presence of 21 elements, water-soluble ions and PAHs. The toxicological investigations of the PM10 samples demonstrated a concentration- and time-dependent decrease in cell viability and an increase in pro-inflammatory and oxidative stress markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effects of chilling on protein synthesis in tomato suspension cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matadial, B.; Pauls, K.P.

    The effect of chilling on cell growth, cell viability, protein content and protein composition in suspension cultures of L. esculentum and L. hirsutum was investigated. Cell growth for both species was arrested at 2{degrees}C but when cultures were transferred to 25{degree}C cell growth resumed. There was no difference in viability between control and chilled cultures of L. esculentum, however, L. hirsutum control cultures exhibited larger amounts of Fluorescein Diacetate induced fluorescence than chilled cultures. {sup 35}S-methionine incorporation into proteins was 2.5-2 times higher in L. hirsutum than in L. esculentum. Quantitative and qualitative differences, in {sup 35}S-methionine labelled proteins, betweenmore » chilled and control cultures were observed by SDS-PAGE and fluorography. Protein content in chilled cultures decreased over time but then increased when cultures were transferred to 25{degrees}C.« less

  14. A link between lipid metabolism and epithelial-mesenchymal transition provides a target for colon cancer therapy

    PubMed Central

    Sánchez-Martínez, Ruth; Álvarez-Fernández, Mónica; Vargas, Teodoro; Molina, Susana; García, Belén; Herranz, Jesús; Moreno-Rubio, Juan; Reglero, Guillermo; Pérez-Moreno, Mirna; Feliu, Jaime; Malumbres, Marcos; de Molina, Ana Ramírez

    2015-01-01

    The alterations in carbohydrate metabolism that fuel tumor growth have been extensively studied. However, other metabolic pathways involved in malignant progression, demand further understanding. Here we describe a metabolic acyl-CoA synthetase/stearoyl-CoA desaturase ACSL/SCD network causing an epithelial-mesenchymal transition (EMT) program that promotes migration and invasion of colon cancer cells. The mesenchymal phenotype produced upon overexpression of these enzymes is reverted through reactivation of AMPK signaling. Furthermore, this network expression correlates with poorer clinical outcome of stage-II colon cancer patients. Finally, combined treatment with chemical inhibitors of ACSL/SCD selectively decreases cancer cell viability without reducing normal cells viability. Thus, ACSL/SCD network stimulates colon cancer progression through conferring increased energetic capacity and invasive and migratory properties to cancer cells, and might represent a new therapeutic opportunity for colon cancer treatment. PMID:26451612

  15. Protective effects of quercetin on nicotine induced oxidative stress in 'HepG2 cells'.

    PubMed

    Yarahmadi, Amir; Zal, Fatemeh; Bolouki, Ayeh

    2017-10-01

    Nicotine is a natural component of tobacco plants and is responsible for the addictive properties of tobacco. Nicotine has been recognized to result in oxidative stress by inducing the generation of reactive oxygen species (ROS). The purpose of this work was to estimate the hepatotoxicity effect of nicotine on viability and on antioxidant defense system in cultures of HepG2 cell line and the other hand, ameliorative effect of quercetin (Q) as an antioxidant was analyzed. Nicotine induced concentration dependent loss in HepG2 cell line viability. The results indicated that nicotine decreased activity of superoxide dismutase (SOD) and glutathione reductase (GR) and increased activities of catalase (CAT) and glutathione peroxidase (GPx) and glutathione (GSH) content in the HepG2 cells. Q significantly increased activity of SOD, GR and GSH content and decreased activity of GPX in nicotine + Q groups. Our data demonstrate that Q plays a protective role against the imbalance elicited by nicotine between the production of free radicals and antioxidant defense systems, and suggest that administration of this antioxidant may find clinical application where cellular damage is a consequence of ROS.

  16. Effects of PPARα inhibition in head and neck paraganglioma cells

    PubMed Central

    Florio, Rosalba; di Giacomo, Viviana; Di Marcantonio, Maria Carmela; Cristiano, Loredana; Basile, Mariangela; Verginelli, Fabio; Verzilli, Delfina; Ammazzalorso, Alessandra; Prasad, Sampath Chandra; Cataldi, Amelia; Sanna, Mario; Cimini, Annamaria; Mariani-Costantini, Renato; Mincione, Gabriella; Cama, Alessandro

    2017-01-01

    Head and neck paragangliomas (HNPGLs) are rare tumors that may cause important morbidity, because of their tendency to infiltrate the skull base. At present, surgery is the only therapeutic option, but radical removal may be difficult or impossible. Thus, effective targets and molecules for HNPGL treatment need to be identified. However, the lack of cellular models for this rare tumor hampers this task. PPARα receptor activation was reported in several tumors and this receptor appears to be a promising therapeutic target in different malignancies. Considering that the role of PPARα in HNPGLs was never studied before, we analyzed the potential of modulating PPARα in a unique model of HNPGL cells. We observed an intense immunoreactivity for PPARα in HNPGL tumors, suggesting that this receptor has an important role in HNPGL. A pronounced nuclear expression of PPARα was also confirmed in HNPGL-derived cells. The specific PPARα agonist WY14643 had no effect on HNPGL cell viability, whereas the specific PPARα antagonist GW6471 reduced HNPGL cell viability and growth by inducing cell cycle arrest and caspase-dependent apoptosis. GW6471 treatment was associated with a marked decrease of CDK4, cyclin D3 and cyclin B1 protein expression, along with an increased expression of p21 in HNPGL cells. Moreover, GW6471 drastically impaired clonogenic activity of HNPGL cells, with a less marked effect on cell migration. Notably, the effects of GW6471 on HNPGL cells were associated with the inhibition of the PI3K/GSK3β/β-catenin signaling pathway. In conclusion, the PPARα antagonist GW6471 reduces HNPGL cell viability, interfering with cell cycle and inducing apoptosis. The mechanisms affecting HNPGL cell viability involve repression of the PI3K/GSK3β/β-catenin pathway. Therefore, PPARα could represent a novel therapeutic target for HNPGL. PMID:28594934

  17. Regenerative and reparative effects of human chorion-derived stem cell conditioned medium on photo-aged epidermal cells

    PubMed Central

    Li, Qiankun; Chen, Yan; Ma, Kui; Zhao, Along; Zhang, Cuiping; Fu, Xiaobing

    2016-01-01

    ABSTRACT Epidermal cells are an important regenerative source for skin wound healing. Aged epidermal cells have a low ability to renew themselves and repair skin injury. Ultraviolet (UV) radiation, particularly UVB, can cause photo-aging of the skin by suppressing the viability of human epidermal cells. A chorion-derived stem cell conditioned medium (CDSC-CNM) is thought to have regenerative properties. This study aimed to determine the regenerative effects of CDSC-CNM on UVB-induced photo-aged epidermal cells. Epidermal cells were passaged four times and irradiated with quantitative UVB, and non-irradiated cells served as a control group. Cells were then treated with different concentrations of CDSC-CNM. Compared to the non-irradiated group, the proliferation rates and migration rates of UVB-induced photo-aged epidermal cells significantly decreased (p < 0.05) with increasing intracellular radical oxygen species (ROS) generation and DNA damage. After treatment with CDSC-CNM, photo-aged epidermal cells significantly improved their viability, and their ROS generation and DNA damage decreased. The secretory factors in CDSC-CNM, including epidermal growth factor (EGF), transforming growth factor-β (TGF-β), interleukin (IL)-6, and IL-8 and the related signaling pathway protein levels, increased compared to the control medium (CM). The potential regenerative and reparative effects of CDSC-CNM indicate that it may be a candidate material for the treatment of prematurely aged skin. The functions of the secretory factors and the mechanisms of CDSC-CNM therapy deserve further attention. PMID:27097375

  18. The effect of 648 nm diode laser irradiation on second messengers in senescent human keratinocytes

    NASA Astrophysics Data System (ADS)

    Hawkins Evans, D.; Abrahamse, H.

    2009-02-01

    Background/purpose: Stress induced premature senescence (SIPS) is defined as the long-term effect of subcytotoxic stress on proliferative cell types. Cells in SIPS display differences at the level of protein expression which affect energy metabolism, defense systems, redox potential, cell morphology and transduction pathways. This study aimed to determine the effect of laser irradiation on second messengers in senescent cells and to establish if that effect can be directly linked to changes in cellular function such as cell viability or proliferation. Materials and Methods: Human keratinocyte cell cultures were modified to induce premature senescence using repeated sub-lethal stresses of 200 uM H2O2 or 5% OH every day for four days with two days recovery. SIPS was confirmed by senescence-associated β-galactosidase staining. Control conditions included normal, repeated stress of 500 uM H2O2 to induce apoptosis and 200 uM PBN as an anti-oxidant or free radical scavenger. Cells were irradiated with 1.5 J/cm2 on day 1 and 4 using a 648 nm diode laser (3.3 mW/cm2) and cellular responses were measured 1 h post irradiation. The affect on second messengers was assessed by measuring cAMP, cGMP, nitric oxide and intracellular calcium (Ca2+) while functional changes were assessed using cell morphology, ATP cell viability, LDH membrane integrity and WST-1 cell proliferation. Results: Results indicate an increase in NO and a decrease in cGMP and Ca2+ in 200 uM H2O2 irradiated cells while PBN irradiated cells showed a decrease in cAMP and an increase in ATP viability and cell proliferation. Conclusion: Laser irradiation influences cell signaling which ultimately changes the biological function of senescent cells. If laser therapy can stimulate the biological function of senescent cells it may be beneficial to conditions such as immune senescence, skin ageing, muscle atrophy, premature ageing of arteries in patients with advanced heart disease, neurodegenerative disorders and chronic renal failure.

  19. Trimer procyanidin oligomers contribute to the protective effects of cinnamon extracts on pancreatic β-cells in vitro

    PubMed Central

    Sun, Peng; Wang, Ting; Chen, Lu; Yu, Bang-wei; Jia, Qi; Chen, Kai-xian; Fan, Hui-min; Li, Yi-ming; Wang, He-yao

    2016-01-01

    Aim: Cinnamon extracts rich in procyanidin oligomers have shown to improve pancreatic β-cell function in diabetic db/db mice. The aim of this study was to identify the active compounds in extracts from two species of cinnamon responsible for the pancreatic β-cell protection in vitro. Methods: Cinnamon extracts were prepared from Cinnamomum tamala (CT-E) and Cinnamomum cassia (CC-E). Six compounds procyanidin B2 (cpd1), (−)-epicatechin (cpd2), cinnamtannin B1 (cpd3), procyanidin C1 (cpd4), parameritannin A1 (cpd5) and cinnamtannin D1 (cpd6) were isolated from the extracts. INS-1 pancreatic β-cells were exposed to palmitic acid (PA) or H2O2 to induce lipotoxicity and oxidative stress. Cell viability and apoptosis as well as ROS levels were assessed. Glucose-stimulated insulin secretion was examined in PA-treated β-cells and murine islets. Results: CT-E, CC-E as well as the compounds, except cpd5, did not cause cytotoxicity in the β-cells up to the maximum dosage using in this experiment. CT-E and CC-E (12.5–50 μg/mL) dose-dependently increased cell viability in both PA- and H2O2-treated β-cells, and decreased ROS accumulation in H2O2-treated β-cells. CT-E caused more prominent β-cell protection than CC-E. Furthermore, CT-E (25 and 50 μg/mL) dose-dependently increased glucose-stimulated insulin secretion in PA-treated β-cells and murine islets, but CC-E had little effect. Among the 6 compounds, trimer procyanidins cpd3, cpd4 and cpd6 (12.5–50 μmol/L) dose-dependently increased the cell viability and decreased ROS accumulation in H2O2-treated β-cells. The trimer procyanidins also increased glucose-stimulated insulin secretion in PA-treated β-cells. Conclusion: Trimer procyanidins in the cinnamon extracts contribute to the pancreatic β-cell protection, thus to the anti-diabetic activity. PMID:27238208

  20. Folic acid protects against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1

    PubMed Central

    Ma, Yan; Zhang, Chen; Gao, Xiao-Bo; Luo, Hai-Yan; Chen, Yang; Li, Hui-hua; Ma, Xu; Lu, Cai-Ling

    2015-01-01

    As a nutritional factor, folic acid can prevent cardiac and neural defects during embryo development. Our previous study showed that arsenic impairs embryo development by down-regulating Dvr1/GDF1 expression in zebrafish. Here, we investigated whether folic acid could protect against arsenic-mediated embryo toxicity. We found that folic acid supplementation increases hatching and survival rates, decreases malformation rate and ameliorates abnormal cardiac and neural development of zebrafish embryos exposed to arsenite. Both real-time PCR analysis and whole in-mount hybridization showed that folic acid significantly rescued the decrease in Dvr1 expression caused by arsenite. Subsequently, our data demonstrated that arsenite significantly decreased cell viability and GDF1 mRNA and protein levels in HEK293ET cells, while folic acid reversed these effects. Folic acid attenuated the increase in subcellular reactive oxygen species (ROS) levels and oxidative adaptor p66Shc protein expression in parallel with the changes in GDF1 expression and cell viability. P66Shc knockdown significantly inhibited the production of ROS and the down-regulation of GDF1 induced by arsenite. Our data demonstrated that folic acid supplementation protected against arsenic-mediated embryo toxicity by up-regulating the expression of Dvr1/GDF1, and folic acid enhanced the expression of GDF1 by decreasing p66Shc expression and subcellular ROS levels. PMID:26537450

  1. Anticancer effects of β-elemene with hyperthermia in lung cancer cells

    PubMed Central

    Wu, Zhibing; Wang, Ting; Zhang, Yanmei; Zheng, Zhishuang; Yu, Shuhuan; Jing, Saisai; Chen, Sumei; Jiang, Hao; Ma, Shenglin

    2017-01-01

    β-elemene is a novel, plant-derived anticancer drug, which has been used to target multiple solid tumor types. Hyperthermia is an adjuvant therapeutic modality to treat cancer. However, the underlying mechanisms associated with the efficacy of these two treatments are largely unknown. The aim of the present study was to evaluate the effects of β-elemene combined with hyperthermia in lung cancer cell lines. An MTT assay was used to determine cell viability. The cell cycle and apoptosis were analyzed using flow cytometry. The morphology of cells during apoptosis was determined using a transmission electron microscope. The expression levels of P21, survivin, caspase-9, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) mRNA were detected using quantitative polymerase chain reaction. β-elemene with hyperthermia treatment significantly inhibited the viability and increased the apoptosis rate of A549 cells compared with β-elemene treatment alone (P<0.01), and significantly decreased the proportion of cells in S phase compared with the control (P<0.01). Morphological observation using transmission electron microscopy indicated cross-sectional features of apoptosis: Chromatin condensation, reduced integrity of the plasma membrane, increased cellular granularity, nuclear collapse and the formation of apoptotic bodies. β-elemene with hyperthermia treatment significantly promoted P21 and Bax mRNA expression (P<0.01) and significantly decreased caspase-9, Bcl-2 and survivin mRNA expression (P<0.01) in A549 cells. In conclusion, β-elemene with hyperthermia has a significant inhibitory effect on A549 cells. This occurs through reducing S phase and inducing apoptosis, via an increase in P21 and Bax expression and a decrease in caspase-9, Bcl-2 and survivin expression. PMID:28588670

  2. Zurampic Protects Pancreatic β-Cells from High Uric Acid Induced-Damage by Inhibiting URAT1 and Inactivating the ROS/AMPK/ERK Pathways.

    PubMed

    Xin, Ying; Wang, Kun; Jia, Zhaotong; Xu, Tao; Xu, Qiang; Zhang, Chao; Liu, Jia; Chen, Rui; Du, Zhongcai; Sun, Jianjing

    2018-05-25

    Zurampic is a US FDA approved drug for treatment of gout. However, the influence of Zurampic on pancreatic β-cells remains unclear. The study aimed to evaluate the effects of Zurampic on high uric acid-induced damage of pancreatic β-cells and the possible underlying mechanisms. INS-1 cells and primary rat islets were stimulated with Zurampic and the mRNA expression of urate transporter 1 (URAT1) was assessed by qRT-PCR. Cells were stimulated with uric acid or uric acid plus Zurampic, and cell viability, apoptosis and ROS release were measured by MTT and flow cytometry assays. Western blot analysis was performed to evaluate the expressions of active Caspase-3 and phosphorylation of AMPK and ERK. Finally, cells were stimulated with uric acid or uric acid plus Zurampic at low/high level of glucose (2.8/16.7 mM glucose), and the insulin release was assessed by ELISA. mRNA expression of URAT1 was decreased by Zurampic in a dose-dependent manner. Uric acid decreased cell viability, promoted cell apoptosis and induced ROS release. Uric acid-induced alterations could be reversed by Zurampic. Activation of Caspase-3 and phosphorylation of AMPK and ERK were enhanced by uric acid, and the enhancements were reversed by Zurampic. Decreased phosphorylation of AMPK and ERK, induced by Zurampic, was further reduced by adding inhibitor of AMPK or ERK. Besides, uric acid inhibited high glucose-induced insulin secretion and the inhibition was rescued by Zurampic. Zurampic has a protective effect on pancreatic β-cells against uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  3. Endothelial cell behaviour on gas-plasma-treated PLA surfaces: the roles of surface chemistry and roughness.

    PubMed

    Shah, Amita; Shah, Sarita; Mani, Gopinath; Wenke, Joseph; Agrawal, Mauli

    2011-04-01

    Glow-discharge gas-plasma (GP) treatment has been shown to induce surface modifications such that cell adhesion and growth are enhanced. However, it is not known which gas used in GP treatment is optimal for endothelial cell function. Polylactic acid (PLA) films treated oxygen, argon, or nitrogen GP were characterized using contact angles, scanning electron microscopy, atomic force microscopy, optical profilometry, and x-ray photoelectron spectroscopy. All three GP treatments decreased the carbon atomic concentration and surface roughness and increased the oxygen atomic concentration. Human umbilical vein endothelial cells were cultured on the PLA films for up to 7 days. Based on proliferation and live/dead assays, surface chemistry was shown to have the greatest effect on the attachment, proliferation, and viability of these cells, while roughness did not have a significant influence. Of the different gases, endothelial cell viability, attachment and proliferation were most significantly increased on PLA surfaces treated with oxygen and argon gas plasma. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells

    PubMed Central

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X.

    2012-01-01

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC. PMID:23443099

  5. Impact of cyanidin-3-glucoside on glycated LDL-induced NADPH oxidase activation, mitochondrial dysfunction and cell viability in cultured vascular endothelial cells.

    PubMed

    Xie, Xueping; Zhao, Ruozhi; Shen, Garry X

    2012-11-27

    Elevated levels of glycated low density lipoprotein (glyLDL) are frequently detected in diabetic patients. Previous studies demonstrated that glyLDL increased the production of reactive oxygen species (ROS), activated NADPH oxidase (NOX) and suppressed mitochondrial electron transport chain (mETC) enzyme activities in vascular endothelial cells (EC). The present study examined the effects of cyanidin-3-glucoside (C3G), a type of anthocyanin abundant in dark-skinned berries, on glyLDL-induced ROS production, NOX activation and mETC enzyme activity in porcine aortic EC (PAEC). Co-treatment of C3G prevented glyLDL-induced upregulation of NOX4 and intracellular superoxide production in EC. C3G normalized glyLDL-induced inhibition on the enzyme activities of mETC Complex I and III, as well as the abundances of NADH dehydrogenase 1 in Complex I and cytochrome b in Complex III in EC. Blocking antibody for the receptor of advanced glycation end products (RAGE) prevented glyLDL-induced changes in NOX and mETC enzymes. Combination of C3G and RAGE antibody did not significantly enhance glyLDL-induced inhibition of NOX or mETC enzymes. C3G reduced glyLDL-induced RAGE expression with the presence of RAGE antibody. C3G prevented prolonged incubation with the glyLDL-induced decrease in cell viability and the imbalance between key regulators for cell viability (cleaved caspase 3 and B cell Lyphoma-2) in EC. The findings suggest that RAGE plays an important role in glyLDL-induced oxidative stress in vascular EC. C3G may prevent glyLDL-induced NOX activation, the impairment of mETC enzymes and cell viability in cultured vascular EC.

  6. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cellsmore » by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.« less

  7. Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanzel, Cecilia Eliana; Verstraeten, Sandra Viviana

    2009-04-01

    Thallium (Tl) is a highly toxic metal though yet its mechanisms are poorly understood. Previously, we demonstrated that rat pheochromocytoma (PC12) cells exposure to thallous (Tl(I)) or thallic (Tl(III)) cations leads to mitochondrial damage and reduced cell viability. In the present work we comparatively characterized the possible pathways involved in Tl(I)- and Tl(III)- (10-100 {mu}M) mediated decrease in PC12 cells viability. We observed that these cations do not cause cell necrosis but significantly increased the number of cells with apoptotic features. Both cations lead to Bax oligomerization and caused apoptosis inducing factor (AIF), endonuclease G (Endo G), and cytochrome cmore » release from mitochondria, but they did not activate caspase dependent DNAse (CAD). Tl(I)- and Tl(III)-dependent caspases 9 and 3 activation followed similar kinetics, with maximal effects at 18 h of incubation. In addition, Tl(I) promoted phosphatidylserine (PS) exposure. Tl(III) induced 2- and 18-fold increase in Fas content and caspase 8 activity, respectively. Together, experimental results show that Tl(I) and Tl(III) induce PC12 cells apoptosis, although differential pathways are involved. While Tl(I)-mediated cell apoptosis was mainly associated with mitochondrial damage, Tl(III) showed a mixed effect triggering both the intrinsic and extrinsic pathways of apoptosis. These findings contribute to a better understanding of the mechanisms underlying Tl-induced loss of cell viability in PC12 cells.« less

  8. The Role of Na+/K+-ATPase during Chick Skeletal Myogenesis

    PubMed Central

    Oliveira, Taissa Neustadt; Possidonio, Ana Claudia; Soares, Carolina Pontes; Ayres, Rodrigo; Costa, Manoel Luis; Quintas, Luis Eduardo Menezes; Mermelstein, Cláudia

    2015-01-01

    The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase. PMID:25775465

  9. The role of Na+/K+-ATPase during chick skeletal myogenesis.

    PubMed

    Oliveira, Taissa Neustadt; Possidonio, Ana Claudia; Soares, Carolina Pontes; Ayres, Rodrigo; Costa, Manoel Luis; Quintas, Luis Eduardo Menezes; Mermelstein, Cláudia

    2015-01-01

    The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase.

  10. MALAT1 affects ovarian cancer cell behavior and patient survival

    PubMed Central

    Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong

    2018-01-01

    Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187

  11. EphA2 Targeted Chemotherapy Using an Antibody Drug Conjugate in Endometrial Carcinoma

    PubMed Central

    Lee, Jeong-Won; Stone, Rebecca L.; Lee, Sun Joo; Nam, Eun Ji; Roh, Ju-Won; Nick, Alpa M.; Han, Hee-Dong; Shahzad, Mian M.K.; Kim, Hye-Sun; Mangala, Lingegowda S.; Jennings, Nicholas B.; Mao, Shenlan; Gooya, John; Jackson, Dowdy; Coleman, Robert L.; Sood, Anil K.

    2013-01-01

    Purpose EphA2 overexpression is frequently observed in endometrial cancers, and is predictive of poor clinical outcome. Here, we utilize an antibody drug conjugate (MEDI-547) composed of a fully human monoclonal antibody against both human and murine EphA2 (1C1) and the tubulin polymerization inhibitor, monomethylauristatin F (MMAF). Experimental design EphA2 expression was examined in endometrial cancer cell lines by Western Blot. Specificity of MEDI-547 was examined by antibody degradation and internalization assays. Viability and apoptosis were investigated in endometrial cancer cell lines and orthotopic tumor models. Results EphA2 was expressed in the Hec-1A and Ishikawa cells, but was absent in the SPEC-2 cells. Antibody degradation and internalization assays showed that the antibody drug conjugate decreased EphA2 protein levels and was internalized in EphA2 positive cells (Hec-1A and Ishikawa). Moreover, in vitro cytotoxicity and apoptosis assays demonstrated that the antibody drug conjugate decreased viability and increased apoptosis of Hec-1A and Ishikawa cells. In vivo therapy experiments in mouse orthotopic models with this antibody drug conjugate resulted in 86 to 88% growth inhibition (P < 0.001) in the orthotopic Hec-1A and Ishikawa models compared to controls. Moreover, the mice treated with this antibody drug conjugate had a lower incidence of distant metastasis compared with controls. The anti-tumor effects of the therapy were related to decreased proliferation and increased apoptosis of tumor and associated endothelial cells. Conclusions The preclinical data for endometrial cancer treatment using MEDI-547 demonstrate substantial anti-tumor activity. PMID:20388851

  12. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts.

    PubMed

    Fernandes, Rafael O; Bonetto, Jéssica H P; Baregzay, Boran; de Castro, Alexandre L; Puukila, Stephanie; Forsyth, Heidi; Schenkel, Paulo C; Llesuy, Susana F; Brum, Ilma Simoni; Araujo, Alex Sander R; Khaper, Neelam; Belló-Klein, Adriane

    2015-03-01

    Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.

  13. Effects of carprofen and dexamethasone on canine chondrocytes in a three-dimensional culture model of osteoarthritis.

    PubMed

    Dvorak, Laura D; Cook, James L; Kreeger, John M; Kuroki, Keiichi; Tomlinson, James L

    2002-10-01

    To determine effects of carprofen and dexamethasone on chondrocytes in a culture model of osteoarthritis (OA). Chondrocytes isolated from articular cartilage of the humeral head of 5 adult dogs. Chondrocytes were harvested, cultured and subcultured in monolayer, and then cultured in a 3-dimensional (3-D) medium. Cells from each dog were distributed into 6 groups with differing content of liquid medium for each 3-D construct (agarose [AG], AG plus interleukin [IL]-1beta, AG plus carprofen [4 microg/mL], AG plus dexamethasone [1 mg/mL], AG plus IL-1beta [20 ng/mL] plus carprofen [4 microg/mL], and AG plus IL-1beta (20 ng/mL) plus dexamethasone (1 mg/mL). On days 3, 6, 12, and 20 of culture, samples from all groups were collected. Liquid media were assayed for glycosaminoglycan, prostaglandin (PG)E2, matrix metalloprotease (MMP)-3, and MMP-13 concentrations. All 3-D constructs were evaluated for viability, cell morphology, proteoglycan staining, and collagen type-II concentration. Total glycosaminoglycan content in each 3-D construct was quantitated by spectrophotometric assay. Addition of IL-1beta caused a significant loss of cell viability and matrix production. Addition of carprofen or dexamethasone caused significant decreases in PGE2 in the liquid media, and each was minimally effective in protecting chondrocytes against negative effects of IL-1beta. Human recombinant IL-1beta resulted in loss of cell viability, alterations in extracellular matrix components, and production of PG and MMP Carprofen and dexamethasone had little effect on cell and matrix variables but did decrease PGE2 concentrations and primarily affected the inflammatory pathway of osteoarthritis.

  14. Long-term stability of dental adhesive incorporated by boron nitride nanotubes.

    PubMed

    Degrazia, Felipe Weidenbach; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-03-01

    The aim of this study was to evaluate physicochemical properties, long-term microtensile bond strength and cytotoxicity of methacrylate-based adhesive containing boron nitride nanotubes (BNNTs) as fillers. A dental adhesive was formulated using BisGMA/HEMA, 66/33wt% (control). Inorganic BNNT fillers were incorporated into the adhesive at different concentrations (0.05, 0.075, 0.1 and 0.15wt%). Analyses of degree of conversion (DC), polymerization rate [Rp.(s -1 )], contact angle (CA) on dentin, after 24h and 6 months microtensile bond strength (μTBS-24h and 6 months) were assessed. Cytotoxicity was performed through viability of fibroblast cells (%) by sulforhodamine B (SRB) colorimetry. DC and max. polymerization rate increased (p<0.05) after incorporating 0.075 and 0.1wt% BNNT. The contact angle on dentin increased (p<0.05) after incorporating 0.15wt% BNNT. The μTBS-24h showed no changes (p>0.05) after incorporating up to 0.15wt% BNNT comparing to control. After 6 months, μTBS decreased (p<0.05) for control and 0.15wt% BNNT and BNNT groups up to 0.15wt% showed higher μTBS than control (p<0.05). No difference of fibroblast growth was found among adhesives (p>0.05) and up to 19% of cell viability was found comparing 0.05wt% BNNT to positive control group (100%). Incorporating boron nitride nanotubes up to 0.1wt% into dental adhesive increased the long-term stability to dentin without decreasing viability of fibroblast cell growth. Thus, the use of BNNTs as filler may decrease failure rate of current dentinal adhesives. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model.

    PubMed

    Esser, Alison K; Schmieder, Anne H; Ross, Michael H; Xiang, Jingyu; Su, Xinming; Cui, Grace; Zhang, Huiying; Yang, Xiaoxia; Allen, John S; Williams, Todd; Wickline, Samuel A; Pan, Dipanjan; Lanza, Gregory M; Weilbaecher, Katherine N

    2016-01-01

    Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Effect of various concentrations of antibiotics on osteogenic cell viability and activity.

    PubMed

    Rathbone, Christopher R; Cross, Jessica D; Brown, Kate V; Murray, Clinton K; Wenke, Joseph C

    2011-07-01

    Infection is a common complication of open fractures. Systemic antibiotics often cause adverse events before eradication of infected bone occurs. The local delivery of antibiotics and the use of implants that deliver both growth factors and antimicrobials are ways to circumvent systemic toxicity while decreasing infection and to reach extremely high levels required to treat bacterial biofilms. When choosing an antibiotic for a local delivery system, one should consider the effect that the antibiotic has on cell viability and osteogenic activity. To address this concern, osteoblasts were treated with 21 different antibiotics over 8 concentrations from 0 to 5000 µg/ml. Osteoblast deoxyribonucleic acid content and alkaline phosphatase activity (ALP) were measured to determine cell number and osteogenic activity, respectively. Antibiotics that caused the greatest decrement include rifampin, minocycline, doxycycline, nafcillin, penicillin, ciprofloxacin, colistin methanesulfonate, and gentamicin; their cell number and ALP were significantly less than control at drug concentrations ≤ 200 µg/ml. Conversely, amikacin, tobramycin, and vancomycin were the least cytotoxic and did not appreciably affect cell number and ALP until very high concentrations were used. This comprehensive evaluation of numerous antibiotics' effects on osteoblast viability and activity will enable clinicians and researchers to choose the optimal antibiotic for treatment of infection and maintenance of healthy host bone. Copyright © 2011 Orthopaedic Research Society.

  17. Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms

    NASA Astrophysics Data System (ADS)

    Sun, Dan; Cheng, Shaoan; Zhang, Fang; Logan, Bruce E.

    2017-07-01

    Understanding how current densities affect electrogenic biofilm activity is important for wastewater treatment as current densities can substantially decrease at COD concentrations greater than those suitable for discharge to the environment. We examined the biofilm's response, in terms of viability and enzymatic activity, to different current densities using microbial electrolysis cells with a lower (0.7 V) or higher (0.9 V) added voltage to alter current production. Viability was assessed using florescent dyes, with dead cells identified on the basis of dye penetration due to a compromised cell outer-membrane (red), and live cells (intact membrane) fluorescing green. Biofilms operated with 0.7 V produced 2.4 ± 0.2 A m-2, and had an inactive layer near the electrode and a viable layer at the biofilm-solution interface. The lack of cell activity near the electrode surface was confirmed by using an additional dye that fluoresces only with enzymatic activity. Adding 0.9 V increased the current by 61%, and resulted in a single, more homogeneous and active biofilm layer. Switching biofilms between these two voltages produced outcomes associated with the new current rather than the previous biofilm conditions. These findings suggest that maintaining higher current densities will be needed to ensure long-term viability electrogenic biofilms.

  18. Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways.

    PubMed

    Gharibyan, Anna L; Zamotin, Vladimir; Yanamandra, Kiran; Moskaleva, Olesya S; Margulis, Boris A; Kostanyan, Irina A; Morozova-Roche, Ludmilla A

    2007-02-02

    Among the newly discovered amyloid properties, its cytotoxicity plays a key role. Lysozyme is a ubiquitous protein involved in systemic amyloidoses in vivo and forming amyloid under destabilising conditions in vitro. We characterized both oligomers and fibrils of hen lysozyme by atomic force microscopy and demonstrated their dose (5-50 microM) and time-dependent (6-48 h) effect on neuroblastoma SH-SY5Y cell viability. We revealed that fibrils induce a decrease of cell viability after 6 h due to membrane damage shown by inhibition of WST-1 reduction, early lactate dehydrogenase release, and propidium iodide intake; by contrast, oligomers activate caspases after 6 h but cause the cell viability to decline only after 48 h, as shown by fluorescent-labelled annexin V binding to externalized phosphatidylserine, propidium iodide DNA staining, lactate dehydrogenase release, and by typical apoptotic shrinking of cells. We conclude that oligomers induce apoptosis-like cell death, while the fibrils lead to necrosis-like death. As polymorphism is a common property of an amyloid, we demonstrated that it is not a single uniform species but rather a continuum of cross-beta-sheet-containing amyloids that are cytotoxic. An abundance of lysozyme highlights a universal feature of this phenomenon, indicating that amyloid toxicity should be assessed in all clinical applications involving proteinaceous materials.

  19. Biased Type 1 Cannabinoid Receptor Signaling Influences Neuronal Viability in a Cell Culture Model of Huntington Disease.

    PubMed

    Laprairie, Robert B; Bagher, Amina M; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2016-03-01

    Huntington disease (HD) is an inherited, autosomal dominant, neurodegenerative disorder with limited treatment options. Prior to motor symptom onset or neuronal cell loss in HD, levels of the type 1 cannabinoid receptor (CB1) decrease in the basal ganglia. Decreasing CB1 levels are strongly correlated with chorea and cognitive deficit. CB1 agonists are functionally selective (biased) for divergent signaling pathways. In this study, six cannabinoids were tested for signaling bias in in vitro models of medium spiny projection neurons expressing wild-type (STHdh(Q7/Q7)) or mutant huntingtin protein (STHdh(Q111/Q111)). Signaling bias was assessed using the Black and Leff operational model. Relative activity [ΔlogR (τ/KA)] and system bias (ΔΔlogR) were calculated relative to the reference compound WIN55,212-2 for Gαi/o, Gαs, Gαq, Gβγ, and β-arrestin1 signaling following treatment with 2-arachidonoylglycerol (2-AG), anandamide (AEA), CP55,940, Δ(9)-tetrahydrocannabinol (THC), cannabidiol (CBD), and THC+CBD (1:1), and compared between wild-type and HD cells. The Emax of Gαi/o-dependent extracellular signal-regulated kinase (ERK) signaling was 50% lower in HD cells compared with wild-type cells. 2-AG and AEA displayed Gαi/o/Gβγ bias and normalized CB1 protein levels and improved cell viability, whereas CP55,940 and THC displayed β-arrestin1 bias and reduced CB1 protein levels and cell viability in HD cells. CBD was not a CB1 agonist but inhibited THC-dependent signaling (THC+CBD). Therefore, enhancing Gαi/o-biased endocannabinoid signaling may be therapeutically beneficial in HD. In contrast, cannabinoids that are β-arrestin-biased--such as THC found at high levels in modern varieties of marijuana--may be detrimental to CB1 signaling, particularly in HD where CB1 levels are already reduced. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Per- and polyfluoroalkyl substances impact human spermatogenesis in a stem-cell-derived model.

    PubMed

    Steves, Alyse N; Turry, Adam; Gill, Brittany; Clarkson-Townsend, Danielle; Bradner, Joshua M; Bachli, Ian; Caudle, W Michael; Miller, Gary W; Chan, Anthony W S; Easley, Charles A

    2018-06-18

    Per- and polyfluoroalkyl substances (PFASs) represent a highly ubiquitous group of synthetic chemicals used in products ranging from water and oil repellents and lubricants to firefighting foam. These substances can enter and accumulate in multiple tissue matrices in up to 100% of people assessed. Though animal models strongly identify these compounds as male reproductive toxicants, with exposed rodents experiencing declines in sperm count, alterations in hormones, and DNA damage in spermatids, among other adverse outcomes, human studies report conflicting conclusions as to the reproductive toxicity of these chemicals. Using an innovative, human stem-cell-based model of spermatogenesis, we assessed the effects of the PFASs perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and a mixture of PFOS, PFOA, and PFNA for their impacts on human spermatogenesis in vitro under conditions relevant to the general and occupationally exposed populations. Here, we show that PFOS, PFOA, PFNA, and a mixture of PFOS, PFOA, and PFNA do not decrease in vitro germ cell viability, consistent with reports from human studies. These compounds do not affect mitochondrial membrane potential or increase reactive oxygen species generation, and they do not decrease cell viability of spermatogonia, primary spermatocytes, secondary spermatocytes, or spermatids in vitro under the conditions examined. However, exposure to PFOS, PFOA, and PFNA reduces expression of markers for spermatogonia and primary spermatocytes. While not having direct effects on germ cell viability, these effects suggest the potential for long-term impacts on male fertility through the exhaustion of the spermatogonial stem cell pool and abnormalities in primary spermatocytes. CDC: Centers for Disease Control; DMSO: dimethyl sulfoxide; GHR: growth hormone receptor; hESCs: human embryonic stem cells; PFASs: per- and polyfluoroalkyl substances; PFCs: perfluorinated compounds; PFNA: perfluorononanoic acid; PFOS: perfluorooctanesulfonic acid; PFOA: perfluorooctanoic acid; PLZF: promyelocytic leukemia zinc finger; ROS: reactive oxygen species; HILI: RNA-mediated gene silencing 2; SSC: spermatogonial stem cell.

  1. Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3)

    PubMed Central

    Zhang, Xi-Feng; Huang, Feng-Hua; Zhang, Guo-Liang; Bai, Ding-Ping; Massimo, De Felici; Huang, Yi-Fan; Gurunathan, Sangiliyandi

    2017-01-01

    Background Recently, there has been much interest in the field of nanomedicine to improve prevention, diagnosis, and treatment. Combination therapy seems to be most effective when two different molecules that work by different mechanisms are combined at low dose, thereby decreasing the possibility of drug resistance and occurrence of unbearable side effects. Based on this consideration, the study was designed to investigate the combination effect of reduced graphene oxide-silver nanoparticles (rGO-AgNPs) and trichostatin A (TSA) in human ovarian cancer cells (SKOV3). Methods The rGO-AgNPs were synthesized using a biomolecule called lycopene, and the resultant product was characterized by various analytical techniques. The combination effect of rGO-Ag and TSA was investigated in SKOV3 cells using various cellular assays such as cell viability, cytotoxicity, and immunofluorescence analysis. Results AgNPs were uniformly distributed on the surface of graphene sheet with an average size between 10 and 50 nm. rGO-Ag and TSA were found to inhibit cell viability in a dose-dependent manner. The combination of rGO-Ag and TSA at low concentration showed a significant effect on cell viability, and increased cytotoxicity by increasing the level of malondialdehyde and decreasing the level of glutathione, and also causing mitochondrial dysfunction. Furthermore, the combination of rGO-Ag and TSA had a more pronounced effect on DNA fragmentation and double-strand breaks, and eventually induced apoptosis. Conclusion This study is the first to report that the combination of rGO-Ag and TSA can cause potential cytotoxicity and also induce significantly greater cell death compared to either rGO-Ag alone or TSA alone in SKOV3 cells by various mechanisms including reactive oxygen species generation, mitochondrial dysfunction, and DNA damage. Therefore, this combination chemotherapy could be possibly used in advanced cancers that are not suitable for radiation therapy or surgical treatment and facilitate overcoming tumor resistance and disease progression. PMID:29075115

  2. Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway.

    PubMed

    Zhu, Ping-Ya; Yin, Wei-Han; Wang, Meng-Ran; Dang, Yong-Yan; Ye, Xi-Yun

    2015-07-01

    Tyrosinase (TYR) is the key enzyme controlling the production of melanin. Very few papers have reported that andrographolide can inhibit melanin content. To investigate the effects of andrographolide on melanin synthesis. Cell viability, melanin content, TYR activity, transcriptional and protein expression levels of TYR family and other kinds of proteins involved in melanogenesis were measured after the treatments of andrographolide. It was found that andrographolide decreased melanin content, TYR activity and transcriptional and protein expression of TYR family and microphthalmia-associated transcription factor (MITF) in B16F10 melanoma cells. Data showed andrographolide also decreased melanin content and TYR content in ultraviolet B (UVB) irradiation induced brown guinea pigs. Moreover, we found that melanin content and TYR activity were effectively inhibited in Human Epidermis Melanocyte (HEM) treated with andrographolide at the medium concentrations without apparent effect on cell viability. Results in experiments treated with MG-132 or cycloheximide (CHX) showed that andrographolide lowered the content of β-catenin in cell nucleus resulting from accelerating the degradation of β-catenin. Phosphorylation of glycogen synthase kinase 3β (GSK3β) and Akt decreased simultaneously. 6-Bromoindirubin-3'-oxime (BIO, inhibitor of GSK3β) and insulin-like growth factors-1 (IGF-1, activator of Akt) could reverse the decline of β-catenin in B16F10 cells induced by andrographolide. These results demonstrate that andrographolide can effectively suppress melanin content and TYR activity in B16F10 cells, HEM cells and UVB-induced brown guinea pig skin by decreasing phosphorylation of GSK3β dependent on Akt, promoting the degradation of β-catenin, inhibiting β-catenin into the nucleus and decreasing the expression of MITF and TYR family. Data indicate that andrographolide may be a potential whiting agent which can have great market in cosmetics and in clinical such as curing hyperpigmentation disorders. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA) Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231

    PubMed Central

    Mansara, Prakash P.; Deshpande, Rashmi A.; Vaidya, Milind M.; Kaul-Ghanekar, Ruchika

    2015-01-01

    Omega 3 (n3) and Omega 6 (n6) polyunsaturated fatty acids (PUFAs) have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA) FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs) in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10) FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A). Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1) decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer. PMID:26325577

  4. Effects of saturated palmitic acid and omega-3 polyunsaturated fatty acids on Sertoli cell apoptosis.

    PubMed

    Hu, Xuechun; Ge, Xie; Liang, Wei; Shao, Yong; Jing, Jun; Wang, Cencen; Zeng, Rong; Yao, Bing

    2018-05-25

    Obesity is believed to negatively affect male semen quality and is accompanied by dysregulation of free fatty acid (FFA) metabolism in plasma. However, the implication of dysregulated FFA on semen quality and the involvement of Sertoli cells remain unclear. In the present study, we report obesity decreased Sertoli cell viability through dysregulated FFAs. We observed an increased rate of apoptosis in Sertoli cells, accompanied with elevated FFA levels, in the testes of obese mice that were provided a high-fat diet (HFD). Moreover, the levels of reactive oxygen species were elevated. Furthermore, we demonstrated by in vitro assays that saturated palmitic acid (PA), which is the most common saturated FFA in plasma, led to decreased cell viability of TM4 Sertoli cells in a time- and dose-dependent manner. A similar finding was noted in primary mouse Sertoli cells. In contrast to saturated FFA, omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) protected Sertoli cells from PA-induced lipotoxicity at the physiologically relevant levels. These results indicated that the lipotoxicity of saturated fatty acids might be the cause of obesity-induced Sertoli cell apoptosis, which leads to decreased semen quality. In addition, ω-3 PUFAs could be classified as protective FFAs. FFA: free fatty acid; HFD: high-fat diet; SD: standard diet; PA: palmitic acid; PUFA: polyunsaturated fatty acid; AI: apoptotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; ROS: reactive oxygen species; HE: Hematoxylin and eosin; WT1: Wilm Tumor 1; NAFLD: non- alcoholic fatty liver disease; DCFH-DA: 2', 7' dichlorofluorescin diacetate; 36B4: acidic ribosomal phosphoprotein P0; SD: standard deviation; EPA: eicosapentaenoic acid; PI: propidium iodide; DHA: docosahexenoic acid.

  5. Effect of N-acetyl cysteine on orthodontic primers cytotoxicity.

    PubMed

    D'Antò, Vincenzo; Spagnuolo, Gianrico; Schweikl, Helmut; Rengo, Sandro; Ambrosio, Luigi; Martina, Roberto; Valletta, Rosa

    2011-02-01

    The aims of this study were to evaluate the cytotoxicity of four orthodontic primers, including two hydrophilic and two hydrophobic materials, and to investigate the role of the reactive oxygen species (ROS) in induced cell damage. Moreover, the effects of the anti-oxidant N-acetyl cysteine (NAC) on primers toxicity was analyzed. Human gingival fibroblasts (HGF) were exposed to different concentrations of primers (0-0.25 mg/ml) in the presence or absence of NAC, and the cytotoxicity was assessed by the MTT assay, while cell death was quantified by flow cytometry after propidium iodide staining. The increase in the induced ROS levels was detected by flow cytometry measuring the fluorescence of the oxidation-sensitive dye 2',7'-dichlorofluorescein diacetate (DCFH-DA). All materials decreased cell viability in a dose-related manner after a 24 h exposure period. Cytotoxicity of orthodontic primers based on concentrations which caused a 50% decrease in cell viability (TC₅₀) in HGF was ranked as follows (median values): Eagle Fluorsure (0.078 mg/ml)>Transbond XT (0.081 mg/ml)>Transbond MIP (0.128 mg/ml)>Ortho solo (0.130 mg/ml). Moreover, in HGF cells, all materials induced a dose-dependent increase in ROS levels compared to untreated cells. Incubation of HGF with NAC significantly reduced ROS production and decreased the cell damage and cytotoxicity caused by all materials tested (p<0.001). Our results suggested that hydrophilic primers were less cytotoxic than hydrophobic materials. Moreover, we demonstrated a major role of ROS in the induction of cell death since the antioxidant N-acetyl cysteine was able to prevent cell damage induced by all materials tested. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Microfluidic guillotine for single-cell wound repair studies

    NASA Astrophysics Data System (ADS)

    Blauch, Lucas R.; Gai, Ya; Khor, Jian Wei; Sood, Pranidhi; Marshall, Wallace F.; Tang, Sindy K. Y.

    2017-07-01

    Wound repair is a key feature distinguishing living from nonliving matter. Single cells are increasingly recognized to be capable of healing wounds. The lack of reproducible, high-throughput wounding methods has hindered single-cell wound repair studies. This work describes a microfluidic guillotine for bisecting single Stentor coeruleus cells in a continuous-flow manner. Stentor is used as a model due to its robust repair capacity and the ability to perform gene knockdown in a high-throughput manner. Local cutting dynamics reveals two regimes under which cells are bisected, one at low viscous stress where cells are cut with small membrane ruptures and high viability and one at high viscous stress where cells are cut with extended membrane ruptures and decreased viability. A cutting throughput up to 64 cells per minute—more than 200 times faster than current methods—is achieved. The method allows the generation of more than 100 cells in a synchronized stage of their repair process. This capacity, combined with high-throughput gene knockdown in Stentor, enables time-course mechanistic studies impossible with current wounding methods.

  7. Photodynamic therapy of melanoma using new, synthetic porphyrins and phthalocyanines as photosensitisers - a comparative study.

    PubMed

    Baldea, Ioana; Ion, Rodica-Mariana; Olteanu, Diana Elena; Nenu, Iuliana; Tudor, Diana; Filip, Adriana Gabriela

    2015-01-01

    Melanoma, a cancer that arises from melanocytes, is one of the most unresponsive cancers to known therapies and has a tendency to produce early metastases. Several studies showed encouraging results of the efficacy of photodynamic therapy (PDT) in melanoma, in different experimental settings in vitro and in vivo, as well as several clinical reports. Our study focuses on testing the antimelanoma efficacy of several new, synthetic photosensitisers (PS), from two different chemical classes, respectively four porphyrins and six phthalocyanines. These PS were tested in terms of cell toxicity and phototoxicity against a radial growth phase melanoma cell line (WM35), in vitro. Cells were exposed to different concentrations of the PS for 24h, washed, then irradiatied with red light (630 nm) 75 mJ/cm(2) for the porphyrins and 1 J/cm(2) for the phthalocyanines. Viability was measured using the MTS method. Two of the synthetic porphyrins, TTP and THNP, were active photosensitizers against WM35 melanoma in vitro. Phthalocyanines were effective in producing a dose dependent PDT-induced decrease in viability in a dose-dependent manner. The most efficient was Indium (III) Phthalocyanine chloride, a metal substituted phthalocyanine. The most efficient photosensitizers for PDT in melanoma cells were the phthalocyanines in terms of tumor cell photokilling and decreased dark toxicity.

  8. A non-laser light source for photodynamic therapy: in vitro effects on normal and malignant cells.

    PubMed

    Kashtan, Hanoch; Haddad, Riad; Greenberg, Ron; Skornick, Yehuda; Kaplan, Ofer

    2002-01-01

    Photodynamic therapy (PDT) involves the use of photosensitizing drugs combined with light to treat tumors. Laser systems, the current source of light for PDT, have several inherent drawbacks: the spectrum is essentially monochromatic which may be problematic for second generation photosensitizers, the systems are bulky and nearly impossible to move between hospital locations and require complicated electrical and cooling installations, the cost of a typical system is enormous, and its maintenance and operation require highly trained personnel. We now introduce a new non-laser light system, Versa-Light, which appears to work as effectively and has none of the above drawbacks. A series of in vitro studies were performed using various murine and human normal and cancer cells which underwent PDT using aluminum phthalocyanine (AlPcS4) as a photosensitizer and Versa-Light as the light source. PDT of cancer cells at light energy levels of 50, 100 and 200 j/cm2 significantly decreased cell viability. PDT also decreased cell viability of normal murine splenocytes and normal human lymphocytes, but to a lesser extent. The observed significant hyperthermia was light dose-dependent. We believe that Versa-Light can replace laser systems as an enhanced light source for PDT. Further in vitro and pre-clinical studies are in progress.

  9. Investigation of Microbubble Cavitation-Induced Calcein Release from Cells In Vitro.

    PubMed

    Maciulevičius, Martynas; Tamošiūnas, Mindaugas; Jakštys, Baltramiejus; Jurkonis, Rytis; Venslauskas, Mindaugas Saulius; Šatkauskas, Saulius

    2016-12-01

    In the present study, microbubble (MB) cavitation signal analysis was performed together with calcein release evaluation in both pressure and exposure duration domains of the acoustic field. A passive cavitation detection system was used to simultaneously measure MB scattering and attenuation signals for subsequent extraction efficiency relative to MB cavitation activity. The results indicate that the decrease in the efficiency of extraction of calcein molecules from Chinese hamster ovary cells, as well as cell viability, is associated with MB cavitation activity and can be accurately predicted using inertial cavitation doses up to 0.18 V × s (R 2  > 0.9, p < 0.0001). No decrease in additional calcein release or cell viability was observed after complete MB sonodestruction was achieved. This indicates that the optimal exposure duration within which maximal sono-extraction efficiency is obtained coincides with the time necessary to achieve complete MB destruction. These results illustrate the importance of MB inertial cavitation in the sono-extraction process. To our knowledge, this study is the first to (i) investigate small molecule extraction from cells via sonoporation and (ii) relate the extraction process to the quantitative characteristics of MB cavitation acoustic spectra. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism.

    PubMed

    Song, Ju-Xian; Choi, Mandy Yuen-Man; Wong, Kavin Chun-Kit; Chung, Winkie Wing-Yan; Sze, Stephen Cho-Wing; Ng, Tzi-Bun; Zhang, Kalin Yan-Bo

    2012-01-21

    Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS) and loss of mitochondrial membrane potential (ΔΨm) were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells.

  11. Protective effect of quercetin on the reproductive toxicity of 4-nitrophenol in diesel exhaust particles on male embryonic chickens.

    PubMed

    Mi, Yuling; Zhang, Caiqiao; Li, Chun Mei; Taneda, Shinji; Watanabe, Gen; Suzuki, Akira K; Taya, Kazuyoshi

    2010-04-01

    The 4-nitrophenol (PNP) in diesel exhaust particles (DEP) has been identified as a vasodilator and is a known degradation product of the insecticide parathion. In this study, the protective effect of quercetin, a potent oxygen free radical scavenger and metal chelator, against the oxidative damage of PNP on cultured testicular cells was studied in male embryonic chickens. Testicular cells from Day 18 embryos were cultured in serum-free McCoy's 5A medium and challenged with quercetin (1.0 microg/ml) alone or in combinations with PNP (10(-7)-10(-5) M) for 48 h. The oxidative damage was estimated by measuring cell viability, content of malondialdehyde (MDA), activity of superoxide dismutase (SOD) and glutathione peroxidation (GSH-Px) activity. The results showed that exposure to PNP (10(-5) M) induced condensed nuclei, vacuolated cytoplasm and a decrease in testicular cell viability and spermatogonial cell number. Exposure to PNP induced lipid peroxidation by elevation of the content of MDA. Exposure to PNP also decreased GSH-Px activity and SOD activity. However, simultaneous supplementation with quercetin restored these parameters to the same levels as the control. Consequently, PNP induced oxidative stress in spermatogonial cells, and dietary quercetin may attenuate the reproductive toxicity of PNP to restore the intracellular antioxidant system in the testicular cells of embryonic chickens.

  12. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    PubMed Central

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, p<0.05) and maximal (50%, p<0.05) OCR and gene expression of mitochondrial proteins and Bax without affecting cell viability or expression of glycolytic enzymes. Similar changes could be recapitulated by incubating cells with leptin, whereas, leptin-receptor specific antagonist inhibited the reduced OCR induced by conditioned media from obese subjects. We conclude that secreted products from the adipose tissue of obese subjects inhibit mitochondrial respiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  13. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    PubMed

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  14. Stromal cell-derived factor 1 protects human periodontal ligament stem cells against hydrogen peroxide-induced apoptosis.

    PubMed

    Feng, Yimiao; Fu, Xiaohui; Lou, Xintian; Fu, Baiping

    2017-10-01

    Periodontal ligament stem cells (PDLSCs) are considered a promising cell source for dental tissue regeneration. Stromal cell-derived factor 1 [SDF‑1, also known as chemokine (C‑X‑C motif) ligand 12] is regarded as a critical cytokine involved in stem/progenitor cell chemotaxis and homing during tissue regeneration. The present study described a previously unsuspected role for SDF‑1 in the protection of PDLSCs against oxidative stress‑induced apoptosis. In the present study, apoptosis was induced by exposure of PDLSCs to various concentrations of H2O2 for 12 h, following which cell viability was assessed, and cleaved caspase‑3 and ‑9 expression levels were evaluated. To investigate the potential mechanism underlying this protection, the protein expression levels of total and phosphorylated extracellular signal‑regulated kinase (ERK), a key protein of the mitogen‑activated protein kinase (MAPK) signaling pathway, were examined. The results of the present study revealed that SDF‑1 pretreatment increased cell viability following H2O2 administration, and downregulated protein expression levels of activated caspase‑3 and ‑9. Furthermore, treatment with SDF‑1 increased the phosphorylation of ERK. The protective effect of SDF‑1 was partially inhibited by treatment with PD98059, a MAPK/ERK inhibitor, which decreased cell viability. The results of the present study suggested that SDF‑1 treatment is a potential strategy to improve the survival of PDLSCs, which may be beneficial for dental tissue regeneration.

  15. Impact of copper oxide nanomaterials on differentiated and undifferentiated Caco-2 intestinal epithelial cells; assessment of cytotoxicity, barrier integrity, cytokine production and nanomaterial penetration.

    PubMed

    Ude, Victor C; Brown, David M; Viale, Luca; Kanase, Nilesh; Stone, Vicki; Johnston, Helinor J

    2017-08-23

    Copper oxide nanomaterials (CuO NMs) are exploited in a diverse array of products including antimicrobials, inks, cosmetics, textiles and food contact materials. There is therefore a need to assess the toxicity of CuO NMs to the gastrointestinal (GI) tract since exposure could occur via direct oral ingestion, mucocillary clearance (following inhalation) or hand to mouth contact. Undifferentiated Caco-2 intestinal cells were exposed to CuO NMs (10 nm) at concentrations ranging from 0.37 to 78.13 μg/cm 2 Cu (equivalent to 1.95 to 250 μg/ml) and cell viability assessed 24 h post exposure using the alamar blue assay. The benchmark dose (BMD 20), determined using PROAST software, was identified as 4.44 μg/cm 2 for CuO NMs, and 4.25 μg/cm 2 for copper sulphate (CuSO 4 ), which informed the selection of concentrations for further studies. The differentiation status of cells and the impact of CuO NMs and CuSO 4 on the integrity of the differentiated Caco-2 cell monolayer were assessed by measurement of trans-epithelial electrical resistance (TEER), staining for Zonula occludens-1 (ZO-1) and imaging of cell morphology using scanning electron microscopy (SEM). The impact of CuO NMs and CuSO 4 on the viability of differentiated cells was performed via assessment of cell number (DAPI staining), and visualisation of cell morphology (light microscopy). Interleukin-8 (IL-8) production by undifferentiated and differentiated Caco-2 cells following exposure to CuO NMs and CuSO 4 was determined using an ELISA. The copper concentration in the cell lysate, apical and basolateral compartments were measured with Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES) and used to calculate the apparent permeability coefficient (P app ); a measure of barrier permeability to CuO NMs. For all experiments, CuSO 4 was used as an ionic control. CuO NMs and CuSO 4 caused a concentration dependent decrease in cell viability in undifferentiated cells. CuO NMs and CuSO 4 translocated across the differentiated Caco-2 cell monolayer. CuO NM mediated IL-8 production was over 2-fold higher in undifferentiated cells. A reduction in cell viability in differentiated cells was not responsible for the lower level of cytokine production observed. Both CuO NMs and CuSO 4 decreased TEER values to a similar extent, and caused tight junction dysfunction (ZO-1 staining), suggesting that barrier integrity was disrupted. CuO NMs and CuSO 4 stimulated IL-8 production by Caco-2 cells, decreased barrier integrity and thereby increased the P app and translocation of Cu. There was no significant enhancement in potency of the CuO NMs compared to CuSO 4 . Differentiated Caco-2 cells were identified as a powerful model to assess the impacts of ingested NMs on the GI tract.

  16. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as amore » plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.« less

  17. Ibudilast attenuates astrocyte apoptosis via cyclic GMP signalling pathway in an in vitro reperfusion model

    PubMed Central

    Takuma, K; Lee, E; Enomoto, R; Mori, K; Baba, A; Matsuda, T

    2001-01-01

    We examined the effect of 3-isobutyryl-2-isopropylpyrazolo[1,5-a]pyridine (ibudilast), which has been clinically used for bronchial asthma and cerebrovascular disorders, on cell viability induced in a model of reperfusion injury. Ibudilast at 10 – 100 μM significantly attenuated the H2O2-induced decrease in cell viability. Ibudilast inhibited the H2O2-induced cytochrome c release, caspase-3 activation, DNA ladder formation and nuclear condensation, suggesting its anti-apoptotic effect. Phosphodiesterase inhibitors such as theophylline, pentoxyfylline, vinpocetine, dipyridamole and zaprinast, which increased the guanosine-3′,5′-cyclic monophosphate (cyclic GMP) level, and dibutyryl cyclic GMP attenuated the H2O2-induced injury in astrocytes. Ibudilast increased the cyclic GMP level in astrocytes. The cyclic GMP-dependent protein kinase inhibitor KT5823 blocked the protective effects of ibudilast and dipyridamole on the H2O2-induced decrease in cell viability, while the cyclic AMP-dependent protein kinase inhibitor KT5720, the cyclic AMP antagonist Rp-cyclic AMPS, the mitogen-activated protein/extracellular signal-regulated kinase inhibitor PD98059 and the leukotriene D4 antagonist LY 171883 did not. KT5823 also blocked the effect of ibudilast on the H2O2-induced cytochrome c release and caspase-3-like protease activation. These findings suggest that ibudilast prevents the H2O2-induced delayed apoptosis of astrocytes via a cyclic GMP, but not cyclic AMP, signalling pathway. PMID:11454657

  18. Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro.

    PubMed

    Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Vázquez-Borrego, Mari C; Gahete, Manuel D; Jiménez-Reina, Luis; Venegas-Moreno, Eva; de la Riva, Andrés; Arráez, Miguel Ángel; González-Molero, Inmaculada; Schmid, Herbert A; Maraver-Selfa, Silvia; Gavilán-Villarejo, Inmaculada; García-Arnés, Juan Antonio; Japón, Miguel A; Soto-Moreno, Alfonso; Gálvez, María A; Luque, Raúl M; Castaño, Justo P

    2016-11-01

    Somatostatin analogs (SSA) are the mainstay of pharmacological treatment for pituitary adenomas. However, some patients escape from therapy with octreotide, a somatostatin receptor 2 (sst2)-preferring SSA, and pasireotide, a novel multi-sst-preferring SSA, may help to overcome this problem. It has been proposed that correspondence between sst1-sst5 expression pattern and SSA-binding profile could predict patient's response. To explore the cellular/molecular features associated with octreotide/pasireotide response, we performed a parallel comparison of their in vitro effects, evaluating sst1-sst5 expression, intracellular Ca 2+ signaling ([Ca 2+ ] i ), hormone secretion and cell viability, in a series of 85 pituitary samples. Somatotropinomas expressed sst5>sst2, yet octreotide reduced [Ca 2+ ] i more efficiently than pasireotide, while both SSA similarly decreased growth hormone release/expression and viability. Corticotropinomas predominantly expressed sst5, but displayed limited response to pasireotide, while octreotide reduced functional endpoints. Non-functioning adenomas preferentially expressed sst3 but, surprisingly, both SSA increased cell viability. Prolactinomas mainly expressed sst1 but were virtually unresponsive to SSA. Finally, both SSA decreased [Ca 2+ ] i in normal pituitaries. In conclusion, both SSA act in vitro on pituitary adenomas exerting both similar and distinct effects; however, no evident correspondence was found with the sst1-sst5 profile. Thus, it seems plausible that additional factors, besides the simple abundance of a given sst, critically influence the SSA response. © 2016 Society for Endocrinology.

  19. The involvement of Eag1 potassium channels and miR-34a in rotenone-induced death of dopaminergic SH-SY5Y cells

    PubMed Central

    Horst, Camila Hillesheim; Titze-De-Almeida, Ricardo; Titze-De-Almeida, Simoneide Souza

    2017-01-01

    The loss of dopaminergic neurons and the resultant motor impairment are hallmarks of Parkinson's disease. The SH-SY5Y cell line is a model of dopaminergic neurons, and allows for the study of dopaminergic neuronal injury. Previous studies have revealed changes in Ether à go-go 1 (Eag1) potassium channel expression during p53-induced SH-SY5Y apoptosis, and the regulatory involvement of microRNA-34a (miR-34a) was demonstrated. In the present study, the involvement of Eag1 and miR-34a in rotenone-induced SH-SY5Y cell injury was investigated. Rotenone is a neurotoxin, which is often used to generate models of Parkinson's disease, since it causes the death of nigrostriatal neurons by inducing intracellular aggregation of alpha synuclein and ubiquitin. In the present study, rotenone resulted in a dose-dependent decrease in cell viability, as revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue cell counting assays. In addition, Eag1 was demonstrated to be constitutively expressed by SH-SY5Y cells, and involved in cell viability. Suppression of Eag1 with astemizole resulted in a dose-dependent decrease in cell viability, as revealed by MTT assay. Astemizole also enhanced the severity of rotenone-induced injury in SH-SY5Y cells. RNA interference against Eag1, using synthetic small interfering RNAs (siRNAs), corroborated this finding, as siRNAs potentiated rotenone-induced injury. Eag1-targeted siRNAs (kv10.1-3 or EAG1hum_287) resulted in a statistically significant 16.4–23.5% increase in vulnerability to rotenone. An increased number of apoptotic nuclei were observed in cells transfected with EAG1hum_287. Notably, this siRNA intensified rotenone-induced apoptosis, as revealed by an increase in caspase 3/7 activity. Conversely, a miR-34a inhibitor was demonstrated to exert neuroprotective effects. The viability of cells exposed to rotenone for 24 or 48 h and treated with miR-34a inhibitor was restored by 8.4–8.8%. In conclusion, Eag1 potassium channels and miR-34a are involved in the response to rotenone-induced injury in SH-SY5Y cells. The neuroprotective effect of mir-34a inhibitors merits further investigations in animal models of Parkinson's disease. PMID:28259991

  20. Viability and metal reduction of Shewanella oneidensis MR-1 under CO2 stress: implications for ecological effects of CO2 leakage from geologic CO2 sequestration.

    PubMed

    Wu, Bing; Shao, Hongbo; Wang, Zhipeng; Hu, Yandi; Tang, Yinjie J; Jun, Young-Shin

    2010-12-01

    To study potential ecological impacts of CO(2) leakage to shallow groundwater and soil/sediments from geologic CO(2) sequestration (GCS) sites, this work investigated the viability and metal reduction of Shewanella oneidensis MR-1 under CO(2) stress. While MR-1 could grow under high-pressure nitrogen gas (500 psi), the mix of 1% CO(2) with N(2) at total pressures of 15 or 150 psi significantly suppressed the growth of MR-1, compared to the N(2) control. When CO(2) partial pressures were over 15 psi, the growth of MR-1 stopped. The reduced bacterial viability was consistent with the pH decrease and cellular membrane damage under high pressure CO(2). After exposure to 150 psi CO(2) for 5 h, no viable cells survived, the cellular contents were released, and microscopy images confirmed significant cell structure deformation. However, after a relatively short exposure (25 min) to 150 psi CO(2), MR-1 could fully recover their growth within 24 h after the stress was removed, and the reduction of MnO(2) by MR-1 was observed right after the stress was removed. Furthermore, MR-1 survived better if the cells were aggregated rather than suspended, or if pH buffering minerals, such as calcite, were present. To predict the cell viability under different CO(2) pressures and exposure times, a two-parameter mathematical model was developed.

  1. Suppression effects of negative pressure on the proliferation and metastasis in human pancreatic cancer cells.

    PubMed

    Yang, Xiujiang; Sun, Bo; Zhu, Haihang; Jiang, Ziting

    2015-01-01

    The aim was to explore the effect of negative pressure on the proliferation and metastasis of human pancreatic cancer SW1990 cells. Three groups were conducted in the work: normal control group (NC group, 0 mm Hg), low negative pressure group (LN group, -300 mm Hg), and high negative pressure group (HN group, -600 mm Hg). Cell morphological assay was conducted using an inverted Nikon TE2000-S microscope. Cell viability was assayed using cell counting kit-8 solution. Cell apoptosis was evaluated with flow cytometry. Cell migration was investigated using transwell assay. Compared to LN and HN groups, SW1990 cells in NC group grew quite well, showing a higher density. The NC group represented the highest cell viability. The HN group represented the lowest cell viability, which was lower than that of the LN group (P < 0.01). The apoptosis rate in NC group, LN group and HN group was 1.91% ± 0.13%, 2.31% ± 0.06% and 15.22% ± 0.81%, respectively (P < 0.05). The average number of migration cells in NC group was 53.60 ± 4.14 (× 200), which was decreased to 18.93 ± 3.67 and 11.07 ± 3.01 in LN group and HN group, respectively (P < 0.01). The negative pressure shows suppression effects on the proliferation and metastasis of human pancreatic cancer SW1990 cells. It is indicated that negative pressure may be involved in the development of human pancreatic cancer by influencing cell biological characteristics.

  2. Cultivation of an L-lactate dehydrogenase mutant of Bacillus stearothermophilus in continuous culture with cell recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, R.S.; Bushell, D.; Leak, D.J.

    1994-06-05

    Continuous fermentation with cell recycle proved very effective in increasing the ethanol volumetric productivity of the thermophilic facultative anaerobe, Bacillus stearothermophilus strain LLD-15, on sucrose at 70 C. When complete cell recycle was used, cell viability decreased after a few residence times and sucrose consumption was reduced. Operation using a constant bleed rate resulted in greater stability and higher ethanol volumetric productivities. A mathematical model based on maintenance energy requirements provided an adequate description of the system.

  3. DNA Damage and Genomic Instability Induced by Inappropriate DNA Re-replication

    DTIC Science & Technology

    2007-04-01

    Conway, A., Lockhart, D. J., Davis, R. W., Brewer , B. J., and Fangman, W. L. (2001). Replication dynamics of the yeast genome. Science 294, 115–121... Brewer , B. J. (2001). An origin-deficient yeast artificial chromosome triggers a cell cycle checkpoint. Mol. Cell 7, 705–713. Vas, A., Mok, W., and...replication in yeast cells. We have demonstrated that re-replication induces a rapid and significant decrease in cell viability and a cellular DNA damage

  4. Metabolic Abnormalities Detected in Phase II Evaluation of Doxycycline in Dogs with Multicentric B-Cell Lymphoma.

    PubMed

    Hume, Kelly R; Sylvester, Skylar R; Borlle, Lucia; Balkman, Cheryl E; McCleary-Wheeler, Angela L; Pulvino, Mary; Casulo, Carla; Zhao, Jiyong

    2018-01-01

    Doxycycline has antiproliferative effects in human lymphoma cells and in murine xenografts. We hypothesized that doxycycline would decrease canine lymphoma cell viability and prospectively evaluated its clinical tolerability in client-owned dogs with spontaneous, nodal, multicentric, substage a, B-cell lymphoma, not previously treated with chemotherapy. Treatment duration ranged from 1 to 8 weeks (median and mean, 3 weeks). Dogs were treated with either 10 ( n  = 6) or 7.5 ( n  = 7) mg/kg by mouth twice daily. One dog had a stable disease for 6 weeks. No complete or partial tumor responses were observed. Five dogs developed grade 3 and/or 4 metabolic abnormalities suggestive of hepatopathy with elevations in bilirubin, ALT, ALP, and/or AST. To evaluate the absorption of oral doxycycline in our study population, serum concentrations in 10 treated dogs were determined using liquid chromatography tandem mass spectrometry. Serum levels were variable and ranged from 3.6 to 16.6 µg/ml (median, 7.6 µg/ml; mean, 8.8 µg/ml). To evaluate the effect of doxycycline on canine lymphoma cell viability in vitro , trypan blue exclusion assay was performed on canine B-cell lymphoma cell lines (17-71 and CLBL) and primary B-cell lymphoma cells from the nodal tissue of four dogs. A doxycycline concentration of 6 µg/ml decreased canine lymphoma cell viability by 80%, compared to matched, untreated, control cells (mixed model analysis, p  < 0.0001; Wilcoxon signed rank test, p  = 0.0313). Although the short-term administration of oral doxycycline is not associated with the remission of canine lymphoma, combination therapy may be worthwhile if future research determines that doxycycline can alter cell survival pathways in canine lymphoma cells. Due to the potential for metabolic abnormalities, close monitoring is recommended with the use of this drug in tumor-bearing dogs. Additional research is needed to assess the tolerability of chronic doxycycline therapy.

  5. Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae.

    PubMed

    Ishmayana, Safri; Kennedy, Ursula J; Learmonth, Robert P

    2017-11-27

    Membrane lipid unsaturation index and membrane fluidity have been related to yeast ethanol stress tolerance in published studies, however findings have been inconsistent. In this study, viability reduction on exposure to 18% (v/v) ethanol was compared to membrane fluidity determined by laurdan generalized polarization. Furthermore, in the determination of viability reduction, we examined the effectiveness of two methods, namely total plate count and methylene violet staining. We found a strong negative correlation between ethanol tolerance and membrane fluidity, indicated by negative Pearson correlation coefficients of - 0.79, - 0.65 and - 0.69 for Saccharomyces cerevisiae strains A12, PDM and K7, respectively. We found that lower membrane fluidity leads to higher ethanol tolerance, as indicated by decreased viability reduction and higher laurdan generalized polarization in respiratory phase compared to respiro-fermentative phase cells. Total plate count better differentiated ethanol tolerance of yeast cells in different growth phases, while methylene violet staining was better to differentiate ethanol tolerance of the different yeast strains at a particular culture phase. Hence, both viability assessment methods have their own advantages and limitations, which should be considered when comparing stress tolerance in different situations.

  6. Freezing behavior of adherent neuron-like cells and morphological change and viability of post-thaw cells.

    PubMed

    Uemura, Makoto; Ishiguro, Hiroshi

    2015-04-01

    Freezing of nerve cells forming a neuronal network has largely been neglected, despite the fact that the cryopreservation of nerve cells benefits the study of cells in the areas of medicine and poison screening. Freezing of nerve cells is also attractive for studying cell morphology because of the characteristic long, thread-like neurites extending from the cell body. In the present study, freezing of neuron-like cells adhering to the substrate (differentiated PC12 cells), in physiological saline, was investigated in order to understand the fundamental freezing and thawing characteristics of nerve cells with neurites. The microscopic freezing behavior of cells under different cooling rates was observed. Next, the post-thaw morphological changes in the cells, including the cytoskeleton, were investigated and post-thaw cell viability was evaluated by dye exclusion using propidium iodide. Two categories of morphological changes, beading and shortening of the neurites, were found and quantified. Also, the morphological changes of neurites due to osmotic stress from sodium chloride were studied to gain a better understanding of causation. The results showed that morphological changes and cell death were promoted with a decrease in end temperature during freezing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The effect of ultrasound-related stimuli on cell viability in microfluidic channels

    PubMed Central

    2013-01-01

    Background In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Results Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0–29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. Conclusion The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells. PMID:23809777

  8. The effect of ultrasound-related stimuli on cell viability in microfluidic channels.

    PubMed

    Ankrett, Dyan N; Carugo, Dario; Lei, Junjun; Glynne-Jones, Peter; Townsend, Paul A; Zhang, Xunli; Hill, Martyn

    2013-06-28

    In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0-29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells.

  9. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    PubMed

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-12-22

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.

  10. Directional freezing for the cryopreservation of adherent mammalian cells on a substrate

    PubMed Central

    Braslavsky, Ido

    2018-01-01

    Successfully cryopreserving cells adhered to a substrate would facilitate the growth of a vital confluent cell culture after thawing while dramatically shortening the post-thaw culturing time. Herein we propose a controlled slow cooling method combining initial directional freezing followed by gradual cooling down to -80°C for robust preservation of cell monolayers adherent to a substrate. Using computer controlled cryostages we examined the effect of cooling rates and dimethylsulfoxide (DMSO) concentration on cell survival and established an optimal cryopreservation protocol. Experimental results show the highest post-thawing viability for directional ice growth at a speed of 30 μm/sec (equivalent to freezing rate of 3.8°C/min), followed by gradual cooling of the sample with decreasing rate of 0.5°C/min. Efficient cryopreservation of three widely used epithelial cell lines: IEC-18, HeLa, and Caco-2, provides proof-of-concept support for this new freezing protocol applied to adherent cells. This method is highly reproducible, significantly increases the post-thaw cell viability and can be readily applied for cryopreservation of cellular cultures in microfluidic devices. PMID:29447224

  11. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping.

    PubMed

    Thurber, Aaron; Wingett, Denise G; Rasmussen, John W; Layne, Janet; Johnson, Lydia; Tenne, Dmitri A; Zhang, Jianhui; Hanna, Charles B; Punnoose, Alex

    2012-06-01

    This work reports a new method to improve our recent demonstration of zinc oxide (ZnO) nanoparticles (NPs) selectively killing certain human cancer cells, achieved by incorporating Fe ions into the NPs. Thoroughly characterized cationic ZnO NPs (∼6 nm) doped with Fe ions (Zn(1-x )Fe (x) O, x = 0-0.15) were used in this work, applied at a concentration of 24 μg/ml. Cytotoxicity studies using flow cytometry on Jurkat leukemic cancer cells show cell viability drops from about 43% for undoped ZnO NPs to 15% for ZnO NPs doped with 7.5% Fe. However, the trend reverses and cell viability increases with higher Fe concentrations. The non-immortalized human T cells are markedly more resistant to Fe-doped ZnO NPs than cancerous T cells, confirming that Fe-doped samples still maintain selective toxicity to cancer cells. Pure iron oxide samples displayed no appreciable toxicity. Reactive oxygen species generated with NP introduction to cells increased with increasing Fe up to 7.5% and decreased for >7.5% doping.

  12. Directional freezing for the cryopreservation of adherent mammalian cells on a substrate.

    PubMed

    Bahari, Liat; Bein, Amir; Yashunsky, Victor; Braslavsky, Ido

    2018-01-01

    Successfully cryopreserving cells adhered to a substrate would facilitate the growth of a vital confluent cell culture after thawing while dramatically shortening the post-thaw culturing time. Herein we propose a controlled slow cooling method combining initial directional freezing followed by gradual cooling down to -80°C for robust preservation of cell monolayers adherent to a substrate. Using computer controlled cryostages we examined the effect of cooling rates and dimethylsulfoxide (DMSO) concentration on cell survival and established an optimal cryopreservation protocol. Experimental results show the highest post-thawing viability for directional ice growth at a speed of 30 μm/sec (equivalent to freezing rate of 3.8°C/min), followed by gradual cooling of the sample with decreasing rate of 0.5°C/min. Efficient cryopreservation of three widely used epithelial cell lines: IEC-18, HeLa, and Caco-2, provides proof-of-concept support for this new freezing protocol applied to adherent cells. This method is highly reproducible, significantly increases the post-thaw cell viability and can be readily applied for cryopreservation of cellular cultures in microfluidic devices.

  13. Drug sensitivity profiling identifies potential therapies for lymphoproliferative disorders with overactive JAK/STAT3 signaling

    PubMed Central

    Kuusanmäki, Heikki; Dufva, Olli; Parri, Elina; van Adrichem, Arjan J.; Rajala, Hanna; Majumder, Muntasir M.; Yadav, Bhagwan; Parsons, Alun; Chan, Wing C.; Wennerberg, Krister; Mustjoki, Satu; Heckman, Caroline A.

    2017-01-01

    Constitutive JAK/STAT3 signaling contributes to disease progression in many lymphoproliferative disorders. Recent genetic analyses have revealed gain-of-function STAT3 mutations in lymphoid cancers leading to hyperactivation of STAT3, which may represent a potential therapeutic target. Using a functional reporter assay, we screened 306 compounds with selective activity against various target molecules to identify drugs capable of inhibiting the cellular activity of STAT3. Top hits were further validated with additional models including STAT3-mutated natural killer (NK)-cell leukemia/lymphoma cell lines and primary large granular lymphocytic (LGL) leukemia cells to assess their ability to inhibit STAT3 phosphorylation and STAT3 dependent cell viability. We identified JAK, mTOR, Hsp90 and CDK inhibitors as potent inhibitors of both WT and mutant STAT3 activity. The Hsp90 inhibitor luminespib was highly effective at reducing the viability of mutant STAT3 NK cell lines and LGL leukemia patient samples. Luminespib decreased the phosphorylation of mutant STAT3 at Y705, whereas JAK1/JAK2 inhibitor ruxolitinib had reduced efficacy on mutant STAT3 phosphorylation. Additionally, combinations involving Hsp90, JAK and mTOR inhibitors were more effective at reducing cell viability than single agents. Our findings show alternative approaches to inhibit STAT3 activity and suggest Hsp90 as a therapeutic target in lymphoproliferative disorders with constitutively active STAT3. PMID:29228628

  14. Induction of apoptosis in HT-29 cells by extracts from isothiocyanates-rich varieties of Brassica oleracea.

    PubMed

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Deulofeu, Ramon; Molina, Rafael; Ballesta, Antonio; Kensler, Thomas W; Lafuente, Amalia

    2007-01-01

    Among the vegetables with anti-carcinogenic properties, members of the genus Brassica are the most effective at reducing the risk of cancer. This property may be explained by their principle bioactive compounds, isothiocyanates (ITCs). The aim of this study was to measure the amounts of ITCs in extracts from vegetables of the Brasssica genus and assay them for potency of induction of apoptosis in a colorectal cancer cell line (HT-29). ITCs were determined by the cyclocondensation assay with 1,2-benzenedithiol and induction of apoptosis by assessment of cell viability, caspase-3 activity and DNA fragmentation. Purple cabbage extract showed the highest ITC concentration per gram, fresh weight, followed by black cabbage and Romanesco cauliflower. At ITC concentrations of 7.08 microg/mL these extracts decreased cell viability and induced caspase-3 and DNA fragmentation at 48h. Brussels sprouts showed the strongest effects on cell viability and caspase-3 activity. Varieties of Brassica Oleracea are rich sources of ITCs that potently inhibit the growth of colon cancer cells by inducting apoptosis. All the extracts showed anticancer activity at ITC concentrations of between 3.54 to 7.08 mug/mL, which are achievable in vivo. Our results showed that ITC concentration and the chemopreventive responses of plant extracts vary among the varieties of Brassica Oleracea studied and among their cultivars.

  15. Comparative effects of chlorhexidine and essential oils containing mouth rinse on stem cells cultured on a titanium surface.

    PubMed

    Park, Jun-Beom; Lee, Gil; Yun, Byeong Gon; Kim, Chang-Hyen; Ko, Youngkyung

    2014-04-01

    Chlorhexidine (CHX) and Listerine (LIS), an essential oil compound, are the two commonly used adjunctive agents for mechanical debridement, for reducing the bacterial load in the treatment of peri-implant inflammation. However, antimicrobial agents have been reported to be cytotoxic to the alveolar bone cells and gingival epithelial cells. The present study was performed to examine the effects of antiseptics CHX and LIS, on the morphology and proliferation of stem cells. Stem cells derived from the buccal fat pad were grown on machined titanium discs. Each disc was immersed in CHX or LIS for 30 sec, 1.5 min or 4.5 min. Cell morphology was evaluated with a confocal laser microscope and the viability of the cells was quantitatively analyzed with the cell counting kit-8 (CCK-8). The untreated cells attached to the titanium discs demonstrated well-organized actin cytoskeletons. No marked alterations in the cytoskeletal organization were observed in any of the treated groups. The treatment with CHX and LIS of the titanium discs decreased the viability of the cells grown on the treated discs (P<0.05). The stem cells derived from the buccal fat pad were sensitive to CHX and LIS, and a reduction in cellular viability was observed when these agents were applied to the discs for 30 sec. Further studies are required to determine the optimal application time and concentration of this antimicrobial agent for maximizing the reduction of the bacterial load and minimizing the cytotoxicity to the surrounding cells.

  16. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells.

    PubMed

    Chen, Guokai; Hou, Zhonggang; Gulbranson, Daniel R; Thomson, James A

    2010-08-06

    Human ESCs are the pluripotent precursor of the three embryonic germ layers. Human ESCs exhibit basal-apical polarity, junctional complexes, integrin-dependent matrix adhesion, and E-cadherin-dependent cell-cell adhesion, all characteristics shared by the epiblast epithelium of the intact mammalian embryo. After disruption of epithelial structures, programmed cell death is commonly observed. If individualized human ESCs are prevented from reattaching and forming colonies, their viability is significantly reduced. Here, we show that actin-myosin contraction is a critical effector of the cell death response to human ESC dissociation. Inhibition of myosin heavy chain ATPase, downregulation of myosin heavy chain, and downregulation of myosin light chain all increase survival and cloning efficiency of individualized human ESCs. ROCK inhibition decreases phosphorylation of myosin light chain, suggesting that inhibition of actin-myosin contraction is also the mechanism through which ROCK inhibitors increase cloning efficiency of human ESCs. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Toxicity and Metabolism of Layered Double Hydroxide Intercalated with Levodopa in a Parkinson’s Disease Model

    PubMed Central

    Kura, Aminu Umar; Ain, Nooraini Mohd; Hussein, Mohd Zobir; Fakurazi, Sharida; Hussein-Al-Ali, Samer Hasan

    2014-01-01

    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 μg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment. PMID:24722565

  18. Persimmon Leaves (Diospyros kaki) Extract Protects Optic Nerve Crush-Induced Retinal Degeneration

    PubMed Central

    Ryul Ahn, Hong; Kim, Kyung-A; Kang, Suk Woo; Lee, Joo Young; Kim, Tae-Jin; Jung, Sang Hoon

    2017-01-01

    Retinal ganglion cell (RGC) death is part of many retinal diseases. Here, we report that the ethanol extract of Diospyros kaki (EEDK) exhibits protective properties against retinal degeneration, both in vitro and in vivo. Upon exposure to cytotoxic compounds, RGC-5 cells showed approximately 40% cell viability versus the control, while pre-treatment with EEDK markedly increased cell viability in a concentration-dependent manner. Further studies revealed that cell survival induced by EEDK was associated with decreased levels of apoptotic proteins, such as poly (ADP-ribose) polymerase, p53, and cleaved caspase-3. In addition to apoptotic pathways, we demonstrated that expression levels of antioxidant-associated proteins, such as superoxide dismutase-1, glutathione S-transferase, and glutathione peroxidase-1, were positively modulated by EEDK. In a partial optic nerve crush mouse model, EEDK had similar ameliorating effects on retinal degeneration resulting from mechanical damages. Therefore, our results suggest that EEDK may have therapeutic potential against retinal degenerative disorders, such as glaucoma. PMID:28425487

  19. A Versatile Method of Patterning Proteins and Cells.

    PubMed

    Shrirao, Anil B; Kung, Frank H; Yip, Derek; Firestein, Bonnie L; Cho, Cheul H; Townes-Anderson, Ellen

    2017-02-26

    Substrate and cell patterning techniques are widely used in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This article describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. This method enables researchers to pattern multiple substrates including fibronectin, collagen, antibodies (Sal-1), poly-D-lysine (PDL), and laminin. Patterning of substrates allows one to indirectly pattern a variety of cells. We have tested C2C12 myoblasts, the PC12 neuronal cell line, embryonic rat cortical neurons, and amphibian retinal neurons. In addition, we demonstrate that this technique can directly pattern fibroblasts in microfluidic channels via brief application of a low vacuum on cell suspensions. The low vacuum does not significantly decrease cell viability as shown by cell viability assays. Modifications are discussed for application of the method to different cell and substrate types. This technique allows researchers to pattern cells and proteins in specific patterns without the need for exotic materials or equipment and can be done in any laboratory with a vacuum.

  20. Critical role of the axonal guidance cue EphrinB2 in lung growth, angiogenesis, and repair.

    PubMed

    Vadivel, Arul; van Haaften, Tim; Alphonse, Rajesh S; Rey-Parra, Gloria-Juliana; Ionescu, Lavinia; Haromy, Al; Eaton, Farah; Michelakis, Evangelos; Thébaud, Bernard

    2012-03-01

    Lung diseases characterized by alveolar damage currently lack efficient treatments. The mechanisms contributing to normal and impaired alveolar growth and repair are incompletely understood. Axonal guidance cues (AGC) are molecules that guide the outgrowth of axons to their targets. Among these AGCs, members of the Ephrin family also promote angiogenesis, cell migration, and organogenesis outside the nervous system. The role of Ephrins during alveolar growth and repair is unknown. We hypothesized that EphrinB2 promotes alveolar development and repair. We used in vitro and in vivo manipulation of EphrinB2 signaling to assess the role of this AGC during normal and impaired lung development. In vivo EphrinB2 knockdown using intranasal siRNA during the postnatal stage of alveolar development in rats arrested alveolar and vascular growth. In a model of O(2)-induced arrested alveolar growth in newborn rats, air space enlargement, loss of lung capillaries, and pulmonary hypertension were associated with decreased lung EphrinB2 and receptor EphB4 expression. In vitro, EphrinB2 preserved alveolar epithelial cell viability in O(2), decreased O(2)-induced alveolar epithelial cell apoptosis, and accelerated alveolar epithelial cell wound healing, maintained lung microvascular endothelial cell viability, and proliferation and vascular network formation. In vivo, treatment with intranasal EphrinB2 decreased alveolar epithelial and endothelial cell apoptosis, preserved alveolar and vascular growth in hyperoxic rats, and attenuated pulmonary hypertension. The AGC EphrinB2 may be a new therapeutic target for lung repair and pulmonary hypertension.

  1. High molecular weight hyaluronan decreases oxidative DNA damage induced by EDTA in human corneal epithelial cells

    PubMed Central

    Ye, J; Wu, H; Wu, Y; Wang, C; Zhang, H; Shi, X; Yang, J

    2012-01-01

    Purpose To investigate the toxic effects of ethylenediaminetetraacetic acid disodium salt (EDTA), a corneal penetration enhancer in topical ophthalmic formulations, on DNA in human corneal epithelial cells (HCEs), and to investigate whether the effect induced by EDTA can be inhibited by high molecular weight hyaluronan (HA). Methods Cells were exposed to EDTA in concentrations ranging from 0.00001 to 0.01% for 60 min, or 30 min high molecular weight HA pretreatment followed by EDTA treatment. The cell viability was measured by the MTT test. Cell apoptosis was determined with annexin V staining by flow cytometry. The DNA single- and double-strand breaks of HCEs were examined by alkaline comet assay and by immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci, respectively. Reactive oxygen species (ROS) production was assessed by the fluorescent probe, 2′, 7′-dichlorodihydrofluorescein diacetate. Results EDTA exhibited no adverse effect on cell viability and did not induce cell apoptosis in human corneal epithelial cells at concentrations lower than 0.01%. However, a significant increase of DNA single- and double-strand breaks was observed in a dose-dependent manner with all the concentrations of EDTA tested in HCEs. In addition, EDTA treatment led to elevated ROS generation. Moreover, 30 min preincubation with high molecular weight HA significantly decreased EDTA-induced ROS generation and DNA damage. Conclusions EDTA could induce DNA damage in HCEs, probably through oxidative stress. Furthermore, high molecular weight HA was an effective protective agent that had antioxidant properties and decreased DNA damage induced by EDTA. PMID:22595911

  2. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    PubMed

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Role of Hsp-70 in triptolide-mediated cell death of neuroblastoma.

    PubMed

    Antonoff, Mara B; Chugh, Rohit; Skube, Steven J; Dudeja, Vikas; Borja-Cacho, Daniel; Clawson, Kimberly A; Vickers, Selwyn M; Saluja, Ashok K

    2010-09-01

    Our recent work demonstrated that treatment of neuroblastoma with triptolide causes apoptotic cell death in vitro and decreases tumor size in vivo. Triptolide therapy has been associated with reduced expression of Hsp-70, suggesting a mechanism of cell killing involving Hsp-70 inhibition. The principal objective of this study was to investigate the role of Hsp-70 in triptolide-mediated cell death in neuroblastoma. Neuroblastoma cells were transfected with Hsp-70-specific siRNA. Viability, caspase activity, and phosphatidylserine externalization were subsequently measured. An orthotopic, syngeneic murine tumor model was developed, and randomized mice received daily injections of triptolide or vehicle. At 21 d, mice were sacrificed. Immunohistochemisty was used to characterize Hsp-70 levels in residual tumors, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed to identify cells undergoing apoptosis. Targeted silencing of Hsp-70 with siRNA significantly decreased cellular viability, augmented caspase-3 activity, and resulted in increased annexin-V staining. These effects parallel those findings obtained following treatment with triptolide. Residual tumors from triptolide-treated mice showed minimal staining with Hsp-70 immunohistochemistry, while control tumors stained prominently. Tumors from treated mice demonstrated marked staining with the TUNEL assay, while control tumors showed no evidence of apoptosis. Use of siRNA to suppress Hsp-70 expression in neuroblastoma resulted in apoptotic cell death, similar to the effects of triptolide. Residual tumors from triptolide-treated mice expressed decreased levels of Hsp-70 and demonstrated significant apoptosis. These findings support the hypothesis that Hsp-70 inhibition plays a significant role in triptolide-mediated neuroblastoma cell death. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Classical and alternative activation of rat hepatic sinusoidal endothelial cells by inflammatory stimuli.

    PubMed

    Liu, Yinglin; Gardner, Carol R; Laskin, Jeffrey D; Laskin, Debra L

    2013-02-01

    The ability of rat hepatic sinusoidal endothelial cells (HSEC) to become activated in response to diverse inflammatory stimuli was analyzed. Whereas the classical macrophage activators, IFNγ and/or LPS upregulated expression of iNOS in HSEC, the alternative macrophage activators, IL-10 or IL-4+IL-13 upregulated arginase-1 and mannose receptor. Similar upregulation of iNOS and arginase-1 was observed in classically and alternatively activated Kupffer cells, respectively. Removal of inducing stimuli from the cells had no effect on expression of these markers, demonstrating that activation is persistent. Washing and incubation of IFNγ treated cells with IL-4+IL-13 resulted in decreased iNOS and increased arginase-1 expression, while washing and incubation of IL-4+IL-13 treated cells with IFNγ resulted in decreased arginase-1 and increased iNOS, indicating that classical and alternative activation of the cells is reversible. HSEC were more sensitive to phenotypic switching than Kupffer cells, suggesting greater functional plasticity. Hepatocyte viability and expression of PCNA, β-catenin and MMP-9 increased in the presence of alternatively activated HSEC. In contrast, the viability of hepatocytes pretreated for 2 h with 5 mM acetaminophen decreased in the presence of classically activated HSEC. These data demonstrate that activated HSEC can modulate hepatocyte responses following injury. The ability of hepatocytes to activate HSEC was also investigated. Co-culture of HSEC with acetaminophen-injured hepatocytes, but not control hepatocytes, increased the sensitivity of HSEC to classical and alternative activating stimuli. The capacity of HSEC to respond to phenotypic activators may represent an important mechanism by which they participate in inflammatory responses associated with hepatotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS Environmental conditions for performing exposure experiments of microbes in the Tanpopo mission.

    PubMed

    Kawaguchi, Yuko; Yang, Yinjie; Kawashiri, Narutoshi; Shiraishi, Keisuke; Takasu, Masako; Narumi, Issay; Satoh, Katsuya; Hashimoto, Hirofumi; Nakagawa, Kazumichi; Tanigawa, Yoshiaki; Momoki, Yoh-Hei; Tanabe, Maiko; Sugino, Tomohiro; Takahashi, Yuta; Shimizu, Yasuyuki; Yoshida, Satoshi; Kobayashi, Kensei; Yokobori, Shin-Ichi; Yamagishi, Akihiko

    2013-10-01

    To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.

  6. The protective effects of N-Acetl-cysteine, oxo-thiazolidine-carboxylate, acetaminophen and their combinations against sulfur mustard cytotoxicity on human skin fibroblast cell line (HF2FF).

    PubMed

    Saberi, Mehdi; Zaree Mahmodabady, Ali

    2009-10-01

    Using human skin-fibroblast cell line HF2FF, the efficacy of some drugs was evaluated against sulfur mustard (SM) cytotoxicity. The drugs were the sulfhydryl containing molecule including N-acetylcysteine (NAC), 2-oxo-thiazolidine-4-carboxylate (OTC) and acetaminophen as glutathione (GSH) stimulator pathway. The protective effects of NAC (0.1 mM), OTC (1.8 mM), and acetaminophen (25 mM) alone or in combination with each other were evaluated on SM (180 M)-induced cytotoxicity. NAC and OTC were applied with SM simultaneously and acetaminophen 30 min before SM exposure, incubated for 1 h and then were rinsed and incubated with fresh medium. The efficacy was evaluated by determination of cells viability, intracellular GSH level and catalase activity 1 and 24 h post SM exposure or co-treatments. The cells viability was decreased 21.8% and 55.2%, respectively for 1 and 24 h post SM (1 h exposure) incubation. So, the 1-h SM exposure and 24-h treatment incubation were selected for evaluation. While, NAC alone treatment increased the cells viability (25%), GSH level (320%) and catalase activity (18%), the most effective combination was NAC plus OTC and acetaminophen which increased more significantly the cells viability (about 40%), GSH level (470%) and catalase activity (100%). The most effective combination was NAC (0.1 mM) plus OTC (1.8 mM) and acetaminophen (25 mM) which should be used before or concomitant with SM exposure. These drugs may reduce SM toxicity possibly by increment of GSH level and catalase activity. This efficacy needs to be confirmed by in vivo study.

  7. In vitro assessment of nanosilver-functionalized PMMA bone cement on primary human mesenchymal stem cells and osteoblasts.

    PubMed

    Pauksch, Linda; Hartmann, Sonja; Szalay, Gabor; Alt, Volker; Lips, Katrin S

    2014-01-01

    Peri-prosthetic infections caused by multidrug resistant bacteria have become a serious problem in surgery and orthopedics. The aim is to introduce biomaterials that avoid implant-related infections caused by multiresistant bacteria. The efficacy of silver nanoparticles (AgNP) against a broad spectrum of bacteria and against multiresistant pathogens has been repeatedly described. In the present study polymethylmethacrylate (PMMA) bone cement functionalized with AgNP and/or gentamicin were tested regarding their biocompatibility with bone forming cells. Therefore, influences on viability, cell number and differentiation of primary human mesenchymal stem cells (MSCs) and MSCs cultured in osteogenic differentiation media (MSC-OM) caused by the implant materials were studied. Furthermore, the growth behavior and the morphology of the cells on the testing material were observed. Finally, we examined the induction of cell stress, regarding antioxidative defense and endoplasmatic reticulum stress. We demonstrated similar cytocompatibility of PMMA loaded with AgNP compared to plain PMMA or PMMA loaded with gentamicin. There was no decrease in cell number, viability and osteogenic differentiation and no induction of cell stress for all three PMMA variants after 21 days. Addition of gentamicin to AgNP-loaded PMMA led to a slight decrease in osteogenic differentiation. Also an increase in cell stress was detectable for PMMA loaded with gentamicin and AgNP. In conclusion, supplementation of PMMA bone cement with gentamicin, AgNP, and both results in bone implants with an antibacterial potency and suitable cytocompatibility in MSCs and MSC-OM.

  8. MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo.

    PubMed

    Zeng, Yuanyuan; Zhu, Jianjie; Shen, Dan; Qin, Hualong; Lei, Zhe; Li, Wei; Liu, Zeyi; Huang, Jian-An

    2017-05-09

    Despite advances in diagnosis and treatment, the survival of non-small cell lung cancer (NSCLC) patients remains poor; therefore, improved understanding of the disease mechanism and novel treatment strategies are needed. Downregulation of SMAD4 and dysregulated expression of miR-205 have been reported. However, the relationship between them remains unclear. We investigated the effect of microRNA (miR)-205 on the expression of SMAD4 in NSCLC. Knockdown and overexpression of SMAD4 promoted or suppressed cellular viability and proliferation, and accelerated or inhibited the cell cycle in NSCLC cells, respectively. The 3'-untranslated region (3'-UTR) of SMAD4 was predicted as a target of miR-205. Luciferase assays validated that miR-205 binds directly to the SMAD4 3'-UTR. Protein and mRNA expression analyses confirmed that miR-205 overexpression in NSCLC cells inhibited the expression of SMAD4 mRNA and protein. In human NSCLC tissues, increased miR-205 expression was observed frequently and was inversely correlated with decreased SMAD4 expression. Ectopic expression of miR-205 in NSCLC cells suppressed cellular viability and proliferation, accelerated the cell cycle, and promoted tumor growth of lung carcinoma xenografts in nude mice. Our study showed that miR-205 decreased SMAD4 expression, thus promoting NSCLC cell growth. Our findings highlighted the therapeutic potential of targeting miR-205 in NSCLC treatment.

  9. MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo

    PubMed Central

    Qin, Hualong; Lei, Zhe; Li, Wei; Liu, Zeyi; Huang, Jian-an

    2017-01-01

    Despite advances in diagnosis and treatment, the survival of non-small cell lung cancer (NSCLC) patients remains poor; therefore, improved understanding of the disease mechanism and novel treatment strategies are needed. Downregulation of SMAD4 and dysregulated expression of miR-205 have been reported. However, the relationship between them remains unclear. We investigated the effect of microRNA (miR)-205 on the expression of SMAD4 in NSCLC. Knockdown and overexpression of SMAD4 promoted or suppressed cellular viability and proliferation, and accelerated or inhibited the cell cycle in NSCLC cells, respectively. The 3′-untranslated region (3′-UTR) of SMAD4 was predicted as a target of miR-205. Luciferase assays validated that miR-205 binds directly to the SMAD4 3′-UTR. Protein and mRNA expression analyses confirmed that miR-205 overexpression in NSCLC cells inhibited the expression of SMAD4 mRNA and protein. In human NSCLC tissues, increased miR-205 expression was observed frequently and was inversely correlated with decreased SMAD4 expression. Ectopic expression of miR-205 in NSCLC cells suppressed cellular viability and proliferation, accelerated the cell cycle, and promoted tumor growth of lung carcinoma xenografts in nude mice. Our study showed that miR-205 decreased SMAD4 expression, thus promoting NSCLC cell growth. Our findings highlighted the therapeutic potential of targeting miR-205 in NSCLC treatment. PMID:28199217

  10. Diethyl citrate and sodium citrate reduce the cytotoxic effects of nanosized hydroxyapatite crystals on mouse vascular smooth muscle cells

    PubMed Central

    Zhang, Chong-Yu; Sun, Xin-Yuan; Ouyang, Jian-Ming; Gui, Bao-Song

    2017-01-01

    Objective This study aimed to investigate the damage mechanism of nanosized hydroxyapatite (nano-HAp) on mouse aortic smooth muscle cells (MOVASs) and the injury-inhibiting effects of diethyl citrate (Et2Cit) and sodium citrate (Na3Cit) to develop new drugs that can simultaneously induce anticoagulation and inhibit vascular calcification. Methods The change in cell viability was evaluated using a cell proliferation assay kit, and the amount of lactate dehydrogenase (LDH) released was measured using an LDH kit. Intracellular reactive oxygen species (ROS) and mitochondrial damage were detected by DCFH-DA staining and JC-1 staining. Cell apoptosis and necrosis were detected by Annexin V staining. Intracellular calcium concentration and lysosomal integrity were measured using Fluo-4/AM and acridine orange, respectively. Results Nano-HAp decreased cell viability and damaged the cell membrane, resulting in the release of a large amount of LDH. Nano-HAp entered the cells and damaged the mitochondria, and then induced cell apoptosis by producing a large amount of ROS. In addition, nano-HAp increased the intracellular Ca2+ concentration, leading to lysosomal rupture and cell necrosis. On addition of the anticoagulant Et2Cit or Na3Cit, cell viability and mitochondrial membrane potential increased, whereas the amount of LDH released, ROS, and apoptosis rate decreased. Et2 Cit and Na3Cit could also chelate with Ca+ to inhibit the intracellular Ca2+ elevations induced by nano-HAp, prevent lysosomal rupture, and reduce cell necrosis. High concentrations of Et2Cit and Na3Cit exhibited strong inhibitory effects. The inhibitory capacity of Na3Cit was stronger than that of Et2Cit at similar concentrations. Conclusion Both Et2Cit and Na3Cit significantly reduced the cytotoxicity of nano-HAp on MOVASs and inhibited the apoptosis and necrosis induced by nano-HAp crystals. The chelating function of citrate resulted in both anticoagulation and binding to HAp. Et2Cit and Na3Cit may play a role as anticoagulants in reducing injury to the vascular wall caused by nano-HAp. PMID:29238189

  11. Effectiveness and biological compatibility of different generations of dentin adhesives.

    PubMed

    da Silva, João M F; Rodrigues, José R; Camargo, Carlos H R; Fernandes, Virgilio Vilas Boas; Hiller, Karl-Anton; Schweikl, Helmut; Schmalz, Gottfried

    2014-01-01

    Besides possessing good mechanical properties, dental materials should present a good biological behavior and should not injure the involved tissues. Bond strength and biocompatibility are both highly significant properties of dentin adhesives. For that matter, these properties of four generations of adhesive systems (Multi-Purpose/Single Bond/SE Plus/Easy Bond) were evaluated. Eighty bovine teeth had their dentin exposed (500- and 200-μm thickness). Adhesive was applied on the dentin layer of each specimen. Following that, the microshearing test was performed for all samples. A dentin barrier test was used for the cytotoxicity evaluation. Cell cultures (SV3NeoB) were collected from testing materials by means of 200- or 500-μm-thick dentin slices and placed in a cell culture perfusion chamber. Cell viability was measured 24 h post-exposition by means of a photometrical test (MTT test). The best bonding performance was shown by the single-step adhesive Easy Bond (21 MPa, 200 μm; 27 MPa, 500 μm) followed by Single Bond (15.6 MPa, 200 μm; 23.4 MPa, 500 μm), SE Plus (18.2 MPa, 200 μm; 20 MPa, 500 μm), and Multi-Purpose (15.2 MPa, 200 μm; 17.9 MPa, 500 μm). Regarding the cytotoxicity, Multi-Purpose slightly reduced the cell viability to 92% (200 μm)/93% (500 μm). Single Bond was reasonably cytotoxic, reducing cell viability to 71% (200 μm)/64% (500 μm). The self-etching adhesive Scotchbond SE decreased cell viability to 85% (200 μm)/71% (500 μm). Conversely, Easy Bond did not reduce cell viability in this test, regardless of the dentin thickness. Results showed that the one-step system had the best bond strength performance and was the least toxic to pulp cells. In multiple-step systems, a correct bonding technique must be done, and a pulp capping strategy is necessary for achieving good performance in both properties. The study showed a promising system (one-step self-etching), referring to it as a good alternative for specific cases, mainly due to its technical simplicity and good biological responses.

  12. In vitro effect of 4-nonylphenol on human chorionic gonadotropin (hCG) stimulated hormone secretion, cell viability and reactive oxygen species generation in mice Leydig cells.

    PubMed

    Jambor, Tomáš; Tvrdá, Eva; Tušimová, Eva; Kováčik, Anton; Bistáková, Jana; Forgács, Zsolt; Lukáč, Norbert

    2017-03-01

    Nonylphenol is considered an endocrine disruptor and has been reported to affect male reproductive functions. In our in vitro study, we evaluated the effects of 4-nonylphenol (4-NP) on cholesterol levels, hormone formation and viability in cultured Leydig cells from adult ICR male mice. We also determined the potential impact of 4-NP on generation of reactive oxygen species (ROS) after 44 h of cultivation. The cells were cultured with addition of 0.04; 0.2; 1.0; 2.5 and 5.0 μg/mL of 4-NP in the present of 1 IU/mL human chorionic gonadotropin (hCG) and compared to the control. The quantity of cholesterol was determined from culture medium using photometry. Determination of hormone production was performed by enzyme-linked immunosorbent assay. Metabolic activity assay was used for quantification of cell viability. The chemiluminescence technique, which uses a luminometer to measure reactive oxygen species, was employed. Applied doses of 4-NP (0.04-5.0 μg/mL) slight increase cholesterol levels and decrease production of dehydroepiandrosterone after 44 h of cultivation, but not significantly. Incubation of 4-NP treated cells with hCG significantly (P < 0.001) inhibited androstenedione, but not testosterone, formation at the highest concentration (5.0 μg/mL). The viability was significantly (P < 0.05); (P < 0.001) increased at 1.0; 2.5 and 5.0 μg/mL of 4-NP after 44 h treatment. Furthermore, 44 h treatment of 4-NP (0.04-5.0 μg/mL) caused significant (P < 0.001) intracellular accumulation of ROS in exposed cells. Taken together, the results of our in vitro study reported herein is consistent with the conclusion that 4-nonylphenol is able to influence hormonal profile, cell viability and generate ROS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Substance P promotes the recovery of oxidative stress-damaged retinal pigmented epithelial cells by modulating Akt/GSK-3β signaling.

    PubMed

    Baek, Sang-Min; Yu, Seung-Young; Son, Youngsook; Hong, Hyun Sook

    2016-01-01

    Senescence of the retina causes an accumulation of reactive oxygen species (ROS). Oxidative stress associated with ROS can damage RPE cells, leading to neovascularization and severe ocular disorders, including age-related macular degeneration (AMD). Thus, the early treatment of the damage caused by oxidative stress is critical for preventing the development of ocular diseases such as AMD. In this study, we examined the role of substance P (SP) in the recovery of RPE cells damaged by oxidative stress. To induce oxidative stress, RPE cells were treated with H2O2 at various doses. Recovery from oxidative stress was studied following treatment with SP by analyzing cell viability, cell proliferation, cell apoptosis, and Akt/glycogen synthase kinase (GSK)-3β activation in RPE cells in vitro. H2O2 treatment reduced cellular viability in a dose-dependent manner. SP inhibited the reduction of cell viability due to H2O2 and caused increased cell proliferation and decreased cell apoptosis. Cell survival under oxidative stress requires the activation of Akt signaling that enables cells to resist oxidative stress-induced damage. SP treatment activated Akt/GSK-3β signaling in RPE cells, which were damaged due to oxidative stress, and the inhibition of Akt signaling in SP-treated RPE cells prevented SP-induced recovery. Pretreatment with the neurokinin 1 receptor (NK1R) antagonist reduced the recovery effect of SP on damaged RPE cells. SP can protect RPE cells from oxidant-induced cell death by activating Akt/GSK-3β signaling via NK1R. This study suggests the possibility of SP as a treatment for oxidative stress-related diseases.

  14. Antioxidant Properties of Fractions for Unripe Fruits of Capsicum annuum L. var. Conoides.

    PubMed

    Chen, Chung-Yi; Yen, Ching-Yu; Shen, Gao-Mai; Yu, Tzu-Jung; Liao, Yi-Shin; Jian, Ru-In; Wang, Sheng-Chieh; Tang, Jen-Yang; Chang, Hsueh-Wei

    2018-02-07

    Capsicum plant, especially for C. annuum, is an abundant resource for bioactive antioxidants, but few studies have examined the unripe fruit part of the Capsicum plant. MeOH extract of unripe fruits of C. annuum L. var. conoides (UFCA) was chromatographed over a silica gel column using a gradient of CH2Cl2/MeOH as eluent to produce 9 fractions. Antioxidant activities are evaluated along with cell viabilities of 9 fractions of UFCA. The antioxidant properties were analyzed in terms of total phenol content (TPC), total flavonoid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, 2,2-azinobis (3-ethyl-benzothiazoline-6- sulfonic acid) (ABTS) radical scavenging, ferric reducing, and ferrous ion-chelating ability. The cell viability of human oral cancer cells (Ca9-22) was measured by 3-(4,5-dimethylthiazol-2-yl)-(3-carboxymethoxyphenyl)-2- (4-sulphophenyl)-2H-tetrazolium (MTS) assay. Except for TFC, fractions (Frs.) 1 and 2 showed the lowest level of these antioxidant properties. Frs. 3 to 9 showed dose-responsive induction for antioxidant effects. Fr. 8 and Fr. 5 respectively showed the highest levels of TPC and TFC for 1162 ± 11 gallic acid equivalents (GAE) (mg)/UFCA (g) and 1295 ± 32 quercetin equivalents (QCE) (mg)/UFCA (g). The cell viability of Fr. 3 was moderately decreased (78.2%) while those of Frs. 4, 5, and 9 were dramatically decreased (55.6, 57.8, and 46.8%, respectively) in oral cancer Ca9-22 cells. UFCA-derived 14 compounds/mixtures derived from Frs. 1, 2, 3, 4, and 8 displayed differential antioxidant performance for these analyses. Taken together, fractions of UFCA displayed diverse antioxidant and anticancer effects for oral cancer cells. Some fractions of UFCA may be potent natural antioxidant supplements for antioral cancer cell treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Plasma Electrolytic Oxidation of Titanium Implant Surfaces: Microgroove-Structures Improve Cellular Adhesion and Viability.

    PubMed

    Hartjen, Philip; Hoffmann, Alexia; Henningsen, Anders; Barbeck, Mike; Kopp, Alexander; Kluwe, Lan; Precht, Clarissa; Quatela, Olivia; Gaudin, Robert; Heiland, Max; Friedrich, Reinhard E; Knipfer, Christian; Grubeanu, Daniel; Smeets, Ralf; Jung, Ole

    2018-01-01

    Plasma electrolytic oxidation (PEO) is an established electrochemical treatment technique that can be used for surface modifications of metal implants. In this study we to treated titanium implants with PEO, to examine the resulting microstructure and to characterize adhesion and viability of cells on the treated surfaces. Our aim was to identify an optimal surface-modification for titanium implants in order to improve soft-tissue integration. Three surface-variants were generated on titanium alloy Ti6Al4V by PEO-treatment. The elemental composition and the microstructures of the surfaces were characterized using energy dispersive X-ray spectroscopy, scanning electron microscopy and profilometry. In vitro cytocompatibility of the surfaces was assessed by seeding L929 fibroblasts onto them and measuring the adhesion, viability and cytotoxicity of cells by means of live/dead staining, XTT assay and LDH assay. Electron microscopy and profilometry revealed that the PEO-surface variants differed largely in microstructure/topography, porosity and roughness from the untreated control material as well as from one another. Roughness was generally increased after PEO-treatment. In vitro, PEO-treatment led to improved cellular adhesion and viability of cells accompanied by decreased cytotoxicity. PEO-treatment provides a promising strategy to improve the integration of titanium implants with surrounding tissues. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells.

    PubMed

    Geoghegan, Fintan; Chadderton, Naomi; Farrar, G Jane; Zisterer, Daniela M; Porter, Richard K

    2017-11-01

    Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G 1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells.

  17. Direct effects of phenformin on metabolism/bioenergetics and viability of SH-SY5Y neuroblastoma cells

    PubMed Central

    Geoghegan, Fintan; Chadderton, Naomi; Farrar, G. Jane; Zisterer, Daniela M.; Porter, Richard K.

    2017-01-01

    Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells. PMID:29113281

  18. IN VITRO AND IN VIVO TOXICITY: A COMPARISON OF ACRYLAMIDE, CYCLOPHOSPHAMIDE, CHLORDECONE, AND DIETHYLSTILBESTROL

    EPA Science Inventory

    Four chemicals that had been tested in an in vivo toxicological screen were tested in a Chinese hamster ovary (CHO) cytotoxicity assay. Cell density, viability, ATP concentration, rate of protein synthesis, and cellular protein concentration were decreased by exposure to acrylami...

  19. Cytotoxic effect of the serotonergic drug 1-(1-Naphthyl)piperazine against melanoma cells.

    PubMed

    Menezes, Ana Catarina; Carvalheiro, Manuela; Ferreira de Oliveira, José Miguel P; Ascenso, Andreia; Oliveira, Helena

    2018-03-01

    1-(1-Naphthyl)piperazine (1-NPZ) is a serotonergic derivative of quipazine acting both as antagonist and agonist of different serotonin receptors, with promising results for the management of skin cancer. In this work, we studied the effect of 1-NPZ on human MNT-1 melanoma cells by evaluating its effects on cell viability, ability to form colonies, cell cycle dynamics, reactive oxygen species (ROS) production and apoptosis. Treatment of MNT-1 cells with 1-NPZ for 24h decreased cell viability and induced apoptosis in a dose-dependent manner. Activity against melanoma was confirmed with a different melanoma cell line, SK-MEL-28. Simultaneously, 1-NPZ affected cell cycle progression by mediating a S-phase delay. Higher levels of ROS were also detected in MNT-1 cells after treatment with 1-NPZ. Furthermore, 1-NPZ significantly increased the expression of cyclooxygenase-2 in MNT-1 cells. These findings suggest that 1-NPZ pretreatment is able to induce oxidative stress, and consequently apoptotic cell death in melanoma cells. In conclusion, this study demonstrates the cytotoxic and genotoxic potential of 1-NPZ against melanoma cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm

    PubMed Central

    Jang, Eun-Young; Kim, Minjung; Noh, Mi Hee

    2015-01-01

    Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium. PMID:26596937

  1. Aortic calcified particles modulate valvular endothelial and interstitial cells.

    PubMed

    van Engeland, Nicole C A; Bertazzo, Sergio; Sarathchandra, Padmini; McCormack, Ann; Bouten, Carlijn V C; Yacoub, Magdi H; Chester, Adrian H; Latif, Najma

    Normal and calcified human valve cusps, coronary arteries, and aortae harbor spherical calcium phosphate microparticles of identical composition and crystallinity, and their role remains unknown. The objective was to examine the direct effects of isolated calcified particles on human valvular cells. Calcified particles were isolated from healthy and diseased aortae, characterized, quantitated, and applied to valvular endothelial cells (VECs) and interstitial cells (VICs). Cell differentiation, viability, and proliferation were analyzed. Particles were heterogeneous, differing in size and shape, and were crystallized as calcium phosphate. Diseased donors had significantly more calcified particles compared to healthy donors (P<.05), but there were no differences between the composition of the particles from healthy and diseased donors. VECs treated with calcified particles showed a significant decrease in CD31 and VE-cadherin and an increase in von Willebrand factor expression, P<.05. There were significantly increased α-SMA and osteopontin in treated VICs (P<.05), significantly decreased VEC and VIC viability (P<.05), and significantly increased number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive VECs (P<.05) indicating apoptosis when treated with the calcified particles. Isolated calcified particles from human aortae are not innocent bystanders but induce a phenotypical and pathological change of VECs and VICs characteristic of activated and pathological cells. Therapy tailored to reduce these calcified particles should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cytotoxicity, genotoxicity and gene expression changes elicited by exposure of human hepatic cells to Ginkgo biloba leaf extract.

    PubMed

    Grollino, Maria Giuseppa; Raschellà, Giuseppe; Cordelli, Eugenia; Villani, Paola; Pieraccioli, Marco; Paximadas, Irene; Malandrino, Salvatore; Bonassi, Stefano; Pacchierotti, Francesca

    2017-11-01

    The use of Ginkgo biloba leaf extract as nutraceutical is becoming increasingly common. As a consequence, the definition of a reliable toxicological profile is a priority for its safe utilization. Recently, contrasting data have been reported on the carcinogenic potential of Ginkgo biloba extract in rodent liver. We measured viability, Reactive Oxygen Species (ROS), apoptosis, colony-forming efficiency, genotoxicity by comet assay, and gene expression changes associated with hepato-carcinogenicity in human cells of hepatic origin (HepG2 and THLE-2) treated with different concentrations (0.0005-1.2 mg/mL) of Ginkgoselect ® Plus. Our analyses highlighted a decrease of cell viability, not due to apoptosis, after treatment with high doses of the extract, which was likely due to ROS generation by a chemical reaction between extract polyphenols and some components of the culture medium. Comet assay did not detect genotoxic effect at any extract concentration. Finally, the array analysis detected a slight decrease in the expression of only one gene (IGFBP3) in Ginkgo-treated THLE-2 cells as opposed to changes in 28 genes in Aflatoxin B1 treated-cells. In conclusion, our results did not detect any significant genotoxic or biologically relevant cytotoxic effects and gross changes in gene expression using the Ginkgo extract in the hepatic cells tested. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Pro-inflammatory Cytokines Are Involved in Fluoride-Induced Cytotoxic Potential in HeLa Cells.

    PubMed

    Wang, Hong-Wei; Zhou, Bian-Hua; Cao, Jian-Wen; Zhao, Jing; Zhao, Wen-Peng; Tan, Pan-Pan

    2017-01-01

    This study was designed to investigate the pro-inflammatory cytokines and their involvement in the cytotoxic potential of fluoride (F) in HeLa cells. HeLa cells were cultured with varying F concentrations (1-50 mg/L) for 48 h, and treatment effects were analyzed. The viability of HeLa cells was determined with a colorimetric method. The concentrations of IL-1β, IL-2, IL-6, and TNF-a in culture supernatant were measured through enzyme linked immunosorbent assay (ELISA). The mRNA expression levels of IL-1β, IL-2, IL-6 and TNF-a were subjected to transcript analysis and quantified through reverse transcription real-time PCR. Results showed that 10, 20 and 50 mg/L F significantly decreased the viability of HeLa cells incubated for 24 and 48 h. With their cytotoxic effect, the concentrations of IL-1β, IL-2, IL-6, and TNF-a decreased significantly in response to F, especially at 20 and 50 mg/L for 48 h. The mRNA expression levels of IL-1β, IL-2, IL-6, and TNF-a were downregulated at 50 mg/L F for 48 h. Therefore, F inhibited HeLa cell growth; as such, F could be used to alleviate the inhibition of pro-inflammatory cytokine expression.

  4. Grape seed extract protects IEC-6 cells from chemotherapy-induced cytotoxicity and improves parameters of small intestinal mucositis in rats with experimentally-induced mucositis.

    PubMed

    Cheah, Ker Y; Howarth, Gordon S; Yazbeck, Roger; Wright, Tessa H; Whitford, Eleanor J; Payne, Caroline; Butler, Ross N; Bastian, Susan E P

    2009-02-01

    Mucositis is a common side-effect of high-dose chemotherapy regimens. Grape seed extract (GSE) represents a rich source of proanthocyanidins with the potential to decrease oxidative damage and inflammation within the gastrointestinal tract. We evaluated GSE for its capacity to decrease the severity of chemotherapy-induced mucositis in vitro and in vivo. In vitro: GSE was administered to IEC-6 intestinal epithelial cells prior to damage induced by 5-Fluorouracil (5-FU). Cell viability was determined by neutral red assay. In vivo: Female Dark Agouti rats (130-180 g) were gavaged with 1 ml GSE (400 mg/kg) daily (day 3-11) and received 5-FU (150 mg/kg) by intraperitoneal (i.p.) injection on day nine to induce mucositis. Rats were sacrificed at day 12 and intestinal tissues collected for myeloperoxidase and sucrase activity assays and histological analyses. Statistical analysis was performed by one-way ANOVA. GSE prevented the decrease in IEC-6 cell viability induced by 5-FU (p < 0.01). Compared with 5-FU controls, GSE significantly reduced myeloperoxidase activity by 86% and 27% in the proximal jejunum (p < 0.001) and distal ileum (p < 0.05) respectively; decreased qualitative histological scores of damage (p < 0.05) in the proximal jejunum; increased villus height in the proximal jejunum (17%; p < 0.05) and distal ileum (50%; p < 0.01), and attenuated the 5-FU-induced reduction of mucosal thickness by 16% in the jejunum (p < 0.05) and 45% in the ileum (p < 0.01). GSE partially protected IEC-6 cells from 5-FU-induced cytotoxicity and ameliorated intestinal damage induced by 5-FU in rats. GSE may represent a promising prophylactic adjunct to conventional chemotherapy for preventing intestinal mucositis.

  5. Neuroprotective effects of three different sizes nanochelating based nano complexes in MPP(+) induced neurotoxicity.

    PubMed

    Maghsoudi, Amirhossein; Fakharzadeh, Saideh; Hafizi, Maryam; Abbasi, Maryam; Kohram, Fatemeh; Sardab, Shima; Tahzibi, Abbas; Kalanaky, Somayeh; Nazaran, Mohammad Hassan

    2015-03-01

    Parkinson's disease (PD) is the world's second most common dementia, which the drugs available for its treatment have not had effects beyond slowing the disease process. Recently nanotechnology has induced the chance for designing and manufacturing new medicines for neurodegenerative disease. It is demonstrated that by tuning the size of a nanoparticle, the physiological effect of the nanoparticle can be controlled. Using novel nanochelating technology, three nano complexes: Pas (150 nm), Paf (100 nm) and Pac (40 nm) were designed and in the present study their neuroprotective effects were evaluated in PC12 cells treated with 1-methyl-4-phenyl-pyridine ion (MPP (+)). PC12 cells were pre-treated with the Pas, Paf or Pac nano complexes, then they were subjected to 10 μM MPP (+). Subsequently, cell viability, intracellular free Calcium and reactive oxygen species (ROS) levels, mitochondrial membrane potential, catalase (CAT) and superoxide dismutase (SOD) activity, Glutathione (GSH) and malondialdehyde (MDA) levels and Caspase 3 expression were evaluated. All three nano complexes, especially Pac, were able to increase cell viability, SOD and CAT activity, decreased Caspase 3 expression and prevented the generation of ROS and the loss of mitochondrial membrane potential caused by MPP(+). Pre-treatment with Pac and Paf nano complexes lead to a decrease of intracellular free Calcium, but Pas nano complex could not decrease it. Only Pac nano complex decreased MDA levels and other nano complexes could not change this parameter compared to MPP(+) treated cells. Hence according to the results, all nanochelating based nano complexes induced neuroprotective effects in an experimental model of PD, but the smallest nano complex, Pac, showed the best results.

  6. [Evaluation of the viability of BEAS-2B cells exposed to gasoline engine exhaust with different particle sizes by air-liquid interface].

    PubMed

    Yu, T; Zhang, X Y; Wang, Z X; Li, B; Zheng, Y X; Bin, P

    2017-06-20

    Objective: To evaluate the viability of gasoline engine exhaust (GEE) with different particle sizes on human lung cell line BEAS-2B in vitro by air-liquid interface (ALI) . Methods: GEE were collected with a Tedlar bag and their particulate matter (PM) number, surface and mass concentration in three kind of GEE (filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter) were measured by two type of particle size spectrometer including TSI-3321 and SMPS-3938. Five groups were included, which divided into blank control group, clean air group, filtered automobile exhaust group, non-filtered automobile exhaust group and motorcycle exhaust without three-way catalytic converter group. Except the blank control group, BEAS-2B cells, cultured on the surface of Transwells, were treated with clean air or GEE by ALI method at a flow rate of 25 ml/min, 37 ℃ for 60 min in vitro . CCK-8 cytotoxicity test kit was used to determine the cell relative viability of BEAS-2B cells. Results: In the filtered automobile exhaust, non-filtered automobile exhaust and motorcycle exhaust without three-way catalytic converter, high concentrations of fine particles can be detected, but the coarse particles only accounted for a small proportion, and the sequence of PM concentration was motorcycle exhaust without three-way catalytic converter group> non-filtered automobile exhaust group> filtered automobile exhaust group ( P <0.001) . Compared with the clean air group, the cell relative viability in the 3 GEE-exposed groups were significantly lower ( P <0.001) . Among the comparisons of GEE exposure groups with different particle size spectra, the sequence of the cell relative viability was filtered automobile exhaust group >non-filtered automobile exhaust group> motorcycle exhaust without three-way catalytic converter group ( P <0.001) . When took the clean air control group as a reference, the mean of the cell relative viability in the filtered automobile exhaust group, non-filtered automobile exhaust group and motorcycle exhaust without three-way catalytic converter group, was decreased by 26.34%, 36.00% and 49.59%, respectively. Conclusion: GEE with different particle size spectra could induce different levels of toxic effects to the human lung cells BEAS-2B by ALI. After lowering the concentration of particles in the GEE and using the three-way catalytic converter could obviously improve the survival rate of lung cells.

  7. Apigenin inhibits glioma cell growth through promoting microRNA-16 and suppression of BCL-2 and nuclear factor-κB/MMP‑9.

    PubMed

    Chen, Xin-Jun; Wu, Mian-Yun; Li, Deng-Hui; You, Jin

    2016-09-01

    The present study aimed to investigate the effect of apigenin on glioma cells and to explore its potential mechanism. U87 human glioma cells treated with apigenin were used in the current study. Cell Counting Kit‑8 solution and Annexin V-fluorescein isothiocyanate/propidium iodide Apoptosis Detection kit were used to analyze the effect of apigenin on U87 cell viability and apoptotic cell death. Reverse transcription‑quantitative polymerase chain reaction analysis was also used to determine microRNA‑16 (miR‑16) and MMP‑9 gene expression levels. Nuclear factor‑κB (NF‑κB) and B‑cell CLL/lymphoma 2 (BCL2) protein expression levels were determined using western blot analysis. An anti‑miR‑16 plasmid was constructed and transfected into U87 cells. The current study demonstrated that apigenin significantly decreased cell viability and induced apoptotic cell death of U87 cells in a dose‑dependent manner. Additionally, it was demonstrated that apigenin significantly increased miR‑16 levels, suppressed BCL2 protein expression and suppressed the NF‑κB/MMP9 signaling pathway in U87 cells. Furthermore, downregulation of miR‑16 using the anti‑miR‑16 plasmid reversed the effect of apigenin on cell viability, BCL2 protein expression and the NF‑κB/MMP‑9 pathway in U87 cells. The results of the present study suggested that apigenin inhibits glioma cell growth through promoting miR‑16 and suppression of BCL2 and NF-κB/MMP-9. In conclusion, the present study demonstrated the potential anticancer effects of apigenin on glioma cells.

  8. Effects of Long-Term 50Hz Power-Line Frequency Electromagnetic Field on Cell Behavior in Balb/c 3T3 Cells

    PubMed Central

    An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong

    2015-01-01

    Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn’t change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein. PMID:25695503

  9. Effects of long-term 50Hz power-line frequency electromagnetic field on cell behavior in Balb/c 3T3 cells.

    PubMed

    An, Guang-Zhou; Xu, Hui; Zhou, Yan; Du, Le; Miao, Xia; Jiang, Da-Peng; Li, Kang-Chu; Guo, Guo-Zhen; Zhang, Chen; Ding, Gui-Rong

    2015-01-01

    Power-line frequency electromagnetic field (PF-EMF) was reported as a human carcinogen by some epidemiological research, but the conclusion is lack of robust experiment evidence. To identify the effects of long-term PF-EMF exposure on cell behavior, Balb/c 3T3 cells in exponential growth phase were exposed or sham-exposed to 50 Hertz (Hz) PF-EMF at 2.3 mT for 2 hours (h) one day, 5 days every week. After 11 weeks exposure, cells were collected instantly. Cell morphology was observed under invert microscope and Giemsa staining, cell viability was detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and apoptosis was examined by flow cytometry, the protein level of Proliferating Cell Nuclear Antigen (PCNA) and CyclinD1 was detected by western blot, cell transformation was examined by soft agar clone assay and plate clone forming test, and cell migration ability was observed by scratch adhesion test. It was found that after PF-EMF exposure, cell morphology, apoptosis, cell migration ability and cell transformation didn't change. However, compared with sham group, cell viability obviously decreased and cell cycle distribution also changed after 11 weeks PF-EMF exposure. Meanwhile, the protein level of PCNA and CyclinD1 significantly decreased after PF-EMF exposure. These data suggested that although long-term 50Hz PF-EMF exposure under this experimental condition had no effects on apoptosis, cell migration ability and cell transformation, it could affect cell proliferation and cell cycle by down-regulation the expression of PCNA and CyclinD1 protein.

  10. Separate and concurrent use of 2-deoxy-D-glucose and 3-bromopyruvate in pancreatic cancer cells.

    PubMed

    Xiao, Huijie; Li, Shasha; Zhang, Dapeng; Liu, Tongjun; Yu, Ming; Wang, Feng

    2013-01-01

    Unrestrained glycolysis characterizes energy meta-bolism in cancer cells. Thus, antiglycolytic reagents such as 2-deoxy-D-glucose (2-DG) and 3-bromopyruvate (3-BrPA) may be used as anticancer drugs. In the present study, we examined the anticancer effects of 2-DG and 3-BrPA in pancreatic cancer cells and investigated whether these effects were regulated by hypoxia-inducible factor-1α (HIF-1α). To this end, 2-DG and 3-BrPA were administered to wild-type (wt) MiaPaCa2 and Panc-1 pancreatic cancer cells that were incubated under hypoxic (HIF-1α-positive) or normoxic (HIF-1α-negative) conditions. In addition, 2-DG and 3-BrPA were also administered to si-MiaPaCa2 and si-Panc-1 cells that lacked HIF-1α as a result of RNA interference. Following drug exposure, cell population was measured using a viability assay. Both HIF-1α-positive and HIF-1α-negative MiaPaCa2 cells were further studied for their expression of Cu/Zn-superoxide dismutase (SOD1) and poly(ADP-ribose) polymerase (PARP) and for their contents of ATP and fumarate. In the viability assay, either 2-DG or 3-BrPA decreased the tested cells. Concurrent use of 2-DG and 3-BrPA resulted in a greater decrease of cells and also facilitated ATP depletion. In addition, 3-BrPA was seen to both decrease SOD1 and increase fumarate, which suggests that the reagent impaired the mitochondria. 3-BrPA also decreased both full-length PARP and cleaved PARP, which suggests that 3-BrPA-induced decrease in cell population was a result of cell necrosis rather than apoptosis. When HIF-1α was induced in wt-MiaPaCa2 cells by hypoxia, some effects of 2-DG and 3-BrPA were attenuated. We conclude that: i) concurrent use of 2-DG and 3-BrPA has better anticancer effects in pancreatic cancer cells, ii) 3-BrPA impairs the mitochondria of pancreatic cancer cells and induces cell necrosis, and iii) HIF-1α regulates the anticancer effects of 2-DG and 3-BrPA in pancreatic cancer cells.

  11. Ecotoxicological effects of carbon nanotubes and cellulose nanofibers in Chlorella vulgaris

    PubMed Central

    2014-01-01

    Background MWCNT and CNF are interesting NPs that possess great potential for applications in various fields such as water treatment, reinforcement materials and medical devices. However, the rapid dissemination of NPs can impact the environment and in the human health. Thus, the aim of this study was to evaluate the MWCNT and cotton CNF toxicological effects on freshwater green microalgae Chlorella vulgaris. Results Exposure to MWCNT and cotton CNF led to reductions on algal growth and cell viability. NP exposure induced reactive oxygen species (ROS) production and a decreased of intracellular ATP levels. Addition of NPs further induced ultrastructural cell damage. MWCNTs penetrate the cell membrane and individual MWCNTs are seen in the cytoplasm while no evidence of cotton CNFs was found inside the cells. Cellular uptake of MWCNT was observed in algae cells cultured in BB medium, but cells cultured in Seine river water did not internalize MWCNTs. Conclusions Under the conditions tested, such results confirmed that exposure to MWCNTs and to cotton CNFs affects cell viability and algal growth. PMID:24750641

  12. Alpha fetoprotein antagonises benzyl isothiocyanate inhibition of the malignant behaviors of hepatocellular carcinoma cells.

    PubMed

    Zhu, Mingyue; Li, Wei; Guo, Junli; Lu, Yan; Dong, Xu; Lin, Bo; Chen, Yi; Zhang, Xueer; Li, Mengsen

    2016-11-15

    Benzyl isothiocyanate (BITC) is a dietary isothiocyanate derived from cruciferous vegetables. Recent studies showed that BITC inhibited the growth of many cancer cells, including hepatocellular carcinoma (HCC) cells. Alpha-fetoprotein (AFP) is a important molecule for promoting progression of HCC, in the present investigation, we explore the influence of AFP on the role of BITC in the malignant behaviours of HCC cells, and the potential underlying mechanisms. We found thatBITC inhibited viability, migration, invasion and induced apoptosis of human liver cancer cell lines, Bel 7402(AFP producer) and HLE(non-AFP producer) cells in vitro. The role of BITC involve in promoting actived-caspase-3 and PARP-1 expression, and enhancing caspase-3 activity but decreasing MMP-2/9, survivin and CXCR4 expression. AFP antagonized the effect of BITC. This study suggests that BITC induced significant reductions in the viability of HCC cell lines. BITC may activate caspase-3 signal and inhibit the expression of growth- and metastasis-related proteins; AFP is an pivotal molecule for the HCC chemo-resistance of BITC.

  13. Synergistic effects of hydrogen peroxide and ethanol on cell viability loss in PC12 cells by increase in mitochondrial permeability transition.

    PubMed

    Lee, Chung Soo; Kim, Yun Jeong; Ko, Hyun Hee; Han, Eun Sook

    2005-07-15

    The promoting effect of ethanol against the cytotoxicity of hydrogen peroxide (H2O2) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with H2O2 resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. In PC12 cells and dopaminergic neuroblastoma SH-SY5Y cells, the promoting effect of ethanol on the H2O2-induced cell death was increased with exposure time. Ethanol promoted the nuclear damage, change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to H2O2 in PC12 cells. Catalase, carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the H2O2 and ethanol-induced mitochondrial dysfunction and cell injury. The results show that the ethanol treatment promotes the cytotoxicity of H2O2 against PC12 cells. Ethanol may enhance the H2O2-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that ethanol as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by oxidants.

  14. Long (27-nucleotides) small inhibitory RNAs targeting E6 protein eradicate effectively the cervical cancer cells harboring human papilloma virus.

    PubMed

    Cho, Jun Sik; Lee, Shin-Wha; Kim, Yong-Man; Kim, Dongho; Kim, Dae-Yeon; Kim, Young-Tak

    2015-05-01

    This study was to identify small inhibitory RNAs (siRNAs) that are effective in inhibiting growth of cervical cancer cell lines harboring human papilloma virus (HPV) and to examine how siRNAs interact with interferon beta (IFN-β) and thimerosal. The HPV18-positive HeLa and C-4I cell lines were used. Four types of siRNAs were designed according to their target (both E6 and E7 vs. E6 only) and sizes (21- vs. 27-nucleotides); Ex-18E6/21, Ex-18E6/27, Sp-18E6/21, and Sp-18E6/27. Each siRNA-transfected cells were cultured with or without IFN-b and thimerosal and their viability was measured. The viabilities of HPV18-positive tumor cells were reduced by 21- and 27-nucleotide siRNAs in proportion to the siRNA concentrations. Of the two types of siRNAs, the 27-nucleotide siRNA constructs showed greater inhibitory efficacy. Sp-18E6 siRNAs, which selectively downregulates E6 protein only, were more effective than the E6- and E7-targeting Ex-18E6 siRNAs. siRNAs and IFN-β showed the synergistic effect to inhibit HeLa cell survival and the effect was proportional to both siRNA and IFN-β concentrations. Thimerosal in the presence of siRNA exerted a dose-dependent inhibition of C-4I cell survival. Finally, co-treatment with siRNA, IFN-β, and thimerosal induced the most profound decrease in the viability of both cell lines. Long (27-nucleotides) siRNAs targeting E6-E7 mRNAs effectively reduce the viability of HPV18-positive cervical cancer cells and show the synergistic effect in combination with IFN-b and thimerosal. It is necessary to find the rational design of siRNAs and effective co-factors to eradicate particular cervical cancer.

  15. Glycyrrhetinic Acid Triggers a Protective Autophagy by Activation of Extracellular Regulated Protein Kinases in Hepatocellular Carcinoma Cells

    PubMed Central

    2015-01-01

    Glycyrrhetinic acid (GA), one of the main constituents of the famous Chinese medicinal herb and food additive licorice (Glycyrrhiza uralensis Fisch), has been indicated to possess potential anticancer effects and is widely utilized in hepatocellular carcinoma (HCC) targeted drug delivery systems (TDDS) due to the highly expressed target binding sites of GA on HCC cells. This study found that GA reduced the cell viability, increased the release of lactate dehydrogenase, and enhanced the expression of Bax, cleaved caspase-3, and LC3-II in HCC cells. The GA-triggered autophagy has been further confirmed by monodansylcadaverine staining as well as transmission electron microscopy analysis. The cell viability was obviously decreased whereas the expression of cleaved caspases was significantly increased when inhibition of autophagy by choloroquine or bafilomycin A1, suggesting that GA triggered a protective autophagy. Extracellular regulated protein kinase (ERK) was activated after treatment with GA in HepG2 cells and pretreatment with U0126 or PD98059, the MEK inhibitors, reversed GA-triggered autophagy as evidenced by decreased expression of LC3-II and formation of autophagosomes, respectively. Furthermore, GA-induced cell death and apoptosis were enhanced after pretreatment with PD98059. This is the first report that GA triggers a protective autophagy in HCC cells via activation of ERK, which might attenuate the anticancer effects of GA or chemotherapeutic drugs loaded with GA-modified TDDS. PMID:25403108

  16. Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Janmejai K.; Department of Urology, University Hospitals of Cleveland, Cleveland, OH 44106; Gupta, Sanjay

    2006-07-28

    One of the requisite of cancer chemopreventive agent is elimination of damaged or malignant cells through cell cycle inhibition or induction of apoptosis without affecting normal cells. In this study, employing normal human prostate epithelial cells (PrEC), virally transformed normal human prostate epithelial cells (PZ-HPV-7), and human prostate cancer cells (LNCaP, DU145, and PC-3), we evaluated the growth-inhibitory and apoptotic effects of tocotrienol-rich fraction (TRF) extracted from palm oil. TRF treatment to PrEC and PZ-HPV-7 resulted in almost identical growth-inhibitory responses of low magnitude. In sharp contrast, TRF treatment resulted in significant decreases in cell viability and colony formation inmore » all three prostate cancer cell lines. The IC{sub 5} values after 24 h TRF treatment in LNCaP, PC-3, and DU145 cells were in the order 16.5, 17.5, and 22.0 {mu}g/ml. TRF treatment resulted in significant apoptosis in all the cell lines as evident from (i) DNA fragmentation (ii) fluorescence microscopy, and (iii) cell death detection ELISA, whereas the PrEC and PZ-HPV-7 cells did not undergo apoptosis, but showed modestly decreased cell viability only at a high dose of 80 {mu}g/ml. In cell cycle analysis, TRF (10-40 {mu}g/ml) resulted in a dose-dependent G0/G1 phase arrest and sub G1 accumulation in all three cancer cell lines but not in PZ-HPV-7 cells. These results suggest that the palm oil derivative TRF is capable of selectively inhibiting cellular proliferation and accelerating apoptotic events in prostate cancer cells. TRF offers significant promise as a chemopreventive and/or therapeutic agent against prostate cancer.« less

  17. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway.

    PubMed

    Gao, Ran; Zhang, Rui; Zhang, Cuicui; Zhao, Li; Zhang, Yue

    2018-01-01

    Medulloblastoma is the most common posterior fossa tumor in children and one that easily metastasizes. The mechanisms of how the medulloblastoma develops and progresses remain to be elucidated. The present study aimed to assess the role of long noncoding colon cancer-associated transcript-1 (lncRNA CCAT1) in cell proliferation and metastasis in human medulloblastoma. Levels of CCAT1 were measured in samples and cell lines of medulloblastoma. Cell cycle progression, cell viability assay, colony formation assay, wound-healing and Transwell assays Corning, Cambridge, MA, USA were used to investigate the viability and motility of cells. Western blot assay was used to investigate the levels of CCAT1 and other proteins. The initial findings indicated that CCAT1 was significantly up-regulated in clinical cancerous tissues and expressed differently in a series of medulloblastoma cell lines. CCAT1 knockdown significantly slowed cell proliferation rates and inhibited cell clonogenic potential in Daoy cells and D283 cells. Cell cycle progression was disrupted with cell proportions in the G0/G1 phase decreased and the proportion in the S phase and G2/M phases increased, in Daoy cells and D283 cells. Concordantly, medulloblastoma tumor cell growth rates were found to be impaired in xenotransplanted mice. After CCAT1 knockdown, cell wound recovery ability was significantly inhibited. Furthermore, the phosphorylated levels of MAPK, ERK and MEK, but not their total levels decreased after the down-regulation of CCAT1 in Daoy and D283 cells. Our results suggested that the lncRNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma by possibly regulating the MAPK pathway.

  18. Dihydroartemisinin Inhibits Glucose Uptake and Cooperates with Glycolysis Inhibitor to Induce Apoptosis in Non-Small Cell Lung Carcinoma Cells

    PubMed Central

    Gao, Jing; Luo, Xian-yang; Liu, Yu; Li, Ning; Li, Chun-lei; Chen, Yu-qiang; Yu, Xiu-yi; Jiang, Jie

    2015-01-01

    Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells. PMID:25799586

  19. Dihydroartemisinin inhibits glucose uptake and cooperates with glycolysis inhibitor to induce apoptosis in non-small cell lung carcinoma cells.

    PubMed

    Mi, Yan-jun; Geng, Guo-jun; Zou, Zheng-zhi; Gao, Jing; Luo, Xian-yang; Liu, Yu; Li, Ning; Li, Chun-lei; Chen, Yu-qiang; Yu, Xiu-yi; Jiang, Jie

    2015-01-01

    Despite recent advances in the therapy of non-small cell lung cancer (NSCLC), the chemotherapy efficacy against NSCLC is still unsatisfactory. Previous studies show the herbal antimalarial drug dihydroartemisinin (DHA) displays cytotoxic to multiple human tumors. Here, we showed that DHA decreased cell viability and colony formation, induced apoptosis in A549 and PC-9 cells. Additionally, we first revealed DHA inhibited glucose uptake in NSCLC cells. Moreover, glycolytic metabolism was attenuated by DHA, including inhibition of ATP and lactate production. Consequently, we demonstrated that the phosphorylated forms of both S6 ribosomal protein and mechanistic target of rapamycin (mTOR), and GLUT1 levels were abrogated by DHA treatment in NSCLC cells. Furthermore, the upregulation of mTOR activation by high expressed Rheb increased the level of glycolytic metabolism and cell viability inhibited by DHA. These results suggested that DHA-suppressed glycolytic metabolism might be associated with mTOR activation and GLUT1 expression. Besides, we showed GLUT1 overexpression significantly attenuated DHA-triggered NSCLC cells apoptosis. Notably, DHA synergized with 2-Deoxy-D-glucose (2DG, a glycolysis inhibitor) to reduce cell viability and increase cell apoptosis in A549 and PC-9 cells. However, the combination of the two compounds displayed minimal toxicity to WI-38 cells, a normal lung fibroblast cell line. More importantly, 2DG synergistically potentiated DHA-induced activation of caspase-9, -8 and -3, as well as the levels of both cytochrome c and AIF of cytoplasm. However, 2DG failed to increase the reactive oxygen species (ROS) levels elicited by DHA. Overall, the data shown above indicated DHA plus 2DG induced apoptosis was involved in both extrinsic and intrinsic apoptosis pathways in NSCLC cells.

  20. Exploring the effects of low-level laser therapy on fibroblasts and tumor cells following gamma radiation exposure.

    PubMed

    Ramos Silva, Camila; Cabral, Fernanda Viana; de Camargo, Claudinei Francisco Morais; Núñez, Silvia Cristina; Mateus Yoshimura, Tania; de Lima Luna, Arthur Cássio; Maria, Durvanei Augusto; Ribeiro, Martha Simões

    2016-12-01

    Ionizing radiation (IR) induces DNA damage and low-level laser therapy (LLLT) has been investigated to prevent or repair detrimental outcomes resulting from IR exposure. Few in vitro studies, however, explore the biological mechanisms underlying those LLLT benefits. Thus, in this work, fibroblasts and tumor cells are submitted to IR with doses of 2.5 Gy and 10 Gy. After twenty-four-h, the cells are exposed to LLLT with fluences of 30 J cm -2 , 90 J cm -2 , and 150 J cm -2 . Cellular viability, cell cycle phases, cell proliferation index and senescence are evaluated on days 1 and 4 after LLLT irradiation. For fibroblasts, LLLT promotes - in a fluence-dependent manner - increments in cell viability and proliferation, while a reduction in the senescence was observed. Regarding tumor cells, no influences of LLLT on cell viability are noticed. Whereas LLLT enhances cell populations in S and G 2 /M cell cycle phases for both cellular lines, a decrease in proliferation and increase in senescence was verified only for tumor cells. Putting together, the results suggest that fibroblasts and tumor cells present different responses to LLLT following exposure to gamma-radiation, and these promising results should stimulate further investigations. Senescence of tumor cells and fibroblasts on the 4 th day after ionizing radiation (IR) and low-level laser therapy (LLLT) exposures. The number of senescent cells increased significantly for tumor cells (a) while for fibroblasts no increment was observed (b). The blue collor indicates senescence activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top