Sample records for cell viability remained

  1. Influence of Waveform on Cell Viability during Ultrasound Exposure

    NASA Astrophysics Data System (ADS)

    Saliev, Timur; Feril, Loreto B.; McLean, Donald A.; Tachibana, Katsuro; Campbell, Paul A.

    2011-09-01

    We examined the role of ultrasound standing waves, and their travelling wave counterparts, on cell viability in an in-vitro insonation apparatus. Furthermore, the effect of distinct waveforms (sine and top-hat) was also explored, together with the role of microbubble presence. Measurements of cell viability in standing wave scenarios demonstrated a relatively higher rate of lysis (63.13±10.89% remaining viable) compared with the travelling wave data, where 96.22±4.0% remained viable. Significant differences were also seen as a function of waveform, where insonations employing top-hat wave shapes resulted in an average end stage viability of 30.31±5.71% compared with 61.94±14.28% in the sinusoidal counterparts.

  2. Viability and Virulence of Experimentally Stressed Nonculturable Salmonella typhimurium

    PubMed Central

    Caro, Audrey; Got, Patrice; Lesne, Jean; Binard, Sylvie; Baleux, Bernard

    1999-01-01

    Maintenance of pathogenicity of viable but nonculturable Salmonella typhimurium cells experimentally stressed with UV-C and seawater, was investigated relative to the viability level of the cellular population. Pathogenicity, tested in a mouse model, was lost concomitantly with culturability, whereas cell viability remained undamaged, as determined by respiratory activity and cytoplasmic membrane and genomic integrities. PMID:10388726

  3. The ATP/DNA Ratio Is a Better Indicator of Islet Cell Viability Than the ADP/ATP Ratio

    PubMed Central

    Suszynski, T.M.; Wildey, G.M.; Falde, E.J.; Cline, G.W.; Maynard, K. Stewart; Ko, N.; Sotiris, J.; Naji, A.; Hering, B.J.; Papas, K.K.

    2009-01-01

    Real-time, accurate assessment of islet viability is critical for avoiding transplantation of nontherapeutic preparations. Measurements of the intracellular ADP/ATP ratio have been recently proposed as useful prospective estimates of islet cell viability and potency. However, dead cells may be rapidly depleted of both ATP and ADP, which would render the ratio incapable of accounting for dead cells. Since the DNA of dead cells is expected to remain stable over prolonged periods of time (days), we hypothesized that use of the ATP/DNA ratio would take into account dead cells and may be a better indicator of islet cell viability than the ADP/ATP ratio. We tested this hypothesis using mixtures of healthy and lethally heat-treated (HT) rat insulinoma cells and human islets. Measurements of ATP/DNA and ADP/ATP from the known mixtures of healthy and HT cells and islets were used to evaluate how well these parameters correlated with viability. The results indicated that ATP and ADP were rapidly (within 1 hour) depleted in HT cells. The fraction of HT cells in a mixture correlated linearly with the ATP/DNA ratio, whereas the ADP/ADP ratio was highly scattered, remaining effectively unchanged. Despite similar limitations in both ADP/ADP and ATP/DNA ratios, in that ATP levels may fluctuate significantly and reversibly with metabolic stress, the results indicated that ATP/DNA was a better measure of islet viability than the ADP/ATP ratio. PMID:18374063

  4. Effect of sodium hypochlorite on human pulp cells: an in vitro study

    PubMed Central

    Essner, Mark D.; Javed, Amjad; Eleazer, Paul D.

    2014-01-01

    Background The purpose of this study was to determine the effect of sodium hypochlorite (NaOCl) on human pulp cells to provide an aid in determining its optimum concentration in maintaining the viability of remaining pulp cells in the revascularization of immature permanent teeth with apical periodontitis. Study design Human pulp tissue cells taken from extracted third molars were plated, incubated, and subjected to various concentrations of NaOCl (0.33%, 0.16%, 0.08%, and 0.04%) for 5-, 10-, and 15-minute time intervals to simulate possible contact times in vivo. The Cell Titer–Glo Luminescent Cell Viability Assay was used to determine the number of viable cells present in culture following treatment. Results The results showed an increase in cell viability with the lowering of NaOCl concentration. The use of 0.04% NaOCl was similar to the control, indicating nearly complete preservation of cell viability at all time intervals tested. As sodium hypochlorite concentration increased from 0.04% to 0.33%, cell viability decreased correspondingly. Conclusions The results indicate that the lowest concentration of NaOCl tested did not affect the viability of cells. This may prove beneficial in developing a new treatment protocol to help preserve existing vital pulp cells in revascularization cases. PMID:21821446

  5. Preservation of Rhizobium viability and symbiotic infectivity by suspension in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crist, D.K.; Wyza, R.E.; Mills, K.K.

    1984-05-01

    Three Rhizobium japonicum strains and two slow-growing cowpea-type Rhizobium strains were found to remain viable and able to rapidly nodulate their respective hosts after being stored in purified water at ambient temperatures for periods of 1 year and longer. Three fast-growing Rhizobium species did not remain viable under the same water storage conditions. After dilution of slow-growing Rhizobium strains with water to 10/sup 3/ to 10/sup 5/ cells ml/sup -1/, the bacteria multiplied until the viable cell count reached levels of between 10/sub 6/ and 10/sup 7/ cells ml/sup -1/. The viable cell count subsequently remained fairly constant. When themore » rhizobia were diluted to 10/sup 7/ cells ml/sup -1/, they did not multiply, but full viability was maintained. If the rhizobia were washed and suspended at 10/sup 9/ cells ml/sup -1/, viability slowly declined to 10/sup 7/ cells ml/sup -1/ during 9 months of storage. Scanning electron microscopy showed that no major morphological changes took place during storage. Preservation of slow-growing rhizobia in water suspensions could provide a simple and inexpensive alternative to current methods for the preservation of rhizobia for legume inoculation. 25 references, 7 figures, 2 tables.« less

  6. A cell transportation solution that preserves live circulating tumor cells in patient blood samples.

    PubMed

    Stefansson, Steingrimur; Adams, Daniel L; Ershler, William B; Le, Huyen; Ho, David H

    2016-05-06

    Circulating tumor cells (CTCs) are typically collected into CellSave fixative tubes, which kills the cells, but preserves their morphology. Currently, the clinical utility of CTCs is mostly limited to their enumeration. More detailed investigation of CTC biology can be performed on live cells, but obtaining live CTCs is technically challenging, requiring blood collection into biocompatible solutions and rapid isolation which limits transportation options. To overcome the instability of CTCs, we formulated a sugar based cell transportation solution (SBTS) that stabilizes cell viability at ambient temperature. In this study we examined the long term viability of human cancer cell lines, primary cells and CTCs in human blood samples in the SBTS for transportation purposes. Four cell lines, 5 primary human cells and purified human PBMCs were tested to determine the viability of cells stored in the transportation solution at ambient temperature for up to 7 days. We then demonstrated viability of MCF-7 cells spiked into normal blood with SBTS and stored for up to 7 days. A pilot study was then run on blood samples from 3 patients with metastatic malignancies stored with or without SBTS for 6 days. CTCs were then purified by Ficoll separation/microfilter isolation and identified using CTC markers. Cell viability was assessed using trypan blue or CellTracker™ live cell stain. Our results suggest that primary/immortalized cell lines stored in SBTS remain ~90% viable for > 72 h. Further, MCF-7 cells spiked into whole blood remain viable when stored with SBTS for up to 7 days. Finally, live CTCs were isolated from cancer patient blood samples kept in SBTS at ambient temperature for 6 days. No CTCs were isolated from blood samples stored without SBTS. In this proof of principle pilot study we show that viability of cell lines is preserved for days using SBTS. Further, this solution can be used to store patient derived blood samples for eventual isolation of viable CTCs after days of storage. Therefore, we suggest an effective and economical transportation of cancer patient blood samples containing live CTCs can be achieved.

  7. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria

    PubMed Central

    Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z

    2016-01-01

    Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells. PMID:27383047

  8. Mps1 kinase regulates tumor cell viability via its novel role in mitochondria.

    PubMed

    Zhang, X; Ling, Y; Guo, Y; Bai, Y; Shi, X; Gong, F; Tan, P; Zhang, Y; Wei, C; He, X; Ramirez, A; Liu, X; Cao, C; Zhong, H; Xu, Q; Ma, R Z

    2016-07-07

    Targeting mitotic kinase monopolar spindle 1 (Mps1) for tumor therapy has been investigated for many years. Although it was suggested that Mps1 regulates cell viability through its role in spindle assembly checkpoint (SAC), the underlying mechanism remains less defined. In an endeavor to reveal the role of high levels of mitotic kinase Mps1 in the development of colon cancer, we unexpectedly found the amount of Mps1 required for cell survival far exceeds that of maintaining SAC in aneuploid cell lines. This suggests that other functions of Mps1 besides SAC are also employed to maintain cell viability. Mps1 regulates cell viability independent of its role in cytokinesis as the genetic depletion of Mps1 spanning from metaphase to cytokinesis affects neither cytokinesis nor cell viability. Furthermore, we developed a single-cycle inhibition strategy that allows disruption of Mps1 function only in mitosis. Using this strategy, we found the functions of Mps1 in mitosis are vital for cell viability as short-term treatment of mitotic colon cancer cell lines with Mps1 inhibitors is sufficient to cause cell death. Interestingly, Mps1 inhibitors synergize with microtubule depolymerizing drug in promoting polyploidization but not in tumor cell growth inhibition. Finally, we found that Mps1 can be recruited to mitochondria by binding to voltage-dependent anion channel 1 (VDAC1) via its C-terminal fragment. This interaction is essential for cell viability as Mps1 mutant defective for interaction fails to main cell viability, causing the release of cytochrome c. Meanwhile, deprivation of VDAC1 can make tumor cells refractory to loss of Mps1-induced cell death. Collectively, we conclude that inhibition of the novel mitochondrial function Mps1 is sufficient to kill tumor cells.

  9. The effect of ultrasound-related stimuli on cell viability in microfluidic channels

    PubMed Central

    2013-01-01

    Background In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Results Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0–29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. Conclusion The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells. PMID:23809777

  10. The effect of ultrasound-related stimuli on cell viability in microfluidic channels.

    PubMed

    Ankrett, Dyan N; Carugo, Dario; Lei, Junjun; Glynne-Jones, Peter; Townsend, Paul A; Zhang, Xunli; Hill, Martyn

    2013-06-28

    In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0-29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells.

  11. The effect of cell density, proximity, and time on the cytotoxicity of magnesium and galvanically coupled magnesium-titanium particles in vitro.

    PubMed

    Kim, Jua; Gilbert, Jeremy L

    2018-05-01

    Magnesium (Mg) and galvanically coupled magnesium-titanium (Mg-Ti) particles in vitro have been reported previously to kill cells in a dosage-dependent manner. Mg-Ti particles kill cells more effectively than Mg alone, due to the galvanic effect of Mg and Ti. This study further investigated the in vitro cytotoxicity of Mg and Mg-Ti in terms of particle concentration, cell density, time, and proximity. Cell density has an effect on cell viability only at low particle concentrations (below 250 µg/mL), where cell viability dropped only for lower cell densities (5000-10,000 cells/cm 2 ) and not for higher cell densities (20,000-30,000 cells/cm 2 ), showing that the particles cannot kill if there are more cells present. Cytotoxicity of Mg and Mg-Ti particles is quick and temporary, where the particles kill cells only during particle corrosion (first 24 h). Depending on the percentage of surviving cells, particle concentrations, and ongoing corrosion activity, the remaining live cells either proliferated and recovered, or just remained viable and quiescent. The particle killing is also proximity-dependent, where cell viability was significantly higher for cells far away from the particles (greater than ∼1 mm) compared to those close to the particles (less than ∼1 mm). Although the increase of pH does affect cell viability negatively, it is not the sole killing factor since cell viability is significantly dependent on particle type and proximity but not pH. Mg and Mg-Ti particles used in this study are large enough to prevent direct cell phagocytosis so that the cell killing effect may be attributed to solely electrochemical reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1428-1439, 2018. © 2018 Wiley Periodicals, Inc.

  12. The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone and Straumann Bone Ceramic).

    PubMed

    Kauschke, E; Rumpel, E; Fanghänel, J; Bayerlein, T; Gedrange, T; Proff, P

    2006-02-01

    Different clinical applications, including dentistry, are making increasing demands on bone grafting material. In the present study we have analysed the viability, proliferation and growth characteristics of fibroblasts cultured in vitro together with two different bone grafting materials, NanoBone and Straumann Bone Ceramic, over a period of 24 and 28 days respectively. Viability was measured at least every 72 hours by using the alamarBlue assay, a test that measures quantitatively cell proliferation and viability but does not require cell fixation or extraction. After one week of culture fibroblast viability was as high as in controls for both grafting materials and remained high (> 90%) for the duration of the experiment. Cell growth was evaluated microscopically. Scanning electron microscopy revealed a dense fibroblast growth at the surface of both bone grafting materials after three weeks of in vitro culture. Generally, our in vitro analyses contribute to further insights into cell - scaffold interactions.

  13. Improvement in the Viability of Cryopreserved Cells by Microencapsulation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshifumi; Morinaga, Yukihiro; Ujihira, Masanobu; Oka, Kotaro; Tanishita, Kazuo

    The advantages of microencapsulated cells over those of suspended cells were evaluated for improving viability in cryopreservation. Rat pheochromocytoma (PC12) cells were selected as the test biological cells and then microencapsulated in alginate-polylysine-alginate membranes. These microencapsulated PC12 cells were frozen by differential scanning calorimetry (DSC) at various cooling rates, from 0.5 to 10°C/min. Their latent heat was measured during freezing from 4 to -80°C. The post-thaw viability was evaluated by dopamine-concentration measurement and by trypan blue exclusion assay. Results showed that at cooling rates of 0.5 and 1°C/min, the latent heat of microencapsulated PC12 cells was lower than that of suspended cells. This lower latent heat is caused by the fact that the extra-microcapsule froze and the intra-capsule remained unfrozen due to the formation of ice crystals in the extra-capsule space. The post-thaw viability of microencapsulated PC12 cells was improved when the cooling rate was 0.5 or 1°C/min, compared with that of suspended cells. Therefore, in microencapsulated PC12 cells, maintaining the intra-microcapsules in an unfrozen state during freezing reduces the solution effect and thus improves the post-thaw viability.

  14. Towards gene banking amphibian maternal germ lines: short-term incubation, cryoprotectant tolerance and cryopreservation of embryonic cells of the frog, Limnodynastes peronii.

    PubMed

    Lawson, Bianca; Clulow, Simon; Mahony, Michael J; Clulow, John

    2013-01-01

    Gene banking is arguably the best method available to prevent the loss of genetic diversity caused by declines in wild populations, when the causes of decline cannot be halted or reversed. For one of the most impacted vertebrate groups, the amphibians, gene banking technologies have advanced considerably, and gametes from the male line can be banked successfully for many species. However, cryopreserving the female germ line remains challenging, with attempts at cryopreserving oocytes unsuccessful due to their large size and yolk content. One possible solution is to target cryopreservation of early embryos that contain the maternal germ line, but consist of smaller cells. Here, we investigate the short term incubation, cryoprotectant tolerance, and cryopreservation of dissociated early embryonic cells from gastrulae and neurulae of the Striped Marsh Frog, Limnodynastes peronii. Embryos were dissociated and cells were incubated for up to 24 hours in various media. Viability of both gastrula and neurula cells remained high (means up to 40-60%) over 24 hours of incubation in all media, although viability was maintained at a higher level in Ca(2+)-free Simplified Amphibian Ringer; low speed centrifugation did not reduce cell viability. Tolerance of dissociated embryonic cells was tested for two cryoprotectants, glycerol and dimethyl sulphoxide; dissociated cells of both gastrulae and neurulae were highly tolerant to both-indeed, cell viability over 24 hours was higher in media containing low-to-medium concentrations than in equivalent cryoprotectant-free media. Viability over 24 hours was lower in concentrations of cryoprotectant higher than 10%. Live cells were recovered following cryopreservation of both gastrula and neurula cells, but only at low rates. Optimal cryodiluents were identified for gastrula and neurula cells. This is the first report of a slow cooling protocol for cryopreservation of amphibian embryonic cells, and sets future research directions for cryopreserving amphibian maternal germ lines.

  15. Use of high concentrations of dimethyl sulfoxide for cryopreservation of HepG2 cells adhered to glass and polydimethylsiloxane matrices.

    PubMed

    Nagahara, Yukitoshi; Sekine, Hiroaki; Otaki, Mari; Hayashi, Masakazu; Murase, Norio

    2016-02-01

    Animal cells are generally cryopreserved in cryovials in a cell suspension state containing 5%-10% v/v dimethyl sulfoxide (DMSO) used as a cryoprotective agent. However, cryopreservation of cells in an attached state has not been intensively studied, and the effective freezing solution remains unknown. Here we determined the suitable DMSO concentration for the cryopreservation of human hepatoma HepG2 cells attached to glass and polydimethylsiloxane (PDMS) matrices coated with poly-l-lysine. With the use of the glass matrix, the rate of cell adhesion increased with the DMSO concentration up to 30% v/v in the freezing solution. In contrast, the cell-adhesion rate remained constant in the case of the PDMS matrix irrespective of the DMSO concentration between 10% v/v and 30% v/v. The viability of post-thawed cells attached to glass or PDMS matrix was also investigated. The viability was highest at the DMSO concentration of 20% v/v in the freezing solution. The DMSO concentration of 30% v/v, however, had a cytotoxic effect on the cell viability. Thus, the 20% v/v DMSO concentration was found to be most suitable for the cryopreservation of HepG2 cells in the attached state. This dose is high compared to the DMSO concentration used for the cryopreservation of cells in the suspended state. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  17. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds.

    PubMed

    Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina

    2017-12-01

    Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Comparative Evaluation of Cell Viability Immediately After Osteotomy for Implants With Drills and Piezosurgery: Immunohistochemistry Analysis.

    PubMed

    Pereira, Cassiano Costa Silva; Batista, Fábio Roberto de Souza; Jacob, Ricardo Garcia Mureb; Nogueira, Lamis Meorin; Carvalho, Abrahão Cavalcante Gomes de Souza; Gealh, Walter Cristiano; Garcia-Júnior, Idelmo Rangel; Okamoto, Roberta

    2018-05-08

    To evaluate the effect of reusing drills and piezosurgery tips during implant osteotomy on immediate bone cell viability through immunohistochemical analysis. Six male rabbits were divided into 2 groups and then divided into 5 subgroups-correspond to drills and tips used 10, 20, 30, 40, and 50 times, respectively. All animals received 10 osteotomies in each tibia, by use of the classic drilling procedure in one group (G1) and the piezosurgery device in the other group (G2). For immunohistochemical technique were utilized the osteoprotegerin, RANKL, osteocalcin, and caspase 3. Control procedures were performed by omitting the primary antibodies (negative control). Bone formation and resorption responses presented in more intense way during the piezosurgery. The expression of osteocalcin had become quite intense in piezosurgery groups, but with reduced immunostaining from the 30th osteotomy. The caspase 3 showed the viability of the osteoblast from the 20th osteotomy with piezosurgery and remained constant until the 50th. Piezosurgery provides greater osteoblastic cell viability than the system of conventional drilling. This study will provide data so that the authors can recycle the drills and tips for implant placement, thus enabling a better cell viability for osseointegration.

  19. Molecular Viability Testing of UV-Inactivated Bacteria.

    PubMed

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-05-15

    PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli , Aeromonas hydrophila , and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment. IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection. Copyright © 2017 American Society for Microbiology.

  20. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia.

    PubMed

    Gálvez-Martín, Patricia; Hmadcha, Abdelkrim; Soria, Bernat; Calpena-Campmany, Ana C; Clares-Naveros, Beatriz

    2014-04-01

    Critical limb ischemia (CLI) is associated with significant morbidity and mortality. In this study, we developed and characterized an intra-arterial cell suspension containing human mesenchymal stem cells (hMSCs) for the treatment of CLI. Equally, the stability of cells was studied in order to evaluate the optimal conditions of storage that guarantee the viability from cell processing to the administration phase. Effects of various factors, including excipients, storage temperature and time were evaluated to analyze the survival of hMSCs in the finished medicinal product. The viability of hMSCs in different packaging media was studied for 60 h at 4 °C. The best medium to maintain hMSCs viability was then selected to test storage conditions (4, 8, 25 and 37 °C; 60 h). The results showed that at 4 °C the viability was maintained above 80% for 48 h, at 8 °C decreased slightly, whereas at room temperature and 37 °C decreased drastically. Its biocompatibility was assessed by cell morphology and cell viability assays. During stability study, the stored cells did not show any change in their phenotypic or genotypic characteristics and physicochemical properties remained constant, the ability to differentiate into adipocytes and osteocytes and sterility requirements were also unaltered. Finally, our paper proposes a packing media composed of albumin 20%, glucose 5% and Ringer's lactate at a concentration of 1×10(6) cells/mL, which must be stored at 4 °C as the most suitable to maintain cell viability (>80%) and without altering their characteristics for more than 48 h. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Impact of release dynamics of laser-irradiated polymer micropallets on the viability of selected adherent cells

    PubMed Central

    Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W.; Ras, Mat; Allbritton, Nancy L.; Sims, Christopher E.; Venugopalan, Vasan

    2012-01-01

    We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass–pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s−1 through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s−1 and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells. PMID:22158840

  2. Impact of release dynamics of laser-irradiated polymer micropallets on the viability of selected adherent cells.

    PubMed

    Ma, Huan; Mismar, Wael; Wang, Yuli; Small, Donald W; Ras, Mat; Allbritton, Nancy L; Sims, Christopher E; Venugopalan, Vasan

    2012-06-07

    We use time-resolved interferometry, fluorescence assays and computational fluid dynamics (CFD) simulations to examine the viability of confluent adherent cell monolayers to selection via laser microbeam release of photoresist polymer micropallets. We demonstrate the importance of laser microbeam pulse energy and focal volume position relative to the glass-pallet interface in governing the threshold energies for pallet release as well as the pallet release dynamics. Measurements using time-resolved interferometry show that increases in laser pulse energy result in increasing pallet release velocities that can approach 10 m s(-1) through aqueous media. CFD simulations reveal that the pallet motion results in cellular exposure to transient hydrodynamic shear stress amplitudes that can exceed 100 kPa on microsecond timescales, and which produces reduced cell viability. Moreover, CFD simulation results show that the maximum shear stress on the pallet surface varies spatially, with the largest shear stresses occurring on the pallet periphery. Cell viability of confluent cell monolayers on the pallet surface confirms that the use of larger pulse energies results in increased rates of necrosis for those cells situated away from the pallet centre, while cells situated at the pallet centre remain viable. Nevertheless, experiments that examine the viability of these cell monolayers following pallet release show that proper choices for laser microbeam pulse energy and focal volume position lead to the routine achievement of cell viability in excess of 90 per cent. These laser microbeam parameters result in maximum pallet release velocities below 6 m s(-1) and cellular exposure of transient hydrodynamic shear stresses below 20 kPa. Collectively, these results provide a mechanistic understanding that relates pallet release dynamics and associated transient shear stresses with subsequent cellular viability. This provides a quantitative, mechanistic basis for determining optimal operating conditions for laser microbeam-based pallet release systems for the isolation and selection of adherent cells.

  3. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.

    PubMed

    Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi

    2017-02-15

    We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery

    PubMed Central

    Yeung, Timothy W.; Üçok, Elif F.; Tiani, Kendra A.; McClements, David J.; Sela, David A.

    2016-01-01

    Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this study, Bifidobacterium longum subspecies and strains were encapsulated in core-shell microgels consisting of an alginate core and a microgel shell. Encapsulated obligate anaerobes Bifidobacterium longum subsp. infantis and Bifidobacterium longum subsp. longum exhibited differences in viability in a strain-dependent manner, without a discernable relationship to subspecies lineage. This includes viability under aerobic storage conditions and modeled gastrointestinal tract conditions. Coating alginate microgels with chitosan did not improve viability compared to cells encapsulated in alginate microgels alone, suggesting that modifying the surface charge alone does not enhance delivery. Thus hydrogel beads have great potential for improving the stability and efficacy of bifidobacterial probiotics in various nutritional interventions. PMID:27148184

  5. Quantifying fungal viability in air and water samples using quantitative PCR after treatment with propidium monoazide (PMA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vesper, Stephen; McKinstry, Craig A.; Hartmann, Chris

    2007-11-28

    A method is described to discriminate between live and dead cells of the infectious fungi Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, Mucor racemosus, Rhizopus stolonifer and Paecilomyces variotii. To test the method, conidial suspensions were heat inactivated at 85 °C or held at 5 °C (controls) for 1 h. Polycarbonate filters (25 mm diameter, 0.8 μm pore size) were placed on "welled" slides (14 mm diameter) and the filters treated with either PBS or PMA. Propidium monoazide (PMA), which enters dead cells but not live cells, was incubated with cell suspensions, exposed to blue wavelength light-emitting diodes (LED) to inactivatemore » remaining PMA and secure intercalation of PMAwith DNA of dead cells. Treated cells were extracted and the live and dead cells evaluated with quantitative PCR (QPCR). After heat treatment and DNA modification with PMA, all fungal species tested showed an approximate 100- to 1000-fold difference in cell viability estimated by QPCR analysis which was consistent with estimates of viability based on culturing.« less

  6. The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts

    PubMed Central

    Tange, Yoshie; Kurabayashi, Atsushi; Goto, Bunshiro; Hoe, Kwang-Lae; Kim, Dong-Uk; Park, Han-Oh; Hayles, Jacqueline; Chikashige, Yuji; Tsutumi, Chihiro; Hiraoka, Yasushi; Yamao, Fumiaki; Nurse, Paul; Niwa, Osami

    2012-01-01

    To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability. PMID:22737087

  7. The effect of uranium on bacterial viability and cell surface morphology using atomic force microscopy in the presence of bicarbonate ions.

    PubMed

    Sepulveda-Medina, Paola; Katsenovich, Yelena; Musaramthota, Vishal; Lee, Michelle; Lee, Brady; Dua, Rupak; Lagos, Leonel

    2015-06-01

    Past disposal practices at nuclear production facilities have led to the release of liquid waste into the environment creating multiple radionuclide plumes. Microorganisms are known for the ability to interact with radionuclides and impact their mobility in soils and sediments. Gram-positive Arthrobacter sp. are one of the most common bacterial groups in soils and are found in large numbers in subsurface environments contaminated with radionuclides. This study experimentally analyzed changes on the bacteria surface at the nanoscale level after uranium exposure and evaluated the effect of aqueous bicarbonate ions on U(VI) toxicity of a low uranium-tolerant Arthrobacter oxydans strain G968 by investigating changes in adhesion forces and cell dimensions via atomic force microscopy (AFM). Experiments were extended to assess cell viability by the Live/Dead BacLight Bacterial Viability Kit (Molecular Probes) and quantitatively illustrate the effect of uranium exposure in the presence of varying concentrations of bicarbonate ions. AFM and viability studies showed that samples containing bicarbonate were able to withstand uranium toxicity and remained viable. Samples containing no bicarbonate exhibited deformed surfaces and a low height profile, which, in conjunction with viability studies, indicated that the cells were not viable. Copyright © 2015 Institut Pasteur. All rights reserved.

  8. Differential eosinophil and mast cell regulation: Mast cell viability and accumulation in inflammatory tissue are independent of proton-sensing receptor GPR65

    PubMed Central

    Zhu, Xiang; Mose, Eucabeth; Hogan, Simon P.

    2014-01-01

    Extracellular acidification has been observed in allergic inflammatory diseases. Recently, we demonstrated that the proton-sensing receptor G protein-coupled receptor 65 (GPR65) regulates eosinophil survival in an acidic environment in vitro and eosinophil accumulation in an allergic lung inflammation model. For mast cells, another inflammatory cell type critical for allergic responses, it remains unknown whether GPR65 is expressed and/or regulates mast cell viability. Thus, in the present study, we employed in vitro experiments and an intestinal anaphylaxis model in which both mastocytosis and eosinophilia can be observed, particularly in the gastrointestinal tract, to enable us to directly compare the effect of GPR65 expression on these two cell types. We identified GPR65 expression on mast cells; however, unlike eosinophil viability, mast cell viability in vitro is not affected by acidification or GPR65 expression. Mechanistically, we determined that mast cells do not respond to extracellular acidification with increased cAMP levels. Furthermore, in the intestinal anaphylaxis model, we observed a significant reduction of eosinophils (59.1 ± 9.2% decrease) in the jejunum of allergen-challenged GPR65-deficient mice compared with allergen-challenged wild-type mice, despite the degree of antigen sensitization and the expression levels of Th2 cytokines (Il4, Il13) and eosinophil chemokines (Ccl11, Ccl24) in the jejunum being comparable. In contrast, the accumulation of mast cells in allergen-challenged mice was not affected by GPR65 deficiency. In conclusion, our study demonstrates differential regulation of eosinophils and mast cells in inflammatory tissue, with mast cell viability and accumulation being independent of GPR65. PMID:24742990

  9. Manganese-Enhanced Magnetic Resonance Imaging Enables In Vivo Confirmation of Peri-Infarct Restoration Following Stem Cell Therapy in a Porcine Ischemia-Reperfusion Model.

    PubMed

    Dash, Rajesh; Kim, Paul J; Matsuura, Yuka; Ikeno, Fumiaki; Metzler, Scott; Huang, Ngan F; Lyons, Jennifer K; Nguyen, Patricia K; Ge, Xiaohu; Foo, Cheryl Wong Po; McConnell, Michael V; Wu, Joseph C; Yeung, Alan C; Harnish, Phillip; Yang, Phillip C

    2015-07-27

    The exact mechanism of stem cell therapy in augmenting the function of ischemic cardiomyopathy is unclear. In this study, we hypothesized that increased viability of the peri-infarct region (PIR) produces restorative benefits after stem cell engraftment. A novel multimodality imaging approach simultaneously assessed myocardial viability (manganese-enhanced magnetic resonance imaging [MEMRI]), myocardial scar (delayed gadolinium enhancement MRI), and transplanted stem cell engraftment (positron emission tomography reporter gene) in the injured porcine hearts. Twelve adult swine underwent ischemia-reperfusion injury. Digital subtraction of MEMRI-negative myocardium (intrainfarct region) from delayed gadolinium enhancement MRI-positive myocardium (PIR and intrainfarct region) clearly delineated the PIR in which the MEMRI-positive signal reflected PIR viability. Human amniotic mesenchymal stem cells (hAMSCs) represent a unique population of immunomodulatory mesodermal stem cells that restored the murine PIR. Immediately following hAMSC delivery, MEMRI demonstrated an increased PIR viability signal compared with control. Direct PIR viability remained higher in hAMSC-treated hearts for >6 weeks. Increased PIR viability correlated with improved regional contractility, left ventricular ejection fraction, infarct size, and hAMSC engraftment, as confirmed by immunocytochemistry. Increased MEMRI and positron emission tomography reporter gene signal in the intrainfarct region and the PIR correlated with sustained functional augmentation (global and regional) within the hAMSC group (mean change, left ventricular ejection fraction: hAMSC 85±60%, control 8±10%; P<0.05) and reduced chamber dilatation (left ventricular end-diastole volume increase: hAMSC 24±8%, control 110±30%; P<0.05). The positron emission tomography reporter gene signal of hAMSC engraftment correlates with the improved MEMRI signal in the PIR. The increased MEMRI signal represents PIR viability and the restorative potential of the injured heart. This in vivo multimodality imaging platform represents a novel, real-time method of tracking PIR viability and stem cell engraftment while providing a mechanistic explanation of the therapeutic efficacy of cardiovascular stem cells. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  10. Biological Function of Ribosomal Protein L10 on Cell Behavior in Human Epithelial Ovarian Cancer

    PubMed Central

    Shi, Jimin; Zhang, Lingyun; Zhou, Daibing; Zhang, Jinguo; Lin, Qunbo; Guan, Wencai; Zhang, Jihong; Ren, Weimin; Xu, Guoxiong

    2018-01-01

    Ribosomal protein L10 (RPL10) is one of large ribosomal proteins and plays a role in Wilms' tumor and premature ovarian failure. However, the function of RPL10 in human epithelial ovarian cancer (EOC) remains unknown. The purpose of this study was to examine the expression level and function of RPL10 in EOC. RPL10 protein expression was detected by immunohistochemistry and Western blot. The association RPL10 expression with clinical features was analyzed. Loss-of-function and gain-of-function approaches were applied in cellular assays, including cell viability, migration, invasion, and apoptosis. Our study demonstrated for the first time that RPL10 was upregulated in human EOC compared with normal ovarian tissues. Knockdown of RPL10 inhibited cell viability, migration, and invasion, and increased cell apoptosis. On the contrary, upregulation of RPL10 increased cell viability, migration, invasion, and decreased cell apoptosis. Furthermore, miR-143-3p regulated RPL10 expression. Our data indicate that RPL10 is a potential tissue biomarker of patients with EOC and may be a therapeutic target of ovarian cancer. PMID:29556332

  11. Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft.

    PubMed

    Schussler, O; Coirault, C; Louis-Tisserand, M; Al-Chare, W; Oliviero, P; Menard, C; Michelot, R; Bochet, P; Salomon, D R; Chachques, J C; Carpentier, A; Lecarpentier, Y

    2009-03-01

    Cardiac tissue engineering might be useful in treatment of diseased myocardium or cardiac malformations. The creation of functional, biocompatible contractile tissues, however, remains challenging. We hypothesized that coupling of arginine-glycine-aspartic acid-serine (RGD+) adhesion peptides would improve cardiomyocyte viability and differentiation and contractile performance of collagen-cell scaffolds. Clinically approved collagen scaffolds were functionalized with RGD+ cells and seeded with cardiomyocytes. Contractile performance, cardiomyocyte viability and differentiation were analyzed at days 1 and 8 and/or after culture for 1 month. The method used for the RGD+ cell-collagen scaffold coupling enabled the following features: high coupling yields and complete washout of excess reagent and by-products with no need for chromatography; spectroscopic quantification of RGD+ coupling; a spacer arm of 36 A, a length reported as optimal for RGD+-peptide presentation and favorable for integrin-receptor clustering and subsequent activation. Isotonic and isometric mechanical parameters, either spontaneous or electrostimulated, exhibited good performance in RGD+ constructs. Cell number and viability was increased in RGD+ scaffolds, and we saw good organization of cell contractile apparatus with occurrence of cross-striation. We report a novel method of engineering a highly effective collagen-cell scaffold based on RGD+ peptides cross-linked to a clinically approved collagen matrix. The main advantages were cell contractile performance, cardiomyocyte viability and differentiation.

  12. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism.

    PubMed

    Miyazaki, Tsuyoshi; Kobayashi, Shigeru; Takeno, Kenichi; Yayama, Takafumi; Meir, Adam; Baba, Hisatoshi

    2011-07-01

    A lot of studies on the effect of intra-articular injections are clinical, but many questions on the effect of lidocaine to articular chondrocytes remain unanswered. This study was performed to determine the effects of varying concentrations and exposure times of lidocaine on the viability and proteoglycan metabolism of chondrocytes in vitro. Cartilage was obtained from metatarsal joints of adult bovines. Chondrocytes in alginate beads were cultured in medium containing 6% fetal calf serum at 370 mOsmol at cell densities of 4 million cells/ml. They were then cultured for 24 h under 21% oxygen with 0.125, 0.25, 0.5, and 1% lidocaine and without lidocaine as control. The cell viability profile across intact beads was determined by manual counting using fluorescent probes and transmission electron microscopy. Lactate production was measured enzymatically as a marker of energy metabolism. Glycosaminoglycan (GAG) accumulation was measured using a modified dimethylmethylene blue assay. Cell viability decreased in a time- and dose-dependent manner in the concentration range of 0.125-1.0% lidocaine under the confocal microscope. Under the electron microscope, apoptosis increased as the concentration of lidocaine increased. GAG accumulation/tissue volume decreases as the concentration of lidocaine increased. However, GAG produced per million cells and the rate of lactate production per live cell were significantly higher for cells cultured at 0.5 and 1% lidocaine than the control group. Bovine chondrocytes cultured in alginate beads under high oxygen pressure are negatively influenced by increasing concentrations of lidocaine. Cell viability and proteoglycan production (GAG accumulation/tissue volume) decreased as the concentration of lidocaine increased. These data suggest caution in prolonged exposure of cartilage to high concentration lidocaine. Repeated joint injection of lidocaine potentially worsens osteoarthrosis by accelerating cartilage degradation.

  13. Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

    PubMed Central

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Kanamori, Toshiyuki

    2015-01-01

    This paper describes the generation of “click-crosslinkable“ and “photodegaradable“ gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-μm widths for line patterns and 20-μm diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability. PMID:26450015

  14. Factors affecting viability and growth in HeLa 229 cells of Chlamydia sp. strain TWAR.

    PubMed Central

    Kuo, C C; Grayston, J T

    1988-01-01

    Two prototype isolates (TW-183 and AR-39) of Chlamydia sp. strain TWAR were used to study factors affecting growth of this organism in HeLa 229 cells. The results showed that an incubation temperature of 35 degrees C was better than one of 37 degrees C for growth. The burst size after 3 days of incubation at 35 degrees C was found to be small (13 to 52), which partially explains the difficulty of serial passage in cell culture. Application of a higher centrifugal force (1,700 X g versus 900 X g) at the time of inoculation enhanced growth 2.2 to 3.6 times. Infectivity was enhanced by treatment of cells with DEAE-dextran (2.4 times) or poly-L-lysine (1.6 times), but not with Polybrene or polyethylene glycol. The viability of the TWAR organism in chlamydia transport medium SPG was also studied. It was shown that the organism was rapidly inactivated at room temperature (22 degrees C); only 1% remained viable after storage for 24 h. The viability was preserved at 4 degrees C, and 70% remained viable after storage for 24 h. Freezing at -75 degrees C inactivated 23% of the organisms when the organisms were frozen within 4 h after harvesting and stored at 4 degrees C before freezing. PMID:3384906

  15. Application of Albumin-embedded Magnetic Nanoheaters for Release of Etoposide in Integrated Chemotherapy and Hyperthermia of U87-MG Glioma Cells.

    PubMed

    Babincová, Melánia; Vrbovská, Hana; Sourivong, Paul; Babinec, Peter; Durdík, Štefan

    2018-05-01

    Malignant gliomas remain refractory to several therapeutic approaches and the requirement for novel treatment modalities is critical to combat this disease. Etoposide is a topoisomerase-II inhibitor, which promotes DNA damage and apoptosis of cancer cells. In this study, we prepared albumin with embedded magnetic nanoparticles and etoposide for in vitro evaluation of combined hyperthermia and chemotherapy. Magnetic nanoparticles were prepared by a modified co-precipitation method in the presence of human serum albumin and etoposide. A cellular proliferation assay was used to determine the effects of these nanostructures on the viability of U87 glioma cells in an alternating magnetic field. The in vitro experiments showed that cell viability decreased to 59.4% after heat treatment alone and to 53.8% on that with free etoposide, while combined treatment resulted in 7.8% cell viability. Integrating hyperthermia and chemotherapy using albumin co-embedded magnetic nanoheaters and etoposide may represent a promising therapeutic option for glioblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. Brain Tumor Genetic Modification Yields Increased Resistance to Paclitaxel in Physical Confinement

    PubMed Central

    Bui, Loan; Hendricks, Alissa; Wright, Jamie; Chuong, Cheng-Jen; Davé, Digant; Bachoo, Robert; Kim, Young-tae

    2016-01-01

    Brain tumor cells remain highly resistant to radiation and chemotherapy, particularly malignant and secondary cancers. In this study, we utilized microchannel devices to examine the effect of a confined environment on the viability and drug resistance of the following brain cancer cell lines: primary cancers (glioblastoma multiforme and neuroblastoma), human brain cancer cell lines (D54 and D54-EGFRvIII), and genetically modified mouse astrocytes (wild type, p53−/−, p53−/− PTEN−/−, p53−/− Braf, and p53−/− PTEN−/− Braf). We found that loss of PTEN combined with Braf activation resulted in higher viability in narrow microchannels. In addition, Braf conferred increased resistance to the microtubule-stabilizing drug Taxol in narrow confinement. Similarly, survival of D54-EGFRvIII cells was unaffected following treatment with Taxol, whereas the viability of D54 cells was reduced by 75% under these conditions. Taken together, our data suggests key targets for anticancer drugs based on cellular genotypes and their specific survival phenotypes during confined migration. PMID:27184621

  17. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  18. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity.

    PubMed

    Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro

    2015-10-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells.

    PubMed

    Zhao, Xinyuan; Xing, Fengjun; Cong, Yewen; Zhuang, Yin; Han, Muxi; Wu, Zhiqiang; Yu, Shali; Wei, Haiyan; Wang, Xiaoke; Chen, Gang

    2017-12-01

    Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells.

    PubMed

    Qu, Lijun; Li, Sumei; Zhuo, Yumin; Chen, Jianfan; Qin, Xiaoping; Guo, Guoqing

    2017-12-01

    Ganoderma lucidum , within the Polyporaceae family of Basidiomycota, is a popular traditional remedy medicine used in Asia to promote health and longevity. Compounds extracted from G. lucidum have revealed anticancer, antioxidant and liver protective effects. G. lucidum has been associated with prostate cancer cells. G. lucidum extracts contain numerous bioactive components; however, the exact functional monomer is unknown and the role of triterpenes from G. lucidum (GLT) in prostate cancer remain obscure. The present study investigated the effects of GLT on cell viability, migration, invasion and apoptosis in DU-145 human prostate cancer cells. The results demonstrated that a high dose (2 mg/ml) of GLT inhibits cell viability in a dose- and time-dependent manner by the regulation of matrix metalloproteases. Furthermore, GLT induced apoptosis of DU-145 cells. In general, GLT exerts its effect on cancer cells via numerous mechanisms and may have potential therapeutic use for the prevention and treatment of cancer.

  1. Chondrogenic differentiation potential of human mesenchymal stem cells photoencapsulated within poly(ethylene glycol)-arginine-glycine-aspartic acid-serine thiol-methacrylate mixed-mode networks.

    PubMed

    Salinas, Chelsea N; Cole, Brook B; Kasko, Andrea M; Anseth, Kristi S

    2007-05-01

    Chondrogenesis of human mesenchymal stem cells (hMSCs) encapsulated in poly(ethylene glycol) (PEG)-based hydrogels was studied in the presence and absence of 5 ng/mL transforming growth factor beta and chondrogenic medium to better understand the role of the gel environment on this process. The lack of any cell-polymer interactions led to decreasing cell viability, as measured using adenosine triphosphate, over a 14-day period. The extent of chondrogenic differentiation was evaluated by immunostaining, and although viability dramatically decreased, cells cultured in chondrogenic differentiation medium expressed higher levels of collagen type II. Cells cultured in hMSC control medium remained undifferentiated and continued to express CD105, a MSC marker. To increase cell survival, arginine-glycine-aspartic acid-serine (RGDS) was incorporated into gels using a novel mixed-mode thiol-ene reaction by synthesizing a cysteine-cysteine-arginine-glycine-aspartic acid-serine-cysteine-cysteine-glycine, N-terminus to C-terminus peptide sequence with pendant cysteine residues. A concentration of 5 mM RGDS incorporated into the network maintained 75% viability in control cultures. Further studies demonstrated that 5-mM RGDS chondrogenic cultures had greater gene expression for aggrecan and collagen II in conjunction with producing twice as much glycosaminoglycan as 0-mM chondrogenic cultures and 7 times that of control cultures. Incorporation of this peptide sequence not only allows for sustained viability, but also contributes to initiating chondrogenesis.

  2. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    PubMed

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular second messenger signal coupling of 5HTR2A is different between normal and malignant cells, warranting further research to investigate its potential as a novel therapeutic target for canine osteosarcoma.

  3. Effects of polycyclic aromatic compounds in fine particulate matter generated from household coal combustion on response to EGFR mutations in vitro.

    PubMed

    Ho, Kin-Fai; Chang, Chih-Cheng; Tian, Linwei; Chan, Chi-Sing; Musa Bandowe, Benjamin A; Lui, Ka-Hei; Lee, Kang-Yun; Chuang, Kai-Jen; Liu, Chien-Ying; Ning, Zhi; Chuang, Hsiao-Chi

    2016-11-01

    Induction of PM 2.5 -associated lung cancer in response to EGFR-tyrosine kinase inhibitors (EGFR-TKI) remains unclear. Polycyclic aromatic hydrocarbons (PAHs) and their polar derivatives (oxygenated PAHs: OPAHs and azaarenes: AZAs) were characterized in fine particulates (PM 2.5 ) emitted from indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Human lung adenocarcinoma cells A549 (with wild-type EGFR) and HCC827 (with EGFR mutation) were exposed to the PM 2.5 , followed by treatment with EGFR-TKI. Two samples showed significant and dose-dependent reduction in the cell viability in A549. EGFR-TKI further demonstrated significantly decreased in cell viability in A549 after exposure to the coal emissions. Chrysene and triphenylene, dibenzo[a,h]anthracene, benzo[ghi]perylene, azaarenes and oxygenated polycyclic aromatic hydrocarbons (carbonyl-OPAHs) were all associated with EGFR-TKI-dependent reduced cell viability after 72-h exposure to the PM 2.5 . The findings suggest the coal emissions could influence the response of EGFR-TKI in lung cancer cells in Xuanwei. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Impact of nicotine on the interplay between human periodontal ligament cells and CD4+ T cells.

    PubMed

    Ge, Xin; Liu, Ying-Feng; Wong, Yong; Wu, Li-Zheng; Tan, Ling; Liu, Fen; Wang, Xiao-Jing

    2016-09-01

    Periodontitis is a common infectious disease associated with destruction of periodontal ligaments and alveolar bones. CD4(+) T cell-mediated immune response is involved in the progression of periodontitis. Tobacco consumption increases the risk of periodontal disease. However, the impact of nicotine on the interaction between human periodontal ligament (PDL) cells and CD4(+) T cells remains unrevealed. Our study aims to investigate the effect of nicotine on PDL cells and the cocultured CD4(+) T cells. The PDL cell cultures were established by explants from healthy individuals, exposed to nicotine or α-bungarotoxin (α-BTX), and incubated solely or in combination with CD4(+) T cells. Afterwards, cell viability, secreted cytokines, and matrix metalloproteinases (MMPs) were evaluated. In monoculture of PDL cells, nicotine dramatically repressed cell viability and increased apoptosis. Meanwhile, α-BTX largely reversed the nicotine-induced apoptosis and increased viability of PDL cells. Compared with the monoculture, MMP-1, MMP-3, interleukin (IL)-1β, IL-6, IL-17, and IL-21 in supernatant of cocultures were markedly elevated after treatment with nicotine. Moreover, α-BTX significantly attenuated nicotine-triggered production of these components either in mono- or co-cultures. In addition, PDL cell-derived CXCL12 following nicotine treatment recruited CD4(+) T cells. Above all, nicotine deteriorated periodontitis partially by promoting PDL cell-CD4(+) T cell-mediated inflammatory response and matrix degradation. © The Author(s) 2015.

  5. Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Kirti Kumar; Chu, Chun; Couroucli, Xanthi

    Highlights: • Caffeine at 0.05 mM decreases oxidative stress in hyperoxia. • Caffeine at 1 mM decreases cell viability, increases oxidative stress in hyperoxia. • Caffeine at 1 but not 0.05 mM, abrogates hyperoxia-induced G2/M arrest. - Abstract: Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of differentmore » concentrations (0, 0.05, 0.1 and 1 mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1 mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1 mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.« less

  6. Influence of Mesenchymal Stem Cells Conditioned Media on Proliferation of Urinary Tract Cancer Cell Lines and Their Sensitivity to Ciprofloxacin.

    PubMed

    Maj, Malgorzata; Bajek, Anna; Nalejska, Ewelina; Porowinska, Dorota; Kloskowski, Tomasz; Gackowska, Lidia; Drewa, Tomasz

    2017-06-01

    Mesenchymal stem cells (MSCs) are known to interact with cancer cells through direct cell-to-cell contact and secretion of paracrine factors, although their exact influence on tumor progression in vivo remains unclear. To better understand how fetal and adult stem cells affect tumors, we analyzed viability of human renal (786-0) and bladder (T24) carcinoma cell lines cultured in conditioned media harvested from amniotic fluid-derived stem cells (AFSCs) and adipose-derived stem cells (ASCs). Both media reduced metabolic activity of 786-0 cells, however, decreased viability of T24 cells was noted only after incubation with conditioned medium from ASCs. To test the hypothesis that MSCs-secreted factors might be involved in chemoresistance acquisition, we further analyzed influence of mesenchymal stem cell conditioned media (MSC-CM) on cancer cells sensitivity to ciprofloxacin, that is considered as potential candidate agent for urinary tract cancers treatment. Significantly increased resistance to tested drug indicates that MSCs may protect cancer cells from chemotherapy. J. Cell. Biochem. 118: 1361-1368, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Direct effect of curcumin on porcine ovarian cell functions.

    PubMed

    Kádasi, Attila; Maruniaková, Nora; Štochmaľová, Aneta; Bauer, Miroslav; Grossmann, Roland; Harrath, Abdel Halim; Kolesárová, Adriana; Sirotkin, Alexander V

    2017-07-01

    Curcuma longa Linn (L.) is a plant widely used in cooking (in curry powder a.o.) and in folk medicine, but its action on reproductive processes and its possible mechanisms of action remain to be investigated. The objective of this study was to examine the direct effects of curcumin, the major Curcuma longa L. molecule, on basic ovarian cell functions such as proliferation, apoptosis, viability and steroidogenesis. Porcine ovarian granulosa cells were cultured with and without curcumin (at doses of 0, 1, 10 and 100μg/ml of medium). Markers of proliferation (accumulation of PCNA) and apoptosis (accumulation of bax) were analyzed by immunocytochemistry. The expression of mRNA for PCNA and bax was detected by RT-PCR. Cell viability was detected by trypan blue exclusion test. Release of steroid hormones (progesterone and testosterone) was measured by enzyme immunoassay (EIA). It was observed that addition of curcumin reduced ovarian cell proliferation (expression of both PCNA and its mRNA), promoted apoptosis (accumulation of both bax and its mRNA), reduced cell viability, and stimulated both progesterone and testosterone release. These observations demonstrate the direct suppressive effect of Curcuma longa L./curcumin on female gonads via multiple mechanisms of action - suppression of ovarian cell proliferation and viability, promotion of their apoptosis (at the level of mRNA transcription and subsequent accumulation of promoters of genes regulating these activities) and release of anti-proliferative and pro-apoptotic progesterone and androgen. The potential anti-gonadal action of curcumin should be taken into account by consumers of Curcuma longa L.-containing products. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simple Perfusion Apparatus (SPA) for Manipulation, Tracking and Study of Oocytes and Embryos

    PubMed Central

    Angione, Stephanie L.; Oulhen, Nathalie; Brayboy, Lynae M.; Tripathi, Anubhav; Wessel, Gary M.

    2016-01-01

    Objective To develop and implement a device and protocol for oocyte analysis at a single cell level. The device must be capable of high resolution imaging, temperature control, perfusion of media, drugs, sperm, and immunolabeling reagents all at defined flow-rates. Each oocyte and resultant embryo must remain spatially separated and defined. Design Experimental laboratory study Setting University and Academic Center for reproductive medicine. Patients/Animals Women with eggs retrieved for ICSI cycles, adult female FVBN and B6C3F1 mouse strains, sea stars. Intervention Real-time, longitudinal imaging of oocytes following fluorescent labeling, insemination, and viability tests. Main outcome measure(s) Cell and embryo viability, immunolabeling efficiency, live cell endocytosis quantitation, precise metrics of fertilization and embryonic development. Results Single oocytes were longitudinally imaged following significant changes in media, markers, endocytosis quantitation, and development, all with supreme control by microfluidics. Cells remained viable, enclosed, and separate for precision measurements, repeatability, and imaging. Conclusions We engineered a simple device to load, visualize, experiment, and effectively record individual oocytes and embryos, without loss of cells. Prolonged incubation capabilities provide longitudinal studies without need for transfer and potential loss of cells. This simple perfusion apparatus (SPA) provides for careful, precise, and flexible handling of precious samples facilitating clinical in vitro fertilization approaches. PMID:25450296

  9. MicroRNA-130a-3p suppresses cell viability, proliferation and invasion in nasopharyngeal carcinoma by inhibiting CXCL12.

    PubMed

    Qu, Rongfeng; Sun, Yan; Li, Yarong; Hu, Chunmei; Shi, Guang; Tang, Yan; Guo, Dongrui

    2017-01-01

    Incidence of nasopharyngeal carcinoma (NPC) has remained high worldwide, posing a serious health problem. MicroRNAs (miRNAs) are a family of about 20-23 nucleotides small non-coding molecules, which play a significant role in NPC. In this study, we explored the molecular mechanisms of miR-130a-3p in inhibiting viability, proliferation, migration and invasion of NPC cells by suppressing CXCL12 . The relative expression of miR-130a-3p and CXCL12 mRNA expression in tissues and cells was measured by qRT-PCR. NPC cell line CNE-2Z was transfected with miR-130a-3p mimics, CXCL12 siRNA, cDNA- CXCL12 and negative control. Western Blot was performed to detect CXCL12 expression. The MTT assay was performed to study cell viability. The colony formation assay was done to test cell growth. Flow cytometry was conducted to analyze cell cycle and apoptosis. The Transwell assay was used to investigate cell migration and invasion. The results found that the up-regulation of miR-130a-3p or down-regulation of CXCL12 could inhibit viability, proliferation, migration and invasion of CNE-2Z cells. Luciferase-reporting system assay was performed to investigate miR-130a-3p could bind to the 3'UTR region of CXCL12 and the overexpression of miR-130a-3p could suppress CXCL12 expression. Collectively, our finding suggested demonstrated that miR-130a-3p could prohibit the progression of NPC by suppressing CXCL12 , which might serve as potential therapeutic targets for NPC.

  10. Low-intensity pulsed ultrasound promotes Schwann cell viability and proliferation via the GSK-3β/β-catenin signaling pathway

    PubMed Central

    Ren, Cong; Chen, Xiaohui; Du, Ning; Geng, Shuo; Hu, Yingying; Liu, Xin; Wu, Xianxian; Lin, Yuan; Bai, Xue; Yin, Wenzhe; Cheng, Shi; Yang, Lei; Zhang, Yong

    2018-01-01

    Background: It has been reported that ultrasound enhances peripheral nerve regeneration, but the mechanism remains elusive. Low-intensity pulsed ultrasound (LIPUS) has been reported to enhance proliferation and alter protein production in various types of cells. In this study, we detected the effects of LIPUS on Schwann cells. Material and methods: Schwann cells were separated from new natal Sprague-Dawley rat sciatic nerves and were cultured and purified. The Schwann cells were treated by LIPUS for 10 minutes every day, with an intensity of 27.37 mW/cm2. After treatment for 5 days, MTT, EdU staining, and flow cytometry were performed to examine cell viability and proliferation. Neurotrophic factors, including FGF, NGF, BDNF, and GDNF, were measured by western blot and real-time PCR. GSK-3β, p-GSK-3β, β-catenin and Cyclin D1 protein levels were detected using a western blot analysis. The expression of Cyclin D1 was also detected by immunofluorescence. Results: MTT and EdU staining showed that LIPUS increased the Schwann cells viability and proliferation. Compared to the control group, LIPUS increased the expression of growth factors and neurotrophic factors, including FGF, NGF, BDNF, GDNF, and Cyclin D1. Meanwhile, GSK-3β activity was inhibited in the LIPUS group as demonstrated by the increased level of p-GSK-3β and the ratio of the p-GSK-3β/GSK-3β level. The mRNA and protein expressions of β-catenin were increased in the LIPUS group. However, SB216763, a GSK-3β inhibitor, reversed the effects of LIPUS on Schwann cells. Conclusion: LIPUS promotes Schwann cell viability and proliferation by increasing Cyclin D1 expression via enhancing the GSK-3β/β-catenin signaling pathway.

  11. Smad4 controls bone homeostasis through regulation of osteoblast/osteocyte viability.

    PubMed

    Moon, Young Jae; Yun, Chi-Young; Choi, Hwajung; Ka, Sun-O; Kim, Jung Ryul; Park, Byung-Hyun; Cho, Eui-Sic

    2016-09-02

    Regulation of osteoblast and osteocyte viability is essential for bone homeostasis. Smad4, a major transducer of bone morphogenetic protein and transforming growth factor-β signaling pathways, regulates apoptosis in various cell types through a mitochondrial pathway. However, it remains poorly understood whether Smad4 is necessary for the regulation of osteoblast and osteocyte viability. In this study, we analyzed Smad4Δ(Os) mice, in which Smad4 was subjected to tissue-specific disruption under the control of the 2.3-kb Col1a1 promoter, to understand the functional significance of Smad4 in regulating osteoblast/osteocyte viability during bone formation and remodeling. Smad4Δ(Os) mice showed a significant increase in osteoblast number and osteocyte density in the trabecular and cortical regions of the femur, whereas osteoclast activity was significantly decreased. The proliferation of osteoblasts/osteocytes did not alter, as shown by measuring 5'-bromo-2'deoxyuridine incorporation. By contrast, the percentage of TUNEL-positive cells decreased, together with a decrease in the Bax/Bcl-2 ratio and in the proteolytic cleavage of caspase 3, in Smad4Δ(Os) mice. Apoptosis in isolated calvaria cells from Smad4Δ(Os) mice decreased after differentiation, which was consistent with the results of the TUNEL assay and western blotting in Smad4Δ(Os) mice. Conversely, osteoblast cells overexpressing Smad4 showed increased apoptosis. In an apoptosis induction model of Smad4Δ(Os) mice, osteoblasts/osteocytes were more resistant to apoptosis than were control cells, and, consequently, bone remodeling was attenuated. These findings indicate that Smad4 has a significant role in regulating osteoblast/osteocyte viability and therefore controls bone homeostasis.

  12. Differential electrophoretic separation of cells and its effect on cell viability

    NASA Technical Reports Server (NTRS)

    Leise, E. M.; Lesane, F.

    1974-01-01

    An electrophoretic separation method was applied to the separation of cells. To determine the efficiency of the separation, it was necessary to apply existing methodology and develop new methods to assess the characteristics and functions of the separated subpopulations. Through appropriate application of the widely used isoelectric focusing procedure, a reproducible separation method was developed. Cells accumulated at defined pH and 70-80% remained viable. The cells were suitable for further biologic, biochemical and immunologic studies.

  13. Characterization of printable cellular micro-fluidic channels for tissue engineering.

    PubMed

    Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T

    2013-06-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to the fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded a relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function.

  14. Characterization of Printable Cellular Micro-fluidic Channels for Tissue Engineering

    PubMed Central

    Zhang, Yahui; Yu, Yin; Chen, Howard; Ozbolat, Ibrahim T.

    2014-01-01

    Tissue engineering has been a promising field of research, offering hope of bridging the gap between organ shortage and transplantation needs. However, building three-dimensional (3D) vascularized organs remains the main technological barrier to be overcome. One of the major challenges is the inclusion of a vascular network to support cell viability in terms of nutrients and oxygen perfusion. This paper introduces a new approach to fabrication of vessel-like microfluidic channels that has the potential to be used in thick tissue or organ fabrication in the future. In this research, we investigate the manufacturability of printable micro-fluidic channels, where micro-fluidic channels support mechanical integrity as well as enable fluid transport in 3D. A pressure-assisted solid freeform fabrication platform is developed with a coaxial needle dispenser unit to print hollow hydrogel filaments. The dispensing rheology is studied, and effects of material properties on structural formation of hollow filaments are analyzed. Sample structures are printed through the developed computer-controlled system. In addition, cell viability and gene expression studies are presented in this paper. Cell viability shows that cartilage progenitor cells (CPCs) maintained their viability right after bioprinting and during prolonged in vitro culture. Real-time PCR analysis yielded relatively higher expression of cartilage-specific genes in alginate hollow filament encapsulating CPCs, compared with monolayer cultured CPCs, which revealed that printable semi-permeable micro-fluidic channels provided an ideal environment for cell growth and function. PMID:23458889

  15. Pretreatment of algae-laden and manganese-containing waters by oxidation-assisted coagulation: Effects of oxidation on algal cell viability and manganese precipitation.

    PubMed

    Lin, Jr-Lin; Hua, Lap-Cuong; Wu, Yuting; Huang, Chihpin

    2016-02-01

    Preoxidation is manipulated to improve performance of algae and soluble manganese (Mn) removal by coagulation-sedimentation for water treatment plants (WTPs) when large amount of soluble Mn presents in algae-laden waters. This study aimed to investigate the effects of preoxidation on the performance of coagulation-sedimentation for the simultaneous removal of algae and soluble Mn, including ionic and complexed Mn. NaOCl, ClO2, and KMnO4 were used to pretreat such algae-laden and Mn containing waters. The variation of algal cell viability, residual cell counts, and concentrations of Mn species prior to and after coagulation-sedimentation step were investigated. Results show that NaOCl dosing was effective in reducing the viability of algae, but precipitated little Mn. ClO2 dosing had a strongest ability to lower algae viability and oxidize ionic and complexed soluble Mn, where KMnO4 dosing oxidized ionic and complexed Mn instead of reducing the viability of cells. Preoxidation by NaOCl only improved the algae removal by sedimentation, whereas most of soluble Mn still remained. On the other hand, ClO2 preoxidation substantially improved the performance of coagulation-sedimentation for simultaneous removal of algae and soluble Mn. Furthermore, KMnO4 preoxidation did improve the removal of algae by sedimentation, but left significant residual Mn in the supernatant. Images from FlowCAM showed changes in aspect ratio (AR) and transparency of algae-Mn flocs during oxidation-assisted coagulation, and indicates that an effective oxidation can improve the removal of most compact algae-Mn flocs by sedimentation. It suggests that an effective preoxidation for reducing algal cell viability and the concentration of soluble Mn is a crucial step for upgrading the performance of coagulation-sedimentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Microfluidic antibody arrays for simultaneous cell separation and stimulus.

    PubMed

    Liu, Yan; Germain, Todd; Pappas, Dimitri

    2014-12-01

    A microfluidic chip containing stamped antibody arrays was developed for simultaneous cell separation and drug testing. Poly(dimethyl siloxane) (PDMS) stamping was used to deposit antibodies in a microfluidic channel, forming discrete cell-capture regions on the surface. Cell mixtures were then introduced, resulting in the separation of cells when specific antibodies were used. Anti-CD19 antibody regions resulted in 94 % capture purity for CD19+ Ramos cells. An antibody that captures multiple cell types, for example anti-CD71, can also be used to capture several cell types simultaneously. Cells could also be loaded onto the arrays with spatial control using laminar streams. Both Ramos B cells and HuT 78 T cells were isolated in the chip and exposed to staurosporine in the same channel. Both cell lines had similar responses to the drug, with 2-10 % of cells remaining viable after 20 h of drug treatment, depending on cell type. The chip can also be used to analyze the efficacy of antibody therapy against cancer cells. Anti-CD95 was deposited on the surface and used for simultaneous cell capture and apoptosis induction via the extrinsic pathway. Cells captured on anti-CD95 surfaces had significant viability loss (15 % viability after 24 h) when compared with a control anti-CD71 antibody (81 % viability after 24 h). This chip can be used for a variety of cell separation and/or drug testing studies, enabling researchers to isolate cells and test them against different anti-cancer compounds and to follow cell response using fluorescence or other readout methods.

  17. Sodium caseinate induces increased survival in leukaemic mouse J774 model.

    PubMed

    Córdova-Galaviz, Yolanda; Ledesma-Martínez, Edgar; Aguíñiga-Sánchez, Itzen; Soldevila-Melgarejo, Gloria; Soto-Cruz, Isabel; Weiss-Steider, Benny; Santiago-Osorio, Edelmiro

    2014-01-01

    Acute myeloid leukaemia is a neoplastic disease of haematopoietic stem cells. Although there have been recent advances regarding its treatment, mortality remains high. Consequently, therapeutic alternatives continue to be explored. In the present report, we present evidence that sodium caseinate (CasNa), a salt of the principal protein in milk, may possess important anti-leukaemic properties. J774 leukaemia macrophage-like cells were cultured with CasNa and proliferation, viability and differentiation were evaluated. These cells were also inoculated into BALB/c mice as a model of leukemia. We demonstrated that CasNa inhibits the in vitro proliferation and reduces viability of J774 cells, and leads to increased survival in vivo in a leukaemic mouse model. These data indicate that CasNa may be useful in leukaemia therapy. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. An amino acidic adjuvant to augment cryoinjury of MCF-7 breast cancer cells.

    PubMed

    Wang, Chuo-Li; Teo, Ka Yaw; Han, Bumsoo

    2008-08-01

    One of the major challenges in cryosurgery is to minimize incomplete cryodestruction near the edge of the iceball. In the present study, the feasibility and effectiveness of an amino acidic adjuvant, glycine was investigated to enhance the cryodestruction of MCF-7 human breast cancer cell at mild freezing/thawing conditions via eutectic solidification. The effects of glycine addition on the phase change characteristics of NaCl-water binary mixture were investigated with a differential scanning calorimeter and cryo-macro/microscope. The results confirmed that a NaCl-glycine-water mixture has two distinct eutectic phase change events - binary eutectic solidification of water-glycine, and ternary eutectic solidification of NaCl-glycine-water. In addition, its effects on the cryoinjury of MCF-7 cells were investigated by assessing the post-thaw cellular viability after a single freezing/thawing cycle with various eutectic solidification conditions due to different glycine concentrations, end temperatures and hold times. The viability of MCF-7 cells in isotonic saline supplemented with 10% or 20% glycine without freezing/thawing remained higher than 90% (n=9), indicating no apparent toxicity was induced by the addition of glycine. With 10% glycine supplement, the viability of the cells frozen to -8.5 degrees C decreased from 85.9+/-1.8% to 38.5+/-1.0% on the occurrence of binary eutectic solidification of glycine-water (n=3 for each group). With 20% glycine supplement, the viability of the cells frozen to -8.5 degrees C showed similar trends to those with 10% supplement. However, as the end temperature was lowered to -15 degrees C, the viability drastically decreased from 62.5+/-2.0% to 3.6+/-0.7% (n=3 for each group). The influences of eutectic kinetics such as nucleation temperature, hold time and method were less significant. These results imply that the binary eutectic solidification of water-glycine can augment the cryoinjury of MCF-7 cells, and the extent of the eutectic solidification is significant.

  19. The Arrhythmogenic Calmodulin Mutation D129G Dysregulates Cell Growth, Calmodulin-dependent Kinase II Activity, and Cardiac Function in Zebrafish*

    PubMed Central

    Zacharias, Triantafyllos; Kulej, Katarzyna; Wang, Kevin; Torggler, Raffaela; la Cour, Jonas M.

    2016-01-01

    Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish. PMID:27815504

  20. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro.

    PubMed

    Wang, Y; Baumrucker, C R

    2010-07-01

    Two bovine mammary cell types (BME-UV1 and MeBo cells) were used to evaluate the effect of natural retinoids, retinoid analogs, and bovine lactoferrin (bLf) on cell viability in vitro. Experiments with Alamar Blue showed a linear relationship between fluorescence and cell viability index. The BME-UV1 cells exhibited twice the metabolic activity but required half the doubling time of the MeBo cells. The BME-UV1 cells were very sensitive to all-trans retinoic acid (atRA) inhibition of cell viability (P<0.05) and exhibited a dose-dependent inhibition with 9-cisRA (9cRA; P<0.05). The MeBo cells exhibited some inhibition with these natural ligands (P<0.05), but they were not as sensitive. The addition of bLf had similar inhibitory effects (P<0.05) on cell viability of the 2 mammary cell types. Applications of RA receptor (RAR) agonist indicated that the stimulation of the RAR in both mammary cell types was highly effective in inhibition of cell viability (P<0.05), whereas the application of an RAR antagonist stimulated MeBo cell viability (P<0.05) and inhibited BME-UV1 cell viability (P<0.05). Finally, the use of the RAR antagonist in conjunction with bLf indicated a rescue of the bLf effect in the MeBo cells, suggesting that bLf is acting through the RAR receptor. Conversely, bLf reverted inhibition of cell viability by 9cRA in the BME-UV1 cell type (P<0.05). We conclude that RAR interaction in bovine mammary cell types regulates cell viability in vitro; we hypothesize that the natural ligands mediate regulation of bovine mammary cell viability in vivo and that bLf can either enhance or reverse the retinoid-induced inhibition of cell viability, depending on the type of bovine mammary cell studied.

  1. Influence of extracellular pH on growth, viability, cell size, acidification activity, and intracellular pH of Lactococcus lactis in batch fermentations.

    PubMed

    Hansen, Gunda; Johansen, Claus Lindvald; Marten, Gunvor; Wilmes, Jacqueline; Jespersen, Lene; Arneborg, Nils

    2016-07-01

    In this study, we investigated the influence of three extracellular pH (pHex) values (i.e., 5.5, 6.5, and 7.5) on the growth, viability, cell size, acidification activity in milk, and intracellular pH (pHi) of Lactococcus lactis subsp. lactis DGCC1212 during pH-controlled batch fermentations. A universal parameter (e.g., linked to pHi) for the description or prediction of viability, specific acidification activity, or growth behavior at a given pHex was not identified. We found viability as determined by flow cytometry to remain high during all growth phases and irrespectively of the pH set point. Furthermore, regardless of the pHex, the acidification activity per cell decreased over time which seemed to be linked to cell shrinkage. Flow cytometric pHi determination demonstrated an increase of the averaged pHi level for higher pH set points, while the pH gradient (pHi-pHex) and the extent of pHi heterogeneity decreased. Cells maintained positive pH gradients at a low pHex of 5.5 and even during substrate limitation at the more widely used pHex 6.5. Moreover, the strain proved able to grow despite small negative or even absent pH gradients at a high pHex of 7.5. The larger pHi heterogeneity at pHex 5.5 and 6.5 was associated with more stressful conditions resulting, e.g., from higher concentrations of non-dissociated lactic acid, while the low pHi heterogeneity at pHex 7.5 most probably corresponded to lower concentrations of non-dissociated lactic acid which facilitated the cells to reach the highest maximum active cell counts of the three pH set points.

  2. Morphological observation and analysis using automated image cytometry for the comparison of trypan blue and fluorescence-based viability detection method.

    PubMed

    Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean

    2015-05-01

    The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.

  3. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    PubMed

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a variety of applications such as drug development or cell therapies. . © 2018 IOP Publishing Ltd.

  4. Ecology and Thermal Inactivation of Microbes in and on Interplanetary Space Vehicle Components

    NASA Technical Reports Server (NTRS)

    Reyes, A. L.; Campbell, J. E.

    1975-01-01

    Spores of Bacillus subtilis var. niger were heat treated in aqueous suspension at 90 C, and observed for morphological changes and loss of viability. The 5 logs reduction that occurred in broth at 90 min required 210 min in buffered water. Five characteristic changes observed after spores were exposed 120 min at 90 C in buffered water were: (1) 90% loss of spore viability, (2) 5% stainability, (3) 76% increase in spore size (as observed by scanning electron microscopy), (4) 21% of spore areas remaining refractile, and (5) an increase of 77% in packed cell volume (PCV). Stainability and PCV changes were recognized only after secondary exposure in broth. Extended heat exposure (3 h at 90 C) resulted in 99% loss of spore viability and 99% loss of stainability. After 4 hours of heat exposure, 90% of the cells disintegrated. These results suggest that early germinal changes occurr concurrently with the early changes in the heat susceptibility of dormant spores.

  5. MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo.

    PubMed

    Zeng, Yuanyuan; Zhu, Jianjie; Shen, Dan; Qin, Hualong; Lei, Zhe; Li, Wei; Liu, Zeyi; Huang, Jian-An

    2017-05-09

    Despite advances in diagnosis and treatment, the survival of non-small cell lung cancer (NSCLC) patients remains poor; therefore, improved understanding of the disease mechanism and novel treatment strategies are needed. Downregulation of SMAD4 and dysregulated expression of miR-205 have been reported. However, the relationship between them remains unclear. We investigated the effect of microRNA (miR)-205 on the expression of SMAD4 in NSCLC. Knockdown and overexpression of SMAD4 promoted or suppressed cellular viability and proliferation, and accelerated or inhibited the cell cycle in NSCLC cells, respectively. The 3'-untranslated region (3'-UTR) of SMAD4 was predicted as a target of miR-205. Luciferase assays validated that miR-205 binds directly to the SMAD4 3'-UTR. Protein and mRNA expression analyses confirmed that miR-205 overexpression in NSCLC cells inhibited the expression of SMAD4 mRNA and protein. In human NSCLC tissues, increased miR-205 expression was observed frequently and was inversely correlated with decreased SMAD4 expression. Ectopic expression of miR-205 in NSCLC cells suppressed cellular viability and proliferation, accelerated the cell cycle, and promoted tumor growth of lung carcinoma xenografts in nude mice. Our study showed that miR-205 decreased SMAD4 expression, thus promoting NSCLC cell growth. Our findings highlighted the therapeutic potential of targeting miR-205 in NSCLC treatment.

  6. MicroRNA-205 targets SMAD4 in non-small cell lung cancer and promotes lung cancer cell growth in vitro and in vivo

    PubMed Central

    Qin, Hualong; Lei, Zhe; Li, Wei; Liu, Zeyi; Huang, Jian-an

    2017-01-01

    Despite advances in diagnosis and treatment, the survival of non-small cell lung cancer (NSCLC) patients remains poor; therefore, improved understanding of the disease mechanism and novel treatment strategies are needed. Downregulation of SMAD4 and dysregulated expression of miR-205 have been reported. However, the relationship between them remains unclear. We investigated the effect of microRNA (miR)-205 on the expression of SMAD4 in NSCLC. Knockdown and overexpression of SMAD4 promoted or suppressed cellular viability and proliferation, and accelerated or inhibited the cell cycle in NSCLC cells, respectively. The 3′-untranslated region (3′-UTR) of SMAD4 was predicted as a target of miR-205. Luciferase assays validated that miR-205 binds directly to the SMAD4 3′-UTR. Protein and mRNA expression analyses confirmed that miR-205 overexpression in NSCLC cells inhibited the expression of SMAD4 mRNA and protein. In human NSCLC tissues, increased miR-205 expression was observed frequently and was inversely correlated with decreased SMAD4 expression. Ectopic expression of miR-205 in NSCLC cells suppressed cellular viability and proliferation, accelerated the cell cycle, and promoted tumor growth of lung carcinoma xenografts in nude mice. Our study showed that miR-205 decreased SMAD4 expression, thus promoting NSCLC cell growth. Our findings highlighted the therapeutic potential of targeting miR-205 in NSCLC treatment. PMID:28199217

  7. Echinococcus multilocularis vesicular fluid inhibits activation and proliferation of natural killer cells.

    PubMed

    Bellanger, Anne-Pauline; Mougey, Valentine; Pallandre, Jean-Rene; Gbaguidi-Haore, Houssein; Godet, Yann; Millon, Laurence

    2017-08-25

    Alveolar echinococcosis is a severe chronic helminthic disease that mimics slow-growing liver cancer. The immune evasion strategy of Echinococcus multilocularis Leuckart, 1863 remains poorly understood. The aim of this study was to investigate in vitro the impact of E. multilocularis vesicular fluid (Em-VF) on peripheral blood mononuclear cells (PBMC) and on natural killer (NK) cells. PBMC and NK cells were exposed to Em-VF (1 µg/ml) during six days. The effect of Em-VF was assessed on CD69, viability and proliferation, and on and transforming growth factor β (TGF-β), interferon γ (IFN-γ), interleukin 17 (IL-17) and interleukin 10, using flow cytometry and ELISA, respectively. Exposure to Em-VF had no bearing on PBMC's viability, proliferation and expression of CD69. In contrast, higher levels of IL-17 at day three and of TGF-β at day six were observed in PBMC supernatant after exposure to Em-VF (p < 0.05, Wilcoxon signed-rank test). Exposure to Em-VF induced a significant decrease of CD69 expression of NK cells at day three and a significant decrease of proliferation of NK cells at day six (p < 0.05, Wilcoxon signed-rank test). In contrast, NK cells viability and levels of cytokines did not vary significantly over Em-VF stimulation. Exposure to Em-VF had a significant bearing on activation and proliferation of NK cells. NK cells may play an important role in the immune response of the host against E. multilocularis.

  8. Viability and functional assessment of murine pancreatic islets after transportation between Korea and Japan.

    PubMed

    Lee, S; Takahashi, Y; Lee, K M; Mizuno, M; Nemeno, J G; Takebe, T; Lee, J I

    2015-04-01

    Organ donor scarcity remains a restricting factor for pancreatic islet transplantation. To date, limited information is available on the impact of long-distance transportation on transplantable pancreatic islets. The objective of this study was to assess the effects of transportation on the viability and function of murine pancreatic islet cells. The isolated murine pancreatic islets were transported from Japan to Korea with the use of commercial modes of transportation: subway and commercial airplane. After transportation, the islets were assessed by performing a viability assay and by evaluating the islets' insulin secretion in response to glucose stimulation. A comparative study was performed for evaluating the insulin secretory responses of transported and control islets (not transported). There was no evidence of contamination in the transported pancreatic islets. No significant differences were observed in the viability and functionality of the transported and control islet cells. These findings show the feasibility of pancreatic islet transportation from Japan to Korea. Our data could be used not only for the inter-Asian but also for global advancement of animal and human islet transportation methods and transplantation research. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The mechanisms of the protective effects of reconstituted skim milk during convective droplet drying of lactic acid bacteria.

    PubMed

    Zheng, Xufeng; Fu, Nan; Duan, Manlei; Woo, Meng Wai; Selomulya, Cordelia; Chen, Xiao Dong

    2015-10-01

    Reconstituted skim milk (RSM) is a reputed protective carrier for improving the survival ratio of lactic acid bacteria (LAB) after spray drying; however the underlying mechanisms of the prominent protection remains unclear. In this study, the inactivation histories of two LAB strains during droplet drying with four carriers were experimentally determined, and the effects of droplet drying parameters on LAB inactivation were investigated. For the first time, the possible contribution of each RSM components to the maintenance of LAB viability during drying was discussed. Rapid inactivation of LAB cells only started at the later stage of drying, where RSM could maintain viability better upon both high droplet temperature and low moisture content than the other three carriers tested. Such protective effects was attributed to calcium and milk proteins rather than lactose. Upon the rapidly increasing droplet temperature at the later stage, calcium might enhance the heat resistance of LAB cells, whereas proteins might lead to a mild temperature variation rate which was beneficial to cell survival. LAB cells dried in the reconstituted whole milk showed the most advanced transition of rapid viability loss, with transition temperature at around 60°C, in contrast to 65-70°C in lactose and MRS carriers and 75°C in the RSM carrier. The detrimental effects could be due to the high level of milk fat content. The proposed effects of each RSM components on LAB viability would be useful for constructing more powerful protectants for production of active dry LAB cells via spray drying. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  11. Breast milk-derived exosomes promote intestinal epithelial cell growth.

    PubMed

    Hock, Alison; Miyake, Hiromu; Li, Bo; Lee, Carol; Ermini, Leonardo; Koike, Yuhki; Chen, Yong; Määttänen, Pekka; Zani, Augusto; Pierro, Agostino

    2017-05-01

    Breast milk administration prevents necrotizing enterocolitis (NEC). However, the mechanism remains unclear. Exosomes are cell-derived vesicles highly present in human milk and regulate intercellular signaling, inflammation, and immune response. We hypothesized that milk-derived exosomes beneficially affect intestinal epithelial cells. Rat milk was collected, and exosomes were isolated using ExoQuick reagent and visualized by Nanoparticle Tracking Analysis. Protein was extracted from encapsulating exosomes, and concentration was measured. 2×10 4 intestinal epithelial cells (IEC-18) were treated for five hours with 0.5-μg/μl exosomes, an equal volume of exosome-free milk, or control solution (PBS). IEC-18 viability was measured using a colorimetric assay (MTT), and gene expression was analyzed by qRT-PCR. Data were compared using one-way ANOVA with Bonferroni post-test. Rat milk was collected, and exosome isolation was confirmed. Compared to control, treatment with exosomes significantly increased IEC viability, proliferation, and stem cell activity (all p<0.05). However, administration of exosome-free milk had less significant effects. Rat milk-derived exosomes promote IEC viability, enhance proliferation, and stimulate intestinal stem cell activity. These findings provide insight into the mechanism of action of breast milk in the intestines. Exosome administration is a promising prevention method for infants at risk of developing NEC when breastfeeding is not tolerated. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The Effect of Cyclooxygenase Inhibition on Tendon-Bone Healing in an In Vitro Coculture Model

    PubMed Central

    Schwarting, Tim; Pretzsch, Sebastian; Debus, Florian; Ruchholtz, Steffen; Lechler, Philipp

    2015-01-01

    The effects of cyclooxygenase (COX) inhibition following the reconstruction of the anterior cruciate ligament remain unclear. We examined the effects of selective COX-2 and nonselective COX inhibition on bone-tendon integration in an in vitro model. We measured the dose-dependent effects of ibuprofen and parecoxib on the viability of lipopolysaccharide- (LPS-) stimulated and unstimulated mouse MC3T3-E1 and 3T3 cells, the influence on gene expression at the osteoblast, interface, and fibroblast regions measured by quantitative PCR, and cellular outgrowth assessed on histological sections. Ibuprofen led to a dose-dependent suppression of MC3T3 cell viability, while parecoxib reduced the viability of 3T3 cultures. Exposure to ibuprofen significantly suppressed expression of Alpl (P < 0.01), Bglap (P < 0.001), and Runx2 (P < 0.01), and although parecoxib reduced expression of Alpl (P < 0.001), Fmod (P < 0.001), and Runx2 (P < 0.01), the expression of Bglap was increased (P < 0.01). Microscopic analysis showed a reduction in cellular outgrowth in LPS-stimulated cultures following exposure to ibuprofen and parecoxib. Nonselective COX inhibition and the specific inhibition of COX-2 led to region-specific reductions in markers of calcification and cell viability. We suggest further in vitro and in vivo studies examining the biologic and biomechanical effects of selective and nonselective COX inhibition. PMID:26063979

  13. NF-κB Decoy Oligodeoxynucleotide Enhanced Osteogenesis in Mesenchymal Stem Cells Exposed to Polyethylene Particle

    PubMed Central

    Lin, Tzu-Hua; Sato, Taishi; Barcay, Katherine R.; Waters, Heather; Loi, Florence; Zhang, Ruth; Pajarinen, Jukka; Egashira, Kensuke; Yao, Zhenyu

    2015-01-01

    Excessive generation of wear particles after total joint replacement may lead to local inflammation and periprosthetic osteolysis. Modulation of the key transcription factor NF-κB in immune cells could potentially mitigate the osteolytic process. We previously showed that local delivery of ultrahigh-molecular-weight polyethylene (UHMWPE) particles recruited osteoprogenitor cells and reduced osteolysis. However, the biological effects of modulating the NF-κB signaling pathway on osteoprogenitor/mesenchymal stem cells (MSCs) remain unclear. Here we showed that decoy oligodeoxynucleotide (ODN) increased cell viability when primary murine MSCs were exposed to UHMWPE particles, but had no effects on cellular apoptosis. Decoy ODN increased transforming growth factor-beta 1 (TGF-β1) and osteoprotegerin (OPG) in MSCs exposed to UHMWPE particles. Mechanistic studies showed that decoy ODN upregulated OPG expression through a TGF-β1-dependent pathway. By measuring the alkaline phosphatase activity, osteocalcin levels, Runx2 and osteopontin expression, and performing a bone mineralization assay, we found that decoy ODN increased MSC osteogenic ability when the cells were exposed to UHMWPE particles. Furthermore, the cellular response to decoy ODN and UHMWPE particles with regard to cell phenotype, cell viability, and osteogenic ability was confirmed using primary human MSCs. Our results suggest that modulation of wear particle-induced inflammation by NF-κB decoy ODN had no adverse effects on MSCs and may potentially further mitigate periprosthetic osteolysis by protecting MSC viability and osteogenic ability. PMID:25518013

  14. BCI induces apoptosis via generation of reactive oxygen species and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells.

    PubMed

    Shin, Jong-Woon; Kwon, Sae-Bom; Bak, Yesol; Lee, Sang-Ku; Yoon, Do-Young

    2018-03-28

    The compound (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.

  15. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    PubMed

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells.

    PubMed

    Saari, Heikki; Lázaro-Ibáñez, Elisa; Viitala, Tapani; Vuorimaa-Laukkanen, Elina; Siljander, Pia; Yliperttula, Marjo

    2015-12-28

    Extracellular vesicles (EVs) are naturally occurring membrane particles that mediate intercellular communication by delivering molecular information between cells. In this study, we investigated the effectiveness of two different populations of EVs (microvesicle- and exosome-enriched) as carriers of Paclitaxel to autologous prostate cancer cells. EVs were isolated from LNCaP- and PC-3 prostate cancer cell cultures using differential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and Western blot. The uptake of microvesicles and exosomes by the autologous prostate cancer cells was assessed by flow cytometry and confocal microscopy. The EVs were loaded with Paclitaxel and the effectiveness of EV-mediated drug delivery was assessed with viability assays. The distribution of EVs and EV-delivered Paclitaxel in cells was inspected by confocal microscopy. Our main finding was that the loading of Paclitaxel to autologous prostate cancer cell-derived EVs increased its cytotoxic effect. This capacity was independent of the EV population and the cell line tested. Although the EVs without the drug increased cancer cell viability, the net effect of enhanced cytotoxicity remained. Both EV populations delivered Paclitaxel to the recipient cells through endocytosis, leading to the release of the drug from within the cells. The removal of EV surface proteins did not affect exosomes, while the drug delivery mediated by microvesicles was partially inhibited. Cancer cell-derived EVs can be used as effective carriers of Paclitaxel to their parental cells, bringing the drug into the cells through an endocytic pathway and increasing its cytotoxicity. However, due to the increased cell viability, the use of cancer cell-derived EVs must be further investigated before any clinical applications can be designed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Electrospray Encapsulation of Toll-Like Receptor Agonist Resiquimod in Polymer Microparticles for the Treatment of Visceral Leishmaniasis

    DTIC Science & Technology

    2013-01-15

    production using the methods described below. The remaining cells were analyzed for viability. To the cells still adhered to the culture plate, 180 μL of...2009, 43 (9), 902−910. (23) Jaworek, A. Micro - and nanoparticle production by electro- spraying. Powder Technol. 2007, 176 (1), 18−35. (24) Almeria, B...Jhunjhunwala, S.; Raimondi, G.; Thomson, A. W.; Little, S. R. Delivery of rapamycin to dendritic cells using degradable micro - particles. J

  18. Saturated and unsaturated fatty acids differentially regulate in vitro and ex vivo placental antioxidant capacity.

    PubMed

    Manuel, Clarence R; Charron, Maureen J; Ashby, Charles R; Reznik, Sandra E

    2018-05-07

    Complications from prematurity are the leading cause of death among children under 5 years of age. Although clinical studies have shown a positive correlation between maternal high-fat diet (HFD) and preterm birth (PTB), the underlying mechanisms remain to be elucidated. Furthermore, it remains unclear how fatty acid type influences the effects of bacterial endotoxins. HTR-8/SVneo trophoblasts were cultured in either 0.5 mmol L -1 palmitic acid (PA) or linoleic acid (LA) in the absence or presence of 100 μg mL -1 of lipopolysaccharide (LPS) or lipoteichoic acid (LTA). Murine placental explants were cultured in either 2 mmol L -1 PA or LA, and cell viability, total antioxidant capacity (TAC), lipid peroxidation, H 2 O 2 , heme oxygenase-1 (HO-1), and nuclear erythroid 2-related factor 2 (Nrf-2) and nuclear factor-kappa light-chain enhancer of activated B cells (NF-κB) transcription factor activity assays were assessed. Palmitic acid significantly (i) increased cell death, (ii) decreased TAC, and (iii) increased lipid peroxidation; but did not significantly increase HO-1. In contrast, LA maintained cell viability and significantly increased TAC and HO-1. In addition, incubating placental explants with PA significantly increased NF-κB activity. Co-incubating cells with PA and LPS or LTA significantly potentiated H 2 O 2 production and increased lipid peroxidation. Co-incubating cells with PA and LTA synergistically impaired TAC, and LTA decreased TAC more so than LPS. Co-incubation with PA/LA and LPS/LTA decreased HO-1 levels compared to treatment with either fatty acid alone. Our findings suggest that saturated and unsaturated fats differentially regulate placental viability, antioxidant capacity, and inflammation and the actions of gram-positive and gram-negative endotoxins. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. 3D porous calcium-alginate scaffolds cell culture system improved human osteoblast cell clusters for cell therapy.

    PubMed

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects.

  20. PHYSIOLOGICAL, CYTOLOGICAL AND BIOCHEMICAL STABILITY OF Medicago sativa L. CELL CULTURE AFTER 27 YEARS OF CRYOGENIC STORAGE.

    PubMed

    Volkova, L A; Urmantseva, V V; Popova, E V; Nosov, A M

    2015-01-01

    The efficiency of long-term cryogenic storage to prevent somaclonal variations in plant cell cultures and retain their major cytogenetic and biochemical traits remains under debate. In particular, it is not clear how stress conditions associated with cryopreservation, such as low temperature, dehydration and toxic action of some cryoprotectants (DMSO in particular), affect post-storage regrowth and genetic integrity of cell samples. We assessed growth, cytogenetic and biochemical characteristics of the peroxidase-producing strain of Medicago sativa L. cell culture recovered after 27 years of cryogenic storage as compared to the same culture before cryopreservation. In 1984, M. sativa L. cell culture was cryopreserved using programmed freezing and 7% DMSO as a cryoprotectant. In 2011, after rewarming in a water bath at 40 degree C for 90 s, cell culture was recovered and proliferated. Viability, growth profile, mitotic index, ploidy level, peroxidase activity and cell response to hypothermia and osmotic stress were compared between the recovered and the initial cell cultures using the records available from 1984. Viability of alfalfa cell culture after rewarming was below 20% but it increased to 80% by the 27th subculture cycle. Recovered culture showed higher mitotic activity and increased number of haploid and diploid cells compared to the initial cell line. Both peroxidase activity and response to abiotic stress in the recovered cell culture were similar to that of the initial culture. Cryopreservation by programmed freezing was effective at retaining the main characteristics of M. sativa undifferentiated cell culture after 27 years of storage. According to available data, this is longest period of successful cryopreservation of plant cell cultures reported so far. After storage, there was no evidence that DMSO had any detrimental effect on cell viability, growth or cytogenetics.

  1. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell.

    PubMed

    Wang, Xinzheng; Hang, Yakai; Liu, Jinbiao; Hou, Yongqiang; Wang, Ning; Wang, Mingjun

    2017-06-01

    Curcumin is a polyphenol extracted from turmeric, which that belongs to the Zingiberaceae family. Curcumin has numerous effects, including anti-inflammatory, antitumor, anti-oxidative and antimicrobial effects. However, the effects of curcumin on human breast cancer cells remain largely unknown. The aim of the present study was to investigate the anticancer effects and the mechanisms by which curcumin affects breast cancer cells. The anticancer effect of curcumin on cell viability and cytotoxicity on human breast cancer MCF-7 cells was analyzed using 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide and lactate dehydrogenase assays, respectively. Cell apoptosis of MCF-7 cells was detected using flow cytometry, 4',6-diamidino-2-phenylindolestaining assay and caspase-3/9 activity kits. Reverse transcription-quantitative polymerase chain reaction was used to analyze microRNA-21 (miR-21) expression in MCF-7 cells. The protein expression of phosphatase and tensin homolog (PTEN) and phospho-protein kinase B (pAkt) was determined by western blot analysis. miR-21 was transfected into MCF-7 cells and the anticancer effect of curcumin on cell viability and the expression of PTEN and pAkt was analyzed. The present results demonstrated that curcumin inhibited cell viability and induced cytotoxicity of MCF-7 cells in a concentration- and time-dependent manner, by inducing apoptosis and increasing caspase-3/9 activities. In addition, curcumin downregulated miR-21 expression in MCF-7 cells by upregulating the PTEN/Akt signaling pathway. The present study has for the first time, to the best of our knowledge, revealed the anticancer effect of curcumin in suppressing breast cancer cell growth, and has elucidated that the miR-21/PTEN/Akt signaling pathway is a key mechanism for the anticancer effects of curcumin.

  2. Fourier transform infrared spectroscopy imaging of live epithelial cancer cells under non-aqueous media.

    PubMed

    Soh, JunYi; Chueng, Adeline; Adio, Aminat; Cooper, Alan J; Birch, Brian R; Lwaleed, Bashir A

    2013-04-01

    Fourier transform infrared (FT-IR) imaging is increasingly being applied to biomedical specimens, but strong IR absorption by water complicates live cell imaging. This study investigates the viability of adherent epithelial cells maintained for short periods under mineral oils in order to facilitate live cell spectroscopy using FT-IR with subsequent imaging. The MGH-U1 urothelial or CaCo2 colorectal cancer cell lines were grown on plastic surfaces or mid-range infrared transparent windows. Medium in established cultures was replaced with paraffin mineral oil, or Fluorolube, for up to 2 h, and viability assessed by supravital staining. Drug handling characteristics were also assessed. Imaging of preparations was attempted by reflectance and transmission using a Varian FT-IR microscope. Cells covered by mineral oil remained viable for 2 h, with recovery into normal medium possible. MTT ((3-(4,5-dimethylthlazol-2-yl)-2,5-diphenyl tetrazolium) conversion to crystalline formazan and differential patterns of drug uptake were maintained. The combination of a calcium fluoride substrate, Fluorolube oil, and transmission optics proved best for spectroscopy. Spectral features were used to obtain images of live cells. The viability of cells overlaid with IR transparent oils was assessed as part of a technique to optimise conditions for FT-IR imaging. Images of untreated cells were obtained using both reflectance and transmission. This represents an effective means of imaging live cells by IR spectroscopy, and also means that imaging is not necessarily a terminal event. It also increases options for producing images based on real-time biochemistry in a range of in vitro experimental and 'optical biopsy' contexts.

  3. Metabolic Conversion of Ceramides in HeLa Cells - A Cholesteryl Phosphocholine Delivery Approach

    PubMed Central

    Kjellberg, Matti A.; Lönnfors, Max; Slotte, J. Peter; Mattjus, Peter

    2015-01-01

    Ceramides can be delivered to cultured cells without solvents in the form of complexes with cholesteryl phosphocholine. We have analysed the delivery of three different radiolabeled D-erythro-ceramides (C6-Cer, C10-Cer and C16-Cer) to HeLa cells, and followed their metabolism as well as the cell viability. We found that all three ceramides were successfully taken up by HeLa cells when complexed to CholPC in an equimolar ratio, and show that the ceramides show different rates of cellular uptake and metabolic fate. The C6-Cer had the highest incorporation rate, followed by C10-Cer and C16-Cer, respectively. The subsequent effect on cell viability strongly correlated with the rate of incorporation, where C6-Cer had the strongest apoptotic effects. Low-dose (1 μM) treatment with C6-Cer favoured conversion of the precursor to sphingomyelin, whereas higher concentrations (25–100 μM) yielded increased conversion to C6-glucosylceramide. Similar results were obtained for C10-Cer. In the lower-dose C16-Cer experiments, most of the precursor was degraded, whereas at high-dose concentrations the precursor remained un-metabolized. Using this method, we demonstrate that ceramides with different chain lengths clearly exhibit varying rates of cellular uptake. The cellular fate of the externally delivered ceramides are clearly connected to their rate of incorporation and their subsequent effects on cell viability may be in part determined by their chain length. PMID:26599810

  4. Curcumin analog EF24 induces apoptosis and downregulates the mitogen activated protein kinase/extracellular signal-regulated signaling pathway in oral squamous cell carcinoma.

    PubMed

    Lin, Chongxiang; Tu, Chengwei; Ma, Yike; Ye, Pengcheng; Shao, Xia; Yang, Zhaoan; Fang, Yiming

    2017-10-01

    Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Diphenyldifluoroketone (EF24) is a curcumin analog that has been demonstrated to improve anticancer activity; however, its therapeutic potential and mechanisms in oral cancer remain unknown. In the present study, the effect of EF24 on apoptosis induction and its potential underlying mechanism in the CAL‑27 human OSCC cell line was investigated. To achieve this, various concentrations of cisplatin or EF24 were administrated to CAL‑27 cells for 24 h, and cell viability, apoptotic DNA fragmentation, and cleaved caspase 3 and 9 levels were evaluated. To investigate the potential underlying mechanism, the levels of mitogen‑activated protein kinase kinase 1 (MEK1) and extracellular signal‑regulated kinase (ERK), two key proteins in the mitogen‑activated protein kinase/ERK signaling pathway, were additionally examined. The results indicated that EF24 and cisplatin treatment decreased cell viability. EF24 treatment increased the levels of activated caspase 3 and 9, and decreased the phosphorylated forms of MEK1 and ERK. Sequential treatments of EF24 and 12‑phorbol‑13‑myristate acetate, a MAPK/ERK activator, resulted in a significant increase of activated MEK1 and ERK, and reversed cell viability. These results suggested that EF24 has potent anti‑tumor activity in OSCC via deactivation of the MAPK/ERK signaling pathway. Further analyses using animal models are required to confirm these findings in vivo.

  5. The inhibition of Caco-2 proliferation by astaxanthin from Xanthophyllomyces dendrorhous.

    PubMed

    Wayakanon, Kornchanok; Rueangyotchanthana, Kanjana; Wayakanon, Praween; Suwannachart, Chatrudee

    2018-04-01

    To investigate the efficiency of natural astaxanthin that has been extracted from Xanthophyllomyces dendrorhous in inhibiting the proliferation and viability of colorectal adenocarcinoma cell line (Caco-2; colon cancer cells). Caco-2 cells and normal human oralkeratinocytes (NOKs) were treated with different concentrations of extracted astaxanthin, ranging from 0.075 to 10 mg ml -1 , for 24, 48 and 72 h. The number of cells was determined via MTS assay and the proliferating cells were investigated by bromodeoxyuridine (BrdU) assay.Results/Key findings. Of the Caco-2 cells, 30-50 % remained viable, while the NOKs showed 110-120 % survival when treated with 5 mg ml -1 astaxanthin. The Caco-2 cells showed distinct structural shrinkage when treated with the same concentration of astaxanthin. Fluorescent labelling of the DNA of the proliferative cells with BrdU showed a significant decrease in the number of the proliferative Caco-2 cells when the concentration of astaxanthin was increased to 5 mg ml -1 . The natural astaxanthin from X. dendrorhous, at an appropriate concentration, is effective in terminating the viability of, or retarding the proliferative activity of, Caco-2 cells, without harmful effects on NOKs.

  6. [1-9-NαC]-crourorb A1 isolated from Croton urucurana latex induces G2/M cell cycle arrest and apoptosis in human hepatocarcinoma cells.

    PubMed

    de Matos Cândido-Bacani, Priscila; Ezan, Frédéric; de Oliveira Figueiredo, Patrícia; Matos, Maria de Fátima Cepa; Rodrigues Garcez, Fernanda; Silva Garcez, Walmir; Baffet, Georges

    2017-05-05

    [1-9-NαC]-crourorb A1 is a cyclic peptide isolated from Croton urucurana Baillon latex, found in midwestern Brazil, that has been shown to exert cytotoxic effects against a panel of cancer cell lines. However, the underlying mechanisms responsible for the crourorb A1-induced cytotoxicity in cancer cells remain unknown. In this study, the effects of crourorb A1 on the viability, apoptosis, cell cycle and migration of Huh-7 (human hepatocarcinoma) cells were investigated. We evaluated the viability of Huh-7 cells treated with crourorb A1 in 2D and 3D collagen cultures and found that cells in 3D culture exhibited increased resistance to crourorb A1 compared to cells in 2D culture (IC 50 : 62μg/ml versus 35.75μg/ml). Crourorb A1 treatment decreases the viability of Huh-7 cells in a dose- and time-dependent manner and is associated with the induction of apoptosis, in the absence of necrotic cells, through the activation of caspase-3/7 and increased expression of the pro-apoptotic proteins Bak, Bid, Bax, Puma, Bim, and Bad. The effects of crourorb A1 are also associated with G2/M phase cell cycle arrest and increases in cyclin-dependent kinase (CDK1) and cyclin B1 expression. A significant reduction in Huh-7 cell migration induced by crourorb A1 was also observed in the presence of mitomycin C. Finally, we showed that the JNK/MAP pathway, but not ERK signaling, is involved in crourorb A1-induced hepatocarcinoma cell mortality. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ferroptosis-inducing agents compromise in vitro human islet viability and function.

    PubMed

    Bruni, Antonio; Pepper, Andrew R; Pawlick, Rena L; Gala-Lopez, Boris; Gamble, Anissa F; Kin, Tatsuya; Seeberger, Karen; Korbutt, Gregory S; Bornstein, Stefan R; Linkermann, Andreas; Shapiro, A M James

    2018-05-22

    Human islet transplantation has been hampered by donor cell death associated with the islet preparation procedure before transplantation. Regulated necrosis pathways are biochemically and morphologically distinct from apoptosis. Recently, ferroptosis was identified as a non-apoptotic form of iron-dependent regulated necrosis implicated in various pathological conditions. Mediators of islet oxidative stress, including glutathione peroxidase-4 (GPX4), have been identified as inhibitors of ferroptosis, and mechanisms that affect GPX4 function can impact islet function and viability. Ferroptosis has not been investigated directly in human islets, and its relevance in islet transplantation remains unknown. Herein, we sought to determine whether in vitro human islet viability and function is compromised in the presence of two distinct ferroptosis-inducing agents (FIA), erastin or RSL3, and whether these effects could be rescued with ferroptosis inhibitors, ferrostatin-1 (Fer-1), or desferrioxamine (DFO). Viability, as assessed by lactate dehydrogenase (LDH) release, revealed significant death in erastin- and RSL3-treated islets, 20.3% ± 3.8 and 24.4% ± 2.5, 24 h post culture, respectively. These effects were ameliorated in islets pre-treated with Fer-1 or the iron chelator, desferrioxamine (DFO). Stimulation index, a marker of islet function revealed a significant reduction in function in erastin-treated islets (control 1.97 ± 0.13 vs. 50 μM erastin 1.32 ± 0.1) (p < 0.05). Fer-1 and DFO pre-treatment alone did not augment islet viability or function. Pre-treatment of islets with erastin or Fer-1 did not impact in vivo engraftment in an immunodeficient mouse transplant model. Our data reveal that islets are indeed susceptible to ferroptosis in vitro, and induction of this novel cell death modality leads to compromised islet function, which can be recoverable in the presence of the ferroptosis inhibitors. The in vivo impact of this pathway in islet transplantation remains elusive given the constraints of our study, but warrants continued investigation.

  8. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    PubMed

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  9. A Novel Method for Determining the Level of Viable Disseminated Prostate Cancer Cells

    DTIC Science & Technology

    2012-10-01

    Metridia luciferase, for use in a real-time viability assay for mammalian cells. The coding region of the marine copepod gene has been codon optimized for...need for multiple replicates of plates in time course studies. Recently a naturally secreted luciferase was identified and cloned from the marine ...well solid white flat bottom polystyrene microplates (Corning, Cat#3917, Lowell, MA). After 24 hours, conditioned media was harvested and remaining

  10. Improvement of a dry formulation of Pseudomonas fluorescens EPS62e for fire blight disease biocontrol by combination of culture osmoadaptation with a freeze-drying lyoprotectant.

    PubMed

    Cabrefiga, J; Francés, J; Montesinos, E; Bonaterra, A

    2014-10-01

    To study the effect of lyoprotectants and osmoadaptation on viability of Pseudomonas fluorescens EPS62e during freeze-drying and storage and to evaluate the formulation in terms of efficacy in biocontrol and fitness on pear flowers. A wettable powder formulation of a biocontrol agent of fire blight was optimized by means of lyoprotectants and culture osmoadaptation. Freeze-drying was used to obtain dehydrated cells, and the best viability (70% of survival) was obtained using lactose as lyoprotectant. Survival during lyophilization was additionally improved using physiological adaptation of cells during cultivation under salt-amended medium (osmoadaptation). The procedure increased the survival of cells after freeze-drying attaining viability values close to a 100% in the lactose-formulated product (3 × 10(11) CFU g(-1) ), and through the storage period of 1 year at 4°C. The dry formulation showed also an improved biocontrol efficacy and survival of EPS62e on pear flowers under low relative humidity conditions. Cell viability after freeze-drying was improved using lactose as lyoprotectant combined with a procedure of osmoadaptation during cultivation. The powder-formulated product remained active for 12 months and retained biocontrol levels similar to that of fresh cells. The formulation showed an improved survival of EPS62e on flowers and an increase of the efficacy of biocontrol of fire blight at low relative humidity. The results have a potential value for commercial application in biocontrol agents not only of fire blight but also of other plant diseases. © 2014 The Society for Applied Microbiology.

  11. Alginate microencapsulation technology for the percutaneous delivery of adipose-derived stem cells.

    PubMed

    Moyer, Hunter R; Kinney, Ramsey C; Singh, Kimberly A; Williams, Joseph K; Schwartz, Zvi; Boyan, Barbara D

    2010-11-01

    Autologous fat is the ideal soft-tissue filler; however, its widespread application is limited because of variable clinical results and poor survival. Engineered fillers have the potential to maximize survival. Alginate is a hydrogel copolymer that can be engineered into spheres of <200 μm, thus facilitating mass transfer, allowing for subcutaneous injection, and protecting cells from shearing forces. Alginate powder was dissolved in saline, and adipose-derived stem cells (ADSCs) were encapsulated (1 million cells/mL) in alginate using an electrostatic bead generator. To assess effects of injection on cell viability, microspheres containing ADSCs were separated into 2 groups: the control group was decanted into culture wells and the injection group was mixed with basal media and injected through a 21-gauge needle into culture wells. Microbeads were cultured for 3 weeks, and cell number and viability were measured weekly using electron and confocal microscopy. To assess effects of percutaneous injection in vivo, twenty-four male nude mice were randomly separated into 2 groups and injected with either empty microcapsules or ADSC-laden microcapsules. Mice were harvested at 1 and 3 months, and the implants were examined microscopically to assess bead and cell viability. A flow rate of 5 mL/h and an electrostatic potential of 7 kV produced viable ADSC-laden microbeads of <200 μm. There were no differences in bead morphology and ADSC viability between microcapsules placed versus injected into tissue culture plates for up to 3 weeks. Microspheres implanted in a nude mouse model show durability up to 3 months with a host response around each individual sphere. ADSCs remained viable and showed signs of mitosis. ADSCs can be readily cultured, encapsulated, and injected in alginate microspheres. Stem cells suspended in alginate microspheres survive in vivo and are seen to replicate in vitro.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuncharin, Yanin; Sangphech, Naunpun; Kueanjinda, Patipark

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomalmore » translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing DN-MAML exhibited loss of phospho-I{kappa}B{alpha}, decreased total I{kappa}B{alpha} and nuclear localization of NF-{kappa}B p65, which suggests that the NF-{kappa}B pathway is hyperactivated. Furthermore, increased level of cleaved Notch1 was detected when DN-MAML was expressed. When DN-MAML-overexpressing cells were treated with GSI, significantly decreased cell viability was observed, indicating that inhibition of Notch signaling using GSI treatment and DN-MAML expression negatively affects cell viability. Taken together, targeting Notch signaling using DN-MAML and GSI treatment may present a novel method to control cell viability in cervical cancer cells.« less

  13. In Vitro Effect of Laser-Induced Hydrodynamics on Cancer Cells.

    PubMed

    Elagin, V V; Pavlikov, A I; Yusupov, V I; Shirmanova, M V; Zagaynova, E V; Bagratashvili, V N

    2015-11-01

    We studied the effect of laser-induced hydrodynamic on viability of Colo-26 murine colon carcinoma cells in vitro. Laser-induced hydrodynamics was generated by a laser (λ=1.56 μ, power 3 W, 5 min exposure); to this end, the fiber end was submersed into a buffer above the cell monolayer. It was found that laser-induced hydrodynamics destructed the monolayer at standoff distances of between the working end of the laser fiber to cell monolayer of 1 and 5 mm and triggers apoptotic and necrotic death in remaining cells at a distance of 4 mm from the emitter.

  14. Cell death induced by the application of alternating magnetic fields to nanoparticle-loaded dendritic cells.

    PubMed

    Marcos-Campos, I; Asín, L; Torres, T E; Marquina, C; Tres, A; Ibarra, M R; Goya, G F

    2011-05-20

    In this work, the capability of primary, monocyte-derived dendritic cells (DCs) to uptake iron oxide magnetic nanoparticles (MNPs) is assessed and a strategy to induce selective cell death in these MNP-loaded DCs using external alternating magnetic fields (AMFs) is reported. No significant decrease in the cell viability of MNP-loaded DCs, compared to the control samples, was observed after five days of culture. The number of MNPs incorporated into the cytoplasm was measured by magnetometry, which confirmed that 1-5 pg of the particles were uploaded per cell. The intracellular distribution of these MNPs, assessed by transmission electron microscopy, was found to be primarily inside the endosomic structures. These cells were then subjected to an AMF for 30 min and the viability of the blank DCs (i.e. without MNPs), which were used as control samples, remained essentially unaffected. However, a remarkable decrease of viability from approximately 90% to 2-5% of DCs previously loaded with MNPs was observed after the same 30 min exposure to an AMF. The same results were obtained using MNPs having either positive (NH(2)(+)) or negative (COOH(-)) surface functional groups. In spite of the massive cell death induced by application of AMF to MNP-loaded DCs, the number of incorporated magnetic particles did not raise the temperature of the cell culture. Clear morphological changes at the cell structure after magnetic field application were observed using scanning electron microscopy. Therefore, local damage produced by the MNPs could be the main mechanism for the selective cell death of MNP-loaded DCs under an AMF. Based on the ability of these cells to evade the reticuloendothelial system, these complexes combined with an AMF should be considered as a potentially powerful tool for tumour therapy.

  15. Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure.

    PubMed

    Takai, Erica; Mauck, Robert L; Hung, Clark T; Guo, X Edward

    2004-09-01

    A new trabecular bone explant model was used to examine osteocyte-osteoblast interactions under DHP loading. DHP loading enhanced osteocyte viability as well as osteoblast function measured by osteoid formation. However, live osteocytes were necessary for osteoblasts to form osteoids in response to DHP, which directly show osteoblast-osteocyte interactions in this in vitro culture. A trabecular bone explant model was characterized and used to examine the effect of osteocyte and osteoblast interactions and dynamic hydrostatic pressure (DHP) loading on osteocyte viability and osteoblast function in long-term culture. Trabecular bone cores obtained from metacarpals of calves were cleaned of bone marrow and trabecular surface cells and divided into six groups, (1) live cores + dynamic hydrostatic pressure (DHP), (2) live cores + sham, (3) live cores + osteoblast + DHP, (4) live cores + osteoblast + sham, (5) devitalized cores + osteoblast + DHP, and (6) devitalized cores + osteoblast + sham, with four culture durations (2, 8, 15, and 22 days; n = 4/group). Cores from groups 3-6 were seeded with osteoblasts, and cores from groups 5 and 6 were devitalized before seeding. Groups 1, 3, and 5 were subjected to daily DHP loading. Bone histomorphometry was performed to quantify osteocyte viability based on morphology and to assess osteoblast function based on osteoid surface per bone surface (Os/Bs). TUNEL staining was performed to evaluate the mode of osteocyte death under various conditions. A portion of osteocytes remained viable for the duration of culture. DHP loading significantly enhanced osteocyte viability up to day 8, whereas the presence of seeded osteoblasts significantly decreased osteocyte viability. Cores with live osteocytes showed higher Os/Bs compared with devitalized cores, which reached significant levels over a greater range of time-points when combined with DHP loading. DHP loading did not increase Os/Bs in the absence of live osteocytes. The percentage of apoptotic cells remained the same regardless of treatment or culture duration. Enhanced osteocyte viability with DHP suggests the necessity of mechanical stimulation for osteocyte survival in vitro. Furthermore, osteocytes play a critical role in the transmission of signals from DHP loading to modulate osteoblast function. This explant culture model may be used for mechanotransduction studies in long-term cultures.

  16. Protein-engineered block-copolymers as stem cell delivery vehicles

    NASA Astrophysics Data System (ADS)

    Heilshorn, Sarah

    2015-03-01

    Stem cell transplantation is a promising therapy for a myriad of debilitating diseases and injuries; however, current delivery protocols are inadequate. Transplantation by direct injection, which is clinically preferred for its minimal invasiveness, commonly results in less than 5% cell viability, greatly inhibiting clinical outcomes. We demonstrate that mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we show that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. Building on these fundamental studies, we have designed a reproducible, bio-resorbable, customizable hydrogel using protein-engineering technology. In our Mixing-Induced Two-Component Hydrogel (MITCH), network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with simple polymer physics models, we manipulate the polypeptide chain interactions and demonstrate the direct ability to tune the network crosslinking density, sol-gel phase behavior, and gel mechanics. This is in contrast to many other physical hydrogels, where predictable tuning of bulk mechanics from the molecular level remains elusive due to the reliance on non-specific and non-stoichiometric chain interactions for network formation. Furthermore, the hydrogel network can be easily modified to deliver a variety of bioactive payloads including growth factors, peptide drugs, and hydroxyapatite nanoparticles. Through a series of in vitro and in vivo studies, we demonstrate that these materials may significantly improve transplanted stem cell retention and function.

  17. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Gary L., E-mail: gary.l.thompson.3@gmail.com; Roth, Caleb C.; Kuipers, Marjorie A.

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known tomore » be sequestered for cellular chromosomal function within the nucleus – histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. - Highlights: • The ability of nsPEF to damage nuclear structures within cells is investigated. • Leakage of proliferating nuclear antigen from nuclei is induced by nsPEF. • High doses of nsPEF disrupt cortical lamin and cause chromatin decompaction. • Histone H2B remains attached to chromatin following nsPEF exposure. • DNA does not leak out of nsPEF-permeabilized nuclei.« less

  18. Neuroprotective effects of seaweeds against 6-hydroxidopamine-induced cell death on an in vitro human neuroblastoma model.

    PubMed

    Silva, Joana; Alves, Celso; Pinteus, Susete; Mendes, Susana; Pedrosa, Rui

    2018-02-14

    Parkinson's disease (PD) is a progressive neurodegenerative disorder of the central nervous system. Although the causes of PD pathogenesis remain incomplete, some evidences has suggested that oxidative stress is an important mediator in its pathogenesis. The aim of this study was to evaluate the protective effects of seaweeds with high antioxidant activity on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in the human neuroblastoma cell line SH-SY5Y, as well as the associated intracellular signaling pathways. Cell viability studies were assessed by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium (MTT) bromide assay and the intracellular signaling pathways analyzed were: hydrogen peroxide (H 2 O 2 ) production, changes in the mitochondrial membrane potential and Caspase-3 activity. Exposure of SH-SY5Y cells to 6-OHDA (10-1000 μM) reduced cell's viability in a concentration and time-dependent manner. The data suggest that the cell death induced by 6-OHDA was mediated by an increase of H 2 O 2 production, the depolarization of mitochondrial membrane potential and the increase of Caspase-3 activity. Extracts from S. polyshides, P. pavonica, S. muticum, C. tomentosum and U. compressa revealed to efficiently protect cell's viability in the presence of 6-OHDA (100 μM; 24 h). These effects appear to be associated with the reduction of H 2 O 2 cell's production, the protection of mitochondrial membrane's potential and the reduction of Caspase-3 activity. These results suggest that seaweeds can be a promising source of new compounds with neuroprotective potential.

  19. PACAP Protects Adult Neural Stem Cells from the Neurotoxic Effect of Ketamine Associated with Decreased Apoptosis, ER Stress and mTOR Pathway Activation

    PubMed Central

    Mansouri, Shiva; Agartz, Ingrid; Ögren, Sven-Ove; Patrone, Cesare; Lundberg, Mathias

    2017-01-01

    Ketamine administration is a well-established approach to mimic experimentally some aspects of schizophrenia. Adult neurogenesis dysregulation is associated with psychiatric disorders, including schizophrenia. The potential role of neurogenesis in the ketamine-induced phenotype is largely unknown. Recent results from human genetic studies have shown the pituitary adenylate cyclase-activating polypeptide (PACAP) gene is a risk factor for schizophrenia. Its potential role on the regulation of neurogenesis in experimental model of schizophrenia remains to be investigated. We aimed to determine whether ketamine affects the viability of adult neural stem cells (NSC). We also investigated whether the detrimental effect mediated by ketamine could be counteracted by PACAP. NSCs were isolated from the subventricular zone of the mouse and exposed to ketamine with/without PACAP. After 24 hours, cell viability, potential involvement of apoptosis, endoplasmic reticulum (ER) stress, mTOR and AMPA pathway activation were assessed by quantitative RT-PCR and Western blot analysis. We show that ketamine impairs NSC viability in correlation with increased apoptosis, ER stress and mTOR activation. The results also suggest that the effect of ketamine occurs via AMPA receptor activation. Finally, we show that PACAP counteracted the decreased NSC viability induced by ketamine via the specific activation of the PAC-1 receptor subtype. Our study shows that the NSC viability may be negatively affected by ketamine with putative importance for the development of a schizophrenia phenotype in the ketamine induced animal model of schizophrenia. The neuroprotective effect via PAC-1 activation suggests a potentially novel pharmacological target for the treatment of schizophrenia, via neurogenesis normalization. PMID:28125634

  20. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.

    2008-12-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects ofmore » GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases.« less

  1. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells.

    PubMed

    Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng

    2016-12-01

    Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain

    PubMed Central

    Sagar, Vidya; Atluri, V. S. R.; Tomitaka, A.; Shah, P.; Nagasetti, A.; Pilakka-Kanthikeel, S.; El-Hage, N.; McGoron, A.; Takemura, Y.; Nair, M.

    2016-01-01

    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension. PMID:27465276

  3. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    PubMed

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain <10%. Novel treatment strategies are therefore urgently required, particularly for patients bearing BRAF/NRAS wild-type tumors. Targeting autophagy is a means to promote cancer cell death in chemotherapy-resistant tumors, and the aim of this study was to test the hypothesis that cannabinoids promote autophagy-dependent apoptosis in melanoma. Treatment with Δ(9)-Tetrahydrocannabinol (THC) resulted in the activation of autophagy, loss of cell viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.

  4. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    PubMed

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  5. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain.

    PubMed

    Sagar, Vidya; Atluri, V S R; Tomitaka, A; Shah, P; Nagasetti, A; Pilakka-Kanthikeel, S; El-Hage, N; McGoron, A; Takemura, Y; Nair, M

    2016-07-28

    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.

  6. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain

    NASA Astrophysics Data System (ADS)

    Sagar, Vidya; Atluri, V. S. R.; Tomitaka, A.; Shah, P.; Nagasetti, A.; Pilakka-Kanthikeel, S.; El-Hage, N.; McGoron, A.; Takemura, Y.; Nair, M.

    2016-07-01

    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.

  7. Comparisons of human amniotic mesenchymal stem cell viability in FDA-approved collagen-based scaffolds: Implications for engineered diaphragmatic replacement.

    PubMed

    Shieh, Hester F; Graham, Christopher D; Brazzo, Joseph A; Zurakowski, David; Fauza, Dario O

    2017-06-01

    We sought to examine amniotic fluid mesenchymal stem cell (afMSC) viability within two FDA-approved collagen-based scaffolds, as a prerequisite to clinical translation of afMSC-based engineered diaphragmatic repair. Human afMSCs were seeded in a human-derived collagen hydrogel and in a bovine-derived collagen sheet at 3 matching densities. Cell viability was analyzed at 1, 3, and 5days using an ATP-based 3D bioluminescence assay. Statistical comparisons were by ANOVA (P<0.05). There was a highly significant 3-way interaction between scaffold type, seeding density, and time in 3D culture as determinants of cell viability, clearly favoring the human hydrogel (P<0.001). In both scaffolds, cell viability was highest at the highest seeding density of 150,000 cells/mL. Time in 3D culture impacted cell viability at the optimal seeding density in the human hydrogel, with the highest levels on days 1 (P<0.001) and 5 (P=0.05) with no significant effect in the bovine sheet (P=0.39-0.96). Among clinically-approved cell delivery vehicles, mesenchymal stem cell viability is significantly enhanced in a collagen hydrogel when compared with a collagen sheet. Cell viability can be further optimized by seeding density and time in 3D culture. These data further support the regulatory viability of clinical trials of engineered diaphragmatic repair. N/A (animal and laboratory study). Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D.

    PubMed

    Faulkner-Jones, Alan; Fyfe, Catherine; Cornelissen, Dirk-Jan; Gardner, John; King, Jason; Courtney, Aidan; Shu, Wenmiao

    2015-10-21

    We report the first investigation into the bioprinting of human induced pluripotent stem cells (hiPSCs), their response to a valve-based printing process as well as their post-printing differentiation into hepatocyte-like cells (HLCs). HLCs differentiated from both hiPSCs and human embryonic stem cells (hESCs) sources were bioprinted and examined for the presence of hepatic markers to further validate the compatibility of the valve-based bioprinting process with fragile cell transfer. Examined cells were positive for nuclear factor 4 alpha and were demonstrated to secrete albumin and have morphology that was also found to be similar to that of hepatocytes. Both hESC and hiPSC lines were tested for post-printing viability and pluripotency and were found to have negligible difference in terms of viability and pluripotency between the printed and non-printed cells. hESC-derived HLCs were 3D printed using alginate hydrogel matrix and tested for viability and albumin secretion during the remaining differentiation and were found to be hepatic in nature. 3D printed with 40-layer of HLC-containing alginate structures reached peak albumin secretion at day 21 of the differentiation protocol. This work demonstrates that the valve-based printing process is gentle enough to print human pluripotent stem cells (hPSCs) (both hESCs and hiPSCs) while either maintaining their pluripotency or directing their differentiation into specific lineages. The ability to bioprint hPSCs will pave the way for producing organs or tissues on demand from patient specific cells which could be used for animal-free drug development and personalized medicine.

  9. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway.

    PubMed

    Haque, Inamul; Ghosh, Arnab; Acup, Seth; Banerjee, Snigdha; Dhar, Kakali; Ray, Amitabha; Sarkar, Sandipto; Kambhampati, Suman; Banerjee, Sushanta K

    2018-01-25

    In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.

  10. Integration of living cells into nanostructures using non-conventional self-assembly

    NASA Astrophysics Data System (ADS)

    Carnes, Eric C.

    Patternable cell immobilization is an essential feature of any solid-state device designed for interrogating or exploiting living cells. Immobilized cells must remain viable in a robust matrix that promotes fluidic connectivity between the cells and their environment while retaining the ability to establish and maintain necessary chemical gradients. A suitable inorganic matrix can be constructed via evaporation-induced self-assembly of nanostructured silica, in which phospholipids are used in place of traditional surfactant structure-directing agents in order to enhance cell viability and to create a coherent interface between the cell and the surrounding three-dimensional nanostructure. We have used this technique to develop two distinct cell encapsulation processes: cell-directed assembly and cell-directed integration. Cell-directed assembly is a one-step procedure that provides superior viability of immobilized cells by encouraging cells to interact with the developing host matrix. Limitations of this system include low viability for some cell types due to exposure to solvents and stresses, as well as a lack of control over the developing host nanostructure. Cell-directed integration addresses these shortcomings by introducing a two-step process in which cells become encapsulated in a pre-formed silica matrix. The validity of each encapsulation method has been demonstrated with Gram-positive and Gram-negative bacteria, yeast, and mammalian cells. The ability of the immobilized cells to establish relevant gradients of ions or signaling molecules, a key feature of these systems, has been characterized. Additionally, extension of cell encapsulation to address lingering questions in cell biology is addressed. We have also adapted these immobilization processes to be compatible with a variety of patterning strategies having tailorable properties. Widely available photolithography techniques, as well as direct aerosol deposition, have been adapted to provide methods for obtaining both positive and negative transfer of desired cell patterns. Multi-step lithography is also used to create a highly functional system allowing spatial control of not only cells but also media and other molecules of interest.

  11. Permeabilization of the nuclear envelope following nanosecond pulsed electric field exposure.

    PubMed

    Thompson, Gary L; Roth, Caleb C; Kuipers, Marjorie A; Tolstykh, Gleb P; Beier, Hope T; Ibey, Bennett L

    2016-01-29

    Permeabilization of cell membranes occurs upon exposure to a threshold absorbed dose (AD) of nanosecond pulsed electric fields (nsPEF). The ultimate, physiological bioeffect of this exposure depends on the type of cultured cell and environment, indicating that cell-specific pathways and structures are stimulated. Here we investigate 10 and 600 ns duration PEF effects on Chinese hamster ovary (CHO) cell nuclei, where our hypothesis is that pulse disruption of the nuclear envelope membrane leads to observed cell death and decreased viability 24 h post-exposure. To observe short-term responses to nsPEF exposure, CHO cells have been stably transfected with two fluorescently-labeled proteins known to be sequestered for cellular chromosomal function within the nucleus - histone-2b (H2B) and proliferating cell nuclear antigen (PCNA). H2B remains associated with chromatin after nsPEF exposure, whereas PCNA leaks out of nuclei permeabilized by a threshold AD of 10 and 600 ns PEF. A downturn in 24 h viability, measured by MTT assay, is observed at the number of pulses required to induce permeabilization of the nucleus. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Bioartificial liver devices: Perspectives on the state of the art.

    PubMed

    Ding, Yi-Tao; Shi, Xiao-Lei

    2011-03-01

    Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients' own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an in vivo-like microenvironment for the growth of hepatocytes, thereby maintaining the cells' viability and function to the maximum extent. One future trend in the development of the bioreactor is to improve the oxygen supply system. Another direction for future research on bioreactors is the application of biomedical materials. In conclusion, BAL is, in principle, an important therapeutic strategy for patients with acute liver failure, and may also be a bridge to liver transplantation. It requires further research and development, however, before it can enter clinical practice.

  13. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals.

    PubMed

    Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas

    2016-08-19

    The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe₃O₄) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3-24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining.

  14. Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals

    PubMed Central

    Jarockyte, Greta; Daugelaite, Egle; Stasys, Marius; Statkute, Urte; Poderys, Vilius; Tseng, Ting-Chen; Hsu, Shan-Hui; Karabanovas, Vitalijus; Rotomskis, Ricardas

    2016-01-01

    The uptake and distribution of negatively charged superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus. Toxicity of SPION nanoparticles tested with cell viability assay (XTT) was estimated. The viability of NIH3T3 cells remains approximately 95% within 3–24 h of incubation, and only a slight decrease of viability was observed after 48 h of incubation. MRI studies on Wistar rats using a clinical 1.5 T MRI scanner were showing that SPIONs give a negative contrast in the MRI. The dynamic MRI measurements of the SPION clearance from the injection site shows that SPIONs slowly disappear from injection sites and only a low concentration of nanoparticles was completely eliminated within three weeks. No functionalized SPIONs accumulate in cells by endocytic mechanism, none accumulate in the nucleus, and none are toxic at a desirable concentration. Therefore, they could be used as a dual imaging agent: as contrast agents for MRI and for traditional optical biopsy by using Prussian Blue staining. PMID:27548152

  15. Dexmedetomidine Protects Neural Stem Cells from Ketamine-Induced Injury.

    PubMed

    Lu, Pan; Lei, Shan; Li, Weisong; Lu, Yang; Zheng, Juan; Wang, Ning; Xia, Yongjun; Lu, Haixia; Chen, Xinlin; Liu, Yong; Zhang, Peng-Bo

    2018-06-19

    Ketamine inhibits the proliferation of neural stem cells (NSCs) and disturbs normal neurogenesis. Dexmedetomidine provides neuroprotection against volatile anesthetic-induced neuroapoptosis and cognitive impairment in the developing brain. Whether it may protect NSCs from ketamine-induced injury remains unknown. In this study, we investigated the protective effects of dexmedetomidine on ketamine-exposed NSCs and explored the mechanisms potentially involved. Primary NSC cultures were characterized using immunofluorescence. Cell viability was determined using a Cell Counting Kit 8 assay. Proliferation and apoptosis were assessed with BrdU incorporation and TUNEL assays, respectively. Protein levels of cleaved caspase-3, phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase-3β (p-GSK-3β) were quantified using western blotting. Ket-amine significantly decreased NSC viability and proliferation and increased their apoptosis. Dexmedetomidine increased NSC proliferation and decreased their apoptosis in a dose-dependent manner. Furthermore, dexmedetomidine pretreatment notably augmented the viability and proliferation of ketamine-exposed NSCs and reduced their apoptosis. Moreover, dexmedetomidine lessened caspase-3 activation and increased p-Akt and p-GSK-3β levels in NSCs exposed to ketamine. The protective effects of dexmedetomidine on ketamine-exposed NSCs could be partly reversed by the PI3K inhibitor LY294002. Collectively, these findings indicate that dexmedetomidine may protect NSCs from ketamine-induced injury via the PI3K/Akt/GSK-3β signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. In Vitro Impact of Conditioned Medium From Demineralized Freeze-Dried Bone on Human Umbilical Endothelial Cells.

    PubMed

    Harnik, Branko; Miron, Richard J; Buser, Daniel; Gruber, Reinhard

    2017-03-01

    Angiogenesis is essential for the consolidation of bone allografts. The underlying molecular mechanism, however, remains unclear. Soluble factors released from demineralized freeze-dried bone target mesenchymal cells; however, their effect on endothelial cells has not been investigated so far. The aim of the present study was therefore to examine the effect of conditioned medium from demineralized freeze-dried bone on human umbilical endothelial cells in vitro. Conditioned medium was first prepared from demineralized freeze-dried bone following 24 hours incubation at room temperature to produce demineralized bone conditioned media. Thereafter, conditioned medium was used to stimulate human umbilical vein endothelial cells in vitro by determining the cell response based on viability, proliferation, expression of apoptotic genes, a Boyden chamber to determine cell migration, and the formation of branches. The authors report here that conditioned medium decreased viability and proliferation of endothelial cells. Neither of the apoptotic marker genes was significantly altered when endothelial cells were exposed to conditioned medium. The Boyden chamber revealed that endothelial cells migrate toward conditioned medium. Moreover, conditioned medium moderately stimulated the formation of branches. These findings support the concept that conditioned medium from demineralized freeze-dried bone targets endothelial cells by decreasing their proliferation and enhancing their motility under these in vitro conditions.

  17. Circulating Angiogenic Cells can be Derived from Cryopreserved Peripheral Blood Mononuclear Cells

    PubMed Central

    Sofrenovic, Tanja; McEwan, Kimberly; Crowe, Suzanne; Marier, Jenelle; Davies, Robbie; Suuronen, Erik J.; Kuraitis, Drew

    2012-01-01

    Background Cell transplantation for regenerative medicine has become an appealing therapeutic method; however, stem and progenitor cells are not always freshly available. Cryopreservation offers a way to freeze cells as they are generated, for storage and transport until required for therapy. This study was performed to assess the feasibility of cryopreserving peripheral blood mononuclear cells (PBMCs) for the subsequent in vitro generation of their derived therapeutic population, circulating angiogenic cells (CACs). Methods PBMCs were isolated from healthy human donors. Freshly isolated cells were either analyzed immediately or cryopreserved in media containing 6% plasma serum and 5% dimethyl sulfoxide. PBMCs were thawed after being frozen for 1 (early thaw) or 28 (late thaw) days and analyzed, or cultured for 4 days to generate CACs. Analysis of the cells consisted of flow cytometry for viability and phenotype, as well as functional assays for their adhesion and migration potential, cytokine secretion, and in vivo angiogenic potential. Results The viability of PBMCs and CACs as well as their adhesion and migration properties did not differ greatly after cryopreservation. Phenotypic changes did occur in PBMCs and to a lesser extent in CACs after freezing; however the potent CD34+VEGFR2+CD133+ population remained unaffected. The derived CACs, while exhibiting changes in inflammatory cytokine secretion, showed no changes in the secretion of important regenerative and chemotactic cytokines, nor in their ability to restore perfusion in ischemic muscle. Conclusion Overall, it appears that changes do occur in cryopreserved PBMCs and their generated CACs; however, the CD34+VEGFR2+CD133+ progenitor population, the secretion of pro-vasculogenic factors, and the in vivo angiogenic potential of CACs remain unaffected by cryopreservation. PMID:23133548

  18. Enhanced viability of corneal epithelial cells for efficient transport/storage using a structurally modified calcium alginate hydrogel.

    PubMed

    Wright, Bernice; Cave, Richard A; Cook, Joseph P; Khutoryanskiy, Vitaliy V; Mi, Shengli; Chen, Bo; Leyland, Martin; Connon, Che J

    2012-05-01

    Therapeutic limbal epithelial stem cells could be managed more efficiently if clinically validated batches were transported for 'on-demand' use. In this study, corneal epithelial cell viability in calcium alginate hydrogels was examined under cell culture, ambient and chilled conditions for up to 7 days. Cell viability improved as gel internal pore size increased, and was further enhanced with modification of the gel from a mass to a thin disc. Ambient storage conditions were optimal for supporting cell viability in gel discs. Cell viability in gel discs was significantly enhanced with increases in pore size mediated by hydroxyethyl cellulose. Our novel methodology of controlling alginate gel shape and pore size together provides a more practical and economical alternative to established corneal tissue/cell storage methods.

  19. Cannabidiol Reduces Leukemic Cell Size - But Is It Important?

    PubMed

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro . However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent.

  20. Cannabidiol Reduces Leukemic Cell Size – But Is It Important?

    PubMed Central

    Kalenderoglou, Nikoletta; Macpherson, Tara; Wright, Karen L.

    2017-01-01

    The anti-cancer effect of the plant-derived cannabinoid, cannabidiol, has been widely demonstrated both in vivo and in vitro. However, this body of preclinical work has not been translated into clinical use. Key issues around this failure can be related to narrow dose effects, the cell model used and incomplete efficacy. A model of acute lymphoblastic disease, the Jurkat T cell line, has been used extensively to study the cannabinoid system in the immune system and cannabinoid-induced apoptosis. Using these cells, this study sought to investigate the outcome of those remaining viable cells post-treatment with cannabidiol, both in terms of cell size and tracking any subsequent recovery. The phosphorylation status of the mammalian Target of Rapamycin (mTOR) signaling pathway and the downstream target ribosomal protein S6, were measured. The ability of cannabidiol to exert its effect on cell viability was also evaluated in physiological oxygen conditions. Cannabidiol reduced cell viability incompletely, and slowed the cell cycle with fewer cells in the G2/M phase of the cell cycle. Cannabidiol reduced phosphorylation of mTOR, PKB and S6 pathways related to survival and cell size. The remaining population of viable cells that were cultured in nutrient rich conditions post-treatment were able to proliferate, but did not recover to control cell numbers. However, the proportion of viable cells that were gated as small, increased in response to cannabidiol and normally sized cells decreased. This proportion of small cells persisted in the recovery period and did not return to basal levels. Finally, cells grown in 12% oxygen (physiological normoxia) were more resistant to cannabidiol. In conclusion, these results indicate that cannabidiol causes a reduction in cell size, which persists post-treatment. However, resistance to cannabidiol under physiological normoxia for these cells would imply that cannabidiol may not be useful in the clinic as an anti-leukemic agent. PMID:28392768

  1. Adenylate kinase 2 (AK2) promotes cell proliferation in insect development

    PubMed Central

    2012-01-01

    Background Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms. Results This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown. Conclusion These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development. PMID:23020757

  2. Efficient Intracellular Delivery of Molecules with High Cell Viability Using Nanosecond-Pulsed Laser-Activated Carbon Nanoparticles

    PubMed Central

    2015-01-01

    Conventional physical and chemical methods that efficiently deliver molecules into cells are often associated with low cell viability. In this study, we evaluated the cellular effects of carbon nanoparticles believed to emit photoacoustic waves due to nanosecond-pulse laser activation to test the hypothesis that this method could achieve efficient intracellular delivery while maintaining high cell viability. Suspensions of DU145 human prostate carcinoma cells, carbon black (CB) nanoparticles, and calcein were exposed to 5–9 ns long laser pulses of near-infrared (1064 nm wavelength) light and then analyzed by flow cytometry for intracellular uptake of calcein and cell viability by propidium iodide staining. We found that intracellular uptake increased and in some cases saturated at high levels with only small losses in cell viability as a result of increasing laser fluence, laser exposure time, and as a unifying parameter, the total laser energy. Changing interpulse spacing between 0.1 and 10 s intervals showed no significant change in bioeffects, suggesting that the effects of each pulse were independent when spaced by at least 0.1 s intervals. Pretreatment of CB nanoparticles to intense laser exposure followed by mixing with cells also had no significant effect on uptake or viability. Similar uptake and viability were seen when CB nanoparticles were substituted with India ink, when DU145 cells were substituted with H9c2 rat cardiomyoblast cells, and when calcein was substituted with FITC-dextran. The best laser exposure conditions tested led to 88% of cells with intracellular uptake and close to 100% viability, indicating that nanosecond-pulse laser-activated carbon nanoparticles can achieve efficient intracellular delivery while maintaining high cell viability. PMID:24547946

  3. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    NASA Astrophysics Data System (ADS)

    de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.

    2015-04-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.

  4. In vitro dentin barrier cytotoxicity testing of some dental restorative materials.

    PubMed

    Jiang, R D; Lin, H; Zheng, G; Zhang, X M; Du, Q; Yang, M

    2017-03-01

    To investigate the cytotoxicity of four dental restorative materials in three-dimensional (3D) L929 cell cultures using a dentin barrier test. The cytotoxicities of light-cured glass ionomer cement (Vitrebond), total-etching adhesive (GLUMA Bond5), and two self-etching adhesives (GLUMA Self Etch and Single Bond Universal) were evaluated. The permeabilities of human dentin disks with thicknesses of 300, 500, and 1000μm were standardized using a hydraulic device. Test materials and controls were applied to the occlusal side of human dentin disks. The 3D-cell scaffolds were placed beneath the dentin disks. After a 24-h contact with the dentin barrier test device, cell viabilities were measured by performing MTT assays. Statistical analysis was performed using the Mann-Whitney U test. The mean (SD) permeabilities of the 300-μm, 500-μm, and 1000-μm dentin disks were 0.626 (0.214), 0.219 (0.0387) and 0.089 (0.028) μlmin -1 cm -2 cm H 2 O -1 . Vitrebond was severely cytotoxic, reducing the cell viability to 10% (300-μm disk), 17% (500μm), and 18% (1000μm). GLUMA Bond5 reduced the cell viability to 40% (300μm), 83% (500μm), and 86% (1000μm), showing moderate cytotoxicity (300-μm) and non-cytotoxicity (500-μm and 1000-μm). Single Bond Universal and GLUMA Self Etch did not significantly reduce cell viability, regardless of the dentin thicknesses, which characterized them as non-cytotoxic. Cytotoxicity varied with the materials tested and the thicknesses of the dentin disks. The tested cytotoxicity of materials applied on 300-, 500-, and 1000-μm dentin disks indicates that the clinical use of the test materials (excepting self-etching adhesives) in deep cavities poses a potential risk of damage to the pulp tissues to an extent, depending on the thickness of the remaining dentin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Fluorescence Microscopy Methods for Determining the Viability of Bacteria in Association with Mammalian Cells

    PubMed Central

    Johnson, M. Brittany; Criss, Alison K.

    2013-01-01

    Central to the field of bacterial pathogenesis is the ability to define if and how microbes survive after exposure to eukaryotic cells. Current protocols to address these questions include colony count assays, gentamicin protection assays, and electron microscopy. Colony count and gentamicin protection assays only assess the viability of the entire bacterial population and are unable to determine individual bacterial viability. Electron microscopy can be used to determine the viability of individual bacteria and provide information regarding their localization in host cells. However, bacteria often display a range of electron densities, making assessment of viability difficult. This article outlines protocols for the use of fluorescent dyes that reveal the viability of individual bacteria inside and associated with host cells. These assays were developed originally to assess survival of Neisseria gonorrhoeae in primary human neutrophils, but should be applicable to any bacterium-host cell interaction. These protocols combine membrane-permeable fluorescent dyes (SYTO9 and 4',6-diamidino-2-phenylindole [DAPI]), which stain all bacteria, with membrane-impermeable fluorescent dyes (propidium iodide and SYTOX Green), which are only accessible to nonviable bacteria. Prior to eukaryotic cell permeabilization, an antibody or fluorescent reagent is added to identify extracellular bacteria. Thus these assays discriminate the viability of bacteria adherent to and inside eukaryotic cells. A protocol is also provided for using the viability dyes in combination with fluorescent antibodies to eukaryotic cell markers, in order to determine the subcellular localization of individual bacteria. The bacterial viability dyes discussed in this article are a sensitive complement and/or alternative to traditional microbiology techniques to evaluate the viability of individual bacteria and provide information regarding where bacteria survive in host cells. PMID:24056524

  6. The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. herbal tea extracts in vitro.

    PubMed

    Magcwebeba, Tandeka Unathi; Riedel, Sylvia; Swanevelder, Sonja; Swart, Pieter; De Beer, Dalene; Joubert, Elizabeth; Andreas Gelderblom, Wentzel Christoffel

    2016-11-01

    The relationship between polyphenol constituents, antioxidant properties of aqueous and methanol extracts of green tea (Camellia sinensis), the herbal teas, rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.), against skin cell viability was investigated in vitro. The effect of extracts, characterised in terms of polyphenol content and antioxidant properties, on cell viability of premalignant, normal and malignant skin cells was determined. Phenolic composition, particularly high levels of potent antioxidants, of rooibos and green tea methanol extracts was associated with a strong reduction in cell viability specifically targeting premalignant cells. In contrast, the aqueous extracts of Cyclopia spp. were more effective in reducing cell viability. This correlated with a relatively high flavanol/proanthocyanidin content and ABTS radical cation scavenging capacity. The major green tea flavanol (epigallocatechin gallate) and rooibos dihydrochalcone (aspalathin) exhibited differential effects against cell viability, while the major honeybush xanthone (mangiferin) and flavanone (hesperidin) lacked any effect presumably due to a cytoprotective effect. The underlying mechanisms against skin cell viability are likely to involve mitochondrial dysfunction resulting from polyphenol-iron interactions. The polyphenol constituents and antioxidant parameters of herbal tea extracts are useful tools to predict their activity against skin cell survival in vitro and potential chemopreventive effects in vivo. © 2016 Royal Pharmaceutical Society.

  7. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy

    PubMed Central

    2017-01-01

    Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE), a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80%) and yield (>70%). Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies. PMID:28122047

  8. Porcine circovirus 2 (PCV2) increases the expression of endothelial adhesion/junction molecules.

    PubMed

    Marks, Fernanda S; Almeida, Laura L; Driemeier, David; Canal, Cláudio; Barcellos, David E S N; Guimarães, Jorge A; Reck, José

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus disease, a complex multisystem syndrome in domestic pigs. Despite the significant economic losses caused by porcine circovirus disease, the mechanisms of pathogenesis underlying the clinical findings remain largely unclear. As various reports have highlighted the potential key role of vascular lesions in the pathogenesis of porcine circovirus disease, the aim of this work was to investigate effects of PCV2 infection on vascular endothelial cells, focusing on cell viability and expression of adhesion/junction molecules. PCV2 infection reduced endothelial cell viability, while viral infection did not affected the viability of several other classical cell lines. Also, PCV2 infection in endothelial cells displayed a dual/biphasic effect: initially, infection increased ICAM-1 expression, which can favor leukocyte recruitment and emigration to tissues and possibly inducing characteristic porcine circovirus disease inflammatory lesions; then, secondarily, infection caused an increase in zonula occludens 1 tight junction protein (ZO-1) expression, which in turn can result in difficulties for cell traffic across the endothelium and a potential impairment the immune response in peripheral tissues. These virus-induced endothelial changes could directly impact the inflammatory process of porcine circovirus disease and associated vascular/immune system disturbances. Data suggest that, among the wide range of effects induced by PCV2 on the host, endothelial modulation can be a pivotal process which can help to explain PCV2 pathogenesis in some porcine circovirus disease presentations. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  9. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant.

    PubMed

    Zamarreño, Dania V; Inkpen, Robert; May, Eric

    2009-09-01

    Bacterial carbonate precipitation is known to be a natural phenomenon associated with a wide range of bacterial species. Recently, the ability of bacteria to produce carbonates has been studied for its value in the conservation of limestone monuments and concrete. This paper describes investigations of carbonate crystals precipitated by freshwater bacteria by means of histological (Loeffler's methylene blue and alcian blue-periodic acid-Schiff stain) and fluorescence (CTC [5-cyano-2,3-ditolyl tetrazolium chloride]) stains, determination of cell viability inside carbonate crystals, and pore size reduction in limestone by image analysis. Carbonate crystals were found to be composed of bacteria embedded in a matrix of neutral and acid polysaccharides. Cell viability inside the carbonate crystals decreased with time. On stone, bacteria were found to form carbonate crystals, with only a few bacteria remaining as isolated cells or as cell aggregates. Pore size was reduced by about 50%, but no blockage was detected. Taken together, the results of this research provide some reassurance to conservators that biocalcification by bacteria could be a safe consolidation tool in a restoration strategy for building stone conservation.

  10. Carbonate Crystals Precipitated by Freshwater Bacteria and Their Use as a Limestone Consolidant▿

    PubMed Central

    Zamarreño, Dania V.; Inkpen, Robert; May, Eric

    2009-01-01

    Bacterial carbonate precipitation is known to be a natural phenomenon associated with a wide range of bacterial species. Recently, the ability of bacteria to produce carbonates has been studied for its value in the conservation of limestone monuments and concrete. This paper describes investigations of carbonate crystals precipitated by freshwater bacteria by means of histological (Loeffler's methylene blue and alcian blue-periodic acid-Schiff stain) and fluorescence (CTC [5-cyano-2,3-ditolyl tetrazolium chloride]) stains, determination of cell viability inside carbonate crystals, and pore size reduction in limestone by image analysis. Carbonate crystals were found to be composed of bacteria embedded in a matrix of neutral and acid polysaccharides. Cell viability inside the carbonate crystals decreased with time. On stone, bacteria were found to form carbonate crystals, with only a few bacteria remaining as isolated cells or as cell aggregates. Pore size was reduced by about 50%, but no blockage was detected. Taken together, the results of this research provide some reassurance to conservators that biocalcification by bacteria could be a safe consolidation tool in a restoration strategy for building stone conservation. PMID:19617383

  11. Differential participation of angiotensin II type 1 and 2 receptors in the regulation of cardiac cell death triggered by angiotensin II.

    PubMed

    Aránguiz-Urroz, Pablo; Soto, Dagoberto; Contreras, Ariel; Troncoso, Rodrigo; Chiong, Mario; Montenegro, José; Venegas, Daniel; Smolic, Christian; Ayala, Pedro; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo

    2009-05-01

    The Angiotensin II (Ang II) type 1 (AT(1)R) and type 2 (AT(2)R) receptors are increased in the heart following myocardial infarction and dilated cardiomyopathy, yet their contribution at a cellular level to compensation and/or failure remains controversial. We ectopically expressed AT(1)R and AT(2)R in cultured adult rat cardiomyocytes and cardiac fibroblasts to investigate Ang II-mediated cardiomyocyte hypertrophy and cardiac cell viability. In adult rat cardiomyocytes, Ang II did not induce hypertrophy via the AT(1)R, and no effect of Ang II on cell viability was observed following AT(1)R or AT(2)R expression. In adult rat cardiac fibroblasts, Ang II stimulated cell death by apoptosis via the AT(1)R (but not the AT(2)R), which required the presence of extracellular calcium, and induced a rapid dissipation of mitochondrial membrane potential, which was significant from 8 h. We conclude that Ang II/AT(1)R triggers apoptosis in adult rat cardiac fibroblasts, which is dependent on Ca2+ influx.

  12. Nuclear and cytoplasmic delivery of lactoferrin in glioma using chitosan nanoparticles: Cellular location dependent-action of lactoferrin.

    PubMed

    Tammam, Salma N; Azzazy, Hassan M E; Lamprecht, Alf

    2018-08-01

    Lactoferrin (Lf) exerts anti-cancer effects on glioma, however, the exact mechanism remains unclear. Despite possessing a nuclear localization sequence (NLS), Lf was found to allocate only in the cytoplasm of glioma 261. Lf was therefore loaded into nuclear and cytoplasmic targeted nanoparticles (NPs) to determine whether nuclear delivery of Lf would enhance its anti-cancer effect. Upon treatment with 300 and 800 µg/mL Lf loaded chitosan NPs, nuclear targeted Lf-NPs showed 1.3 and 2.7 folds increase in cell viability, whereas cytoplasmic targeted Lf-NPs at 300 µg/mL decreased cell viability by 0.8 folds in comparison to free Lf and controls. Results suggest that the cytotoxicity of Lf on glioma is attributable to its cytoplasmic allocation. Nuclear delivery of Lf induced cell proliferation rather than cytotoxicity, indicating that the mode of action of Lf in glioma is cell location dependent. This calls for caution about the general use of Lf as an anti-cancer protein. Copyright © 2018. Published by Elsevier B.V.

  13. Inkjet printing Schwann cells and neuronal analogue NG108-15 cells.

    PubMed

    Tse, Christopher; Whiteley, Robert; Yu, Tong; Stringer, Jonathan; MacNeil, Sheila; Haycock, John W; Smith, Patrick J

    2016-03-01

    Porcine Schwann cells and neuronal analogue NG108-15 cells were printed using a piezoelectric-inkjet-printer with a nozzle diameter of 60 μm, within the range of 70-230 V, with analysis of viability and quality after printing. Neuronal and glial cell viabilities of >86% and >90% were detected immediately after printing and no correlation between voltage applied and cell viability could be seen. Printed neuronal cells were shown to produce neurites earlier compared to controls, and over several days, produced longer neurites which become most evident by day 7. The number of neurites becomes similar by day 7 also, and cells proliferate with a similar viability to that of non-printed cells (controls). This method of inkjet printing cells provides a technical platform for investigating neuron-glial cell interactions with no significant difference to cell viability than standard cell seeding. Such techniques can be utilized for lab-on-a-chip technologies and to create printed neural networks for neuroscience applications.

  14. Long term cryopreservation in 5% DMSO maintains unchanged CD34(+) cells viability and allows satisfactory hematological engraftment after peripheral blood stem cell transplantation.

    PubMed

    Abbruzzese, L; Agostini, F; Durante, C; Toffola, R T; Rupolo, M; Rossi, F M; Lleshi, A; Zanolin, S; Michieli, M; Mazzucato, M

    2013-07-01

    Peripheral blood stem cell cryopreservation is associated with cell damage and decreased viability. We evaluated the impact of up to 10 years of cryopreservation (5% DMSO) on viability of CD34(+) cells utilizing graft samples of consecutive patients (2002-2012) with different malignancies who underwent stem cell collection and transplantation. Viability of CD34(+) cells from oncohaematological patients measured after 5 weeks (97·2 ± 0·6%) or after 9-10 years of cryopreservation (95·9 ± 0·5%) was unaffected. Haemoglobin, granulocyte and platelet recovery after transplantation of long-term cryopreserved grafts occurred within 8-13 days. CD34(+) stem cells can be safely stored up to 9-10 years, without affecting cell viability and clinical effectiveness. © 2013 International Society of Blood Transfusion.

  15. Vitamin E, γ-tocotrienol, Protects Against Buthionine Sulfoximine-Induced Cell Death by Scavenging Free Radicals in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Tan, Jen-Kit; Then, Sue-Mian; Mazlan, Musalmah; Jamal, Rahman; Ngah, Wan Zurinah Wan

    2016-01-01

    The induction of reactive oxygen species (ROS) to selectively kill cancer cells is an important feature of radiotherapy and various chemotherapies. Depletion of glutathione can induce apoptosis in cancer cells or sensitize them to anticancer treatments intended to modulate ROS levels. In contrast, antioxidants protect cancer cells from oxidative stress-induced cell death by scavenging ROS. The role of exogenous antioxidants in cancer cells under oxidative insults remains controversial and unclear. This study aimed to identify protective pathways modulated by γ-tocotrienol (γT3), an isomer of vitamin E, in human neuroblastoma SH-SY5Y cells under oxidative stress. Using buthionine sulfoximine (BSO) as an inhibitor of glutathione synthesis, we found that BSO treatment reduced the viability of SH-SY5Y cells. BSO induced cell death by increasing apoptosis, decreased the level of reduced glutathione (GSH), and increased ROS levels in SH-SY5Y cells. Addition of γT3 increased the viability of BSO-treated cells, suppressed apoptosis, and decreased the ROS level induced by BSO, while the GSH level was unaffected. These results suggest that decreasing GSH levels by BSO increased ROS levels, leading to apoptosis in SH-SY5Y cells. γT3 attenuated the BSO-induced cell death by scavenging free radicals.

  16. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture

    PubMed Central

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. PMID:27821713

  17. An approach for cell viability online detection based on the characteristics of lensfree cell diffraction fingerprint.

    PubMed

    Li, Guoxiao; Zhang, Rongbiao; Yang, Ning; Yin, Changsheng; Wei, Mingji; Zhang, Yecheng; Sun, Jian

    2018-06-01

    To overcome the drawbacks such as low automation and high cost, an approach for cell viability online detection is proposed, based on the extracted lensfree cell diffraction fingerprint characteristics. The cell fingerprints are acquired by a constructed large field-of-view (FOV) diffraction imaging platform without any lenses. The approach realizes distinguishing live and dead cells online and calculating cell viability index based on the number of live cells. With theoretical analysis and simulation, diffraction fingerprints of cells with different morphology are simulated and two characteristics are discovered to be able to reflect cell viability status effectively. Two parameters, fringe intensity contrast (FIC) and fringe dispersion (FD), are defined to quantify these two characteristics. They are verified to be reliable to identify live cells. In a cytotoxicity assay of different methyl mercury concentration on BRL cells, the proposed approach is used to detect cell viability. MTT method is also employed and the results of correlational analysis and Bland-Altman analysis prove the validity of the proposed approach. By comparison, it can be revealed that the proposed approach has some advantages over other present techniques. Therefore it may be widely used as a cell viability measurement method in drug screening, nutritional investigation and cell toxicology studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Finasteride Inhibits Human Prostate Cancer Cell Invasion through MMP2 and MMP9 Downregulation

    PubMed Central

    Moroz, Andrei; Delella, Flávia K.; Almeida, Rodrigo; Lacorte, Lívia Maria; Fávaro, Wágner José; Deffune, Elenice; Felisbino, Sérgio L.

    2013-01-01

    Introduction The use of the 5-alpha reductase inhibitors (5-ARIs) finasteride and dutasteride for prostate cancer prevention is still under debate. The FDA recently concluded that the increased prevalence of high-grade tumors among 5-ARI-treated patients must not be neglected, and they decided to disallow the use of 5-ARIs for prostate cancer prevention. This study was conducted to verify the effects of finasteride on prostate cell migration and invasion and the related enzymes/proteins in normal human and tumoral prostatic cell lines. Materials and Methods RWPE-1, LNCaP, PC3 and DU145 cells were cultivated to 60% confluence and exposed for different periods to either 10 µM or 50 µM finasteride that was diluted in culture medium. The conditioned media were collected and concentrated, and MMP2 and MMP9 activities and TIMP-1 and TIMP-2 protein expression were determined. Cell viability, migration and invasion were analyzed, and the remaining cell extracts were submitted to androgen receptor (AR) detection by western blotting techniques. Experiments were carried out in triplicate. Results Cell viability was not significantly affected by finasteride exposure. Finasteride significantly downregulated MMP2 and MMP9 activities in RWPE-1 and PC3 cells and MMP2 in DU145 cells. TIMP-2 expression in RWPE-1 cells was upregulated after exposure. The cell invasion of all four tested cell lines was inhibited by exposure to 50 µM of finasteride, and migration inhibition only occurred for RWPE-1 and LNCaP cells. AR was expressed by LNCaP, RWPE-1 and PC3 cells. Conclusions Although the debate on the higher incidence of high-grade prostate cancer among 5-ARI-treated patients remains, our findings indicate that finasteride may attenuate tumor aggressiveness and invasion, which could vary depending on the androgen responsiveness of a patient’s prostate cells. PMID:24386413

  19. Cell viability monitoring using Fano resonance in gold nanoslit array

    NASA Astrophysics Data System (ADS)

    Wu, Shu-Han; Hsieh, Shu-Yi; Lee, Kuang-Li; Weng, Ruei-Hung; Chiou, Arthur; Wei, Pei-Kuen

    2013-09-01

    Cell viability is a crucial issue in biological research. We present label-free monitoring of adhesion cells viability by gold nanoslits-based Fano resonance biosensors. Plastic multiple wells with gold nanoslits substrate were made using a thermal nanoimprint method. Adhesion cells in the wells were treated with doxorubicin for inducing cell death and compared with conventional colorimetric assay. The nanoslits method shows better respones of viability tests under low concentration and short interaction time due to its high surface sensitivies. The vinculin labelling indicates that the measured signals are in good agreement with the adhesion abilities of cells.

  20. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    PubMed

    Suzuki, Sho W; Onodera, Jun; Ohsumi, Yoshinori

    2011-02-25

    Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  1. Evaluation of a potentially probiotic non-dairy beverage developed with honey and kefir grains: Fermentation kinetics and storage study.

    PubMed

    Fiorda, Fernanda A; de Melo Pereira, Gilberto V; Thomaz-Soccol, Vanete; Rakshit, Sudip K; Soccol, Carlos R

    2016-12-01

    The aim of this work was to study the fermentation process of honey with kefir grains through a comprehensive understanding of its rheological properties, probiotic cell viability, instrumental color parameters and kinetic aspects in a batch bioreactor and during storage. The results showed that kefir grains were well adapted to bioreactor conditions, reaching high levels of cell viability (over 10 6 CFU mL -1 for total yeast and bacteria), phenolic compounds content (190 GAE/100 g) and acidification after 24 h of fermentation at 30 ℃. Colorimetric analysis showed that lightness (L*) and redness (a*) remained constant, while yellowness intensities (b*) decreased during fermentation time. After 35 days of storage, honey kefir beverage maintained its chemical characteristics and microbial viability as required to be classified as a probiotic product. The Ostwald-de-Waele (R 2  ≥ 0.98) and Herschel-Bulkley (R 2  ≥ 0.99) models can be used to predict the behavior of honey kefir beverage. The parameters analyzed in this study should be taken into account for industrial production of this novel non-dairy beverage. © The Author(s) 2016.

  2. Shock Wave-Stimulated Periosteum for Cartilage Repair

    DTIC Science & Technology

    2013-12-01

    were added to the Gtn-HPA prior to the gelation 6 process, at a cell density of 1×105 cells/ml. In the control groups, cells received no treatment...Mesenchymal Stem Cell Viability Viability test was performed 24 hours post- gelation using the Live/Dead assay. Viability/cytotoxicity kit was used (Molecular

  3. The role of adrenergic activation on murine luteal cell viability and progesterone production.

    PubMed

    Wang, Jing; Tang, Min; Jiang, Huaide; Wu, Bing; Cai, Wei; Hu, Chuan; Bao, Riqiang; Dong, Qiming; Xiao, Li; Li, Gang; Zhang, Chunping

    2016-09-15

    Sympathetic innervations exist in mammalian CL. The action of catecholaminergic system on luteal cells has been the focus of a variety of studies. Norepinephrine (NE) increased progesterone secretion of cattle luteal cells by activating β-adrenoceptors. In this study, murine luteal cells were treated with NE and isoprenaline (ISO). We found that NE increased the viability of murine luteal cells and ISO decreased the viability of luteal cells. Both NE and ISO promoted the progesterone production. Nonselective β-adrenergic antagonist, propranolol reversed the effect of ISO on cell viability but did not reverse the effect of NE on cell viability. Propranolol blocked the influence of NE and ISO on progesterone production. These results reveal that the increase of luteal cell viability induced by NE is not dependent on β-adrenergic activation. α-Adrenergic activation possibly contributes to it. Both NE and ISO increased progesterone production through activating β-adrenergic receptor. Further study showed that CyclinD2 is involved in the increase of luteal cell induced by NE. 3β-Hydroxysteroid dehydrogenase, LHR, steroidogenic acute regulatory protein (StAR), and PGF2α contribute to the progesterone production induced by NE and ISO. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Shelf-life evaluation of bilayered human skin equivalent, MyDerm™.

    PubMed

    Seet, Wan Tai; Manira, Maarof; Maarof, Manira; Khairul Anuar, Khairoji; Chua, Kien-Hui; Ahmad Irfan, Abdul Wahab; Ng, Min Hwei; Aminuddin, Bin Saim; Ruszymah, Bt Hj Idrus

    2012-01-01

    Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.

  5. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells

    PubMed Central

    Tada-Oikawa, Saeko; Ichihara, Gaku; Fukatsu, Hitomi; Shimanuki, Yuka; Tanaka, Natsuki; Watanabe, Eri; Suzuki, Yuka; Murakami, Masahiko; Izuoka, Kiyora; Chang, Jie; Wu, Wenting; Yamada, Yoshiji; Ichihara, Sahoko

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles are widely used in cosmetics, sunscreens, biomedicine, and food products. When used as a food additive, TiO2 nanoparticles are used in significant amounts as white food-coloring agents. However, the effects of TiO2 nanoparticles on the gastrointestinal tract remain unclear. The present study was designed to determine the effects of five TiO2 particles of different crystal structures and sizes in human epithelial colorectal adenocarcinoma (Caco-2) cells and THP-1 monocyte-derived macrophages. Twenty-four-hour exposure to anatase (primary particle size: 50 and 100 nm) and rutile (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner in THP-1 macrophages, but in not Caco-2 cells. However, 72-h exposure of Caco-2 cells to anatase (50 nm) TiO2 particles reduced cellular viability in a dose-dependent manner. The highest dose (50 µg/mL) of anatase (100 nm), rutile (50 nm), and P25 TiO2 particles also reduced cellular viability in Caco-2 cells. The production of reactive oxygen species tended to increase in both types of cells, irrespective of the type of TiO2 particle. Exposure of THP-1 macrophages to 50 µg/mL of anatase (50 nm) TiO2 particles increased interleukin (IL)-1β expression level, and exposure of Caco-2 cells to 50 µg/mL of anatase (50 nm) TiO2 particles also increased IL-8 expression. The results indicated that anatase TiO2 nanoparticles induced inflammatory responses compared with other TiO2 particles. Further studies are required to determine the in vivo relevance of these findings to avoid the hazards of ingested particles. PMID:27092499

  6. β(1,3)-Glucanosyl-Transferase Activity Is Essential for Cell Wall Integrity and Viability of Schizosaccharomyces pombe

    PubMed Central

    de Medina-Redondo, María; Arnáiz-Pita, Yolanda; Clavaud, Cécile; Fontaine, Thierry; del Rey, Francisco; Latgé, Jean Paul; Vázquez de Aldana, Carlos R.

    2010-01-01

    Background The formation of the cell wall in Schizosaccharomyces pombe requires the coordinated activity of enzymes involved in the biosynthesis and modification of β-glucans. The β(1,3)-glucan synthase complex synthesizes linear β(1,3)-glucans, which remain unorganized until they are cross-linked to other β(1,3)-glucans and other cell wall components. Transferases of the GH72 family play important roles in cell wall assembly and its rearrangement in Saccharomyces cerevisiae and Aspergillus fumigatus. Four genes encoding β(1,3)-glucanosyl-transferases -gas1+, gas2+, gas4+ and gas5+- are present in S. pombe, although their function has not been analyzed. Methodology/Principal Findings Here, we report the characterization of the catalytic activity of gas1p, gas2p and gas5p together with studies directed to understand their function during vegetative growth. From the functional point of view, gas1p is essential for cell integrity and viability during vegetative growth, since gas1Δ mutants can only grow in osmotically supported media, while gas2p and gas5p play a minor role in cell wall construction. From the biochemical point of view, all of them display β(1,3)-glucanosyl-transferase activity, although they differ in their specificity for substrate length, cleavage point and product size. In light of all the above, together with the differences in expression profiles during the life cycle, the S. pombe GH72 proteins may accomplish complementary, non-overlapping functions in fission yeast. Conclusions/Significance We conclude that β(1,3)-glucanosyl-transferase activity is essential for viability in fission yeast, being required to maintain cell integrity during vegetative growth. PMID:21124977

  7. High-efficient and high-content cytotoxic recording via dynamic and continuous cell-based impedance biosensor technology.

    PubMed

    Hu, Ning; Fang, Jiaru; Zou, Ling; Wan, Hao; Pan, Yuxiang; Su, Kaiqi; Zhang, Xi; Wang, Ping

    2016-10-01

    Cell-based bioassays were effective method to assess the compound toxicity by cell viability, and the traditional label-based methods missed much information of cell growth due to endpoint detection, while the higher throughputs were demanded to obtain dynamic information. Cell-based biosensor methods can dynamically and continuously monitor with cell viability, however, the dynamic information was often ignored or seldom utilized in the toxin and drug assessment. Here, we reported a high-efficient and high-content cytotoxic recording method via dynamic and continuous cell-based impedance biosensor technology. The dynamic cell viability, inhibition ratio and growth rate were derived from the dynamic response curves from the cell-based impedance biosensor. The results showed that the biosensors has the dose-dependent manners to diarrhetic shellfish toxin, okadiac acid based on the analysis of the dynamic cell viability and cell growth status. Moreover, the throughputs of dynamic cytotoxicity were compared between cell-based biosensor methods and label-based endpoint methods. This cell-based impedance biosensor can provide a flexible, cost and label-efficient platform of cell viability assessment in the shellfish toxin screening fields.

  8. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    PubMed

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  9. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF‑1α/VEGF and NF‑κB/COX‑2 signaling pathways.

    PubMed

    Zhang, Juan; Su, Hongzheng; Li, Qingfeng; Li, Jing; Zhao, Qianfeng

    2017-04-01

    Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.

  10. In vitro cytotoxicity of carbon black nanoparticles synthesized from solution plasma on human lung fibroblast cells

    NASA Astrophysics Data System (ADS)

    Panomsuwan, Gasidit; Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Ueno, Tomonaga; Saito, Nagahiro

    2018-01-01

    Carbon black nanoparticles (CB-NPs) have been synthesized from liquid benzene by a solution plasma method at room temperature and atmospheric pressure. The morphological observation by scanning electron microscopy revealed the agglomeration of aggregated fine particles. The synthesized CB-NPs were predominantly amorphous as confirmed by X-ray diffraction. The in vitro cytotoxicity of CB-NPs on the human lung fibroblast (MRC-5) cell line was assessed by the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and systematically compared with those of two types of commercial carbon blacks (i.e., Vulcan XC-72 and Ketjenblack EC-600JD). Cell viabilities were studied at different concentrations of 32.5, 65, 125, and 250 µg/mL. It was found that the CB-NPs derived from solution plasma exhibited a lower cytotoxicity on the MRC-5 cells than the other two comparative carbon blacks. The viability of MRC-5 cells exposed to CB-NPs remained higher than 90% even at a high concentration of 250 µg/mL. This result preliminarily confirmed the biosafety and potential use of CB-NPs in the field of biological applications.

  11. Mechanisms of erosion of atherosclerotic plaques.

    PubMed

    Quillard, Thibaut; Franck, Grégory; Mawson, Thomas; Folco, Eduardo; Libby, Peter

    2017-10-01

    The present review explores the mechanisms of superficial intimal erosion, a common cause of thrombotic complications of atherosclerosis. Human coronary artery atheroma that give rise to thrombosis because of erosion differ diametrically from those associated with fibrous cap rupture. Eroded lesions characteristically contain few inflammatory cells, abundant extracellular matrix, and neutrophil extracellular traps (NETs). Innate immune mechanisms such as engagement of Toll-like receptor 2 (TLR2) on cultured endothelial cells can impair their viability, attachment, and ability to recover a wound. Hyaluronan fragments may serve as endogenous TLR2 ligands. Mouse experiments demonstrate that flow disturbance in arteries with neointimas tailored to resemble features of human eroded plaques disturbs endothelial cell barrier function, impairs endothelial cell viability, recruits neutrophils, and provokes endothelial cells desquamation, NET formation, and thrombosis in a TLR2-dependent manner. Mechanisms of erosion have received much less attention than those that provoke plaque rupture. Intensive statin treatment changes the characteristic of plaques that render them less susceptible to rupture. Thus, erosion may contribute importantly to the current residual burden of risk. Understanding the mechanisms of erosion may inform the development and deployment of novel therapies to combat the remaining atherothrombotic risk in the statin era.

  12. Molecular coordination of Staphylococcus aureus cell division

    PubMed Central

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  13. Molecular perturbations restrict potential for liver repopulation of hepatocytes isolated from non-heart-beating donor rats.

    PubMed

    Enami, Yuta; Joseph, Brigid; Bandi, Sriram; Lin, Juan; Gupta, Sanjeev

    2012-04-01

    Organs from non-heart-beating donors are attractive for use in cell therapy. Understanding the nature of molecular perturbations following reperfusion/reoxygenation will be highly significant for non-heart-beating donor cells. We studied non-heart-beating donor rats for global gene expression with Affymetrix microarrays, hepatic tissue integrity, viability of isolated hepatocytes, and engraftment and proliferation of transplanted cells in dipeptidyl peptidase IV-deficient rats. In non-heart-beating donors, liver tissue was morphologically intact for >24 hours with differential expression of 1, 95, or 372 genes, 4, 16, or 34 hours after death, respectively, compared with heart-beating donors. These differentially expressed genes constituted prominent groupings in ontological pathways of oxidative phosphorylation, adherence junctions, glycolysis/gluconeogenesis, and other discrete pathways. We successfully isolated viable hepatocytes from non-heart-beating donors, especially up to 4 hours after death, although the hepatocyte yield and viability were inferior to those of hepatocytes from heart-beating donors (P < 0.05). Similarly, although hepatocytes from non-heart-beating donors engrafted and proliferated after transplantation in recipient animals, this was inferior to hepatocytes from heart-beating donors (P < 0.05). Gene expression profiling in hepatocytes isolated from non-heart-beating donors showed far greater perturbations compared with corresponding liver tissue, including representation of pathways in focal adhesion, actin cytoskeleton, extracellular matrix-receptor interactions, multiple ligand-receptor interactions, and signaling in insulin, calcium, wnt, Jak-Stat, or other cascades. Liver tissue remained intact over prolonged periods after death in non-heart-beating donors, but extensive molecular perturbations following reperfusion/reoxygenation impaired the viability of isolated hepatocytes from these donors. Insights into molecular changes in hepatocytes from non-heart-beating donors offer opportunities for improving donor cell viability, which will advance the utility of non-heart-beating donor organs for cell therapy or other applications. Copyright © 2012 American Association for the Study of Liver Diseases.

  14. Functional role of the Ca{sup 2+}-activated Cl{sup −} channel DOG1/TMEM16A in gastrointestinal stromal tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berglund, Erik, E-mail: erik.berglund@ki.se; Department of Breast and Endocrine Surgery, Karolinska University Hospital, Stockholm; Akcakaya, Pinar

    2014-08-15

    DOG1, a Ca{sup 2+}-activated Cl{sup −} channel (CaCC), was identified in 2004 to be robustly expressed in gastrointestinal stromal tumors (GIST). It was rapidly included as a tumor marker in routine diagnostics, but the functional role remained unknown. CaCCs are important regulators of normal physiological functions, but also implicated in tumorigenesis, cancer progression, metastasis, cell migration, apoptosis, proliferation and viability in several malignancies. We therefore investigated whether DOG1 plays a role in the three latter in GIST by utilizing in vitro cell model systems. Confocal microscopy identified different subcellular localizations of DOG1 in imatinib-sensitive and imatinib-resistant cells. Electrophysiological studies confirmedmore » that DOG1-specific pharmacological agents possess potent activating and inhibiting properties. Proliferation assays showed small effects up to 72 h, and flow cytometric analysis of adherent cells with 7-AAD/Annexin V detected no pharmacological effects on viable GIST cells. However, inhibition of DOG1 conveyed pro-apoptotic effects among early apoptotic imatinib-resistant cells. In conclusion, DOG1 generates Cl{sup −} currents in GIST that can be regulated pharmacologically, with small effects on cell viability and proliferation in vitro. Inhibition of DOG1 might act pro-apoptotic on some early apoptotic GIST cell populations. Further studies are warranted to fully illuminate the function of DOG1 and its potential as therapeutic target. - Highlights: • Subcellular DOG1 localization varies between GIST cells. • DOG1 in GIST is voltage- and Ca{sup 2+}-activated. • Known TMEM16A modulators, like A01 and Eact, modulate DOG1. • DOG1 has small effects on cell viability and proliferation in vitro. • DOG1 impact early apoptotic GIST cells to undergo late apoptosis.« less

  15. Pancreatic β-Cell Membrane Fluidity and Toxicity Induced by Human Islet Amyloid Polypeptide Species

    NASA Astrophysics Data System (ADS)

    Pilkington, Emily H.; Gurzov, Esteban N.; Kakinen, Aleksandr; Litwak, Sara A.; Stanley, William J.; Davis, Thomas P.; Ke, Pu Chun

    2016-02-01

    Aggregation of human islet amyloid polypeptide (hIAPP) into fibrils and plaques is associated with pancreatic β-cell loss in type 2 diabetes (T2D). However, due to the rapidness of hIAPP conversion in aqueous phase, exactly which hIAPP species is responsible for the observed toxicity and through what mechanisms remains ambiguous. In light of the importance of understanding hIAPP toxicity for T2D here we show a biophysical scheme based on the use of a lipophilic Laurdan dye for examining MIN6 cell membranes upon exposure to fresh and oligomeric hIAPP as well as mature amyloid. It has been found that all three hIAPP species, especially fresh hIAPP, enhanced membrane fluidity and caused losses in cell viability. The cell generation of reactive oxygen species (ROS), however, was the most pronounced with mature amyloid hIAPP. The correlation between changes in membrane fluidity and cell viability and their lack of correlation with ROS production suggest hIAPP toxicity is elicited through both physical and biochemical means. This study offers a new insight into β-cell toxicity induced by controlled hIAPP species, as well as new biophysical methodologies that may prove beneficial for the studies of T2D as well as neurological disorders.

  16. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability.

    PubMed

    Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom

    2015-02-15

    We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Hemocompatibility and biocompatibility of antibacterial biomimetic hybrid films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coll Ferrer, M. Carme; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104; Eckmann, Uriel N.

    In previous work, we developed novel antibacterial hybrid coatings based on dextran containing dispersed Ag NPs (∼ 5 nm, DEX-Ag) aimed to offer dual protection against two of the most common complications associated with implant surgery, infections and rejection of the implant. However, their blood-material interactions are unknown. In this study, we assess the hemocompatibility and biocompatibility of DEX-Ag using fresh blood and two cell lines of the immune system, monocytes (THP-1 cells) and macrophages (PMA-stimulated THP-1 cells). Glass, polyurethane (PU) and bare dextran (DEX) were used as reference surfaces. PU, DEX and DEX-Ag exhibited non-hemolytic properties. Relative to glassmore » (100%), platelet attachment on PU, DEX and DEX-Ag was 15%, 10% and 34%, respectively. Further, we assessed cell morphology and viability, pro-inflammatory cytokines expression (TNF-α and IL-1β), pro-inflammatory eicosanoid expression (Prostaglandin E{sub 2}, PGE{sub 2}) and release of reactive oxygen species (ROS, superoxide and H{sub 2}O{sub 2}) following incubation of the cells with the surfaces. The morphology and cell viability of THP-1 cells were not affected by DEX-Ag whereas DEX-Ag minimized spreading of PMA-stimulated THP-1 cells and caused a reduction in cell viability (16% relative to other surfaces). Although DEX-Ag slightly enhanced release of ROS, the expression of pro-inflammatory cytokines remained minimal with similar levels of PGE{sub 2}, as compared to the other surfaces studied. These results highlight low toxicity of DEX-Ag and hold promise for future applications in vivo. - Highlights: • We examined specific blood-contact reactions of dextran doped with Ag NPs coatings. • Biocompatibility was assessed with THP-1 cells and PMA-stimulated THP-1 cells. • Glass, polyurethane and dextran were used as reference surfaces. • Hybrid coatings exhibited non-hemolytic properties. • Low toxicity, inflammatory response and ROS suggest potential for in vivo use.« less

  18. Label-Free, Flow-Imaging Methods for Determination of Cell Concentration and Viability.

    PubMed

    Sediq, A S; Klem, R; Nejadnik, M R; Meij, P; Jiskoot, Wim

    2018-05-30

    To investigate the potential of two flow imaging microscopy (FIM) techniques (Micro-Flow Imaging (MFI) and FlowCAM) to determine total cell concentration and cell viability. B-lineage acute lymphoblastic leukemia (B-ALL) cells of 2 different donors were exposed to ambient conditions. Samples were taken at different days and measured with MFI, FlowCAM, hemocytometry and automated cell counting. Dead and live cells from a fresh B-ALL cell suspension were fractionated by flow cytometry in order to derive software filters based on morphological parameters of separate cell populations with MFI and FlowCAM. The filter sets were used to assess cell viability in the measured samples. All techniques gave fairly similar cell concentration values over the whole incubation period. MFI showed to be superior with respect to precision, whereas FlowCAM provided particle images with a higher resolution. Moreover, both FIM methods were able to provide similar results for cell viability as the conventional methods (hemocytometry and automated cell counting). FIM-based methods may be advantageous over conventional cell methods for determining total cell concentration and cell viability, as FIM measures much larger sample volumes, does not require labeling, is less laborious and provides images of individual cells.

  19. The effect of simultaneous exposure of HEMn-DP and HEMn-LP melanocytes to nicotine and UV-radiation on the cell viability and melanogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delijewski, Marcin; Wrześniok, Dorota; Beberok, Ar

    Nicotine is a main compound of tobacco plants and may affect more than a billion people all over the world that are permanently exposed to nicotine from cigarettes, various forms of smoking cessation therapies, electronic cigarettes or second-hand smoke. It is known that nicotine forms complexes with melanin what may lead to accumulation of this alkaloid in tissues of living organisms containing the pigment. This may affect the viability of cells and process of melanin biosynthesis that takes place in melanocytes. Although UV radiation is known to be a particular inductor of melanin biosynthesis, its simultaneous effect with nicotine onmore » this process as well as the viability of human cells containing melanin have not been assessed so far. The aim of this study was to examine the simultaneous impact of nicotine and UV radiation on viability and melanogenesis in cultured normal human melanocytes dark (HEMn-DP) and light (HEMn-LP) pigmented. Nicotine together with UV radiation induced concentration-dependent loss in melanocytes viability. The higher cell loss was observed in dark pigmented melanocytes in comparison to light pigmented cells. Simultaneous exposure of cells to nicotine and UV radiation also caused changes in melanization process in both tested cell lines. The data suggest that simultaneous exposure of melanocytes to nicotine and UV radiation up-regulates melanogenesis and affects cell viability. Observed processes are more pronounced in dark pigmented cells. - Highlights: • Nicotine and UVA induced concentration-dependent loss in melanocytes viability. • Nicotine and UVA modulated melanization process in melanocytes. • Changes in viability and melanization were more pronounced in dark pigmented cells.« less

  20. Assessment of cell concentration and viability of isolated hepatocytes using flow cytometry.

    PubMed

    Wigg, Alan J; Phillips, John W; Wheatland, Loretta; Berry, Michael N

    2003-06-01

    The assessment of cell concentration and viability of freshly isolated hepatocyte preparations has been traditionally performed using manual counting with a Neubauer counting chamber and staining for trypan blue exclusion. Despite the simple and rapid nature of this assessment, concerns about the accuracy of these methods exist. Simple flow cytometry techniques which determine cell concentration and viability are available yet surprisingly have not been extensively used or validated with isolated hepatocyte preparations. We therefore investigated the use of flow cytometry using TRUCOUNT Tubes and propidium iodide staining to measure cell concentration and viability of isolated rat hepatocytes in suspension. Analysis using TRUCOUNT Tubes provided more accurate and reproducible measurement of cell concentration than manual cell counting. Hepatocyte viability, assessed using propidium iodide, correlated more closely than did trypan blue exclusion with all indicators of hepatocyte integrity and function measured (lactate dehydrogenase leakage, cytochrome p450 content, cellular ATP concentration, ammonia and lactate removal, urea and albumin synthesis). We conclude that flow cytometry techniques can be used to measure cell concentration and viability of isolated hepatocyte preparations. The techniques are simple, rapid, and more accurate than manual cell counting and trypan blue staining and the results are not affected by protein-containing media.

  1. Coconut milk and probiotic milk as storage media to maintain periodontal ligament cell viability: an in vitro study.

    PubMed

    Saini, Divya; Gadicherla, Prahlad; Chandra, Prakash; Anandakrishna, Latha

    2017-06-01

    The viability of periodontal ligament (PDL) cells is a significant determinant of the long-term prognosis of replanted avulsed teeth. A storage medium is often required to maintain the viability of these cells during the extra-alveolar period. Many studies have been carried out to search for the most suitable storage medium for avulsed teeth, but an ideal solution has not yet been found. The purpose of the study was to compare and analyze the ability of coconut milk and probiotic milk to maintain PDL cell viability. In an in vitro setting, 69 caries free human premolars with normal periodontium that had been extracted for orthodontic purposes were randomly divided into two experimental groups on the basis of storage media used (i.e., coconut milk or probiotic milk) and a Hanks' balanced salt solution (HBSS) control group (23 samples per group). Immediately after extraction, the teeth were stored dry for 20 min and then immersed for 30 min in one of the storage media. The teeth were then subjected to collagenase-dispase assay and labeled with 0.5% trypan blue staining solution for determination of cell viability. The number of viable cells was counted under a light microscope and statistically analyzed using anova and post hoc Tukey test (P ≤ 0.05). Statistical analysis demonstrated there was a significant difference (P < 0.001) between coconut milk and probiotic milk as well as HBSS in maintaining cell viability. However, there was no significant difference between probiotic milk and HBSS in ability to maintain PDL cell viability (P > 0.05). Coconut milk may not be suitable as an interim transport media due to poor maintenance of cell viability. However, probiotic milk was able to maintain PDL cell viability as well as HBSS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    PubMed

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P < 0.05). Dex significantly decreased apoptotic cells compared with that of vehicle control cells by 50% (P < 0.05). Necrosis was not significantly different between treatment groups. Mechanistically, Dex treatment significantly increased phosphorylated Akt (P < 0.05), but protective effects of Dex were eliminated by an alpha-2a antagonist or Akt inhibitor (P < 0.05). Using a novel spinal cord neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Viability of human fibroblasts in coconut water as a storage medium.

    PubMed

    Moreira-Neto, J J S; Gondim, J O; Raddi, M S G; Pansani, C A

    2009-09-01

    To evaluate the effectiveness of a new storage medium for avulsed teeth, coconut water, in maintaining the viability of human fibroblasts. Cell viability after different time periods was evaluated in the following storage media: coconut water, coconut water with sodium bicarbonate, milk, saline and still mineral water. Human fibroblasts were seeded in Eagle's minimal essential medium (EMEM) supplemented with 7.5% foetal calf serum. After trypsinisation, 100 microL of culture medium containing approximately 10(4) cells mL(-1) were collected and pipetted into the wells of 96-well plates, which were incubated overnight in 5% CO(2) and 95% air mixture at 37 degrees C. EMEM was then replaced by the storage media and the plates were incubated at 37 degrees C for 1, 2 and 4 h. Cell viability was determined using the neutral red assay. The proportions of viable cells after exposure to the storage media were analysed statistically by anova and the least significant difference (LSD) test (alpha = 5%). Milk had the greatest capacity to maintain cell viability (P < 0.05), followed by coconut water with sodium bicarbonate and saline. Coconut water was significantly worse at maintaining cell viability compared to milk, coconut water with sodium bicarbonate and saline. The smallest number of viable cells was observed for mineral water (P < 0.05). Coconut water was worse than milk in maintaining human fibroblast cell viability.

  4. The Influence of Stabilized Deconjugated Ursodeoxycholic Acid on Polymer-Hydrogel System of Transplantable NIT-1 Cells.

    PubMed

    Mooranian, Armin; Negrulj, Rebecca; Al-Salami, Hani

    2016-05-01

    The encapsulation of pancreatic β-cells in biocompatible matrix has generated great interest in diabetes treatment. Our work has shown improved microcapsules when incorporating the bile acid ursodeoxycholic acid (UDCA), in terms of morphology and cell viability although cell survival remained low. Thus, the study aimed at incorporating the polyelectrolytes polyallylamine (PAA) and poly-l-ornithine (PLO), with the polymer sodium alginate (SA) and the hydrogel ultrasonic gel (USG) with UDCA and examined cell viability and functionality post microencapsulation. Microcapsules without (control) and with UDCA (test) were produced using 1% PLO, 2.5% PAA, 1.8% SA and 4.5% USG. Pancreatic β-cells were microencapsulated and the microcapsules' morphology, surface components, cellular and bile acid distribution, osmotic and mechanical stability as well as biocompatibilities, insulin production, bioenergetics and the inflammatory response were tested. Incorporation of UDCA at 4% into a PLO-PAA-SA formulation system increased cell survival (p < 0.01), insulin production (p < 0.01), reduced the inflammatory profile (TNF-α, IFN-ϒ, IL-6 and IL-1β; p < 0.01) and improved the microcapsule physical and mechanical strength (p < 0.01). β-cell microencapsulation using 1% PLO, 2.5% PAA, 1.8% SA, 4.5% USG and the bile acid UDCA (4%) has good potential in cell transplantation and diabetes treatment.

  5. Effective cancer laser-therapy design through the integration of nanotechnology and computational treatment planning models

    NASA Astrophysics Data System (ADS)

    Fisher, Jessica W.; Rylander, Marissa Nichole

    2008-02-01

    Laser therapies can provide a minimally invasive treatment alternative to surgical resection of tumors. However, the effectiveness of these therapies is limited due to nonspecific heating of target tissue which often leads to healthy tissue injury and extended treatment durations. These therapies can be further compromised due to heat shock protein (HSP) induction in tumor regions where non-lethal temperature elevation occurs, thereby imparting enhanced tumor cell viability and resistance to subsequent chemotherapy and radiation treatments. Introducing multi-walled nanotubes (MWNT) into target tissue prior to laser irradiation increases heating selectivity permitting more precise thermal energy delivery to the tumor region and enhances thermal deposition thereby increasing tumor injury and reducing HSP expression induction. This study investigated the impact of MWNT inclusion in untreated and laser irradiated monolayer cell culture and cell phantom model. Cell viability remained high for all samples with MWNT inclusion and cells integrated into alginate phantoms, demonstrating the non-toxic nature of both MWNTs and alginate phantom models. Following, laser irradiation samples with MWNT inclusion exhibited dramatic temperature elevations and decreased cell viability compared to samples without MWNT. In the cell monolayer studies, laser irradiation of samples with MWNT inclusion experienced up-regulated HSP27, 70 and 90 expression as compared to laser only or untreated samples due to greater temperature increases albeit below the threshold for cell death. Further tuning of laser parameters will permit effective cell killing and down-regulation of HSP. Due to optimal tuning of laser parameters and inclusion of MWNT in phantom models, extensive temperature elevations and cell death occurred, demonstrating MWNT-mediated laser therapy as a viable therapy option when parameters are optimized. In conclusion, MWNT-mediated laser therapies show great promise for effective tumor destruction, but require determination of appropriate MWNT characteristics and laser parameters for maximum tumor destruction.

  6. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions

    NASA Astrophysics Data System (ADS)

    Frösler, Jan; Panitz, Corinna; Wingender, Jost; Flemming, Hans-Curt; Rettberg, Petra

    2017-05-01

    Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions.

  7. Caffeine induces sustained apoptosis of human gastric cancer cells by activating the caspase-9/caspase-3 signalling pathway

    PubMed Central

    Liu, Hanyang; Zhou, Yan; Tang, Liming

    2017-01-01

    Caffeine is one of the most widely consumed substances found in beverages, and has demonstrated anticancer effects in several types of cancer. The present study aimed to examine the anticancer effects of caffeine on gastric cancer (GC) cells (MGC-803 and SGC-7901) in vitro, and to determine whether the apoptosis-related caspase-9/−3 pathway is associated with these effects. The sustained antiproliferative effects of caffeine on gastric cancer were also investigated. GC cell viability and proliferation were evaluated using cell counting and colony forming assays, following treatment with various concentrations of caffeine. Flow cytometry was performed to assess cell cycle dynamics and apoptosis. Western blot analysis was conducted to detect the activity of the caspase-9/−3 pathway. The results indicated that caffeine treatment significantly suppressed GC cell growth and viability and induced apoptosis by activating the caspase-9/−3 pathway. Furthermore, the anticancer effects of caffeine appeared to be sustained, as the caspase-9/−3 pathway remained active following caffeine withdrawal. In conclusion, caffeine may function as a sustained anticancer agent by activating the caspase-9/−3 pathway, which indicates that it may be useful as a therapeutic candidate in gastric cancer. PMID:28677810

  8. N-n-butyl haloperidol iodide ameliorates hypoxia/reoxygenation injury through modulating the LKB1/AMPK/ROS pathway in cardiac microvascular endothelial cells.

    PubMed

    Lu, Binger; Wang, Bin; Zhong, Shuping; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Zheng, Fuchun; Shi, Ganggang

    2016-06-07

    Endothelial cells are highly sensitive to hypoxia and contribute to myocardial ischemia/reperfusion injury. We have reported that N-n-butyl haloperidol iodide (F2) can attenuate hypoxia/reoxygenation (H/R) injury in cardiac microvascular endothelial cells (CMECs). However, the molecular mechanisms remain unclear. Neonatal rat CMECs were isolated and subjected to H/R. Pretreatment of F2 leads to a reduction in H/R injury, as evidenced by increased cell viability, decreased lactate dehydrogenase (LDH) leakage and apoptosis, together with enhanced AMP-activated protein kinase (AMPK) and liver kinase B1 (LKB1) phosphorylation in H/R ECs. Blockade of AMPK with compound C reversed F2-induced inhibition of H/R injury, as evidenced by decreased cell viability, increased LDH release and apoptosis. Moreover, compound C also blocked the ability of F2 to reduce H/R-induced reactive oxygen species (ROS) generation. Supplementation with the ROS scavenger N-acetyl-L-cysteine (NAC) reduced ROS levels, increased cell survival rate, and decreased both LDH release and apoptosis after H/R. In conclusion, our data indicate that F2 may mitigate H/R injury by stimulating LKB1/AMPK signaling pathway and subsequent suppression of ROS production in CMECs.

  9. Transcriptome analysis reveals that multidrug efflux genes are upregulated to protect Pseudomonas aeruginosa from pentachlorophenol stress.

    PubMed

    Muller, Jocelyn Fraga; Stevens, Ann M; Craig, Johanna; Love, Nancy G

    2007-07-01

    Through chemical contamination of natural environments, microbial communities are exposed to many different types of chemical stressors; however, research on whole-genome responses to this contaminant stress is limited. This study examined the transcriptome response of a common soil bacterium, Pseudomonas aeruginosa, to the common environmental contaminant pentachlorophenol (PCP). Cells were grown in chemostats at a low growth rate to obtain substrate-limited, steady-state, balanced-growth conditions. The PCP stress was administered as a continuous increase in concentration, and samples taken over time were examined for physiological function changes with whole-cell acetate uptake rates (WAURs) and cell viability and for gene expression changes by Affymetrix GeneChip technology and real-time reverse transcriptase PCR. Cell viability, measured by heterotrophic plate counts, showed a moderately steady decrease after exposure to the stressor, but WAURs did not change in response to PCP. In contrast to the physiological data, the microarray data showed significant changes in the expression of several genes. In particular, genes coding for multidrug efflux pumps, including MexAB-OprM, were strongly upregulated. The upregulation of these efflux pumps protected the cells from the potentially toxic effects of PCP, allowing the physiological whole-cell function to remain constant.

  10. In vitro adverse effects of iron ore dusts on human lymphoblastoid cells in culture.

    PubMed

    Wang, He; Wang, Jing J; Sanderson, Barbara J S

    2013-01-01

    The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 μg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 μg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 μg/ml. A significant rise in apoptosis induction was observed at 150 μg/ml HG1. Data indicate that Fe ore dusts at 150 μg/ml produced cytotoxicity and genotoxicity.

  11. BID is a critical factor controlling cell viability regulated by IFN-α.

    PubMed

    Tsuno, Takaya; Mejido, Josef; Zhao, Tongmao; Phillips, Terry; Myers, Timothy G; Bekisz, Joseph; Zoon, Kathryn C

    2012-01-01

    Clinical applications of human interferon (IFN)-α have met with varying degrees of success. Nevertheless, key molecules in cell viability regulated by IFN-α have not been clearly identified. Our previous study indicated that IFN (α, β, and ω) receptor (IFNAR) 1/2- and IFN regulatory factor 9-RNA interference (RNAi) completely restored cell viability after IFN-α treatment in human ovarian adenocarcinoma OVCAR3 cells sensitive to IFN-α. In this study, IFNAR1/2- and IFN regulatory factor 9-RNAi inhibited the gene expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), but not of Fas ligand, after IFN-α treatment. In fact, TRAIL but not Fas ligand inhibited the viability of OVCAR3 cells. IFN-α notably upregulated the levels of TRAIL protein in the supernatant and on the membrane of OVCAR3 cells. After TRAIL signaling, caspase 8 inhibitor and BH3 interacting domain death agonist (BID)-RNAi significantly restored cell viability in response to IFN-α and TRAIL in OVCAR3 cells. Furthermore, BID-RNAi prevented both IFN-α and TRAIL from collapsing the mitochondrial membrane potential (ΔΨm). Finally, we provided important evidence that BID overexpression led to significant inhibition of cell viability after IFN-α or TRAIL treatments in human lung carcinoma A549 cells resistant to IFN-α. Thus, this study suggests that BID is crucial for cell viability regulated by IFN-α which can induce mitochondria-mediated apoptosis, indicating a notable potential to be a targeted therapy for IFN-α resistant tumors.

  12. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.

    PubMed

    Ouyang, Liliang; Yao, Rui; Zhao, Yu; Sun, Wei

    2016-09-16

    3D cell printing is an emerging technology for fabricating complex cell-laden constructs with precise and pre-designed geometry, structure and composition to overcome the limitations of 2D cell culture and conventional tissue engineering scaffold technology. This technology enables spatial manipulation of cells and biomaterials, also referred to as 'bioink', and thus allows study of cellular interactions in a 3D microenvironment and/or in the formation of functional tissues and organs. Recently, many efforts have been made to develop new bioinks and to apply more cell sources for better biocompatibility and biofunctionality. However, the influences of printing parameters on the shape fidelity of 3D constructs as well as on cell viability after the cell printing process have been poorly characterized. Furthermore, parameter optimization based on a specific cell type might not be suitable for other types of cells, especially cells with high sensibility. In this study, we systematically studied the influence of bioink properties and printing parameters on bioink printability and embryonic stem cell (ESC) viability in the process of extrusion-based cell printing, also known as bioplotting. A novel method was established to determine suitable conditions for bioplotting ESCs to achieve both good printability and high cell viability. The rheological properties of gelatin/alginate bioinks were evaluated to determine the gelation properties under different bioink compositions, printing temperatures and holding times. The bioink printability was characterized by a newly developed semi-quantitative method. The results demonstrated that bioinks with longer gelation times would result in poorer printability. The live/dead assay showed that ESC viability increased with higher printing temperatures and lower gelatin concentrations. Furthermore, an exponential relationship was obtained between ESC viability and induced shear stress. By defining the proper printability and acceptable viability ranges, a combined parameters region was obtained. This study provides guidance for parameter optimization and the fine-tuning of 3D cell printing processes regarding both bioink printability and cell viability after bioplotting, especially for easily damaged cells, like ESCs.

  13. Low-dose PDT on breast cancer spheroids

    NASA Astrophysics Data System (ADS)

    Campos, C. P.; Inada, N. M.; Kurachi, C.

    2018-02-01

    Photodynamic therapy (PDT) has been investigated in clinical studies as a treatment method for breast cancer chest wall recurrences. Complete response percentage in these studies is not 100% in most patients, indicating the presence of a remaining tumor after PDT. Some in vitro studies show that tumor cells present distinct threshold dose, suggesting that the remaining tumor in vivo could require higher doses or different PDT strategies. There is still a lot of controversy of the multiple PDT sessions effect on bulky tumors. The purpose of this study is to investigate low-dose PDT parameters in 3D cultures of breast cancer cells grown by the magnetic levitation method. PDT was performed with Photodithazine® (PDZ) and LED irradiation at 660 nm. Two concentrations of PDZ were investigated and the 50 μg/mL concentration, which showed a superficial distribution, was used in the PDT. Partial damage was observed in the tumors and the viability test showed a small percentage of cell death. This outcome is favorable for the investigation of PDT effects in the remaining tumor. Multiple PDT sections could provide more noticeable alterations in cell morphology and metabolism.

  14. Quantitative Analyses of Synergistic Responses between Cannabidiol and DNA-Damaging Agents on the Proliferation and Viability of Glioblastoma and Neural Progenitor Cells in Culture.

    PubMed

    Deng, Liting; Ng, Lindsay; Ozawa, Tatsuya; Stella, Nephi

    2017-01-01

    Evidence suggests that the nonpsychotropic cannabis-derived compound, cannabidiol (CBD), has antineoplastic activity in multiple types of cancers, including glioblastoma multiforme (GBM). DNA-damaging agents remain the main standard of care treatment available for patients diagnosed with GBM. Here we studied the antiproliferative and cell-killing activity of CBD alone and in combination with DNA-damaging agents (temozolomide, carmustine, or cisplatin) in several human GBM cell lines and in mouse primary GBM cells in cultures. This activity was also studied in mouse neural progenitor cells (NPCs) in culture to assess for potential central nervous system toxicity. We found that CBD induced a dose-dependent reduction of both proliferation and viability of all cells with similar potencies, suggesting no preferential activity for cancer cells. Hill plot analysis indicates an allosteric mechanism of action triggered by CBD in all cells. Cotreatment regimens combining CBD and DNA-damaging agents produced synergistic antiproliferating and cell-killing responses over a limited range of concentrations in all human GBM cell lines and mouse GBM cells as well as in mouse NPCs. Remarkably, antagonistic responses occurred at low concentrations in select human GBM cell lines and in mouse GBM cells. Our study suggests limited synergistic activity when combining CBD and DNA-damaging agents in treating GBM cells, along with little to no therapeutic window when considering NPCs. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  15. miR-34a: Multiple Opposing Targets and One Destiny in Hepatocellular Carcinoma.

    PubMed

    Yacoub, Radwa Alaa; Fawzy, Injie Omar; Assal, Reem Amr; Hosny, Karim Adel; Zekri, Abdel-Rahman Nabawy; Esmat, Gamal; El Tayebi, Hend Mohamed; Abdelaziz, Ahmed Ihab

    2016-12-28

    Background and Aims: The role of miR-34a in hepatocellular carcinoma (HCC) is controversial and several unresolved issues remain, including its expression pattern and relevance to tumor etiology, tumor stage and prognosis, and finally, its impact on apoptosis. Methods: miR-34a expression was assessed in hepatitis C virus (HCV)-induced non-metastatic HCC tissues by RT-Q-PCR. Huh-7 cells were transfected with miR-34a mimics and the impact of miR-34a was examined on 84 pro-apoptotic/anti-apoptotic genes using PCR array; its net effect was tested on cell viability via MTT assay. Results: miR-34a expression was up-regulated in HCC tissues. Moreover, miR-34a induced a large set of pro-apoptotic/anti-apoptotic genes, with a net result of triggering apoptosis and repressing cell viability. Conclusions: HCC-related differential expression of miR-34a could be etiology-based or stage-specific, and low expression of miR-34a may predict poor prognosis. This study's findings also emphasize the role of miR-34a in apoptosis.

  16. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway.

    PubMed

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-11-07

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.

  17. Hydrostatic Compress Force Enhances the Viability and Decreases the Apoptosis of Condylar Chondrocytes through Integrin-FAK-ERK/PI3K Pathway

    PubMed Central

    Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping

    2016-01-01

    Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993

  18. Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro.

    PubMed

    Tilgase, Andra; Patetko, Liene; Blāķe, Ilze; Ramata-Stunda, Anna; Borodušķis, Mārtiņš; Alberts, Pēteris

    2018-01-01

    Background: The role of oncolytic viruses in cancer treatment is increasingly studied. The first oncolytic virus (Rigvir®, ECHO-7) was registered in Latvia over a decade ago. In a recent retrospective study Rigvir® decreased mortality 4.39-6.57-fold in stage IB-IIC melanoma patients. The aims of the present study are to test the effect of Rigvir® on cell line viability in vitro and to visualize the cellular presence of Rigvir® by immunocytochemistry. Methods: The cytolytic effect of Rigvir® on the viability of FM-9, RD, AGS, A549, HDFa, HPAF‑II, MSC, MCF7, HaCaT, and Sk-Mel-28 cell lines was measured using live cell imaging. PBMC viability was measured using flow cytometry. The presence of ECHO-7 virus was visualized using immunocytochemistry. Statistical difference between treatment groups was calculated using two-way ANOVA. Results: Rigvir® (10%, volume/volume) reduced cell viability in FM-9, RD, AGS, A549, HDFa, HPAF‑II and MSC cell lines by 67-100%. HaCaT cell viability was partly affected while Rigvir® had no effect on MCF7, Sk-Mel-28 and PBMC viability. Detection of ECHO-7 by immunocytochemistry in FM-9, RD, AGS, A549, HDFa, HPAF-II and Sk-Mel-28 cell lines suggests that the presence of Rigvir® in the cells preceded or coincided with the time of reduction of cell viability. Rigvir® (10%) had no effect on live PBMC count. Conclusions: The results suggest that Rigvir® in vitro reduces the viability of cells of human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma, pancreas adenocarcinoma but not in PBMC. The presence of Rigvir® in the sensitive cells was confirmed using anti-ECHO-7 antibodies. The present results suggest that a mechanism of action for the clinical benefit of Rigvir® is its cytolytic properties. The present results suggest that the effect of Rigvir® could be tested in other cancers besides melanoma. Further studies of possible Rigvir® entry receptors are needed.

  19. Innovative Microcapsules for Pancreatic β-Cells Harvested from Mature Double-Transgenic Mice: Cell Imaging, Viability, Induced Glucose-Stimulated Insulin Measurements and Proinflammatory Cytokines Analysis.

    PubMed

    Mooranian, Armin; Tackechi, Ryu; Jamieson, Emma; Morahan, Grant; Al-Salami, Hani

    2017-06-01

    Recently we demonstrated that microencapsulation of a murine pancreatic β-cell line using an alginate-ursodeoxycholic acid (UDCA) matrix produced microcapsules with good stability and cell viability. In this study, we investigated if translation of this formulation to microencapsulation of primary β-cells harvested from mature double-transgenic healthy mice would also generate stable microcapsules with good cell viability. Islets of Langerhans were isolated from Ngn3-GFP/RIP-DsRED mice by intraductal collagenase P digestion and density gradient centrifugation, dissociated into single cells and the β-cell population purified by Fluorescence Activated Cell Sorting. β-cells were microencapsulated using either alginate-poly-l-ornithine (F1; control) or alginate-poly-l-ornithine-UDCA (F2; test) formulations. Microcapsules were microscopically examined and microencapsulated cells were analyzed for viability, insulin and cytokine release, 2 days post-microencapsulation. Microcapsules showed good uniformity and morphological characteristics and even cell distribution within microcapsules with or without UDCA. Two days post microencapsulation cell viability, mitochondrial ATP and insulin production were shown to be optimized in the presence of UDCA whilst production of the proinflammatory cytokine IL-1β was reduced. Contradictory to our previous studies, UDCA did not reduce production of any other pro-inflammatory biomarkers. These results suggest that UDCA incorporation improves microcapsules' physical and morphological characteristics and improves the viability and function of encapsulated mature primary pancreatic β-cells.

  20. Laser and Non-Coherent Light Effect on Peripheral Blood Normal and Acute Lymphoblastic Leukemic Cells by Using Different Types of Photosensitizers

    NASA Astrophysics Data System (ADS)

    El Batanouny, Mohamed H.; Khorshid, Amira M.; Arsanyos, Sonya F.; Shaheen, Hesham M.; Abdel Wahab, Nahed; Amin, Sherif N.; El Rouby, Mahmoud N.; Morsy, Mona I.

    2010-04-01

    Photodynamic therapy (PDT) is a novel treatment modality of cancer and non-cancerous conditions that are generally characterized by an overgrowth of unwanted or abnormal cells. Irradiation of photosensitizer loaded cells or tissues leads via the photochemical reactions of excited photosensitizer molecules to the production of singlet oxygen and free radicals, which initiate cell death. Many types of compounds have been tested as photosensitizers, such as methylene blue (MB) and photopherin seemed to be very promising. This study involved 26 cases of acute lymphoblastic leukemia and 15 normal volunteers as a control group. The cell viability was measured by Light microscope and flowcytometer. Mode of cell death was detected by flowcytometer and electron microscope in selected cases. The viability percentage of normal peripheral blood mononuclear cells (PBMC) incubated with methylene blue (MB) alone or combined with photo irradiation with diode laser (as measured by light microscope) was significantly lower than that of untreated cases either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. There was a significantly lower viability percentage of normal cells incubated with MB and photoirradiated with diode laser compared to normal cells treated with MB alone for either measured after 1 hour (p<0.001) or 24 hours (p<0.001) post incubation. The decrease in viability was more enhanced with increasing the incubation time. For normal cells incubated with photopherin either for 1/2 an hour or 1 hour, there was a weak cytotoxic effect compared to the effect on untreated cells. There was a significant decrease in viability percentage of cells incubated with photopherin either for 1/2 an hour or 1 hour and photoirradiated with He:Ne laser compared to normal untreated cells. The decrease in the cell viability percentage was significantly lower with the use of PDT (photopherin and He:Ne laser ) compared to either photopherin alone or He:Ne laser alone. The decrease in viability was more enhanced with increasing the incubation time. The same effects reported on normal cells were detected on leukemic cells on comparing different methods used. However a more pronounced decrease in cell viability was detected. The most efficient ways of decreasing viability of leukemic cells with much less effect on normal cells was the use of PDT of cell incubation with MB for 1 hour then photoirradiation with diode laser and PDT of cell incubation with photopherin for 1 hour then photoirradiation with He:Ne laser. Flowcytometer (FCM) was more sensitivite than the light microscope in detecting the decrease in cell viability, it also helped in determining the mode of cell death weather apoptosis, necrosis or combined apoptosis and necrosis. Apoptotic cell percentage was higher in PDT of MB and Diode laser or photopherin and He:Ne laser, treated ALL cells compared to untreated ALL cells after 1 hour but was significantly lower after 24 hours post irradiation. A significant increase in necrotic, combined necrotic and apoptotic cell percentages either measured 1 hour or 24 hours post PDT, compared to untreated ALL cells and PDT treated normal cells. Electron microscope helped in detecting early cellular apoptotic changes occurring in response to different therapeutic modalities used in this study. In conclusion, PDT proved to be an effective clinical modality in decreasing the number of leukemic cells when irradiated in vitro with appropriate laser and photosensitizer system. Both PDT systems used in this study were efficient in inducing cell death of leukemic cells compared to untreated leukemic cells. However, photopherin PDT system was more efficient in decreasing the cell viability. A significant decrease in viability percentage was detected when studying the effect of PDT on leukemic cells compared to that on normal cells. This suggests that PDT when applied clinically will selectively differentiate between leukemic cells and normal cells, offering a successful component in ALL therapy.

  1. Live cell imaging reveals marked variability in myoblast proliferation and fate

    PubMed Central

    2013-01-01

    Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated. PMID:23638706

  2. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field.

    PubMed

    Nishiyama, Yuichiro; Iwanami, Akio; Kohyama, Jun; Itakura, Go; Kawabata, Soya; Sugai, Keiko; Nishimura, Soraya; Kashiwagi, Rei; Yasutake, Kaori; Isoda, Miho; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2016-06-01

    Stem cells represent a potential cellular resource in the development of regenerative medicine approaches to the treatment of pathologies in which specific cells are degenerated or damaged by genetic abnormality, disease, or injury. Securing sufficient supplies of cells suited to the demands of cell transplantation, however, remains challenging, and the establishment of safe and efficient cell banking procedures is an important goal. Cryopreservation allows the storage of stem cells for prolonged time periods while maintaining them in adequate condition for use in clinical settings. Conventional cryopreservation systems include slow-freezing and vitrification both have advantages and disadvantages in terms of cell viability and/or scalability. In the present study, we developed an advanced slow-freezing technique using a programmed freezer with a magnetic field called Cells Alive System (CAS) and examined its effectiveness on human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs). This system significantly increased cell viability after thawing and had less impact on cellular proliferation and differentiation. We further found that frozen-thawed hiPSC-NS/PCs were comparable with non-frozen ones at the transcriptome level. Given these findings, we suggest that the CAS is useful for hiPSC-NS/PCs banking for clinical uses involving neural disorders and may open new avenues for future regenerative medicine. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Effects of endoplasmic reticulum stress on the autophagy, apoptosis, and chemotherapy resistance of human breast cancer cells by regulating the PI3K/AKT/mTOR signaling pathway.

    PubMed

    Zhong, Jia-Teng; Yu, Jian; Wang, Hai-Jun; Shi, Yu; Zhao, Tie-Suo; He, Bao-Xia; Qiao, Bin; Feng, Zhi-Wei

    2017-05-01

    Nowadays, although chemotherapy is an established therapy for breast cancer, the molecular mechanisms of chemotherapy resistance in breast cancer remain poorly understood. This study aims to explore the effects of endoplasmic reticulum stress on autophagy, apoptosis, and chemotherapy resistance in human breast cancer cells by regulating PI3K/AKT/mTOR signaling pathway. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the cell viability of six human breast cancer cell lines (MCF-7, ZR-75-30, T47D, MDA-MB-435s, MDA-MB-453, and MDA-MB-231) treated with tunicamycin (5 µM), after which MCF-7 cells were selected for further experiment. Then, MCF-7 cells were divided into the control (without any treatment), tunicamycin (8 µ), BEZ235 (5 µ), and tunicamycin + BEZ235 groups. Cell viability of each group was testified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Western blotting was applied to determine the expressions of endoplasmic reticulum stress and PI3K/AKT/mTOR pathway-related proteins and autophagy- and apoptosis-related proteins. Monodansylcadaverine and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for determination of cell autophagy and apoptosis. Furthermore, MCF-7 cells were divided into the control (without any treatment), tunicamycin (5 µM), cisplatin (16 µM), cisplatin (16 µM) + BEZ235 (5 µM), tunicamycin (5 µM) + cisplatin (16 µM), and tunicamycin (5 µM) + cisplatin (16 µM) + BEZ235 groups. Cell viability and apoptosis were also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining. In MCF-7 cells treated with tunicamycin, cell viability decreased significantly, but PEAK, eIF2, and CHOP were upregulated markedly and p-PI3K, p-AKT, and p-MTOR were downregulated in dose- and time-dependent manners. In the tunicamycin + BEZ235 group, the cell viability was lower and the apoptosis rate was higher than those of the control and monotherapy groups. Compared with the cisplatin group, the tunicamycin + cisplatin group showed a relatively higher growth inhibition rate; the growth inhibition rate substantially increased in the tunicamycin + cisplatin + BEZ235 group than the tunicamycin + cisplatin group. The apoptosis rate was highest in tunicamycin + cisplatin + BEZ235 group, followed by tunicamycin + cisplatin group and then cisplatin group. Our study provide evidence that endoplasmic reticulum stress activated by tunicamycin could promote breast cancer cell autophagy and apoptosis and enhance chemosensitivity of MCF-7 cells by inhibiting the PI3K/AKT/mTOR signaling pathway.

  4. Effects of zinc oxide nanoparticles on human coronary artery endothelial cells.

    PubMed

    Chuang, Kai-Jen; Lee, Kang-Yun; Pan, Chih-Hong; Lai, Ching-Huang; Lin, Lian-Yu; Ho, Shu-Chuan; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2016-07-01

    Inhalation of zinc oxide (ZnO) metal fumes is known to cause metal fume fever and to have systemic effects; however, the effects of ZnO nanoparticles (ZnONPs) on the cardiovascular system remain unclear. The objective of this study was to investigate the cardiovascular toxicity of ZnONPs. Human coronary artery endothelial cells (HCAECs) were exposed to ZnONPs of different sizes to investigate the cell viability, 8-hydroxy-2'-deoxyguanosine (8-OHdG), interleukin (IL)-6, nitric oxide (NO), and regulation of cardiovascular disease-related genes. Exposure of HCAECs to ZnONPs resulted in decreased cell viability and increased levels of 8-OHdG, IL-6, and NO. Downregulation of cardiovascular-associated genes was observed in response to ZnONPs in HCAECs determined by qPCR, suggesting that the calcium signaling pathway, neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, dilated cardiomyopathy, and renin-angiotensin system are important affected pathways in response to ZnONPs. Furthermore, we observed a significant response of AGTR1 to ZnONP exposure in HCAECs. Our results suggest that ZnONPs cause toxicity to HCAECs, which could be associated with cardiovascular dysfunction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    PubMed Central

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles. PMID:22754315

  6. Morphology based scoring of chromosomal instability and its correlation with cell viability.

    PubMed

    Yadav, Shubhlata; Bhatia, Alka

    2017-09-01

    The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Soy milk as a storage medium to preserve human fibroblast cell viability: an in vitro study.

    PubMed

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Reis, Manuella Verdinelli de Paula; Fernandes Neto, Alfredo Júlio; Soares, Carlos José

    2012-01-01

    Soy milk (SM) is widely consumed worldwide as a substitute for cow milk. It is a source of vitamins, carbohydrates and sugars, but its capacity to preserve cell viability has not been evaluated. The purpose of the present study was to investigate the efficacy of SM to maintain the viability of human fibroblasts at short periods compared with different cow milks. Human mouth fibroblasts were cultured and stored in the following media at room temperature: 10% Dulbecco's Modified Eagle Medium (DMEM) (positive control group); long shelf-life ultra-high temperature whole cow milk (WM); long shelf-life ultra-high temperature skim cow milk (SKM); powdered cow milk (PM); and soy milk (SM). After 5, 15, 30 and 45 min, cell viability was analyzed using the MTT assay. Data were analyzed statistically by the Kruskal-Wallis test with post-analysis using the Dunn's method (α=0.05). SKM showed the lowest capacity to maintain cell viability in all analyzed times (p<0.05). At 30 and 45 min, the absorbance levels in control group (DMEM) and SM were significantly higher than in SKM (p<0.05). Cell viability decreased along the time (5-45 min). The results indicate that SM can be used as a more adequate storage medium for avulsed teeth. SKM was not as effective in preserving cell viability as the cell culture medium and SM.

  8. Picropodophyllin inhibits the growth of Ewing's sarcoma cells through the insulin‑like growth factor‑1 receptor/Akt signaling pathway.

    PubMed

    Wu, Yong-Tao; Wang, Bao-Jun; Miao, Sheng-Wu; Gao, Jian-Jun

    2015-11-01

    Ewing's sarcoma (ES) is the second most common type of pediatric bone tumor, and is associated with a poor prognosis. Picropodophyllin (PPP), a novel selective inhibitor of insulin‑like growth factor‑1 receptor (IGF‑1R), is able to strongly inhibit various types of cancers. However, the effect of IGF‑1R on ES remains unclear. Following treatment with various concentrations of PPP for various times, cell viability was determined using an MTT assay. In addition, cell proliferation and apoptosis was investigated separately by bromodeoxyuridine staining and flow cytometry, respectively. The PPP‑associated signaling pathway was also investigated. The results of the present study suggested that PPP inhibited cell proliferation and viability of A673 and SK‑ES‑1 human Ewing's sarcoma cells in a dose- and time‑dependent manner. In addition, cell apoptosis rates were increased following treatment with PPP. Further investigation of the underlying mechanism revealed that PPP inhibited Akt phosphorylation. Fumonisin B1, an Akt‑specific activator, reversed the inhibitory effects of PPP on cell growth. Furthermore, the results suggested that PPP decreased the expression levels of IGF‑1R, a common activator of Akt signaling. PPP inhibited the growth of human Ewing's sarcoma cells by targeting the IGF‑1R/Akt signaling pathway. Therefore, PPP may prove useful in the development of an effective strategy for the treatment of Ewing's sarcoma.

  9. 6-Gingerol inhibits osteosarcoma cell proliferation through apoptosis and AMPK activation.

    PubMed

    Fan, Jingzhang; Yang, Xin; Bi, Zhenggang

    2015-02-01

    6-Gingerol, a major component of ginger, is demonstrated to possess a variety of pharmacological activities. Despite demonstration of its anti-cancer activity, the exact mechanism underlying the effects of 6-gingerol against sarcoma remains sketchy. In the present study, we investigated the anti-cancer effects of 6-gingerol on osteosarcoma cells. MTT assay was performed to determine cell viability. Phosphorylation and protein levels were determined by immunoblotting. Cell cycle was determined using flow cytometry. Quantitative polymerase chain reaction was employed to determine the changes in the messenger RNA (mRNA) expression of genes. Treatment with 6-gingerol resulted in a significant decrease in the viability of osteosarcoma cells in a dose-dependent fashion. In parallel, the number of cells arrested at the sub-G1 cell cycle phase was significantly increased. The results showed that 6-gingerol induced activation of caspase cascades and regulated cellular levels of Bcl2 and Bax. Moreover, 6-gingerol activated AMP-activated protein kinase (AMPK) signaling associated with the apoptotic pathways. Our findings suggest that 6-gingerol suppresses the growth of osteosarcoma cells. The anti-cancer activity is attributed to the activation of apoptotic signaling and the inhibition of anti-apoptotic signaling incorporating with 6-gingerol-induced AMPK activation. The study identifies a new molecular mechanism by which AMPK is involved in anti-cancer effects of 6-gingerol.

  10. Dihydroartemisinin Exerts Anti-Tumor Activity by Inducing Mitochondrion and Endoplasmic Reticulum Apoptosis and Autophagic Cell Death in Human Glioblastoma Cells

    PubMed Central

    Qu, Chengbin; Ma, Jun; Liu, Xiaobai; Xue, Yixue; Zheng, Jian; Liu, Libo; Liu, Jing; Li, Zhen; Zhang, Lei; Liu, Yunhui

    2017-01-01

    Glioblastoma (GBM) is the most advanced and aggressive form of gliomas. Dihydroartemisinin (DHA) has been shown to exhibit anti-tumor activity in various cancer cells. However, the effect and molecular mechanisms underlying its anti-tumor activity in human GBM cells remain to be elucidated. Our results proved that DHA treatment significantly reduced cell viability in a dose- and time-dependent manner by CCK-8 assay. Further investigation identified that the cell viability was rescued by pretreatment either with Z-VAD-FMK, 3-methyladenine (3-MA) or in combination. Moreover, DHA induced apoptosis of GBM cells through mitochondrial membrane depolarization, release of cytochrome c and activation of caspases-9. Enhanced expression of GRP78, CHOP and eIF2α and activation of caspase 12 were additionally confirmed that endoplasmic reticulum (ER) stress pathway of apoptosis was involved in the cytotoxicity of DHA. DHA-treated GBM cells exhibited the morphological and biochemical changes typical of autophagy. Co-treatment with chloroquine (CQ) significantly induced the above effects. Furthermore, ER stress and mitochondrial dysfunction were involved in the DHA-induced autophagy. Further study revealed that accumulation of reactive oxygen species (ROS) was attributed to the DHA induction of apoptosis and autophagy. The illustration of these molecular mechanisms will present a novel insight for the treatment of human GBM. PMID:29033794

  11. Effect of berberine on the viability of adipose tissue-derived mesenchymal stem cells in nutrients deficient condition.

    PubMed

    Ghorbani, Ahmad; Baradaran Rahimi, Vafa; Sadeghnia, Hamid Reza; Hosseini, Azar

    2018-03-01

    This study was designed to examine whether berberine protects rat adipose tissue-derived stem cells (ASCs) against glucose and serum deprivation (GSD)-induced cell death. ASCs were cultured for 24 h in GSD condition in the presence of berberine and then cell viability, apoptosis and generation of reactive oxygen species (ROS) were evaluated. The GSD condition significantly decreased ASCs viability and increased ROS generation and apoptosis. Incubation with 0.75-3 μM berberine partially increased cell viability and decreased ROS generation and apoptosis in GSD condition. In conclusion, berberine partially protects ASCs in nutrients deficient condition and may help ASCs to preserve their survival during cell therapy of ischemia.

  12. Cytotoxicity, Biocompatibility, and Biomineralization of the New High-plasticity MTA Material.

    PubMed

    Cintra, Luciano Tavares Angelo; Benetti, Francine; de Azevedo Queiroz, Índia Olinta; de Araújo Lopes, Juliana Maria; Penha de Oliveira, Sandra Helena; Sivieri Araújo, Gustavo; Gomes-Filho, João Eduardo

    2017-05-01

    Mineral trioxide aggregate (MTA) has excellent biological properties, but its handling properties have been criticized for both ProRoot MTA (Tulsa Dental Products, Tulsa, OK) and white MTA-Angelus (MTA-Ang; Angelus Indústria de Produtos Odontológicos S/A, Londrina, PR, Brazil). Angelus MTA HP (high plasticity) (Angelus Indústria de Produtos Odontológicos S/A) has been introduced recently. Considering the importance of biological properties of materials that will be in contact with the tissues, this study evaluated the cytotoxicity, biocompatibility, and biomineralization of MTA HP compared with white MTA-Ang. L929 fibroblast cell lines were cultured, and cell viability was assessed at 6, 24, 48, and 72 hours using the alamar Blue assay (Thermo Fisher Scientific, Waltham, MA). A subcutaneous implant test was performed with polyethylene tubes containing 1 of the materials or empty tubes (control) using 20 Wistar rats. After 7 and 30 days of implantation, the tubes with surrounding tissues were removed for analysis using hematoxylin-eosin or von Kossa stain or they remained unstained for observation under polarized light. The results were statistically analyzed (P < .05). A significant increase in cell viability for MTA HP was observed after 24, 48, and 72 hours compared with the control (P < .05). At 72 hours, MTA HP exhibited a higher viability compared with white MTA-Ang (P < .05). Histologic analysis performed at 7 days showed moderate inflammation and a thick fibrous capsule in all groups (P > .05). At 30 days, mild inflammation and a thin fibrous capsule were observed in all groups (P > .05). All materials had structures positive for von Kossa and birefringent to polarized light. MTA HP showed biocompatibility and biomineralization similar to MTA-Ang. In addition, MTA HP showed increased fibroblast cell viability compared with white MTA-Ang after a longer period. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Potential of coconut water and soy milk for use as storage media to preserve the viability of periodontal ligament cells: an in vitro study.

    PubMed

    Moura, Camilla Cristhian Gomes; Soares, Priscilla Barbosa Ferreira; de Paula Reis, Manuella Verdinelli; Fernandes Neto, Alfredo Júlio; Zanetta Barbosa, Darceny; Soares, Carlos José

    2014-02-01

    There is no consensus regarding the ability of coconut water and soy milk to maintain long-term cell viability. This study investigated the ability of pH-adjusted coconut water and soy milk to maintain the viability of periodontal ligament cells over a short and a longer period and compared these abilities with those of other solutions. Dog premolar teeth were extracted, dried for 30 min, and stored in the following media for 50 min or 24 h: long shelf-life whole milk (SWM), long shelf-life skim milk (SSM), Hank's Balanced Salt Solution (HBSS), soy milk (SM), and pH-adjusted coconut water (CW). The positive and two negative control groups corresponded to 0-min, 30-min (short-term), and 24-h (long-term) dry times, respectively. Cell viability was analyzed by trypan blue exclusion. Data were statistically analyzed using the Kruskal-Wallis test with post-analysis using the Dunn method. In the short-term experiment, the SSM resulted in significantly lower cell viability than SM and CW. At 24 h, SM and CW resulted in higher viability than HBSS and SSM and in comparable performance with the positive control group. Cell viability decreased over time, except in SM and CW. Soy milk and pH-adjusted coconut water showed promising results as storage solutions for avulsed teeth, preserving the viability for up to 24 h. © 2013 John Wiley & Sons A/S.

  14. Role of cytoskeletal mechanics and cell membrane fluidity in the intracellular delivery of molecules mediated by laser-activated carbon nanoparticles.

    PubMed

    Holguin, Stefany Y; Anderson, Caleb F; Thadhani, Naresh N; Prausnitz, Mark R

    2017-10-01

    Exposure of cells and nanoparticles to near-infrared nanosecond pulsed laser light can lead to efficient intracellular delivery of molecules while maintaining high cell viability by a photoacoustic phenomenon known as transient nanoparticle energy transduction (TNET). Here, we examined the influence of cytoskeletal mechanics and plasma membrane fluidity on intracellular uptake of molecules and loss of cell viability due to TNET. We found that destabilization of actin filaments using latrunculin A led to greater uptake of molecules and less viability loss caused by TNET. Stabilization of actin filaments using jasplakinolide had no significant effect on uptake or viability loss caused by TNET. To study the role of plasma membrane fluidity, we increased fluidity by depletion of membrane cholesterol using methyl-β-cyclodextrin and decreased fluidity by enrichment of the membrane with cholesterol using water-soluble cholesterol. Neither of these membrane fluidity changes significantly altered cellular uptake or viability loss caused by TNET. We conclude that weakening mechanical integrity of the cytoskeleton can increase intracellular uptake and decrease loss of cell viability, while plasma membrane fluidity does not appear to play a significant role in uptake or viability loss caused by TNET. The positive effects of cytoskeletal weakening may be due to an enhanced ability of the cell to recover from the effects of TNET and maintain viability. Biotechnol. Bioeng. 2017;114: 2390-2399. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Hydrolytically Degradable Poly(Ethylene Glycol) Hydrogel Scaffolds as a Cell Delivery Vehicle: Characterization of PC12 Cell Response

    PubMed Central

    Zustiak, Silviya P.; Pubill, Stephanie; Ribeiro, Andreia; Leach, Jennie B.

    2013-01-01

    The central nervous system (CNS) has a low intrinsic potential for regeneration following injury and disease, yet neural stem/progenitor cell (NPC) transplants show promise to provide a dynamic therapeutic in this complex tissue environment. Moreover, biomaterial scaffolds may improve the success of NPC-based therapeutics by promoting cell viability and guiding cell response. We hypothesized that a hydrogel scaffold could provide a temporary neurogenic environment that supports cell survival during encapsulation, and degrades completely in a temporally controlled manner to allow progression of dynamic cellular processes such as neurite extension. We utilized PC12 cells as a model cell line with an inducible neuronal phenotype to define key properties of hydrolytically-degradable poly(ethylene glycol) hydrogel scaffolds that impact cell viability and differentiation following release from the degraded hydrogel. Adhesive peptide ligands (RGDS, IKVAV or YIGSR), were required to maintain cell viability during encapsulation; as compared to YIGSR, the RGDS and IKVAV ligands were associated with a higher percentage of PC12 cells that differentiated to the neuronal phenotype following release from the hydrogel. Moreover, among the hydrogel properties examined (e.g., ligand type, concentration), total polymer density within the hydrogel had the most prominent effect on cell viability, with densities above 15% w/v leading to decreased cell viability likely due to a higher shear modulus. Thus, by identifying key properties of degradable hydrogels that affect cell viability and differentiation following release from the hydrogel, we lay the foundation for application of this system towards future applications of the scaffold as a neural cell delivery vehicle. PMID:24474590

  16. Atorvastatin Promotes Cytotoxicity and Reduces Migration and Proliferation of Human A172 Glioma Cells.

    PubMed

    Oliveira, Karen A; Dal-Cim, Tharine; Lopes, Flávia G; Ludka, Fabiana K; Nedel, Cláudia B; Tasca, Carla I

    2018-02-01

    Malignant gliomas have resistance mechanisms to chemotherapy that enable tumor invasiveness and aggressiveness. Alternative therapies in cancer treatment, as statins, have been suggested to decrease proliferation, inhibit cell migration, and induce cell death. The aim of this study was to evaluate the effect of atorvastatin (ATOR) on cell viability, migration, proliferation, apoptosis, and autophagy in A172 human glioma cells. Temozolomide (TMZ), a chemotherapic used to glioma treatment, was tested as a comparison to cytotoxic effects on gliomas. Cell viability was also assessed in primary culture of cortical astrocytes. ATOR treatment (0.1 to 20 μM) did not alter astrocytic viability. However, in glioma cells, ATOR showed cytotoxic effect at 10 and 20 μM concentrations. TMZ (500 μM) reduced cell viability similarly to ATOR, and drug association did not show additive effect on cell viability. ATOR, TMZ, and their association decreased cell migration. ATOR also decreased glioma cell proliferation. ATOR increased apoptosis, and TMZ association showed a potentiation effect, enhancing it. ATOR and TMZ treatment increased acidic vesicular organelle (AVO) presence in A172 cells, an indicative of autophagy. ATOR effect of reducing A172 cell viability did not alter glutamate transport and glutamine synthetase activity, but it was partially prevented through antagonism of ionotropic and metabotropic glutamate receptors. Our data shows a cytotoxic effect of ATOR on glioma cells, whereas no toxicity was observed to astrocytes. ATOR showed similar cytotoxic effect as TMZ to glioma cells, and it may be a safer drug, regarding side effect induction, than chemotherapic agents.

  17. MC3T3-E1 Cells on Titanium Surfaces with Nanometer Smoothness and Fibronectin Immobilization

    PubMed Central

    Hayakawa, Tohru; Yoshida, Eiji; Yoshimura, Yoshitaka; Uo, Motohiro; Yoshinari, Masao

    2012-01-01

    The present study was aimed to evaluate the viability and total protein contents of osteoblast-like cells on the titanium surface with different surface mechanical treatment, namely, nanometer smoothing (Ra: approximately 2.0 nm) and sandblasting (Ra: approximately 1.0 μm), and biochemical treatment, namely, with or without fibronectin immobilization. Fibronectin could be easily immobilized by tresyl chloride-activation technique. MC3T3-E1 cells were seeded on the different titanium surfaces. Cell viability was determined by MTT assay. At 1 day of cell culture, there were no significant differences in cell viability among four different titanium surfaces. At 11 days, sandblasted titanium surface with fibronectin immobilization showed the significantly highest cell viability than other titanium surface. No significant differences existed for total protein contents among four different titanium surfaces at 11 days of cell culture. Scanning electron microscopy observation revealed that smoothness of titanium surface produced more spread cell morphologies, but that fibronectin immobilization did not cause any changes of the morphologies of attached cells. Fibronectin immobilization provided greater amount of the number of attached cells and better arrangement of attached cells. In conclusion, the combination of sandblasting and fibronectin immobilization enhanced the cell viability and fibronectin immobilization providing better arrangements of attached cells. PMID:22675359

  18. Efficient 5'-3' DNA end resection by HerA and NurA is essential for cell viability in the crenarchaeon Sulfolobus islandicus.

    PubMed

    Huang, Qihong; Liu, Linlin; Liu, Junfeng; Ni, Jinfeng; She, Qunxin; Shen, Yulong

    2015-02-14

    ATPase/Helicases and nucleases play important roles in homologous recombination repair (HRR). Many of the mechanistic details relating to these enzymes and their function in this fundamental and complicated DNA repair process remain poorly understood in archaea. Here we employed Sulfolobus islandicus, a hyperthermophilic archaeon, as a model to investigate the in vivo functions of the ATPase/helicase HerA, the nuclease NurA, and their associated proteins Mre11 and Rad50. We revealed that each of the four genes in the same operon, mre11, rad50, herA, and nurA, are essential for cell viability by a mutant propagation assay. A genetic complementation assay with mutant proteins was combined with biochemical characterization demonstrating that the ATPase activity of HerA, the interaction between HerA and NurA, and the efficient 5'-3' DNA end resection activity of the HerA-NurA complex are essential for cell viability. NurA and two other putative HRR proteins: a PIN (PilT N-terminal)-domain containing ATPase and the Holliday junction resolvase Hjc, were co-purified with a chromosomally encoded N-His-HerA in vivo. The interactions of HerA with the ATPase and Hjc were further confirmed by in vitro pull down. Efficient 5'-3' DNA end resection activity of the HerA-NurA complex contributes to necessity of HerA and NurA in Sulfolobus, which is crucial to yield a 3'-overhang in HRR. HerA may have additional binding partners in cells besides NurA.

  19. Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol.

    PubMed

    Lin, Chunbo; Shen, Maorong; Chen, Weiping; Li, Xiaofeng; Luo, Daoming; Cai, Jinhong; Yang, Yuan

    2015-11-01

    Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.

  20. Berberine sensitizes nasopharyngeal carcinoma cells to radiation through inhibition of Sp1 and EMT.

    PubMed

    Wang, Jun; Kang, Min; Wen, Qin; Qin, Yu-Tao; Wei, Zhu-Xin; Xiao, Jing-Jian; Wang, Ren-Sheng

    2017-04-01

    Nasopharyngeal carcinoma (NPC) is a tumor of epithelial origin with radiotherapy as its standard treatment. However, radioresistance remains a critical issue in the treatment of NPC. This study aimed to investigate the effect of berberine on the proliferation, cell cycle regulation, apoptosis, radioresistance of NPC cells and whether specificity protein 1 (Sp1) is a functional target of berberine. Our results showed that treatment with berberine reduced the proliferation and viability of CNE-2 cells in a dose- and time‑dependent manner. Berberine induced cell cycle arrest in the G0/G1 phase and apoptosis. In CNE-2 cells exposed to gamma‑ray irradiation, berberine reduced cell viability at various concentrations (25, 50, 75 and 100 µmol/l). Berberine significantly decreased mRNA and protein expression of Sp1 in the CNE-2 cells. Mithramycin A, a selective Sp1 inhibitor, enhanced the radiosensitivity and the rate of apoptosis in the CNE-2 cells. Berberine inhibited transforming growth factor-β (TGF-β)-induced tumor invasion and suppressed epithelial-to-mesenchymal transition (EMT) process, as evidenced by increased E-cadherin and decreased vimentin proteins. Sp1 may be required for the TGF-β1-induced invasion and EMT by berberine. In conclusion, berberine demonstrated the ability to suppress proliferation, induce cell cycle arrest and apoptosis, and enhance radiosensitivity of the CNE-2 NPC cells. Sp1 may be a target of berberine which is decreased during the radiosensitization of berberine.

  1. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model

    PubMed Central

    2012-01-01

    Background Regardless of the availability of therapeutic options, the overall 5-year survival for patients diagnosed with pancreatic cancer remains less than 5%. Gum resins from Boswellia species, also known as frankincense, have been used as a major ingredient in Ayurvedic and Chinese medicine to treat a variety of health-related conditions. Both frankincense chemical extracts and essential oil prepared from Boswellia species gum resins exhibit anti-neoplastic activity, and have been investigated as potential anti-cancer agents. The goals of this study are to identify optimal condition for preparing frankincense essential oil that possesses potent anti-tumor activity, and to evaluate the activity in both cultured human pancreatic cancer cells and a xenograft mouse cancer model. Methods Boswellia sacra gum resins were hydrodistilled at 78°C; and essential oil distillate fractions were collected at different durations (Fraction I at 0–2 h, Fraction II at 8–10 h, and Fraction III at 11–12 h). Hydrodistillation of the second half of gum resins was performed at 100°C; and distillate was collected at 11–12 h (Fraction IV). Chemical compositions were identified by gas chromatography–mass spectrometry (GC-MS); and total boswellic acids contents were quantified by high-performance liquid chromatography (HPLC). Frankincense essential oil-modulated pancreatic tumor cell viability and cytotoxicity were determined by colorimetric assays. Levels of apoptotic markers, signaling molecules, and cell cycle regulators expression were characterized by Western blot analysis. A heterotopic (subcutaneous) human pancreatic cancer xenograft nude mouse model was used to evaluate anti-tumor capability of Fraction IV frankincense essential oil in vivo. Frankincense essential oil-induced tumor cytostatic and cytotoxic activities in animals were assessed by immunohistochemistry. Results Longer duration and higher temperature hydrodistillation produced more abundant high molecular weight compounds, including boswellic acids, in frankincense essential oil fraactions. Human pancreatic cancer cells were sensitive to Fractions III and IV (containing higher molecular weight compounds) treatment with suppressed cell viability and increased cell death. Essential oil activated the caspase-dependent apoptotic pathway, induced a rapid and transient activation of Akt and Erk1/2, and suppressed levels of cyclin D1 cdk4 expression in cultured pancreatic cancer cells. In addition, Boswellia sacra essential oil Fraction IV exhibited anti-proliferative and pro-apoptotic activities against pancreatic tumors in the heterotopic xenograft mouse model. Conclusion All fractions of frankincense essential oil from Boswellia sacra are capable of suppressing viability and inducing apoptosis of a panel of human pancreatic cancer cell lines. Potency of essential oil-suppressed tumor cell viability may be associated with the greater abundance of high molecular weight compounds in Fractions III and IV. Although chemical component(s) responsible for tumor cell cytotoxicity remains undefined, crude essential oil prepared from hydrodistillation of Boswellia sacra gum resins might be a useful alternative therapeutic agent for treating patients with pancreatic adenocarcinoma, an aggressive cancer with poor prognosis. PMID:23237355

  2. Cytotoxic outcomes of orthodontic bands with and without silver solder in different cell lineages.

    PubMed

    Jacoby, Letícia Spinelli; Rodrigues Junior, Valnês da Silva; Campos, Maria Martha; Macedo de Menezes, Luciane

    2017-05-01

    The safety of orthodontic materials is a matter of high interest. In this study, we aimed to assess the in-vitro cytotoxicity of orthodontic band extracts, with and without silver solder, by comparing the viability outcomes of the HaCat keratinocytes, the fibroblastic cell lineages HGF and MRC-5, and the kidney epithelial Vero cells. Sterilized orthodontic bands with and without silver solder joints were added to culture media (6 cm 2 /mL) and incubated for 24 hours at 37°C under continuous agitation. Subsequently, the cell cultures were exposed to the obtained extracts for 24 hours, and an assay was performed to evaluate the cell viability. Copper strip extracts were used as positive control devices. The extracts from orthodontic bands with silver solder joints significantly reduced the viability of the HaCat, MRC-5, and Vero cell lines, whereas the viability of HGF was not altered by this material. Conversely, the extracts of orthodontic bands without silver solder did not significantly modify the viability index of all evaluated cell lines. Except for HGF fibroblasts, all tested cell lines showed decreased viability percentages after exposure to extracts of orthodontic bands containing silver solder joints. These data show the relevance of testing the toxicity of orthodontic devices in different cell lines. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. Pathways for maintenance of telomeres and common fragile sites during DNA replication stress

    PubMed Central

    Özer, Özgün

    2018-01-01

    Oncogene activation during tumour development leads to changes in the DNA replication programme that enhance DNA replication stress. Certain regions of the human genome, such as common fragile sites and telomeres, are particularly sensitive to DNA replication stress due to their inherently ‘difficult-to-replicate’ nature. Indeed, it appears that these regions sometimes fail to complete DNA replication within the period of interphase when cells are exposed to DNA replication stress. Under these conditions, cells use a salvage pathway, termed ‘mitotic DNA repair synthesis (MiDAS)’, to complete DNA synthesis in the early stages of mitosis. If MiDAS fails, the ensuing mitotic errors threaten genome integrity and cell viability. Recent studies have provided an insight into how MiDAS helps cells to counteract DNA replication stress. However, our understanding of the molecular mechanisms and regulation of MiDAS remain poorly defined. Here, we provide an overview of how DNA replication stress triggers MiDAS, with an emphasis on how common fragile sites and telomeres are maintained. Furthermore, we discuss how a better understanding of MiDAS might reveal novel strategies to target cancer cells that maintain viability in the face of chronic oncogene-induced DNA replication stress. PMID:29695617

  4. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging

    PubMed Central

    2011-01-01

    Background Stem cell therapy has emerged as a promising addition to traditional treatments for a number of diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo. Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs) labeled with clinically approved SPIONs. Results Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide) alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67 immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated with mitomycin C still showed a large number of ferumoxide-labeled cells. Conclusions The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing ferumoxide and protamine may be applicable to patients, since both ferumoxides and protamine are approved for human use. PMID:21542946

  5. Osthole Induces Cell Cycle Arrest and Inhibits Migration and Invasion via PTEN/Akt Pathways in Osteosarcoma.

    PubMed

    Wang, Lu; Yang, Lei; Lu, Ying; Chen, Yingzhun; Liu, Tianhua; Peng, Yanli; Zhou, Yuhong; Cao, Yang; Bi, Zhenggang; Liu, Tianyi; Liu, Zhenhong; Shan, Hongli

    2016-01-01

    Osteosarcoma is the second highest cause of cancer-related death in children and adolescents. Majority of osteosarcoma patients (90%) show metastasis. Previous reports revealed that osthole showed antitumor activities via induction of apoptosis and inhibition of proliferation. However, the potential effects and detailed molecular mechanisms involved remained unclear. Cell viability was analyzed by MTT assay in osteosarcoma cell lines MG-63 and SAOS-2. Cell cycle was detected by flow cytometry. The effects of migration and invasion were evaluated by wound healing assay and transwell assays. Moreover, the level of proteins expression was determined by Western blot. The cell viability of MG63 and SAOS-2 were markedly inhibited by osthole in a dose- and time-dependent manner. Cell cycle was arrested and the ability of migration and invasion was obviously reduced when cells were exposed to osthole. Moreover, enzymes involved in PTEN/Akt pathway were regulated such as PTEN and p-Akt proteins. Furthermore, osthole inhibited the tumor growth in vivo. Our study unraveled, for the first time, the ability of osthole to suppress osteosarcoma and elucidated the regulation of PTEN/Akt pathway as a signaling mechanism for the anti-tumor action of osthole. These findings indicate that osthole may represent a novel therapeutic strategy in the treatment of osteosarcoma. © 2016 The Author(s) Published by S. Karger AG, Basel.

  6. LncRNA CCAT2 promotes tumorigenesis by over-expressed Pokemon in non-small cell lung cancer.

    PubMed

    Zhao, Zhihong; Wang, Ju; Wang, Shengfa; Chang, Hao; Zhang, Tiewa; Qu, Junfeng

    2017-03-01

    Non-small cell lung cancer (NSCLC) remains one of the most important death-related diseases, with poor effective diagnosis and less therapeutic biomarkers. LncRNA colon cancer-associated transcript 2 (CCAT2) was identified as an oncogenic lncRNA and over-expressed in many tumor cells. The aims of this study were to detect the correlation between CCAT2 and its regulatory genes and then explore the potential mechanism between them in NSCLC. In this study, qRT-PCR was used to detect CCAT2, Pokemon and p21 expression. Western-blot was used to detect protein levels of Pokemon and p21. CCK-8 assay and Transwell chambers were used to assess cell viability and invasion. CCAT2 and Pokemon were over-expressed in NSCLC tissue and cells. In NSCLC cells, CCAT2 knockdown significantly decreased cell viability and invasion as well as Pokemon expression, but increased the expression of p21; then CCAT2 overexpression revealed an opposite result. In addition, over-expressed Pokemon reversed the results that induced by si-CCAT2, while down-regulation of Pokemon significantly reversed the results that induced by CCAT2 overexpression. The results indicated that CCAT2 promotes tumorigenesis by over-expression of Pokemon, and the potential mechanism might relate to the Pokemon related gene p21. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Nelfinavir induces radiation sensitization in pituitary adenoma cells

    PubMed Central

    Zeng, Jing; See, Alfred P.; Aziz, Khaled; Thiyagarajan, Saravanan; Salih, Tarek; Gajula, Rajendra P.; Armour, Michael; Phallen, Jillian; Terezakis, Stephanie; Kleinberg, Lawrence; Redmond, Kristen; Hales, Russell K.; Salvatori, Roberto; Quinones-Hinojosa, Alfredo; Tran, Phuoc T.; Lim, Michael

    2017-01-01

    Pituitary adenomas with local invasion and high secretory activity remain a therapeutic challenge. The HIV protease inhibitor nelfinavir is a radiosensitizer in multiple tumor models. We tested nelfinavir as a radiosensitizer in pituitary adenoma cells in vitro and in vivo. We examined the effect of nelfinavir with radiation on in vitro cell viability, clonogenic survival, apoptosis, prolactin secretion, cell cycle distribution and the PI3K-AKT-mTOR pathway. We evaluated tumor growth delay and confirmed nelfinavir’s effect on the PI3K-AKT-mTOR pathway in a hind-flank model. Nelfinavir sensitized pituitary adenoma cells to ionizing radiation as shown by viability assays and clonogenic assay with an enhancement ratio of 1.2 (p < 0.05). There is increased apoptotic cell death, as determined by annexin-V expression and cleaved caspase-3 levels. Nelfinavir does not affect prolactin secretion or cell cycle distribution. In vivo, untreated tumors reached 4-fold volume in 12 d, 17 d with nelfinavir treatment, 27 d with radiation 6 Gy, and 41 d with nelfinavir plus radiation (one-way ANOVA p < 0.001). Decreased phospho-S6 on protein gel blotting in vitro and immunohistochemistry in vivo demonstrated nelfinavir inhibition of the PI3K-AKT-mTOR pathway. Our data suggests a promising combination therapy with nelfinavir plus radiation in pituitary adenomas, which should be investigated in clinical studies. PMID:21811091

  8. Nelfinavir induces radiation sensitization in pituitary adenoma cells.

    PubMed

    Zeng, Jing; See, Alfred P; Aziz, Khaled; Thiyagarajan, Saravanan; Salih, Tarek; Gajula, Rajendra P; Armour, Michael; Phallen, Jillian; Terezakis, Stephanie; Kleinberg, Lawrence; Redmond, Kristen; Hales, Russell K; Salvatori, Roberto; Quinones-Hinojosa, Alfredo; Tran, Phuoc T; Lim, Michael

    2011-10-01

    Pituitary adenomas with local invasion and high secretory activity remain a therapeutic challenge. The HIV protease inhibitor nelfinavir is a radiosensitizer in multiple tumor models. We tested nelfinavir as a radiosensitizer in pituitary adenoma cells in vitro and in vivo. We examined the effect of nelfinavir with radiation on in vitro cell viability, clonogenic survival, apoptosis, prolactin secretion, cell cycle distribution, and the PI3K-AKT-mTOR pathway. We evaluated tumor growth delay and confirmed nelfinavir's effect on the PI3K-AKT-mTOR pathway in a hind-flank model. Nelfinavir sensitized pituitary adenoma cells to ionizing radiation as shown by viability assays and clonogenic assay with an enhancement ratio of 1.2 (p < 0.05). There is increased apoptotic cell death, as determined by annexin-V expression and cleaved caspase-3 levels. Nelfinavir does not affect prolactin secretion or cell cycle distribution. In vivo, untreated tumors reached 4-fold volume in 12 days, 17 days with nelfinavir treatment, 27 days with radiation 6 Gy, and 41 days with nelfinavir plus radiation (one-way ANOVA p < 0.001). Decreased phospho-S6 on Western blotting in vitro and immunohistochemistry in vivo demonstrated nelfinavir inhibition of the PI3K-AKT-mTOR pathway. Our data suggests a promising combination therapy with nelfinavir plus radiation in pituitary adenomas, which should be investigated in clinical studies.

  9. Inhibition of c-Met as a Therapeutic Strategy for Esophageal Adenocarcinoma

    PubMed Central

    Watson, Gregory A; Zhang, Xinglu; Stang, Michael T; Levy, Ryan M; Queiroz de Oliveira, Pierre E; Gooding, William E; Christensen, James G; Hughes, Steven J

    2006-01-01

    Abstract The hepatocyte growth factor (HGF) receptor c-Met is a tyrosine kinase receptor with established oncogenic properties. We have previously shown that c-Met is usually overexpressed in esophageal adenocarcinoma (EA), yet the implications of c-Met inhibition in EA remain unknown. Three c-Met-overexpressing EA cell lines (Seg-1, Bic-1, and Flo-1) were used to examine the effects of a c-Met-specific small molecule inhibitor (PHA665752) on cell viability, apoptosis, motility, invasion, and downstream signaling pathways. PHA665752 demonstrated dose-dependent inhibition of constitutive and/or HGF-induced phosphorylation of c-Met, which correlated with reduced cell viability and inhibition of extracellular regulated kinase 1/2 phosphorylation in all three EA cell lines. In contrast, PHA665752 induced apoptosis and reduced motility and invasion in only one EA cell line, Flo-1. Interestingly, Flo-1 was the only cell line in which phosphatidylinositol 3-kinase (PI3K)/Akt was induced following HGF stimulation. The PI3K inhibitor LY294002 produced effects equivalent to those of PHA665752 in these cells. We conclude that inhibition of c-Met may be a useful therapeutic strategy for EA. Factors other than receptor overexpression, such as c-Met-dependent PI3K/Akt signaling, may be predictive of an individual tumor's response to c-Met inhibition. PMID:17132227

  10. Optimized delivery of skin keratinocytes by aerosolization and suspension in fibrin tissue adhesive.

    PubMed

    Harkin, Damien G; Dawson, Rebecca A; Upton, Zee

    2006-01-01

    Aerosolized suspensions of keratinocytes provide a potential therapy for wounds, but the effects of aerosolization on cell viability remain unclear. Likewise, little is known of the resulting cell distribution pattern and how this compares to the density required for epithelialization. The potential benefits of cospraying cells in the presence of fibrin adhesive are equally uncertain. Thus, in the present study we have optimized conditions for the aerosolization of cultured keratinocytes using a device (Tissomat) that supports the option for coapplication with fibrin (Tisseel). Cell viability was unaffected when sprayed at 10 psi, but a significant reduction in metabolic activity, as determined by the methylthiazoyldiphenol-tetrazolium assay, was observed at higher pressure. Bursts of 0.2 mL cell suspension (1.5x10(6)/mL) delivered from a height of 10 cm was sufficient to epithelialize an area of 10-15 cm2 within 7 days in vitro. Confluent areas corresponded to those with a density of 5,000-10,000 cells/cm2 at 24 hours. Optimal cell growth in Tisseel was achieved through dilution of fibrinogen (1-3 mg/mL) and thrombin (2-5 IU/mL). This optimized formulation eliminated fluid run-off postspraying and stimulated a twofold increase in cellular response. Therefore, our in vitro data supports the theory that aerosolized suspensions of keratinocytes in fibrin will benefit healing.

  11. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior

    PubMed Central

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A.; Nagy, Katelyn J.; Schneider, Joel P.

    2012-01-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. PMID:22841922

  12. Iterative design of peptide-based hydrogels and the effect of network electrostatics on primary chondrocyte behavior.

    PubMed

    Sinthuvanich, Chomdao; Haines-Butterick, Lisa A; Nagy, Katelyn J; Schneider, Joel P

    2012-10-01

    Iterative peptide design was used to generate two peptide-based hydrogels to study the effect of network electrostatics on primary chondrocyte behavior. MAX8 and HLT2 peptides have formal charge states of +7 and +5 per monomer, respectively. These peptides undergo triggered folding and self-assembly to afford hydrogel networks having similar rheological behavior and local network morphologies, yet different electrostatic character. Each gel can be used to directly encapsulate and syringe-deliver cells. The influence of network electrostatics on cell viability after encapsulation and delivery, extracellular matrix deposition, gene expression, and the bulk mechanical properties of the gel-cell constructs as a function of culture time was assessed. The less electropositive HLT2 gel provides a microenvironment more conducive to chondrocyte encapsulation, delivery, and phenotype maintenance. Cell viability was higher for this gel and although a moderate number of cells dedifferentiated to a fibroblast-like phenotype, many retained their chondrocytic behavior. As a result, gel-cell constructs prepared with HLT2, cultured under static in vitro conditions, contained more GAG and type II collagen resulting in mechanically superior constructs. Chondrocytes delivered in the more electropositive MAX8 gel experienced a greater degree of cell death during encapsulation and delivery and the remaining viable cells were less prone to maintain their phenotype. As a result, MAX8 gel-cell constructs had fewer cells, of which a limited number were capable of laying down cartilage-specific ECM. Published by Elsevier Ltd.

  13. A high-throughput AO/PI-based cell concentration and viability detection method using the Celigo image cytometry.

    PubMed

    Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean

    2016-10-01

    To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.

  14. Staphylococcus aureus recovery from cotton towels.

    PubMed

    Oller, Anna R; Mitchell, Ashley

    2009-04-30

    Staphylococcus aureus is an emerging pathogen afflicting healthy individuals without known risk factors, and methicillin-resistant Staphylococcus aureus has been shown to colonize multiple family members sharing households. Because household items such as towels are often shared by family members, this study investigated whether cotton towel absorbency or washing conditions affect Staphylococcus aureus cell viability or cell retention, and whether the levels may be sufficient for person-to-person transmission. Staphylococcus aureus ATCC 25923 was added to a 48 mm(2) template area on three cotton towel types (terry, pima, and Egyptian), and subjected to hand washing, without manual wringing, in three conditions (water only, bleach addition, or liquid detergent addition). Serial dilutions plated onto mannitol salt plates quantified bacteria for inoculations, pre- and post-wash water samples, towel surfaces, and hand transfer. Hand transfer of bacteria was determined on towels immediately, one, 24, and 48 hours post inoculation. Bleach (p < or = .05) was the most effective at reducing bacterial viability on all towel types compared to detergent and water. Although not statistically significant, more Staphylococcus colonies were recovered from higher absorbency towels and from inside directly inoculated template areas. A paired t-test showed a difference between immediate and one-hour CFUs versus 24- and 48-hour recoveries (0.0002) for hand transfers. Cell viability decreased for over 48 hours on towels, but sufficient quantities may remain for colonization. More absorbent towels may harbor more Staphylococci than less absorbent ones, and may serve as a transmission mechanism for the bacterium.

  15. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold.

    PubMed

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. A total of 15 systemically healthy individuals between the age group of 15-25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7 th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7 th day. The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant ( P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant ( P > 0.05) when compared to the cells cultured with culture media. The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells.

  16. The analysis of viability for mammalian cells treated at different temperatures and its application in cell shipment.

    PubMed

    Wang, Juan; Wei, Yun; Zhao, Shasha; Zhou, Ying; He, Wei; Zhang, Yang; Deng, Wensheng

    2017-01-01

    Mammalian cells are very important experimental materials and widely used in biological and medical research fields. It is often required that mammalian cells are transported from one laboratory to another to meet with various researches. Conventional methods for cell shipment are laborious and costive despite of maintaining high viability. In this study we aimed to develop a simple and low-cost method for cell shipment by investigating the viabilities of different cell lines treated at different temperatures. We show that the viability of mammalian cells incubated at 1°C or 5°C significantly reduced when compared with that at 16°C or 22°C. Colony formation assays revealed that preservation of mammalian cells at 1°C or 5°C led to a poorer recovery than that at 16°C or 22°C. The data from proliferation and apoptotic assays confirmed that M2 cells could continue to proliferate at 16°C or 22°C, but massive death was caused by apoptosis at 1°C or 5°C. The morphology of mammalian cells treated under hypothermia showed little difference from that of the untreated cells. Quantitative RT-PCR and alkaline phosphatase staining confirmed that hypothermic treatment did not change the identity of mouse embryonic stem cells. A case study showed that mammalian cells directly suspended in culture medium were able to be shipped for long distance and maintained a high level of viability and recovery. Our findings not only broaden the understanding to the effect of hypothermia on the viability of mammalian cells, but also provide an alternative approach for cell shipment.

  17. The combined influence of sub-optimal temperature and salinity on the in vitro viability of Perkinsus marinus, a protistan parasite of the eastern oyster Crassostrea virginica

    USGS Publications Warehouse

    La Peyre, M.K.; Casas, S.M.; Gayle, W.; La Peyre, Jerome F.

    2010-01-01

    Perkinsus marinus is a major cause of mortality in eastern oysters along the Gulf of Mexico and Atlantic coasts. It is also well documented that temperature and salinity are the primary environmental factors affecting P. marinus viability and proliferation. However, little is known about the effects of combined sub-optimal temperatures and salinities on P. marinus viability. This in vitro study examined those effects by acclimating P. marinus at three salinities (7, 15, 25. ppt) to 10 ??C to represent the lowest temperatures generally reached in the Gulf of Mexico, and to 2 ??C to represent the lowest temperatures reached along the mid-Atlantic coasts and by measuring changes in cell viability and density on days 1, 30, 60 and 90 following acclimation. Cell viability and density were also measured in 7. ppt cultures acclimated to each temperature and then transferred to 3.5. ppt. The largest decreases in cell viability occurred only with combined low temperature and salinity, indicating that there is clearly a synergistic effect. The largest decreases in cell viability occurred only with both low temperature and salinity after 30. days (3.5. ppt, 2 ??C: 0% viability), 60. days (3.5. ppt, 10 ??C: 0% viability) and 90. days (7. ppt, 2 ??C: 0.6 ?? 0.7%; 7. ppt, 10 ??C: 0.2 ?? 0.2%). ?? 2010 .

  18. The effects of cetrorelix and triptorelin on the viability and steroidogenesis of cultured human granulosa luteinized cells.

    PubMed

    Metallinou, Chryssa; Köster, Frank; Diedrich, Klaus; Nikolettos, Nikos; Asimakopoulos, Byron

    2012-01-01

    We investigated the effects of the gonadotropin-releasing hormone (GnRH) agonist triptorelin as well the GnRH antagonist cetrorelix those of on the viability and steroidogenesis in human granulosa luteinized (hGL) cell cultures. The hGL cells were obtained from 34 women undergoing ovarian stimulation for IVF treatment. The cells were cultured for 48 h with or without 1 nM or 3 nM of cetrorelix or triptorelin in serum-free media. The cell viability was evaluated by the MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. The concentrations of estradiol and progesterone in culture supernatants were measured by ELISA. Treatment with triptorelin slightly increased cell viability, whereas treatment with 3 nM cetrorelix led to a significant decrease. Estradiol concentrations were reduced with 3 nM triptorelin. Cultures treated with high-dose of either cetrorelix or triptorelin tended to secrete less progesterone than controls. Cetrorelix significantly reduces the viability of hGL cells. Triptorelin and cetrorelix may have minor effects on steroidogenesis. These results suggest that GnRH analogues may influence ovarian functions.

  19. Drop-on-Demand Single Cell Isolation and Total RNA Analysis

    PubMed Central

    Moon, Sangjun; Kim, Yun-Gon; Dong, Lingsheng; Lombardi, Michael; Haeggstrom, Edward; Jensen, Roderick V.; Hsiao, Li-Li; Demirci, Utkan

    2011-01-01

    Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods. PMID:21412416

  20. Avenanthramide-C reduces the viability of MDA-MB-231 breast cancer cells through an apoptotic mechanism.

    PubMed

    Hastings, Jordan; Kenealey, Jason

    2017-01-01

    Avenanthramides (AVN) are a relatively unstudied family of phytochemicals that could be novel chemotherapeutics. These compounds, found in oats, are non-toxic to healthy cells and have been shown to reduce viability of human colon and liver cancers in vitro. However, these studies do not elucidate a molecular mechanism for individual AVN. In this study we aim to see the effects of AVN on MDA-MB-231 breast cancer cells. An MTT assay was used to determine cell viability. Staining and analysis with a flow cytometer was used to identify cell cycle progression and apoptosis. FloJo software was used to analyze the cytometric data. In all experiments, statistical significance was determined by a two-tailed t test. This study demonstrates that AVN-A, B, and C individually reduce viability in the MDA-MB-231 breast cancer cell line. AVN-C has the most potent decrease in tumor cell viability, decreasing viable cells to below 25% at 400 µM when compared to control after 96 h. We demonstrate that treatment with AVN-C causes DNA fragmentation and accumulation of over 90% of cells into a sub G 1 cell cycle population. Further, we conclude that AVN-C treated cells activate apoptosis because 97% of treated cells stain positive for annexin V while 91% have caspase-3/7 activity, a late marker of apoptosis. Breast cancer cells treated with AVN-C have a decrease in cell viability, an increase in the sub G 1 population, and stain positive for both annexin V and caspase activity, indicating that AVN-C induces apoptosis in breast cancer cells. These compounds may be able to act as chemotherapeutics as demonstrated through future in vivo studies.

  1. Differential Effects of Bevacizumab, Ranibizumab, and Aflibercept on the Viability and Wound Healing of Corneal Epithelial Cells.

    PubMed

    Kang, Seungbum; Choi, Hyunsu; Rho, Chang Rae

    2016-12-01

    This study compared the effects of 3 antivascular endothelial growth factor (VEGF) agents (bevacizumab, ranibizumab, and aflibercept) on corneal epithelial cell viability and wound healing using human corneal epithelial cells (HCECs). To determine the cytotoxic effects of anti-VEGF agents on HCECs, HCEC viability was determined at various concentrations of these agents. An in vitro migration assay was used to investigate the migration of HCECs treated with 3 anti-VEGF agents. The protein level of extracellular signal-regulated kinase was used to evaluate the effect of anti-VEGF treatment on cell proliferation. The protein levels of p38 mitogen-activated protein kinase (MAPK) were analyzed by Western blotting to investigate cell migration. After 24 or 48 h of exposure, aflibercept treatment showed no apparent effect on cell viability; however, bevacizumab and ranibizumab treatment decreased cell viability at high concentrations (1 and 2 mg/mL). A migration assay showed that HCEC migration was different among the 3 anti-VEGF treatment groups. Bevacizumab significantly delayed HCEC migration. Western blotting showed that bevacizumab treatment decreased the expression levels of phosphorylated p38 MAPK. Bevacizumab, the most widely used and investigated anti-VEGF agent, decreased epithelial cell migration and viability. Anti-VEGF agents other than bevacizumab might therefore be better for treating corneal neovascularization complicated with epithelial defects.

  2. Immunomodulatory/inflammatory effects of geopropolis produced by Melipona fasciculata Smith in combination with doxorubicin on THP-1 cells.

    PubMed

    Oliveira, Lucas Pires Garcia; Conte, Fernanda Lopes; Cardoso, Eliza de Oliveira; Conti, Bruno José; Santiago, Karina Basso; Golim, Marjorie de Assis; Cruz, Maria Teresa; Sforcin, José Maurício

    2016-12-01

    Geopropolis (GEO) in combination with doxorubicin (DOX) reduced HEp-2 cells viability compared to GEO and DOX alone. A possible effect of this combination on the innate immunity could take place, and its effects were analysed on THP-1 cell - a human leukaemia monocytic cell line used as a model to study monocyte activity and macrophage activity, assessing cell viability, expression of cell markers and cytokine production. THP-1 cells were incubated with GEO, DOX and their combination. Cell viability was assessed by MTT assay, cell markers expression by flow cytometry and cytokine production by ELISA. GEO + DOX did not affect cell viability. GEO alone or in combination increased TLR-4 and CD80 but not HLA-DR and TLR-2 expression. GEO stimulated TNF-α production while DOX alone or in combination did not affect it. GEO alone or in combination inhibited IL-6 production. GEO exerted a pro-inflammatory profile by increasing TLR-4 and CD80 expression and TNF-α production, favouring the activation of the immune/inflammatory response. GEO + DOX did not affect cell viability and presented an immunomodulatory action. Lower concentrations of DOX combined to GEO could be used in cancer patients, avoiding side effects and benefiting from the biological properties of GEO. © 2016 Royal Pharmaceutical Society.

  3. Emodin induces apoptosis of lung cancer cells through ER stress and the TRIB3/NF-κB pathway.

    PubMed

    Su, Jin; Yan, Yan; Qu, Jingkun; Xue, Xuewen; Liu, Zi; Cai, Hui

    2017-03-01

    Emodin is a phytochemical with potent anticancer activities against various human malignant cancer types, including lung cancer; however, the molecular mechanisms underlying the effects of emodin remain unclear. In the present study, the A549 and H1299 human non-small lung cancer cell lines were treated with emodin and the induced molecular effects were investigated. Changes in cell viability were evaluated by MTT assay, Hoechst staining was used to indicate the apoptotic cells, and western blotting was utilized to assess endoplasmic reticulum (ER) stress and signaling changes. RNA interference was also employed to further examine the role of tribbles homolog 3 (TRIB3) in the emodin-induced apoptosis of lung cancer cells. Emodin was found to reduce the viability of lung cancer cells and induce apoptosis in a concentration-dependent manner. Emodin-induced apoptosis was impaired by inhibition of ER stress using 4-phenylbutyrate (4-PBA). ER stress and TRIB3/nuclear factor-κB signaling was activated in emodin-treated lung cancer cells. Emodin-induced apoptosis was reduced by TRIB3 knockdown in A549 cells, whereas ER stress was not reduced. In vivo assays verified the significance of these results, revealing that emodin inhibited lung cancer growth and that the inhibitory effects were reduced by inhibition of ER stress with 4-PBA. In conclusion, the results suggest that TRIB3 signaling is associated with emodin-induced ER stress-mediated apoptosis in lung cancer cells.

  4. Farnesoid X receptor is essential for the survival of renal medullary collecting duct cells under hypertonic stress.

    PubMed

    Xu, Sujuan; Huang, Shizheng; Luan, Zhilin; Chen, Tingyue; Wei, Yuanyi; Xing, Miaomiao; Li, Yaqing; Du, Chunxiu; Wang, Bing; Zheng, Feng; Wang, Nanping; Guan, Youfei; Gustafsson, Jan-Åke; Zhang, Xiaoyan

    2018-05-22

    Hypertonicity in renal medulla is critical for the kidney to produce concentrated urine. Renal medullary cells have to survive high medullary osmolarity during antidiuresis. Previous study reported that farnesoid X receptor (FXR), a nuclear receptor transcription factor activated by endogenous bile acids, increases urine concentrating ability by up-regulating aquaporin 2 expression in medullary collecting duct cells (MCDs). However, whether FXR is also involved in the maintenance of cell survival of MCDs under dehydration condition and hypertonic stress remains largely unknown. In the present study, we demonstrate that 24-hours water restriction selectively up-regulated renal medullary expression of FXR with little MCD apoptosis in wild-type mice. In contrast, water deprivation caused a massive apoptosis of MCDs in both global FXR gene-deficient mice and collecting duct-specific FXR knockout mice. In vitro studies showed that hypertonicity significantly increased FXR and tonicity response enhancer binding protein (TonEBP) expression in mIMCD3 cell line and primary cultured MCDs. Activation and overexpression of FXR markedly increased cell viability and decreased cell apoptosis under hyperosmotic conditions. In addition, FXR can increase gene expression and nuclear translocation of TonEBP. We conclude that FXR protects MCDs from hypertonicity-induced cell injury very likely via increasing TonEBP expression and nuclear translocation. This study provides insights into the molecular mechanism by which FXR enhances urine concentration via maintaining cell viability of MCDs under hyperosmotic condition.

  5. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  6. Silodosin inhibits prostate cancer cell growth via ELK1 inactivation and enhances the cytotoxic activity of gemcitabine.

    PubMed

    Kawahara, Takashi; Aljarah, Ali Kadhim; Shareef, Hasanain Khaleel; Inoue, Satoshi; Ide, Hiroki; Patterson, John D; Kashiwagi, Eiji; Han, Bin; Li, Yi; Zheng, Yichun; Miyamoto, Hiroshi

    2016-06-01

    Biological significance of ELK1, a transcriptional factor whose phosphorylation is necessary for c-fos proto-oncogene activation, in prostate cancer remains far from fully understood. In this study, we aim to investigate the role of ELK1 in tumor growth as well as the efficacy of a selective α1A-adrenergic blocker, silodosin, in ELK1 activity in prostate cancer cells. We first immunohistochemically determined the levels of phospho-ELK1 (p-ELK1) expression in radical prostatectomy specimens. We then assessed the effects of ELK1 knockdown via short hairpin RNA and silodosin on cell proliferation, migration, and invasion in prostate cancer lines. The levels of p-ELK1 expression were significantly higher in carcinoma than in benign (P < 0.001) or high-grade prostatic intraepithelial neoplasia (HGPIN) (P = 0.002) as well as in HGPIN than in benign (P < 0.001). Kaplan-Meier and log-rank tests revealed that moderate-strong positivity of p-ELK1 in carcinomas tended to correlate with biochemical recurrence after radical prostatectomy (P = 0.098). In PC3 and DU145 expressing ELK1 (mRNA/protein) but no androgen receptor (AR), ELK1 silencing resulted in considerable decreases in the expression of c-fos as well as in cell migration/invasion and matrix metalloproteinase-2 expression, but not in cell viability. Silodosin treatment reduced the expression/activity of ELK1 in these cells as well as the viability of AR-positive LNCaP and C4-2 cells and the migration of both AR-positive and AR-negative cells, but not the viability of AR-negative or ELK1-negative cells. Interestingly, silodosin significantly increased sensitivity to gemcitabine, but not to cisplatin or docetaxel, even in AR-negative cells. ELK1 is likely to be activated in prostate cancer cells and promote tumor progression. Furthermore, silodosin that inactivates ELK1 in prostate cancer cells not only inhibits their growth but also enhances the cytotoxic activity of gemcitabine. Thus, ELK1 inhibition has the potential of being a therapeutic approach for prostate cancer. © 2016 Wiley Periodicals, Inc.

  7. Explanted Diseased Livers – A Possible Source of Metabolic Competent Primary Human Hepatocytes

    PubMed Central

    Krech, Till; DeTemple, Daphne; Jäger, Mark D.; Lehner, Frank; Manns, Michael P.; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W. R.

    2014-01-01

    Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5′-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent a valuable source of metabolically competent PHH which are comparable in viability and function to cells obtained from specimens following partial liver resection. PMID:24999631

  8. Cell viability in optical tweezers: high power red laser diode versus Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Schneckenburger, Herbert; Hendinger, Anita; Sailer, Reinhard; Gschwend, Michael H.; Strauss, Wolfgang S.; Bauer, Manfred; Schuetze, Karin

    2000-01-01

    Viability of cultivated Chinese hamster ovary cells in optical tweezers was measured after exposure to various light doses of red high power laser diodes ((lambda) equals 670 - 680 nm) and a Nd:yttrium-aluminum-garnet laser ((lambda) equals 1064 nm). When using a radiant exposure of 2.4 GJ/cm2, a reduction of colony formation up to a factor 2 (670 - 680 nm) or 1.6 (1064 nm) as well as a delay of cell growth were detected in comparison with nonirradiated controls. In contrast, no cell damage was found at an exposure of 340 MJ/cm2 applied at 1064 nm. Cell viabilities were correlated with fluorescence excitation spectra and with literature data of wavelength dependent cloning efficiencies. Fluorescence excitation maxima of the coenzymes NAD(P)H and flavins were detected at 365 and 450 nm, respectively. This is half of the wavelengths of the maxima of cell inactivation, suggesting that two-photon absorption by these coenzymes may contribute to cellular damage. Two-photon excitation of NAD(P)H and flavins may also affect cell viability after exposure to 670 - 680 nm, whereas one-photon excitation of water molecules seems to limit cell viability at 1064 nm.

  9. Bcl-2 and caspase-3 are major regulators in Agaricus blazei-induced human leukemic U937 cell apoptosis through dephoshorylation of Akt.

    PubMed

    Jin, Cheng-Yun; Moon, Dong-Oh; Choi, Yung Hyun; Lee, Jae-Dong; Kim, Gi-Young

    2007-08-01

    Agaricus blazei is a medicinal mushroom that possesses antimetastatic, antitumor, antimutagenic, and immunostimulating effects. However, the molecular mechanisms involved in A. blazei-mediated apoptosis remain unclear. In the present study, to elucidate the role of the Bcl-2 in A. blazei-mediated apoptosis, U937 cells were transfected with either empty vector (U937/vec) or vector containing cDNA encoding full-length Bcl-2 (U937/Bcl-2). As compared with U937/vec, U937/Bcl-2 cells exhibited a 4-fold greater expression of Bcl-2. Treatment of U937/vec with 1.0-4.0 mg/ml of A. blazei extract (ABE) for 24 h resulted in a significant induction of morphologic features indicative of apoptosis. In contrast, U937/Bcl-2 exposed to the same ABE treatment only exhibited a slight induction of apoptotic features. ABE-induced apoptosis was accompanied by downregulation of antiapoptotic proteins such as X-linked inhibitor of apoptosis protein (XIAP), inhibitor of apoptosis protein (cIAP)-2 and Bcl-2, activation of caspase-3, and cleavage of poly(ADP-ribose)polymerase (PARP). Ectopic expression of Bcl-2 was associated with significantly induced expression of antiapoptotic proteins, such as cIAP-2 and Bcl-2, but not XIAP. Ectopic expression of Bcl-2 also reduced caspase-3 activation and PARP cleavage in ABE treated U937 cells. Furthermore, treatment with the caspase-3 inhibitor z-DEVD-fmk was sufficient to restore cell viability following ABE treatment. This increase in viability was ascribed to downregulation of caspase-3 and blockage of PARP and PLC-gamma cleavage. ABE also triggered the downregulation of Akt, and combined treatment with LY294002 (an inhibitor of Akt) significantly decreased cell viability. The results indicated that major regulators of ABE-induced apoptosis in human leukemic U937 cells are Bcl-2 and caspase-3, which are associated with dephosphorylation of the Akt signal pathway.

  10. Paraoxonase 2 modulates a proapoptotic function in LS174T cells in response to quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone

    PubMed Central

    Tao, Shiyu; Luo, Yanwen; Bin He; Liu, Jie; Qian, Xi; Ni, Yingdong; Zhao, Ruqian

    2016-01-01

    A mucus layer coats the gastrointestinal tract and serves as the first line of intestinal defense against infection. N-acyl-homoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence the homeostasis of intestinal epithelium. In this study, we investigated the effects of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on cell viability and mucus secretion in LS174T cells. C12-HSL but not C4-HSL significantly decreased cell viability by inducing mitochondrial dysfunction and activating cell apoptosis which led to a decrease in mucin expression. Pretreatment with lipid raft disruptor (Methyl-β-cyclodextrin, MβCD) and oxidative stress inhibitor (N-acetyl-L-cysteine, NAC) slightly rescued the viability of cells damaged by C12-HSL exposure, while the paraoxonase 2 (PON2) inhibitor (Triazolo[4,3-a]quinolone, TQ416) significantly affected recovering cells viability and mucin secretion. When LS174T cells were treated with C12-HSL and TQ416 simultaneously, TQ416 showed the maximal positive effect on cells viability. However, if cells were first treated with C12-HSL for 40 mins, and then TQ46 was added, the TQ416 had no effect on cell viability. These results suggest that the C12-HSL-acid process acts at an early step to activate apoptosis as part of C12-HSL’s effect on intestinal mucus barrier function. PMID:27364593

  11. Live cell imaging compatible immobilization of Chlamydomonas reinhardtii in microfluidic platform for biodiesel research.

    PubMed

    Park, Jae Woo; Na, Sang Cheol; Nguyen, Thanh Qua; Paik, Sang-Min; Kang, Myeongwoo; Hong, Daewha; Choi, Insung S; Lee, Jae-Hyeok; Jeon, Noo Li

    2015-03-01

    This paper describes a novel surface immobilization method for live-cell imaging of Chlamydomonas reinhardtii for continuous monitoring of lipid droplet accumulation. Microfluidics allows high-throughput manipulation and analysis of single cells in precisely controlled microenvironment. Fluorescence imaging based quantitative measurement of lipid droplet accumulation in microalgae had been difficult due to their intrinsic motile behavior. We present a simple surface immobilization method using gelatin coating as the "biological glue." We take advantage of hydroxyproline (Hyp)-based non-covalent interaction between gelatin and the outer cell wall of microalgae to anchor the cells inside the microfluidic device. We have continuously monitored single microalgal cells for up to 6 days. The immobilized microalgae remain viable (viability was comparable to bulk suspension cultured controls). When exposed to wall shear stress, most of the cells remain attached up to 0.1 dyne/cm(2) . Surface immobilization allowed high-resolution, live-cell imaging of mitotic process in real time-which followed previously reported stages in mitosis of suspension cultured cells. Use of gelatin coated microfluidics devices can result in better methods for microalgae strain screening and culture condition optimization that will help microalgal biodiesel become more economically viable. © 2014 Wiley Periodicals, Inc.

  12. A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering.

    PubMed

    Garzón, Ingrid; Carriel, Victor; Marín-Fernández, Ana Belén; Oliveira, Ana Celeste; Garrido-Gómez, Juan; Campos, Antonio; Sánchez-Quevedo, María Del Carmen; Alaminos, Miguel

    2012-01-01

    Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.

  13. Copper excess in liver HepG2 cells interferes with apoptosis and lipid metabolic signaling at the protein level.

    PubMed

    Liu, Yu; Yang, Huarong; Song, Zhi; Gu, Shaojuan

    2014-12-01

    Copper is an essential trace element that serves as an important catalytic cofactor for cuproenzymes, carrying out major biological functions in growth and development. Although Wilson's disease (WD) is unquestionably caused by mutations in the ATP7B gene and subsequent copper overload, the precise role of copper in inducing pathological changes remains poorly understood. Our study aimed to explore, in HepG2 cells exposed to copper, the cell viability and apoptotic cells was tested by MTT and Hoechst 33342 stainning respectively, and the signaling pathways involved in oxidative stress response, apoptosis and lipid metabolism were determined by real time RT-PCR and Western blot analysis. The results demonstrate dose- and time-dependent cell viability and apoptosis in HepG2 cells following treatment with 10 μM, 200 μM and 500 μM of copper sulfate for 8 and 24 h. Copper overload significantly induced the expression of HSPA1A (heat shock 70 kDa protein 1A), an oxidative stress-responsive signal gene, and BAG3 (BCL2 associated athanogene3), an anti-apoptotic gene, while expression of HMGCR (3-hydroxy-3-methylglutaryl-CoA reductase), a lipid biosynthesis and lipid metabolism gene, was inhibited. These findings provide new insights into possible mechanisms accounting for the development of liver apoptosis and steatosis in the early stages of Wilson's disease.

  14. Aortic calcified particles modulate valvular endothelial and interstitial cells.

    PubMed

    van Engeland, Nicole C A; Bertazzo, Sergio; Sarathchandra, Padmini; McCormack, Ann; Bouten, Carlijn V C; Yacoub, Magdi H; Chester, Adrian H; Latif, Najma

    Normal and calcified human valve cusps, coronary arteries, and aortae harbor spherical calcium phosphate microparticles of identical composition and crystallinity, and their role remains unknown. The objective was to examine the direct effects of isolated calcified particles on human valvular cells. Calcified particles were isolated from healthy and diseased aortae, characterized, quantitated, and applied to valvular endothelial cells (VECs) and interstitial cells (VICs). Cell differentiation, viability, and proliferation were analyzed. Particles were heterogeneous, differing in size and shape, and were crystallized as calcium phosphate. Diseased donors had significantly more calcified particles compared to healthy donors (P<.05), but there were no differences between the composition of the particles from healthy and diseased donors. VECs treated with calcified particles showed a significant decrease in CD31 and VE-cadherin and an increase in von Willebrand factor expression, P<.05. There were significantly increased α-SMA and osteopontin in treated VICs (P<.05), significantly decreased VEC and VIC viability (P<.05), and significantly increased number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive VECs (P<.05) indicating apoptosis when treated with the calcified particles. Isolated calcified particles from human aortae are not innocent bystanders but induce a phenotypical and pathological change of VECs and VICs characteristic of activated and pathological cells. Therapy tailored to reduce these calcified particles should be investigated. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Magrini, Taciana D.; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000 mJ/cm2. The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5 mJ/cm2, MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1 J/cm2 laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8 mJ/cm2, the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  16. In Vivo Long-Term Tracking of Neural Stem Cells Transplanted into an Acute Ischemic Stroke model with Reporter Gene-Based Bimodal MR and Optical Imaging.

    PubMed

    Zhang, Fang; Duan, Xiaohui; Lu, Liejing; Zhang, Xiang; Chen, Meiwei; Mao, Jiaji; Cao, Minghui; Shen, Jun

    2017-10-01

    Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been the most widely used means to track stem cells in vivo. Nevertheless, it does not allow for the reliable discrimination between live and dead cells. Reporter gene-based MRI was considered as an alternative strategy to overcome this shortcoming. In this work, a class of lentiviral vector-encoding ferritin heavy chain (FTH) and enhanced green fluorescent protein (EGFP) was constructed to deliver reporter genes into NSCs. After these transgenic NSCs were transplanted into the contralateral hemisphere of rats with acute ischemic stroke, MRI and fluorescence imaging (FLI) were performed in vivo for tracking the fate of transplanted cells over a long period of 6 wk. The results demonstrated that the FTH and EGFP can be effectively and safely delivered to NSCs via the designed lentiviral vector. The distribution and migration of grafted stem cells could be monitored by bimodal MRI and FLI. FTH can be used as a robust MRI reporter for reliable reporting of the short-term viability of cell grafts, whereas its capacity for tracking the long-term viability of stem cells remains dependent on several confounding factors such as cell death and the concomitant reactive inflammation.

  17. The effects of icariin on the expression of HIF-1α, HSP-60 and HSP-70 in PC12 cells suffered from oxygen-glucose deprivation-induced injury.

    PubMed

    Mo, Zhen-Tao; Li, Wen-Na; Zhai, Yu-Rong; Gao, Shu-Ying

    2017-12-01

    The effects of icariin, a chief constituent of flavonoids from Epimedium brevicornum Maxim (Berberidaceae), on the levels of HIF-1α, HSP-60 and HSP-70 remain unknown. To explore the effects of icariin on the levels of HSP-60, HIF-1α and HSP-70 neuron-specific enolase (NSE) and cell viability. PC12 cells were treated with icariin (10 -7 , 10 -6 or 10 -5  mol/L) for 3 h (1 h before oxygen-glucose deprivation (OGD) plus 2 h OGD). HSP-60, HIF-1α, HSP-70 and NSE were measured using enzyme-linked immunosorbent assay (ELISA). Cell viability was determined by metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. After 2 h OGD, levels of HIF-1α, HSP-60, HSP-70 and NSE were increased significantly (HIF-1α: 33.3 ± 1.9 ng/L, HSP-60: 199 ± 16 ng/L, HSP-70: 195 ± 17 ng/L, NSE: 1487 ± 125 ng/L), and cell viability was significantly decreased (0.26 ± 0.03), while icariin (10 -7 , 10 -6 , or 10 -5  mol/L) significantly reduced the contents of HIF-1α, HSP-60, HSP-70 and NSE (HIF-1α: 14.1 ± 1.4, 22.6 ± 1.8, 15.7 ± 2.1, HSP-60: 100 ± 12, 89 ± 6, 113 ± 11, HSP-70: 139 ± 9, 118 ± 7, 95 ± 9 and NSE: 1121 ± 80, 1019 ± 52, 731 ± 88), and improved cell viability (0.36 ± 0.03, 0.38 ± 0.04, 0.37 ± 0.03) in OGD-treated PC12 cells. These results indicate that the protective mechanisms of icariin against OGD-induced injury may be related to down-regulating the expression of HIF-1α, HSP-60 and HSP-70.

  18. Fluorescein diacetate for determination of cell viability in 3D fibroblast-collagen-GAG constructs.

    PubMed

    Powell, Heather M; Armour, Alexis D; Boyce, Steven T

    2011-01-01

    Quantification of cell viability and distribution within engineered tissues currently relies on representative histology, phenotypic assays, and destructive assays of viability. To evaluate uniformity of cell density throughout 3D collagen scaffolds prior to in vivo use, a nondestructive, field assessment of cell viability is advantageous. Here, we describe a field measure of cell viability in lyophilized collagen-glycosaminoglycan (C-GAG) scaffolds in vitro using fluorescein diacetate (FdA). Fibroblast-C-GAG constructs are stained 1 day after cellular inoculation using 0.04 mg/ml FdA followed by exposure to 366 nm UV light. Construct fluorescence quantified using Metamorph image analysis is correlated with inoculation density, MTT values, and histology of corresponding biopsies. Construct fluorescence correlates significantly with inoculation density (p  <  0.001) and MTT values (p  <  0.001) of biopsies collected immediately after FdA staining. No toxicity is detected in the constructs, as measured by MTT assay before and after the FdA assay at different time points; normal in vitro histology is demonstrated for the FdA-exposed constructs. In conclusion, measurement of intracellular fluorescence with FdA allows for the early, comprehensive measurement of cellular distributions and viability in engineered tissue.

  19. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products

    PubMed Central

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274

  20. Assessment of cryopreserved donor skin viability: the experience of the regional tissue bank of Siena.

    PubMed

    Pianigiani, E; Tognetti, L; Ierardi, F; Mariotti, G; Rubegni, P; Cevenini, G; Perotti, R; Fimiani, M

    2016-06-01

    Skin allografts from cadaver donors are an important resource for treating extensive burns, slow-healing wounds and chronic ulcers. A high level of cell viability of cryopreserved allografts is often required, especially in burn surgery, in Italy. Thus, we aimed to determine which conditions enable procurement of highly viable skin in our Regional Skin Bank of Siena. For this purpose, we assessed cell viability of cryopreserved skin allografts procured between 2011 and 2013 from 127 consecutive skin donors, before and after freezing (at day 15, 180, and 365). For each skin donor, we collected data concerning clinical history (age, sex, smoking, phototype, dyslipidemia, diabetes, cause of death), donation process (multi-tissue or multi-organ) and timing of skin procurement (assessment of intervals such as death-harvesting, harvesting-banking, death-banking). All these variables were analysed in the whole case study (127 donors) and in different groups (e.g. multi-organ donors, non refrigerated multi-tissue donors, refrigerated multi-tissue donors) for correlations with cell viability. Our results indicated that cryopreserved skin allografts with higher cell viability were obtained from female, non smoker, heartbeating donors died of cerebral haemorrhage, and were harvested within 2 h of aortic clamping and banked within 12 h of harvesting (13-14 h from clamping). Age, cause of death and dyslipidaemia or diabetes did not appear to influence cell viability. To maintain acceptable cell viability, our skin bank needs to reduce the time interval between harvesting and banking, especially for refrigerated donors.

  1. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants.

    PubMed

    Berninger, Teresa; González López, Óscar; Bejarano, Ana; Preininger, Claudia; Sessitsch, Angela

    2018-03-01

    The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals. © 2018 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Synthetic vs natural scaffolds for human limbal stem cells

    PubMed Central

    Tominac Trcin, Mirna; Dekaris, Iva; Mijović, Budimir; Bujić, Marina; Zdraveva, Emilija; Dolenec, Tamara; Pauk-Gulić, Maja; Primorac, Dragan; Crnjac, Josip; Špoljarić, Branimira; Mršić, Gordan; Kuna, Krunoslav; Špoljarić, Daniel; Popović, Maja

    2015-01-01

    Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes. PMID:26088849

  3. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting

    NASA Astrophysics Data System (ADS)

    Catros, Sylvain; Guillotin, Bertrand; Bačáková, Markéta; Fricain, Jean-Christophe; Guillemot, Fabien

    2011-04-01

    Biofabrication of three dimensional tissues by Laser-Assisted Bioprinting (LAB) implies to develop specific strategies for assembling the extracellular matrix (ECM) and cells. Possible strategies consist in (i) printing cells onto or in the depth of ECM layer and/or (ii) printing bioinks containing both cells and ECM-like printable biomaterial. The aim of this article was to evaluate combinatorial effects of laser pulse energy, ECM thickness and viscosity of the bioink on cell viability. A LAB workstation was used to print Ea.hy926 endothelial cells onto a quartz substrate covered with a film of ECM mimicking Matrigel™. Hence, effect of laser energy, Matrigel™ film thickness and bioink viscosity was addressed for different experimental conditions (8-24 μJ, 20-100 μm and 40-110 mPa s, respectively). Cell viability was assessed by live/dead assay performed 24 h post-printing. Results show that increasing the laser energy tends to augment the cell mortality while increasing the thickness of the Matrigel™ film and the viscosity of the bioink support cell viability. Hence, critical printing parameters influencing high cell viability have been related to the cell landing conditions and more specifically to the intensity of the cell impacts occurring at the air-ECM interface and at the ECM-glass interface.

  4. Effects of Non-Collagenous Proteins, TGF-β1, and PDGF-BB on Viability and Proliferation of Dental Pulp Stem Cells

    PubMed Central

    Tabatabaei, Fahimeh Sadat

    2016-01-01

    ABSTRACT Objectives The dentin matrix servers as a reservoir of growth factors, sequestered during dentinogenesis. The aim of this study was to assess the viability and proliferation of dental pulp stem cells in the presence of dentin matrix-derived non-collagenous proteins and two growth factors; platelet-derived growth factor BB and transforming growth factor beta 1. Material and Methods The dental pulp cells were isolated and cultured. The dentin proteins were extracted and purified. The MTT assay was performed for assessment of cell viability and proliferation in the presence of different concentrations of dentin proteins and growth factors during 24 - 72 h post-treatment. Results The cells treated with 250 ng/mL dentin proteins had the best viability and proliferation ability in comparison with other concentrations (P < 0.05). The MTT assay demonstrated that cells cultured with 5 ng/mL platelet-derived growth factor BB had the highest viability at each time point as compared to other groups (P < 0.05). However, in presence of platelet-derived growth factor BB alone and in combination with transforming growth factor beta 1 and dentin proteins (10 ng/mL), significant higher viability was seen at all time points (P < 0.05). The least viability and proliferation at each growth factor concentration was seen in cells treated with combination of transforming growth factor beta 1 and dentin proteins at 72 h (P < 0.05). Conclusions The results indicated that the triple combination of growth factors and matrix-derived non-collagenous proteins (especially at 10 ng/mL concentration) has mitogenic effect on dental pulp stem cells. PMID:27099698

  5. Evaluation of a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay (SOT)

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) has been used to evaluate the effects of xenobiotics using three endpoints, stem cell differentiation, stem cell viability and 3T3-cell viability. Our research goal is to establish amodel system that would evaluate chemical effects using a singl...

  6. Respiratory status determines the effect of emodin on cell viability.

    PubMed

    Dumit, Verónica I; Zerbes, Ralf M; Kaeser-Pebernard, Stephanie; Rackiewicz, Michal; Wall, Mona T; Gretzmeier, Christine; Küttner, Victoria; van der Laan, Martin; Braun, Ralf J; Dengjel, Jörn

    2017-06-06

    The anthraquinone emodin has been shown to have antineoplastic properties and a wealth of unconnected effects have been linked to its use, most of which are likely secondary outcomes of the drug treatment. The primary activity of emodin on cells has remained unknown. In the present study we demonstrate dramatic and extensive effects of emodin on the redox state of cells and on mitochondrial homeostasis, irrespectively of the cell type and organism, ranging from the yeast Saccharomyces cerevisiae to human cell lines and primary cells. Emodin binds to redox-active enzymes and its effectiveness depends on the oxidative and respiratory status of cells. We show that cells with efficient respiratory metabolism are less susceptible to emodin, whereas cells under glycolytic metabolism are more vulnerable to the compound. Our findings indicate that emodin acts in a similar way as known uncouplers of the mitochondrial electron transport chain and causes oxidative stress that particularly disturbs cancer cells.

  7. Respiratory status determines the effect of emodin on cell viability

    PubMed Central

    Dumit, Verónica I; Zerbes, Ralf M; Kaeser-Pebernard, Stephanie; Rackiewicz, Michal; Wall, Mona T; Gretzmeier, Christine; Küttner, Victoria; van der Laan, Martin; Braun, Ralf J; Dengjel, Jörn

    2017-01-01

    The anthraquinone emodin has been shown to have antineoplastic properties and a wealth of unconnected effects have been linked to its use, most of which are likely secondary outcomes of the drug treatment. The primary activity of emodin on cells has remained unknown. In the present study we demonstrate dramatic and extensive effects of emodin on the redox state of cells and on mitochondrial homeostasis, irrespectively of the cell type and organism, ranging from the yeast Saccharomyces cerevisiae to human cell lines and primary cells. Emodin binds to redox-active enzymes and its effectiveness depends on the oxidative and respiratory status of cells. We show that cells with efficient respiratory metabolism are less susceptible to emodin, whereas cells under glycolytic metabolism are more vulnerable to the compound. Our findings indicate that emodin acts in a similar way as known uncouplers of the mitochondrial electron transport chain and causes oxidative stress that particularly disturbs cancer cells. PMID:28415582

  8. Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) assay

    EPA Science Inventory

    The Embryonic Stem Cell Test (EST) is an assay which evaluates xenobiotic-induced effects using three endpoints: mouse embryonic stem cell (mESC) differentiation, mESC viability, and 3T3-cell viability. Our research goal was to develop an improved high-throughput assay by establi...

  9. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells.

    PubMed

    Yu, Junchao; Yu, Qiuhong; Liu, Yaling; Zhang, Ruiyun; Xue, Lianbi

    2017-01-01

    Hyperbaric oxygen (HBO) therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA) is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS), breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2) can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy.

  10. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer.

    PubMed

    Li, Xiu Juan; Ren, Zhao Jun; Tang, Jin Hai; Yu, Qiao

    2017-01-01

    Treatment of breast cancer remains a clinical challenge. This study aims to validate exosomal microRNA-1246 (miR-1246) as a serum biomarker for breast cancer and understand the underlying mechanism in breast cancer progression. The expression levels of endogenous and exosomal miRNAs were examined by real time PCR, and the expression level of the target protein was detected by western blot. Scanning electron and confocal microscopy were used to characterize exosomes and to study their uptake and transfer. Luciferase reporter plasmids and its mutant were used to confirm direct targeting. Furthermore, the functional significance of exosomal miR-1246 was estimated by invasion assay and cell viability assay. In this study, we demonstrate that exosomes carrying microRNA can be transferred among different cell lines through direct uptake. miR-1246 is highly expressed in metastatic breast cancer MDA-MB-231 cells compared to non-metastatic breast cancer cells or non-malignant breast cells. Moreover, miR-1246 can suppress the expression level of its target gene, Cyclin-G2 (CCNG2), indicating its functional significance. Finally, treatment with exosomes derived from MDA-MB-231 cells could enhance the viability, migration and chemotherapy resistance of non-malignant HMLE cells. Together, our results support an important role of exosomes and exosomal miRNAs in regulating breast tumor progression, which highlights their potential for applications in miRNA-based therapeutics. © 2017 The Author(s). Published by S. Karger AG, Basel.

  11. Novel role of apatinib as a multi-target RTK inhibitor in the direct suppression of hepatocellular carcinoma cells.

    PubMed

    Li, Xiaojin; Xu, Anjian; Li, Huihui; Zhang, Bei; Cao, Bangwei; Huang, Jian

    2018-05-01

    Although apatinib has been demonstrated with potential antitumor activity in multiple solid tumors, the underlying mechanism of apatinib for the treatment of hepatocellular carcinoma (HCC) remains unclear. In the present study, we explored if there are any direct suppression effects of apatinib on HCC cells and its relevant targets. We investigated the effect of apatinib on viability of five HCC cell lines and an intrahepatic cholangiocarcinoma cell line, and colony formation, apoptosis and migration of representative HCC cells in vitro; and HCC progression in a xenograft mouse model. Using a phospho-receptor tyrosine kinase pathway array with 49 different tyrosine kinases, we screened and verified the tyrosine kinase targets involved in apatinib response. Apatinib treatment significantly inhibited HCC cell viability, proliferation, colony formation, and migration, and enhanced cell apoptosis in a concentration-dependent manner (p < 0.05). Furthermore, apatinib showed a favorable anti-tumor growth effect (71% of inhibition ratio, p < 0.05) in an established human HCC xenograft mice model with good safety. RTK pathway arrays and western blots analysis demonstrated that apatinib significantly downregulated the phosphorylation levels of several tyrosine kinase receptors, particularly PDGFR-α and IGF-IR, and inhibited Akt phosphorylation. These data suggest that the apatinib may have a direct anti-HCC effect as a direct multi-target RTK inhibitor of HCC cells and a promising potentiality in HCC clinical therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox.

    PubMed

    Zhang, Di; Ren, Li; Chen, Guan-Qun; Zhang, Jie; Reed, Barbara M; Shen, Xiao-Hui

    2015-09-01

    Oxidative stress and apoptosis-like programmed cell death, induced in part by H 2 O 2 , are two key factors that damage cells during plant cryopreservation. Their inhibition can improve cell viability. We hypothesized that oxidative stress and apoptosis-like event induced by ROS seriously impact plant cell viability during cryopreservation. This study documented changes in cell morphology and ultrastructure, and detected dynamic changes in ROS components (O 2 (·-) , H2O2 and OH·), antioxidant systems, and programmed cell death (PCD) events during embryonic callus cryopreservation of Agapanthus praecox. Plasmolysis, organelle ultrastructure changes, and increases in malondialdehyde (a membrane lipid peroxidation product) suggested that oxidative damage and PCD events occurred at several early cryopreservation steps. PCD events including autophagy, apoptosis-like, and necrosis also occurred at later stages of cryopreservation, and most were apoptosis. H2O2 is the most important ROS molecule mediating oxidative damage and affecting cell viability, and catalase and AsA-GSH cycle are involved in scavenging the intracellular H2O2 and protecting the cells against stress damage in the whole process. Gene expression studies verified changes of antioxidant system and PCD-related genes at the main steps of the cryopreservation process that correlated with improved cell viability. Reducing oxidative stress or inhibition of apoptosis-like event by deactivating proteases improved cryopreserved cell viability from 49.14 to 86.85 % and 89.91 %, respectively. These results verify our model of ROS-induced oxidative stress and apoptosis-like event in plant cryopreservation. This study provided a novel insight into cell stress response mechanisms in cryopreservation.

  13. L929 cell cytotoxicity associated with experimental and commercial dental flosses

    NASA Astrophysics Data System (ADS)

    Tua-ngam, P.; Supanitayanon, L.; Dechkunakorn, S.; Anuwongnukroh, N.; Srikhirin, T.; Roongrujimek, P.

    2017-11-01

    This aim of the study was to investigate the cytotoxicity of two commercial and two experimental dental flosses. Two commercial, Oral B® Essential Floss (nylon-waxed) and Thai Silk Floss (silk-waxed), and two experimental, Floss X (nylon-waxed) and Floss Xu (nylon-unwaxed) dental flosses were used. The cytotoxic assay was performed by using cell cultures (L929) which were subjected to cell viability test with methyl-tetrazolium. Each floss specimen (0.4 g) was placed in 1 ml of Minimum Essential Medium at 37°C with 5% CO2 at 100% humidity in an incubator for 24 hours. After incubation, the cell mitochondrial activity was evaluated for detecting viable cells using optical density as per the guidelines of ISO 10993-5:2009(E). Cytotoxic effects were evaluated by measuring percentage of cell viability at 3 points of time- 5 mins, 30 mins, and 1 hr. The results showed that two commercial dental flosses and Floss X had cell viability about 90% at the three time points; however, the experimental Floss Xu presented 80% cell viability at 5 min and <70% cell viability at 30 min and 1 hr. The results concluded that the commercial dental flosses and the experimental dental floss with wax tested in this study were acceptable for clinical use.

  14. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface of the femoral head.

    PubMed

    Rhyu, Kee Hyung; Cho, Chang Hoon; Yoon, Kyung Sik; Chun, Young Soo

    2016-12-01

    To evaluate cellular activity in milled versus unmilled surface of the femoral head in 21 patients who underwent robot-assisted total hip arthroplasty(THA). The femoral head of 21 consecutive patients who underwent robot-assisted THA for osteonecrosis was used. 10 cc of trabecular bone from the entire milled surface was obtained using a curette. The same amount of trabecular bone was obtained at least 1 cm away from the milled surface and served as a matched control. Cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity in milled versus unmilled surface were assessed. Cell morphology of the milled or unmilled surface was comparable; cells were smaller in the milled surface. Cell viability was a mean of 40% higher in the milled surface (107.4% vs. 67.2%, p<0.001); cell viability at 5 time points was comparable in each group. Osteocalcin activity of cells was slightly higher in the milled surface (1.43 vs. 1.24 ng/ml, p=0.69). Alkaline phosphatase activity of cells was slightly higher in the unmilled surface (150 105 vs. 141 789 U/L, p=0.078). The milled and unmilled surfaces of the femoral head were comparable in terms of cell morphology, viability, osteocalcin activity, and alkaline phosphatase activity.

  15. Long noncoding RNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma via MAPK pathway.

    PubMed

    Gao, Ran; Zhang, Rui; Zhang, Cuicui; Zhao, Li; Zhang, Yue

    2018-01-01

    Medulloblastoma is the most common posterior fossa tumor in children and one that easily metastasizes. The mechanisms of how the medulloblastoma develops and progresses remain to be elucidated. The present study aimed to assess the role of long noncoding colon cancer-associated transcript-1 (lncRNA CCAT1) in cell proliferation and metastasis in human medulloblastoma. Levels of CCAT1 were measured in samples and cell lines of medulloblastoma. Cell cycle progression, cell viability assay, colony formation assay, wound-healing and Transwell assays Corning, Cambridge, MA, USA were used to investigate the viability and motility of cells. Western blot assay was used to investigate the levels of CCAT1 and other proteins. The initial findings indicated that CCAT1 was significantly up-regulated in clinical cancerous tissues and expressed differently in a series of medulloblastoma cell lines. CCAT1 knockdown significantly slowed cell proliferation rates and inhibited cell clonogenic potential in Daoy cells and D283 cells. Cell cycle progression was disrupted with cell proportions in the G0/G1 phase decreased and the proportion in the S phase and G2/M phases increased, in Daoy cells and D283 cells. Concordantly, medulloblastoma tumor cell growth rates were found to be impaired in xenotransplanted mice. After CCAT1 knockdown, cell wound recovery ability was significantly inhibited. Furthermore, the phosphorylated levels of MAPK, ERK and MEK, but not their total levels decreased after the down-regulation of CCAT1 in Daoy and D283 cells. Our results suggested that the lncRNA CCAT1 promotes cell proliferation and metastasis in human medulloblastoma by possibly regulating the MAPK pathway.

  16. Vertically, interconnected carbon nanowalls as biocompatible scaffolds for osteoblast cells

    NASA Astrophysics Data System (ADS)

    Ion, Raluca; Vizireanu, Sorin; Luculescu, Catalin; Cimpean, Anisoara; Dinescu, Gheorghe

    2016-07-01

    The response of MC3T3-E1 pre-osteoblasts to vertically aligned, interconnected carbon nanowalls prepared by plasma enhanced chemical vapor deposition on silicon substrate has been evaluated in terms of cell adhesion, viability and cell proliferation. The behavior of osteoblasts seeded on carbon nanowalls was analyzed in parallel and compared with the behavior of the cells maintained in contact with tissue culture polystyrene (TCPS). The results demonstrate that osteoblasts adhere and remain viable in the long term on carbon nanowalls. Moreover, on the investigated scaffold cell proliferation was significantly promoted, although to a lower extent than on TCPS. Overall, the successful culture of osteoblasts on carbon nanowalls coated substrate confirms the biocompatibility of this scaffold, which could have potential applications in the development of orthopedic biomaterials.

  17. Predicting cell viability within tissue scaffolds under equiaxial strain: multi-scale finite element model of collagen-cardiomyocytes constructs.

    PubMed

    Elsaadany, Mostafa; Yan, Karen Chang; Yildirim-Ayan, Eda

    2017-06-01

    Successful tissue engineering and regenerative therapy necessitate having extensive knowledge about mechanical milieu in engineered tissues and the resident cells. In this study, we have merged two powerful analysis tools, namely finite element analysis and stochastic analysis, to understand the mechanical strain within the tissue scaffold and residing cells and to predict the cell viability upon applying mechanical strains. A continuum-based multi-length scale finite element model (FEM) was created to simulate the physiologically relevant equiaxial strain exposure on cell-embedded tissue scaffold and to calculate strain transferred to the tissue scaffold (macro-scale) and residing cells (micro-scale) upon various equiaxial strains. The data from FEM were used to predict cell viability under various equiaxial strain magnitudes using stochastic damage criterion analysis. The model validation was conducted through mechanically straining the cardiomyocyte-encapsulated collagen constructs using a custom-built mechanical loading platform (EQUicycler). FEM quantified the strain gradients over the radial and longitudinal direction of the scaffolds and the cells residing in different areas of interest. With the use of the experimental viability data, stochastic damage criterion, and the average cellular strains obtained from multi-length scale models, cellular viability was predicted and successfully validated. This methodology can provide a great tool to characterize the mechanical stimulation of bioreactors used in tissue engineering applications in providing quantification of mechanical strain and predicting cellular viability variations due to applied mechanical strain.

  18. Is cell viability always directly related to corrosion resistance of stainless steels?

    PubMed

    Salahinejad, E; Ghaffari, M; Vashaee, D; Tayebi, L

    2016-05-01

    It has been frequently reported that cell viability on stainless steels is improved by increasing their corrosion resistance. The question that arises is whether human cell viability is always directly related to corrosion resistance in these biostable alloys. In this work, the microstructure and in vitro corrosion behavior of a new class of medical-grade stainless steels were correlated with adult human mesenchymal stem cell viability. The samples were produced by a powder metallurgy route, consisting of mechanical alloying and liquid-phase sintering with a sintering aid of a eutectic Mn-Si alloy at 1050 °C for 30 and 60 min, leading to nanostructures. In accordance with transmission electron microscopic studies, the additive particles for the sintering time of 30 min were not completely melted. Electrochemical impedance spectroscopic experiments suggested the higher corrosion resistance for the sample sintered for 60 min; however, a better cell viability on the surface of the less corrosion-resistant sample was unexpectedly found. This behavior is explained by considering the higher ion release rate of the Mn-Si additive material, as preferred sites to corrosion attack based on scanning electron microscopic observations, which is advantageous to the cells in vitro. In conclusion, cell viability is not always directly related to corrosion resistance in stainless steels. Typically, the introduction of biodegradable and biocompatible phases to biostable alloys, which are conventionally anticipated to be corrosion-resistant, can be advantageous to human cell responses similar to biodegradable metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Femtosecond laser surgery of two-cell mouse embryos: effect on viability, development, and tetraploidization

    NASA Astrophysics Data System (ADS)

    Osychenko, Alina A.; Zalessky, Alexandr D.; Kostrov, Andrey N.; Ryabova, Anastasia V.; Krivokharchenko, Alexander S.; Nadtochenko, Viktor A.

    2017-12-01

    The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion.

  20. Hyaluronic acid increases tendon derived cell viability and proliferation in vitro: comparative study of two different hyaluronic acid preparations by molecular weight.

    PubMed

    Gallorini, Marialucia; Berardi, Anna C; Berardocco, Martina; Gissi, Clarissa; Maffulli, Nicola; Cataldi, Amelia; Oliva, Francesco

    2017-01-01

    Hyaluronic Acid (HA) has been already approved by Food and Drug Administration (FDA) for osteoarthritis (OA), while its use in the treatment of tendinopathy is still debated. The aim of this study was to evaluate the effects of two different HA on human rotator cuff tendon derived cells in terms of cell viability, proliferation and apoptosis. An in vitro model was developed on human tendon derived cells from rotator cuff tears to study the effects of two different HA preparations: Sinovial HL® (High-Low molecular weight) (MW: 80-100 kDa) and KDa Sinovial Forte SF (MW: 800-1200), at various concentrations. Tendon derived cells morphology was evaluated after 0, 7 and 14 d of culture. Viability and proliferation were analyzed after 0, 24, and 48 h of culture and apoptosis occurrence was assessed after 24 h of culture. All the HAPs tested here increased viability and proliferation, in a dose-dependent manner and they reduced apoptosis at early stages (24 h) compared to control cells (without HAPs). HAPs enhanced viability and proliferation and counteracted apoptosis in tendon derived cells.

  1. Reactive oxygen species formation and bystander effects in gradient irradiation on human breast cancer cells.

    PubMed

    Zhang, Dongqing; Zhou, Tingyang; He, Feng; Rong, Yi; Lee, Shin Hee; Wu, Shiyong; Zuo, Li

    2016-07-05

    Ionizing radiation (IR) in cancer radiotherapy can induce damage to neighboring cells via non-targeted effects by irradiated cells. These so-called bystander effects remain an area of interest as it may provide enhanced efficacy in killing carcinomas with minimal radiation. It is well known that reactive oxygen species (ROS) are ubiquitous among most biological activities. However, the role of ROS in bystander effects has not been thoroughly elucidated. We hypothesized that gradient irradiation (GI) has enhanced therapeutic effects via the ROS-mediated bystander pathways as compared to uniform irradiation (UI). We evaluated ROS generation, viability, and apoptosis in breast cancer cells (MCF-7) exposed to UI (5 Gy) or GI (8-2 Gy) in radiation fields at 2, 24 and 48 h after IR. We found that extracellular ROS release induced by GI was higher than that by UI at both 24 h (p < 0.001) and 48 h (p < 0.001). More apoptosis and less viability were observed in GI when compared to UI at either 24 h or 48 h after irradiation. The mean effective doses (ED) of GI were ~130% (24 h) and ~48% (48 h) higher than that of UI, respectively. Our results suggest that GI is superior to UI regarding redox mechanisms, ED, and toxic dosage to surrounding tissues.

  2. Enhancement of Bone-Marrow-Derived Mesenchymal Stem Cell Angiogenic Capacity by NPWT for a Combinatorial Therapy to Promote Wound Healing with Large Defect

    PubMed Central

    Ma, Zhanjun

    2017-01-01

    Poor viability of engrafted bone marrow mesenchymal stem cells (BMSCs) often hinders their application for wound healing, and the strategy of how to take full advantage of their angiogenic capacity within wounds still remains unclear. Negative pressure wound therapy (NPWT) has been demonstrated to be effective for enhancing wound healing, especially for the promotion of angiogenesis within wounds. Here we utilized combinatory strategy using the transplantation of BMSCs and NPWT to investigate whether this combinatory therapy could accelerate angiogenesis in wounds. In vitro, after 9-day culture, BMSCs proliferation significantly increased in NPWT group. Furthermore, NPWT induced their differentiation into the angiogenic related cells, which are indispensable for wound angiogenesis. In vivo, rat full-thickness cutaneous wounds treated with BMSCs combined with NPWT exhibited better viability of the cells and enhanced angiogenesis and maturation of functional blood vessels than did local BMSC injection or NPWT alone. Expression of angiogenesis markers (NG2, VEGF, CD31, and α-SMA) was upregulated in wounds treated with combined BMSCs with NPWT. Our data suggest that NPWT may act as an inductive role to enhance BMSCs angiogenic capacity and this combinatorial therapy may serve as a simple but efficient clinical solution for complex wounds with large defects. PMID:28243602

  3. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  4. Hydroxycinnamic acid decarboxylase activity of Brettanomyces bruxellensis involved in volatile phenol production: relationship with cell viability.

    PubMed

    Laforgue, R; Lonvaud-Funel, A

    2012-12-01

    Brettanomyces bruxellensis populations have been correlated with an increase in phenolic off-flavors in wine. The volatile phenols causing the olfactory defect result from the successive decarboxylation and reduction of hydroxycinnamic acids that are normal components of red wines. The growth of B. bruxellensis is preventable by adding sulfur dioxide (SO(2)), with variable effectiveness. Moreover, it was hypothesized that SO(2) was responsible for the entry of B. bruxellensis into a viable but non-culturable (VBNC) state. The aim of this project was to investigate the effects of SO(2) on the remaining enzyme activities of B. bruxellensis populations according to their viability and cultivability, focusing on the hydroxycinnamate decarboxylase enzyme, the first enzyme needed, rather than the metabolites produced. Enzyme activity was determined both in cell-free extracts and resting cells after various SO(2) treatments in synthetic media. After slight sulfiting (around 50 mg/L total SO(2)), the yeasts had lost part of their enzyme activity but not their cultivability. At higher doses (at least 75 mg/L total SO(2)) the majority of yeasts had lost their cultivability but still retained part of their enzyme activity. These results suggested that non culturable cells retained some enzyme activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Study of wettability and cell viability of H implanted stainless steel

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Ahmad, Riaz; Rehman, Ihtesham Ur

    2018-03-01

    In the present work, the effect of hydrogen ion implantation on surface wettability and biocompatibility of stainless steel is investigated. Hydrogen ions are implanted in the near-surface of stainless steel to facilitate hydrogen bonding at different doses with constant energy of 500 KeV, which consequently improve the surface wettability. Treated and untreated sample are characterized for surface wettability, incubation of hydroxyapatite and cell viability. Contact angle (CA) study reveals that surface wettability increases with increasing H-ion dose. Raman spectroscopy shows that precipitation of hydroxyapatite over the surface increase with increasing dose of H-ions. Cell viability study using MTT assay describes improved cell viability in treated samples as compared to the untreated sample. It is found that low dose of H-ions is more effective for cell proliferation and the cell count decreases with increasing ion dose. Our study demonstrates that H ion implantation improves the surface wettability and biocompatibility of stainless steel.

  6. Effects of a simulated martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029.

    PubMed

    Cockell, Charles S; Schuerger, Andrew C; Billi, Daniela; Friedmann, E Imre; Panitz, Corinna

    2005-04-01

    Dried monolayers of Chroococcidiopsis sp. 029, a desiccation-tolerant, endolithic cyanobacterium, were exposed to a simulated martian-surface UV and visible light flux, which may also approximate to the worst-case scenario for the Archean Earth. After 5 min, there was a 99% loss of cell viability, and there were no survivors after 30 min. However, this survival was approximately 10 times higher than that previously reported for Bacillus subtilis. We show that under 1 mm of rock, Chroococcidiopsis sp. could survive (and potentially grow) under the high martian UV flux if water and nutrient requirements for growth were met. In isolated cells, phycobilisomes and esterases remained intact hours after viability was lost. Esterase activity was reduced by 99% after a 1-h exposure, while 99% loss of autofluorescence required a 4-h exposure. However, cell morphology was not changed, and DNA was still detectable by 4',6-diamidino-2-phenylindole staining after an 8-h exposure (equivalent to approximately 1 day on Mars at the equator). Under 1 mm of simulant martian soil or gneiss, the effect of UV radiation could not be detected on esterase activity or autofluorescence after 4 h. These results show that under the intense martian UV flux the morphological signatures of life can persist even after viability, enzymatic activity, and pigmentation have been destroyed. Finally, the global dispersal of viable, isolated cells of even this desiccation-tolerant, ionizing-radiation-resistant microorganism on Mars is unlikely as they are killed quickly by unattenuated UV radiation when in a desiccated state. These findings have implications for the survival of diverse microbial contaminants dispersed during the course of human exploratory class missions on the surface of Mars.

  7. Cnidium officinale Makino extract induces apoptosis through activation of caspase-3 and p53 in human liver cancer HepG2 cells

    PubMed Central

    Hong, Heeok; An, Jeong Cheol; de La Cruz, Joseph F.; Hwang, Seong-Gu

    2017-01-01

    A number of diverse studies have reported the anticancer properties of Cnidium officinale Makino (CO). However, the apoptotic effect of this traditional medicinal herb in human hepatocellular carcinoma cells (HepG2) remains to be elucidated. Therefore, the present study investigated the ability of CO to reduce cell viability through apoptotic pathways. Cell viability was determined using the 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide assay. CO extract-induced apoptosis in HepG2 cells was assessed by Hoechst 33258 staining. The cell cycle was monitored using fluorescence-activated cell sorting analysis with propidium iodide staining. Furthermore, the present study explored whether various signaling molecules associated with HepG2 cell death were affected by CO treatment, including caspase-3, B-cell lymphoma 2 (Bcl-2), tumor protein p53 (p53), cyclin-dependent kinase 4 (CDK4) and cyclin D. The expression levels of these genes were examined by reverse-transcription polymerase chain reaction and western blotting. The expression levels of caspase-3 and p53 were upregulated with CO extract treatment, whereas those of Bcl-2, CDK4 and cyclin D were significantly downregulated. Cleaved caspase-3 expression was upregulated following treatment with CO extract in a dose-dependent manner. Collectively, the data suggest that CO extract has the potential to induce apoptosis of HepG2 cells and may act by suppressing the cell cycle, which leads to caspase-3 cleavage and p53 signaling. PMID:28966688

  8. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch.

    PubMed

    Zhao, Steven; Torres, AnnMarie; Henry, Ryan A; Trefely, Sophie; Wallace, Martina; Lee, Joyce V; Carrer, Alessandro; Sengupta, Arjun; Campbell, Sydney L; Kuo, Yin-Ming; Frey, Alexander J; Meurs, Noah; Viola, John M; Blair, Ian A; Weljie, Aalim M; Metallo, Christian M; Snyder, Nathaniel W; Andrews, Andrew J; Wellen, Kathryn E

    2016-10-18

    Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Cell uptake survey of pegylated nanographene oxide.

    PubMed

    Vila, M; Portolés, M T; Marques, P A A P; Feito, M J; Matesanz, M C; Ramírez-Santillán, C; Gonçalves, G; Cruz, S M A; Nieto, A; Vallet-Regi, M

    2012-11-23

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml(-1) pegylated GO solutions. GO uptake kinetics revealed differences in the agent's uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  10. A Field-Portable Cell Analyzer without a Microscope and Reagents.

    PubMed

    Seo, Dongmin; Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha; Seo, Sungkyu

    2017-12-29

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm³ and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer ( de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis.

  11. Improved immunomagnetic enrichment of CD34(+) cells from umbilical cord blood using the CliniMACS cell separation system.

    PubMed

    Blake, Joseph M; Nicoud, Ian B; Weber, Daniel; Voorhies, Howard; Guthrie, Katherine A; Heimfeld, Shelly; Delaney, Colleen

    2012-08-01

    CD34(+) enrichment from cord blood units (CBU) is used increasingly in clinical applications involving ex vivo expansion. The CliniMACS instrument from Miltenyi Biotec is a current good manufacturing practice (cGMP) immunomagnetic selection system primarily designed for processing larger numbers of cells: a standard tubing set (TS) can process a maximum of 60 billion cells, while the larger capacity tubing set (LS) will handle 120 billion cells. In comparison, most CBU contain only 1-2 billion cells, raising a question regarding the optimal tubing set for CBU CD34(+) enrichment. We compared CD34(+) cell recovery and overall viability after CliniMACS processing of fresh CBU with either TS or LS. Forty-six freshly collected CBU (≤ 36 h) were processed for CD34(+) enrichment; 22 consecutive units were selected using TS and a subsequent 24 processed with LS. Cell counts and immunophenotyping were performed pre- and post-selection to assess total nucleated cells (TNC), viability and CD34(+) cell content. Two-sample t-tests of mean CD34(+) recovery and viability revealed significant differences in favor of LS (CD34(+) recovery, LS = 56%, TS = 45%, P = 0.003; viability, LS = 74%, TS = 59%, P = 0.011). Stepwise linear regression, considering pre-processing unit age, viability, TNC and CD34(+) purity, demonstrated statistically significant correlations only with the tubing set used and age of unit. For CD34(+) enrichment from fresh CBU, LS provided higher post-selection viability and more efficient recovery. In this case, a lower maximum TNC specification of TS was not predictive of better performance. The same may hold for smaller scale enrichment of other cell types with the CliniMACS instrument.

  12. Zoledronic Acid Inhibits Aromatase Activity and Phosphorylation: Potential Mechanism for Additive Zoledronic Acid and Letrozole Drug Interaction

    PubMed Central

    Schech, Amanda J.; Nemieboka, Brandon E.; Brodie, Angela H.

    2012-01-01

    Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole for 72 hours. This combination significantly increased inhibition of aromatase activity of AC-1 cells by compared to letrozole alone. Combination treatment of 1nM letrozole and 1μM and 10μM zoledronic acid resulted in an additive drug interaction on inhibiting cell viability, as measured by MTT assay. Treatment with ZA was found to inhibit phosphorylation of aromatase on serine 473. Zoledronic acid was also shown to be more effective in inhibiting cell viability in aromatase transfected AC-1 cells when compared to inhibition of cell viability observed in non-transfected MCF-7. Estradiol was able to partially rescue the effect of 1μM and 10μM ZA on cell viability following treatment for 72 hours, as shown by a shift to the right in the estradiol dose response curve. In conclusion, these results indicate that the combination of ZA and letrozole results in an additive inhibition of cell viability. Furthermore, ZA alone can inhibit aromatase activity through inhibition of serine phosphorylation events important for aromatase enzymatic activity and contributes to inhibition of cell viability. PMID:22659283

  13. Monosodium urate monohydrate crystals inhibit osteoblast viability and function: implications for development of bone erosion in gout.

    PubMed

    Chhana, Ashika; Callon, Karen E; Pool, Bregina; Naot, Dorit; Watson, Maureen; Gamble, Greg D; McQueen, Fiona M; Cornish, Jillian; Dalbeth, Nicola

    2011-09-01

    Bone erosion is a common manifestation of chronic tophaceous gout. To investigate the effects of monosodium urate monohydrate (MSU) crystals on osteoblast viability and function. The MTT assay and flow cytometry were used to assess osteoblast cell viability in the MC3T3-E1 and ST2 osteoblast-like cell lines, and primary rat and primary human osteoblasts cultured with MSU crystals. Quantitative real-time PCR and von Kossa stained mineralised bone formation assays were used to assess the effects of MSU crystals on osteoblast differentiation using MC3T3-E1 cells. The numbers of osteoblasts and bone lining cells were quantified in bone samples from patients with gout. MSU crystals rapidly reduced viability in all cell types in a dose-dependent manner. The inhibitory effect on cell viability was independent of crystal phagocytosis and was not influenced by differing crystal length or addition of serum. Long-term culture of MC3T3-E1 cells with MSU crystals showed a reduction in mineralisation and decreased mRNA expression of genes related to osteoblast differentiation such as Runx2, Sp7 (osterix), Ibsp (bone sialoprotein), and Bglap (osteocalcin). Fewer osteoblast and lining cells were present on bone directly adjacent to gouty tophus than bone unaffected by tophus in patients with gout. MSU crystals have profound inhibitory effects on osteoblast viability and differentiation. These data suggest that bone erosion in gout occurs at the tophus-bone interface through alteration of physiological bone turnover, with both excessive osteoclast formation, and reduced osteoblast differentiation from mesenchymal stem cells.

  14. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwovenmore » scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.« less

  15. Comparative evaluation of the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin scaffold

    PubMed Central

    Khurana, Rohit; Kudva, Praveen Bhasker; Husain, Syed Yawer

    2017-01-01

    Background: The present study aims to comparatively evaluate the isolation and quantification of stem cells derived from dental pulp and periodontal ligament of a permanent tooth and to assess their viability and proliferation on a platelet-rich fibrin (PRF) scaffold. Materials and Methods: A total of 15 systemically healthy individuals between the age group of 15–25 years requiring third molar or orthodontic premolar extractions. Teeth were extracted atraumatically and transported to the laboratory. Stem cells were isolated from dental pulp and periodontal ligament. After attaining more than 90% confluency by the 7th day, these cells were tested for their viability and characterization. Stem cells were also incubated with PRF and viability was assessed on the 7th day. Results: The mean number of cell for dental pulp stem cells (DPSCs) and periodontal ligament stem cell (PDLSC) was statistically insignificant (P > 0.05). The mean live cell viability was compared between DPSC (98.07%) and PDLSC (98%). Both DPSC and PDLSC showed a high percentage of expression of CD73 markers, 30.40% and 29.80%, respectively. However, DPSCs and PDLSCs lacked expression of CD34 expressing only 3.47% and 3.53%, respectively. PRF membrane as a scaffold exhibited no cytotoxic effects on DPCS's or PDLSC's. The cell viability of cells cultured with PRF was statistically insignificant (P > 0.05) when compared to the cells cultured with culture media. Conclusion: The study thus indicates that dental pulp and periodontal ligament are both rich sources of mesenchymal stem cells and can be successfully used for obtaining stem cells. PRF exhibits no cytotoxic effects on the cells and can be used in conjunction with dental stem cells. PMID:29386795

  16. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro

    PubMed Central

    HUANG, XIN; HUANG, SHILONG; GUO, FENGJIN; XU, FEI; CHENG, PENG; YE, YAPING; DONG, YONGHUI; XIANG, WEI; CHEN, ANMIN

    2016-01-01

    Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate-associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3-E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3-E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin-V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein-2 (BMP-2) and downregulation of the phosphorylation levels in the downstream extracellular signal-regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration-dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ. PMID:26648136

  17. Projection Stereolithographic Fabrication of Human Adipose Stem Cell-Incorporated Biodegradable Scaffolds for Cartilage Tissue Engineering.

    PubMed

    Sun, Aaron X; Lin, Hang; Beck, Angela M; Kilroy, Evan J; Tuan, Rocky S

    2015-01-01

    The poor self-healing ability of cartilage necessitates the development of methods for cartilage regeneration. Scaffold construction with live stem cell incorporation and subsequent differentiation presents a promising route. Projection stereolithography (PSL) offers high resolution and processing speed as well as the ability to fabricate scaffolds that precisely fit the anatomy of cartilage defects using medical imaging as the design template. We report here the use of a visible-light-based PSL (VL-PSL) system to encapsulate human adipose-derived stem cells (hASCs) into a biodegradable polymer [poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PDLLA-PEG)]/hyaluronic acid (HA) matrix to produce live cell constructs with customized architectures. After fabrication, hASCs showed high viability (84%) and were uniformly distributed throughout the constructs, which possessed high mechanical properties with a compressive modulus of 780 kPa. The hASC-seeded constructs were then cultured in control or TGF-β3-containing chondrogenic medium for up to 28 days. In chondrogenic medium-treated group (TGF-β3 group), hASCs maintained 77% viability and expressed chondrogenic genes Sox9, collagen type II, and aggrecan at 11, 232, and 2.29 × 10(5) fold increases, respectively compared to levels at day 0 in non-chondrogenic medium. The TGF-β3 group also produced a collagen type II and glycosaminoglycan-rich extracellular matrix, detected by immunohistochemistry, Alcian blue staining, and Safranin O staining suggesting robust chondrogenesis within the scaffold. Without chondroinductive addition (Control group), cell viability decreased with time (65% at 28 days) and showed poor cartilage matrix deposition. After 28 days, mechanical strength of the TGF-β3 group remained high at 240 kPa. Thus, the PSL and PDLLA-PEG/HA-based fabrication method using adult stem cells is a promising approach in producing mechanically competent engineered cartilage for joint cartilage resurfacing.

  18. Dose-dependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro.

    PubMed

    Huang, Xin; Huang, Shilong; Guo, Fengjin; Xu, Fei; Cheng, Peng; Ye, Yaping; Dong, Yonghui; Xiang, Wei; Chen, Anmin

    2016-01-01

    Zoledronic acid (ZA), which is one of the most potent and efficacious bisphosphonates, has been commonly used in clinical practice for the treatment of various bone disorders. The extensive use of ZA has been associated with increasing occurrence of jaw complications, now known as bisphosphonate‑associated osteonecrosis of the jaw (BRONJ). However, the mechanism underlying BRONJ remains to be fully elucidated. The aim of the present study was to investigate the effects of different concentrations of ZA on the MC3T3‑E1 murine preosteoblast cell line cells and examine the possible pathogenesis of BRONJ. In the present study, the effect of ZA on the viability, apoptosis, differentiation and maturation of MC3T3‑E1 cells, as well as its relevant molecular mechanism, were examined The results of a Cell Counting Kit 8 assay, a flow cytometric Annexin‑V/propidium iodide assay and western blot analysis demonstrated that ZA exhibited a significant inhibition of cell viability and induction of apoptosis at concentrations >10 µM. Subsequently, the effect of ZA on cell differentiation at concentrations <1 µM were investigated. In this condition, ZA inhibited bone nodule formation and decreased the activity of alkaline phosphatase. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses indicated that ZA downregulated the expression levels of the marker genes and proteins associated with osteogenic differentiation. Further investigation revealed that the suppression of differentiation by ZA was associated with decreased expression of bone morphogenetic protein‑2 (BMP‑2) and downregulation of the phosphorylation levels in the downstream extracellular signal‑regulated kinase 1/2 and p38 pathways. These adverse effects of ZA were observed to be concentration‑dependent. The results from the present study suggested that ZA at higher concentrations induces cytotoxicity towards osteoblasts, and ZA at lower concentrations suppresses osteoblast differentiation by downregulation of BMP-2. These results assist in further understanding the mechanisms of BRONJ.

  19. Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells.

    PubMed

    Zaccara, Ivana Maria; Ginani, Fernanda; Mota-Filho, Haroldo Gurgel; Henriques, Águida Cristina Gomes; Barboza, Carlos Augusto Galvão

    2015-12-01

    A positive effect of low-level laser irradiation (LLLI) on the proliferation of some cell types has been observed, but little is known about its effect on dental pulp stem cells (DPSCs). The aim of this study was to identify the lowest energy density able to promote the proliferation of DPSCs and to maintain cell viability. Human DPSCs were isolated from two healthy third molars. In the third passage, the cells were irradiated or not (control) with an InGaAlP diode laser at 0 and 48 h using two different energy densities (0.5 and 1.0 J/cm²). Cell proliferation and viability and mitochondrial activity were evaluated at intervals of 24, 48, 72, and 96 h after the first laser application. Apoptosis- and cell cycle-related events were analyzed by flow cytometry. The group irradiated with an energy density of 1.0 J/cm² exhibited an increase of cell proliferation, with a statistically significant difference (p < 0.05) compared to the control group at 72 and 96 h. No significant changes in cell viability were observed throughout the experiment. The distribution of cells in the cell cycle phases was consistent with proliferating cells in all three groups. We concluded that LLLI, particularly a dose of 1.0 J/cm², contributed to the growth of DPSCs and maintenance of its viability. This fact indicates this therapy to be an important future tool for tissue engineering and regenerative medicine involving stem cells.

  20. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    PubMed

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  1. Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells.

    PubMed

    Lee, Min Ho; Cho, Yoonjung; Jung, Byung Chul; Kim, Sung Hoon; Kang, Yeo Wool; Pan, Cheol-Ho; Rhee, Ki-Jong; Kim, Yoon Suk

    2015-08-14

    Parkin is a known tumor suppressor. However, the mechanism by which parkin acts as a tumor suppressor remains to be fully elucidated. Previously, we reported that parkin expression induces caspase-dependent apoptotic cell death in TNF-α-treated HeLa cells. However, at that time, we did not consider the involvement of parkin in cell cycle control. In the current study, we investigated whether parkin is involved in cell cycle regulation and suppression of cancer cell growth. In our cell cycle analyses, parkin expression induced G2/M cell cycle arrest in TNF-α-treated HeLa cells. To elucidate the mechanism(s) by which parkin induces this G2/M arrest, we analyzed cell cycle regulatory molecules involved in the G2/M transition. Parkin expression induced CDC2 phosphorylation which is known to inhibit CDC2 activity and cause G2/M arrest. Cyclin B1, which is degraded during the mitotic transition, accumulated in response to parkin expression, thereby indicating parkin-induced G2/M arrest. Next, we established that Myt1, which is known to phosphorylate and inhibit CDC2, increased following parkin expression. In addition, we found that parkin also induces increased Myt1 expression, G2/M arrest, and reduced cell viability in TNF-α-treated HCT15 cells. Furthermore, knockdown of parkin expression by parkin-specific siRNA decreased Myt1 expression and phosphorylation of CDC2 and resulted in recovered cell viability. These results suggest that parkin acts as a crucial molecule causing cell cycle arrest in G2/M, thereby suppressing tumor cell growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Agglomeration, sedimentation, and cellular toxicity of alumina nanoparticles in cell culture medium

    NASA Astrophysics Data System (ADS)

    Yoon, Dokyung; Woo, Daekwang; Kim, Jung Heon; Kim, Moon Ki; Kim, Taesung; Hwang, Eung-Soo; Baik, Seunghyun

    2011-06-01

    The cytotoxicity of alumina nanoparticles (NPs) was investigated for a wide range of concentration (25-200 μg/mL) and incubation time (0-72 h) using floating cells (THP-1) and adherent cells (J774A.1, A549, and 293). Alumina NPs were gradually agglomerated over time although a significant portion of sedimentation occurred at the early stage within 6 h. A decrease of the viability was found in floating (THP-1) and adherent (J774A.1 and A549) cells in a dose-dependent manner. However, the time-dependent decrease in cell viability was observed only in adherent cells (J774A.1 and A549), which is predominantly related with the sedimentation of alumina NPs in cell culture medium. The uptake of alumina NPs in macrophages and an increased cell-to-cell adhesion in adherent cells were observed. There was no significant change in the viability of 293 cells. This in vitro test suggests that the agglomeration and sedimentation of alumina NPs affected cellular viability depending on cell types such as monocytes (THP-1), macrophages (J774A.1), lung carcinoma cells (A549), and embryonic kidney cells (293).

  3. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche.

    PubMed

    Zhang, Wenting; Gu, Yexin; Sun, Qiaoling; Siegel, David S; Tolias, Peter; Yang, Zheng; Lee, Woo Y; Zilberberg, Jenny

    2015-01-01

    We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC) using an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1) optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2) replenishing OSB during culture as a practical means of prolonging MMC's viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses.

  4. Ex Vivo Maintenance of Primary Human Multiple Myeloma Cells through the Optimization of the Osteoblastic Niche

    PubMed Central

    Zhang, Wenting; Gu, Yexin; Sun, Qiaoling; Siegel, David S.; Tolias, Peter; Yang, Zheng

    2015-01-01

    We previously reported a new approach for culturing difficult-to-preserve primary patient-derived multiple myeloma cells (MMC) using an osteoblast (OSB)-derived 3D tissue scaffold constructed in a perfused microfluidic environment and a culture medium supplemented with patient plasma. In the current study, we used this biomimetic model to show, for the first time, that the long-term survival of OSB is the most critical factor in maintaining the ex vivo viability and proliferative capacity of MMC. We found that the adhesion and retention of MMC to the tissue scaffold was meditated by osteoblastic N-cadherin, as one of potential mechanisms that regulate MMC-OSB interactions. However, in the presence of MMC and patient plasma, the viability and osteogenic activity of OSB became gradually compromised, and consequently MMC could not remain viable over 3 weeks. We demonstrated that the long-term survival of both OSB and MMC could be enhanced by: (1) optimizing perfusion flow rate and patient-derived plasma composition in the culture medium and (2) replenishing OSB during culture as a practical means of prolonging MMC’s viability beyond several weeks. These findings were obtained using a high-throughput well plate-based perfusion device from the perspective of optimizing the ex vivo preservation of patient-derived MM biospecimens for downstream use in biological studies and chemosensitivity analyses. PMID:25973790

  5. Effect of fluoride on the cell viability, cell organelle potential, and photosynthetic capacity of freshwater and soil algae.

    PubMed

    Chae, Yooeun; Kim, Dokyung; An, Youn-Joo

    2016-12-01

    Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨ m ) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨ m ) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F - ) with magnesium ions (Mg 2+ ) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Imaging stem cell distribution, growth, migration, and differentiation in 3-D scaffolds for bone tissue engineering using mesoscopic fluorescence tomography.

    PubMed

    Tang, Qinggong; Piard, Charlotte; Lin, Jonathan; Nan, Kai; Guo, Ting; Caccamese, John; Fisher, John; Chen, Yu

    2018-01-01

    Regenerative medicine has emerged as an important discipline that aims to repair injury or replace damaged tissues or organs by introducing living cells or functioning tissues. Successful regenerative medicine strategies will likely depend upon a simultaneous optimization strategy for the design of biomaterials, cell-seeding methods, cell-biomaterial interactions, and molecular signaling within the engineered tissues. It remains a challenge to image three-dimensional (3-D) structures and functions of the cell-seeded scaffold in mesoscopic scale (>2 ∼ 3 mm). In this study, we utilized angled fluorescence laminar optical tomography (aFLOT), which allows depth-resolved molecular characterization of engineered tissues in 3-D to investigate cell viability, migration, and bone mineralization within bone tissue engineering scaffolds in situ. © 2017 Wiley Periodicals, Inc.

  7. CD39/NTPDase-1 expression and activity in human umbilical vein endothelial cells are differentially regulated by leaf extracts from Rubus caesius and Rubus idaeus.

    PubMed

    Dudzinska, Dominika; Luzak, Boguslawa; Boncler, Magdalena; Rywaniak, Joanna; Sosnowska, Dorota; Podsedek, Anna; Watala, Cezary

    2014-09-01

    Many experimental studies have demonstrated the favorable biological activities of plants belonging to the genus Rubus, but little is known of the role of Rubus leaf extracts in the modulation of the surface membrane expression and activity of endothelial apyrase. The aim of this study was to assess the influence of 1-15 μg/ml Rubus extracts on CD39 expression and enzymatic activity, and on the activation (ICAM-1 expression) and viability of human umbilical vein endothelial cells (HUVEC). The polyphenolic contents and antioxidative capacities of extracts from dewberry (R. caesius L.) and raspberry (R. idaeus L.) leaves were also investigated. The techniques applied were flow cytometry (endothelial surface membrane expression of ICAM-1 and CD39), malachite green assay (CD39 activity), HPLC-DAD (quantitative analysis of polyphenolic extract), ABTS, DPPH and FRAP spectrometric assays (antioxidant capacity), and the MTT test (cell viability). Significantly increased CD39 expressions and significantly decreased ATPDase activities were found in the cells treated with 15 μg/ml of either extract compared to the results for the controls. Neither of the extracts affected cell proliferation, but both significantly augmented endothelial cell ICAM-1 expression. The overall antioxidant capacities of the examined extracts remained relatively high and corresponded well to the determined total polyphenol contents. Overall, the results indicate that under in vitro conditions dewberry and raspberry leaf extracts have unfavorable impact on endothelial cells.

  8. The Biological Effects of Bilirubin Photoisomers

    PubMed Central

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950’s, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells. PMID:26829016

  9. Excessive L-cysteine induces vacuole-like cell death by activating endoplasmic reticulum stress and mitogen-activated protein kinase signaling in intestinal porcine epithelial cells.

    PubMed

    Ji, Yun; Wu, Zhenlong; Dai, Zhaolai; Sun, Kaiji; Zhang, Qing; Wu, Guoyao

    2016-01-01

    High intake of dietary cysteine is extremely toxic to animals and the underlying mechanism remains largely unknown. This study was conducted to test the hypothesis that excessive L-cysteine induces cell death by activating endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) signaling in intestinal porcine epithelial cells. Jejunal enterocytes were cultured in the presence of 0-10 mmol/L L-cysteine. Cell viability, morphologic alterations, mRNA levels for genes involved in ER stress, protein abundances for glucose-regulated protein 78, C/EBP homologous protein (CHOP), alpha subunit of eukaryotic initiation factor-2 (eIF2α), extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal protein kinase (JNK1/2) were determined. The results showed that L-cysteine (5-10 mmol/L) reduced cell viability (P < 0.05) and led to vacuole-like cell death in intestinal porcine epithelial cells. These adverse effects of L-cysteine were not affected by the autophagy inhibitor 3-methyladenine. The protein abundances for CHOP, phosphorylated (p)-eIF2α, p-JNK1/2, p-p38 MAPK, and the spliced form of XBP-1 mRNA were enhanced (P < 0.05), whereas those for p-ERK1/2 were reduced (P < 0.05). Collectively, excessive L-cysteine induces vacuole-like cell death via the activation of ER stress and MAPK signaling in small intestinal epithelial cells. These signaling pathways may be potential targets for developing effective strategies to prevent the toxicity of dietary cysteine.

  10. Curcumin and Viscum album Extract Decrease Proliferation and Cell Viability of Soft-Tissue Sarcoma Cells: An In Vitro Analysis of Eight Cell Lines Using Real-Time Monitoring and Colorimetric Assays.

    PubMed

    Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M

    2017-01-01

    The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.

  11. Dragon's Blood Sap (Croton Lechleri) As Storage Medium For Avulsed Teeth: In Vitro Study Of Cell Viability.

    PubMed

    Martins, Christine Men; Hamanaka, Elizane Ferreira; Hoshida, Thayse Yumi; Sell, Ana Maria; Hidalgo, Mirian Marubayashi; Silveira, Catarina Soares; Poi, Wilson Roberto

    2016-01-01

    Tooth replantation success depends on the condition of cementum periodontal ligament after tooth avulsion; which is influenced by storage medium. The dragon's blood (Croton lechleri) sap has been suggested as a promising medium because it supports collagen formation and exhibits healing, anti-inflammatory and antimicrobial properties. Thus, the aim of this study was to evaluate the efficacy of dragon's blood sap as a storage medium for avulsed teeth through evaluation of functional and metabolic cell viability. This in vitro study compared the efficacy of different storage media to maintain the viability of human peripheral blood mononuclear and periodontal ligament cells. A 10% dragon's blood sap was tested while PBS was selected as its control. Ultra pasteurized whole milk was used for comparison as a commonly used storage medium. DMEM and distilled water were the positive and negative controls, respectively. The viability was assessed through trypan blue exclusion test and colorimetric MTT assay after 1, 3, 6, 10 and 24 h of incubation. The dragon's blood sap showed promising results due to its considerable maintenance of cell viability. For trypan blue test, the dragon's blood sap was similar to milk (p<0.05) and both presented the highest viability values. For MTT, the dragon's blood sap showed better results than all storage media, even better than milk (p<0.05). It was concluded that the dragon's blood sap was as effective as milk, the gold standard for storage medium. The experimental sap preserved the membrane of all cells and the functional viability of periodontal ligament cells.

  12. Phenformin inhibits cell proliferation and induces cell apoptosis and autophagy in cholangiocarcinoma.

    PubMed

    Hu, Shuyang; Ouyang, Qing; Cheng, Qingbao; Wang, Jinghan; Feng, Feiling; Qiao, Liang; Gan, Wei; Shi, Yang; Wu, Demin; Jiang, Xiaoqing

    2018-04-01

    Cholangiocarcinoma (CCA) is an aggressive malignant tumor and the prognosis of patients with advanced stage disease remains poor. Therefore, the identification of novel treatment agents for CCA is required. In the present study, the biological effects of the diabetes therapeutic agent, phenformin, in CCA cell lines was investigated. Cell Counting Kit‑8 cell viability, cellular clone formation and subcutaneous tumor formation assays were performed, which revealed that phenformin inhibited CCA cell proliferation and growth both in vitro and in vivo. In addition, phenformin induced CCA cell apoptosis and autophagy. Phenformin partly activated the liver kinase B1 (LKB1)/5' AMP‑activated protein kinase signaling pathway to exert its biological effects on CCA cell lines, as demonstrated by knockdown of LKB1, which reversed these effects. In conclusion, the present study demonstrated the biological effects of phenformin in CCA and suggested that phenformin may be a potential novel agent for CCA treatment.

  13. Cibotium barometz polysaccharides stimulate chondrocyte proliferation in vitro by promoting G1/S cell cycle transition

    PubMed Central

    Fu, Changlong; Zheng, Chunsong; Lin, Jie; Ye, Jinxia; Mei, Yangyang; Pan, Caibin; Wu, Guangwen; Li, Xihai; Ye, Hongzhi; Liu, Xianxiang

    2017-01-01

    Cibotium barometz polysaccharides (CBPS) are one of the most important bioactive components extracted from the Cibotium barometz plant, which belongs to the Dicksoniaceae family. It has been widely used for the treatment of orthopedic diseases in traditional Chinese medicine. However, the molecular mechanisms behind the therapeutic effects of CBPS remain to be clarified. In the present study, the concentration of CBPS was detected by phenol-vitriol colorimetry. Furthermore, the effects stimulated by CBPS on the viability and G1/S cell cycle transition in primary chondrocytes from Sprague-Dawley rats were investigated. A cell viability assay demonstrated that chondrocyte proliferation may be enhanced by CBPS in a dose- and time-dependent manner. The mechanism underlying the promotion of chondrocyte cell cycle was suggested to involve the stimulation of G1 to S phase transition. To further confirm the results, reverse transcription-quantitative polymerase chain reaction and western blot analyses were used to detect the expression of mRNA and protein levels of cyclin D1, cyclin-dependent kinase 4 and retinoblastoma protein. The results suggested that CBPS may stimulate chondrocyte proliferation via promoting G1/S cell cycle transition. Since osteoarthritis is characterized by deficient proliferation in chondrocytes, the present study indicates that CBPS may potentially serve as a novel method for the treatment of osteoarthritis. PMID:28358416

  14. Oxidative stress response in SH-SY5Y cells exposed to short-term 1800 MHz radiofrequency radiation.

    PubMed

    Marjanovic Cermak, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2018-01-28

    The exact mechanism that could explain the effects of radiofrequency (RF) radiation exposure at non-thermal level is still unknown. Increasing evidence suggests a possible involvement of reactive oxygen species (ROS) and development of oxidative stress. To test the proposed hypothesis, human neuroblastoma cells (SH-SY5Y) were exposed to 1800 MHz short-term RF exposure for 10, 30 and 60 minutes. Electric field strength within Gigahertz Transverse Electromagnetic cell (GTEM) was 30 V m -1 and specific absorption rate (SAR) was calculated to be 1.6 W kg -1 . Cellular viability was measured by MTT assay and level of ROS was determined by fluorescent probe 2',7'-dichlorofluorescin diacetate. Concentrations of malondialdehyde and protein carbonyls were used to assess lipid and protein oxidative damage and antioxidant activity was evaluated by measuring concentrations of total glutathione (GSH). After radiation exposure, viability of irradiated cells remained within normal physiological values. Significantly higher ROS level was observed for every radiation exposure time. After 60 min of exposure, the applied radiation caused significant lipid and protein damage. The highest GSH concentration was detected after 10 minute-exposure. The results of our study showed enhanced susceptibility of SH-SY5Y cells for development of oxidative stress even after short-term RF exposure.

  15. Development of a Cell Sheet Transportation Technique for Regenerative Medicine

    PubMed Central

    Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo

    2014-01-01

    Purpose: A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. Material and Methods: We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. Results: During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. Conclusion: The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies. PMID:24044382

  16. Mesenchymal stromal cells support the viability and differentiation of thymocytes through direct contact in autologous co-cultures.

    PubMed

    Azghadi, Seyed Mohammad Reza; Suciu, Maria; Gruia, Alexandra Teodora; Barbu-Tudoran, Lucian; Cristea, Mirabela Iustina; Mic, Ani Aurora; Muntean, Danina; Nica, Dragos Vasile; Mic, Felix Aurel

    2016-08-01

    The development of thymocytes and generation of mature T cells is a complex process that requires spatio-temporal interactions of thymocytes with the other cells of the thymus microenvironment. Recently, mesenchymal stromal cells were isolated from the neonatal human thymus and differentiated into chondrogenic, osteogenic, and adipogenic lineages, just like their bone marrow counterparts. However, their function in thymocyte homeostasis is unknown. In our autologous co-cultures of rat mesenchymal stromal cells and thymocytes, the stromal cells preserve the viability of cultured thymocytes and stimulate the development of CD4-CD8- double-negative and the maturation of mainly CD4+ single-positive thymocytes. Thymocytes also influence the stemness of bone marrow mesenchymal stromal cells, as their expression of CD44, a marker associated with cellular proliferation and migration, is reduced in co-cultures. Mesenchymal stromal cells' influence on thymocyte development requires direct physical contact between the two cells and is not mediated by a soluble factor. When the two types of cells were physically separated, the stimulative effects of mesenchymal stromal cells on thymocytes did not occur. Electron microscopy confirmed the close contact between the membranes of thymocytes and mesenchymal stromal cells. Our experiments suggest that membrane exchanges could occur between mesenchymal stromal cells and thymocytes, such as the transfer of CD44 from mesenchymal stromal cells to the thymocytes, but its functional significance for thymocytes development remains to be established. These results suggest that mesenchymal stromal cells could normally be a part of the in vivo thymic microenvironment and form a niche that could sustain and guide the development of thymocytes.

  17. Development of a cell sheet transportation technique for regenerative medicine.

    PubMed

    Oie, Yoshinori; Nozaki, Takayuki; Takayanagi, Hiroshi; Hara, Susumu; Hayashi, Ryuhei; Takeda, Shizu; Mori, Keisuke; Moriya, Noboru; Soma, Takeshi; Tsujikawa, Motokazu; Saito, Kazuo; Nishida, Kohji

    2014-05-01

    A transportation technique for cell sheets is necessary to standardize regenerative medicine. The aim of this article is to develop and evaluate a new transportation technique for cell sheets. We developed a transportation container with three basic functions: the maintenance of interior temperature, air pressure, and sterility. The interior temperature and air pressure were monitored by a recorder. Human oral mucosal epithelial cells obtained from two healthy volunteers were cultured on temperature-responsive culture dishes. The epithelial cell sheets were transported via an airplane between the Osaka University and Tohoku University using the developed cell transportation container. Histological and immunohistochemical analyses and flow cytometric analyses for cell viability and cell purity were performed for the cell sheets before and 12 h after transportation to assess the influence of transportation on the cell sheets. Sterility tests and screening for endotoxin and mycoplasma in the cell sheets were performed before and after transportation. During transportation via an airplane, the temperature inside the container was maintained above 32°C, and the changes in air pressure remained within 10 hPa. The cell sheets were well stratified and successfully harvested before and after transportation. The expression patterns of keratin 3/76, p63, and MUC16 were equivalent before and after transportation. However, the expression of ZO-1 in the cell sheet after transportation was slightly weaker than that before transportation. The cell viability was 72.0% before transportation and 77.3% after transportation. The epithelial purity was 94.6% before transportation and 87.9% after transportation. Sterility tests and screening for endotoxin and mycoplasma were negative for all cell sheets. The newly developed transportation technique for air travel is essential technology for regenerative medicine and promotes the standardization and spread of regenerative therapies.

  18. Thymoquinone Induces Cell Death in Human Squamous Carcinoma Cells via Caspase Activation-Dependent Apoptosis and LC3-II Activation-Dependent Autophagy

    PubMed Central

    Yu, Cheng-Chia; Lai, Yi-Yeh; Chen, Pei-Ni

    2014-01-01

    Background Thymoquinone (TQ), an active component of Nigella sativa or black cumin, elicits cytotoxic effects on various cancer cell lines. However, the anti-cancer effects of TQ on head and neck squamous cell carcinoma (HNSCC) remain unclear. Methodology/Principal Findings In this study, TQ elicited a strong cytotoxic effect on SASVO3, a highly malignant HNSCC cell line. The mechanisms of this cytotoxic effect were concentration dependent. TQ also induced apoptotic cell death in SASVO3 cells as indicated by an increase in Bax expression and caspase-9 activation. Apoptosis was possibly caspase-9 dependent because the exposure of cells to a caspase-9 inhibitor partially prevented cell death. The exposed cells also showed increased levels of autophagic vacuoles and LC3-II proteins, which are specific autophagy markers. Cell viability assay results further revealed that bafilomycin-A1, an autophagy inhibitor, enhanced TQ cytotoxicity; by comparison, Annexin V and propidium-iodide staining assay results showed that this inhibitor did not promote apoptosis. TQ treatment also increased the accumulation of autophagosomes. Using a lentivirus-shRNA system for LC3 silencing, we found that cell viability was eradicated in autophagy-defective cells. An in vivo BALB/c nude mouse xenograft model further showed that TQ administered by oral gavage reduced tumor growth via induced autophagy and apoptosis. Conclusions These findings indicated that TQ induced cell death in oral cancer cells via two distinct anti-neoplastic activities that can induce apoptosis and autophagy. Therefore, TQ is a promising candidate in phytochemical-based, mechanistic, and pathway-targeted cancer prevention strategies. PMID:25000169

  19. Menstruum induces changes in mesothelial cell morphology.

    PubMed

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p < 0.05), 82% (n = 27, not significant) and 104% (n = 14, not significant) when cultured in the cell-free fraction of PF for 24, 48 and 72 h, respectively, when compared to medium with 10% fetal calf serum. Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal lining. Therefore, by local destruction of the mesothelial layer, menstrual endometrium is able to create sites for adhesion. Copyright 2000 S. Karger AG, Basel

  20. The Effects of Oxygen Level and Glucose Concentration on the Metabolism of Porcine TMJ Disc Cells

    PubMed Central

    Cisewski, Sarah E.; Zhang, Lixia; Kuo, Jonathan; Wright, Gregory J.; Wu, Yongren; Kern, Michael J.; Yao, Hai

    2015-01-01

    Objective To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. Design TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 hours with 0, 1.5, 5, or 25mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-3H]proline and [35S]sulfate into the cells, respectively. Results TMJ disc cell viability significantly decreased (P<0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P<0.0001), while a decrease in glucose concentration significantly decreased viability (P<0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P<0.0001) and matrix synthesis (P<0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P<0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P<0.0001), ATP production (P=0.00015), and collagen (P=0.0002) and proteoglycan synthesis (P<0.0001). Conclusions Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. PMID:26033165

  1. The effects of oxygen level and glucose concentration on the metabolism of porcine TMJ disc cells.

    PubMed

    Cisewski, S E; Zhang, L; Kuo, J; Wright, G J; Wu, Y; Kern, M J; Yao, H

    2015-10-01

    To determine the combined effect of oxygen level and glucose concentration on cell viability, ATP production, and matrix synthesis of temporomandibular joint (TMJ) disc cells. TMJ disc cells were isolated from pigs aged 6-8 months and cultured in a monolayer. Cell cultures were preconditioned for 48 h with 0, 1.5, 5, or 25 mM glucose DMEM under 1%, 5%, 10%, or 21% O2 level, respectively. The cell viability was measured using the WST-1 assay. ATP production was determined using the Luciferin-Luciferase assay. Collagen and proteoglycan synthesis were determined by measuring the incorporation of [2, 3-(3)H] proline and [(35)S] sulfate into the cells, respectively. TMJ disc cell viability significantly decreased (P < 0.0001) without glucose. With glucose present, decreased oxygen levels significantly increased viability (P < 0.0001), while a decrease in glucose concentration significantly decreased viability (P < 0.0001). With glucose present, decreasing oxygen levels significantly reduced ATP production (P < 0.0001) and matrix synthesis (P < 0.0001). A decreased glucose concentration significantly decreased collagen synthesis (P < 0.0001). The interaction between glucose and oxygen was significant in regards to cell viability (P < 0.0001), ATP production (P = 0.00015), and collagen (P = 0.0002) and proteoglycan synthesis (P < 0.0001). Although both glucose and oxygen are important, glucose is the limiting nutrient for TMJ disc cell survival. At low oxygen levels, the production of ATP, collagen, and proteoglycan are severely inhibited. These results suggest that steeper nutrient gradients may exist in the TMJ disc and it may be vulnerable to pathological events that impede nutrient supply. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. MiR-34a Inhibits Viability and Invasion of Human Papillomavirus-Positive Cervical Cancer Cells by Targeting E2F3 and Regulating Survivin.

    PubMed

    Geng, Dianzhong; Song, Xiaohua; Ning, Fangling; Song, Qianhua; Yin, Honghua

    2015-05-01

    Previous studies confirmed that high-risk human papillomavirus (HR-HPV) infection is a risk factor of cervical cancer, and the infection was associated with significantly reduced miR-34a expression during carcinogenesis. However, the downstream targets of miR-34a and their roles are still not well understood. This study explored the regulative role of miR-34a on E2F3 and survivin expression and the viability and invasion of HPV-positive cervical cancer cells. MiR-34a and survivin expression in 56 cases of HR-HPV-positive patients, 28 cases of HR-HPV-negative patients, and 28 normal cases without HR-HPV infections were measured. Human papillomavirus-18-positive HeLa cervical cancer cells and HPV-16-positive SiHa cells were used to explore the effect of miR-34a on cell viability and invasion. The molecular target of miR-34a was also explored in cervical cancer cells. The results showed that miR-34a overexpression could inhibit HPV-positive cancer cell viability, whereas its downregulation promoted cell viability. E2F3 is a direct target of miR-34a in HPV-positive cervical cancer cells. By targeting E2F3, miR-34a could regulate the expression of survivin. Thus, through regulating E2F3 and survivin, miR-34a could reduce the viability and invasion of HPV-positive cervical cancer cells. This study confirmed a novel miR-34a-E2F3-survivin axis in the tumor suppressor role of miR-34a in cervical cancer.

  3. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla.

    PubMed

    Lambricht, Laure; De Berdt, Pauline; Vanacker, Julie; Leprince, Julian; Diogenes, Anibal; Goldansaz, Hadi; Bouzin, Caroline; Préat, Véronique; Dupont-Gillain, Christine; des Rieux, Anne

    2014-12-01

    The goal of the present work was to evaluate in vitro and in vivo the influence of various types and compositions of natural hydrogels on the viability and metabolic activity of SCAPs. Two alginate, three hyaluronic-based (Corgel™) hydrogel formulations and Matrigel were characterized for their mechanical, surface and microstructure properties using rheology, X-ray photoelectron spectroscopy and scanning electron microscopy, respectively. A characterized SCAP cell line (RP89 cells) was encapsulated in the different experimental hydrogel formulations. Cells were cultured in vitro, or implanted in cyclosporine treated mice. In vitro cell viability was evaluated using a Live/Dead assay and in vitro cellular metabolic activity was evaluated with a MTS assay. In vivo cell apoptosis was evaluated by a TUNEL test and RP89 cells were identified by human mitochondria immunostaining. Hydrogel composition influenced their mechanical and surface properties, and their microstructure. In vitro cell viability was above 80% after 2 days but decreased significantly after 7 days (60-40%). Viability at day 7 was the highest in Matrigel (70%) and then in Corgel 1.5 (60%). Metabolic activity increased over time in all the hydrogels, excepted in alginate SLM. SCAPs survived after 1 week in vivo with low apoptosis (<1%). The highest number of RP89 cells was found in Corgel 5.5 (140cells/mm(2)). Collectively, these data demonstrate that SCAP viability was directly modulated by hydrogel composition and suggest that a commercially available hyaluronic acid-based formulation might be a suitable delivery vehicle for SCAP-based dental pulp regeneration strategies. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function.

    PubMed

    Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen

    2013-10-01

    The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    PubMed

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  6. Bactericidal effect of photocatalytically-active nanostructured TiO2 surfaces on biofilms of the early oral colonizer, Streptococcus oralis.

    PubMed

    Westas, Emma; Hayashi, Mariko; Cecchinato, Francesca; Wennerberg, Ann; Andersson, Martin; Jimbo, Ryo; Davies, Julia R

    2017-08-01

    This study evaluated the photocatalytic bactericidal effect of nanostructured anatase-rich titanium dioxide (TiO 2 ) on microbial biofilms. Commercially pure titanium discs were spin-coated with photocatalytic TiO 2 nanoparticles (P25). Uncoated discs were used as control (CTRL). Half of the CTRL and half of the P25-coated surfaces were coated with purified saliva (SAL) to give four different groups (CTRL, CTRL + SAL, P25 and P25 + SAL). Streptococcus oralis were allowed to form biofilms on the discs for 18 h and non-adherent cells were rinsed off. Bacterial viability was assessed at time 0 with Live/Dead BacLight staining and epifluorescence microscopy. The remaining discs were divided into a non-UV group and UVA-irradiated (+UV) group (irradiation time, 6 or 24 h). Thereafter, viability was assessed as above. Viability at time 0 was high and no dead cells were seen on any of the surfaces, even after 24 h, in the absence of UVA. However, after 24 h of exposure, the proportion of viable cells was reduced by 40% on the P25 discs compared to 0 and 6 h, and this effect was enhanced with a salivary pellicle. Members of mixed species biofilms differ in their susceptibility to the bactericidal effect of the surfaces tested and further investigations are needed to optimize the conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2321-2328, 2017. © 2017 Wiley Periodicals, Inc.

  7. Novel nanocomposite coating for dental implant applications in vitro and in vivo evaluation.

    PubMed

    Mehdikhani-Nahrkhalaji, M; Fathi, M H; Mortazavi, V; Mousavi, S B; Hashemi-Beni, B; Razavi, S M

    2012-02-01

    This study aimed at preparation and in vitro and in vivo evaluation of novel bioactive, biodegradable, and antibacterial nanocomposite coating for the improvement of stem cells attachment and antibacterial activity as a candidate for dental implant applications. Poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) nanocomposite coating was prepared via solvent casting process. The nanoparticle amounts of 10, 15, and 20 weight percent (wt%) were chosen in order to determine the optimum amount of nanoparticles suitable for preparing an uniform coating. Bioactivity and degradation of the coating with an optimum amount of nanoparticles were evaluated by immersing the prepared samples in simulated body fluid and phosphate buffer saline (PBS), respectively. The effect of nanocomposite coating on the attachment and viability of human adipose-derived stem cells (hASCs) was investigated. Kirschner wires (K-wires) of stainless steel were coated with the PBGHA nanocomposite coating, and mechanical stability of the coating was studied during intramedullary implantation into rabbit tibiae. The results showed that using 10 wt% nanoparticles (5 wt% HA and 5 wt% BG) in the nanocomposite could provide the desired uniform coating. The study of in vitro bioactivity showed rapid formation of bone-like apatite on the PBGHA coating. It was degraded considerably after about 60 days of immersion in PBS. The hASCs showed excellent attachment and viability on the coating. PBGHA coating remained stable on the K-wires with a minimum of 96% of the original coating mass. It was concluded that PBGHA nanocomposite coating provides an ideal surface for the stem cells attachment and viability. In addition, it could induce antibacterial activity, simultaneously.

  8. Limitations in the Use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid Stains for Viability Measurements of Isolated Islets of Langerhans.

    PubMed

    Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K

    2008-03-01

    BACKGROUND: A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO(R)13, SYTO(R)24 and SYBR(R)14 as possible alternatives to FDA. RESULTS: We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO(R)13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. CONCLUSIONS: From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability.

  9. Limitations in the Use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and Cell Permeable Nucleic Acid Stains for Viability Measurements of Isolated Islets of Langerhans

    PubMed Central

    Boyd, Vinc; Cholewa, Olivia Maria; Papas, Klearchos K.

    2010-01-01

    Background A review of current literature shows that the combined use of the cell permeable esterase-substrate fluorescein diacetate (FDA) and the cell impermeant nucleic acid stain propidium iodide (PI) to be one of the most common fluorescence-based methods to assess the viability of isolated islets of Langerhans, and it is currently used for islet product release prior to transplantation in humans. However, results from this assay do not correlate with islet viability and function or islet transplantation success in animals or humans (Eckhard et al. 2004; Ricordi et al. 2001). This may be in part attributed to considerable differences as well as discrepancies in the use of these reagents on islets. We critically surveyed the literature and evaluated the impact of a number of variables associated with the use of FDA/PI to determine their reliability in assessing islet cell viability. In addition, we evaluated other fluorescent stains, such as SYTO®13, SYTO®24 and SYBR®14 as possible alternatives to FDA. Results We found that the stability of stains in storage and stock solutions, the number of islets stained, concentration of stains, staining incubation time, the buffer/media used, and the method of examining islets were significant in the final scoring of viability. For archival file photos, the exposure time and camera/software settings can also impact interpretation of viability. Although our results show that FDA does detect intracellular esterase activity and staining with PI does assess cell membrane integrity, the results obtained from using these stains did not correlate directly with expected islet function and viability per transplantation into diabetic athymic nude mice (Papas et al. 2007). In addition, the use of two nucleic acid stains, such as SYTO®13 and PI, for live/dead scoring exhibited staining anomalies which limit their accuracy in assessing islet viability. Conclusions From a review of the literature and from our observations on the impact of reagent handling and various staining and imaging parameters used to visually evaluate islets, consistent interpretation of islet cell membrane integrity and viability is dependent upon a number of factors. We discuss the utility and limitations of these reagents in evaluating islet cell membrane integrity and viability. PMID:20814586

  10. Effects of Fluid Shear Stress on Cancer Stem Cell Viability

    NASA Astrophysics Data System (ADS)

    Sunday, Brittney; Triantafillu, Ursula; Domier, Ria; Kim, Yonghyun

    2014-11-01

    Cancer stem cells (CSCs), which are believed to be the source of tumor formation, are exposed to fluid shear stress as a result of blood flow within the blood vessels. It was theorized that CSCs would be less susceptible to cell death than non-CSCs after both types of cell were exposed to a fluid shear stress, and that higher levels of fluid shear stress would result in lower levels of cell viability for both cell types. To test this hypothesis, U87 glioblastoma cells were cultured adherently (containing smaller populations of CSCs) and spherically (containing larger populations of CSCs). They were exposed to fluid shear stress in a simulated blood flow through a 125-micrometer diameter polyetheretherketone (PEEK) tubing using a syringe pump. After exposure, cell viability data was collected using a BioRad TC20 Automated Cell Counter. Each cell type was tested at three physiological shear stress values: 5, 20, and 60 dynes per centimeter squared. In general, it was found that the CSC-enriched U87 sphere cells had higher cell viability than the CSC-depleted U87 adherent cancer cells. Interestingly, it was also observed that the cell viability was not negatively affected by the higher fluid shear stress values in the tested range. In future follow-up studies, higher shear stresses will be tested. Furthermore, CSCs from different tumor origins (e.g. breast tumor, prostate tumor) will be tested to determine cell-specific shear sensitivity. National Science Foundation Grant #1358991 supported the first author as an REU student.

  11. An evaluation of novel vital dyes for intraocular surgery.

    PubMed

    Haritoglou, Christos; Yu, Alice; Freyer, Wolfgang; Priglinger, Siegfried G; Alge, Claudia; Eibl, Kirsten; May, Christian A; Welge-Luessen, Ulrich; Kampik, Anselm

    2005-09-01

    To evaluate systematically the staining characteristics and safety of potential new dyes for intraocular surgery. Six dyes were included in the investigation: light green SF (LGSF) yellowish, E68, bromophenol blue (BPB), Chicago blue (CB), rhodamine 6G, rhodulinblau-basic 3 (RDB-B3). All dyes were dissolved and diluted in a balanced saline saline solution. The light-absorbing properties of each dye were measured at a concentration of 0.05% between 200 and 1000 nm. Staining characteristics were examined by staining lens capsule tissue and epiretinal membranes (ERMs), removed intraoperatively, with dye concentrations of 1.0%, 0.5%, 0.2%, and 0.05%. Enucleated porcine eyes (postmortem time, 9 hours) were also stained. Dye-related toxicity was evaluated by a colorimetric test (MTT) measuring the inhibition of retinal pigment epithelium (RPE) cell proliferation (ARPE-19 and primary human RPE cells, passages 3-6). Cell viability was also quantified based on a two-color fluorescence cell-viability assay. Dyes were investigated in concentrations of 0.2% and 0.02%. All dyes investigated in this study stained human lens capsules, removed intraoperatively; ERMs, peeled during macular pucker surgery; and enucleated porcine eyes, depending on the concentration applied. The long-wavelength absorption maximum of the dyes was within the range of 527 to 655 nm at concentrations of 0.05%. Rhodamine G6 and RDB-B3 showed adverse effects on ARPE-19 cell proliferation at a concentration of 0.2% and were excluded from further investigation in primary RPE cells. The remaining four dyes showed no toxic effect on ARPE-19 and primary RPE cell proliferation at concentrations of 0.2% and 0.02%. Cell viability was affected by LGSF yellowish (0.2%) and CB (0.2% and 0.02%). Two dyes (E68 and BPB) showed no relevant toxicity in vitro. The systematic evaluation of dyes for intraocular use seems mandatory. In this study four dyes were identified with effective staining characteristics, with two of these dyes having no detectable toxic effect on RPE cells in vitro.

  12. Effects of voluntary exercise on the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups born from morphine- dependent mothers during pregnancy.

    PubMed

    Haydari, Sakineh; Safari, Manouchehr; Zarbakhsh, Sam; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein

    2016-11-10

    This study was designed to investigate whether free access to a running wheel during pregnancy in morphine-dependent mothers would influence the viability, proliferation and BDNF levels of bone marrow stromal cells in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with free access to a running wheel. Male pups are weaned at 21days of birth and their bones marrows were aspirated from the femurs and tibias and also the bone marrow stromal cells (BMSCs) cultured. MTT assay was used to determine cell viability and proliferation rate. The level of BDNF was measured in the supernant of BMSCs culture by ELISA. The sedentary morphine-dependent mothers' pups showed a significant increase in the percentage cell viability and proliferation rate and also a significant decrease in the BDNF protein levels in BMSCs. The rat pups borne from exercising the control and morphine-dependent mothers exhibited an increase in the percentage viability, proliferation rate and BDNF levels of the BMSCs. This study showed that maternal exercise during pregnancy in morphine-dependent and non-dependent mothers, with increasing of BDNF levels increased the proliferation and viability of BMSCs in the rat pups. Also, chronic administration of morphine during pregnancy was able to increase the proliferation and viability of BMSCs in the rat pups. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Emamectin benzoate induces ROS-mediated DNA damage and apoptosis in Trichoplusia Tn5B1-4 cells.

    PubMed

    Luan, Shaorong; Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Xu, Zhikang; Lang, Jialin; Huang, Qingchun

    2017-08-01

    Emamectin benzoate (EMB), a novel macrocyclic lactone insecticide, possesses high efficacy and beneficial selective toxicity in agriculture, but so far the EMB-induced cytotoxic action in arthropod insect remains unclear. The present studies were carried out to characterize the property of EMB on the induction of reactive oxygen species (ROS)-mediated DNA damage and apoptosis in Trichoplusia Tn5B1-4 cell model. Following the exposure to EMB at 2.5, 5, 10 or 15 μM, the cells changed to be round, suspended and aggregated, and the decline of cell proliferating ability and cell viability was positively related with the exposure time. Median inhibitory concentration (IC 50 ) of EMB on cell viability was 3.72 μM during 72 h exposure. Apoptosis was induced in 29.8% (24 h) and 39.5% (48 h) of the cells by EMB at 15 μM, showing chromatin condensation in nuclei. The content of ROS in the cells increased rapidly as the concentration of EMB increased, and the pre-incubation of the cells with vitamin E significantly reduced the ROS accumulation. In the treatment of 15 μM EMB, the migrated cell nucleus with DNA strand breaks appeared a teardrop, pear-shaped, or large fan-like tail, and 63.1% of γH2AX-positive cells contained more than four foci, accompanying with high expression level of caspase-3 in time-dependent manner, which consequently led to cell apoptotic death. These evidences in ROS-mediated DNA damage and cell apoptosis induced by EMB may be helpful for deep understanding the cytotoxic action of EMB based on cell model. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synergistic effects of the sesquiterpene lactone, EPD, with cisplatin and paclitaxel in ovarian cancer cells.

    PubMed

    van Haaften, Caroline; Boot, Arnoud; Corver, Willem E; van Eendenburg, Jaap D H; Trimbos, Baptist J M Z; van Wezel, Tom

    2015-04-25

    Ovarian cancer remains still the leading cause of death of gynecological malignancy, in spite of first-line chemotherapy with cisplatin and paclitaxel. Although initial response is favorably, relapses are common and prognosis for women with advanced disease stays poor. Therefore efficacious approaches are needed. Previously, an anti-cancer agent, EPD exhibited potent cytotoxic effects towards ovarian cancer and not towards normal cells. Cell viability and cell cycle analysis studies were performed with EPD, in combination with cisplatin and/or paclitaxel, using the ovarian carcinoma cell lines: SK-OV-3, OVCAR-3, JC, JC-pl and normal fibroblasts. Cell viability was measured using Presto Blue and cell cycle analysis using a flow cytometer. Apoptosis was measured in JC and JC-pl , using the caspase 3 assay kit. In JC-pl, SK-OV-3 and JC, synergistic interactions between either EPD and cisplatin or EPD and paclitaxel were observed. For the first time the effects of EPD on the cell cycle of ovarian cancer cells and normal cells was studied. EPD and combinations of EPD with cisplatin and/ or paclitaxel showed cell cycle arrest in the G2/M phase. The combination of EPD and cisplatin showed a significant synergistic effect in cell line JC-pl, while EPD with paclitaxel showed synergistic interaction in JC. Additionally, synergistic drug combinations showed increased apoptosis. Our results showed a synergistic effect of EPD and cisplatin in an ovarian drug resistant cell line as well as a synergistic effect of EPD and paclitaxel in two other ovarian cell lines. These results might enhance clinical efficacy, compared to the existing regimen of paclitaxel and cisplatin.

  15. Intestinal stem cells remain viable after prolonged tissue storage

    PubMed Central

    Fuller, Megan K.; Faulk, Denver M.; Sundaram, Nambirajan; Mahe, Maxime M.; Stout, Kara M.; von Furstenberg, Richard J.; Smith, Brian J.; McNaughton, Kirk K.; Shroyer, Noah F.; Helmrath, Michael A.; Henning, Susan J.

    2013-01-01

    Intestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such they have significant therapeutic potential. However, it is unknown whether ISCs can survive tissue storage. We hypothesized that, although the majority of epithelial cells may die, ISCs would remain viable for at least 24 h at 4°C. To explore this hypothesis, jejuni of C57Bl6/J or Lgr5-LacZ mice were removed and either processed immediately or placed in phosphate buffered saline (PBS) at 4°C. Delayed isolations of epithelia were performed after 24, 30, or 48 h storage. At the light microscope level, despite extensive apoptosis of villus epithelial cells, small intestinal crypts remained morphologically intact through 30 h and ISCs were identifiable via Lgr5-LacZ positivity. Electron microscopy showed that ISCs retain high integrity through 24 h. When assessed by flow cytometry, ISCs were more resistant to degeneration than the rest of the epithelium, including neighboring Paneth cells, with higher viability across all time points. Culture of isolated crypts showed no loss of capacity to form complex enteroids after 24 h tissue storage, with efficiencies after 7 days of culture remaining above 80%. By 30 h storage, efficiencies declined but budding capability was retained. We conclude that, with delay in isolation, ISCs remain viable and retain their proliferative capacity. In contrast, the remainder of the epithelium, including the Paneth cells, exhibits degeneration and programmed cell death. If these findings are recapitulated with human tissue, storage at 4°C may offer a valuable temporal window for harvest of crypts or ISCs for therapeutic application. PMID:23820734

  16. Effect of doping in carbon nanotubes on the viability of biomimetic chitosan-carbon nanotubes-hydroxyapatite scaffolds.

    PubMed

    Fonseca-García, Abril; Mota-Morales, Josué D; Quintero-Ortega, Iraís A; García-Carvajal, Zaira Y; Martínez-López, V; Ruvalcaba, Erika; Landa-Solís, Carlos; Solis, Lilia; Ibarra, Clemente; Gutiérrez, María C; Terrones, Mauricio; Sanchez, Isaac C; del Monte, Francisco; Velasquillo, María C; Luna-Bárcenas, G

    2014-10-01

    This work describes the preparation and characterization of biomimetic chitosan/multiwall carbon nanotubes/nano-hydroxyapatite (CTS/MWCNT/nHAp) scaffolds and their viability for bone tissue engineering applications. The cryogenic process ice segregation-induced self-assembly (ISISA) was used to fabricate 3D biomimetic CTS scaffolds. Proper combination of cryogenics, freeze-drying, nature and molecular ratio of solutes give rise to 3D porous interconnected scaffolds with clusters of nHAp distributed along the scaffold surface. The effect of doping in CNT (e.g. with oxygen and nitrogen atoms) on cell viability was tested. Under the same processing conditions, pore size was in the range of 20-150 μm and irrespective on the type of CNT. Studies on cell viability with scaffolds were carried out using human cells from periosteum biopsy. Prior to cell seeding, the immunophenotype of mesenchymal periosteum or periosteum-derived stem cells (MSCs-PCs) was characterized by flow cytometric analysis using fluorescence-activated and characteristic cell surface markers for MSCs-PCs. The characterized MSCs-PCs maintained their periosteal potential in cell cultures until the 2nd passage from primary cell culture. Thus, the biomimetic CTS/MWCNT/nHAp scaffolds demonstrated good biocompatibility and cell viability in all cases such that it can be considered as promising biomaterials for bone tissue engineering. © 2013 Wiley Periodicals, Inc.

  17. [Impact of cryopreservation duration of 605 units umbilical cord blood on quality of hematopoietic stem cell and outcome of clinical transplantation].

    PubMed

    Zhang, Yi; Zhu, Hua; Jin, Huanying; Wang, Yinting; Shao, Xiayan; Kong, Jingsi; Huang, Wenhao; Hong, Yan; Li, Chunli; Gao, Feng; Chen, Liang; Wang, Feng; Lu, Yao

    2015-01-01

    To investigate the impact of cryopreservation duration of umbilical cord blood (UCB) on quality of hematopoietic stem cell and outcome of clinical transplantation. 605 units of UCB which had been used in clinical transplantation were previously cryopreserved for 820 (88-2651) days in average. UCB was detected for total nucleated cell count, CD34+ cells count, cell recovery rate, cell viability and CFU-GM after thawing. No statistical correlation was found between cryopreservation duration and cell recovery rate, cell viability. CFU-GM decreased along with the extension of cryopreservation duration (P=0.011), ranging between 109.6 and 105.7/1 × 10⁵. There was no significant difference on hematopoietic reconstitution time, graft failure, acute GVHD and overall survival among groups with different cryopreservation duration. Cryopreservation duration has no significant effect on cell recovery rate, cell viability and clinical transplantation outcome. Extension of cryopreservation duration may reduce CFU-GM of stem cells with fluctaion still in normal range. UCB could maintain cell viability and function to achieve satisfactory clinical transplantation outcome even when thawed after 3 to 7 years' cryopreservation.

  18. In Vitro Effect of the Synthetic cal14.1a Conotoxin, Derived from Conus californicus, on the Human Parasite Toxoplasma gondii.

    PubMed

    De León-Nava, Marco A; Romero-Núñez, Eunice; Luna-Nophal, Angélica; Bernáldez-Sarabia, Johanna; Sánchez-Campos, Liliana N; Licea-Navarro, Alexei F; Morales-Montor, Jorge; Muñiz-Hernández, Saé

    2016-04-08

    Toxins that are secreted by cone snails are small peptides that are used to treat several diseases. However, their effects on parasites with human and veterinary significance are unknown. Toxoplasma gondii is an opportunistic parasite that affects approximately 30% of the world's population and can be lethal in immunologically compromised individuals. The conventional treatment for this parasitic infection has remained the same since the 1950s, and its efficacy is limited to the acute phase of infection. These findings have necessitated the search for new drugs that specifically target T. gondii. We examined the effects of the synthetic toxin cal14.1a (s-cal14.1a) from C. californicus on the tachyzoite form of T. gondii. Our results indicate that, at micromolar concentrations, s-cal14.1a lowers viability and inhibits host cell invasion (by 50% and 61%, respectively) on exposure to extracellular parasites. Further, intracellular replication decreased significantly while viability of the host cell was unaffected. Our study is the first report on the antiparasitic activity of a synthetic toxin of C. californicus.

  19. A novel approach for the cryodesiccated preservation of tissue-engineered skin substitutes with trehalose.

    PubMed

    Sun, Mei; Jiang, Man; Cui, Jihong; Liu, Wei; Yin, Lu; Xu, Chunli; Wei, Qi; Yan, Xingrong; Chen, Fulin

    2016-03-01

    Tissue-engineered skin (TES) holds great promise for wound healing in the clinic. However, optimized preservation methods remain an obstacle for its wide application. In this experimental work, we developed a novel approach to preserve TES in the desiccated state with trehalose. The uptake of trehalose by fibroblasts under various conditions, including the trehalose concentration, incubation temperature and time, was studied. The cell viability was investigated by the MTT assay and CFSE/PI staining after cryodesiccation and rehydration. TES was then prepared and incubated with trehalose, and the wound healing effect was investigated after desiccated preservation. The results showed that the optimized conditions for trehalose uptake by fibroblasts were incubation in 200 mM trehalose at 37 °C for 8 h. Cryodesiccated cells and TES maintained 37.55% and 28.31% viabilities of controls, respectively. Furthermore, cryodesiccated TES exhibited a similar wound healing effect to normal TES. This novel approach enabled the preservation and transportation of TES at ambient temperature with a prolonged shelf time, which provides great advantages for the application of TES. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy.

    PubMed

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Safwat, Akmal; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin.

  1. Dissolved oxygen concentration in the medium during cell culture: Defects and improvements.

    PubMed

    Zhang, Kuan; Zhao, Tong; Huang, Xin; He, Yunlin; Zhou, Yanzhao; Wu, Liying; Wu, Kuiwu; Fan, Ming; Zhu, Lingling

    2016-03-01

    In vitro cell culture has provided a useful model to study the effects of oxygen on cellular behavior. However, it remains unknown whether the in vitro operations themselves affect the medium oxygen levels and the living states of cells. In addition, a prevailing controversy is whether reactive oxygen species (ROS) production is induced by continuous hypoxia or reoxygenation. In this study, we have measured the effects of different types of cell culture containers and the oxygen environment where medium replacement takes place on the actual oxygen tension in the medium. We found that the deviations of oxygen concentrations in the medium are much greater in 25-cm(2) flasks than in 24-well plates and 35-mm dishes. The dissolved oxygen concentrations in the medium were increased after medium replacement in normoxia, but remained unchanged in glove boxes in which the oxygen tension remained at a low level (11.4, 5.7, and 0.5% O2 ). We also found that medium replacement in normoxia increased the number of ROS-positive cells and reduced the cell viability; meanwhile, medium replacement in a glove box did not produce the above effects. Therefore, we conclude that the use of 25-cm(2) flasks should be avoided and demonstrate that continuous hypoxia does not produce ROS, whereas the reoxygenation that occurs during the harvesting of cells leads to ROS and induces cell death. © 2015 International Federation for Cell Biology.

  2. Evaluations of bioantioxidants in cryopreservation of umbilical cord blood using natural cryoprotectants and low concentrations of dimethylsulfoxide.

    PubMed

    Motta, J P R; Gomes, B E; Bouzas, L F; Paraguassú-Braga, F H; Porto, L C

    2010-06-01

    Transplantation using hematopoietic stem cells from umbilical cord blood (UCB) is a life-saving treatment option for patients with select oncologic diseases, immunologic diseases, bone marrow failure, and others. Often this transplant modality requires cryopreservation and storage of hematopoietic stem cells (HSC), which need to remain cryopreserved in UCB banks for possible future use. The most widely used cryoprotectant is dimethylsulfoxide (Me(2)SO), but at 37 degrees C, it is toxic to cells and for patients, infusion of cryopreserved HSC with Me(2)SO has been associated with side effects. Freezing of cells leads to chemical change of cellular components, which results in physical disruption. Reactive oxygen species (ROS) generation also has been implicated as cause of damage to cells during freezing. We assessed the ability of two bioantioxidants and two disaccharides, to enhance the cryopreservation of UCB. UCB was processed and subjected to cryopreservation in solutions containing different concentrations of Me(2)SO, bioantioxidants and disaccharides. Samples were thawed, and then analysed by: flow cytometry analysis, CFU assay and MTT viability assay. In this study, our analyses showed that antioxidants, principally catalase, performed greater preservation of: CD34+ cells, CD123+ cells, colony-forming units and cell viability, all post-thawed, compared with the standard solution of cryopreservation. Our present studies show that the addition of catalase improved the cryopreservation outcome. Catalase may act on reducing levels of ROS, further indicating that accumulation of free radicals indeed leads to death in cryopreserved hematopoietic cells. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Viability and proliferation of L929, tumour and hybridoma cells in the culture media containing sericin protein as a supplement or serum substitute.

    PubMed

    Cao, Ting-Ting; Zhang, Yu-Qing

    2015-09-01

    Cell cultures often require the addition of animal serum and other supplements. In this study, silk sericin, a bioactive protein, recovered from the waste of silk floss production was hydrolysed into three pepsin-degraded sericin peptides with different ranges of molecular mass. Normal animal cells, tumour cells and hybridoma cells were cultured systematically in FBS culture media containing sericin as a supplement or serum substitute. The culture test and microscopic observation of L929 cells showed that the smaller molecular weight of the degraded sericin is most suitable for cell culture. The cell culture results showed that with the degradation of sericin, for normal mouse fibroblast L929 cells, addition of 0.75 % sericin into FBS culture medium yields cell viability that is superior to FBS culture medium alone. When all serum was replaced by sericin, cell viability in the sericin medium could reach about one half of that in FBS medium. When in a medium containing a mixture of FBS: sericin (6:4, v/v), the cell culture effect is about 80 %. For the cultures of four tumour and one hybridoma cells, regardless of the molecular weight range, these degraded sericin peptides could substitute all serum in FBS media. The cell viability and proliferation of these tumour and hybridoma cells are equivalent or superior to that in FBS medium. In other words, cell viability and proliferation of these tumour and hybridoma cells in sericin media are more preferable to serum media. The mechanism of the sericin protein to promote cell growth and proliferation will be further investigated later.

  4. Mechanism of H₂O₂-induced oxidative stress regulating viability and biocontrol ability of Rhodotorula glutinis.

    PubMed

    Chen, Jian; Li, Boqiang; Qin, Guozheng; Tian, Shiping

    2015-01-16

    The use of antagonistic yeasts to control postharvest pathogens is a promising alternative to fungicides. The effectiveness of the antagonists against fungal pathogens is greatly dependent on their viability, which is usually mediated by reactive oxygen species (ROS). Here, we investigated the effects of H₂O₂-induced oxidative stress on the viability and biocontrol efficacy of Rhodotorula glutinis and, using flow cytometric analysis, observed the changes of ROS accumulation and apoptosis in the yeast cells with or without H₂O₂ treatment. We found that the viability of R. glutinis decreased in a time- and dose-dependent manner under H₂O₂-induced oxidative stress. Compared to the control, yeast cells exposed to oxidative stress exhibited more accumulation of ROS and higher levels of protein oxidative damage, but showed lower efficacy for biocontrol of Penicillium expansum causing blue mold rot on peach fruit. The results indicate that apoptosis is a main cause of the cell viability loss in R. glutinis, which is attributed to ROS accumulation under oxidative stress. These findings offer a plausible explanation that oxidative stress affects biocontrol efficacy of R. glutinis via regulating its viability and cell apoptosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. MRI-detectable pH nanosensors incorporated into hydrogels for in vivo sensing of transplanted-cell viability

    NASA Astrophysics Data System (ADS)

    Chan, Kannie W. Y.; Liu, Guanshu; Song, Xiaolei; Kim, Heechul; Yu, Tao; Arifin, Dian R.; Gilad, Assaf A.; Hanes, Justin; Walczak, Piotr; van Zijl, Peter C. M.; Bulte, Jeff W. M.; McMahon, Michael T.

    2013-03-01

    Biocompatible nanomaterials and hydrogels have become an important tool for improving cell-based therapies by promoting cell survival and protecting cell transplants from immune rejection. Although their potential benefit has been widely evaluated, at present it is not possible to determine, in vivo, if and how long cells remain viable following their administration without the use of a reporter gene. Here, we report a pH-nanosensor-based magnetic resonance imaging (MRI) technique that can monitor cell death in vivo non-invasively. We demonstrate that specific MRI parameters that change on cell death of microencapsulated hepatocytes are associated with the measured bioluminescence imaging radiance. Moreover, the readout from this pH-sensitive nanosensor can be directly co-registered with high-resolution anatomical images. All of the components of these nanosensors are clinical grade and hence this approach should be a translatable and universal modification of hydrogels.

  6. Viability and Stress Response of Putative Probiotic Lactobacillus plantarum Strains in Honey Environment.

    PubMed

    Landry, Bemmo Kamdem Ulrich; François, Zambou Ngoufack; Wang, Rui-Yan; Taicheng, Zhu; Li, Yin

    2017-12-01

    Due to problem of preservation of dairy products which serve as a matrix for probiotics, it is challenging to use these probiotics as food supplements in many developing countries. To determine the suitability of the Lactobacillus strains for exploitation as probiotics in honey, we investigated the effect of their storage on the viability, functionality, and the mechanism associated with their protective effect. Three isolates obtained from our laboratory collection were identified through amplification of the 16S rRNA gene. The viability of the strains in honey at different storage conditions was studied. Three genes (hdc, gtf, and clpL) responsible for the resistance of bacteria in acidic environments were screened. SDS-PAGE analysis of total protein was performed to observe protein profile changes of the strains after exposure to honey. All the three isolates, namely, GGU, GLA51, and GLP56, were identified as Lactobacillus plantarum strains. After 28 days of storage in honey at 4 °C, viable cell concentrations of the three strains were higher than 2.04 × 10 6  CFU/ml. During the same period at room temperature, only the Lactobacillus plantarum GLP56 strain remained viable with a cell concentration of 1.86 × 10 4  CFU/ml. The clpL gene coding for ATPase was detected in all the three strains. The protein of molecular weight ~ 50 kDa was absent in the protein profile of Lactobacillus plantarum GGU after 60 days of storage in honey at 4 °C. The Lactobacillus plantarum GLP56, Lactobacillus plantarum GLA51, and Lactobacillus plantarum GGU strains exposed to honey can withstand acidic environmental stress but their viability declines over time.

  7. Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle (君臣佐使論)

    PubMed Central

    Shin, Jeong-Hun; Jun, Seung-lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun

    2012-01-01

    Objectives: This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle (君臣佐使論) to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Methods: Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Results: Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. Conclusions: In the sovereign, minister, assistant and courier principle (君臣佐使論), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle. PMID:25780653

  8. Analytical Research to Determine the effects of the Components of ONGABO on the Viability of HepG2 Cancer Cells by Using the Sovereign, Minister, Assistant and Courier Principle ().

    PubMed

    Shin, Jeong-Hun; Jun, Seung-Lyul; Hwang, Sung-Yeoun; Ahn, Seong-Hun

    2012-12-01

    This study used the basic principle of Oriental medicine, the sovereign, minister, assistant and courier principle () to investigate the effects of the component of ONGABO, which is composed of Ginseng Radix (Red Ginseng), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen and Curcumae tuber on the viability of HepG2 cells. Single and mixed extracts of the component of ONGABO were prepared by lypohilizing powder of Red Ginseng (6-year root from Kanghwa), Angelica Gigantis Radix, Schisandrae Fructus, Cuscuta Semen, Curcumae Tuber (from Omniherb Co., Ltd., Korea) at the laboratory of herbal medicine in Woosuk University and were eluted after being macerated with 100% ethanol for three days. The cell viability of HepG2 was determined by using an absorptiometric analysis with PrestoBlue (Invitrogen) reagent after the plate had been incubated for 48 hours. All of the experiments were repeated three times to obtain the average value and standard deviation. The statistical analysis was done and the correlation factor was obtained by using Microsoft Office Excel 2007 and Origin 6.0 software. Although Ginseng Radix (Red Ginseng) and Schisandrae Fructus did not enhance the viability of HepG2 cells, they were shown to provide protection of those cells. On the other hand, Angelica Gigantis Radix decreased the viability of HepG2 cells significantly, Cuscuta Semen and Curcumae Tuber had a small or no effect on the viability of HepG2 cells. In the sovereign, minister, assistant and courier principle (), Ginseng Radix (Red Ginseng) corresponds to the sovereign component because it provides cell protection effects, Angelica Gigantis Radix corresponds to minister medicinal because it kills cells, Schisandrae Fructus corresponds to the assistant medicinal to help red ginseng having cell protect effects. Cuscuta Semen and Curcumae Tuber correspond to the courier medicinal having no effect in cell viability in HepG2. We hope this study provides motivation for advanced research on the sovereign, minister, assistant and courier principle.

  9. A Field-Portable Cell Analyzer without a Microscope and Reagents

    PubMed Central

    Oh, Sangwoo; Lee, Moonjin; Hwang, Yongha

    2017-01-01

    This paper demonstrates a commercial-level field-portable lens-free cell analyzer called the NaviCell (No-stain and Automated Versatile Innovative cell analyzer) capable of automatically analyzing cell count and viability without employing an optical microscope and reagents. Based on the lens-free shadow imaging technique, the NaviCell (162 × 135 × 138 mm3 and 1.02 kg) has the advantage of providing analysis results with improved standard deviation between measurement results, owing to its large field of view. Importantly, the cell counting and viability testing can be analyzed without the use of any reagent, thereby simplifying the measurement procedure and reducing potential errors during sample preparation. In this study, the performance of the NaviCell for cell counting and viability testing was demonstrated using 13 and six cell lines, respectively. Based on the results of the hemocytometer (de facto standard), the error rate (ER) and coefficient of variation (CV) of the NaviCell are approximately 3.27 and 2.16 times better than the commercial cell counter, respectively. The cell viability testing of the NaviCell also showed an ER and CV performance improvement of 5.09 and 1.8 times, respectively, demonstrating sufficient potential in the field of cell analysis. PMID:29286336

  10. The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro.

    PubMed

    Köse, Ceyhun; Kaçar, Ramazan; Zorba, Aslı Pınar; Bağırova, Melahat; Allahverdiyev, Adil M

    2016-03-01

    It has been determined by the literature research that there is no clinical study on the in vivo and in vitro interaction of the cells with the laser beam welded joints of AISI 316L biomaterial. It is used as a prosthesis and implant material and that has adequate mechanical properties and corrosion resistance characteristics. Therefore, the interaction of the CO2 laser beam welded samples and samples of the base metal of AISI 316L austenitic stainless steel with L929 fibroblast cells as an element of connective tissue under in vitro conditions has been studied. To study the effect of the base metal and the laser welded test specimens on the viability of the fibroblast cells that act as an element of connective tissues in the body, they were kept in DMEMF-12 medium for 7, 14, 28 days and 18 months. The viability study was experimentally studied using the MTT method for 7, 14, 28 days. In addition, the direct interaction of the fibroblast cells seeded on 6 different plates with the samples was examined with an inverted microscope. The MTT cell viability experiment was repeated on the cells that were in contact with the samples. The statistical relationship was analyzed using a Tukey test for the variance with the GraphPad statistics software. The data regarding metallic ion release were identified with the ICP-MS method after the laser welded and main material samples were kept in cell culture medium for 18 months. The cell viability of the laser welded sample has been detected to be higher than that of the base metal and the control based on 7th day data. However, the laser welded sample's viability of the fibroblast cells has diminished by time during the test period of 14 and 28 days and base metal shows better viability when compared to the laser welded samples. On the other hand, the base metal and the laser welded sample show better cell viability effect when compared to the control group. According to the ICP-MS results of the main material and laser welded samples which were kept in the cell culture medium for 18 months, it was determined that the Fe, Ni and Cr ion concentration released to the cell culture medium from the laser welded test sample was less than that of the main material. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. In vitro electrochemical corrosion and cell viability studies on nickel-free stainless steel orthopedic implants.

    PubMed

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J; Rad, Armin Tahmasbi; Madihally, Sundararajan V; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments.

  12. Evaluation of goat milk as storage media to preserve viability of human periodontal ligament cells in vitro.

    PubMed

    Ulusoy, Ayça Tuba; Kalyoncuoglu, Elif; Kaya, Senay; Cehreli, Zafer Cavit

    2016-08-01

    The purpose of this study was to evaluate the effectiveness of goat milk as a storage media for maintenance of periodontal ligament (PDL) cell viability of avulsed teeth and compare it with commonly used and/or investigated storage media. PDL cells were obtained from the root surface of healthy premolars and were cultured in Eagle's maintenance medium (EMM). Cell cultures were treated with the following storage media: tap water (negative control); EMM (positive control); Hank's balanced salt solution; ultra high temperature (UHT) long-shelf-life lactose-free cow milk; UHT long-shelf-life whole cow milk; UHT long-shelf-life skimmed cow milk; UHT long-shelf-life soy milk; UHT long-shelf-life goat milk, UHT long-shelf-life follow on milk with probiotic, 20% propolis, and egg white. Culture plates were incubated with experimental media at 20°C for 1, 3, 6, 12, and 24 h. PDL cell viability was assessed by tetrazolium salt-based colorimetric (MTT) assay at each test period. One-way anova was used to evaluate the effects of storage solutions at each time point, followed by post hoc Duncan's multiple comparison test (P = 0.05). A dendrogram was constructed to show the arrangement of hierarchical clustering. Goat milk displayed the highest capacity to maintain cell viability at all test intervals (P < 0.001). Between 3 and 24 h, milk with the probiotic showed the lowest time-dependent PDL cell viability among all test media (P < 0.001). Compared with all milks, HBSS performed significantly less effectively in maintaining PDL cell viability during the entire test period (P < 0.001). Based on PDL viability, goat milk can be recommended as a suitable storage medium for avulsed teeth. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Storage effect on viability and biofunctionality of human adipose tissue-derived stromal cells.

    PubMed

    Falah, Mizied; Rayan, Anwar; Srouji, Samer

    2015-09-01

    In our recent studies, the transplantation of human adipose tissue-derived stromal cells (ASCs) has shown promise for treatment of diseases related to bone and joint disorders. For the current clinical applications, ASCs were formulated and suspended in PlasmaLyte A supplemented with heparin, glucose and human serum albumin, balanced to pH 7.4 with sodium bicarbonate. This cell solution constitutes 20% of the overall transplanted mixture and is supplemented with hyaluronic acid (60%) and OraGraft particles (20%). We intended to investigate the effect of this transplantation mixture on the viability and biofunctionality of ASCs in bone formation. Freshly harvested cells were resuspended and incubated in the indicated mixture for up to 48 h at 4°C. Cell viability was assessed using trypan blue and AlamarBlue, and cell functionality was determined by quantifying their adhesion rate in vitro and bone formation in an ectopic mouse model. More than 80% of the ASCs stored in the transplantation mixture were viable for up to 24 h. Cell viability beyond 24 h in storage decreased to approximately 50%. In addition, an equal degree of bone formation was observed between the cells transplanted following incubation in transplantation mixture for up to 24 h and zero-time non-incubated cells (control). The viability and functionality of ASCs stored in the presented formulation will make such cell therapy accessible to larger and more remote populations. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria.

    PubMed

    Wiechmann, Katja; Müller, Hans; Fischer, Dagmar; Jauch, Johann; Werz, Oliver

    2015-11-01

    The acylphloroglucinols hyperforin (Hypf) and myrtucommulone A (MC A) induce death of cancer cells by triggering the intrinsic/mitochondrial pathway of apoptosis, accompanied by a loss of the mitochondrial membrane potential and release of cytochrome c. However, the upstream targets and mechanisms leading to these mitochondrial events in cancer cells remain elusive. Here we show that Hypf and MC A directly act on mitochondria derived from human leukemic HL-60 cells and thus, disrupt mitochondrial functions. In isolated mitochondria, Hypf and MC A efficiently impaired mitochondrial viability (EC50 = 0.2 and 0.9 µM, respectively), caused loss of the mitochondrial membrane potential (at 0.03 and 0.1 µM, respectively), and suppressed mitochondrial ATP synthesis (IC50 = 0.2 and 0.5 µM, respectively). Consequently, the compounds activated the adenosine monophosphate-activated protein kinase (AMPK) in HL-60 cells, a cellular energy sensor involved in apoptosis of cancer cells. Side by side comparison with the protonophore CCCP and the ATP synthase inhibitor oligomycin suggest that Hypf and MC A act as protonophores that primarily dissipate the mitochondrial membrane potential by direct interaction with the mitochondrial membrane. Together, Hypf and MC A abolish the mitochondrial proton motive force that on one hand impairs mitochondrial viability and on the other cause activation of AMPK due to lowered ATP levels which may further facilitate the intrinsic mitochondrial pathway of apoptosis.

  15. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study.

    PubMed

    Magrini, Taciana D; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000  mJ/cm². The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5  mJ/cm², MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1  J/cm² laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8  mJ/cm², the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  16. XuefuZhuyu decoction protected cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy.

    PubMed

    Shi, Xiaowen; Zhu, Haiyan; Zhang, Yuanyuan; Zhou, Mingmei; Tang, Danli; Zhang, Huamin

    2017-06-19

    XuefuZhuyu decoction (XFZY) is a well-known traditional Chinese herbal medicine for the treatment of various cardiovascular diseases, such as unstable angina pectoris and myocardial ischemia-reperfusion injury. However, the mechanism by which XFZY contributes to the amelioration of cardiac injury remains unclear. H9C2 cells were cultured under the hypoxic condition for 10 h and reoxygenated for 2 h. In the presence of various concentrations of XFZY for 12 h, the cell viability was measured by MTT assay. The protective effect of XFZY in hypoxia/reoxygenation (H/R) cell model was confirmed by measuring the amount of LDH released into the extracellular fluid. Cell apoptosis was measured by western blotting. The autophagy level of H9C2 cells and the correlative pathway were determined by transmission electron microscopy, Cyto-ID® Autophagy Detection Kit, and western blotting. In this study, we investigated the effects of XFZY on H/R induced cardiac injury. The results showed that treatment with XFZY significantly inhibited autophagy induced by H/R, with decreased formation of autophagosomes as well as the expression of LC3-II/LC3-I ratio and Beclin 1 after H/R. Importantly, inhibition of autophagy by XFZY resulted in enhanced cell viability and decreased apoptosis. XFZY also inhibited the activation of AMPK and upregulated the phosphorylation of mammalian target of Rapamycin (mTOR). The cardioprotective effects of XFZY during H/R were mediated by inhibiting autophagy via regulating AMPK-mTOR signaling pathways.

  17. Response of spermatozoa to hyposmotic stress reflects cryopreservation success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, P.F.; Curry, M.R.; Noiles, E.E.

    1992-01-01

    Spermatozoa of several species were washed and then subjected to dilution in hyposmotic Tyrode's based solutions. The cells were stained with fluorescent viability stains, carboxyfluorescein diacetate and propidium iodide, and proportions with intact plasma membranes determined by flow cytometry or fluorescence microscopy. Fowl spermatozoa remained almost 100% intact until very low osmolality, and then ruptured. Human spermatozoa showed a similar response with only a small decrease in intact cells before the precipitous decline at low osmolality. Bull spermatozoa were more readily disrupted at higher osmolality, some 40% being damaged before the sudden decline at low osmolality. Ram and boar spermatozoamore » were progressively disrupted even at mild hyposmotic stress, showing approximately 50% of cells ruptured at 150 mOsm.« less

  18. Response of spermatozoa to hyposmotic stress reflects cryopreservation success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, P.F.; Curry, M.R.; Noiles, E.E.

    1992-06-01

    Spermatozoa of several species were washed and then subjected to dilution in hyposmotic Tyrode`s based solutions. The cells were stained with fluorescent viability stains, carboxyfluorescein diacetate and propidium iodide, and proportions with intact plasma membranes determined by flow cytometry or fluorescence microscopy. Fowl spermatozoa remained almost 100% intact until very low osmolality, and then ruptured. Human spermatozoa showed a similar response with only a small decrease in intact cells before the precipitous decline at low osmolality. Bull spermatozoa were more readily disrupted at higher osmolality, some 40% being damaged before the sudden decline at low osmolality. Ram and boar spermatozoamore » were progressively disrupted even at mild hyposmotic stress, showing approximately 50% of cells ruptured at 150 mOsm.« less

  19. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal-Limbal and Human Conjunctival Epithelial Cells.

    PubMed

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline; Barisani-Asenbauer, Talin

    2017-06-01

    To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal-limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT-based assay. The morphology of cells was also investigated. HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface.

  20. Implications for Ophthalmic Formulations: Ocular Buffers Show Varied Cytotoxic Impact on Human Corneal–Limbal and Human Conjunctival Epithelial Cells

    PubMed Central

    Schuerer, Nadine; Stein, Elisabeth; Inic-Kanada, Aleksandra; Pucher, Marion; Hohenadl, Christine; Bintner, Nora; Ghasemian, Ehsan; Montanaro, Jacqueline

    2017-01-01

    Purpose: To investigate toxicity associated with buffers commonly used in topical ocular drug formulations using a human corneal–limbal epithelial (HCLE) and a human conjunctival epithelial (HCjE) cell model. Methods: HCLE and HCjE cells were incubated for 10, 30, or 60 minutes with 4 different buffers based on borate, citrate, phosphate, and Tris-HCl at 10, 50, and 100 mM concentrations. To detect possible delayed effects on cell viability, after 60 minutes of buffer incubation, cells were further incubated for 24 hours with a cell medium. Cell viability was determined using a colorimetric XTT–based assay. The morphology of cells was also investigated. Results: HCjE cells showed more sensitivity to buffer incubation than HCLE cells. The 100 mM phosphate buffer displayed significant delayed effects on cell viability of HCLE 16.8 ± 4.8% and HCjE 39.2 ± 6.1% cells after 60 minutes of exposure (P < 0.05). HCjE cell viability was reduced after 60 minutes incubations with 50 and 100 mM citrate buffer to 42.8 ± 6.5% and 39.3 ± 7.9%, respectively, and even lower percentages at the delayed time point (both P < 0.05). HCLE cell morphology was distinctly altered by 100 mM phosphate and Tris buffers after 30 minutes, whereas HCjE cells already showed marked changes after 10 minutes of exposure to 100 mM citrate and phosphate buffers. Conclusions: We observed a time-dependent decrease of viability in both HCLE and HCjE cells exposed to higher buffer concentrations. Therefore, we propose further in vivo studies to translate these finding to humans to discern the real effects of the buffer concentration in eye drops on the ocular surface. PMID:28399036

  1. Observation of reversible, rapid changes in drug susceptibility of hypoxic tumor cells in a microfluidic device.

    PubMed

    Germain, Todd; Ansari, Megan; Pappas, Dimitri

    2016-09-14

    Hypoxia is a major stimulus for increased drug resistance and for survival of tumor cells. Work from our group and others has shown that hypoxia increases resistance to anti-cancer compounds, radiation, and other damage-pathway cytotoxic agents. In this work we utilize a microfluidic culture system capable of rapid switching of local oxygen concentrations to determine changes in drug resistance in prostate cancer cells. We observed rapid adaptation to hypoxia, with drug resistance to 2 μM staurosporine established within 30 min of hypoxia. Annexin-V/Sytox Green apoptosis assays over 9 h showed 78.0% viability, compared to 84.5% viability in control cells (normoxic cells with no staurosporine). Normoxic cells exposed to the same staurosporine concentration had a viability of 48.6% after 9 h. Hypoxia adaptation was rapid and reversible, with Hypoxic cells treated with 20% oxygen for 30 min responding to staurosporine with 51.6% viability after drug treatment for 9 h. Induction of apoptosis through the receptor-mediated pathway, which bypasses anti-apoptosis mechanisms induced by hypoxia, resulted in 39.4 ± 7% cell viability. The rapid reversibility indicates co-treatment of oxygen with anti-cancer compounds may be a potential therapeutic target. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Corn silk maysin induces apoptotic cell death in PC-3 prostate cancer cells via mitochondria-dependent pathway.

    PubMed

    Lee, Jisun; Lee, Seul; Kim, Sun-Lim; Choi, Ji Won; Seo, Jeong Yeon; Choi, Doo Jin; Park, Yong Il

    2014-12-05

    Despite recent advances in prostate cancer diagnostics and therapeutics, the overall survival rate still remains low. This study was aimed to assess potential anti-cancer activity of maysin, a major flavonoid of corn silk (CS, Zea mays L.), in androgen-independent human prostate cancer cells (PC-3). Maysin was isolated from CS of Kwangpyeongok, a Korean hybrid corn, via methanol extraction and preparative C18 reverse phase column chromatography. Maysin cytotoxicity was determined by either monitoring cell viability in various cancer cell lines by MTT assay or morphological changes. Apoptotic cell death was assessed by annexin V-FITC/PI double staining, depolarization of mitochondrial membrane potential (MMP), expression levels of Bcl-2 and pro-caspase-3 and by terminal transferase mediated dUTP-fluorescein nick end labeling (TUNEL) staining. Underlying mechanism in maysin-induced apoptosis of PC-3 cells was explored by evaluating its effects on Akt and ERK pathway. Maysin dose-dependently reduced the PC-3 cell viability, with an 87% reduction at 200 μg/ml. Maysin treatment significantly induced apoptotic cell death, DNA fragmentation, depolarization of MMP, and reduction in Bcl-2 and pro-caspase-3 expression levels. Maysin also significantly attenuated phosphorylation of Akt and ERK. A combined treatment with maysin and other known anti-cancer agents, including 5-FU, etoposide, cisplatin, or camptothecin, synergistically enhanced PC-3 cell death. These results suggested for the first time that maysin inhibits the PC-3 cancer cell growth via stimulation of mitochondria-dependent apoptotic cell death and may have a strong therapeutic potential for the treatment of either chemo-resistant or androgen-independent human prostate cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells.

    PubMed

    Somasagara, Ranganatha R; Deep, Gagan; Shrotriya, Sangeeta; Patel, Manisha; Agarwal, Chapla; Agarwal, Rajesh

    2015-04-01

    Pancreatic cancer (PanC) is one of the most lethal malignancies, and resistance towards gemcitabine, the front-line chemotherapy, is the main cause for dismal rate of survival in PanC patients; overcoming this resistance remains a major challenge to treat this deadly malignancy. Whereas several molecular mechanisms are known for gemcitabine resistance in PanC cells, altered metabolism and bioenergetics are not yet studied. Here, we compared metabolic and bioenergetic functions between gemcitabine-resistant (GR) and gemcitabine-sensitive (GS) PanC cells and underlying molecular mechanisms, together with efficacy of a natural agent bitter melon juice (BMJ). GR PanC cells showed distinct morphological features including spindle-shaped morphology and a decrease in E-cadherin expression. GR cells also showed higher ATP production with an increase in oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). Molecular studies showed higher expression of glucose transporters (GLUT1 and 4) suggesting an increase in glucose uptake by GR cells. Importantly, GR cells showed a significant increase in Akt and ERK1/2 phosphorylation and their inhibition decreased cell viability, suggesting their role in survival and drug resistance of these cells. Recently, we reported strong efficacy of BMJ against a panel of GS cells in culture and nude mice, which we expanded here and found that BMJ was also effective in decreasing both Akt and ERK1/2 phosphorylation and viability of GR PanC cells. Overall, we have identified novel mechanisms of gemcitabine resistance in PanC cells which are targeted by BMJ. Considering the short survival in PanC patients, our findings could have high translational potential in controlling this deadly malignancy.

  4. The antiproliferative effect of indomethacin-loaded lipid-core nanocapsules in glioma cells is mediated by cell cycle regulation, differentiation, and the inhibition of survival pathways

    PubMed Central

    Bernardi, Andressa; Frozza, Rudimar L; Hoppe, Juliana B; Salbego, Christianne; Pohlmann, Adriana R; Battastini, Ana Maria O; Guterres, Sílvia S

    2013-01-01

    Despite recent advances in radiotherapy, chemotherapy, and surgical techniques, glioblastoma multiforme (GBM) prognosis remains dismal. There is an urgent need for new therapeutic strategies. Nanoparticles of biodegradable polymers for anticancer drug delivery have attracted intense interest in recent years because they can provide sustained, controlled, and targeted delivery. Here, we investigate the mechanisms involved in the antiproliferative effect of indomethacin-loaded lipid-core nanocapsules (IndOH-LNC) in glioma cells. IndOH-LNC were able to reduce cell viability by inducing apoptotic cell death in C6 and U138-MG glioma cell lines. Interestingly, IndOH-LNC did not affect the viability of primary astrocytes, suggesting that this formulation selectively targeted transformed cells. Mechanistically, IndOH-LNC induced inhibition of cell growth and cell-cycle arrest to be correlated with the inactivation of AKT and β-catenin and the activation of GSK-3β. IndOH-LNC also induced G0/G1 and/or G2/M phase arrest, which was accompanied by a decrease in the levels of cyclin D1, cyclin B1, pRb, and pcdc2 and an increase in the levels of Wee1 CDK inhibitor p21WAF1. Additionally, IndOH-LNC promoted GBM cell differentiation, observed as upregulation of glial fibrillary acidic protein (GFAP) protein and downregulation of nestin and CD133. Taken together, the crosstalk among antiproliferative effects, cell-cycle arrest, apoptosis, and cell differentiation should be considered when tailoring pharmacological interventions aimed at reducing glioma growth by using formulations with multiples targets, such as IndOH-LNC. PMID:23440594

  5. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  6. miR-139 is up-regulated in osteoarthritis and inhibits chondrocyte proliferation and migration possibly via suppressing EIF4G2 and IGF1R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weihua; Zhang, Weikai; Li, Feng

    Osteoarthritis (OA) is one of the most progressive articular cartilage erosions. microRNAs (miRNAs) play pivotal roles in OA modulation, but the role of miR-139 in OA remains elusive. This study aims to reveal the effects and possible mechanism of miR-139 in OA and chondrocytes. The levels of miR-139 and its possible targets eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) and insulin-like growth factor 1 receptor (IGF1R) were detected by qRT-PCR in the articular cartilages of 20 OA patients and 20 non-OA patients. Human chondrocyte CHON-001 cells were transfected with miR-139 mimic or inhibitor, as well as the siRNAs of EIF4G2more » and IGF1R. Cell viability by MTT assay, proliferation by colony formation assay and migration by Transwell assay were performed. Results showed that miR-139 was up-regulated, while EIF4G2 and IGF1R mRNAs down-regulated in OA cartilages (P < 0.001), and negative correlations existed between the level of miR-139 and EIF4G2 or IGF1R. Overexpression of miR-139 in CHON-001 cells suppressed both mRNA and protein levels of EIF4G2 and IGF1R, and inhibited cell viability, colony formation number and cell migration, while miR-139 inhibitor induced the opposite effects. Knockdown of EIF4G2 or IGF1R in CHON-001 cells reversed the effects of miR-139 inhibitor on cell viability, colony formation and cell migration. These results indicate that miR-139 is capable of inhibiting chondrocyte proliferation and migration, thus being a possible therapeutic target for OA. The mechanism of miR-139 in chondrocytes may be related to its regulation on EIF4G2 and IGF1R.« less

  7. A comparison of TO-PRO-1 iodide and 5-CFDA-AM staining methods for assessing viability of planktonic algae with epifluorescence microscopy.

    PubMed

    Gorokhova, Elena; Mattsson, Lisa; Sundström, Annica M

    2012-06-01

    Two fluorescent dyes, TO-PRO-1 iodide and 5-CFDA-AM, were evaluated for LIVE/DEAD assessment of unicellular marine algae Brachiomonas submarina and Tetraselmis suecica. Epifluorescence microscopy was used to estimate cell viability in predetermined mixtures of viable and non-viable algal cells and validated using microplate growth assay as reference measurements. On average, 5-CFDA-AM underestimated live cell abundance by ~25% compared with viability estimated by the growth assay, whereas TO-PRO-1 iodide provided accurate viability estimates. Furthermore, viability estimates based on staining with TO-PRO-1 iodide were not affected by a storage period of up to one month in -80°C, making the assay a good candidate for routine assessment of phytoplankton populations in field and laboratory studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Ex vivo biomechanical characterization of syringe-needle ejections for intracerebral cell delivery.

    PubMed

    Wahlberg, Brendon; Ghuman, Harmanvir; Liu, Jessie R; Modo, Michel

    2018-06-15

    Intracerebral implantation of cell suspensions is finding its clinical translation with encouraging results in patients with stroke. However, the survival of cells in the brain remains poor. Although the biological potential of neural stem cells (NSCs) is widely documented, the biomechanical effects of delivering cells through a syringe-needle remain poorly understood. We here detailed the biomechanical forces (pressure, shear stress) that cells are exposed to during ejection through different sized needles (20G, 26G, 32G) and syringes (10, 50, 250 µL) at relevant flow rates (1, 5, 10 µL/min). A comparison of 3 vehicles, Phosphate Buffered Saline (PBS), Hypothermosol (HTS), and Pluronic, indicated that less viscous vehicles are favorable for suspension with a high cell volume fraction to minimize sedimentation. Higher suspension viscosity was associated with greater shear stress. Higher flow rates with viscous vehicle, such as HTS reduced viability by ~10% and also produced more apoptotic cells (28%). At 5 µL/min ejection using a 26G needle increased neuronal differentiation for PBS and HTS suspensions. These results reveal the biological impact of biomechanical forces in the cell delivery process. Appropriate engineering strategies can be considered to mitigate these effects to ensure the efficacious translation of this promising therapy.

  9. The Phosphatase PTP-PEST/PTPN12 Regulates Endothelial Cell Migration and Adhesion, but Not Permeability, and Controls Vascular Development and Embryonic Viability*

    PubMed Central

    Souza, Cleiton Martins; Davidson, Dominique; Rhee, Inmoo; Gratton, Jean-Philippe; Davis, Elaine C.; Veillette, André

    2012-01-01

    Protein-tyrosine phosphatase (PTP)-PEST (PTPN12) is ubiquitously expressed. It is essential for normal embryonic development and embryonic viability in mice. Herein we addressed the involvement of PTP-PEST in endothelial cell functions using a combination of genetic and biochemical approaches. By generating primary endothelial cells from an inducible PTP-PEST-deficient mouse, we found that PTP-PEST is not needed for endothelial cell differentiation and proliferation or for the control of endothelial cell permeability. Nevertheless, it is required for integrin-mediated adhesion and migration of endothelial cells. PTP-PEST-deficient endothelial cells displayed increased tyrosine phosphorylation of Cas, paxillin, and Pyk2, which were previously also implicated in integrin functions. By eliminating PTP-PEST in endothelial cells in vivo, we obtained evidence that expression of PTP-PEST in endothelial cells is required for normal vascular development and embryonic viability. Therefore, PTP-PEST is a key regulator of integrin-mediated functions in endothelial cells seemingly through its capacity to control Cas, paxillin, and Pyk2. This function explains at least in part the essential role of PTP-PEST in embryonic development and viability. PMID:23105101

  10. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions

    PubMed Central

    Tanti, N.C.; Jones, L.; Sheardown, H.

    2010-01-01

    Purpose Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. Methods An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate  (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Results Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of β1 and α3 integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Conclusions Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells. PMID:20169012

  11. Corneal epithelial cell biocompatibility to silicone hydrogel and conventional hydrogel contact lens packaging solutions.

    PubMed

    Gorbet, M B; Tanti, N C; Jones, L; Sheardown, H

    2010-02-19

    Although all contact lenses (CLs) are applied initially to the eye directly from a packaging solution, little is known about the effects of these solutions on human corneal epithelial cells (HCECs). Due to the porous nature of CL materials, they have the potential to sorb components of the packaging solution during storage, which could then be subsequently released upon insertion of the CL on the eye. The purpose of this study was to investigate the effect of various packaging solutions on HCECs, using an in vitro model. An in vitro assay was developed whereby various silicone hydrogels and conventional, poly-2-hydroxyethylmethacrylate (polyHEMA)-based lens materials were removed directly from their packaging and then incubated for up to 24 h with HCECs. The effect of the retained and released packaging solution components on HCECs was assessed by measuring cell viability, adhesion phenotype, and apoptosis. Incubation of HCECs with CLs stored in borate-buffered packaging solutions resulted in a significant reduction in cell viability. Adherent cells incubated with these CLs also exhibited reduced levels of beta(1) and alpha(3) integrin. Soaking borate-buffered packaged CLs in PBS before cell incubation resolved viability and integrin expression in all cases, with the exception of galyfilcon A and balafilcon A, from which a 20% reduction in cell viability was still observed. In comparison, CLs stored in phosphate-buffered packaging solutions had cellular viability and expression of integrins similar to control cells (cells incubated in the absence of a lens). When incubated with cells at a 10% concentration in serum-free medium, borate-buffered packaging solutions and borate-containing saline (Unisol 4) significantly reduced cell viability and integrin expression. Neither caspase activation nor annexin V binding was observed on cells following exposure to borate buffer solution. However, a significant decrease in reactive oxygen species was observed at 24 h. These latter results suggest that in vitro exposure to low concentration of borate/boric acid results in cell dysfunction, leading to necrosis rather than apoptosis. Borate-buffered packaging solutions were shown to adversely affect the viability and integrin expression of HCECs in vitro. When used in ophthalmic packaging solutions, the antimicrobial properties of borate buffer may be outweighed by its relatively cytotoxic effects on cells.

  12. Chondrotoxicity of Liposomal Bupivacaine in Articular Chondrocytes: Preliminary Findings.

    PubMed

    Shaw, K Aaron; Johnson, Peter C; Zumbrun, Steve; Chuang, Augustine H; Cameron, Craig D

    2017-03-01

    The chondrotoxicity of local anesthetics has been previously recognized. Recent introduction of a liposomal formulation of bupivacaine has been found to significantly improve postoperative pain control but its effect on chondrocyte viability has yet to be investigated with this new formulation. We sought to assess the in vitro chondrotoxicity of liposomal bupivacaine. Chondrocytes were isolated from articular cartilage from fresh stifle joints and grown in culture medium. Cultured chondrocyte-derived cells (CDCs) were treated with 0.9% normal saline solution, 0.5%, 0.25%, and 0.13% bupivacaine and ropivacaine, 1.3% liposomal bupivacaine for 1 hour. Following treatment, cells were washed and incubated in media for 23 hours. The CDCs were then harvested and viability was assessed by flow cytometry using SYTOX green dead cell stain. Treated CDCs demonstrated a dose-response effect for chondrocyte viability when treated with bupivacaine, ropivacaine, and liposomal bupivacaine. Liposomal bupivacaine demonstrated the highest chondrocyte viability following treatment. Ropivacaine demonstrated higher chondrocyte viability than bupivacaine. Following 1 hour of treatment, liposomal bupivacaine demonstrated the highest chondrocyte viability. Chondrocyte viability was inversely proportional to anesthetic concentration. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  13. Antiproliferative and cytotoxic effects of green coffee and yerba mate extracts, their main hydroxycinnamic acids, methylxanthine and metabolites in different human cell lines.

    PubMed

    Amigo-Benavent, M; Wang, S; Mateos, R; Sarriá, B; Bravo, L

    2017-08-01

    This work aimed at studying the effects of green coffee bean (GCBE) and yerba mate (YME) extracts, their main phenolic components (5-caffeoylquinic acid, 5-CQA; 3,5-dicaffeoylquinic acid, 3,5-DCQA) and metabolites (ferulic acid, FA; caffeic acid, CA; dihydrocaffeic acid, DHCA; and dihydroferulic acid, DHFA) along with caffeine (CAF) on the viability and proliferation of different human cell lines. Extracts (10-1000 μg/mL) and standards (10-1000 μM) were assayed in colon (Caco-2), lung (A549), oesophageal (OE-33), urinary bladder (T24) human carcinoma cells, and a non-cancer cell line (CCD-18Co). YME significantly reduced viability of cancer cells at all assayed concentrations, the higher doses also reducing cell proliferation. GCBE effects on cell viability were more effective at 100 and 1000 μg/mL, showing modest effects on cell proliferation. The highest doses of 5-CQA and 3,5-DCQA reduced cell viability and proliferation in all cell lines, whereas FA, DHCA and DHFA had lower and variable effects. Caffeine had no effect. Dietary-attainable concentrations (0.1, 1 and 10 μg/mL) of YME were tested for cytotoxicity and reactive oxygen species generation, showing no cytotoxic effect. Low concentrations of all tested compounds were non-cytotoxic to CCD-18Co cells. YME and to a lower degree GCBE, their phenolic components and metabolites may decrease cancer cell viability and proliferation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning.

    PubMed

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2016-11-01

    Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.

  15. TRAIL Enhances Shikonin Induced Apoptosis through ROS/JNK Signaling in Cholangiocarcinoma Cells.

    PubMed

    Zhou, Guangyao; Yang, Zuqin; Wang, Xiaodong; Tao, Ran; Zhou, Yuanping

    2017-01-01

    Cholangiocarcinoma (CCA), arising from varying locations within the biliary tree, is the second most common primary liver malignancy worldwide. Shikonin, an active compound extracted from the Chinese herb Zicao, holds anti-bacterial, anti-inflammatory, and anti-tumor activities. However, the effect of shikonin on human cholangiocarcinoma and detailed mechanisms of TRAIL enhancement remains to be elucidated. The purpose of the study was to investigate the protective functions of TRAIL enhancement for shikonin induced apoptosis in cholangiocarcinoma cells. We use MTT assay, apoptosis assay, caspase activity assay, flow cytometry assay, real time PCR and Western blot to observe the effects of TRAIL on shikonin induced cholangiocarcinoma cells apoptosis and its mechanism. Shikonin inhibited cell viability and induced apoptosis of CCA cells, effects enhanced by TRAIL treatment via activation of caspase-3, -8, -9. Furhermore, TRAIL enhanced anti-proliferation of shikonin and shikonin induced apoptosis through induction of ROS mediated JNK activation, while AKT activation had an effect on shikonin anti-proliferation activity, but not in the TRAIL enhanced counterparts. Finally, shikonin upregulated DR5 expression, an effect essential for TRAIL-enhanced activities of shikonin in RBE cells. Our results revealed that shikonin could inhibit cells viability and induce apoptosis of CCA cells, effects enhanced by TRAIL treatment via ROS mediated JNK signalling pathways, involving up-regulation of DR5 expression. Our results provide further insight into the mechanism underlying the anti-tumor effects of shikonin by TRAIL enhanced in CCA and a new therapeutic strategy to CCA treatment. © 2017 The Author(s). Published by S. Karger AG, Basel.

  16. Hydrogen gas alleviates oxygen toxicity by reducing hydroxyl radical levels in PC12 cells

    PubMed Central

    Yu, Junchao; Yu, Qiuhong; Liu, Yaling; Zhang, Ruiyun; Xue, Lianbi

    2017-01-01

    Hyperbaric oxygen (HBO) therapy through breathing oxygen at the pressure of above 1 atmosphere absolute (ATA) is useful for varieties of clinical conditions, especially hypoxic-ischemic diseases. Because of generation of reactive oxygen species (ROS), breathing oxygen gas at high pressures can cause oxygen toxicity in the central nervous system, leading to multiple neurological dysfunction, which limits the use of HBO therapy. Studies have shown that Hydrogen gas (H2) can diminish oxidative stress and effectively reduce active ROS associated with diseases. However, the effect of H2 on ROS generated from HBO therapy remains unclear. In this study, we investigated the effect of H2 on ROS during HBO therapy using PC12 cells. PC12 cells cultured in medium were exposed to oxygen gas or mixed oxygen gas and H2 at 1 ATA or 5 ATA. Cells viability and oxidation products and ROS were determined. The data showed that H2 promoted the cell viability and inhibited the damage in the cell and mitochondria membrane, reduced the levels of lipid peroxidation and DNA oxidation, and selectively decreased the levels of •OH but not disturbing the levels of O2•-, H2O2, or NO• in PC12 cells during HBO therapy. These results indicated that H2 effectively reduced •OH, protected cells against oxygen toxicity resulting from HBO therapy, and had no effect on other ROS. Our data supported that H2 could be potentially used as an antioxidant during HBO therapy. PMID:28362819

  17. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma

    NASA Astrophysics Data System (ADS)

    Iram, Sana; Khan, Salman; Ansary, Abu Ayoobul; Arshad, Mohd; Siddiqui, Sahabjada; Ahmad, Ejaz; Khan, Rizwan H.; Khan, Mohd Sajid

    2016-11-01

    The synthesis of inner transition metal nanoparticles via an ecofriendly route is quite difficult. This study, for the first time, reports synthesis of terbium oxide nanoparticles using fungus, Fusarium oxysporum. The biocompatible terbium oxide nanoparticles (Tb2O3 NPs) were synthesized by incubating Tb4O7 with the biomass of fungus F. oxysporum. Multiple physical characterization techniques, such as UV-visible and photoluminescence spectroscopy, TEM, SAED, and zeta-potential were used to confirm the synthesis, purity, optical and surface characteristics, crystallinity, size, shape, distribution, and stability of the nanoemulsion of Tb2O3 NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and Saos-2 cell-lines (IC50 value of 0.102 μg/mL) and remained non-toxic up to a concentration of 0.373 μg/mL toward primary osteoblasts. Cell viability decreased in a concentration-dependent manner upon exposure to 10 nm Tb2O3 NPs in the concentration range 0.023-0.373 μg/mL. Cell toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, and FACS analysis. Morphological examinations of cells revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The level of ROS within the cells-an indicator of oxidative stress was significantly increased. The induction of apoptosis at concentrations ≤ IC50 was corroborated by 4‧,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Flow-cytometric studies indicated that the response was dose dependent with a threshold effect.

  18. Anti-Fas conjugated hyaluronic acid microsphere gels for neural stem cell delivery.

    PubMed

    Shendi, Dalia; Albrecht, Dirk R; Jain, Anjana

    2017-02-01

    Central nervous system (CNS) injuries and diseases result in neuronal damage and loss of function. Transplantation of neural stem cells (NSCs) has been shown to improve locomotor function after transplantation. However, due to the immune and inflammatory response at the injury site, the survival rate of the engrafted cells is low. Engrafted cell viability has been shown to increase when transplanted within a hydrogel. Hyaluronic acid (HA) hydrogels have natural anti-inflammatory properties and the backbone can be modified to introduce bioactive agents, such as anti-Fas, which we have previously shown to promote NSC survival while suppressing immune cell activity in bulk hydrogels in vitro. Although bulk HA hydrogels have shown to promote stem cell survival, microsphere gels for NSC encapsulation and delivery may have additional advantages. In this study, a flow-focusing microfluidic device was used to fabricate either vinyl sulfone-modified HA (VS-HA) or anti-Fas-conjugated HA (anti-Fas HA) microsphere gels encapsulated with NSCs. The majority of encapsulated NSCs remained viable for at least 24 h in the VS-HA and anti-Fas HA microsphere gels. Moreover, T-cells cultured in suspension with the anti-Fas HA microsphere gels had reduced viability after contact with the microsphere gels compared to the media control and soluble anti-Fas conditions. This approach can be adapted to encapsulate various cell types for therapeutic strategies in other physiological systems in order to increase survival by reducing the immune response. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 608-618, 2017. © 2016 Wiley Periodicals, Inc.

  19. Reduction of cell viability induced by IFN-alpha generates impaired data on antiviral assay using Hep-2C cells.

    PubMed

    de Oliveira, Edson R A; Lima, Bruna M M P; de Moura, Wlamir C; Nogueira, Ana Cristina M de A

    2013-12-31

    Type I interferons (IFNs) exert an array of important biological functions on the innate immune response and has become a useful tool in the treatment of various diseases. An increasing demand in the usage of recombinant IFNs, mainly due to the treatment of chronic hepatitis C infection, augmented the need of quality control for this biopharmaceutical. A traditional bioassay for IFN potency assessment is the cytopathic effect reduction antiviral assay where a given cell line is preserved by IFN from a lytic virus activity using the cell viability as a frequent measure of end point. However, type I IFNs induce other biological effects such as cell-cycle arrest and apoptosis that can influence directly on viability of many cell lines. Here, we standardized a cytopathic effect reduction antiviral assay using Hep-2C cell/mengovirus combination and studied a possible impact of cell viability variations caused by IFN-alpha 2b on responses generated on the antiviral assay. Using the four-parameter logistic model, we observed less correlation and less linearity on antiviral assay when responses from IFN-alpha 2b 1000 IU/ml were considered in the analysis. Cell viability tests with MTT revealed a clear cell growth inhibition of Hep-2C cells under stimulation with IFN-alpha 2b. Flow cytometric cell-cycle analysis and apoptosis assessment showed an increase of S+G2 phase and higher levels of apoptotic cells after treatment with IFN-alpha 2b 1000 IU/ml under our standardized antiviral assay procedure. Considering our studied dose range, we also observed strong STAT1 activation on Hep-2C cells after stimulation with the higher doses of IFN-alpha 2b. Our findings showed that the reduction of cell viability driven by IFN-alpha can cause a negative impact on antiviral assays. We assume that the cell death induction and the cell growth inhibition effect of IFNs should also be considered while employing antiviral assay protocols in a quality control routine and emphasizes the importance of new approaches for IFN potency determination. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Viability and Isolation of Marine Bacteria by Dilution Culture: Theory, Procedures, and Initial Results

    PubMed Central

    Button, D. K.; Schut, Frits; Quang, Pham; Martin, Ravonna; Robertson, Betsy R.

    1993-01-01

    Dilution culture, a method for growing the typical small bacteria from natural aquatic assemblages, has been developed. Each of 11 experimental trials of the technique was successful. Populations are measured, diluted to a small and known number of cells, inoculated into unamended sterilized seawater, and examined three times for the presence of 104 or more cells per ml over a 9-week interval. Mean viability for assemblage members is obtained from the frequency of growth, and many of the cultures produced are pure. Statistical formulations for determining viability and the frequency of pure culture production are derived. Formulations for associated errors are derived as well. Computer simulations of experiments agreed with computed values within the expected error, which verified the formulations. These led to strategies for optimizing viability determinations and pure culture production. Viabilities were usually between 2 and 60% and decreased with >5 mg of amino acids per liter as carbon. In view of difficulties in growing marine oligobacteria, these high values are noteworthy. Significant differences in population characteristics during growth, observed by high-resolution flow cytometry, suggested substantial population diversity. Growth of total populations as well as of cytometry-resolved subpopulations sometimes were truncated at levels of near 104 cells per ml, showing that viable cells could escape detection. Viability is therefore defined as the ability to grow to that population; true viabilities could be even higher. Doubling times, based on whole populations as well as individual subpopulations, were in the 1-day to 1-week range. Data were examined for changes in viability with dilution suggesting cell-cell interactions, but none could be confirmed. The frequency of pure culture production can be adjusted by inoculum size if the viability is known. These apparently pure cultures produced retained the size and apparent DNA-content characteristic of the bulk of the organisms in the parent seawater. Three cultures are now available, two of which have been carried for 3 years. The method is thus seen as a useful step for improving our understanding of typical aquatic organisms. PMID:16348896

  1. Pregnenolone protects the PC-12 cell line against amyloid beta peptide toxicity but its sulfate ester does not.

    PubMed

    Akan, Pinar; Kizildag, Servet; Ormen, Murat; Genc, Sermin; Oktem, Mehmet Ali; Fadiloglu, Meral

    2009-01-15

    Pregnenolone (P), the main precursor of the steroids, and its sulfate ester, pregnenolone sulfate (PS), are the major neurosteroids produced in the neural tissue. Many neuroendocrinological studies stressed the neuroprotective role of neurosteroids although it has been suggested that the inhibition of P and PS synthesis can delay neuronal cell death. The potential roles of P and PS in vital neuronal functions and in amyloid beta peptide (Abeta) toxicity are not clearly identified. This work aims to investigate the effects of P and PS on cell viability and Abeta peptide toxicity in a concentration and exposure time-dependent manner in rat PC-12 cells. The cells were treated with 20muM Abeta peptide 25-35 and variable concentrations of P and PS ranging from 0.5muM to 100muM. To examine the effects of steroid treatment on Abeta peptide toxicity, 0.5muM (low) and 50muM (high) neurosteroids were used. The cell viability and lactate dehydrogenase release of cells were evaluated after 24, 48 and 72h. Morphological changes of cells were also examined. The treatment with higher than 1muM concentrations of P and PS significantly decreased the cell viability comparing to untreated cells. At lower concentrations, P and PS had no toxic actions until 72h. The Abeta treatment resulted in a significant decrease in cell viability comparing to untreated cells. P showed a dose-dependent protective effect against Abeta peptide in PC-12 cells. But its sulfate ester did not have the same effect on Abeta peptide toxicity, even it significantly decreased cell viability in Abeta-treated cells. Consequently, the discrepant effects of P and PS on Abeta peptide toxicity may provide insight on the pathogenesis of Alzheimer's disease.

  2. Effect of all-trans retinoic acid (ATRA) on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells.

    PubMed

    Bidad, Katayoon; Salehi, Eisa; Oraei, Mona; Saboor-Yaraghi, Ali-Akbar; Nicknam, Mohammad Hossein

    2011-12-01

    All-trans retinoic acid (ATRA), as an active metabolite of vitamin A, has been shown to affect immune cells. This study was performed to evaluate the effect of ATRA on viability, proliferation, activation and lineage-specific transcription factors of CD4+ T cells. CD4+ T cells were separated from heparinized blood of healthy donors and were cultured in conditions, some with, some without ATRA. Viability was assessed by PI flowcytometry and proliferation was measured by MTT assay. CD69 expression was determined by flowcytometry as a measure of cell activation. Lineage-specific transcription factors (FOXP3, RORγt and T-bet) were examined by intracellular staining and flowcytometry. High doses of ATRA (0.1-1 mM) caused extensive cell death in both PBMCs and CD4+ T cells. Doses of ATRA equal to or lower than 10 µM did not adversely affect cell viability and proliferation in comparison to culture medium without ATRA. Doses of ATRA between 10 µM and 1nM significantly increased cell activation when compared to culture medium without ATRA. ATRA could increase FOXP3+ and also FOXP3+RORγt+ T cells while it decreased RORγt+ and T-bet+ T cells. This study showed that doses of ATRA up to 10 µM are safe when using with CD4+ T cells in terms of cell viability, proliferation and activation. We could also show that ATRA diverts the human immune response in neutral conditions (without adding polarizing cytokines) by increasing FOXP3+ cells and decreasing RORγt+ cells. ATRA could be regarded as a potential therapy in inflammatory conditions and autoimmunities.

  3. Serum-free cryopreservation of human amniotic epithelial cells before and after isolation from their natural scaffold.

    PubMed

    Niknejad, Hassan; Deihim, Tina; Peirovi, Habibollah; Abolghasemi, Hassan

    2013-08-01

    Amniotic epithelial cells are a promising source for stem cell-based therapy through their potential capacity to differentiate into the cell lineages of all three germ layers. Long-term preservation is necessary to have a ready-to-use source of stem cells, when required. Reduced differentiation capability, decrease of viability and use of fetal bovine serum (FBS) are three drawbacks of clinical application of cryopreserved stem cells. In this study, we used human amniotic fluid instead of animal serum, and evaluated viability and multipotency of amniotic epithelial cells after cryopreservation in suspension and compared with those cryopreserved on their natural scaffold (in situ cryopreservation). There was no significant difference in viability of the cells cryopreserved in amniotic fluid and FBS. Also, the same results were achieved for expression of pluripotency marker OCT-4 when FBS was replaced by amniotic fluid in the samples with the same cryoprotectant. The cells cryopreserved in presence of scaffold had a higher level of viability compared to the cells cryopreserved in suspension. Although, the number of the cells expressed OCT-4 significantly decreased within cryopreservation in suspension, no decrease in expression of OCT-4 was observed when the cells cryopreserved with their natural scaffold. Upon culturing of post-thawed cells in specific lineage differentiating mediums, the markers of neuronal, hepatic, cardiomyocytic and pancreatic were found in differentiated cells. These results show that replacement of FBS by amniotic fluid and in situ cryopreservation of amniotic epithelial cells is an effective approach to overcome limitations related to long-term preservation including differentiation during cryopreservation and decrease of viability. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Optimization of the freezing process for hematopoietic progenitor cells: effect of precooling, initial dimethyl sulfoxide concentration, freezing program, and storage in vapor-phase or liquid nitrogen on in vitro white blood cell quality.

    PubMed

    Dijkstra-Tiekstra, Margriet J; Setroikromo, Airies C; Kraan, Marcha; Gkoumassi, Effimia; de Wildt-Eggen, Janny

    2014-12-01

    Adding dimethyl sulfoxide (DMSO) to hematopoietic progenitor cells (HPCs) causes an exothermic reaction, potentially affecting their viability. The freezing method might also influence this. The aim was to investigate the effect of 1) precooling of DMSO and plasma (D/P) and white blood cell (WBC)-enriched product, 2) DMSO concentration of D/P, 3) freezing program, and 4) storage method on WBC quality. WBC-enriched product without CD34+ cells was used instead of HPCs. This was divided into six or eight portions. D/P (20 or 50%; precooled or room temperature [RT]) was added to the WBC-enriched product (precooled or RT), resulting in 10% DMSO, while monitoring temperature. The product was frozen using controlled-rate freezing ("fast-rate" or "slow-rate") and placed in vapor-phase or liquid nitrogen. After thawing, WBC recovery and viability were determined. Temperature increased most for precooled D/P to precooled WBC-enriched product, without influence of 20 or 50% D/P, but remained for all variations below 30°C. WBC recovery for both freezing programs was more than 95%. Recovery of WBC viability was higher for slow-rate freezing compared to fast-rate freezing (74% vs. 61%; p < 0.05) and also for 50% compared to 20% D/P (two test variations). Effect of precooling D/P or WBC-enriched product and of storage in vapor-phase or liquid nitrogen was marginal. Based on these results, precooling is not necessary. Fifty percent D/P is preferred over 20% D/P. Slow-rate freezing is preferred over fast-rate freezing. For safety reasons storage in vapor-phase nitrogen is preferred over storage in liquid nitrogen. Additional testing using real HPCs might be necessary. © 2014 AABB.

  5. Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants.

    PubMed

    Parsha, Kaushik; Mir, Osman; Satani, Nikunj; Yang, Bing; Guerrero, Waldo; Mei, Zhuyong; Cai, Chunyan; Chen, Peng R; Gee, Adrian; Hanley, Patrick J; Aronowski, Jaroslaw; Savitz, Sean I

    2017-01-01

    Extensive animal data indicate that mesenchymal stromal cells (MSCs) improve outcome in stroke models. Intra-arterial (IA) injection is a promising route of delivery for MSCs. Therapeutic effect of MSCs in stroke is likely based on the broad repertoire of secreted trophic and immunomodulatory cytokines produced by MSCs. We determined the differential effects of exposing MSCs to different types of clinically relevant vehicles, and/or different additives and passage through a catheter relevant to IA injections. MSCs derived from human bone marrow were tested in the following vehicles: 5% albumin (ALB), 6% Hextend (HEX) and 40% dextran (DEX). Each solution was tested (i) alone, (ii) with low-dose heparin, (iii) with 10% Omnipaque, or (iv) a combination of heparin and Omnipaque. Cells in vehicles were collected directly or passed through an IA catheter, and MSC viability and cytokine release profiles were assessed. Cell viability remained above 90% under all tested conditions with albumin being the highest at 97%. Viability was slightly reduced after catheter passage or exposure to heparin or Omnipaque. Catheter passage had little effect on MSC cytokine secretion. ALB led to increased release of angiogenic factors such as vascular endothelial growth factor compared with other vehicles, while HEX and DEX led to suppression of pro-inflammatory cytokines such as interleukin-6. However, when these three vehicles were subjected to catheter passage and/or exposure to additives, the cytokine release profile varied depending on the combination of conditions to which MSCs were exposed. Exposure of MSCs to certain types of vehicles or additives changes the profile of cytokine secretion. The activation phenotype of MSCs may therefore be affected by the vehicles used for these cells or the exposure to the adjuvants used in their administration. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  6. Direct Numerical Simulation of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  7. Comparison of impact of two decontamination solutions on the viability of the cells in human amnion.

    PubMed

    Smeringaiova, Ingrida; Trosan, Peter; Mrstinova, Miluse Berka; Matecha, Jan; Burkert, Jan; Bednar, Jan; Jirsova, Katerina

    2017-09-01

    Human amniotic membrane (HAM) is used as an allograft in regenerative medicine or as a source of pluripotent cells for stem cell research. Various decontamination protocols and solutions are used to sterilize HAM before its application, but little is known about the toxicity of disinfectants on HAM cells. In this study, we tested two decontamination solutions, commercial (BASE·128) and laboratory decontamination solution (LDS), with an analogous content of antimycotic/antibiotics for their cytotoxic effect on HAM epithelial (EC) and mesenchymal stromal cells (MSC). HAM was processed in a standard way, placed on nitrocellulose scaffold, and decontaminated, following three protocols: (1) 6 h, 37 °C; (2) 24 h, room temperature; (3) 24 h, 4 °C. The viability of EC was assessed via trypan blue staining. The apoptotic cells were detected using terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). The mean % (±SD) of dead EC (%DEC) from six fresh placentas was 12.9 ± 18.1. Decontamination increased %DEC compared to culture medium. Decontamination with BASE·128 for 6 h, 37 °C led to the highest EC viability (81.7%). Treatment with LDS at 24 h, 4 °C resulted in the lowest EC viability (55.9%) in the set. MSC were more affected by apoptosis than EC. Although the BASE·128 expresses lower toxicity compared to LDS, we present LDS as an alternative decontamination solution with a satisfactory preservation of cell viability. The basic formula of LDS will be optimised by enrichment with nutrient components, such as glucose or vitamins, to improve cell viability.

  8. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo.

    PubMed

    Wang, Xiao-Fei; Song, Yang; Liu, Yun-Song; Sun, Yu-Chun; Wang, Yu-Guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects.

  9. The effect of Me2SO overexposure during cryopreservation on HOS TE85 and hMSC viability, growth and quality.

    PubMed

    Morris, Timothy J; Picken, Andrew; Sharp, Duncan M C; Slater, Nigel K H; Hewitt, Christopher J; Coopman, Karen

    2016-12-01

    With the cell therapy industry continuing to grow, the ability to preserve clinical grade cells, including mesenchymal stem cells (MSCs), whilst retaining cell viability and function remains critical for the generation of off-the-shelf therapies. Cryopreservation of MSCs, using slow freezing, is an established process at lab scale. However, the cytotoxicity of cryoprotectants, like Me 2 SO, raises questions about the impact of prolonged cell exposure to cryoprotectant at temperatures >0 °C during processing of large cell batches for allogenic therapies prior to rapid cooling in a controlled rate freezer or in the clinic prior to administration. Here we show that exposure of human bone marrow derived MSCs to Me 2 SO for ≥1 h before freezing, or after thawing, degrades membrane integrity, short-term cell attachment efficiency and alters cell immunophenotype. After 2 h's exposure to Me 2 SO at 37 °C post-thaw, membrane integrity dropped to ∼70% and only ∼50% of cells retained the ability to adhere to tissue culture plastic. Furthermore, only 70% of the recovered MSCs retained an immunophenotype consistent with the ISCT minimal criteria after exposure. We also saw a similar loss of membrane integrity and attachment efficiency after exposing osteoblast (HOS TE85) cells to Me 2 SO before, and after, cryopreservation. Overall, these results show that freezing medium exposure is a critical determinant of product quality as process scale increases. Defining and reporting cell sensitivity to freezing medium exposure, both before and after cryopreservation, enables a fair judgement of how scalable a particular cryopreservation process can be, and consequently whether the therapy has commercial feasibility. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    PubMed

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Effects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study

    PubMed Central

    Shahbazi-Gahrouei, D.; Hashemi-Beni, B.; Ahmadi, Z.

    2016-01-01

    Background: As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. Stem cells are undifferentiated biological cells that can differentiate into specialized cells. Adipose tissue represents an abundant and accessible source of adult stem cells. The aim of this study is to investigate the effects of GSM 900 MHz on growth and proliferation of mesenchymal stem cells derived from adipose tissue within the specific distance and intensity. Materials and Methods: ADSCs were exposed to GSM mobile phones 900 MHz with intensity of 354.6 µW/cm2 square waves (217 Hz pulse frequency, 50% duty cycle), during different exposure times ranging from 6 to 21 min/day for 5 days at 20 cm distance from the antenna. MTT assay was used to determine the growth and metabolism of cells and trypan blue test was also done for cell viability. Statistical analyses were carried out using analysis of one way ANOVA. P<0.05 was considered to be statistically significant. Results: The proliferation rates of human ADSCs in all exposure groups were significantly lower than control groups (P<0.05) except in the group of 6 minutes/day which did not show any significant difference with control groups. Conclusion: The results show that 900 MHz RF signal radiation from antenna can reduce cell viability and proliferation rates of human ADSCs regarding the duration of exposure. PMID:28144594

  12. Migration-stimulating factor (MSF) is over-expressed in non-small cell lung cancer and promotes cell migration and invasion in A549 cells over-expressing MSF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xuefeng, E-mail: dengxfdoctor@hotmail.com; Department of Cardio-thoracic Surgery, Affiliated Hospital of Academy of Military Medical Sciences; Ma, Qunfeng

    Migration-stimulating factor (MSF), an oncofetal truncated isoform of fibronectin, is a potent stimulator of cell invasion. However, its distribution and motogenic role in non-small cell lung cancer (NSCLC) have never been identified. In this study, real-time PCR and immunohistochemical staining (IHC) were performed to detect MSF mRNA and protein levels in tumor tissues and matched adjacent tumor-free tissues. Furthermore, to examine the effect of MSF on invasiveness, MSF was upregulated in A549 cells. The invasiveness and viability of A549 cells were then determined using a transwell migration assay and the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assays, respectively. The expression level ofmore » MSF in NSCLC tissue was markedly higher than in matched adjacent tumor-free tissue. Additionally, the level of MSF protein expression in stage III and IV NSCLC samples was higher than in stage I and II NSCLC samples. More importantly, we also demonstrated that migration and invasion of A549 cells increased substantially after upregulating MSF, although proliferation remained unchanged. Meanwhile, we found no correlation between increasing motility and invasiveness of MSF-overexpressing cells and expression levels and activities of matrix metalloprotease MMP-2 and MMP-9. Our current study shows that MSF plays a role in migration and invasion of A549 cells and suggests that MSF may be a potential biomarker of NSCLC progression. - Highlights: • MSF expression was upregulated in NSCLC and correlated with TNM stages. • MSF may be a new biomarker for NSCLC progression. • MSF promoted migration and invasion in A549 cells, independent of MMP-2/MMP-9 expression.« less

  13. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

    PubMed Central

    Liu, Yun-Song; Sun, Yu-chun; Wang, Yu-guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects. PMID:27332814

  14. Heat shock protein 90 (HSP90) is overexpressed in p16-negative oropharyngeal squamous cell carcinoma, and its inhibition in vitro potentiates the effects of chemoradiation.

    PubMed

    Patel, Kirtesh; Wen, Jing; Magliocca, Kelly; Muller, Susan; Liu, Yuan; Chen, Zhuo Georgia; Saba, Nabil; Diaz, Roberto

    2014-11-01

    Cisplatin and radiation therapy remain the current standard for treating locally advanced SCCHN. Novel treatment approaches are needed, especially in patients with human papilloma virus (HPV)-negative disease who have worse outcomes despite multimodality therapy. Using our institutional review board approved database, we obtained twenty oropharyngeal squamous cell carcinoma (SCC) tissue samples: ten p16 positive, ten p16-negative. Because p16 expression is strongly associated with HPV positivity in oropharyngeal SCC, p16 status was used as a marker of HPV. We subsequently analyzed, via immunohistochemistry, heat shock protein 90 (HSP90) protein levels. Using HPV-positive and HPV-negative SCC cell lines, we compared baseline HSP90 expression levels and the effect of the HSP90 inhibitor ganetespib on viability and apoptosis. Clonogenic survival of HPV-negative cells treated with ganetespib, radiation therapy, and/or cisplatin was then investigated. We characterize the effects of ganetespib on proteins that are thought to drive DNA damage resistance in HPV-negative cells. HSP90 expression was significantly higher in p16-negative compared with p16-positive samples (p = 0.016) and in HPV-negative cell lines compared with positive cells. Ganetespib increased cytotoxicity and induced apoptosis in HPV-negative more than positive cells. Adding ganetespib to cisplatin and/or radiation therapy in HPV-negative cells further decreased clonogenic survival. Finally, ganetespib downregulated expressions of EGFR, ERK, AKT, p53, and HIF-1α. Ganetespib inhibited HPV-negative SCCHN viability and potentiated cell kill when combined with cisplatin or radiation therapy in vitro. With HSP90 expression higher in HPV-negative cells and in p16-negative patients, further exploration of the clinical activity of HSP90 inhibitors in SCCHN is warranted.

  15. Report of prochloron research, IPE-7 (Palau, February 1982)

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.; Cheng, L.

    1983-01-01

    Various aspects of Prochloron research are discussed. At suitable low-tide periods about 5-6 new sites were surveyed as possible convenient sources of symbiotic didemnids. The Kanori Channel site peviously surveyed during IPE-VI remains by far the best, in terms of species, quantities and accessibility. Prochloron from the six major species of symbiotic didemnids was compared serum, cell size and vacuolation, etc. Tadpoles from Lissoclinum patella colonies were observed emerging from cloacal apertures; about 400 were collected. All but 4 carried a girdle of symbiotic Prochloron cells (about 40,000 per larva). Observations were made on cell viability indicated that a marked increase in protoplasm viscosity of the cell contents was associated with cell death. Living cells, in 5 microlitres of buffered sea water under a coverslip, when pressed with a 2 kg weight for 10 seconds, attempts made to culture Prochloron in sea-water media.

  16. Increase in the nitric oxide release without changes in cell viability of macrophages after laser therapy with 660 and 808 nm lasers.

    PubMed

    Silva, Igor Henrique Morais; de Andrade, Samantha Cardoso; de Faria, Andreza Barkokebas Santos; Fonsêca, Deborah Daniela Diniz; Gueiros, Luiz Alcino Monteiro; Carvalho, Alessandra Albuquerque Tavares; da Silva, Wylla Tatiana Ferreira; de Castro, Raul Manhães; Leão, Jair Carneiro

    2016-12-01

    The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) with different parameters and wavelengths on nitric oxide (NO) release and cell viability. Irradiation was performed with Ga-Al-As laser, continuous mode and wavelengths of 660 and 808 nm at different energy and power densities. For each wavelength, powers of 30, 50, and 100 mW and times of 10, 30, and 60 s were used. NO release was measured using Griess reaction, and cell viability was evaluated by mitochondrial reduction of bromide 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) to formazan. LLLT promoted statistically significant changes in NO release and MTT value only at the wavelength of 660 nm (p < 0.05). LLLT also promoted an increase in the NO release and cell viability when the energy densities 64 (p = 0.04) and 214 J/cm 2 (p = 0.012), respectively, were used. LLLT has a significant impact on NO release without affecting cell viability, but the significance of these findings in the inflammatory response needs to be further studied.

  17. Comparison of the effect of three autogenous bone harvesting methods on cell viability in rabbits

    PubMed Central

    Moradi Haghgoo, Janet; Arabi, Seyed Reza; Hosseinipanah, Seyyed Mohammad; Solgi, Ghasem; Rastegarfard, Neda; Farhadian, Maryam

    2017-01-01

    Background. This study was designed to compare the viability of autogenous bone grafts, harvested using different methods, in order to determine the best harvesting technique with respect to more viable cells. Methods. In this animal experimental study, three harvesting methods, including manual instrument (chisel), rotary device and piezosurgery, were used for harvesting bone grafts from the lateral body of the mandible on the left and right sides of 10 rabbits. In each group, 20 bone samples were collected and their viability was assessed using MTS kit. Statistical analyses, including ANOVA and post hoc Tukey tests, were used for evaluating significant differences between the groups. Results. One-way ANOVA showed significant differences between all the groups (P=0.000). Data analysis using post hoc Tukey tests indicated that manual instrument and piezosurgery had no significant differences with regard to cell viability (P=0.749) and the cell viability in both groups was higher than that with the use of a rotary instrument (P=0.000). Conclusion. Autogenous bone grafts harvested with a manual instrument and piezosurgery had more viable cells in comparison to the bone chips harvested with a rotary device. PMID:28748046

  18. Withagulatin A inhibits hepatic stellate cell viability and procollagen I production through Akt and Smad signaling pathways

    PubMed Central

    Liu, Qiong; Chen, Jing; Wang, Xu; Yu, Liang; Hu, Li-hong; Shen, Xu

    2010-01-01

    Aim: To investigate the effects of the natural product Withagulatin A on hepatic stellate cell (HSC) viability and type I procollagen production. The potential mechanism underlying the pharmacological actions was also explored. Methods: The effect of Withagulatin A on cell viability was evaluated in HSC and LX-2 cells using a sulforhodamine B (SRB) assay. Cell cycle distribution was analyzed using flow cytometry. Type I procollagen gene expression was determined using real-time PCR. Regulation of signaling molecules by Withagulatin A was detected using Western blotting. Results: Primary rat HSCs and the human hepatic stellate cell line LX-2 treated with Withagulatin A (0.625-20 μmol/L) underwent a dose-dependent decrease in cell viability, which was associated with S phase arrest and the induction of cell apoptosis. In addition, the natural product decreased phosphorylation of the Akt/mTOR/p70S6K pathway that controls cell proliferation and survival. Furthermore, Withagulatin A (1, 2 μmol/L) inhibited transforming growth factor-β (TGF-β) stimulated type I procollagen gene expression, which was attributable to the suppression of TGF-β stimulated Smad2 and Smad3 phosphorylation. Conclusion: Our results demonstrated that Withagulatin A potently inhibited HSC viability and type I procollagen production, thereby implying that this natural product has potential use in the development of anti-fibrogenic reagents for the treatment of hepatic fibrosis. PMID:20644552

  19. Enhanced resveratrol production in Vitis vinifera cell suspension cultures by heavy metals without loss of cell viability.

    PubMed

    Cai, Zhenzhen; Kastell, Anja; Speiser, Claire; Smetanska, Iryna

    2013-09-01

    The effects of heavy metal ions (Co(2+), Ag(+), Cd(2+)) on cell viability and secondary metabolite production, particularly anthocyanins and phenolic acids in Vitis vinifera cell suspension cultures, were investigated. Of these, Co at all three used concentrations (5.0, 25, and 50 μM), Ag, and Cd at low concentration (5.0 μM) were most effective to stimulate the phenolic acid production, increasing the 3-O-glucosyl-resveratrol up to 1.6-fold of the control level (250.5 versus 152.4 μmol/g), 4 h after the treatments. Meanwhile, the elicitors at effective concentrations did not suppress cell growth, while the cell viability maintained. In contrast, Ag and Cd at high concentrations (25 and 50 μM) remarkably reduced the cell viability, decreasing the cell viability up to about 15 % of the control level, 24 h after the treatments. The heavy metal ions did not affect the anthocyanin production. These observations show how, in a single system, different groups of secondary products can show distinct differences in their responses to potential elicitors. The 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, peroxidase activity, medium pH value, and conductivity were only slightly elevated by the heavy metal ions. The results suggest that some of the secondary metabolites production was stimulated by the used elicitors, but there was not a stress response of the cells.

  20. Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability.

    PubMed

    Jacobsson, S O; Rongård, E; Stridh, M; Tiger, G; Fowler, C J

    2000-12-15

    In the present study, the effects of the combination of tamoxifen ((Z)-2[p-(1,2-diphenyl-1-butenyl)phenoxy]-N,N-dimethylamine citrate) and three cannabinoids (Delta(9)-tetrahydrocannabinol [Delta(9)-THC], cannabidiol, and anandamide [AEA]) upon the viability of C6 rat glioma cells was assessed at different incubation times and using different culturing concentrations of foetal bovine serum (FBS). Consistent with previous data for human glioblastoma cells, the tamoxifen sensitivity of the cells was increased as the FBS content of the culture medium was reduced from 10 to 0.4 and 0%. The cells expressed protein kinase C alpha and calmodulin (the concentration of which did not change significantly as the FBS concentration was reduced), but did not express estrogen receptors. Delta(9)-THC and cannabidiol, but not AEA, produced a modest reduction in cell viability after 6 days of incubation in serum-free medium, whereas no effects were seen in 10% FBS-containing medium. There was no observed synergy between the effects of tamoxifen and the cannabinoids upon cell viability.

  1. Effects of cryopreservation and hypothermic storage on cell viability and enzyme activity in recombinant encapsulated cells overexpressing alpha-L-iduronidase.

    PubMed

    Mayer, Fabiana Quoos; Baldo, Guilherme; de Carvalho, Talita Giacomet; Lagranha, Valeska Lizzi; Giugliani, Roberto; Matte, Ursula

    2010-05-01

    Here, we show the effects of cryopreservation and hypothermic storage upon cell viability and enzyme release in alginate beads containing baby hamster kidney cells overexpressing alpha-L-iduronidase (IDUA), the enzyme deficient in mucopolysaccharidosis type I. In addition, we compared two different concentrations of alginate gel (1% and 1.5%) in respect to enzyme release from the beads and their shape and integrity. Our results indicate that in both alginate concentrations, the enzyme is released in lower amounts compared with nonencapsulated cells. Alginate 1% beads presented increased levels of IDUA release, although this group presented more deformities when compared with alginate 1.5% beads. Importantly, both encapsulated groups presented higher cell viability after long cryopreservation period and hypothermic storage. In addition, alginate 1.5% beads presented higher enzyme release after freezing protocols. Taken together, our findings suggest a benefic effect of alginate upon cell viability and functionality. These results may have important application for treatment of both genetic and nongenetic diseases using microencapsulation-based artificial organs.

  2. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  3. Validation of in vitro assays in three-dimensional human dermal constructs.

    PubMed

    Idrees, Ayesha; Chiono, Valeria; Ciardelli, Gianluca; Shah, Siegfried; Viebahn, Richard; Zhang, Xiang; Salber, Jochen

    2018-05-01

    Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially "murine in vitro dermal construct" based on L929 cells was generated, leading to the development of "human in vitro dermal construct" consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue ® , RealTime-Glo ™ MT, and CellTiter-Glo ® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the "shaking time" to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.

  4. Long non-coding RNA HOTAIR promotes UVB-induced apoptosis and inflammatory injury by up-regulation of PKR in keratinocytes.

    PubMed

    Liu, Guo; Zhang, Wenhao

    2018-06-11

    Excessive exposure to ultraviolet (UV) rays can cause damage of the skin and may induce cancer, immunosuppression, photoaging, and inflammation. The long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) is involved in multiple human biological processes. However, its role in UVB-induced keratinocyte injury is unclear. This study was performed to investigate the effects of HOTAIR in UVB-induced apoptosis and inflammatory injury in human keratinocytes (HaCaT cells). Quantitative real-time polymerase chain reaction was performed to analyze the expression levels of HOTAIR, PKR, TNF-α, and IL-6. Cell viability was measured using trypan blue exclusion method and cell apoptosis using flow cytometry and western blot. ELISA was used to measure the concentrations of TNF-α and IL-6. Western blot was used to measure the expression of PKR, apoptosis-related proteins, and PI3K/AKT and NF-κB pathway proteins. UVB induced HaCaT cell injury by inhibiting cell viability and promoting cell apoptosis and expressions of IL-6 and TNF-α. UVB also promoted the expression of HOTAIR. HOTAIR suppression increased cell viability and decreased apoptosis and expression of inflammatory factors in UVB-treated cells. HOTAIR also promoted the expression of PKR. Overexpression of HOTAIR decreased cell viability and increased cell apoptosis and expression of inflammatory factors in UVB-treated cells by upregulating PKR. Overexpression of PKR decreased cell viability and promoted cell apoptosis in UVB-treated cells. Overexpression of PKR activated PI3K/AKT and NF-κB pathways. Our findings identified an essential role of HOTAIR in promoting UVB-induced apoptosis and inflammatory injury by up-regulating PKR in keratinocytes.

  5. Detrimental effects of discectomy on intervertebral disc biology can be decelerated by growth factor treatment during surgery: a large animal organ culture model.

    PubMed

    Illien-Jünger, Svenja; Lu, Young; Purmessur, Devina; Mayer, Jillian E; Walter, Benjamin A; Roughley, Peter J; Qureshi, Sheeraz A; Hecht, Andrew C; Iatridis, James C

    2014-11-01

    Lumbar discectomies are common surgical interventions that treat radiculopathy by removing herniated and loose intervertebral disc (IVD) tissues. However, remaining IVD tissue can continue to degenerate resulting in long-term clinical problems. Little information is available on the effects of discectomy on IVD biology. Currently, no treatments exist that can suspend or reverse the degeneration of the remaining IVD. To improve the knowledge on how discectomy procedures influence IVD physiology and to assess the potential of growth factor treatment as an augmentation during surgery. To determine effects of discectomy on IVDs with and without transforming growth factor beta 3 (TGFβ3) augmentation using bovine IVD organ culture. This study determined effects of discectomy with and without TGFβ3 injection using 1-, 6-, and 19-day organ culture experiments. Treated IVDs were injected with 0.2 μg TGFβ3 in 20 μL phosphate-buffered saline+bovine serum albumin into several locations of the discectomy site. Cell viability, gene expression, nitric oxide (NO) release, IVD height, aggrecan degradation, and proteoglycan content were determined. Discectomy significantly increased cell death, aggrecan degradation, and NO release in healthy IVDs. Transforming growth factor beta 3 injection treatment prevented or mitigated these effects for the 19-day culture period. Discectomy procedures induced cell death, catabolism, and NO production in healthy IVDs, and we conclude that post-discectomy degeneration is likely to be associated with cell death and matrix degradation. Transforming growth factor beta 3 injection augmented discectomy procedures by acting to protect IVD tissues by maintaining cell viability, limiting matrix degradation, and suppressing NO. We conclude that discectomy procedures can be improved with injectable therapies at the time of surgery although further in vivo and human studies are required. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.

    PubMed

    Chaytor, Jennifer L; Tokarew, Jacqueline M; Wu, Luke K; Leclère, Mathieu; Tam, Roger Y; Capicciotti, Chantelle J; Guolla, Louise; von Moos, Elisabeth; Findlay, C Scott; Allan, David S; Ben, Robert N

    2012-01-01

    The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220 mM solutions of disaccharides; however, the best cell viability was obtained when a 200 mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.

  7. Droplet size influences division of mammalian cell factories in droplet microfluidic cultivation.

    PubMed

    Periyannan Rajeswari, Prem Kumar; Joensson, Haakan N; Andersson-Svahn, Helene

    2017-01-01

    The potential of using droplet microfluidics for screening mammalian cell factories has been limited by the difficulty in achieving continuous cell division during cultivation in droplets. Here, we report the influence of droplet size on mammalian cell division and viability during cultivation in droplets. Chinese Hamster Ovary (CHO) cells, the most widely used mammalian host cells for biopharmaceuticals production were encapsulated and cultivated in 33, 180 and 320 pL droplets for 3 days. Periodic monitoring of the droplets during incubation showed that the cell divisions in 33 pL droplets stopped after 24 h, whereas continuous cell division was observed in 180 and 320 pL droplets for 72 h. The viability of the cells cultivated in the 33 pL droplets also dropped to about 50% in 72 h. In contrast, the viability of the cells in the larger droplets was above 90% even after 72 h of cultivation, making them a more suitable droplet size for 72-h cultivation. This study shows a direct correlation of microfluidic droplet size to the division and viability of mammalian cells. This highlights the importance of selecting suitable droplet size for mammalian cell factory screening assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    PubMed

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, P<0.05], and octanol preconditioning significantly attenuated the cell swelling [(113∓6)%, P<0.05]. SI/R caused a significant reduction of the cell viability compared to the control cells [(19∓2)% vs (45∓3)%, P<0.01], and octanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, P<0.01]. Connexin 43-formed hemichannels are involved in the regulation of cardiomyocyte volumes induced by SI/R challenge, and octanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  9. Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells.

    PubMed

    Noh, Hyangsoon; Yan, Jun; Hong, Sungguan; Kong, Ling-Yuan; Gabrusiewicz, Konrad; Xia, Xueqing; Heimberger, Amy B; Li, Shulin

    2016-11-01

    Intracellular vimentin overexpression has been associated with epithelial-mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.

  10. Measurement of cell viability in in vitro cultures.

    PubMed

    Castro-Concha, Lizbeth A; Escobedo, Rosa María; Miranda-Ham, María de Lourdes

    2006-01-01

    An overview of the methods for assessing cell viability in in vitro cultures is presented. The protocols of four of the most commonly used assays are described in detail, so the readers may be able to determine which assay is suitable for their own projects using plant cell cultures.

  11. Hydrogen Supplementation of Preservation Solution Improves Viability of Osteochondral Grafts

    PubMed Central

    Yamada, Takuya; Onuma, Kenji; Kuzuno, Jun; Ujihira, Masanobu; Kurokawa, Ryosuke; Sakai, Rina; Takaso, Masashi

    2014-01-01

    Allogenic osteochondral tissue (OCT) is used for the treatment of large cartilage defects. Typically, OCTs collected during the disease-screening period are preserved at 4°C; however, the gradual reduction in cell viability during cold preservation adversely affects transplantation outcomes. Therefore, improved storage methods that maintain the cell viability of OCTs are needed to increase the availability of high-quality OCTs and improve treatment outcomes. Here, we evaluated whether long-term hydrogen delivery to preservation solution improved the viability of rat OCTs during cold preservation. Hydrogen-supplemented Dulbecco's Modified Eagles Medium (DMEM) and University of Wisconsin (UW) solution both significantly improved the cell viability of OCTs during preservation at 4°C for 21 days compared to nonsupplemented media. However, the long-term cold preservation of OCTs in DMEM containing hydrogen was associated with the most optimal maintenance of chondrocytes with respect to viability and morphology. Our findings demonstrate that OCTs preserved in DMEM supplemented with hydrogen are a promising material for the repair of large cartilage defects in the clinical setting. PMID:25506061

  12. Living bacteria in silica gels

    NASA Astrophysics Data System (ADS)

    Nassif, Nadine; Bouvet, Odile; Noelle Rager, Marie; Roux, Cécile; Coradin, Thibaud; Livage, Jacques

    2002-09-01

    The encapsulation of enzymes within silica gels has been extensively studied during the past decade for the design of biosensors and bioreactors. Yeast spores and bacteria have also been recently immobilized within silica gels where they retain their enzymatic activity, but the problem of the long-term viability of whole cells in an inorganic matrix has never been fully addressed. It is a real challenge for the development of sol-gel processes. Generic tests have been performed to check the viability of Escherichia coli bacteria in silica gels. Surprisingly, more bacteria remain culturable in the gel than in an aqueous suspension. The metabolic activity of the bacteria towards glycolysis decreases slowly, but half of the bacteria are still viable after one month. When confined within a mineral environment, bacteria do not form colonies. The exchange of chemical signals between isolated bacteria rather than aggregates can then be studied, a point that could be very important for 'quorum sensing'.

  13. Comparison of different particles and methods for magnetic isolation of circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Sieben, S.; Bergemann, C.; Lübbe, A.; Brockmann, B.; Rescheleit, D.

    2001-01-01

    A more effective method for tumor cell separation from peripheral blood was established. The results of optimized magnetic particles verified by analyzing yield, purity and viability of isolated epithelial tumor cells were compared with a commercial kit for immunomagnetic cell separation. Porous silica particles of 230 nm were found to give best recovery rates and high viability of extracted cells.

  14. Comparison of liposomal and 2-hydroxypropyl-β-cyclodextrin-lidocaine on cell viability and inflammatory response in human keratinocytes and gingival fibroblasts.

    PubMed

    Ferreira, Luiz Eduardo Nunes; Muniz, Bruno Vilela; Dos Santos, Cleiton Pita; Volpato, Maria Cristina; de Paula, Eneida; Groppo, Francisco Carlos

    2016-06-01

    The aim of this study was to observe the effect multilamellar liposomes (MLV) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in the in-vitro effects of lidocaine in cell viability, pro-inflammatory cytokines and prostaglandin E2 release of both human keratinocytes (HaCaT) and gingival fibroblasts (HGF) cells. HaCaT and HGF cells were exposed to lidocaine 100-1 μm in plain, MLV and HP-β-CD formulations for 6 h or 24 h. The formulation effects in cell viability were measured by XTT assay and by fluorescent labelling. Cytokines (IL-8, IL-6 and TNF-α) and PGE2 release were quantified by ELISA. MLV and HP-β-CD formulations did not affect the HaCaT viability, which was significantly decreased by plain lidocaine after 24 h of exposure. Both drug carriers increased all cytokines released by HGF after 24-h exposure, and none of the carriers was able to reduce the PGE2 release induced by lidocaine. The effect of drug carrier in the lidocaine effects was dependent on the cell type, concentration and time of exposure. MLV and HP-β-CD showed benefits in improving cell viability; however, both of them showed a tendency to increase cytokine release when compared to the plain solution. © 2016 Royal Pharmaceutical Society.

  15. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.

    PubMed

    Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric

    2013-01-18

    Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.

  16. In Vitro Electrochemical Corrosion and Cell Viability Studies on Nickel-Free Stainless Steel Orthopedic Implants

    PubMed Central

    Salahinejad, Erfan; Hadianfard, Mohammad Jafar; Macdonald, Digby Donald; Sharifi-Asl, Samin; Mozafari, Masoud; Walker, Kenneth J.; Rad, Armin Tahmasbi; Madihally, Sundararajan V.; Tayebi, Lobat

    2013-01-01

    The corrosion and cell viability behaviors of nanostructured, nickel-free stainless steel implants were studied and compared with AISI 316L. The electrochemical studies were conducted by potentiodynamic polarization and electrochemical impedance spectroscopic measurements in a simulated body fluid. Cytocompatibility was also evaluated by the adhesion behavior of adult human stem cells on the surface of the samples. According to the results, the electrochemical behavior is affected by a compromise among the specimen's structural characteristics, comprising composition, density, and grain size. The cell viability is interpreted by considering the results of the electrochemical impedance spectroscopic experiments. PMID:23630603

  17. Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zi-Rong; Liu, Meng; Peng, Xiu-Lan

    2012-05-11

    Highlights: Black-Right-Pointing-Pointer Noscapine inhibited cell viability of colon cancer in a time- and dose- dependent manner. Black-Right-Pointing-Pointer G{sub 2}/M phase arrest and chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Noscapine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by noscapine. -- Abstract: Noscapine, a phthalide isoquinoline alkaloid derived from opium, has been widely used as a cough suppressant for decades. Noscapine has recently been shown to potentiate the anti-cancer effects of several therapies by inducing apoptosis in various malignant cells without any detectable toxicity in cells or tissues. However, the mechanism by which noscapine induces apoptosis in colonmore » cancer cells remains unclear. The signaling pathways by which noscapine induces apoptosis were investigated in colon cancer cell lines treated with various noscapine concentrations for 72 h, and a dose-dependent inhibition of cell viability was observed. Noscapine effectively inhibited the proliferation of LoVo cells in vitro (IC{sub 50} = 75 {mu}M). This cytotoxicity was reflected by cell cycle arrest at G{sub 2}/M and subsequent apoptosis, as indicated by increased chromatin condensation and fragmentation, the upregulation of Bax and cytochrome c (Cyt-c), the downregulation of survivin and Bcl-2, and the activation of caspase-3 and caspase-9. Moreover, in a xenograft tumor model in mice, noscapine injection clearly inhibited tumor growth via the induction of apoptosis, which was demonstrated using a TUNEL assay. These results suggest that noscapine induces apoptosis in colon cancer cells via mitochondrial pathways. Noscapine may be a safe and effective chemotherapeutic agent for the treatment of human colon cancer.« less

  18. Different effects of amino acid-based and glucose-based dialysate from peritoneal dialysis patients on mesothelial cell ultrastructure and function.

    PubMed

    Chan, Tak-Mao; Leung, Jack Kok-Hung; Sun, Yuling; Lai, Kar-Neng; Tsang, Ryan Chi-Wai; Yung, Susan

    2003-06-01

    Peritoneal dialysis fluid (PDF) containing amino acids has been introduced recently aiming to improve the nutritional status of PD patients. Dextrose-based PDFs have been implicated in progressive functional and structural deterioration of the peritoneal membrane. Limited data are currently available regarding the effect of amino acid-based PDF on the function and ultrastructure of human peritoneal mesothelial cells (HPMCs), which play a critical role in peritoneal membrane pathophysiology. We investigated the effects of two commercially available PDFs, which utilized dextrose (1.5% Dianeal) or amino acids (1.1% Nutrineal) as the osmotic agent, obtained from patients after a 4 h dwell, on HPMC proliferation (MTT assay and cell counting) and viability [lactate dehydrogenase (LDH)release], interleukin-6 (IL-6) secretion (commercial enzyme-linked immunosorbent assay) and ultrastructure (scanning and transmission electron microscopy). Exposure of HPMCs to 1.5% Dianeal reduced cell proliferation, total cellular protein synthesis, IL-6 secretion and cell attachment, but prolonged the cell doubling time on recovery, and increased LDH release (P<0.001, P<0.001, P<0.0001, P<0.0001, P<0.001 and P<0.001, respectively). The 1.1% Nutrineal reduced HPMC proliferation (P<0.001) and increased IL-6 secretion (P<0.0001), but did not affect cell attachment, LDH release, protein synthesis or cell doubling time. Ultrastructural studies of HPMCs exposed to Dianeal showed cell flattening, increased cell surface area, reduced microvilli, and intracellular organelles compatible with dysfunctional mitochondria. In contrast, the ultrastructural morphology of HPMCs was relatively preserved after incubation with Nutrineal. Our results showed that HPMC ultrastructure, viability and protein synthesis were better preserved with amino acid-based PDF, compared with conventional dextrose-based PDF. The significance of IL-6 induction by Nutrineal remains to be elucidated.

  19. Zurampic Protects Pancreatic β-Cells from High Uric Acid Induced-Damage by Inhibiting URAT1 and Inactivating the ROS/AMPK/ERK Pathways.

    PubMed

    Xin, Ying; Wang, Kun; Jia, Zhaotong; Xu, Tao; Xu, Qiang; Zhang, Chao; Liu, Jia; Chen, Rui; Du, Zhongcai; Sun, Jianjing

    2018-05-25

    Zurampic is a US FDA approved drug for treatment of gout. However, the influence of Zurampic on pancreatic β-cells remains unclear. The study aimed to evaluate the effects of Zurampic on high uric acid-induced damage of pancreatic β-cells and the possible underlying mechanisms. INS-1 cells and primary rat islets were stimulated with Zurampic and the mRNA expression of urate transporter 1 (URAT1) was assessed by qRT-PCR. Cells were stimulated with uric acid or uric acid plus Zurampic, and cell viability, apoptosis and ROS release were measured by MTT and flow cytometry assays. Western blot analysis was performed to evaluate the expressions of active Caspase-3 and phosphorylation of AMPK and ERK. Finally, cells were stimulated with uric acid or uric acid plus Zurampic at low/high level of glucose (2.8/16.7 mM glucose), and the insulin release was assessed by ELISA. mRNA expression of URAT1 was decreased by Zurampic in a dose-dependent manner. Uric acid decreased cell viability, promoted cell apoptosis and induced ROS release. Uric acid-induced alterations could be reversed by Zurampic. Activation of Caspase-3 and phosphorylation of AMPK and ERK were enhanced by uric acid, and the enhancements were reversed by Zurampic. Decreased phosphorylation of AMPK and ERK, induced by Zurampic, was further reduced by adding inhibitor of AMPK or ERK. Besides, uric acid inhibited high glucose-induced insulin secretion and the inhibition was rescued by Zurampic. Zurampic has a protective effect on pancreatic β-cells against uric acid induced-damage by inhibiting URAT1 and inactivating the ROS/AMPK/ERK pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  20. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    PubMed

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  1. Structure of palmitoylated BET3: insights into TRAPP complex assembly and membrane localization

    PubMed Central

    Turnbull, Andrew P; Kümmel, Daniel; Prinz, Bianka; Holz, Caterina; Schultchen, Jeffrey; Lang, Christine; Niesen, Frank H; Hofmann, Klaus-Peter; Delbrück, Heinrich; Behlke, Joachim; Müller, Eva-Christina; Jarosch, Ernst; Sommer, Thomas; Heinemann, Udo

    2005-01-01

    BET3 is a component of TRAPP, a complex involved in the tethering of transport vesicles to the cis-Golgi membrane. The crystal structure of human BET3 has been determined to 1.55-Å resolution. BET3 adopts an α/β-plait fold and forms dimers in the crystal and in solution, which predetermines the architecture of TRAPP where subunits are present in equimolar stoichiometry. A hydrophobic pocket within BET3 buries a palmitate bound through a thioester linkage to cysteine 68. BET3 and yeast Bet3p are palmitoylated in recombinant yeast cells, the mutant proteins BET3 C68S and Bet3p C80S remain unmodified. Both BET3 and BET3 C68S are found in membrane and cytosolic fractions of these cells; in membrane extractions, they behave like tightly membrane-associated proteins. In a deletion strain, both Bet3p and Bet3p C80S rescue cell viability. Thus, palmitoylation is neither required for viability nor sufficient for membrane association of BET3, which may depend on protein–protein contacts within TRAPP or additional, yet unidentified modifications of BET3. A conformational change may facilitate palmitoyl extrusion from BET3 and allow the fatty acid chain to engage in intermolecular hydrophobic interactions. PMID:15692564

  2. Femtosecond laser surgery of two-cell mouse embryos: effect on viability, development, and tetraploidization.

    PubMed

    Osychenko, Alina A; Zalessky, Alexandr D; Kostrov, Andrey N; Ryabova, Anastasia V; Krivokharchenko, Alexander S; Nadtochenko, Viktor A

    2017-12-01

    The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Hydrogen sulfide facilities production of nitric oxide via the Akt/endothelial nitric oxide synthases signaling pathway to protect human umbilical vein endothelial cells from injury by angiotensin II.

    PubMed

    Cui, Jiasen; Zhuang, Shunjiu; Qi, Shaohong; Li, Li; Zhou, Junwen; Zhang, Wan; Zhao, Yun; Qi, Ning; Yin, Yangjun; Huang, Lu

    2017-11-01

    Angiotensin II (Ang II) has been reported as key in inducing endothelial cell injury, and endothelial cells may produce nitric oxide (NO) to protect themselves. However, the underlying mechanism remains elusive. Human umbilical vein endothelial cells (HUVECs) were divided into five treatment groups as follows: Normal control, Ang II, Ang II + sodium hydrosulfide [NaHS; hydrogen sulfide (H2S) donor], Ang II + Akt inhibitors + NaHS, and Ang II + endothelial nitric oxide synthases (eNOS) inhibitors + NaHS. Subsequently, cell viability, apoptosis, migration, proliferation and adhesion ability were determined. In addition, tubular structure formation was observed, and the NO and phosphorylation levels of Akt and eNOS were evaluated. Compared with the normal control group, Ang II treatment reduced the viability of HUVECs and increased the level of cell apoptosis (P<0.05). Furthermore, Ang II treatment inhibited the phosphorylation level of eNOS and Akt, as well as the generation of NO (P<0.05). H2S reversed the above‑mentioned effects significantly and increased cell proliferation, adhesion ability and promoted tubular structure formation (P<0.05); however, H2S did not reverse the impact of eNOS and Akt phosphorylation levels after being processed with Akt and eNOS inhibitors, which indicates that H2S is capable of protecting HUVECs via the eNOS/Akt signaling pathway (P<0.05). Thus, H2S stimulates the production of NO and protects HUVECs via inducing the Akt/eNOS signaling pathway.

  4. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer

    PubMed Central

    Feng, Y; Zhu, M; Dangelmajer, S; Lee, Y M; Wijesekera, O; Castellanos, C X; Denduluri, A; Chaichana, K L; Li, Q; Zhang, H; Levchenko, A; Guerrero-Cazares, H; Quiñones-Hinojosa, A

    2014-01-01

    Adult human adipose-derived mesenchymal stem cells (hAMSCs) are multipotent cells, which are abundant, easily collected, and bypass the ethical concerns that plague embryonic stem cells. Their utility and accessibility have led to the rapid development of clinical investigations to explore their autologous and allogeneic cellular-based regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer properties, among others. hAMSCs are typically cultured under ambient conditions with 21% oxygen. However, physiologically, hAMSCs exist in an environment of much lower oxygen tension. Furthermore, hAMSCs cultured in standard conditions have shown limited proliferative and migratory capabilities, as well as limited viability. This study investigated the effects hypoxic culture conditions have on primary intraoperatively derived hAMSCs. hAMSCs cultured under hypoxia (hAMSCs-H) remained multipotent, capable of differentiation into osteogenic, chondrogenic, and adipogenic lineages. In addition, hAMSCs-H grew faster and exhibited less cell death. Furthermore, hAMSCs-H had greater motility than normoxia-cultured hAMSCs and exhibited greater homing ability to glioblastoma (GBM) derived from brain tumor-initiating cells from our patients in vitro and in vivo. Importantly, hAMSCs-H did not transform into tumor-associated fibroblasts in vitro and were not tumorigenic in vivo. Rather, hAMSCs-H promoted the differentiation of brain cancer cells in vitro and in vivo. These findings suggest an alternative culturing technique that can enhance the function of hAMSCs, which may be necessary for their use in the treatment of various pathologies including stroke, myocardial infarction, amyotrophic lateral sclerosis, and GBM. PMID:25501828

  5. MALAT1 affects ovarian cancer cell behavior and patient survival

    PubMed Central

    Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong

    2018-01-01

    Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187

  6. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability.

    PubMed

    Billiet, Thomas; Gevaert, Elien; De Schryver, Thomas; Cornelissen, Maria; Dubruel, Peter

    2014-01-01

    In the present study, we report on the combined efforts of material chemistry, engineering and biology as a systemic approach for the fabrication of high viability 3D printed macroporous gelatin methacrylamide constructs. First, we propose the use and optimization of VA-086 as a photo-initiator with enhanced biocompatibility compared to the conventional Irgacure 2959. Second, a parametric study on the printing of gelatins was performed in order to characterize and compare construct architectures. Hereby, the influence of the hydrogel building block concentration, the printing temperature, the printing pressure, the printing speed, and the cell density were analyzed in depth. As a result, scaffolds could be designed having a 100% interconnected pore network in the gelatin concentration range of 10-20 w/v%. In the last part, the fabrication of cell-laden scaffolds was studied, whereby the application for tissue engineering was tested by encapsulation of the hepatocarcinoma cell line (HepG2). Printing pressure and needle shape was revealed to impact the overall cell viability. Mechanically stable cell-laden gelatin methacrylamide scaffolds with high cell viability (>97%) could be printed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Elimination of remaining undifferentiated induced pluripotent stem cells in the process of human cardiac cell sheet fabrication using a methionine-free culture condition.

    PubMed

    Matsuura, Katsuhisa; Kodama, Fumiko; Sugiyama, Kasumi; Shimizu, Tatsuya; Hagiwara, Nobuhisa; Okano, Teruo

    2015-03-01

    Cardiac tissue engineering is a promising method for regenerative medicine. Although we have developed human cardiac cell sheets by integration of cell sheet-based tissue engineering and scalable bioreactor culture, the risk of contamination by induced pluripotent stem (iPS) cells in cardiac cell sheets remains unresolved. In the present study, we established a novel culture method to fabricate human cardiac cell sheets with a decreased risk of iPS cell contamination while maintaining viabilities of iPS cell-derived cells, including cardiomyocytes and fibroblasts, using a methionine-free culture condition. When cultured in the methionine-free condition, human iPS cells did not survive without feeder cells and could not proliferate or form colonies on feeder cells or in coculture with cells for cardiac cell sheet fabrication. When iPS cell-derived cells after the cardiac differentiation were transiently cultured in the methionine-free condition, gene expression of OCT3/4 and NANOG was downregulated significantly compared with that in the standard culture condition. Furthermore, in fabricated cardiac cell sheets, spontaneous and synchronous beating was observed in the whole area while maintaining or upregulating the expression of various cardiac and extracellular matrix genes. These findings suggest that human iPS cells are methionine dependent and a methionine-free culture condition for cardiac cell sheet fabrication might reduce the risk of iPS cell contamination.

  8. Long non-coding RNA HULC promotes UVB-induced injury by up-regulation of BNIP3 in keratinocytes.

    PubMed

    Zhao, Li; Man, Yigang; Liu, Shumei

    2018-08-01

    Ultraviolet radiation b (UVB) is a common high-energy radiation which can lead to cell damage and even skin cancer. The mechanisms of lncRNAs in various diseases have attracted much attention of researchers. Herein, we investigated the effects and regulations of lncRNA highly up-regulated in liver cancer (HULC) on UVB-induced injury in HaCaT cells. The HaCaT cells were exposed to UVB at a wavelength of 280-320 nm. Cell viability was detected at different times (0, 3, 6, 12 and 24 h) after UVB treatment. Cells were transfected with sh-HULC, pc-HULC, sh-BNIP3 (Bcl-2 interacting protein 3) or pc-BNIP3, respectively. ZM 39,923 HCl was used as JAK/STAT(1/3) inhibitor. Cell viability and apoptosis were tested by trypan blue dye and flow cytometry analysis, respectively. The expression levels of autophagy-related factors were analyzed by Western blot assay. The expression changes of HULC and BNIP3 were measured by qRT-PCR. We found that UVB decreased cell viability, increased apoptosis and autophagy, and up-regulated the expression of HULC in HaCaT cells. Overexpression of HULC reduced cell viability, enhanced apoptosis and autophagy, and up-regulated BNIP3 expression by activating JAK/STAT(1/3) signaling pathway. Finally, BNIP3 suppression increased cell viability, reduced apoptosis and autophagy via the deactivation of mTOR signaling pathway. The results demonstrated that lncRNA HULC up-regulated BNIP3 and activated JAK/STAT(1/3) signaling pathway to accelerate UVB-induced cell damage in HaCaT cells. This study provides a possible target for the clinical treatment of UVB-induced keratinocyte injury. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Effect of histone deacetylase inhibitor in combination with 5-fluorouracil on pancreas cancer and cholangiocarcinoma cell lines.

    PubMed

    Iwahashi, Shuichi; Ishibashi, Hiroki; Utsunomiya, Tohru; Morine, Yuji; Ochir, Tovuu Lkhaguva; Hanaoka, Jun; Mori, Hiroki; Ikemoto, Tetsuya; Imura, Satoru; Shimada, Mitsuo

    2011-02-01

    Histone deacetylase (HDAC) is well known to be associated with tumorigenesis through epigenetic regulation, and its inhibitors (HDACIs) induce differentiation and apoptosis of tumor cells. We examined the therapeutic effects of valproic acid (VPA, a HDACI) with a combination of 5-fluorouracil (5-FU) in vitro. A human pancreas cancer cell line (SUIT-2) and a cholangiocarcinoma cell line (HuCCT1) were used. Cell viabilities were evaluated by a cell proliferation assay. We determined the anticancer effects of VPA combined with 5-FU in these cell lines. Pancreas cancer (SUIT-2): No effect of 5-FU (1.0 µM) was observed, but 17% and 30% of proliferation-inhibitory effects were recognized in a dose of 2.5 or 5.0 µM, respectively. Cell viability was only weakly reduced by VPA (0.5 mM). However, in combination of 5-FU (1.0 µM) with VPA (0.5 mM), 19% of inhibitory effect was observed. Cholangiocarcinoma (HuCCT1): 5-FU (1.0 µM) did not suppress the cell viability, but 5-FU (2.5 µM) suppressed by 23%. VPA (0.5 mM) did not suppress the cell viability, while VPA (1.0 mM) weakly decreased it by 11%. Combination of 5-FU (1.0 µM) and VPA (0.5 mM) markedly reduced the cell viability by 30%. VPA augmented the anti-tumor effects of 5-FU in cancer cell lines. Therefore, a combination therapy of 5-FU plus VPA may be a promising therapeutic option for patients with pancreas cancer and cholangiocarcinoma.

  10. siRNA - Mediated LRP/LR knock-down reduces cellular viability of malignant melanoma cells through the activation of apoptotic caspases.

    PubMed

    Rebelo, Thalia M; Vania, Leila; Ferreira, Eloise; Weiss, Stefan F T

    2018-07-01

    The 37 kDa/67 kDa laminin receptor (LRP/LR) is over-expressed in tumor cells and has been implicated in several tumourigenic processes such as metastasis and telomerase activation, however, more importantly the focus of the present study is on the maintenance of cellular viability and the evasion of apoptosis. The aim of the study was to investigate the role of LRP/LR on the cellular viability of early (A375) and late stage (A375SM) malignant melanoma cells. Flow cytometry and western blot analysis revealed that A375SM cells contain more cell-surface and total LRP/LR levels in comparison to the A375 cells, respectively. In order to determine the effect of LRP/LR on cell viability and apoptosis, LRP was down-regulated via siRNA technology. MTT assays revealed that LRP knock-down led to significant reductions in the viability of A375 and A375SM cells. Confocal microscopy indicated nuclear morphological changes suggestive of apoptotic induction in both cell lines and Annexin-V FITC/PI assays confirmed this observation. Additionally, caspase-3 activity assays revealed that apoptosis was induced in both cell lines after siRNA-mediated down-regulation of LRP. Caspase-8 and -9 activity assays suggested that post LRP knock-down; A375 cells undergo apoptosis solely via the extrinsic pathway, while A375SM cells undergo apoptosis via the intrinsic pathway. siRNAs mediated LRP knock-down might represent a powerful alternative therapeutic strategy for the treatment of malignant melanoma through the induction of apoptosis. Copyright © 2018. Published by Elsevier Inc.

  11. Micro-RNA-181a suppresses progestin-promoted breast cancer cell growth.

    PubMed

    Gu, Muqing; Wang, Lijuan; Yang, Chun; Li, Xue; Jia, Chanwei; Croteau, Stephane; Ruan, Xiangyan; Hardy, Pierre

    2018-08-01

    Recent investigations have indicated that hormone therapy may increase the risk of breast cancer (BC), and the addition of synthetic progestins may play a critical role in this. Several studies have pointed out the important role of progesterone receptor membrane component 1 (PGRMC1) in the development of BC, especially with hormone therapy using progestins. Although the deregulation of microRNA-181a (miR-181a) is often associated with human BC, the effect of miR-181a on PGRMC1 expression during hormone therapy has not been investigated. Cell viability assay and apoptosis assay were performed to investigate the pro-BC effect of progestin (norethisterone, NET) and anti-BC effect of miR-181a on MCF-7 cells. Quantitative RT-PCR and Western blot analysis were used to evaluate gene expressions in the NET-treated MCF-7 cells. NET dose-dependently increased BC cell viability and this effect was accompanied by increased expression of PGRMC1. Overexpression of miR-181a strongly reduced the cell viability of MCF-7 cells, mainly through increased apoptosis, which was evidenced by substantially increased gene expression of pro-apoptosis factors such as BAX and CASPASE 9 in miR-181a overexpressed cells. Importantly, miR-181a abrogated NET-stimulated cell viability and PGRMC1 expression. We provide evidence that miR-181a promotes MCF-7 cell apoptosis. Moreover, miR-181a suppressed NET-provoked cell viability and PGRMC1 expression in MCF-7 cells. These data may suggest a therapeutic strategy of using miR-181a to reduce BC risk in progestin hormone replacement therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    PubMed Central

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone formation. PMID:27382277

  13. International Space Station environmental microbiome - microbial inventories of ISS filter debris.

    PubMed

    Venkateswaran, Kasthuri; Vaishampayan, Parag; Cisneros, Jessica; Pierson, Duane L; Rogers, Scott O; Perry, Jay

    2014-01-01

    Despite an expanding array of molecular approaches for detecting microorganisms in a given sample, rapid and robust means of assessing the differential viability of the microbial cells, as a function of phylogenetic lineage, remain elusive. A propidium monoazide (PMA) treatment coupled with downstream quantitative polymerase chain reaction (qPCR) and pyrosequencing analyses was carried out to better understand the frequency, diversity, and distribution of viable microorganisms associated with debris collected from the crew quarters of the International Space Station (ISS). The cultured bacterial counts were more in the ISS samples than cultured fungal population. The rapid molecular analyses targeted to estimate viable population exhibited 5-fold increase in bacterial (qPCR-PMA assay) and 25-fold increase in microbial (adenosine triphosphate assay) burden than the cultured bacterial population. The ribosomal nucleic acid-based identification of cultivated strains revealed the presence of only four to eight bacterial species in the ISS samples, however, the viable bacterial diversity detected by the PMA-pyrosequencing method was far more diverse (12 to 23 bacterial taxa) with the majority consisting of members of actinobacterial genera (Propionibacterium, Corynebacterium) and Staphylococcus. Sample fractions not treated with PMA (inclusive of both live and dead cells) yielded a great abundance of highly diverse bacterial (94 to 118 taxa) and fungal lineages (41 taxa). Even though deep sequencing capability of the molecular analysis widened the understanding about the microbial diversity, the cultivation assay also proved to be essential since some of the spore-forming microorganisms were detected only by the culture-based method. Presented here are the findings of the first comprehensive effort to assess the viability of microbial cells associated with ISS surfaces, and correlate differential viability with phylogenetic affiliation.

  14. Effect of trehalose as an additive to dimethyl sulfoxide solutions on ice formation, cellular viability, and metabolism.

    PubMed

    Solocinski, Jason; Osgood, Quinn; Wang, Mian; Connolly, Aaron; Menze, Michael A; Chakraborty, Nilay

    2017-04-01

    Cryopreservation is the only established method for long-term preservation of cells and cellular material. This technique involves preservation of cells and cellular components in the presence of cryoprotective agents (CPAs) at liquid nitrogen temperatures (-196 °C). The organic solvent dimethyl sulfoxide (Me 2 SO) is one of the most commonly utilized CPAs and has been used with various levels of success depending on the type of cells. In recent years, to improve cryogenic outcomes, the non-reducing disaccharide trehalose has been used as an additive to Me 2 SO-based freezing solutions. Trehalose is a naturally occurring non-toxic compound found in bacteria, fungi, plants, and invertebrates which has been shown to provide cellular protection during water-limited states. The mechanism by which trehalose improves cryopreservation outcomes remains not fully understood. Raman microspectroscopy is a powerful tool to provide valuable insight into the nature of interactions among water, trehalose, and Me 2 SO during cryopreservation. We found that the addition of trehalose to Me 2 SO based CPA solutions dramatically reduces the area per ice crystals while increasing the number of ice crystals formed when cooled to -40 or -80 °C. Differences in ice-formation patterns were found to have a direct impact on cellular viability. Despite the osmotic stress caused by addition of 100 mM trehalose, improvement in cellular viability was observed. However, the substantial increase in osmotic pressure caused by trehalose concentrations above 100 mM may offset the beneficial effects of changing the morphology of the ice crystals achieved by addition of this sugar. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [Simultaneous staining with fluorescein diacetate-propidium iodide to determine isolated cochlear outer hair cell viability of guinea pig].

    PubMed

    Yu, Q; Shi, H; Wang, J

    1995-01-01

    A simultaneous double-staining procedure using fluorescein diacetate (FDA) and propidium iodide (PI) is discribed for use in the determination of isolated cochlear outer hair cell viability. With exciter light, viable cells fluoresce bright green, while nonviable cells are bright red. In cell culture and cytotoxicity studies, double-staining with FDA-PI is a accurate method to discriminate between live and nonviable cells.

  16. Cellular and Transcriptional Responses of Crassostrea gigas Hemocytes Exposed in Vitro to Brevetoxin (PbTx-2)

    PubMed Central

    Mello, Danielle F.; de Oliveira, Eliza S.; Vieira, Renato C.; Simoes, Erik; Trevisan, Rafael; Dafre, Alcir Luiz; Barracco, Margherita Anna

    2012-01-01

    Hemocytes mediate a series of immune reactions essential for bivalve survival in the environment, however, the impact of harmful algal species and their associated phycotoxins upon bivalve immune system is under debate. To better understand the possible toxic effects of these toxins, Crassostrea gigas hemocytes were exposed to brevetoxin (PbTx-2). Hemocyte viability, monitored through the neutral red retention and MTT reduction assays, and apoptosis (Hoechst staining) remained unchanged during 12 h of exposure to PbTx-2 in concentrations up to 1000 µg/L. Despite cell viability and apoptosis remained stable, hemocytes incubated for 4 h with 1000 µg/L of PbTx-2 revealed higher expression levels of Hsp70 (p < 0.01) and CYP356A1 (p < 0.05) transcripts and a tendency to increase FABP expression, as evaluated by Real-Time quantitative PCR. The expression of other studied genes (BPI, IL-17, GSTO, EcSOD, Prx6, SOD and GPx) remained unchanged. The results suggest that the absence of cytotoxic effects of PbTx-2 in Crassostrea gigas hemocytes, even at high concentrations, allow early defense responses to be produced by activating protective mechanisms associated to detoxification (CYP356A1 and possibly FABP) and stress (Hsp70), but not to immune or to antioxidant (BPI, IL-17, EcSOD, Prx6, GPx and SOD) related genes. PMID:22611355

  17. A role for fruit structure in seed survival and germination of Swartzia langsdorffii Raddi beyond dispersal.

    PubMed

    Vaz, T A A; Rodrigues-Junior, A G; Davide, A C; Nakamura, A T; Toorop, P E

    2018-03-01

    Diaspore structure has been hypothesised to play a role in seed viability and/or germination of recalcitrant seeds, especially for Swartzia langsdorffii. Thus, this work aims to (i) investigate the in situ contribution of pericarp and aril on seed viability and germination, and (ii) identify morphoanatomical traits of S. langsdorffii diaspores that allow its desiccation-sensitive seeds to remain viable. The role of the pericarp and aril in seed survival and germination was investigated by placing the whole fruit, whole seeds (arillate seed) and bare seeds (without aril) in soil in the forest understorey, assessing germination, emergence, dead, firm and predated seeds, and water content of pericarps, arils and seeds. Correlation analysis was performed between environmental variables and physiological parameters. Histochemical features of diaspores were also investigated. Pericarp water content fell after several months, while the aril maintained its water content. Seeds did not lose water even without the presence of the pericarp and aril. However, presence of the pericarp promoted seed water content, viability and germination long after dispersal. The embryo had a thickened outer periclinal cell wall. Pericarp and aril are not essential to prevent water loss in seeds, but do help to retain seed moisture, favouring viability maintenance and promoting germination during the rainy season. Morphoanatomical features of seeds are suggested as main factors that reduce water loss. Survival of these desiccation-sensitive seeds upon dispersal during the dry season appears to be facilitated by multiple diaspore features that prevent viability loss. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  18. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses

    PubMed Central

    Espina, Miguel; Jülke, Henriette; Brehm, Walter; Ribitsch, Iris; Winter, Karsten

    2016-01-01

    Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs. Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates. Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (<40%) for all freezing protocols at −20 °C or −80 °C, particularly with bone marrow supernatant or plasma and DMSO. In part III, various cell concentrations also had no significant influence on any of the evaluated parameters. Chondrogenic differentiation showed a trend towards being decreased for all transport conditions, compared to control cells. Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. The unusual low viability after all freezing protocols is in contrast to previous equine studies. Potential causes are differences in the freezing, but also in thawing method. Also, the selected container (glass syringe) may have impacted viability. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation. PMID:27019778

  19. Histone Deacetylase (HDAC) Inhibitor Kinetic Rate Constants Correlate with Cellular Histone Acetylation but Not Transcription and Cell Viability

    PubMed Central

    Lauffer, Benjamin E. L.; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F.; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M.; Lupardus, Patrick J.; Kaminker, Joshua S.; Heise, Christopher E.; Steiner, Pascal

    2013-01-01

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility. PMID:23897821

  20. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo

    PubMed Central

    Karpel-Massler, Georg; Banu, Matei A.; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N.; Canoll, Peter; Siegelin, Markus D.

    2016-01-01

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective. PMID:26872380

  1. Mitomycin C induces apoptosis in rheumatoid arthritis fibroblast-like synoviocytes via a mitochondrial-mediated pathway.

    PubMed

    Yan, Chuqi; Kong, Dechao; Ge, Dong; Zhang, Yanming; Zhang, Xishan; Su, Changhui; Cao, Xiaojian

    2015-01-01

    Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease characterised by prominent synoviocyte hyperplasia and a potential imbalance between the growth and death of fibroblast-like synoviocytes (FLS). Mitomycin C (MMC) has previously been demonstrated to inhibit fibroblast proliferation and to induce fibroblast apoptosis. However, the effects of MMC on the proliferation and apoptosis of human RA FLS and the potential mechanisms underlying its effects remain unknown. Cell viability was determined using the Cell Counting Kit-8 assay. Apoptotic cell death was analysed via Annexin V-FITC/PI double staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling. The production of intracellular reactive oxygen species (ROS) was assessed via flow cytometry, and the changes in mitochondrial membrane potential (ΔΨm) were visualized based on JC-1 staining via fluorescence microscopy. The expression of apoptosis-related proteins was determined via Western blot. Treatment with MMC significantly reduced cell viability and induced apoptosis in RA FLS. Furthermore, MMC exposure was found to stimulate the production of ROS and to disrupt the ΔΨm compared to the control treatment. Moreover, MMC increased the release of mitochondrial cytochrome c, the ratio of Bax/Bcl-2, the activation of caspase-9 and caspase-3, and the subsequent cleavage of poly(ADP-ribose) polymerase. Our findings suggest that MMC inhibits cell proliferation and induces apoptosis in RA FLS, and the mechanism underlying this MMC-induced apoptosis may involve a mitochondrial signalling pathway. © 2015 S. Karger AG, Basel.

  2. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro

    PubMed Central

    Kievit, Forrest M.; Wang, Freddy Y.; Fang, Chen; Mok, Hyejung; Wang, Kui; Silber, John R.; Ellenbogen, Richard G.; Zhang, Miqin

    2011-01-01

    Multidrug resistance (MDR) is characterized by the overexpression of ATP-binding cassette (ABC) transporters that actively pump a broad class of hydrophobic chemotherapeutic drugs out of cancer cells. MDR is a major mechanism of treatment resistance in a variety of human tumors, and clinically applicable strategies to circumvent MDR remain to be characterized. Here we describe the fabrication and characterization of a drug-loaded iron oxide nanoparticle designed to circumvent MDR. Doxorubicin (DOX), an anthracycline antibiotic commonly used in cancer chemotherapy and substrate for ABC-mediated drug efflux, was covalently bound to polyethylenimine via a pH sensitive hydrazone linkage and conjugated to an iron oxide nanoparticle coated with amine terminated polyethylene glycol. Drug loading, physiochemical properties and pH lability of the DOX-hydrazone linkage were evaluated in vitro. Nanoparticle uptake, retention, and dose-dependent effects on viability were compared in wild-type and DOX-resistant ABC transporter over-expressing rat glioma C6 cells. We found that DOX release from nanoparticles was greatest at acidic pH, indicative of cleavage of the hydrazone linkage. DOX-conjugated nanoparticles were readily taken up by wild-type and drug-resistant cells. In contrast to free drug, DOX-conjugated nanoparticles persisted in drug-resistant cells, indicating that they were not subject to drug efflux. Greater retention of DOX-conjugated nanoparticles was accompanied by reduction of viability relative to cells treated with free drug. Our results suggest that DOX-conjugated nanoparticles could improve the efficacy of chemotherapy by circumventing MDR. PMID:21277920

  3. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability.

    PubMed

    Lauffer, Benjamin E L; Mintzer, Robert; Fong, Rina; Mukund, Susmith; Tam, Christine; Zilberleyb, Inna; Flicke, Birgit; Ritscher, Allegra; Fedorowicz, Grazyna; Vallero, Roxanne; Ortwine, Daniel F; Gunzner, Janet; Modrusan, Zora; Neumann, Lars; Koth, Christopher M; Lupardus, Patrick J; Kaminker, Joshua S; Heise, Christopher E; Steiner, Pascal

    2013-09-13

    Histone deacetylases (HDACs) are critical in the control of gene expression, and dysregulation of their activity has been implicated in a broad range of diseases, including cancer, cardiovascular, and neurological diseases. HDAC inhibitors (HDACi) employing different zinc chelating functionalities such as hydroxamic acids and benzamides have shown promising results in cancer therapy. Although it has also been suggested that HDACi with increased isozyme selectivity and potency may broaden their clinical utility and minimize side effects, the translation of this idea to the clinic remains to be investigated. Moreover, a detailed understanding of how HDACi with different pharmacological properties affect biological functions in vitro and in vivo is still missing. Here, we show that a panel of benzamide-containing HDACi are slow tight-binding inhibitors with long residence times unlike the hydroxamate-containing HDACi vorinostat and trichostatin-A. Characterization of changes in H2BK5 and H4K14 acetylation following HDACi treatment in the neuroblastoma cell line SH-SY5Y revealed that the timing and magnitude of histone acetylation mirrored both the association and dissociation kinetic rates of the inhibitors. In contrast, cell viability and microarray gene expression analysis indicated that cell death induction and changes in transcriptional regulation do not correlate with the dissociation kinetic rates of the HDACi. Therefore, our study suggests that determining how the selective and kinetic inhibition properties of HDACi affect cell function will help to evaluate their therapeutic utility.

  4. Effects of aluminum in red spruce (Picea rubens) cell cultures: Cell growth and viability, mitochondrial activity, ultrastructure and potential sites of intracellular aluminum accumulation

    Treesearch

    Rakesh Minocha; Carolyn McQuattie; Wayne Fagerberg; Stephanie Long; Eun Woon Noh

    2001-01-01

    The effects of Al on red spruce (Picea rubens Sarg.) cell suspension cultures were examined using biochemical, stereo-logical and microscopic methods. Exposure to Al for 24-48 h resulted in a loss of cell viability, inhibition of growth and a significant decrease in mitochondrial activity. Soluble protein content increased in cells treated with Al....

  5. Human Bone Marrow-Derived Mesenchymal Cell Reactions to 316L Stainless Steel: An in Vitro Study on Cell Viability and Interleukin-6 Expression.

    PubMed

    Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J; Van der Heide, Emile

    2017-06-01

    Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture.

  6. Human Bone Marrow-Derived Mesenchymal Cell Reactions to 316L Stainless Steel: An in Vitro Study on Cell Viability and Interleukin-6 Expression

    PubMed Central

    Anwar, Iwan Budiwan; Santoso, Asep; Saputra, Eko; Ismail, Rifky; Jamari, J.; Van der Heide, Emile

    2017-01-01

    Purpose: Human bone marrow-derived mesenchymal cell (hBMC) reactions to 316L stainless steel (316L-SS) have never been evaluated. The objective of this study was to assess cell viability and interleukin-6 expression of hBMC cultures upon treatment with a 316L-SS implant. Methods: A cytotoxicity analysis was conducted with a 3-(4,5-dimethylthiazol 2-yl)-2,5-diphenyltetrazolium (MTT) assay after a period of 24, 48 and 72 hours of incubation. Expression of interleukin-6 was measured using enzyme-linked immunosorbent assay (ELISA). Results: Cell viability measurement was performed via IC50 formula. All treatment group showed a > 50 % cell viability with a range of 56,5 - 96,9 % at 24 hours, 51,8-77,3% at 48 hours and 70,1- 120 % at 72 hours. Interleukin-6 expression was downregulated subsequent to treatment with 316L-SS compared to the control group. Conclusion: We found that 316L-SS did not exhibit toxicity towards hBMC culture. PMID:28761837

  7. Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.

    PubMed

    Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan

    2017-01-01

    Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L -1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L -1 , equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. Multifeed SSCF was further developed by means of a flocculating yeast and a temperature-reduction profile. Ethanol toxicity is intensified in the presence of lignocellulosic inhibitors at temperatures that are beneficial to hydrolysis in high-gravity SSCF. The counteracting effects of temperature on cell viability and hydrolysis call for more tolerant microorganisms, enzyme systems with lower temperature optimum, or full optimization of the multifeed strategy with temperature profile.

  8. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

    PubMed

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Ghaemmaghami, Amir M; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-06-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.

  9. 18 GHz electromagnetic field induces permeability of Gram-positive cocci

    PubMed Central

    Nguyen, The Hong Phong; Shamis, Yury; Croft, Rodney J.; Wood, Andrew; McIntosh, Robert L.; Crawford, Russell J.; Ivanova, Elena P.

    2015-01-01

    The effect of electromagnetic field (EMF) exposures at the microwave (MW) frequency of 18 GHz, on four cocci, Planococcus maritimus KMM 3738, Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923 and S. epidermidis ATCC 14990T, was investigated. We demonstrate that exposing the bacteria to an EMF induced permeability in the bacterial membranes of all strains studied, as confirmed directly by transmission electron microscopy (TEM), and indirectly via the propidium iodide assay and the uptake of silica nanospheres. The cells remained permeable for at least nine minutes after EMF exposure. It was shown that all strains internalized 23.5 nm nanospheres, whereas the internalization of the 46.3 nm nanospheres differed amongst the bacterial strains (S. epidermidis ATCC 14990T~ 0%; Staphylococcus aureus CIP 65.8T S. aureus ATCC 25923, ~40%; Planococcus maritimus KMM 3738, ~80%). Cell viability experiments indicated that up to 84% of the cells exposed to the EMF remained viable. The morphology of the bacterial cells was not altered, as inferred from the scanning electron micrographs, however traces of leaked cytosolic fluids from the EMF exposed cells could be detected. EMF-induced permeabilization may represent an innovative, alternative cell permeability technique for applications in biomedical engineering, cell drug delivery and gene therapy. PMID:26077933

  10. 18 GHz electromagnetic field induces permeability of Gram-positive cocci.

    PubMed

    Nguyen, The Hong Phong; Shamis, Yury; Croft, Rodney J; Wood, Andrew; McIntosh, Robert L; Crawford, Russell J; Ivanova, Elena P

    2015-06-16

    The effect of electromagnetic field (EMF) exposures at the microwave (MW) frequency of 18 GHz, on four cocci, Planococcus maritimus KMM 3738, Staphylococcus aureus CIP 65.8(T), S. aureus ATCC 25923 and S. epidermidis ATCC 14990(T), was investigated. We demonstrate that exposing the bacteria to an EMF induced permeability in the bacterial membranes of all strains studied, as confirmed directly by transmission electron microscopy (TEM), and indirectly via the propidium iodide assay and the uptake of silica nanospheres. The cells remained permeable for at least nine minutes after EMF exposure. It was shown that all strains internalized 23.5 nm nanospheres, whereas the internalization of the 46.3 nm nanospheres differed amongst the bacterial strains (S. epidermidis ATCC 14990(T) ~  0%; Staphylococcus aureus CIP 65.8(T) S. aureus ATCC 25923, ~40%; Planococcus maritimus KMM 3738, ~ 80%). Cell viability experiments indicated that up to 84% of the cells exposed to the EMF remained viable. The morphology of the bacterial cells was not altered, as inferred from the scanning electron micrographs, however traces of leaked cytosolic fluids from the EMF exposed cells could be detected. EMF-induced permeabilization may represent an innovative, alternative cell permeability technique for applications in biomedical engineering, cell drug delivery and gene therapy.

  11. Fisetin inhibits epidermal growth factor-induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression.

    PubMed

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen; Hsieh, Yi-Hsien; Yang, Shun-Fa

    2017-01-01

    Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)-induced cell migration and the underlying mechanisms remain unclear. Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription-PCR (RT-PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1-dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases.

  12. Fisetin inhibits epidermal growth factor–induced migration of ARPE-19 cells by suppression of AKT activation and Sp1-dependent MMP-9 expression

    PubMed Central

    Lin, Hung-Yu; Chen, Yong-Syuan; Wang, Kai; Chien, Hsiang-Wen

    2017-01-01

    Purpose Proliferative vitreoretinopathy (PVR) can result in abnormal migration of RPE cells. Fisetin is a naturally occurring compound that has been reported to have antitumor effects, but its effects on epidermal growth factor (EGF)–induced cell migration and the underlying mechanisms remain unclear. Methods Effects of fisetin on EGF-induced cell viability and migration were examined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and in vitro migration assays. Reverse transcription–PCR (RT–PCR) and immunoblotting were performed to evaluate matrix metallopeptidase-9 (MMP-9) expression and activation of specificity protein-1 (Sp1) and protein kinase B (AKT) in ARPE-19 cells treated with EGF and with or without fisetin. Luciferase and chromatin immunoprecipitation (ChIP) assays were performed to examine Sp1 transcription activity and MMP-9 binding activity. Results Fisetin did not affect ARPE-19 cell viability and significantly inhibited the EGF-induced migration capacity of ARPE-19 cells. Furthermore, fisetin exerted an antimigratory effect and suppressed MMP-9 mRNA and protein expression. Treatment with EGF induced phosphorylation of AKT and expression of MMP-9 and Sp1. Fisetin combined with LY294002 (an inhibitor of AKT) prevented the EGF-induced migration involved in downregulation of Sp1 and MMP-9 expression. Luciferase and ChIP assays suggested that fisetin remarkably decreased the EGF-induced transcription activity of MMP-9 and Sp1 and inhibited EGF-mediated Sp1 from directly binding to the MMP-9 promoter in ARPE-19 cells. Conclusions Fisetin inhibited EGF-induced cell migration via modulation of AKT/Sp1–dependent MMP-9 transcriptional activity. Therefore, fisetin may be a potential agent in the treatment of migratory PVR diseases. PMID:29296070

  13. Blocking of SMAD4 expression by shRNA effectively inhibits fibrogenesis of human hepatic stellate cells.

    PubMed

    Khanizadeh, Sayyad; Ravanshad, Mehrdad; Hosseini, SeyedYounes; Davoodian, Parivash; Nejati Zadeh, Azim; Sarvari, Jamal

    2015-01-01

    In this study, to clarify the SMAD4 blocking impact on fibrosis process, we investigated its down-regulation by shRNA on activated human LX-2 cell, in vitro. Liver fibrosis is a critical consequence of chronic damage to the liver that can progress toward advanced diseases, liver cirrhosis and hepatocellular carcinoma (HCC). Different SMAD proteins play as major mediators in the fibrogenesis activity of hepatic stellate cells through TGF-β pathways, but the extent of SMAD4 as a co-SMAD protein remained less clear. vector expressing verified shRNA targeting human SMAD4 gene was transfected into LX-2 cells. The GFP expressing plasmid was transfected in the same manner as a control group while leptin treated cells were employed as positive controls. Subsequently, total RNA was extracted and real-time PCR was performed to measure the mRNA levels of SMAD4, COL-1A1, α-SMA, TGF-β and TIMP-1. Furthermore, trypan blue exclusion was performed to test the effect of plasmid transfection and SMAD4 shutting-down on cellular viability. The results indicated that the expression of SMAD4was down-regulated following shRNA transfection intoLX-2 cells (P<0.001). The gene expression analysis of fibrotic genes in LX-2 cells showed that SMAD4 blocking by shRNA significantly reduced the expression level of fibrotic genes when compared to control plasmids (P<0.001). Vector expressing SMAD4-shRNA induced no significant cytotoxic or proliferative effects on LX-2 cells as determined by viability assay (P<0.05). The results of this study suggested that knockdown of SMAD4 expression in stellate cell can control the progression of fibrogenesis through TGF-β pathway blocking.

  14. Effects of saturated palmitic acid and omega-3 polyunsaturated fatty acids on Sertoli cell apoptosis.

    PubMed

    Hu, Xuechun; Ge, Xie; Liang, Wei; Shao, Yong; Jing, Jun; Wang, Cencen; Zeng, Rong; Yao, Bing

    2018-05-25

    Obesity is believed to negatively affect male semen quality and is accompanied by dysregulation of free fatty acid (FFA) metabolism in plasma. However, the implication of dysregulated FFA on semen quality and the involvement of Sertoli cells remain unclear. In the present study, we report obesity decreased Sertoli cell viability through dysregulated FFAs. We observed an increased rate of apoptosis in Sertoli cells, accompanied with elevated FFA levels, in the testes of obese mice that were provided a high-fat diet (HFD). Moreover, the levels of reactive oxygen species were elevated. Furthermore, we demonstrated by in vitro assays that saturated palmitic acid (PA), which is the most common saturated FFA in plasma, led to decreased cell viability of TM4 Sertoli cells in a time- and dose-dependent manner. A similar finding was noted in primary mouse Sertoli cells. In contrast to saturated FFA, omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) protected Sertoli cells from PA-induced lipotoxicity at the physiologically relevant levels. These results indicated that the lipotoxicity of saturated fatty acids might be the cause of obesity-induced Sertoli cell apoptosis, which leads to decreased semen quality. In addition, ω-3 PUFAs could be classified as protective FFAs. FFA: free fatty acid; HFD: high-fat diet; SD: standard diet; PA: palmitic acid; PUFA: polyunsaturated fatty acid; AI: apoptotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; ROS: reactive oxygen species; HE: Hematoxylin and eosin; WT1: Wilm Tumor 1; NAFLD: non- alcoholic fatty liver disease; DCFH-DA: 2', 7' dichlorofluorescin diacetate; 36B4: acidic ribosomal phosphoprotein P0; SD: standard deviation; EPA: eicosapentaenoic acid; PI: propidium iodide; DHA: docosahexenoic acid.

  15. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules

    PubMed Central

    Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2017-01-01

    Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC. PMID:28953264

  16. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules.

    PubMed

    Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2017-09-27

    Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.

  17. Ganoderma lucidum (Reishi) inhibits cancer cell growth and expression of key molecules in inflammatory breast cancer.

    PubMed

    Martínez-Montemayor, Michelle M; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis A; Dharmawardhane, Suranganie F

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell-cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic.

  18. Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.

    PubMed

    Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo

    2017-03-01

    The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.

  19. Polyvinylpyrrolidone-Based Bio-Ink Improves Cell Viability and Homogeneity during Drop-On-Demand Printing

    PubMed Central

    Ng, Wei Long; Yeong, Wai Yee; Naing, May Win

    2017-01-01

    Drop-on-demand (DOD) bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP) macromolecules. Different PVP-based bio-inks (0%–3% w/v) were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh), which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v). Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process. PMID:28772551

  20. Polyvinylpyrrolidone-Based Bio-Ink Improves Cell Viability and Homogeneity during Drop-On-Demand Printing.

    PubMed

    Ng, Wei Long; Yeong, Wai Yee; Naing, May Win

    2017-02-16

    Drop-on-demand (DOD) bioprinting has attracted huge attention for numerous biological applications due to its precise control over material volume and deposition pattern in a contactless printing approach. 3D bioprinting is still an emerging field and more work is required to improve the viability and homogeneity of printed cells during the printing process. Here, a general purpose bio-ink was developed using polyvinylpyrrolidone (PVP) macromolecules. Different PVP-based bio-inks (0%-3% w/v) were prepared and evaluated for their printability; the short-term and long-term viability of the printed cells were first investigated. The Z value of a bio-ink determines its printability; it is the inverse of the Ohnesorge number (Oh), which is the ratio between the Reynolds number and a square root of the Weber number, and is independent of the bio-ink velocity. The viability of printed cells is dependent on the Z values of the bio-inks; the results indicated that the cells can be printed without any significant impairment using a bio-ink with a threshold Z value of ≤9.30 (2% and 2.5% w/v). Next, the cell output was evaluated over a period of 30 min. The results indicated that PVP molecules mitigate the cell adhesion and sedimentation during the printing process; the 2.5% w/v PVP bio-ink demonstrated the most consistent cell output over a period of 30 min. Hence, PVP macromolecules can play a critical role in improving the cell viability and homogeneity during the bioprinting process.

  1. Thermosensitive nanospheres with a gold layer revealed as low-cytotoxic drug vehicles.

    PubMed

    Qin, Jian; Jo, Yun Suk; Ihm, Jong Eun; Kim, Do Kyung; Muhammed, Mamoun

    2005-09-27

    In this paper, the positive effect of a gold layer on cell viability is demonstrated by examining the results given by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfop henyl)-2H-tetrazolium (MTS) assay and two-color cell fluorescence viability (TCCV) assay. These cytotoxicity tests were performed with human cervical adenocarcinoma cells (HeLa cell line) and transformed African green monkey kidney fibroblast cells (Cos-7 cell line). To fabricate the nanostructures as drug vehicles, first, poly(l,l-lactide-co-ethylene glycol) (PLLA-PEG) and poly(N-isopropylacrylamide-co-D,D-lactide) (PNIPAAm-PDLA) were synthesized, and then two kinds of thermosensitive nanospheres comprising "shell-in-shell" structures without a gold layer (PLLA-PEG@PNIPAAm-PDLA) and with a gold layer (Au@PLLA-PEG@PNIPAAm-PDLA) were constructed by a modified double-emulsion method (MDEM). Both of them displayed a unique thermosensitive character exhibiting the lower critical solubility temperature (LCST) at 36.7 degrees C which was confirmed by UV-vis spectroscopy and differential scanning calorimetry (DSC). The release profiles of entrapped bovine serum albumin (BSA) were monitored at 22 and 37 degrees C, respectively, to reveal the thermal dependence on the release rate. In cell viability tests, both PLLA-PEG@PNIPAAm-PDLA and Au@PLLA-PEG@PNIPAAm-PDLA showed excellent cell viability, and furthermore, Au@PLLA-PEG@PNIPAAm-PDLA, particularly at high doses, exhibited more enhanced cell viability than PLLA-PEG@PNIPAAm-PDLA. This effect is mainly attributed to the gold layer which binds the protein molecules first and consequently facilitates transmembrane uptake of essential nutrients in the cell media, resulting in favorable cell proliferation.

  2. ATM Is Required for the Prolactin-Induced HSP90-Mediated Increase in Cellular Viability and Clonogenic Growth After DNA Damage.

    PubMed

    Karayazi Atici, Ödül; Urbanska, Anna; Gopinathan, Sesha Gopal; Boutillon, Florence; Goffin, Vincent; Shemanko, Carrie S

    2018-02-01

    Prolactin (PRL) acts as a survival factor for breast cancer cells, but the PRL signaling pathway and the mechanism are unknown. Previously, we identified the master chaperone, heat shock protein 90 (HSP90) α, as a prolactin-Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) target gene involved in survival, and here we investigated the role of HSP90 in the mechanism of PRL-induced viability in response to DNA damage. The ataxia-telangiectasia mutated kinase (ATM) protein plays a critical role in the cellular response to double-strand DNA damage. We observed that PRL increased viability of breast cancer cells treated with doxorubicin or etoposide. The increase in cellular resistance is specific to the PRL receptor, because the PRL receptor antagonist, Δ1-9-G129R-hPRL, prevented the increase in viability. Two different HSP90 inhibitors, 17-allylamino-17-demethoxygeldanamycin and BIIB021, reduced the PRL-mediated increase in cell viability of doxorubicin-treated cells and led to a decrease in JAK2, ATM, and phosphorylated ATM protein levels. Inhibitors of JAK2 (G6) and ATM (KU55933) abolished the PRL-mediated increase in cell viability of DNA-damaged cells, supporting the involvement of each, as well as the crosstalk of ATM with the PRL pathway in the context of DNA damage. Drug synergism was detected between the ATM inhibitor (KU55933) and doxorubicin and between the HSP90 inhibitor (BIIB021) and doxorubicin. Short interfering RNA directed against ATM prevented the PRL-mediated increase in cell survival in two-dimensional cell culture, three-dimensional collagen gel cultures, and clonogenic cell survival, after doxorubicin treatment. Our results indicate that ATM contributes to the PRL-JAK2-STAT5-HSP90 pathway in mediating cellular resistance to DNA-damaging agents. Copyright © 2018 Endocrine Society.

  3. Evaluation of Commercial-off-the-Shelf Materials for the Preservation of Bacillus anthracis Vegetative Cells for Forensic Analysis.

    PubMed

    Angelini, Daniel J; Harris, Jacquelyn V; Burton, Laura L; Rastogi, Pooja R; Smith, Lisa S; Rastogi, Vipin K

    2018-03-01

    Environmental surface sampling is crucial in determining the zones of contamination and overall threat assessment. Viability retention of sampled material is central to such assessments. A systematic study was completed to determine viability of vegetative cells under nonpermissive storage conditions. Despite major gains in nucleic acid sequencing technologies, initial positive identification of threats must be made through direct culture of the sampled material using classical microbiological methods. Solutions have been developed to preserve the viability of pathogens contained within clinical samples, but many have not been examined for their ability to preserve biological agents. The purpose of this study was to systematically examine existing preservation materials that can retain the viability of Bacillus anthracis vegetative cells stored under nonpermissive temperatures. The results show effectiveness of five of seventeen solutions, which are capable of retaining viability of a sporulation deficient strain of B. anthracis Sterne when stored under nonrefrigerated conditions. © 2017 American Academy of Forensic Sciences.

  4. Effects of tocotrienols on cell viability and apoptosis in normal murine liver cells (BNL CL.2) and liver cancer cells (BNL 1ME A.7R.1), in vitro.

    PubMed

    Har, Chan Hooi; Keong, Chan Kok

    2005-01-01

    The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.

  5. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.

    PubMed

    Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M

    2015-02-01

    To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.

  6. An essential cell cycle regulation gene causes hybrid inviability in Drosophila

    PubMed Central

    Phadnis, Nitin; Baker, EmilyClare P.; Cooper, Jacob C.; Frizzell, Kimberly A.; Hsieh, Emily; de la Cruz, Aida Flor A.; Shendure, Jay; Kitzman, Jacob O.; Malik, Harmit S.

    2015-01-01

    Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle regulation gene as the cause of male inviability in hybrids between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and non-model systems. PMID:26680200

  7. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis.

    PubMed

    Yamagishi, Reiko; Aihara, Makoto

    2014-01-01

    Astaxanthin is a type of carotenoid known to have strong antioxidant effects. The purpose of this study was to investigate whether astaxanthin confers a neuroprotective effect against glutamate stress, oxidative stress, and hypoxia-induced apoptotic or necrotic cell death in primary cultures of rat retinal ganglion cells (RGCs). Purified rat RGCs were exposed to three kinds of stressors induced by 25 μM glutamate for 72 h, B27 medium without an antioxidant for 4 h, and a reduced oxygen level of 5% for 12 h. Each assay was repeated 12 times, with or without 1 nM, 10 nM, and 100 nM astaxanthin. The number of live RGCs was then counted using a cell viability assay. RGC viability in each condition was evaluated and compared with controls. In addition, we measured apoptosis and DNA damage. We found that under glutamate stress, RGC viability was reduced to 58%. Cultures with 1 nM, 10 nM, and 100 nM astaxanthin showed an increase in RGC viability of 63%, 74%, and 84%, respectively. Under oxidative stress, RGC viability was reduced to 40%, and astaxanthin administration resulted in increased viability of 43%, 50%, and 67%, respectively. Under hypoxia, RGC viability was reduced to 66%, and astaxanthin administration resulted in a significant increase in viability to 67%, 77%, and 93%, respectively. These results indicate that 100 nM astaxanthin leads to a statistically significant increase in RGC viability under the three kinds of stressors tested, compared to controls (Dunnett's test, p<0.05). The apoptotic activity of RGCs under glutamate stress increased to 32%, but was reduced to 15% with 100 nM astaxanthin administration. Glutamate stress led to a 58% increase in DNA damage, which was reduced to 43% when cultured with 100 nM astaxanthin. Thus, 100 nM astaxanthin showed a statistically significant reduction in apoptosis and DNA damage in RGCs (Wilcoxon rank-sum test, p<0.05). Our results suggest that astaxanthin has a neuroprotective effect against RGC death induced by glutamate stress, oxidative stress, and hypoxia, which induce apoptotic and necrotic cell death.

  8. Supercooling as a Viable Non-Freezing Cell Preservation Method of Rat Hepatocytes

    PubMed Central

    Usta, O. Berk; Kim, Yeonhee; Ozer, Sinan; Bruinsma, Bote G.; Lee, Jungwoo; Demir, Esin; Berendsen, Tim A.; Puts, Catheleyne F.; Izamis, Maria-Louisa; Uygun, Korkut; Uygun, Basak E.; Yarmush, Martin L.

    2013-01-01

    Supercooling preservation holds the potential to drastically extend the preservation time of organs, tissues and engineered tissue products, and fragile cell types that do not lend themselves well to cryopreservation or vitrification. Here, we investigate the effects of supercooling preservation (SCP at -4oC) on primary rat hepatocytes stored in cryovials and compare its success (high viability and good functional characteristics) to that of static cold storage (CS at +4oC) and cryopreservation. We consider two prominent preservation solutions a) Hypothermosol (HTS-FRS) and b) University of Wisconsin solution (UW) and a range of preservation temperatures (-4 to -10 oC). We find that there exists an optimum temperature (-4oC) for SCP of rat hepatocytes which yields the highest viability; at this temperature HTS-FRS significantly outperforms UW solution in terms of viability and functional characteristics (secretions and enzymatic activity in suspension and plate culture). With the HTS-FRS solution we show that the cells can be stored for up to a week with high viability (~56%); moreover we also show that the preservation can be performed in large batches (50 million cells) with equal or better viability and no loss of functionality as compared to smaller batches (1.5 million cells) performed in cryovials. PMID:23874947

  9. Ganoderma lucidum (Reishi) Inhibits Cancer Cell Growth and Expression of Key Molecules in Inflammatory Breast Cancer

    PubMed Central

    Martínez-Montemayor, Michelle M.; Acevedo, Raysa Rosario; Otero-Franqui, Elisa; Cubano, Luis. A.; Dharmawardhane, Suranganie F.

    2011-01-01

    Inflammatory breast cancer (IBC) is the most lethal and least understood form of advanced breast cancer. Its lethality originates from its nature of invading the lymphatic system and absence of a palpable tumor mass. Different from other metastatic breast cancer cells, IBC cells invade by forming tumor spheroids that retain E-cadherin-based cell–cell adhesions. Herein we describe the potential of the medicinal mushroom Ganoderma lucidum (Reishi) as an attractive candidate for anti-IBC therapy. Reishi contains biological compounds that are cytotoxic against cancer cells. We report the effects of Reishi on viability, apoptosis, invasion, and its mechanism of action in IBC cells (SUM-149). Results show that Reishi selectively inhibits cancer cell viability although it does not affect the viability of noncancerous mammary epithelial cells. Apoptosis induction is consistent with decreased cell viability. Reishi inhibits cell invasion and disrupts the cell spheroids that are characteristic of the IBC invasive pathology. Reishi decreases the expression of genes involved in cancer cell survival and proliferation (BCL-2, TERT, PDGFB), and invasion and metastasis (MMP-9), whereas it increases the expression of IL8. Reishi reduces BCL-2, BCL-XL, E-cadherin, eIF4G, p120-catenin, and c-Myc protein expression and gelatinase activity. These findings suggest that Reishi is an effective anti-IBC therapeutic. PMID:21888505

  10. Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age.

    PubMed

    Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  11. Two-dimensional and three-dimensional viability measurements of adult stem cells with optical coherence phase microscopy

    NASA Astrophysics Data System (ADS)

    Bagnaninchi, Pierre O.; Holmes, Christina; Drummond, Nicola; Daoud, Jamal; Tabrizian, Maryam

    2011-08-01

    Cell viability assays are essential tools for cell biology. They assess healthy cells in a sample and enable the quantification of cellular responses to reagents of interest. Noninvasive and label-free assays are desirable in two-dimensional (2D) and three-dimensional (3D) cell culture to facilitate time-course viability studies. Cellular micromotion, emanating from cell to substrate distance variations, has been demonstrated as a marker of cell viability with electric cell-substrate impedance sensing (ECIS). In this study we investigated if optical coherence phase microscopy (OCPM) was able to report phase fluctuations of adult stem cells in 2D and 3D that could be associated with cellular micromotion. An OCPM has been developed around a Thorlabs engine (λo = 930 nm) and integrated in an inverted microscope with a custom scanning head. Human adipose derived stem cells (ADSCs, Invitrogen) were cultured in Mesenpro RS medium and seeded either on ECIS arrays, 2D cell culture dishes, or in 3D highly porous microplotted polymeric scaffolds. ADSC micromotion was confirmed by ECIS analysis. Live and fixed ADSCs were then investigated in 2D and 3D with OCPM. Significant differences were found in phase fluctuations between the different conditions. This study indicated that OCPM could potentially assess cell vitality in 2D and in 3D microstructures.

  12. Effect of Procyanidin-rich Extract from Natural Cocoa Powder on Cellular Viability, Cell Cycle Progression, and Chemoresistance in Human Epithelial Ovarian Carcinoma Cell Lines

    PubMed Central

    Taparia, Shruti; Khanna, Aparna

    2016-01-01

    Background: Over the last 400 years, cocoa and chocolate have been described as having potential medicinal value, being consumed as a beverage or eaten as food. Concentration–dependant, antiproliferation, and cytotoxic effects of some of their polyphenolic constituents have been demonstrated against various cancers. Such an effect remains to be demonstrated in ovarian cancer Objective: To investigate the effect of cocoa procyanidins against ovarian cancer in vitro using OAW42 and OVCAR3 cell lines. Materials and Methods: Cocoa procyanidins were extracted and enriched from non alkalized cocoa powder. The polyphenolic content and antioxidant activity were determined. Effect on cell viability was determined after the treatment with ≤1000 μg/mL cocoa procyanidin-rich extract on OAW42 and OVCAR3 and normal human dermal fibroblasts. Similarly, chemosensitization effect was determined by pretreating cancer cell lines with extract followed by doxorubicin hydrochloride treatment. The effect of treatment on cell cycle and P-glycoprotein (P-gp) expression was determined using flow cytometry. Results: The cocoa extract showed high polyphenolic content and antioxidant activity. Treatment with extract caused cytotoxicity and chemosensitization in OAW42 and OVCAR3 cell lines. Normal dermal fibroblasts showed an increase in cell viability post treatment with extract. Treatment with extract affected the cell cycle and an increasing percentage of cells in hypodiploid sub-G1/G0 phase was observed. Treatment of OVCAR3 with the extract caused reduction of P-gp expression. Conclusion: Cocoa procyanidins were found to be selectively cytotoxic against epithelial ovarian cancer, interfered with the normal cell cycle and sensitized cells to subsequent chemotherapeutic treatment. Chemosensitization was found to be associated with P-gp reduction in OVCAR3 cells. SUMMARY Among the naturally occurring flavonoids, procyanidins have been shown to be effective against cancersNon alkalized cocoa powder is one of the richest sources of procyanidinsCocoa procyanidin-rich extract (CPRE) caused cytotoxicity and chemosensitization in ovarian carcinoma cell lines OAW42 and OVCAR3CPRE affected normal cell cycle progressionCPRE also downregulated P-glycoprotein, which mediates chemoresistance in multidrug-resistant OVCAR3 cell line. Abbreviations used: P-gp: P-glycoprotein, CPRE: Cocoa procyanidin rich extract, DMAC: 4-dimethylaminocinnamaldehyde, DPPH: Diphenylpicrylhydrazyl, ABTS: 2,2’;-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), PI: Propidium iodide, FITC: Fluorescein isothiocyanate, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, TLC: Thin layer chromatography, HPTLC: High-performance thin layer chromatography. PMID:27279694

  13. The reducibility of heLa cell viability by Sargassum polycystum extracts

    NASA Astrophysics Data System (ADS)

    Firdaus, M.; Setijawati, D.; Islam, I.; Nursyam, H.; Kartikaningsih, H.; Yufidasari, H. S.; Prihanto, A. A.; Nurdiani, R.; Jaziri, A. A.

    2018-04-01

    Cervical cancer is the second largest cause of death-related cancer in women. The efficacy of cancer drugs is still low. Bioactive of brown seaweed has been studied by in vitro and in vivo as anticancer. The aim of this study was to evaluate the cytotoxicity of Sargassum polycystum extracts on HeLa cell, to recognize bioactive on extract and estimate the interaction between the bioactive and target protein. S. polycystum was found from Talango Island waters and HeLa cell was obtained from Indonesian Science Institute. Sample was extracted by ethanol, ethyl acetate and hexane, concentrated and finally, extracts were assayed on HeLa cell. The viability of this cell was quantified on ELISA-Reader. The bioactive compounds of the extract were elucidated by GC-MS. The interaction between bioactive and target protein was evaluated by using in silico method. The result showed that the lowest viability of HeLa cell on n-hexane extracts treatment. The n-hexane extract of this seaweed contained benzenepropanoic acid. This compound reduced HeLa cell viability by reducing of thrombin concentration. In conclusion, the benzene propanoic acid of S. polycystum was the cytotoxic agent and it is potential agent for anti-cervical cancer.

  14. Cross-link regulation of precursor N-cadherin and FGFR1 by GDNF increases U251MG cell viability.

    PubMed

    Tang, Chuan-Xi; Gu, Yan-Xia; Liu, Xin-Feng; Tong, Shu-Yan; Ayanlaja, Abiola A; Gao, Yue; Ji, Guang-Quan; Xiong, Ye; Huang, Lin-Yan; Gao, Dian-Shuai

    2018-07-01

    Glial cell line-derived neurotrophic factor (GDNF) is considered to be involved in the development of glioma. However, uncovering the underlying mechanism of the proliferation of glioma cells is a challenging work in progress. We have identified the binding of the precursor of N-cadherin (proN-cadherin) and GDNF on the cell membrane in previous studies. In the present study, we observed increased U251 Malignant glioma (U251MG) cell viability by exogenous GDNF (50 ng/ml). We also confirmed that the high expression of the proN-cadherin was stimulated by exogenous GDNF. Concurrently, we affirmed that lower expression of proN-cadherin correlated with reduced glioma cell viability. Additionally, we observed glioma cell U251MG viability as the phosphorylation level of FGFR1 at Y653 and Y654 was increased after exogenous GDNF treatment, which led to increased interaction between proN-cadherin and FGFR1 (pY653+Y654). Our experiments presented a new mechanism adopted by GDNF supporting glioma development and indicated a possible therapeutic potential via the inhibition of proN-cadherin/FGFR1 interaction.

  15. Effects of ozone exposure on human epithelial adenocarcinoma and normal fibroblasts cells.

    PubMed

    Poma, Anna; Colafarina, Sabrina; Aruffo, Eleonora; Zarivi, Osvaldo; Bonfigli, Antonella; Di Bucchianico, Sebastiano; Di Carlo, Piero

    2017-01-01

    Previous studies show variable ozone cytotoxicity and genotoxicity in cell cultures, laboratory animals and humans directly exposed to tropospheric ozone. The aim of this study was therefore to investigate and compare the cyto and genotoxic effects of ozone using adenocarcinoma human alveolar basal epithelial cells A549 and normal human fibroblasts Hs27. A cell culture chamber with controlled atmosphere (a simulation reactor) was built to inject a flow of 120 ppb of ozone, which is two times the threshold value for the protection of human health, fixed by the EU legislation. Cell proliferation was evaluated by a luminescent cell viability assay while we assessed the genotoxic potential of ozone by the induction of micronuclei as well as evaluating DNA strand breaks by the induction of micronuclei evaluated by means of the cytokinesis-block micronucleus (CBMN) assay as well as evaluating DNA strand breaks by Alkaline Comet Assay (CA) or Comet Assay. A549 cells viability decreases significantly at 24 hours treatment with 120 ppb of O3 while at 48 hours and 72 hours O3 treated cells viability doesn't differ in respect to the control. However a significative decrease of A549 viability is shown at 72 hours vs. 48 hours in both treated and not-treated cells. The viability trend in the Hs27 cells did not show any significant changes in treated samples compared to the control in all conditions. The two genotoxicity biomarkers, the micronucleus and the comet tests, showed in both the cell types exposed to ozone, a significant increase in the number of micronuclei and in the tail DNA % in respect to the control even if at different times/cell type. Moreover, we found that O3 provokes genotoxic effects more evident in A549 cancer cells than in normal fibroblasts Hs27 ones. We applied a cell growth simulation model referred to ozone treated or not cell lines to confirm that the ozone exposure causes a slackening in the cells replication.

  16. Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds.

    PubMed

    Luthringer, B J C; Ali, F; Akaichi, H; Feyerabend, F; Ebel, T; Willumeit, R

    2013-10-01

    Despite its non-matching mechanical properties titanium remains the preferred metal implant material in orthopaedics. As a consequence in some cases stress shielding effect occurs, leading to implant loosening, osteopenia, and finally revision surgery. Porous metal scaffolds to allow easier specialised cells ingrowth with mechanical properties closer to the ones of bone can overcome this problem. This should improve healing processes, implant integration, and dynamic strength of implants retaining. Three Ti-6Al-4V materials were metal injection moulded and tailored porosities were effectively achieved. After microstructural and mechanical characterisation, two different primary cells of mesenchymal origin (human umbilical cord perivascular cells and human bone derived cells which revealed to be two pertinent models) as well as one cell line originated from primary osteogenic sarcoma, Saos-2, were bestowed to investigate cell-material interaction on genomic and proteome levels. Biological examinations disclosed that no material has negative impact on early adhesion, proliferation or cell viability. An efficient cell ingrowth into material with an average porosity of 25-50 μm was proved.

  17. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation

    NASA Astrophysics Data System (ADS)

    McKnight, Timothy E.; Melechko, Anatoli V.; Griffin, Guy D.; Guillorn, Michael A.; Merkulov, Vladimir I.; Serna, Francisco; Hensley, Dale K.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.

    2003-05-01

    We demonstrate the integration of vertically aligned carbon nanofibre (VACNF) elements with the intracellular domains of viable cells for controlled biochemical manipulation. Deterministically synthesized VACNFs were modified with either adsorbed or covalently-linked plasmid DNA and were subsequently inserted into cells. Post insertion viability of the cells was demonstrated by continued proliferation of the interfaced cells and long-term (> 22 day) expression of the introduced plasmid. Adsorbed plasmids were typically desorbed in the intracellular domain and segregated to progeny cells. Covalently bound plasmids remained tethered to nanofibres and were expressed in interfaced cells but were not partitioned into progeny, and gene expression ceased when the nanofibre was no longer retained. This provides a method for achieving a genetic modification that is non-inheritable and whose extent in time can be directly and precisely controlled. These results demonstrate the potential of VACNF arrays as an intracellular interface for monitoring and controlling subcellular and molecular phenomena within viable cells for applications including biosensors, in vivo diagnostics, and in vivo logic devices.

  18. Alginate Microcapsules Incorporating Hyaluronic Acid Recreate Closer in Vivo Environment for Mesenchymal Stem Cells.

    PubMed

    Cañibano-Hernández, Alberto; Saenz Del Burgo, Laura; Espona-Noguera, Albert; Orive, Gorka; Hernández, Rosa M; Ciriza, Jesús; Pedraz, Jose Luis

    2017-07-03

    The potential clinical application of alginate cell microencapsulation has advanced enormously during the past decade. However, the 3D environment created by alginate beads does not mimic the natural extracellular matrix surrounding cells in vivo, responsible of cell survival and functionality. As one of the most frequent macromolecules present in the extracellular matrix is hyaluronic acid, we have formed hybrid beads with alginate and hyaluronic acid recreating a closer in vivo cell environment. Our results show that 1% alginate-0.25% hyaluronic acid microcapsules retain 1.5% alginate physicochemical properties. Moreover, mesenchymal stem cells encapsulated in these hybrid beads show enhanced viability therapeutic protein release and mesenchymal stem cells' potential to differentiate into chondrogenic lineage. Although future studies with additional proteins need to be done in order to approach even more the extracellular matrix features, we have shown that hyaluronic acid protects alginate encapsulated mesenchymal stem cells by providing a niche-like environment and remaining them competent as a sustainable drug delivery system.

  19. Effects of size and surface of zinc oxide and aluminum-doped zinc oxide nanoparticles on cell viability inferred by proteomic analyses.

    PubMed

    Pan, Chih-Hong; Liu, Wen-Te; Bien, Mauo-Ying; Lin, I-Chan; Hsiao, Ta-Chih; Ma, Chih-Ming; Lai, Ching-Huang; Chen, Mei-Chieh; Chuang, Kai-Jen; Chuang, Hsiao-Chi

    2014-01-01

    Although the health effects of zinc oxide nanoparticles (ZnONPs) on the respiratory system have been reported, the fate, potential toxicity, and mechanisms in biological cells of these particles, as related to particle size and surface characteristics, have not been well elucidated. To determine the physicochemical properties of ZnONPs that govern cytotoxicity, we investigated the effects of size, electronic properties, zinc concentration, and pH on cell viability using human alveolar-basal epithelial A549 cells as a model. We observed that a 2-hour or longer exposure to ZnONPs induced changes in cell viability. The alteration in cell viability was associated with the zeta potentials and pH values of the ZnONPs. Proteomic profiling of A549 exposed to ZnONPs for 2 and 4 hours was used to determine the biological mechanisms of ZnONP toxicity. p53-pathway activation was the core mechanism regulating cell viability in response to particle size. Activation of the Wnt and TGFβ signaling pathways was also important in the cellular response to ZnONPs of different sizes. The cadherin and Wnt signaling pathways were important cellular mechanisms triggered by surface differences. These results suggested that the size and surface characteristics of ZnONPs might play an important role in their observed cytotoxicity. This approach facilitates the design of more comprehensive systems for the evaluation of nanoparticles.

  20. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells.

    PubMed

    Tsai, J C; Jain, M; Hsieh, C M; Lee, W S; Yoshizumi, M; Patterson, C; Perrella, M A; Cooke, C; Wang, H; Haber, E; Schlegel, R; Lee, M E

    1996-02-16

    Pyrrolidinedithiocarbamate (PDTC) and N-acetylcysteine (NAC) have been used as antioxidants to prevent apoptosis in lymphocytes, neurons, and vascular endothelial cells. We report here that PDTC and NAC induce apoptosis in rat and human smooth muscle cells. In rat aortic smooth muscle cells, PDTC induced cell shrinkage, chromatin condensation, and DNA strand breaks consistent with apoptosis. In addition, overexpression of Bcl-2 suppressed vascular smooth muscle cell death caused by PDTC and NAC. The viability of rat aortic smooth muscle cells decreased within 3 h of treatment with PDTC and was reduced to 30% at 12 h. The effect of PDTC and NAC on smooth muscle cells was not species specific because PDTC and NAC both caused dose-dependent reductions in viability in rat and human aortic smooth muscle cells. In contrast, neither PDTC nor NAC reduced viability in human aortic endothelial cells. The use of antioxidants to induce apoptosis in vascular smooth muscle cells may help prevent their proliferation in arteriosclerotic lesions.

  1. Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations.

    PubMed

    Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V

    2018-01-01

    To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.

  2. A new method for long-term storage of titred microbial standard solutions suitable for microbiologic quality control activities of pharmaceutical companies.

    PubMed

    Chiellini, Carolina; Mocali, Stefano; Fani, Renato; Ferro, Iolanda; Bruschi, Serenella; Pinzani, Alessandro

    2016-08-01

    Commercially available lyophilized microbial standards are expensive and subject to reduction in cell viability due to freeze-drying stress. Here we introduce an inexpensive and straightforward method for in-house microbial standard preparation and cryoconservation that preserves constant cell titre and cell viability over 14 months.

  3. Inhibition of NFkappaB reduces cellular viability in GH3 pituitary adenoma cells.

    PubMed

    Vender, John R; Laird, Melissa D; Dhandapani, Krishnan M

    2008-05-01

    Adenomas of the pituitary gland are among the most common types of tumors of the adult brain. Although adenomas are histologically benign, they may be associated with significant morbidity and mortality, mostly because of their invasive growth pattern and hormone hypersecretion. Current medical therapies are suppressive, acting at a receptor level. Thus, there is a need to identify novel cellular and molecular targets for pituitary tumors. We investigated the possible role of the NFkappaB transcription factor in pituitary tumor cell growth. The effect of NFkappaB pathway inhibition on cellular viability was studied in the GH3 pituitary adenoma cell line, a well-characterized rat cell line that secretes growth hormone and prolactin. Cells were treated with mechanistically diverse pharmacological NFkappaB pathway inhibitors or with molecular inhibitors that were overexpressed in tumor cells before the assessment of cellular viability. NFkappaB activity was also assessed in GH3 cells using deoxyribonucleic acid binding assays. GH3 cells exhibited constitutive NFkappaB activity, which contributed to increased cellular proliferation. Treatment with wedelolactone, an IkappaB kinase inhibitor, or overexpression of an IkappaB super-repressor reduced cell viability, further implicating NFkappaB in pituitary tumor cell growth. Pharmacological or molecular inhibition of Akt similarly reduced GH3 viability and NFkappaB binding, suggesting that constitutive activation of NFkappaB may be, at least in part, mediated by Akt. Directed targeting of the Akt and NFkappaB signaling pathways may be a useful adjunct in the clinical management of pituitary tumors. Further elucidation of this pathway may yield novel information regarding the behavior of pituitary tumors in humans.

  4. DEFECTIVE TRAFFICKING OF CONE PHOTORECEPTOR CNG CHANNELS INDUCES THE UNFOLDED PROTEIN RESPONSE AND ER STRESS-ASSOCIATED CELL DEATH

    PubMed Central

    Duricka, Deborah L.; Brown, R. Lane; Varnum, Michael D.

    2011-01-01

    SYNOPSIS Mutations that perturb the function of photoreceptor cyclic nucleotide-gated (CNG) channels are associated with several human retinal disorders, but the molecular and cellular mechanisms leading to photoreceptor dysfunction and degeneration remain unclear. Many loss-of-function mutations result in intracellular accumulation of CNG channel subunits. Accumulation of proteins in the endoplasmic reticulum (ER) is known to cause ER stress and trigger the unfolded protein response (UPR), an evolutionarily conserved cellular program that results in either adaptation via increased protein processing capacity or apoptotic cell death. We hypothesize that defective trafficking of cone photoreceptor CNG channels can induce UPR-mediated cell death. To test this idea, CNGA3 subunits bearing the R563H and Q655X mutations were expressed in photoreceptor-derived 661W cells with CNGB3 subunits. Compared to wild type, R563H and Q655X subunits displayed altered degradation rates and/or were retained in the ER. ER retention was associated with increased expression of UPR-related markers of ER stress and with decreased cell viability. Chemical and pharmacological chaperones (TUDCA, 4PBA, and the cGMP analog CPT-cGMP) differentially reduced degradation and/or promoted plasma-membrane localization of defective subunits. Improved subunit maturation was concordant with reduced expression of ER stress markers and improved viability of cells expressing localization-defective channels. These results indicate that ER stress can arise from expression of localization defective CNG channels, and may represent a contributing factor for photoreceptor degeneration. PMID:21992067

  5. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human pancreatic neuroendocrine tumor cultures.

    PubMed

    Mohamed, Amira; Blanchard, Marie-Pierre; Albertelli, Manuela; Barbieri, Federica; Brue, Thierry; Niccoli, Patricia; Delpero, Jean-Robert; Monges, Genevieve; Garcia, Stephane; Ferone, Diego; Florio, Tullio; Enjalbert, Alain; Moutardier, Vincent; Schonbrunn, Agnes; Gerard, Corinne; Barlier, Anne; Saveanu, Alexandru

    2014-10-01

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) raise difficult therapeutic problems despite the emergence of targeted therapies. Somatostatin analogs (SSA) remain pivotal therapeutic drugs. However, the tachyphylaxis and the limited antitumoral effects observed with the classical somatostatin 2 (sst2) agonists (octreotide and lanreotide) led to the development of new SSA, such as the pan sst receptor agonist pasireotide. Our aim was to compare the effects of pasireotide and octreotide on cell survival, chromogranin A (CgA) secretion, and sst2 phosphorylation/trafficking in pancreatic NET (pNET) primary cells from 15 tumors. We established and characterized the primary cultures of human pancreatic tumors (pNETs) as powerful preclinical models for understanding the biological effects of SSA. At clinically relevant concentrations (1-10 nM), pasireotide was at least as efficient as octreotide in inhibiting CgA secretion and cell viability through caspase-dependent apoptosis during short treatments, irrespective of the expression levels of the different sst receptors or the WHO grade of the parental tumor. Interestingly, unlike octreotide, which induces a rapid and persistent partial internalization of sst2 associated with its phosphorylation on Ser341/343, pasireotide did not phosphorylate sst2 and induced a rapid and transient internalization of the receptor followed by a persistent recycling at the cell surface. These results provide the first evidence, to our knowledge, of striking differences in the dynamics of sst2 trafficking in pNET cells treated with the two SSAs, but with similar efficiency in the control of CgA secretion and cell viability. © 2014 Society for Endocrinology.

  6. Defective trafficking of cone photoreceptor CNG channels induces the unfolded protein response and ER-stress-associated cell death.

    PubMed

    Duricka, Deborah L; Brown, R Lane; Varnum, Michael D

    2012-01-15

    Mutations that perturb the function of photoreceptor CNG (cyclic nucleotide-gated) channels are associated with several human retinal disorders, but the molecular and cellular mechanisms leading to photoreceptor dysfunction and degeneration remain unclear. Many loss-of-function mutations result in intracellular accumulation of CNG channel subunits. Accumulation of proteins in the ER (endoplasmic reticulum) is known to cause ER stress and trigger the UPR (unfolded protein response), an evolutionarily conserved cellular programme that results in either adaptation via increased protein processing capacity or apoptotic cell death. We hypothesize that defective trafficking of cone photoreceptor CNG channels can induce UPR-mediated cell death. To test this idea, CNGA3 subunits bearing the R563H and Q655X mutations were expressed in photoreceptor-derived 661W cells with CNGB3 subunits. Compared with wild-type, R563H and Q655X subunits displayed altered degradation rates and/or were retained in the ER. ER retention was associated with increased expression of UPR-related markers of ER stress and with decreased cell viability. Chemical and pharmacological chaperones {TUDCA (tauroursodeoxycholate sodium salt), 4-PBA (sodium 4-phenylbutyrate) and the cGMP analogue CPT-cGMP [8-(4-chlorophenylthio)-cGMP]} differentially reduced degradation and/or promoted plasma-membrane localization of defective subunits. Improved subunit maturation was concordant with reduced expression of ER-stress markers and improved viability of cells expressing localization-defective channels. These results indicate that ER stress can arise from expression of localization-defective CNG channels, and may represent a contributing factor for photoreceptor degeneration.

  7. Serum-free keloid fibroblast cell culture: an in vitro model for the study of aberrant wound healing.

    PubMed

    Koch, R J; Goode, R L; Simpson, G T

    1997-04-01

    The purpose of this study was to develop an in vitro serum-free keloid fibroblast model. Keloid formation remains a problem for every surgeon. Prior evaluations of fibroblast characteristics in vitro, especially those of growth factor measurement, have been confounded by the presence of serum-containing tissue culture media. The serum itself contains growth factors, yet has been a "necessary evil" to sustain cell growth. The design of this study is laboratory-based and uses keloid fibroblasts obtained from five patients undergoing facial (ear lobule) keloid removal in a university-affiliated clinic. Keloid fibroblasts were established in primary cell culture and then propagated in a serum-free environment. The main outcome measures included sustained keloid fibroblast growth and viability, which was comparable to serum-based models. The keloid fibroblast cell cultures exhibited logarithmic growth, sustained a high cellular viability, maintained a monolayer, and displayed contact inhibition. Demonstrating model consistency, there was no statistically significant difference between the mean cell counts of the five keloid fibroblast cell lines at each experimental time point. The in vitro growth of keloid fibroblasts in a serum-free model has not been done previous to this study. The results of this study indicate that the proliferative characteristics described are comparable to those of serum-based models. The described model will facilitate the evaluation of potential wound healing modulators, and cellular effects and collagen modifications of laser resurfacing techniques, and may serve as a harvest source for contaminant-free fibroblast autoimplants. Perhaps its greatest utility will be in the evaluation of endogenous and exogenous growth factors.

  8. The biocompatibility of modified experimental Portland cements with potential for use in dentistry.

    PubMed

    Camilleri, J

    2008-12-01

    To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.

  9. Effects of demethoxycurcumin on the viability and apoptosis of skin cancer cells.

    PubMed

    Wu, Yaoqun; Zhang, Pei; Yang, Hongyun; Ge, Yong; Xin, Yong

    2017-07-01

    The present study investigated the effects and mechanisms of demethoxycurcumin (DMC) on a human skin squamous cell carcinoma cell line, A431, and a human keratinocyte cell line, HaCaT. A431 and HaCaT cells were cultured in vitro. The effects of DMC treatment on cell viability were analyzed using the Cell Counting kit‑8 (CCK‑8) assay; cell cycle distribution was analyzed by flow cytometry; apoptosis was assessed by flow cytometry and Hoechst 33258 staining; and the protein expression levels of cytochrome c, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (BAX), caspase‑9 and caspase‑3 were evaluated by western blotting. CCK‑8 assay results demonstrated that DMC treatment significantly inhibited viability of A431 and HaCaT cells in a dose‑dependent manner. Flow cytometric analysis confirmed that DMC treatment induced apoptosis in a dose‑dependent manner, and significantly increased the proportion of cells in G2/M phase. Western blot analysis indicated that the protein expression levels of Bcl‑2 were decreased, whereas the expression levels of BAX, caspase‑9, caspase‑3 and cytochrome c were increased following DMC treatment compared with in untreated cells. In conclusion, DMC treatment significantly inhibited viability of A431 and HaCaT cells, and induced cell cycle arrest in G2/M phase. The present study indicated that DMC may induce apoptosis of skin cancer cells through a caspase‑dependent pathway.

  10. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro.

    PubMed

    Cheng, Shaowen; Wang, Wei; Lin, Zhongqin; Zhou, Ping; Zhang, Xiaolei; Zhang, Wei; Chen, Qingyu; Kou, Dongquan; Ying, Xiaozhou; Shen, Yue; Cheng, Xiaojie; Yu, Ziming; Peng, Lei; Lu, Chuanzhu

    2013-09-01

    Bone marrow stromal cells (BMSCs) have been extensively used for tissue engineering. However, the effect of Ca(2+) on the viability and osteogenic differentiation of BMSCs has yet to be evaluated. To determine the dose-dependent effect of Ca(2+) on viability and osteogenesis of BMSCs in vitro, BMSCs were cultured in calcium-free DMEM medium supplemented with various concentrations of Ca(2+) (0, 1, 2, 3, 4, and 5 mM) from calcium citrate. Cell viability was analyzed by MTT assay and osteogenic differentiation was evaluated by alkaline phosphatase (ALP) assay, Von Kossa staining, and real-time PCR. Ca(2+) stimulated BMSCs viability in a dose-dependent manner. At slightly higher concentrations (4 and 5 mM) in the culture, Ca(2+) significantly inhibited the activity of ALP on days 7 and 14 (P < 0.01 or P < 0.05), significantly suppressed collagen synthesis (P < 0.01 or P < 0.05), and significantly elevated calcium deposition (P < 0.01) and mRNA levels of osteocalcin (P < 0.01 or P < 0.05) and osteopontin (P < 0.01 or P < 0.05). Therefore, elevated concentrations of extracellular calcium may promote cell viability and late-stage osteogenic differentiation, but may suppress early-stage osteogenic differentiation in BMSCs.

  11. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells.

    PubMed

    Tang, Man; Wen, Cong-Ying; Wu, Ling-Ling; Hong, Shao-Li; Hu, Jiao; Xu, Chun-Miao; Pang, Dai-Wen; Zhang, Zhi-Ling

    2016-04-07

    The detection of circulating tumor cells (CTCs), a kind of "liquid biopsy", represents a potential alternative to noninvasive detection, characterization and monitoring of carcinoma. Many previous studies have shown that the number of CTCs has a significant relationship with the stage of cancer. However, CTC enrichment and detection remain notoriously difficult because they are extremely rare in the bloodstream. Herein, aided by a microfluidic device, an immunomagnetic separation system was applied to efficiently capture and in situ identify circulating tumor cells. Magnetic nanospheres (MNs) were modified with an anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody to fabricate immunomagnetic nanospheres (IMNs). IMNs were then loaded into the magnetic field controllable microfluidic chip to form uniform IMN patterns. The IMN patterns maintained good stability during the whole processes including enrichment, washing and identification. Apart from its simple manufacture process, the obtained microfluidic device was capable of capturing CTCs from the bloodstream with an efficiency higher than 94%. The captured cells could be directly visualized with an inverted fluorescence microscope in situ by immunocytochemistry (ICC) identification, which decreased cell loss effectively. Besides that, the CTCs could be recovered completely just by PBS washing after removal of the permanent magnets. It was observed that all the processes showed negligible influence on cell viability (viability up to 93%) and that the captured cells could be re-cultured for more than 5 passages after release without disassociating IMNs. In addition, the device was applied to clinical samples and almost all the samples from patients showed positive results, which suggests it could serve as a valuable tool for CTC enrichment and detection in the clinic.

  12. Anthocyanins extracted from black soybean seed coat protect primary cortical neurons against in vitro ischemia.

    PubMed

    Bhuiyan, Mohammad Iqbal Hossain; Kim, Joo Youn; Ha, Tae Joung; Kim, Seong Yun; Cho, Kyung-Ok

    2012-01-01

    The present study investigated the neuroprotective effects of anthocyanins extracted from black soybean (cv. Cheongja 3, Glycine max (L.) MERR.) seed coat against oxygen-glucose deprivation (OGD) and glutamate-induced cell death in rat primary cortical neurons. Lactate dehydrogenase (LDH) release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assays were employed to assess cell membrane damage and viability of primary neurons, respectively. OGD-induced cell death in 7 d in vitro primary cortical neurons was found to be OGD duration-dependent, and approximately 3.5 h of OGD resulted in ≈60% cell death. Treatment with black soybean anthocyanins dose-dependently prevented membrane damage and increased the viability of primary neurons that were exposed to OGD. Glutamate-induced neuronal cell death was dependent on the glutamate concentration at relatively low concentrations and the number of days the cells remained in culture. Interestingly, black soybean anthocyanins did not protect against glutamate-induced neuronal cell death. They did, however, inhibit the excessive generation of reactive oxygen species (ROS) and preserve mitochondrial membrane potential (MMP) in primary neurons exposed to OGD. In agreement with the neuroprotective effect of crude black soybean anthocyanins, purified cyanidin-3-glucoside (C3G), the major component of anthocyanins, also offered dose-dependent neuroprotection against OGD-induced neuronal cell death. Moreover, black soybean C3G markedly prevented excessive generation of ROS and preserved MMP in primary neurons that were exposed to OGD. Collectively, these results suggest that the neuroprotection of primary rat cortical neurons by anthocyanins that were extracted from black soybean seed coat might be mediated through oxidative stress inhibition and MMP preservation but not through glutamate-induced excitotoxicity attenuation.

  13. Role of caspase-9 in the effector caspases and genome expressions, and growth of bovine skeletal myoblasts.

    PubMed

    Van Ba, Hoa; Hwang, Inho

    2014-02-01

    Caspase-9 has been reported as the key regulator of apoptosis, however, its role in skeletal myoblast development and molecular involvements during cell growth still remains unknown. The current study aimed to present the key role of caspase-9 in the expressions of apoptotic caspases and genome, and cell viability during myoblast growth using RNA interference mediated silencing. Three small interference RNA sequences (siRNAs) targeting caspase-9 gene was designed and ligated into pSilencer plasmid vector to construct shRNA expression constructs. Cells were transfected with the constructs for 48 h. Results indicated that all three siRNAs could silence the caspase-9 mRNA expression significantly. Particularly, the mRNA expression level of caspase-9 in the cells transfected by shRNA1, shRNA2 and shRNA3 constructs were reduced by 37.85%, 68.20% and 58.14%, respectively. Suppression of caspase-9 led to the significant increases in the mRNA and protein expressions of effector caspase-3, whereas the reduction in mRNA and protein expressions of caspase-7. The microarray results showed that the suppression of caspase-9 resulted in significant upregulations of cell proliferation-, adhesion-, growth-, development- and division-regulating genes, whereas the reduction in the expressions of cell death program- and stress response-regulating genes. Furthermore, cell viability was significantly increased following the transfection. These data suggest that caspase-9 could play an important role in the control of cell growth, and knockdown of caspase-9 may have genuine potential in the treatment of skeletal muscle atrophy. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  14. lncRNA CCAT1 promotes cell proliferation, migration, and invasion by down-regulation of miR-143 in FTC-133 thyroid carcinoma cell line.

    PubMed

    Yang, Tianzheng; Zhai, Hongyan; Yan, Ruihong; Zhou, Zhenhu; Gao, Lei; Wang, Luqing

    2018-01-01

    Thyroid cancer is a common malignant tumor. Long non-coding RNA colon cancer-associated transcript 1 (lncRNA CCAT1) is highly expressed in many cancers; however, the molecular mechanism of CCAT1 in thyroid cancer remains unclear. Hence, this study aimed to investigate the effect of CCAT1 on human thyroid cancer cell line FTC-133. FTC-133 cells were transfected with CCAT1 expressing vector, CCAT1 shRNA, miR-143 mimic, and miR-143 inhibitor, respectively. After different treatments, cell viability, proliferation, migration, invasion, and apoptosis were measured. Moreover, the regulatory relationship of CCAT1 and miR-143, as well as miR-143 and VEGF were tested using dual-luciferase reporter assay. The relative expressions of CCAT1, miR-143, and VEGF were tested by qRT-PCR. The expressions of apoptosis-related factors and corresponding proteins in PI3K/AKT and MAPK pathways were analyzed using western blot analysis. The results suggested that CCAT1 was up-regulated in the FTC-133 cells. CCAT1 suppression decreased FTC-133 cell viability, proliferation, migration, invasion, and miR-143 expression, while it increased apoptosis and VEGF expression. CCAT1 might act as a competing endogenous RNA (ceRNA) for miR-143. Moreover, CCAT1 activated PI3K/AKT and MAPK signaling pathways through inhibition of miR-143. This study demonstrated that CCAT1 exhibited pro-proliferative and pro-metastasis functions on FTC-133 cells and activated PI3K/AKT and MAPK signaling pathways via down-regulation of miR-143. These findings will provide a possible target for clinical treatment of thyroid cancer.

  15. Frankincense, pine needle and geranium essential oils suppress tumor progression through the regulation of the AMPK/mTOR pathway in breast cancer.

    PubMed

    Ren, Peng; Ren, Xiang; Cheng, Lei; Xu, Lixin

    2018-01-01

    BC (BC), as the most common malignancy in women worldwide, is associated with high morbidity and mortality. However, chemoresistance and toxicity are the main causes that limit the success of treatment in aggressive BC cases. Thus, there is a vital need to identify and develop novel therapeutic agents. Frankincense, pine needle and geranium essential oils have been reported to play critical biological activities in cancer. However, to the best of our knowledge whether frankincense, pine needle and geranium essential oils have any effect on the progression of BC in MCF-7 cells remains unclear. In the present study, we assessed the possible effects of frankincense, pine needle and geranium essential oils on cell viability, proliferation, migration and invasion as well as the possible mechanisms. MCF-7 cells were treated with oils, and associations with BC were investigated. In the present study, we clearly revealed that frankincense, pine needle and geranium essential oils suppressed cell viability, proliferation, migration and invasion in human BC MCF-7 cells. Further data demonstrated that frankincense, pine needle and geranium essential oils induced apoptosis, but did not affect cell cycle progression. Consistent with the in vitro activities, frankincense essential oil was effective in inhibiting tumor growth and inducing tumor cell apoptosis in a human BC mouse model. In addition, these 3 essential oils modulated the activity of the AMPK/mTOR signaling pathway. In conclusion, the present study indicated that frankincense, pine needle and geranium essential oils were involved in the progression of BC cells possibly through the AMPK/mTOR pathway.

  16. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.

    PubMed

    Cao, Ye; Lee, Bae Hoon; Peled, Havazelet Bianco; Venkatraman, Subbu S

    2016-10-01

    Biosynthetic poly(ethylene glycol) (PEG)-based hydrogels have been extensively investigated as extracellular matrix (ECM) mimicking gels as they retain the benefits of both ECM (biological cues) and synthetic hydrogels (tunable mechanical properties). In this article, we developed and characterized a new gelatin-PEG (GP) hydrogel that retains the benefits of gelatin and synthetic hydrogels. In this strategy, the thiolation of gelatin was accomplished by reacting with Traut's reagent; the thiolated gelatin was then conjugated to one end of PEG diacrylate (PEGDA) by Michael-type addition reaction. Two kinds of GP precursors, GP30 and GP60, were synthesized by changing the amount of Traut's reagent, while the weight ratio between thiolated-gelatin and PEGDA of GP30 and GP60 was 1.451:1 and 0.785:1, respectively. Finally, neonatal human dermal fibroblasts were encapsulated into the hydrogel by cross-linking the remaining double bonds of precursor under ultraviolet light. These GP hydrogels can encapsulate the fibroblasts in situ with high cell viability. Moreover, the behaviors of cells within the GP hydrogels can be modulated by varying the cross-linking density of GP hydrogel (storage modulus from 40 to 2000 Pa). In particular, this article showed that a minimum amount of cell-binding motifs (gelatin >2.30 wt/vol % and 44.0% dry weight percentage) are required for attachment; and appropriate initial rheological and structural properties (storage modulus <∼100 Pa and mesh size >∼150 nm) can accelerate the attachment of cells and improve cell viability. Hence, this mixed-hydrogel platform allows an easily control hydrogel structure and modulates cell behavior to reconstruct new tissue in the three-dimensional microenvironments. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2401-2411, 2016. © 2016 Wiley Periodicals, Inc.

  17. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    PubMed

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Real imaging and size values of Saccharomyces cerevisiae cells with comparable contrast tuning to two environmental scanning electron microscopy modes.

    PubMed

    Misirli, Zulal; Oner, Ebru Toksoy; Kirdar, Betul

    2007-01-01

    The combined application of electron microscopy (EM) is frequently used for the microstructural investigation of biological specimens and plays two important roles in the quantification and in gaining an improved understanding of biological phenomena by making use of the highest resolution capability provided by EM. The possibility of imaging wet specimens in their "native" states in the environmental scanning electron microscope (ESEM) at high resolution and large depth of focus in real time is discussed in this paper. It is demonstrated here that new features can be discovered by the elimination of even the least hazardous approaches in some preparation techniques, that destroy the samples. Since the analysis conditions may influence the morphology and the extreme surface sensitivity of living biological systems, the results obtained from the same cultured cell with two different ESEM modes (Lvac mode and wet mode) were compared. This offers new opportunities compared with ESEM-wet/Lvac-mode imaging, since wet-mode imaging involves a real contrast and gives an indication of the changes in cell morphology and structure required for cell viability. In this study, wet-mode imaging was optimized using the unique ability of cell quantities for microcharacterization in situ giving very fine features of topological effects. Accordingly, the progress is reported by comparing the results of these two modes, which demonstrate interesting application details. In general, the functional comparisons have revealed that the fresh unprocessed Saccharomyces cerevisiae cells (ESEM-wet mode) were essentially unaltered with improved and minimal specimen preparation timescales, and the optimal cell viability degree was visualized and also measured quantitatively while the cell size remained unchanged with continuous images.

  19. Fasting inhibits hepatic stellate cells activation and potentiates anti-cancer activity of Sorafenib in hepatocellular cancer cells.

    PubMed

    Lo Re, Oriana; Panebianco, Concetta; Porto, Stefania; Cervi, Carlo; Rappa, Francesca; Di Biase, Stefano; Caraglia, Michele; Pazienza, Valerio; Vinciguerra, Manlio

    2018-02-01

    Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use. © 2017 Wiley Periodicals, Inc.

  20. Novel quinazoline-based sulfonamide derivative (3D) induces apoptosis in colorectal cancer by inhibiting JAK2-STAT3 pathway.

    PubMed

    Al-Obeed, Omar; Vaali-Mohammed, Mansoor-Ali; Eldehna, Wagdy M; Al-Khayal, Khayal; Mahmood, Amer; Abdel-Aziz, Hatem A; Zubaidi, Ahmed; Alafeefy, Ahmed; Abdulla, Maha; Ahmad, Rehan

    2018-01-01

    Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rate. Developments in screening, prevention, biomarker, personalized therapies and chemotherapy have improved detection and treatment. However, despite these advances, many patients with advanced metastatic tumors still succumb to the disease. New anticancer agents are needed for treating advanced stage CRC as most of the deaths occur due to cancer metastasis. A recently developed novel sulfonamide derivative 4-((2-(4-(dimethylamino) phenyl)quinazolin-4-yl)amino)benzenesulfonamide (3D) has shown potent antitumor effect; however, the mechanism underlying the antitumor effect remains unknown. 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis. Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2-STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability. Taken together, these findings indicate that 3D induces ROS-mediated apoptosis and inhibits JAK2-STAT3 signaling in CRC.

  1. Numerical Simulation and Scaling Analysis of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2011-11-01

    Cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use inkjet printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation. Although the feasibility of cell printing has been demonstrated recently, the printing resolution and cell viability remain to be improved. Here we investigate a unit operation in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids. The droplet and cell dynamics are quantified using both direct numerical simulation and scaling analysis. These studies indicate that although cell experienced significant stress during droplet impact, the duration of such stress is very short, which helps explain why many cells can survive the cell printing process. These studies also revealed that cell membrane can be temporarily ruptured during cell printing, which is supported by indirect experimental evidence.

  2. Cellular composition and viability of demi- and quarter-embryos made from bisected bovine morulae and blastocysts produced in vitro.

    PubMed

    Rho, G J; Johnson, W H; Betteridge, K J

    1998-10-15

    The cellular composition and viability of intact, IVP embryos were compared with those of demi- and quarter-embryos produced by bisection of IVP morulae and blastocysts. Embryos were produced by established techniques from oocytes harvested from slaughterhouse ovaries. In Experiment 1, morulae at Day 6 or blastocysts at Day 7 were bisected on an inverted microscope using a microsurgical steel blade. Demi-embryos were then cultured without a zona pellucida until Day 8, when they were morphologically assessed for quality (viability). A higher proportion of demi-embryos made from blastocysts than from morulae were classified as viable (381/420, 91% vs 164/267, 61%; P < 0.001). In Experiment 2, only Day 7 blastocysts were bisected, and some of the resulting demi-embryos were bisected a second time 24 h later to produce quarter-embryos. The remaining demi-embryos, the quarter-embryos, and control intact embryos were cultured until Day 9, at which time they were assessed for quality and subjected to immunosurgery and differential staining to count inner cell mass (ICM) and trophectoderm cells. A higher proportion of demi-embryos than quarter-embryos was classified as viable (408/459, 89% vs 223/319, 70%, respectively; P < 0.001). Total cell numbers decreased with successive bisections, but the proportion of surviving cells found in the ICM was significantly (P < 0.05) higher in the best quality demi- and quarter-embryos (35 and 32%, respectively) than in the controls (22%). Transfer of all 12 quarter-embryos derived from 3 blastocysts, in pairs, into 6 recipient heifers resulted in 2 pregnancies, each with a single viable fetus at 90 d of gestation. The fetuses originated from 2 different blastocysts. The results suggest that bisection of intact IVP embryos into demi-embryos and bisection of those into quarter-embryos can increase the number of transferable embryos by as much as 178 and 235%, respectively.

  3. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids.

    PubMed

    Lee, GeonHui; Jun, Yesl; Jang, HeeYeong; Yoon, Junghyo; Lee, JaeSeo; Hong, MinHyung; Chung, Seok; Kim, Dong-Hwee; Lee, SangHoon

    2018-01-01

    Oxygen availability is a critical factor in regulating cell viability that ultimately contributes to the normal morphogenesis and functionality of human tissues. Among various cell culture platforms, construction of 3D multicellular spheroids based on microwell arrays has been extensively applied to reconstitute in vitro human tissue models due to its precise control of tissue culture conditions as well as simple fabrication processes. However, an adequate supply of oxygen into the spheroidal cellular aggregation still remains one of the main challenges to producing healthy in vitro spheroidal tissue models. Here, we present a novel design for controlling the oxygen distribution in concave microwell arrays. We show that oxygen permeability into the microwell is tightly regulated by varying the poly-dimethylsiloxane (PDMS) bottom thickness of the concave microwells. Moreover, we validate the enhanced performance of the engineered microwell arrays by culturing non-proliferated primary rat pancreatic islet spheroids on varying bottom thickness from 10 μm to 1050 μm. Morphological and functional analyses performed on the pancreatic islet spheroids grown for 14 days prove the long-term stability, enhanced viability, and increased hormone secretion under the sufficient oxygen delivery conditions. We expect our results could provide knowledge on oxygen distribution in 3-dimensional spheroidal cell structures and critical design concept for tissue engineering applications. In this study, we present a noble design to control the oxygen distribution in concave microwell arrays for the formation of highly functional pancreatic islet spheroids by engineering the bottom of the microwells. Our new platform significantly enhanced oxygen permeability that turned out to improve cell viability and spheroidal functionality compared to the conventional thick-bottomed 3-D culture system. Therefore, we believe that this could be a promising medical biotechnology platform to further develop high-throughput tissue screening system as well as in vivo-mimicking customised 3-D tissue culture systems. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.

    PubMed

    Hara, Jared; Tottori, Jordan; Anders, Megan; Dadhwal, Smritee; Asuri, Prashanth; Mobed-Miremadi, Maryam

    2017-05-01

    Post cryopreservation viability of human embryonic kidney (HEK) cells under two-dimensional (2D) and three-dimensional (3D) culture conditions was studied using trehalose as the sole cryoprotective agent. An L 9 (3 4 ) Taguchi design was used to optimize the cryoprotection cocktail seeding process prior to slow-freezing with the specific aim of maximizing cell viability measured 7 days post thaw, using the combinatorial cell viability and in-vitro cytotoxicity WST assay. At low (200 mM) and medium (800 mM) levels of trehalose concentration, encapsulation in alginate offered a greater protection to cryopreservation. However, at the highest trehalose concentration (1200 mM) and in the absence of the pre-incubation step, there was no statistical difference at the 95% CI (p = 0.0212) between the viability of the HEK cells under 2D and 3D culture conditions estimated to be 17.9 ± 4.6% and 14.0 ± 3.6%, respectively. A parallel comparison between cryoprotective agents conducted at the optimal levels of the L 9 study, using trehalose, dimethylsulfoxide and glycerol in alginate microcapsules yielded a viability of 36.0 ± 7.4% for trehalose, in average 75% higher than the results associated with the other two cell membrane-permeating compounds. In summary, the effectiveness of trehalose has been demonstrated by the fact that 3D cell cultures can readily be equilibrated with trehalose before cryopreservation, thus mitigating the cytotoxic effects of glycerol and dimethylsulfoxide.

  5. Effects of long-term cryopreservation on peripheral blood progenitor cells.

    PubMed

    Vosganian, Gregory S; Waalen, Jill; Kim, Kevin; Jhatakia, Sejal; Schram, Ethan; Lee, Tracey; Riddell, Dan; Mason, James R

    2012-11-01

    The long-term stability of cryopreserved peripheral blood progenitor cells is an important issue for patients experiencing disease relapse. However, there is no consensus on how to evaluate the long-term effects of cryopreservation. We describe the effect of cryopreservation on viability and progenitor colony activity from 87 individual samples processed at the Scripps Green Hospital Stem Cell Processing Center (La Jolla, CA, USA). We randomly selected 87 peripheral blood hematopoietic stem cell (PBHSC) samples from 60 patients and evaluated the effect of cryopreservation on sample viability and red and white cell colony activity after < 24 h and 7, 10 and 15 years of cryopreservation. Viability was assayed via trypan blue dye exclusion and activity was measured following 14 days of culture. An age at collection older than 50 years may result in suboptimal activity and viability following long-term cryopreservation, while gender and disease status had no effect. Cryopreservation did not significantly affect white or red cell activity following 10 years of cryopreservation. However, for samples stored longer than 10 years, viability and activity significantly decreased. We noted a positive association between higher pre-cryopreservation %CD34 count and colony activity. Cryopreservation of peripheral blood progenitor cells for up to 10 years results in no loss of clonogenic capacity, as determined by culture activity, although longer durations of storage may affect activity. Until validated methods are developed, cryopreserved grafts should be evaluated based on pre-freeze CD34(+) cell counts as assayed by flow cytometry, and post-thaw sample evaluation should be reserved for patients identified as poor mobilizers.

  6. Suitable Concentrations of Uric Acid Can Reduce Cell Death in Models of OGD and Cerebral Ischemia-Reperfusion Injury.

    PubMed

    Zhang, Bin; Yang, Ning; Lin, Shao-Peng; Zhang, Feng

    2017-07-01

    Cerebral infarction (CI) is a common clinical cerebrovascular disease, and to explore the pathophysiological mechanisms and seek effective treatment means are the hotspot and difficult point in medical research nowadays. Numerous studies have confirmed that uric acid plays an important role in CI, but the mechanism has not yet been clarified. When treating HT22 and BV-2 cells with different concentrations of uric acid, uric acid below 450 μM does not have significant effect on cell viability, but uric acid more than 500 μM can significantly inhibit cell viability. After establishing models of OGD (oxygen-glucose deprivation) with HT22 and BV-2 cells, uric acid at a low concentration (50 μM) cannot improve cell viability and apoptosis, and Reactive oxygen species (ROS) levels during OGD/reoxygenation; a suitable concentration (300 μM) of uric acid can significantly improve cell viability and apoptosis, and reduce ROS production during OGD/reoxygenation; but a high concentration (1000 μM) of uric acid can further reduce cell viability and enhance ROS production. After establishing middle cerebral artery occlusion of male rats with suture method, damage and increase of ROS production in brain tissue could be seen, and after adding suitable concentration of uric acid, the degree of brain damage and ROS production was reduced. Therefore, different concentrations of uric acid should have different effect, and suitable concentrations of uric acid have neuroprotective effect, and this finding may provide guidance for study on the clinical curative effect of uric acid.

  7. In vitro effects of preserved and unpreserved anti-allergic drugs on human corneal epithelial cells.

    PubMed

    Guzman-Aranguez, Ana; Calvo, Patricia; Ropero, Inés; Pintor, Jesús

    2014-11-01

    Treatment with topical eye drops for long-standing ocular diseases like allergy can induce detrimental side effects. The purpose of this study was to investigate in vitro cytotoxicity of commercially preserved and unpreserved anti-allergic eye drops on the viability and barrier function of monolayer and stratified human corneal-limbal epithelial cells. Cells were treated with unpreserved ketotifen solution, benzalkonium chloride (BAC)-containing anti-allergic drugs (ketotifen, olopatadine, levocabastine) as well as BAC alone. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to determine cell viability. Effects of compounds on barrier function were analyzed measuring transepithelial electrical resistance (TEER) to determine paracellular permeability and rose bengal assays to evaluate transcellular barrier formation. The BAC-preserved anti-allergic formulations and BAC alone significantly reduced cell viability, monolayer cultures being more sensitive to damage by these solutions. Unpreserved ketotifen induced the least diminution in cell viability. The extent of decrease of cell viability was clearly dependent of BAC presence, but it was also affected by the different types of drugs when the concentration of BAC was low and the short time of exposure. Treatment with BAC-containing anti-allergic drugs and BAC alone resulted in increased paracellular permeability and loss of transcellular barrier function as indicated by TEER measurement and rose bengal assays. The presence of the preservative BAC in anti-allergic eye drop formulations contributes importantly to the cytotoxic effects induced by these compounds. Stratified cell cultures seem to be a more relevant model for toxicity evaluation induced on the ocular surface epithelia than monolayer cultures.

  8. Clozapine protects PC-12 cells from death due to oxidative stress induced by hydrogen peroxide via a cell-type specific mechanism involving inhibition of extracellular signal-regulated kinase phosphorylation.

    PubMed

    Magliaro, Brian C; Saldanha, Colin J

    2009-08-04

    Recent evidence suggests that some atypical antipsychotic drugs may protect against oxidative stress and consequent neurodegeneration by mechanisms that remain unclear. Using the neuron-like rat pheochromocytoma (PC-12) cell line, Clozapine and N-desmethylclozapine were tested for their ability to protect against cell death due to oxidative stress induced by hydrogen peroxide (H(2)O(2)). These drugs demonstrated significant protection of PC-12 cells, as measured by both the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide (MTT) and Alamar Blue cell viability assays. However, neither viability assay detected a protective effect of Clozapine on human embryonic kidney (HEK293), rat primary cortical neurons, or human neuroblastoma (SH-SY5Y) exposed to H(2)O(2) treatment. The mechanism of protection involves a PC-12 cell-specific differential response to H(2)O(2) treatment vs. the other cell lines. Pre-treatment with 250 microM or 125 microM diethyldithiocarbamate (DETC), a superoxide dismutase (SOD) inhibitor, unexpectedly showed protection of the PC-12 cells from H(2)O(2) treatment. Western blots revealed that Clozapine, N-desmethylclozapine, and DETC reduce the phosphorylation of extracellular signal-regulated kinase (ERK) that is caused by H(2)O(2) exposure in PC-12 cells. In both HEK293 and SH-SY5Y cells, H(2)O(2) exposure did not increase ERK phosphorylation over control, demonstrating a different response to H(2)O(2) vs. PC-12 cells, and explaining why Clozapine could not protect these cells. Also, U0126, a specific MEK inhibitor, was able to protect PC-12 cells from H(2)O(2) exposure, showing that inhibiting ERK phosphorylation is sufficient to provide protection. Cumulatively, these results indicate that Clozapine, N-desmethylclozapine, DETC, and U0126 protect PC-12 cells by blocking the cell-type specific H(2)O(2) induced increase in ERK phosphorylation.

  9. In Vitro Effect of the Synthetic cal14.1a Conotoxin, Derived from Conus californicus, on the Human Parasite Toxoplasma gondii

    PubMed Central

    De León-Nava, Marco A.; Romero-Núñez, Eunice; Luna-Nophal, Angélica; Bernáldez-Sarabia, Johanna; Sánchez-Campos, Liliana N.; Licea-Navarro, Alexei F.; Morales-Montor, Jorge; Muñiz-Hernández, Saé

    2016-01-01

    Toxins that are secreted by cone snails are small peptides that are used to treat several diseases. However, their effects on parasites with human and veterinary significance are unknown. Toxoplasma gondii is an opportunistic parasite that affects approximately 30% of the world’s population and can be lethal in immunologically compromised individuals. The conventional treatment for this parasitic infection has remained the same since the 1950s, and its efficacy is limited to the acute phase of infection. These findings have necessitated the search for new drugs that specifically target T. gondii. We examined the effects of the synthetic toxin cal14.1a (s-cal14.1a) from C. californicus on the tachyzoite form of T. gondii. Our results indicate that, at micromolar concentrations, s-cal14.1a lowers viability and inhibits host cell invasion (by 50% and 61%, respectively) on exposure to extracellular parasites. Further, intracellular replication decreased significantly while viability of the host cell was unaffected. Our study is the first report on the antiparasitic activity of a synthetic toxin of C. californicus. PMID:27070627

  10. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells.

    PubMed

    Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio; Párraga, Mario; Villena, Joan

    2018-01-01

    Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions . These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.

  11. Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells

    PubMed Central

    Valenzuela, Manuel; Bastias, Lorena; Montenegro, Iván; Werner, Enrique; Madrid, Alejandro; Godoy, Patricio

    2018-01-01

    Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells. PMID:29552079

  12. Yeast viability and concentration analysis using lens-free computational microscopy and machine learning

    NASA Astrophysics Data System (ADS)

    Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan

    2017-03-01

    Research laboratories and the industry rely on yeast viability and concentration measurements to adjust fermentation parameters such as pH, temperature, and pressure. Beer-brewing processes as well as biofuel production can especially utilize a cost-effective and portable way of obtaining data on cell viability and concentration. However, current methods of analysis are relatively costly and tedious. Here, we demonstrate a rapid, portable, and cost-effective platform for imaging and measuring viability and concentration of yeast cells. Our platform features a lens-free microscope that weighs 70 g and has dimensions of 12 × 4 × 4 cm. A partially-coherent illumination source (a light-emitting-diode), a band-pass optical filter, and a multimode optical fiber are used to illuminate the sample. The yeast sample is directly placed on a complementary metal-oxide semiconductor (CMOS) image sensor chip, which captures an in-line hologram of the sample over a large field-of-view of >20 mm2. The hologram is transferred to a touch-screen interface, where a trained Support Vector Machine model classifies yeast cells stained with methylene blue as live or dead and measures cell viability as well as concentration. We tested the accuracy of our platform against manual counting of live and dead cells using fluorescent exclusion staining and a bench-top fluorescence microscope. Our regression analysis showed no significant difference between the two methods within a concentration range of 1.4 × 105 to 1.4 × 106 cells/mL. This compact and cost-effective yeast analysis platform will enable automatic quantification of yeast viability and concentration in field settings and resource-limited environments.

  13. On-chip gradient generation in 256 microfluidic cell cultures: simulation and experimental validation.

    PubMed

    Somaweera, Himali; Haputhanthri, Shehan O; Ibraguimov, Akif; Pappas, Dimitri

    2015-08-07

    A microfluidic diffusion diluter was used to create a stable concentration gradient for dose response studies. The microfluidic diffusion diluter used in this study consisted of 128 culture chambers on each side of the main fluidic channel. A calibration method was used to find unknown concentrations with 12% error. Flow rate dependent studies showed that changing the flow rates generated different gradient patterns. Mathematical simulations using COMSOL Multi-physics were performed to validate the experimental data. The experimental data obtained for the flow rate studies agreed with the simulation results. Cells could be loaded into culture chambers using vacuum actuation and cultured for long times under low shear stress. Decreasing the size of the culture chambers resulted in faster gradient formation (20 min). Mass transport into the side channels of the microfluidic diffusion diluter used in this study is an important factor in creating the gradient using diffusional mixing as a function of the distance. To demonstrate the device's utility, an H2O2 gradient was generated while culturing Ramos cells. Cell viability was assayed in the 256 culture chambers, each at a discrete H2O2 concentration. As expected, the cell viability for the high concentration side channels increased (by injecting H2O2) whereas the cell viability in the low concentration side channels decreased along the chip due to diffusional mixing as a function of distance. COMSOL simulations were used to identify the effective concentration of H2O2 for cell viability in each side chamber at 45 min. The gradient effects were confirmed using traditional H2O2 culture experiments. Viability of cells in the microfluidic device under gradient conditions showed a linear relationship with the viability of the traditional culture experiment. Development of the microfluidic device used in this study could be used to study hundreds of concentrations of a compound in a single experiment.

  14. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles.

    PubMed

    Teow, Yiwei; Valiyaveettil, Suresh

    2010-12-01

    Interaction of nanoparticles with human cells is an interesting topic for understanding toxicity and developing potential drug candidates. Water soluble platinum nanoparticles were synthesized via reduction of hexachloroplatinic acid using sodium borohydride in the presence of capping agents. The bioactivity of folic acid and poly(vinyl pyrrolidone) capped platinum nanoparticles (Pt-nps) has been investigated using commercially available cell lines. In the cell viability experiments, PVP-capped nanoparticles were found to be less toxic (>80% viability), whereas, folic acid-capped platinum nanoparticles showed a reduced viability down to 24% after 72 h of exposure at a concentration of 100 μg ml(-1) for MCF7 breast cancer cells. Such toxicity, combined with the possibility to incorporate functional organic molecules as capping agents, can be used for developing new drug candidates.

  15. Polyphenolic extracts of edible flowers incorporated onto atelocollagen matrices and their effect on cell viability.

    PubMed

    López-García, Jorge; Kuceková, Zdenka; Humpolíček, Petr; Mlček, Jiři; Sáha, Petr

    2013-10-30

    The phenolic extract of chives flowers (Allium schoenoprasum, Liliaceae), introduced Sage (Salvia pratensis, Lamiaceae), European elderberry (Sambucus nigra, Caprifoliaceae) and common dandelion (Taraxacum officinale, Asteraceae) were characterised by High Performance Liquid Chromatography and incorporated in different concentrations onto atelocollagen thin films. In order to assess the biological impact of these phenolic compounds on cell viability, human immortalised non-tumorigenic keratinocyte cell line was seeded on the thin films and cell proliferation was determined by using an MTT assay. In addition, their antimicrobial activity was estimated by using an agar diffusion test. Data indicated the concomitance between cell viability and concentration of polyphenols. These findings suggest that these phenolic-endowed atelocollagen films might be suitable for tissue engineering applications, on account of the combined activity of polyphenols and collagen.

  16. Increased efficiency of mammalian somatic cell hybrid production under microgravity conditions during ballistic rocket flight

    NASA Technical Reports Server (NTRS)

    Schnettler, R.; Gessner, P.; Zimmermann, U.; Neil, G. A.; Urnovitz, H. B.

    1989-01-01

    The electrofusion of hybridoma cell lines under short-duration microgravity during a flight of the TEXUS 18 Black Brand ballistic sounding rocket at Kiruna, Sweden is reported. The fusion partners, growth medium, cell fusion medium, cell fusion, cell viability in the fusion medium, and postfusion cell culture are described, and the rocket, cell fusion chamber, apparatus, and module are examined. The experimental timeline, the effects of fusion medium and incubation time on cell viability and hybrid yields, and the effect of microgravity on hybrid yields are considered.

  17. LncRNA-LET inhibits cell viability, migration and EMT while induces apoptosis by up-regulation of TIMP2 in human granulosa-like tumor cell line KGN.

    PubMed

    Han, Qingfang; Zhang, Wenke; Meng, Jinlai; Ma, Li; Li, Aihua

    2018-04-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disease characterized by hyperandrogenism, irregular menses, and polycystic ovaries. Several long non-coding RNAs (lncRNAs) are aberrantly expressed in PCOS patients; however, little is known about the effects of the lncRNA-low expression in tumor (lncRNA-LET) on PCOS. We aimed to explore the effects of lncRNA-LET on human granulosa-like tumor cell line, KGN. Expression of lncRNA-LET in normal IOSE80 cells and granulosa cells was determined by qRT-PCR. KGN cell viability, apoptosis and migration were measured by trypan blue exclusion method, flow cytometry assay and wound healing assay, respectively. TGF-β1 was used to induce epithelial-mesenchymal transition (EMT) process. LncRNA-LET expression and mRNA expressions of TIMP2 and EMT-related proteins were measured by qRT-PCR. Western blot analysis was used to measure the protein expression of apoptosis-related proteins, EMT-related proteins, TIMP2, and the proteins in the Wnt/β-catenin and Notch signaling pathways. lncRNA-LET was down-regulated in KGN cells, and its overexpression inhibited cell viability and migration, and promoted apoptosis in KGN cells. Overexpression of lncRNA-LET increased the expression of E-cadherin and decreased the expressions of N-cadherin and vimentin in KGN cells. These effects of lncRNA-LET on KGN cells were reversed by TIMP2 suppression. Overexpression of TIMP2 inhibited cell viability, migration and EMT process, and increased apoptosis by activating the Wnt/β-catenin and Notch pathways. Overexpression of lncRNA-LET inhibits cell viability, migration and EMT process, and increases apoptosis in KGN cells by up-regulating the expression of TIMP2 and activating the Wnt/β-catenin and notch signaling pathways. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Improvement of Storage Medium for Cultured Human Retinal Pigment Epithelial Cells Using Factorial Design.

    PubMed

    Pasovic, L; Utheim, T P; Reppe, S; Khan, A Z; Jackson, C J; Thiede, B; Berg, J P; Messelt, E B; Eidet, J R

    2018-04-09

    Storage of human retinal pigment epithelium (hRPE) can contribute to the advancement of cell-based RPE replacement therapies. The present study aimed to improve the quality of stored hRPE cultures by identifying storage medium additives that, alone or in combination, contribute to enhancing cell viability while preserving morphology and phenotype. hRPE cells were cultured in the presence of the silk protein sericin until pigmentation. Cells were then stored for 10 days in storage medium plus sericin and either one of 46 different additives. Individual effects of each additive on cell viability were assessed using epifluorescence microscopy. Factorial design identified promising additive combinations by extrapolating their individual effects. Supplementing the storage medium with sericin combined with adenosine, L-ascorbic acid and allopurinol resulted in the highest cell viability (98.6 ± 0.5%) after storage for three days, as measured by epifluorescence microscopy. Flow cytometry validated the findings. Proteomics identified 61 upregulated and 65 downregulated proteins in this storage group compared to the unstored control. Transmission electron microscopy demonstrated the presence of melanosomes after storage in the optimized medium. We conclude that the combination of adenosine, L-ascorbic acid, allopurinol and sericin in minimal essential medium preserves RPE pigmentation while maintaining cell viability during storage.

  19. Cooperation of HIF- and NCAM-mediated mechanisms in cell viability of hippocampal cultures after oxygen-glucose deprivation.

    PubMed

    Lushnikova, Iryna; Nikandrova, Yelyzaveta; Skibo, Galyna

    2017-10-01

    Neurodegenerative diseases of different genesis are the result of cellular damages including those caused by oxygen and glucose deficit. Neuronal survival or death in brain pathologies depends on a variety of interrelated molecular mechanisms. A key role in modulation of neuron viability belongs to HIF (hypoxia-inducible factor) and NCAM (neural cell adhesion molecules) signaling pathways. In this work, we used organotypic and dissociated hippocampal cultures to analyze cell viability and HIF-1α immunopositive (HIF-1α + ) signal after 30 min oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation in the presence of FGL (synthetic NCAM-derived mimetic peptide). According to LDH- and MTS-assay of cell viability, FGL showed a neuroprotective effect, which was attributed to the association with FGFR. We showed that these effects correlated with changes of the HIF-1α + level suggesting the communications of HIF and NCAM signaling pathways. These data extend our knowledge of neurodegeneration mechanisms and open additional potential for the development of neuroprotection strategies. © 2017 International Federation for Cell Biology.

  20. Canine adipose-derived stromal cell viability following exposure to synovial fluid from osteoarthritic joints.

    PubMed

    Kiefer, Kristina M; O'Brien, Timothy D; Pluhar, Elizabeth G; Conzemius, Michael

    2015-01-01

    Stem cell therapy used in clinical application of osteoarthritis in veterinary medicine typically involves intra-articular injection of the cells, however the effect of an osteoarthritic environment on the fate of the cells has not been investigated. Assess the viability of adipose derived stromal cells following exposure to osteoarthritic joint fluid. Adipose derived stromal cells (ASCs) were derived from falciform adipose tissue of five adult dogs, and osteoarthritic synovial fluid (SF) was obtained from ten patients undergoing surgical intervention on orthopedic diseases with secondary osteoarthritis. Normal synovial fluid was obtained from seven adult dogs from an unrelated study. ASCs were exposed to the following treatment conditions: culture medium, normal SF, osteoarthritic SF, or serial dilutions of 1:1 to 1:10 of osteoarthritic SF with media. Cells were then harvested and assessed for viability using trypan blue dye exclusion. There was no significant difference in the viability of cells in culture medium or normal SF. Significant differences were found between cells exposed to any concentration of osteoarthritic SF and normal SF and between cells exposed to undiluted osteoarthritic SF and all serial dilutions. Subsequent dilutions reduced cytotoxicity. Osteoarthritic synovial fluid in this ex vivo experiment is cytotoxic to ASCs, when compared with normal synovial fluid. Current practice of direct injection of ASCs into osteoarthritic joints should be re-evaluated to determine if alternative means of administration may be more effective.

Top