Cell volume change through water efflux impacts cell stiffness and stem cell fate
Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.
2017-01-01
Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology. PMID:28973866
Hoffmann, Else Kay
2011-01-01
This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death. Copyright © 2011 S. Karger AG, Basel.
The use of a computerized algorithm to determine single cardiac cell volumes.
Marino, T A; Cook, L; Cook, P N; Dwyer, S J
1981-04-01
Single cardiac muscles cell volume data have been difficult to obtain, especially because the shape of a cell is quite complex. With the aid of a surface reconstruction method, a cell volume estimation algorithm has been developed that can be used on serial of cells. The cell surface is reconstructed by means of triangular tiles so that the cell is represented as a polyhedron. When this algorithm was tested on computer generated surfaces of a known volume, the difference was less than 1.6%. Serial sections of two phantoms of a known volume were also reconstructed and a comparison of the mathematically derived volumes and the computed volume estimations gave a per cent difference of between 2.8% and 4.1%. Finally cell volumes derived using conventional methods and volumes calculated using the algorithm were compared. The mean atrial muscle cell volume derived using conventional methods was 7752.7 +/- 644.7 micrometers3, while the mean computerized algorithm estimated atrial muscle cell volume was 7110.6 +/- 625.5 micrometers3. For AV bundle cells the mean cell volume obtained by conventional methods was 484.4 +/- 88.8 micrometers3 and the volume derived from the computer algorithm was 506.0 +/- 78.5 micrometers3. The differences between the volumes calculated using conventional methods and the algorithm were not significantly different.
Numeric and volumetric changes in Leydig cells during aging of rats.
Neves, Bruno Vinicius Duarte; Lorenzini, Fernando; Veronez, Djanira; Miranda, Eduardo Pereira de; Neves, Gabriela Duarte; Fraga, Rogério de
2017-10-01
To analyze the effects of aging in rats on the nuclear volume, cytoplasmic volume, and total volume of Leydig cells, as well as their number. Seventy-two Wistar rats were divided into six subgroups of 12 rats, which underwent right orchiectomy at 3, 6, 9, 12, 18, and 24 months of age. The weight and volume of the resected testicles were assessed. A stereological study of Leydig cells was conducted, which included measurements of cell number and nuclear, cytoplasmic, and total cell volumes. The weight and volume of the resected testicles showed reductions with age. Only the subgroup composed of 24-month old rats showed a decrease in the nuclear volume of Leydig cells. Significant reductions in the cytoplasmic volume and total volume of Leydig cells were observed in 18- and 24-month old rats. The number of Leydig cells did not vary significantly with age. Aging in rats resulted in reduction of the nuclear, cytoplasmic, and total cell volumes of Leydig cells. There was no change in the total number of these cells during aging.
Dismuke, William M; Sharif, Najam A; Ellis, Dorette Z
2009-07-01
There is a correlation between cell volume changes and changes in the rate of aqueous humor outflow; agents that decrease trabecular meshwork (TM) cell volume increase the rate of aqueous humor outflow. This study investigated the effects of the nitric oxide (NO)-independent activators of soluble guanylate cyclase (sGC), YC-1, and BAY-58-2667 on TM cell volume and the signal transduction pathways and ion channel involved. Cell volume was measured with the use of calcein AM fluorescent dye, detected by confocal microscopy. Inhibitors and activators of sGC, 3',5'-cyclic guanosine monophosphate (cGMP), protein kinase G (PKG), and the BK(Ca) channel were used to characterize their involvement in the YC-1- and BAY-58-2667-induced regulation of TM cell volume. cGMP was assayed by an enzyme immunoassay. YC-1 (10 nM-200 microM) and BAY-58-2667 (10 nM-100 microM) each elicited a biphasic effect on TM cell volume. YC-1 (1 microM) increased TM cell volume, but higher concentrations decreased TM cell volume. Similarly, BAY-58-2667 (100 nM) increased TM cell volume, but higher concentrations decreased cell volume. The YC-1-induced cell volume decrease was mimicked by 8-Br-cGMP and abolished by the sGC inhibitor ODQ, the PKG inhibitor (RP)-8-Br-PET-cGMP-S, and the BK(Ca) channel inhibitor IBTX. The BAY-58-2667-induced cell volume decrease was mimicked by 8-Br-cGMP and was abolished by the PKG inhibitor and the BK(Ca) channel inhibitor. Unlike the YC-1 response, ODQ potentiated the BAY-58-2667-induced decreases in cell volume. These data suggest that the NO-independent decrease in TM cell volume is mediated by the sGC/cGMP/PKG pathway and involves K(+) efflux.
Dunham, P B; Ellory, J C
1981-01-01
The major pathway of passive K influx (ouabain-insensitive) was characterized in low-K type (LK) red cells of sheep. 1. Passive K transport in these cells was highly sensitive to variations in cell volume; it increased threefold or more in cells swollen osmotically by 10%, and decreased up to twofold in cells shrunken 5-10%. Active K influx was insensitive to changes in cell volume. Three different methods for varying cell volume osmotically all gave similar results. 2. The volume-sensitive pathway was specific for K in that Na influx did not vary with changes in cell volume. 3. The volume-sensitive K influx was a saturable function of external K concentration. It was slightly inhibited by Na, whereas K influx in shrunken cells was unaffected by Na. 4. Passive K influx was dependent on the major anion in the medium in that replacement of Cl with any of six other anions resulted in a reduction of K influx by 50-80% (replacement of Cl by Br caused an increase in K influx). The activation of K influx by Cl followed sigmoid kinetics. 5. Passive K influx is inhibited by anti-L antibody. The antibody affected only that portion of influx which was Cl-dependent and volume-sensitve. Of the subfractions of the antibody, it is anti-L1 which inhibits passive K transport. 6. Pretreatment of cells with iodoacetamide reduced the sensitivity of K influx to cell volume in that the influx was reduced in swollen IAA-treated cells and increased in shrunken IAA-cells. 7. Intracellular Ca has no role in altering passive K transport in LK sheep cells. Therefore, the major pathway of passive K transport in LK sheep red cells is sensitive to changes in cell volume, specific for K, dependent on Cl, and inhibited by anti-L1 antibody, The minor pathway, observed in shrunken cells, has none of these properties. PMID:6798197
Cellular pressure and volume regulation and implications for cell mechanics
NASA Astrophysics Data System (ADS)
Jiang, Hongyuan; Sun, Sean
2013-03-01
In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.
Farinas, J; Verkman, A S
1996-12-01
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.
Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell
NASA Astrophysics Data System (ADS)
Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.
2016-08-01
The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation
Regulation of cell volume by glycosaminoglycans.
Joerges, Jelena; Schulz, Tobias; Wegner, Jeannine; Schumacher, Udo; Prehm, Peter
2012-01-01
Cell volume is regulated by a delicate balance between ion distribution across the plasma membrane and the osmotic properties of intra- and extracellular components. Using a fluorescent calcein indicator, we analysed the effects of glycosaminoglycans on the cell volume of hyaluronan producing fibroblasts and hyaluronan deficient HEK cells over a time period of 30 h. Exogenous glycosaminoglycans induced cell blebbing after 2 min and swelling of fibroblasts to about 110% of untreated cell volume at low concentrations which decreased at higher concentrations. HEK cells did not show cell blebbing and responded by shrinking to 65% of untreated cell volume. Heparin induced swelling of both fibroblasts and HEK cells. Hyaluronidase treatment or inhibition of hyaluronan export led to cell shrinkage indicating that the hyaluronan coat maintained fibroblasts in a swollen state. These observations were explained by the combined action of the Donnan effect and molecular crowding. Copyright © 2011 Wiley Periodicals, Inc.
Destruction of newly released red blood cells in space flight
NASA Technical Reports Server (NTRS)
Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.
1996-01-01
Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.
The coordination of ploidy and cell size differs between cell layers in leaves
Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu
2016-01-01
Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity. PMID:26903507
NASA Astrophysics Data System (ADS)
Yang, Yuehua; Jiang, Hongyuan
2018-03-01
Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.
Zhang, Hongmin; He, Siyu; Liu, Susu; Xie, Yanting; Chen, Guoming; Zhang, Junjie; Sun, Shengtao; Liang, David; Wang, Liya
2016-04-01
To measure the cell size and cell density in five layers of the central cornea in the widely used inbred C57BL/6 mouse strain using in vivo three-dimensional (3D) two-photon (2PH) imaging. Corneas were scanned using a 2PH laser scanning fluorescence microscope after staining with plasma membrane stain and Hoechst 33342. Good quality 3D images were selected for the cell density and cell size analysis. Cell density was determined by counting the cell nuclei in a predefined cube of 3D images. Cell size measurements, including cell surface area, cell volume, nuclear surface area and nuclear volume, were automatically quantified using the Imaris software. The cell and nuclear surface-area-to-volume ratio (S:V ratio) and the cell nuclear-cytoplasmic ratio (N:C ratio) were calculated. The highest cell density was observed in the basal epithelium and the lowest in the posterior stroma. The highest cell surface area was found in the anterior stroma, and the highest cell volume was observed in the superficial epithelium. The lowest cell surface area and cell volume were both found in the basal epithelium. The highest S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest cell nuclear surface area and volume were both observed in the superficial epithelium and the lowest in the basal epithelium. The highest cell nuclear S:V ratio was observed in the basal epithelium and the lowest in the superficial epithelium. The highest N:C ratio was found in the basal epithelial cells and the lowest in the posterior keratocytes. We are the first to quantify the cell density and size parameters, including cell surface area and volume, cell nuclear surface area and volume, and the S:V ratio, in the five layers of the central cornea. These data provide important cell morphology features for the study of corneal physiology, pathology and disease in mice, particularly in C57BL/6 mice.
Cruz, L C; Araújo, V A; Dolder, H; Araújo, A P A; Serrão, J E; Neves, C A
2011-01-01
In Hymenoptera, midgut changes begin in the last instar. At this stage, the larval epithelial digestive cells degenerate, leaving only the basal membrane and the regenerative cells which will develop into a new epithelium during the pupal stage and in the adult. Epithelium renewal is followed by changes in volume and shape of the midgut. Morphometric analysis of digestive cells and total midgut volume of Melipona quadrifasciata anthidioides (Lepeletier) were conducted to verify whether cell volume increase are sufficient to account for the total midgut volume increase that occurs during metamorphosis. An increase in midgut volume was verified in spite of the scarcity of cell proliferation found during metamorphosis. At the end of metamorphosis, the increase in cell volume was not sufficient to explain the increase in volume of the midgut, indicating that an increase in the number of digestive cells is apparently necessary. Nevertheless, the mechanism by which regenerative cells reconstitute the epithelium during metamorphosis remains unknown.
Farinas, J; Verkman, A S
1996-01-01
The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:8968620
Panda, Sudeepta K; George, Aman; Saha, Ambika P; Sharma, Ruchi; Manik, Radhey S; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K
2011-06-01
This study examined the effects of cytoplasmic volume on the developmental competence of hand-made cloned buffalo embryos. Two different cell types, that is, buffalo fetal fibroblast (BFF) and buffalo embryonic stem (ES) cell-like cells were taken as donor cell and fused with one, two, or three demicytoplasts to generate embryos with decreased, normal (control), and increased cytoplasmic volume. Using BFF as a nuclear donor, the cleavage rate was similar in all the groups (p > 0.05), but the blastocysts rate was significantly lower (p < 0.05) for embryos generated with decreased cytoplasmic volume. Using ES cell-like cells, the cleavage and blastocyst rate with increased cytoplasmic volume was significantly higher (p < 0.05) compared that with reduced cytoplasmic volume. Blastocysts produced from embryos having increased cytoplasmic volume had significantly higher (p < 0.05) cell number than normal (control) embryos in both BFF and ES cell-like cells groups. Pregnancies were established in all the groups except for the embryos reconstructed with decreased cytoplasmic volume. The pregnancy rate was almost double for embryos reconstructed using increased cytoplasmic volume compared to that with the controls. Most of the pregnancies aborted in the first trimester and one live calf was delivered through Caesarean, which died 4 h after birth.
The coordination of ploidy and cell size differs between cell layers in leaves.
Katagiri, Yohei; Hasegawa, Junko; Fujikura, Ushio; Hoshino, Rina; Matsunaga, Sachihiro; Tsukaya, Hirokazu
2016-04-01
Growth and developmental processes are occasionally accompanied by multiple rounds of DNA replication, known as endoreduplication. Coordination between endoreduplication and cell size regulation often plays a crucial role in proper organogenesis and cell differentiation. Here, we report that the level of correlation between ploidy and cell volume is different in the outer and inner cell layers of leaves of Arabidopsis thaliana using a novel imaging technique. Although there is a well-known, strong correlation between ploidy and cell volume in pavement cells of the epidermis, this correlation was extremely weak in palisade mesophyll cells. Induction of epidermis cell identity based on the expression of the homeobox gene ATML1 in mesophyll cells enhanced the level of correlation between ploidy and cell volume to near that of wild-type epidermal cells. We therefore propose that the correlation between ploidy and cell volume is regulated by cell identity. © 2016. Published by The Company of Biologists Ltd.
Lew, Virgilio L; Tiffert, Teresa
2017-01-01
In a healthy adult, the transport of O 2 and CO 2 between lungs and tissues is performed by about 2 · 10 13 red blood cells, of which around 1.7 · 10 11 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55-0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of P sickle in sickle cells, and the Ca 2+ -sensitive, K + -selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.
Lew, Virgilio L.; Tiffert, Teresa
2017-01-01
In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55–0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity. PMID:29311949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Schwartz, J; Mayr, N
2014-06-01
Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Haller, M; Brechtelsbauer, H; Akbulut, C; Fett, W; Briegel, J; Finsterer, U
1995-04-01
To evaluate potential changes in the ratio of whole-body/large-vessel hematocrit (f-cell ratio) during isovolemic hemodilution and to compare the volume effects of 2 different plasma exchange solutions (hydroxyethyl starch 200,000/0.62 6% and human albumin 5%). Prospective, randomized, controlled trial. Operating theater in a university hospital. 24 gynecological patients scheduled for elective surgery. Isovolemic hemodilution was performed using 2 different plasma exchange solutions. Plasma volume was determined using dye dilution technique before and after hemodilution. The volume of withdrawn blood was measured from the change in weight of the blood bags taking into account the specific gravity of blood. The volume of administered plasma exchange solutions exceeded the amount of withdrawn blood by 80 +/- 47 ml (p < 0.001). Plasma volume was 3,067 +/- 327 ml before and 3,517 +/- 458 ml after hemodilution. Using red cell volumes calculated from measured plasma volumes and peripheral hematocrit, a deficit of 249 +/- 133 ml (p < 0.0001) in red cells after hemodilution appeared with the measured withdrawn red cell volumes taken into account. This finding can be explained by a change in the f-cell ratio during isovolemic hemodilution. The volume effect of the exchange solutions was 1.05 for hydroxyethyl starch and 0.95 for albumin. The results demonstrate that a change in the f-cell ratio occurs during isovolemic hemodilution. The estimation of red cell volume or plasma volume changes by using either the hematocrit or plasma or red cell volume determinations together with the hematocrit may lead to erroneous results.
Amado, Enelise M; Freire, Carolina A; Grassi, Marco T; Souza, Marta M
2012-01-15
Hepatus pudibundus is a strictly marine osmoconformer crab, while Callinectes ornatus inhabits estuarine areas, behaving as a weak hyper-osmoregulator in diluted seawater. Osmoconformers are expected to have higher capacity for cell volume regulation, but gill cells of a regulator are expected to display ion transporters to a higher degree. The influence of lead nitrate (10 μM) on the ability of isolated gill cells from both species to volume regulate under isosmotic and hyposmotic conditions were here evaluated. Without lead, under a 25% hyposmotic shock, the gill cells of both species were quite capable of cell volume maintenance. Cells of C. ornatus, however, had a little swelling (5%) during the hyposmotic shock of greater intensity (50%), while cells of H. pudibundus were still capable of volume regulation. In the presence of lead, even under isosmoticity, the gill cells of both species showed about 10% volume reduction, indicating that lead promotes the loss of water by the cells. When lead was associated with 25% and 50% hyposmotic shock, C. ornatus cells lost more volume (15%), when compared to isosmotic conditions, while H. pudibundus cells showed volume regulation. We then analyzed the possible ways of action of lead on the mechanisms of cell volume regulation in the two species. Verapamil (100 μM) was used to inhibit Ca²⁺ channels, ouabain (100 μM) to inhibit Na⁺/K⁺-ATPase, and HgCl₂ (100 μM) to inhibit aquaporins. Our results suggest that: (1) Ca²⁺ channels are candidates for lead entry into gill cells of H. pudibundus and C. ornatus, being the target of lead action in these cells; (2) aquaporins are much more relevant for water flux in H. pudibundus; and (3) the Na⁺/K⁺-ATPase is much more relevant for volume regulation in C. ornatus. Osmoregulators may be more susceptible to metal contamination than osmoconformers, especially in situations of reduced salinity, for two basic reasons: (1) lower capacity of volume regulation and (2) putative higher uptake of Pb²⁺ through ionic pathways that operate in salt absorption, such as, for example, the Na⁺/K⁺-ATPase. Copyright © 2011 Elsevier B.V. All rights reserved.
Respiration in heterotrophic unicellular eukaryotic organisms.
Fenchel, Tom
2014-08-01
Surface:volume quotient, mitochondrial volume fraction, and their distribution within cells were investigated and oxygen gradients within and outside cells were modelled. Cell surface increases allometrically with cell size. Mitochondrial volume fraction is invariant with cell size and constitutes about 10% and mitochondria are predominantly found close to the outer membrane. The results predict that for small and medium sized protozoa maximum respiration rates should be proportional to cell volume (scaling exponent ≈1) and access to intracellular O2 is not limiting except at very low ambient O2-tensions. Available data do not contradict this and some evidence supports this interpretation. Cell size is ultimately limited because an increasing fraction of the mitochondria becomes exposed to near anoxic conditions with increasing cell size. The fact that mitochondria cluster close to the cell surface and the allometric change in cell shape with increasing cell size alleviates the limitation of aerobic life at low ambient O2-tension and for large cell size. Copyright © 2014 Elsevier GmbH. All rights reserved.
Optical volume and mass measurements show that mammalian cells swell during mitosis
Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael
2015-01-01
The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells. PMID:26598614
Guardado-Mendoza, Rodolfo; Jimenez-Ceja, Lilia; Majluf-Cruz, Abraham; Kamath, Subhash; Fiorentino, Teresa Vanessa; Casiraghi, Francesca; Velazquez, Alberto Omar Chavez; DeFronzo, Ralph Anthony; Dick, Edward; Davalli, Alberto; Folli, Franco
2012-01-01
Objective Obesity is associated to high insulin and glucagon plasma levels. Enhanced β–cell function and β–cell expansion are responsible for insulin hypersecretion. It is unknown whether hyperglucagonemia is due to α-cell hypersecretion or to an increase in α-cell mass. In this study, we investigated the dynamics of the β-cell and α-cell function and mass in pancreas of obese normoglycemic baboons. Methods Pancreatic β- and α-cell volumes were measured in 51 normoglycemic baboons divided into 6 groups according to overweight severity or duration. Islets morphometric parameters were correlated to overweight and to diverse metabolic and laboratory parameters. Results Relative α-cell volume (RαV) and relative islet α-cell volume (RIαV) increased significantly with both overweight duration and severity. Conversely, in spite of the induction of insulin resistance, overweight produced only modest effects on relative β-cell volume (RβV) and relative islet β-cell volume (RIβV). Of note, RIβV did not increase neither with overweight duration nor with overweight severity, supposedly because of the concomitant, greater, increase in RIαV. Baboons' body weights correlated with serum levels of Interleukin-6 and Tumour Necrosis Factor-α soluble Receptors (IL-6sR and sTNF-R1), demonstrating that overweight induces abnormal activation of the signaling of two cytokines known to impact differently β- and α-cell viability and replication. Conclusion In conclusion, overweight and insulin resistance induce in baboons a significant increase in α-cell volumes (RαV, RIαV) while have minimal effects on the β-cells. This study suggests that an increase in the α-cell mass may precede the loss of β-cells and the transition to overt hyperglycemia and diabetes. PMID:23229736
Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.
Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A
2014-01-01
Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.
Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes
Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A.
2017-01-01
Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells. PMID:28222129
Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes.
Tejada, Maria A; Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A
2017-01-01
Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells.
Effects of stiffness and volume on the transit time of an erythrocyte through a slit.
Salehyar, Sara; Zhu, Qiang
2017-06-01
By using a fully coupled fluid-cell interaction model, we numerically simulate the dynamic process of a red blood cell passing through a slit driven by an incoming flow. The model is achieved by combining a multiscale model of the composite cell membrane with a boundary element fluid dynamics model based on the Stokes flow assumption. Our concentration is on the correlation between the transit time (the time it takes to finish the whole translocation process) and different conditions (flow speed, cell orientation, cell stiffness, cell volume, etc.) that are involved. According to the numerical prediction (with some exceptions), the transit time rises as the cell is stiffened. It is also highly sensitive to volume increase inside the cell. In general, even slightly swollen cells (i.e., the internal volume is increased while the surface area of the cell kept unchanged) travel dramatically slower through the slit. For these cells, there is also an increased chance of blockage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, Alexei V., E-mail: chvetsov2@gmail.com; Schwartz, Jeffrey L.; Mayr, Nina
2014-06-15
Purpose: In our previous work, the authors showed that a distribution of cell surviving fractionsS{sub 2} in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancermore » with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractionsS{sub 2} and clearance half-lives of lethally damaged cells T{sub 1/2} have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractionsS{sub 2} for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sub 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Conclusions: The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractionsS{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less
Chvetsov, Alexei V; Yartsev, Slav; Schwartz, Jeffrey L; Mayr, Nina
2014-06-01
In our previous work, the authors showed that a distribution of cell surviving fractions S2 in a heterogeneous group of patients could be derived from tumor-volume variation curves during radiotherapy for head and neck cancer. In this research study, the authors show that this algorithm can be applied to other tumors, specifically in nonsmall cell lung cancer. This new application includes larger patient volumes and includes comparison of data sets obtained at independent institutions. Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage computed tomography. Statistical distributions of cell surviving fractions S2 and clearance half-lives of lethally damaged cells T(1/2) have been reconstructed in each patient group by using a version of the two-level cell population model of tumor response and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Nonsmall cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S2 for nonsmall cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S2 reconstructed from tumor volume variation agree with the PDF measured in vitro. The data obtained in this work, when taken together with the data obtained previously for head and neck cancer, suggests that the cell surviving fractions S2 can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.
El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette
2015-03-01
We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.
Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.
Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M
1995-08-01
Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.
Automated Cell-Cutting for Cell Cloning
NASA Astrophysics Data System (ADS)
Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro
We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.
NASA Astrophysics Data System (ADS)
Yang, Yang; Sun, Xiaoxia; Zhao, Yongfang
2017-07-01
Fixatives are traditionally used in marine ecosystem research. The bias introduced by fixatives on the dimensions of plankton cells may lead to an overestimation or underestimation of the carbon biomass. To determine the impact of traditional fixatives on dinoflagellates during short- and long-term fixation, we analyzed the degree of change in three bloom-forming dinoflagellates ( Prorocentrum micans, Scrippsiella trochoidea and Noctiluca scintillans) brought about by Lugol's iodine solution (hereafter Lugol's) and formalin. The fixation effects were species-specific. P. micans cell volume showed no significant change following long-term preservation, and S. trochoidea swelled by approximately 8.06% in Lugol's and by 20.97% in formalin as a percentage of the live cell volume, respectively. N. scintillans shrank significantly in both fixatives. The volume change due to formalin in N. scintillans was not concentration-dependent, whereas the volume shrinkage of N. scintillans cells fixed with Lugol's at a concentration of 2% was nearly six-fold that in cells fixed with Lugol's at a concentration of 0.6%-0.8%. To better estimate the volume of N. scintillans fixed in formalin at a concentration of 5%, we suggest that the conversion relationship was as follows: volume of live cell=volume of intact fixed cell/0.61. Apart from size change, damage induced by fixatives on N. scintillans was obvious. Lugol's is not a suitable fixative for N. scintillans due to high frequency of broken cells. Accurate carbon biomass estimate of N. scintillans should be performed on live samples. These findings help to improve the estimate of phytoplankton cell volume and carbon biomass in marine ecosystem.
Constant volume gas cell optical phase-shifter
Phillion, Donald W.
2002-01-01
A constant volume gas cell optical phase-shifter, particularly applicable for phase-shifting interferometry, contains a sealed volume of atmospheric gas at a pressure somewhat different than atmospheric. An optical window is present at each end of the cell, and as the length of the cell is changed, the optical path length of a laser beam traversing the cell changes. The cell comprises movable coaxial tubes with seals and a volume equalizing opening. Because the cell is constant volume, the pressure, temperature, and density of the contained gas do not change as the cell changes length. This produces an exactly linear relationship between the change in the length of the gas cell and the change in optical phase of the laser beam traversing it. Because the refractive index difference between the gas inside and the atmosphere outside is very much the same, a large motion must be made to change the optical phase by the small fraction of a wavelength that is required by phase-shifting interferometry for its phase step. This motion can be made to great fractional accuracy.
Scaling of number, size, and metabolic rate of cells with body size in mammals.
Savage, Van M; Allen, Andrew P; Brown, James H; Gillooly, James F; Herman, Alexander B; Woodruff, William H; West, Geoffrey B
2007-03-13
The size and metabolic rate of cells affect processes from the molecular to the organismal level. We present a quantitative, theoretical framework for studying relationships among cell volume, cellular metabolic rate, body size, and whole-organism metabolic rate that helps reveal the feedback between these levels of organization. We use this framework to show that average cell volume and average cellular metabolic rate cannot both remain constant with changes in body size because of the well known body-size dependence of whole-organism metabolic rate. Based on empirical data compiled for 18 cell types in mammals, we find that many cell types, including erythrocytes, hepatocytes, fibroblasts, and epithelial cells, follow a strategy in which cellular metabolic rate is body size dependent and cell volume is body size invariant. We suggest that this scaling holds for all quickly dividing cells, and conversely, that slowly dividing cells are expected to follow a strategy in which cell volume is body size dependent and cellular metabolic rate is roughly invariant with body size. Data for slowly dividing neurons and adipocytes show that cell volume does indeed scale with body size. From these results, we argue that the particular strategy followed depends on the structural and functional properties of the cell type. We also discuss consequences of these two strategies for cell number and capillary densities. Our results and conceptual framework emphasize fundamental constraints that link the structure and function of cells to that of whole organisms.
Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo
2016-01-01
Background : Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods : Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results : Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion : The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone.
Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo
2016-01-01
Background: Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods: Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results: Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion: The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone. PMID:27471568
Solar cell array design handbook, volume 1
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1976-01-01
Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
21 CFR 864.6400 - Hematocrit measuring device.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...
Analysis of growth of tetraploid nuclei in roots of Vicia faba.
Bansal, J; Davidson, D
1978-03-01
Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Shuja, S. Z.
2017-01-01
Thermal performance of a solar volumetric receiver incorporating the different cell geometric configurations is investigated. Triangular, hexagonal, and rectangular absorbing cells are incorporated in the analysis. The fluid volume fraction, which is the ratio of the volume of the working fluid over the total volume of solar volumetric receiver, is introduced to assess the effect of cell size on the heat transfer rates in the receiver. In this case, reducing the fluid volume fraction corresponds to increasing cell size in the receiver. SiC is considered as the cell material, and air is used as the working fluid in the receiver. The Lambert's Beer law is incorporated to account for the solar absorption in the receiver. A finite element method is used to solve the governing equation of flow and heat transfer. It is found that the fluid volume fraction has significant effect on the flow field in the solar volumetric receiver, which also modifies thermal field in the working fluid. The triangular absorbing cell gives rise to improved effectiveness of the receiver and then follows the hexagonal and rectangular cells. The second law efficiency of the receiver remains high when hexagonal cells are used. This occurs for the fluid volume fraction ratio of 0.5.
Maturation of sperm volume regulation in the rat epididymis
Damm, Oliver S.; Cooper, Trevor G.
2010-01-01
Sperm maturation in the epididymis may involve differences between mature and immature spermatozoa in their volume regulatory osmolyte response. Spermatozoa obtained from the rat caput and cauda epididymidis were examined for their ability to regulate volume after transfer from in situ epididymal osmolality (measured to be 343 ± 13 and 365 ± 19 mmol kg−1, respectively) to that of the female tract in single- and multiple-step protocols. Cells withstood the single-step treatment better than the multistep protocol. Sperm volume estimates by flow cytometric measurements of forward scatter of cells with intact head membranes was more sensitive than those by assessing cell coiling microscopically. At osmolalites below 210 mmol kg−1 both caput and cauda cells ruptured, limiting the use of flow cytometry. Above this critical value, the use of quinine showed that both caput and cauda cells could regulate volume, but cauda cells were the more effective. Of several organic osmolytes studied, myo-inositol, glutamate and KCl caused only temporary and slight swelling of spermatozoa cells in hypotonic medium. Spermatozoa of both maturities seemed to use potassium as the preferred osmolyte for regulating volume. PMID:20531277
Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank
2007-01-01
Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344
[Microscopic structure of the epithelium of the oviducts in cows during the estrus cycle].
Uhrín, V
1983-03-01
The mucous membrane of a cow is covered with ciliary and secretory cells. The so-called basal cells occur at the basal membrane. The counts of ciliary cells vary during the sexual cycle: they reach the maximum (up to 68%) during oestrus. About 13% of cells lose cilia during metoestrus and at the beginning of dioestrus. Reciliation occurs during pro-oestrus. Light and dark ciliary cells can be discerned by the staining of cytoplasm and by the density of nuclei. A higher variability was found in the secretory cells. There are light and dark cells, cells with a wedge shape and rod-shaped cells. Their frequency and function are discussed. Mitoses of epithelium were found in rare cases. The relative volume of epithelium and the mucous membrane of connective tissues change during the sexual cycle. The volume of secretory cells increases during metoestrus and dioestrus and the volume of ciliary cells increases during pro-oestrus and heat. The volume of nuclei decreases in metoestrus and mainly in dioestrus. PAS positive granules occur in the cytoplasm of secretory cells, mainly during metoestrus, in the apical regions. Ptyalin-resistant polysaccharides, besides glycogen, were detected in the cells. The occurrence rate of lipids varies just slightly during the oestrous cycle.
An assessment of the effects of cell size on AGNPS modeling of watershed runoff
Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.
2008-01-01
This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.
Efficient volume computation for three-dimensional hexahedral cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukowicz, J.K.
1988-02-01
Currently, algorithms for computing the volume of hexahedral cells with ''ruled'' surfaces require a minimum of 122 FLOPs (floating point operations) per cell. A new algorithm is described which reduces the operation count to 57 FLOPs per cell. copyright 1988 Academic Press, Inc.
Yang, Dongmei; Li, Junhui; Ding, Yiting; Tyree, Melvin T
2017-03-01
The physiological advantages of negative turgor pressure, P t , in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative P t in leaves. Biomechanical models of pressure-volume (PV) curves predict that negative P t does not change the linearity of PV curve plots of inverse balance pressure, P B , versus relative water loss, but it does predict changes in either the y-intercept or the x-intercept of the plots depending on where cell collapse occurs in the P B domain because of negative P t . PV curve analysis of Robinia leaves revealed a shift in the x-intercept (x-axis is relative water loss) of PV curves, caused by negative P t of palisade cells. The low x-intercept of the PV curve was explained by the non-collapse of palisade cells in Robinia in the P B domain. Non-collapse means that P t smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non-collapsing living cells was as low as -1.3 MPa and the relative volume of the non-collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative P t . © 2016 John Wiley & Sons Ltd.
Physiological Role of Gap-Junctional Hemichannels
Quist, Arjan Pieter; Rhee, Seung Keun; Lin, Hai; Lal, Ratneshwar
2000-01-01
Hemichannels in the overlapping regions of apposing cells plasma membranes join to form gap junctions and provide an intercellular communication pathway. Hemichannels are also present in the nonjunctional regions of individual cells and their activity is gated by several agents, including calcium. However, their physiological roles are unknown. Using techniques of atomic force microscopy (AFM), fluorescent dye uptake assay, and laser confocal immunofluorescence imaging, we have examined the extracellular calcium-dependent modulation of cell volume. In response to a change in the extracellular physiological calcium concentration (1.8 to ≤1.6 mM) in an otherwise isosmotic condition, real-time AFM imaging revealed a significant and reversible increase in the volume of cells expressing gap-junctional proteins (connexins). Volume change did not occur in cells that were not expressing connexins. However, after the transient or stable transfection of connexin43, volume change did occur. The volume increase was accompanied by cytochalasin D-sensitive higher cell stiffness, which helped maintain cell integrity. These cellular physical changes were prevented by gap-junctional blockers, oleamide and β-glycyrrhetinic acid, or were reversed by returning extracellular calcium to the normal level. We conclude that nongap-junctional hemichannels regulate cell volume in response to the change in extracellular physiological calcium in an otherwise isosmotic situation. PMID:10704454
Manipulating biological agents and cells in micro-scale volumes for applications in medicine
Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi
2013-01-01
Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660
Chu, Henry S; Langhorst, Benjamin R; Bakas, Michael P; Thinnes, Gary L
2013-02-26
The disclosure provides a shock absorbing layer comprised of one or more shock absorbing cells, where a shock absorbing cell is comprised of a cell interior volume containing a plurality of hydrogel particles and a free volume, and where the cell interior volume is surrounded by a containing layer. The containing layer has a permeability such that the hydrogel particles when swollen remain at least partially within the cell interior volume when subjected to a design shock pressure wave, allowing for force relaxation through hydrogel compression response. Additionally, the permeability allows for the flow of exuded free water, further dissipating wave energy. In an embodiment, a plurality of shock absorbing cells is combined with a penetration resistant material to mitigate the transmitted shock wave generated by an elastic precursor wave in the penetration resistant material.
The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.; Koon, E. C.; Wang, C. L.
1986-01-01
Columella (i.e., putative graviperceptive) cells of Zea mays seedlings grown in the microgravity of outer space allocate significantly less volume to putative statoliths (amyloplasts) than do columella cells of Earth-grown seedlings. Amyloplasts of flight-grown seedlings are significantly smaller than those of ground controls, as is the average volume of individual starch grains. Similarly, the relative volume of starch in amyloplasts in columella cells of flight-grown seedlings is significantly less than that of Earth-grown seedlings. Microgravity does not significantly alter the volume of columella cells, the average number of amyloplasts per columella cell, or the number of starch grains per amyloplast. These results are discussed relative to the influence of gravity on cellular and organellar structure.
Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity
NASA Technical Reports Server (NTRS)
Beckman, D. A.; Evans, J. W.; Oyama, J.
1978-01-01
Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.
39 CFR 3010.23 - Calculation of percentage change in rates.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rate cell in the class is multiplied by the planned rate for the respective cell and the resulting products are summed. Then, the same set of rate cell volumes are multiplied by the corresponding current..., 2, ..., N) Ri,n = planned rate of rate cell i Ri,c = current rate of rate cell i Vi = volume of rate...
Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong
2012-10-01
To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, P<0.05], and octanol preconditioning significantly attenuated the cell swelling [(113∓6)%, P<0.05]. SI/R caused a significant reduction of the cell viability compared to the control cells [(19∓2)% vs (45∓3)%, P<0.01], and octanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, P<0.01]. Connexin 43-formed hemichannels are involved in the regulation of cardiomyocyte volumes induced by SI/R challenge, and octanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.
Cell volume regulation and apoptotic volume decrease in rat distal colon superficial enterocytes.
Antico, Stefania; Lionetto, Maria Giulia; Giordano, Maria Elena; Caricato, Roberto; Schettino, Trifone
2013-01-01
The colon epithelium is physiologically exposed to osmotic stress, and the activation of cell volume regulation mechanisms is essential in colonocyte physiology. Moreover, colon is characterized by a high apoptotic rate of mature cells balancing the high division rate of stem cells. The aim of the present work was to investigate the main cell volume regulation mechanisms in rat colon surface colonocytes and their role in apoptosis. Cell volume changes were measured by light microscopy and video imaging on colon explants; apoptosis sign appearance was monitored by confocal microscopy on annexin V/propidium iodide labeled explants. Superficial colonocytes showed a dynamic regulation of their cell volume during anisosmotic conditions with a Regulatory Volume Increase (RVI) response following hypertonic shrinkage and Regulatory Volume Decrease (RVD) response following hypotonic swelling. RVI was completely inhibited by bumetanide, while RVD was completely abolished by high K(+) or iberiotoxin treatment and by extracellular Ca(2+) removal. DIDS incubation was also able to affect the RVD response. When colon explants were exposed to H2O2 as apoptotic inducer, colonocytes underwent an isotonic volume decrease ascribable to Apoptotic Volume Decrease (AVD) within about four hours of exposure. AVD was shown to precede annexin V positivity. It was also inhibited by high K(+) or iberiotoxin treatment. Interestingly, treatment with iberiotoxin significantly inhibited apoptosis progression. In rat superficial colonocytes K(+) efflux through high conductance Ca(2+)-activated K(+) channels (BK channels) was demonstrated to be the main mechanism of RVD and to plays also a crucial role in the AVD process and in the progression of apoptosis. © 2013 S. Karger AG, Basel.
LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN
2016-01-01
ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622
Parallel Microchannel-Based Measurements of Individual Erythrocyte Areas and Volumes
Gifford, Sean C.; Frank, Michael G.; Derganc, Jure; Gabel, Christopher; Austin, Robert H.; Yoshida, Tatsuro; Bitensky, Mark W.
2003-01-01
We describe a microchannel device which utilizes a novel approach to obtain area and volume measurements on many individual red blood cells. Red cells are aspirated into the microchannels much as a single red blood cell is aspirated into a micropipette. Inasmuch as there are thousands of identical microchannels with defined geometry, data for many individual red cells can be rapidly acquired, and the fundamental heterogeneity of cell membrane biophysics can be analyzed. Fluorescent labels can be used to quantify red cell surface and cytosolic features of interest simultaneously with the measurement of area and volume for a given cell. Experiments that demonstrate and evaluate the microchannel measuring capabilities are presented and potential improvements and extensions are discussed. PMID:12524315
Duan, D; Cowley, S; Horowitz, B; Hume, J R
1999-01-01
In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.
Tone, Kiyoshi; Kojima, Keiko; Hoshiai, Keita; Kumagai, Naoya; Kijima, Hiroshi; Kurose, Akira
2016-06-01
The essential of urine cytology for the diagnosis and the follow-up of urothelial neoplasia has been widely recognized. However, there are some cases in which a definitive diagnosis cannot be made due to difficulty in discriminating between benign and malignant. This study evaluated the practicality of nucleolar/nuclear volume ratio (%) for the discrimination. Using Papanicolaou-stained slides, 253 benign urothelial cells and 282 malignant urothelial cells were selected and divided into a benign urothelial cell and an urothelial carcinoma (UC) cell groups. Three suspicious cases and four cases in which discrimination between benign and malignant was difficult were prepared for verification test. Subject cells were decolorized and stained with 4',6-diamidino-2-phenylindole for detection of the nuclei and the nucleoli. Z-stack method was performed to analyze. When the cutoff point of 1.514% discriminating benign urothelial cells and UC cells from nucleolar/nuclear volume ratio (%) was utilized, the sensitivity was 56.0%, the specificity was 88.5%, the positive predictive value was 84.5%, and the negative predictive value was 64.4%. Nuclear and nucleolar volume, number of the nucleoli, and nucleolar/nuclear volume ratio (%) were significantly higher in the UC cell group than in the benign urothelial cell group (P <0.001). In the verification test using the nucleolar/nuclear ratio (%), four of the seven cases were concordant with the final diagnosis. This study analyzed the nuclear and nucleolar volume to establish an index for discrimination of benign and malignant urothelial cells, providing possible additional information in urine cytology. Diagn. Cytopathol. 2016;44:483-491. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung
2014-11-21
The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.
Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.
Lee, Jung-Seob; Kim, Byoung Soo; Seo, Donghwan; Park, Jeong Hun; Cho, Dong-Woo
2017-03-01
The three-dimensional (3D) printing of large-volume cells, printed in a clinically relevant size, is one of the most important challenges in the field of tissue engineering. However, few studies have reported the fabrication of large-volume cell-printed constructs (LCCs). To create LCCs, appropriate fabrication conditions should be established: Factors involved include fabrication time, residence time, and temperature control of the cell-laden hydrogel in the syringe to ensure high cell viability and functionality. The prolonged time required for 3D printing of LCCs can reduce cell viability and result in insufficient functionality of the construct, because the cells are exposed to a harsh environment during the printing process. In this regard, we present an advanced 3D cell-printing system composed of a clean air workstation, a humidifier, and a Peltier system, which provides a suitable printing environment for the production of LCCs with high cell viability. We confirmed that the advanced 3D cell-printing system was capable of providing enhanced printability of hydrogels and fabricating an ear-shaped LCC with high cell viability. In vivo results for the ear-shaped LCC also showed that printed chondrocytes proliferated sufficiently and differentiated into cartilage tissue. Thus, we conclude that the advanced 3D cell-printing system is a versatile tool to create cell-printed constructs for the generation of large-volume tissues.
K-Cl cotransporters, cell volume homeostasis, and neurological disease
Kahle, Kristopher T.; Khanna, Arjun R.; Alper, Seth L.; Adragna, Norma C.; Lauf, Peter K.; Sun, Dandan; Delpire, Eric
2016-01-01
K+-Cl− cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. PMID:26142773
K-Cl cotransporters, cell volume homeostasis, and neurological disease.
Kahle, Kristopher T; Khanna, Arjun R; Alper, Seth L; Adragna, Norma C; Lauf, Peter K; Sun, Dandan; Delpire, Eric
2015-08-01
K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease. The recent characterization of a swelling-activated dephosphorylation mechanism that potently stimulates the KCCs has pinpointed a potentially druggable switch of KCC activity. An improved understanding of WNK/SPAK-mediated KCC cell volume regulation in the nervous system might reveal novel avenues for the treatment of multiple neurological diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang
2015-01-01
Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426
Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming
2015-11-25
Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification ( i.e. , no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification ( i.e. , formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants ( i.e. , high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).
Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces
NASA Astrophysics Data System (ADS)
Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott
2014-03-01
Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.
A physical multifield model predicts the development of volume and structure in the human brain
NASA Astrophysics Data System (ADS)
Rooij, Rijk de; Kuhl, Ellen
2018-03-01
The prenatal development of the human brain is characterized by a rapid increase in brain volume and a development of a highly folded cortex. At the cellular level, these events are enabled by symmetric and asymmetric cell division in the ventricular regions of the brain followed by an outwards cell migration towards the peripheral regions. The role of mechanics during brain development has been suggested and acknowledged in past decades, but remains insufficiently understood. Here we propose a mechanistic model that couples cell division, cell migration, and brain volume growth to accurately model the developing brain between weeks 10 and 29 of gestation. Our model accurately predicts a 160-fold volume increase from 1.5 cm3 at week 10 to 235 cm3 at week 29 of gestation. In agreement with human brain development, the cortex begins to form around week 22 and accounts for about 30% of the total brain volume at week 29. Our results show that cell division and coupling between cell density and volume growth are essential to accurately model brain volume development, whereas cell migration and diffusion contribute mainly to the development of the cortex. We demonstrate that complex folding patterns, including sinusoidal folds and creases, emerge naturally as the cortex develops, even for low stiffness contrasts between the cortex and subcortex.
Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells
Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus
2012-01-01
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on IClswell can be ruled out. Furthermore, we show that curcumin exposure induces apoptosis in human kidney cells, and at a concentration of 5.0–10 μM induces the appearance of a sub-population of cells with a dramatically increased volume. In these cells the regulation of the cell volume seems to be impaired, most likely as a consequence of the IClswell blockade. Similarly, 50 μM curcumin induced apoptosis, caused cell cycle arrest in G1-phase and increased the volume of human colorectal adenocarcinoma HT-29 cells. The cell cycle arrest in G1 phase may be the mechanism underlying the volume increase observed in this cell line after exposure to curcumin. PMID:22178266
Zimmermann, Joshua A; Knothe Tate, Melissa L
2011-12-01
Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell volume was shown to be dependent on initial seeding density whereas nucleus shape was shown to depend on developmental context but not seeding density. Both smaller cell volumes and flatter nuclei were found to correlate with increased expression of markers for mesenchymal condensation as well as chondrogenic and osteogenic differentiation but a decreased expression of pre-condensation and adipogenic markers. Considering the data presented here, both seeding density and protocol significantly alter the morphology of mesenchymal stem cells even at very early stages of cell culture. Thus, these design parameters may play a critical role in the success of tissue engineering strategies seeking to recreate condensation events. However, a better understanding of how these changes in cell volume and nucleus shape relate to the differentiation of MSCs is important for prescribing precise seeding conditions necessary for the development of the desired tissue type. In a companion study (Part B, following), we address the effect of concomitant volume and shape changing stresses on spatiotemporal distribution of the cytoskeletal proteins actin and tubulin. Taken together, these studies bring us one step closer to our ultimate goal of elucidating the dynamics of nucleus and cell shape change as tissue templates grow (cell proliferation) and specialize (cell differentiation).
Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea
Braun, Stefan; Morono, Yuki; Littmann, Sten; Kuypers, Marcel; Aslan, Hüsnü; Dong, Mingdong; Jørgensen, Bo B.; Lomstein, Bente Aa.
2016-01-01
The discovery of a microbial ecosystem in ocean sediments has evoked interest in life under extreme energy limitation and its role in global element cycling. However, fundamental parameters such as the size and the amount of biomass of sub-seafloor microbial cells are poorly constrained. Here we determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS). The majority of microbial cells in the sediment have coccoid or slightly elongated morphology. From the sediment surface to the deepest investigated sample (~60 m below the seafloor), the cell volume of both coccoid and elongated cells decreased by an order of magnitude from ~0.05 to 0.005 μm3. The cell-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass. PMID:27630628
Diaz, Roberto J; Armstrong, Stephen C; Batthish, Michelle; Backx, Peter H; Ganote, Charles E; Wilson, Gregory J
2003-01-01
Accumulation of osmotically active metabolites, which create an osmotic gradient estimated at ~60 mOsM, and cell swelling are prominent features of ischemic myocardial cell death. This study tests the hypothesis that reduction of ischemic swelling by enhanced cell volume regulation is a key mechanism in the delay of ischemic myocardial cell death by ischemic preconditioning (IPC). Experimental protocols address whether: (i) IPC triggers a cell volume regulation mechanism that reduces cardiomyocyte swelling during subsequent index ischemia; (ii) this reduction in ischemic cell swelling is sufficient in magnitude to account for the IPC protection; (iii) the molecular mechanism that mediates IPC also mediates cell volume regulation. Two experimental models with rabbit ventricular myocytes were studied: freshly isolated pelleted myocytes and 48-h cultured myocytes. Myocytes were preconditioned either by distinct short simulated ischemia (SI)/simulated reperfusion protocols (IPC), or by subjecting myocytes to a pharmacological preconditioning (PPC) protocol (1 microM calyculin A, or 1 microM N(6)-2-(4-aminophenyl)ethyladenosine (APNEA), prior to subjecting them to either different durations of long SI or 30 min hypo-osmotic stress. Cell death (percent blue square myocytes) was monitored by trypan blue staining. Cell swelling was determined by either the bromododecane cell flotation assay (qualitative) or video/confocal microscopy (quantitative). Simulated ischemia induced myocyte swelling in both the models. In pelleted myocytes, IPC or PPC with either calyculin A or APNEA produced a marked reduction of ischemic cell swelling as determined by the cell floatation assay. In cultured myocytes, IPC substantially reduced ischemic cell swelling (P < 0.001). This IPC effect on ischemic cell swelling was related to an IPC and PPC (with APNEA) mediated triggering of cell volume regulatory decrease (RVD). IPC and APNEA also significantly (P < 0.001) reduced hypo-osmotic cell swelling. This IPC and APNEA effect was blocked by either adenosine receptor, PKC or Cl(-) channel inhibition. The osmolar equivalent for IPC protection approximated 50-60 mOsM, an osmotic gradient similar to the estimated ischemic osmotic load for preconditioned and non-preconditioned myocytes. The results suggest that cell volume regulation is a key mechanism that accounts for most of the IPC protection in cardiomyocytes.
Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.
Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M
2006-02-01
The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.
Bio-inspired Cryo-ink Preserves Red Blood Cell Phenotype and Function during Nanoliter Vitrification
Assal, Rami El; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyber, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M.W.; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan
2014-01-01
Current red blood cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red blood cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bio-printing approach. PMID:25047246
Interpretation of HbA1c : association with mean cell volume and haemoglobin concentration.
Simmons, D; Hlaing, T
2014-11-01
The utility of HbA1c in diabetes diagnosis is reduced in settings associated with altered haemoglobin glycation. We have studied whether HbA1c varies with mean cell volume and mean cell haemoglobin concentration as measures of haemoglobin metabolism. Randomly selected adults from rural Victoria, Australia, were invited for biomedical assessment. After excluding patients with known diabetes and/or serum creatinine ≥ 0.12 mmol/l, 1315 adults were included. Demography, arthropometric measurements, oral glucose tolerance test, analyses of full blood count and HbA1c were undertaken. After adjusting for age, sex, ethnicity, BMI, town and socio-economic status, there were no significant differences in haemoglobin, mean cell volume or mean cell haemoglobin concentration by glycaemic status (defined by oral glucose tolerance test). HbA1c was significantly and independently associated with fasting glucose, town, mean cell haemoglobin concentration, ethnicity, age and BMI among men < 50 years (R² = 33.8%); fasting glucose, 2-h glucose, mean cell haemoglobin concentration and town among men ≥ 50 years (R² = 47.9%); fasting glucose, mean cell volume, mean cell haemoglobin concentration, town, 2-h glucose and age among women < 50 years (R² = 46.3%); fasting glucose, mean cell haemoglobin concentration, mean cell volume and 2-h glucose among women ≥ 50 years (R² = 51.6%). A generalized linear model showed a gradient from an adjusted mean HbA1c of 36 (95% CI 34-38) mmol/mol with a mean cell haemoglobin concentration of ≤ 320 g/l to 30 (95% CI 29-31) mmol/mol with a mean cell haemoglobin concentration of > 370 g/l. The gradient across mean cell volume was negative, but only by 1 mmol/mol (0.1%) HbA1c . A mean HbA1c difference of 5 mmol/mol (0.5%) across the mean cell haemoglobin concentration reference range suggests that an accompanying full blood count examination may be required for its use in the diagnosis of diabetes. Further studies are required to confirm this. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.
An, Seong Jin; Li, Jianlin; Daniel, Claus; ...
2017-05-15
This study aims to explore the correlations between electrolyte volume, electrochemical performance, and properties of the solid electrolyte interphase in pouch cells with Si-graphite composite anodes. The electrolyte is 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate with 10 wt.% fluoroethylene carbonate. Single layer pouch cells (100 mAh) were constructed with 15 wt.% Si-graphite/LiNi 0.5Mn 0.3CO 0.2O 2 electrodes. It is found that a minimum electrolyte volume factor of 3.1 times the total pore volume of cell components (cathode, anode, and separator) is needed for better cycling stability. Less electrolyte causes increases in ohmic and charge transfer resistances. Lithium dendritesmore » are observed when the electrolyte volume factor is low. The resistances from the anodes become significant as the cells are discharged. As a result, solid electrolyte interphase thickness grows as the electrolyte volume factor increases and is non-uniform after cycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banse, K.
1982-01-01
A review of growth rates of diatoms and dinoflagellates in light-saturated, nutrient-replete cultures at 20/sup 0/C confirms weak dependence on cell volume or mass. These maximal (intrinsic) rates are not linearly related to surface area or surface-to-volume ratio of the cells. The growth of most diatoms is materially faster than that of dinoflagellates; other algae fall in between or below the dinoflagellates. Small ciliates have appreciably higher intrinsic growth rates than algae of the same cell volume. The average food consumption per ciliate in the marine pelagic realm is inferred to be very low, so that the realized specific growthmore » rates are much smaller than the intrinsic potentials. Also, a previously postulated refuge from predation, afforded by small size, is extended down to about 10-..mu..m/sup 3/ cell volume.« less
NASA Astrophysics Data System (ADS)
Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten
1999-05-01
Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.
Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J
2009-10-01
To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.
García-Amado, María; Prensa, Lucía
2012-01-01
Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.
Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex
García-Amado, María; Prensa, Lucía
2012-01-01
Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923
Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K
1995-04-01
The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid
2002-11-01
Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.
The effects of erythrocyte deformability upon hematocrit assessed by the conductance method.
Hayashi, Yoshihito; Katsumoto, Yoichi; Oshige, Ikuya; Omori, Shinji; Yasuda, Akio; Asami, Koji
2009-04-21
A comparative study of centrifugation and conductance methods for the estimation of cell volume fraction (phi) was performed to examine whether the strong forces exerted upon erythrocytes during centrifugation affect their volume, and the results are discussed in terms of erythrocyte deformability. Rabbit erythrocytes of four shapes (spherocytes, echinocytes, stomatocyte-like enlarged erythrocytes and discocytes) were prepared by controlling the pH of the suspending media. The packed cell volumes of the suspensions were measured by standard hematocrit determination methods using centrifugation in capillary tubes. Simultaneously, the same suspensions and their supernatants were used in dielectric spectroscopy measurements, and the low-frequency limits of their conductivities were used for the numerical estimation of phi. The hematocrit values of spherocytes and echinocytes were markedly less than the volume fractions obtained by the conductance method. Namely, the centrifugation reduced the cell volume. For enlarged erythrocytes and discocytes, however, the reduction of cell volume was not observed. These findings showed that phi obtained by the centrifugation method can be greatly affected by the deformability of the cells, but the level of the effect depends on the cell types. Consequently, phi obtained by the centrifugation method should be carefully interpreted.
Hystad, M E; Rofstad, E K
1994-05-15
Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor types.
Time-dependent cell disintegration kinetics in lung tumors after irradiation
NASA Astrophysics Data System (ADS)
Chvetsov, Alexei V.; Palta, Jatinder J.; Nagata, Yasushi
2008-05-01
We study the time-dependent disintegration kinetics of tumor cells that did not survive radiotherapy treatment. To evaluate the cell disintegration rate after irradiation, we studied the volume changes of solitary lung tumors after stereotactic radiotherapy. The analysis is performed using two approximations: (1) tumor volume is a linear function of the total cell number in the tumor and (2) the cell disintegration rate is governed by the exponential decay with constant risk, which is defined by the initial cell number and a half-life T1/2. The half-life T1/2 is determined using the least-squares fit to the clinical data on lung tumor size variation with time after stereotactic radiotherapy. We show that the tumor volume variation after stereotactic radiotherapy of solitary lung tumors can be approximated by an exponential function. A small constant component in the volume variation does not change with time; however, this component may be the residual irregular density due to radiation fibrosis and was, therefore, subtracted from the total volume variation in our computations. Using computerized fitting of the exponent function to the clinical data for selected patients, we have determined that the average half-life T1/2 of cell disintegration is 28.2 days for squamous cell carcinoma and 72.4 days for adenocarcinoma. This model is needed for simulating the tumor volume variation during radiotherapy, which may be important for time-dependent treatment planning of proton therapy that is sensitive to density variations.
Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing.
Lacroix, Benjamin; Letort, Gaëlle; Pitayu, Laras; Sallé, Jérémy; Stefanutti, Marine; Maton, Gilliane; Ladouceur, Anne-Marie; Canman, Julie C; Maddox, Paul S; Maddox, Amy S; Minc, Nicolas; Nédélec, François; Dumont, Julien
2018-05-21
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume. Copyright © 2018 Elsevier Inc. All rights reserved.
Effect of Microstructural Parameters on the Relative Densities of Metal Foams
NASA Technical Reports Server (NTRS)
Raj, S. V.; Kerr, Jacob A.
2010-01-01
A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.
El Assal, Rami; Guven, Sinan; Gurkan, Umut Atakan; Gozen, Irep; Shafiee, Hadi; Dalbeyler, Sedef; Abdalla, Noor; Thomas, Gawain; Fuld, Wendy; Illigens, Ben M W; Estanislau, Jessica; Khoory, Joseph; Kaufman, Richard; Zylberberg, Claudia; Lindeman, Neal; Wen, Qi; Ghiran, Ionita; Demirci, Utkan
2014-09-03
Current red-blood-cell cryopreservation methods utilize bulk volumes, causing cryo-injury of cells, which results in irreversible disruption of cell morphology, mechanics, and function. An innovative approach to preserve human red-blood-cell morphology, mechanics, and function following vitrification in nanoliter volumes is developed using a novel cryo-ink integrated with a bioprinting approach. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Teos, LY; Zheng, C-Y; Liu, X; Swaim, WD; Goldsmith, CM; Cotrim, AP; Baum, BJ; Ambudkar, IS
2017-01-01
Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands functionally compromised post IR. PMID:26966862
High efficiency solar cells for concentrator systems: silicon or multi-junction?
NASA Astrophysics Data System (ADS)
Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan
2005-08-01
Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.
Sediment Budget Calculations Oceanside, California.
1983-12-01
Volume of Sediment Dredged from Agua Hedionda Lagoon vs. Time ............................. 13 7 Cumulative Volume of Accretion or Erosion as a Function...17 10 Oceanside Sub-Cell 2-3, Oceanside Harbor ............ 17 11 Oceanside Sub-Cell 3-4, Oceanside Harbor to Agua Hedionda Lagoon...18 12 Oceanside Sub-Cell 4-5, Agua Hedionda Lagoon ........ 18 13 Oceanside Sub-Cell 5-6, Agua Hedionda Lagoon to Southern
Harris, Leigh K.; Dye, Natalie A.; Theriot, Julie A.
2014-01-01
Summary Rod-shaped bacteria typically elongate at a uniform width. To investigate the genetic and physiological determinants involved in this process, we studied a mutation in the morphogenetic protein MreB in Caulobacter crescentus that gives rise to cells with a variable-width phenotype, where cells have regions that are both thinner and wider than wild-type. During growth, individual cells develop a balance of wide and thin regions, and mutant MreB dynamically localizes to poles and thin regions. Surprisingly, the surface area to volume ratio of these irregularly-shaped cells is, on average, very similar to wild-type. We propose that, while mutant MreB localizes to thin regions and promotes rod-like growth there, wide regions develop as a compensatory mechanism, allowing cells to maintain a wild-type-like surface area to volume ratio. To support this model, we have shown that cell widening is abrogated in growth conditions that promote higher surface area to volume ratios, and we have observed individual cells with high ratios return to wild-type levels over several hours by developing wide regions, suggesting that compensation can take place at the level of individual cells. PMID:25266768
Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells.
Wurm, Antje; Lipp, Stephan; Pannicke, Thomas; Linnertz, Regina; Krügel, Ute; Schulz, Angela; Färber, Katrin; Zahn, Dirk; Grosse, Johannes; Wiedemann, Peter; Chen, Ju; Schöneberg, Torsten; Illes, Peter; Reichenbach, Andreas; Bringmann, Andreas
2010-03-01
Intense neuronal activity in the sensory retina is associated with a volume increase of neuronal cells (Uckermann et al., J. Neurosci. 2004, 24:10149) and a decrease in the osmolarity of the extracellular space fluid (Dmitriev et al., Vis. Neurosci. 1999, 16:1157). Here, we show the existence of an endogenous purinergic mechanism that prevents hypoosmotic swelling of retinal glial (Müller) cells in mice. In contrast to the cells from wild-type mice, hypoosmotic stress induced rapid swelling of glial cell somata in retinal slices from mice deficient in P2Y(1), adenosine A(1) receptors, or ecto-5'-nucleotidase (CD73). Consistently, glial cell bodies in retinal slices from wild-type mice displayed osmotic swelling when P2Y(1) or A(1) receptors, or CD73, were pharmacologically blocked. Exogenous ATP, UTP, and UDP inhibited glial swelling in retinal slices, while the swelling of isolated glial cells was prevented by ATP but not by UTP or UDP, suggesting that uracil nucleotides indirectly regulate the glial cell volume via activation of neuronal P2Y(4/6) and neuron-to-glia signaling. It is suggested that autocrine/paracrine activation of purinergic receptors and enzymes is crucially involved in the regulation of the glial cell volume.
Rat pancreatic B-cells after chronic alcohol feeding. A morphometric and fine structural study.
Koko, V; Todorović, V; Nikolić, J A; Glisić, R; Cakić, M; Lacković, V; Petronijević, L; Stojković, M; Varagić, J; Janić, B
1995-04-01
Quantitative analysis of the light microscopic and fine structure of rat islet B-cells was carried out in chronic alcoholism. Absolute pancreatic weight and volume were similar in groups C (control) and E (ethanol), but relative pancreatic weight in group E rat was decreased. The results for fasting blood glucose and insulin levels were similar in the two groups of animals. There was a significantly reduced total pancreatic islet volume in E rats. The total number of endocrine cells both per islet and per microns2 of islet was similar in the two groups of animals. The volume density and number of B-cells per islet and per microns2 of islet were not changed in ethanol-treated rats as compared with the control. On the other hand, diameter, surface area and volume of the B-cells and their nuclei were found to be statistically significantly decreased. Histological examination revealed that islet blood vessels were dilated in alcoholic rats. Over the 4-month period of ethanol intake a significant decrease in cell profile area, nuclear profile area and volume density of cytoplasmic granules and an increase in the profile area and volume density of endoplasmic reticulum occurred. The gross histological alteration seen in most B-cells of the ethanol-treated rats was irregularity of the nuclear envelope with deep invagination and with margination of heterochromatin and many empty granules or granules without clear electron dense crystals of insulin. The present results indicate some optical and structural abnormalities of B-cells in chronic alcoholism that may be related to cell dysfunction and may contribute, at least in part, to the endocrine pancreas functional disturbance.
Bistability: Requirements on Cell-Volume, Protein Diffusion, and Thermodynamics
Endres, Robert G.
2015-01-01
Bistability is considered wide-spread among bacteria and eukaryotic cells, useful e.g. for enzyme induction, bet hedging, and epigenetic switching. However, this phenomenon has mostly been described with deterministic dynamic or well-mixed stochastic models. Here, we map known biological bistable systems onto the well-characterized biochemical Schlögl model, using analytical calculations and stochastic spatiotemporal simulations. In addition to network architecture and strong thermodynamic driving away from equilibrium, we show that bistability requires fine-tuning towards small cell volumes (or compartments) and fast protein diffusion (well mixing). Bistability is thus fragile and hence may be restricted to small bacteria and eukaryotic nuclei, with switching triggered by volume changes during the cell cycle. For large volumes, single cells generally loose their ability for bistable switching and instead undergo a first-order phase transition. PMID:25874711
Red cell volume with changes in plasma osmolarity during maximal exercise.
NASA Technical Reports Server (NTRS)
Van Beaumont, W.
1973-01-01
The volume of the red cell in vivo was measured during acute changes in plasma osmolarity evoked through short (6 to 8 min) maximal exercise in six male volunteer subjects. Simultaneous measurements of mean corpuscular red cell volume (MCV), hematocrit, blood hemoglobin, mean corpuscular hemoglobin concentration (MCHC), and plasma osmolarity showed that there was no change in the MCV or MCHC with a concomitant rise of nearly 6% in plasma osmolarity. Apparently, in vivo, the volume of the red cell in exercising healthy human subjects does not change measurably, in spite of significant changes in osmotic pressure of the surrounding medium. Consequently, it is not justified to correct postexercise hematocrit measurements for changes in plasma osmolarity.
Susceptibility-matched plugs for microcoil NMR probes
NASA Astrophysics Data System (ADS)
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 μL) and larger volume (15-20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.
Susceptibility-matched plugs for microcoil NMR probes.
Kc, Ravi; Gowda, Yashas N; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 microL) and larger volume (15-20 microL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Susceptibility-matched plugs for microcoil NMR probes
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-01-01
For mass limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5 to 2 μL) and larger volume (15 to 20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6 to 12 fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. PMID:20510638
Nanoliter reactors improve multiple displacement amplification of genomes from single cells.
Marcy, Yann; Ishoey, Thomas; Lasken, Roger S; Stockwell, Timothy B; Walenz, Brian P; Halpern, Aaron L; Beeson, Karen Y; Goldberg, Susanne M D; Quake, Stephen R
2007-09-01
Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA) method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-microl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.
Guard cells elongate: relationship of volume and surface area during stomatal movement.
Meckel, Tobias; Gall, Lars; Semrau, Stefan; Homann, Ulrike; Thiel, Gerhard
2007-02-01
Stomata in the epidermis of photosynthetically active plant organs are formed by pairs of guard cells, which create a pore, to facilitate CO2 and water exchange with the environment. To control this gas exchange, guard cells actively change their volume and, consequently, surface area to alter the aperture of the stomatal pore. Due to the limited elasticity of the plasma membrane, such changes in surface area require an exocytic addition or endocytic retrieval of membrane during stomatal movement. Using confocal microscopic data, we have reconstructed detailed three-dimensional models of open and closed stomata to precisely quantify the necessary area to be exo- and endocytosed by the guard cells. Images were obtained under a strong emphasis on a precise calibration of the method and by avoiding unphysiological osmotical imbalance, and hence osmocytosis. The data reveal that guard cells of Vicia faba L., whose aperture increases by 111.89+/-22.39%, increase in volume and surface area by 24.82+/-6.26% and 14.99+/-2.62%, respectively. In addition, the precise volume to surface area relationship allows quantitative modeling of the three-dimensional changes. While the major volume change is caused by a slight increase in the cross section of the cells, an elongation of the guard cells achieves the main aperture change.
Guggino, W B; Oberleithner, H; Giebisch, G
1985-07-01
The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway.
Relationship between cell volume and ion transport in the early distal tubule of the Amphiuma kidney
1985-01-01
The roles of apical and basolateral transport mechanisms in the regulation of cell volume and the hydraulic water permeabilities (Lp) of the individual cell membranes of the Amphiuma early distal tubule (diluting segment) were evaluated using video and optical techniques as well as conventional and Cl-sensitive microelectrodes. The Lp of the apical cell membrane calculated per square centimeter of tubule is less than 3% that of the basolateral cell membrane. Calculated per square centimeter of membrane, the Lp of the apical cell membrane is less than 40% that of the basolateral cell membrane. Thus, two factors are responsible for the asymmetry in the Lp of the early distal tubule: an intrinsic difference in the Lp per square centimeter of membrane area, and a difference in the surface areas of the apical and basolateral cell membranes. Early distal tubule cells do not regulate volume after a reduction in bath osmolality. This cell swelling occurs without a change in the intracellular Cl content or the basolateral cell membrane potential. In contrast, reducing the osmolality of the basolateral solution in the presence of luminal furosemide diminishes the magnitude of the increase in cell volume to a value below that predicted from the change in osmolality. This osmotic swelling is associated with a reduction in the intracellular Cl content. Hence, early distal tubule cells can lose solute in response to osmotic swelling, but only after the apical Na/K/Cl transporter is blocked. Inhibition of basolateral Na/K ATPase with ouabain results in severe cell swelling. This swelling in response to ouabain can be inhibited by the prior application of furosemide, which suggests that the swelling is due to the continued entry of solutes, primarily through the apical cotransport pathway. PMID:2411847
Shu, Zhiquan; Hughes, Sean M; Fang, Cifeng; Huang, Jinghua; Fu, Baiwen; Zhao, Gang; Fialkow, Michael; Lentz, Gretchen; Hladik, Florian; Gao, Dayong
2016-04-01
Cryopreservation of specimens taken from the genital tract of women is important for studying mucosal immunity during HIV prevention trials. However, it is unclear whether the current, empirically developed cryopreservation procedures for peripheral blood cells are also ideal for genital specimens. The optimal cryopreservation protocol depends on the cryobiological features of the cells. Thus, we obtained tissue specimens from vaginal repair surgeries, isolated and flow cytometry-purified immune cells, and determined fundamental cryobiological characteristics of vaginal CD3(+) T cells and CD14(+) macrophages using a microfluidic device. The osmotically inactive volumes of the two cell types (Vb) were determined relative to the initial cell volume (V0) by exposing the cells to hypotonic and hypertonic saline solutions, evaluating the equilibrium volume, and applying the Boyle van't Hoff relationship. The cell membrane permeability to water (Lp) and to four different cryoprotective agent (CPA) solutions (Ps) at room temperature were also measured. Results indicated Vb values of 0.516 V0 and 0.457 V0 for mucosal T cells and macrophages, respectively. Lp values at room temperature were 0.196 and 0.295 μm/min/atm for T cells and macrophages, respectively. Both cell types had high Ps values for the three CPAs, dimethyl sulfoxide (DMSO), propylene glycol (PG) and ethylene glycol (EG) (minimum of 0.418 × 10(-3) cm/min), but transport of the fourth CPA, glycerol, occurred 50-150 times more slowly. Thus, DMSO, PG, and EG are better options than glycerol in avoiding severe cell volume excursion and osmotic injury during CPA addition and removal for cryopreservation of human vaginal immune cells. Published by Elsevier Inc.
Altıntaş, Ahmet; Çelik, Mustafa; Yegin, Yakup; Canpolat, Sinan; Olgun, Burak; Tülin Kayhan, Fatma
2017-06-30
To explore the correlation between the volume of the aAgger nNasi (AN) cell bulge and the A-P length of the frontal recess (FR). In total, 120 patients, who underwent septoplasty, were included. All patients underwent preoperative paranasal sinus computed tomography of the paranasal sinuses (PNS CT) imaging. In total, CT data on of all 120 PNSs patients were analyzed in terms of thewith respect to the extent of pneumatization of the AN cell bulge and the A-P dimensions of the FR. Each side was analyzed separately. We included 120 patients,: 78 (65.0%) females and 42 (35.0 %) males. Their average age was 33.7 ± 11.6 years (range: 18-65 years). The mean volume of the AN cell bulge was 0.26 ± 0.4 mm3 on both the right and left sides. The A-P length of the FR was 7.7 ± 2.2 mm. No significant between-side difference in the mean volume of the AN cell bulge was apparent observed (p=0.906). This volume did not differ significantly by age or sex (p=0.844 and p=0.971, respectively). We found no correlation between the volume of the AN cell bulge and the A-P length of the FR (r = 0.098, p=0.192). In the present study, no correlation between AN cell volume and the A-P length of the FR was found. When studying the anatomical complexity of the FR, it is essential to consider the AN cell volume. We suggest that preoperative CT imaging is critical when endoscopic sinus surgery is planned. However, further studies with larger numbers of patients are needed to explore the relationship between AN cell pneumatization and the anatomy of the FR.
Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.
2013-01-01
The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175
Axpe, Eneko; Lopez-Euba, Tamara; Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon
2014-01-01
Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro.
Castellanos-Rubio, Ainara; Merida, David; Garcia, Jose Angel; Plaza-Izurieta, Leticia; Fernandez-Jimenez, Nora; Plazaola, Fernando; Bilbao, Jose Ramon
2014-01-01
Positron annihilation lifetime spectroscopy (PALS) provides a direct measurement of the free volume void sizes in polymers and biological systems. This free volume is critical in explaining and understanding physical and mechanical properties of polymers. Moreover, PALS has been recently proposed as a potential tool in detecting cancer at early stages, probing the differences in the subnanometer scale free volume voids between cancerous/healthy skin samples of the same patient. Despite several investigations on free volume in complex cancerous tissues, no positron annihilation studies of living cancer cell cultures have been reported. We demonstrate that PALS can be applied to the study in human living 3D cell cultures. The technique is also capable to detect atomic scale changes in the size of the free volume voids due to the biological responses to TGF-β. PALS may be developed to characterize the effect of different culture conditions in the free volume voids of cells grown in vitro. PMID:24392097
Zhang, Qiuyue; Fu, Jianhua; Xue, Xindong
2016-01-01
In the present study, the effect of aquaporin‑1 (AQP1) on fluid transportation in pulmonary epithelial cells, and the role of AQP1 in alveolar fluid clearance were investigated to provide an experimental foundation to elucidate the pathogenesis of hyperoxic lung edema. An siRNA transfection technique was used to silence AQP1 in the A549 cell line. The transfected cells were randomized into a hyperoxia exposure and an air control group, with a negative control group set for each group. Cell volume was determined using flow cytometry, and Pf values were used to determine osmotic water permeability. Cell volume was found to be reduced in the AQP1‑silenced A549 cells, compared with the negative control group 72 h following air exposure. In addition, cell volume was reduced in the AQP1‑silenced A549 cells, compared with the negative control group 48 and 72 h following hyperoxia exposure. The osmotic water permeability of the AQP1‑silenced cells was reduced in the air control and hyperoxia exposure groups, compared with the negative control group 48 and 72 h following exposure. The volume and cell membrane osmotic water permeability of the A549 cells were reduced, compared with those in the control group following AQP1‑silencing, which indicated that the downregulation of AQP1 impedes extracellular to intracellular fluid transportation. Therefore, the disturbance in alveolar fluid clearance resulting from the downregulation of AQP1 following hyperoxia exposure may be one of the key mechanisms responsible for hyperoxic lung edema.
IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke
Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina
2013-01-01
Clinical stroke induces inflammatory processes leading to cerebral injury. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and increased numbers of activated T-cells, monocytes and microglial cells in the brain, thus implicating a regulatory role of B-cell subpopulations in limiting CNS damage from stroke. The aim of this study was to determine whether the IL-10-producing regulatory B-cell subset can limit CNS inflammation and reduce infarct volume following ischemic stroke in B-cell deficient (µMT−/−) mice. Five million IL-10-producing B-cells were obtained from IL-10-GFP reporter mice and transferred i.v. to µMT−/− mice. After 24 h following this transfer, recipients were subjected to 60 min of middle cerebral artery occlusion (MCAO) followed by 48 hours of reperfusion. Compared to vehicle-treated controls, the IL-10+ B-cell-replenished µMT−/− mice had reduced infarct volume and fewer infiltrating activated T-cells and monocytes in the affected brain hemisphere. These effects in CNS were accompanied by significant increases in regulatory T-cells and expression of the co-inhibitory receptor, PD-1, with a significant reduction in the proinflammatory milieu in the periphery. These novel observations provide the first proof of both immunoregulatory and protective functions of IL-10-secreting B-cells in MCAO that potentially could impart significant benefit for stroke patients in the clinic. PMID:23640015
Dynamic cell culture system: a new cell cultivation instrument for biological experiments in space
NASA Technical Reports Server (NTRS)
Gmunder, F. K.; Nordau, C. G.; Tschopp, A.; Huber, B.; Cogoli, A.
1988-01-01
The prototype of a miniaturized cell cultivation instrument for animal cell culture experiments aboard Spacelab is presented (Dynamic cell culture system: DCCS). The cell chamber is completely filled and has a working volume of 200 microliters. Medium exchange is achieved with a self-powered osmotic pump (flowrate 1 microliter h-1). The reservoir volume of culture medium is 230 microliters. The system is neither mechanically stirred nor equipped with sensors. Hamster kidney (Hak) cells growing on Cytodex 3 microcarriers were used to test the biological performance of the DCCS. Growth characteristics in the DCCS, as judged by maximal cell density, glucose consumption, lactic acid secretion and pH, were similar to those in cell culture tubes.
NASA Non-Flow-Through PEM Fuel Cell System for Aerospace Applications
NASA Technical Reports Server (NTRS)
Araghi, Koorosh R.
2011-01-01
NASA is researching passive NFT Proton Exchange Membrane (PEM) fuel cell technologies for primary fuel cell power plants in air-independent applications. NFT fuel cell power systems have a higher power density than flow through systems due to both reduced parasitic loads and lower system mass and volume. Reactant storage still dominates system mass/volume considerations. NFT fuel cell stack testing has demonstrated equivalent short term performance to flow through stacks. More testing is required to evaluate long-term performance.
3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna
2016-03-01
This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.
Plasma clots gelled by different amounts of calcium for stem cell delivery.
Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred
2013-01-01
Freshly prepared autologous plasma clots may serve as a carrier matrix for expanded multipotent mesenchymal stromal cells (MSCs) or bone marrow cells. By varying the calcium concentration, plasma clots with different properties can be produced. The purpose of this in vitro study was to determine the optimal calcium concentrations for the clotting process, intra-clot cell viability, and clot lysis. Different plasma clots were prepared by adding an equal volume of RPMI1640 (with or without MSCs) to citrate plasma (either containing platelets or platelet-free). Clotting was initiated by the addition of CaCl(2) (10 g/100 ml H(2)O, 10 % solution). The final concentration of CaCl(2) ranged from 1 to 10 % by volume of plasma. Viability and distribution of the MSCs were analysed by calcein-AM/propidium iodide staining. MSC-embedded plasma clots were dissolved with trypsin (0.25 %), and recovered cells were further incubated for 1 week under cell culture conditions. The viability of MSCs embedded in clots formed by the addition of 1-8 % by volume CaCl2 was not affected by incubation of up to 1 week. In contrast, clots produced by higher volumes of CaCl(2) solutions (9-10 % by volume of plasma) showed decreased numbers of viable cells. Intra-clot cell proliferation was highest in clots produced by addition of 5 % CaCl(2) by plasma volume. Osteocalcin release was not influenced in platelet-free plasma but decreased in platelet-containing plasma. Morphological analysis of stained recovered MSCs revealed that lysis of the plasma clot did not affect cell morphology or subsequent spontaneous proliferation. Clot formation and clot stability can be controlled by changing the concentration of CaCl(2) added to plasma. The addition of 5 % CaCl(2) produced a plasma clot with optimal results for stem cell delivery.
Moo, Eng Kuan; Abusara, Ziad; Abu Osman, Noor Azuan; Pingguan-Murphy, Belinda; Herzog, Walter
2013-08-09
Morphological studies of live connective tissue cells are imperative to helping understand cellular responses to mechanical stimuli. However, photobleaching is a constant problem to accurate and reliable live cell fluorescent imaging, and various image thresholding methods have been adopted to account for photobleaching effects. Previous studies showed that dual photon excitation (DPE) techniques are superior over conventional one photon excitation (OPE) confocal techniques in minimizing photobleaching. In this study, we investigated the effects of photobleaching resulting from OPE and DPE on morphology of in situ articular cartilage chondrocytes across repeat laser exposures. Additionally, we compared the effectiveness of three commonly-used image thresholding methods in accounting for photobleaching effects, with and without tissue loading through compression. In general, photobleaching leads to an apparent volume reduction for subsequent image scans. Performing seven consecutive scans of chondrocytes in unloaded cartilage, we found that the apparent cell volume loss caused by DPE microscopy is much smaller than that observed using OPE microscopy. Applying scan-specific image thresholds did not prevent the photobleaching-induced volume loss, and volume reductions were non-uniform over the seven repeat scans. During cartilage loading through compression, cell fluorescence increased and, depending on the thresholding method used, led to different volume changes. Therefore, different conclusions on cell volume changes may be drawn during tissue compression, depending on the image thresholding methods used. In conclusion, our findings confirm that photobleaching directly affects cell morphology measurements, and that DPE causes less photobleaching artifacts than OPE for uncompressed cells. When cells are compressed during tissue loading, a complicated interplay between photobleaching effects and compression-induced fluorescence increase may lead to interpretations in cell responses to mechanical stimuli that depend on the microscopic approach and the thresholding methods used and may result in contradictory interpretations. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lew, V L; Freeman, C J; Ortiz, O E; Bookchin, R M
1991-01-01
We developed a mathematical model of the reticulocyte, seeking to explain how a cell with similar volume but much higher ionic traffic than the mature red cell (RBC) regulates its volume, pH, and ion content in physiological and abnormal conditions. Analysis of the fluxbalance required by reticulocytes to conserve volume and composition predicted the existence of previously unsuspected Na(+)-dependent Cl- entry mechanisms. Unlike mature RBCs, reticulocytes did not tend to return to their original state after brief perturbations. The model predicted hysteresis and drift in cell pH, volume, and ion contents after transient alterations in membrane permeability or medium composition; irreversible cell dehydration could thus occur by brief K+ permeabilization, transient medium acidification, or the replacement of external Na+ with an impermeant cation. Both the hysteresis and drift after perturbations were shown to depend on the pHi dependence of the K:Cl cotransport, a major reticulocyte transporter. This behavior suggested a novel mechanism for the generation of irreversibly sickled cells directly from reticulocytes, rather than in a stepwise, progressive manner from discocytes. Experimental tests of the model's predictions and the hypothesis are described in the following paper. PMID:1985088
An Improved Model for Nucleation-Limited Ice Formation in Living Cells during Freezing
Zhao, Gang; He, Xiaoming
2014-01-01
Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF) in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF), our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1). We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN) and volume-catalyzed nucleation (VCN). Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications. PMID:24852166
OSMOTIC PROPERTIES OF HUMAN RED CELLS.
SAVITZ, D; SIDEL, V W; SOLOMON, A K
1964-09-01
The hematocrit method as a technique for determining red cell volume under anisotonic conditions has been reexamined and has been shown, with appropriate corrections for trapped plasma, to provide a true measure of cell volume. Cell volume changes in response to equilibration in anisotonic media were found to be much less than those predicted for an ideal osmometer; this anomalous behavior cannot be explained by solute leakage or by the changing osmotic coefficient of hemoglobin, but is quantitatively accounted for by the hypothesis that 20 per cent of intracellular water is bound to hemoglobin and is unavailable for participation in osmotic shifts.
Čukuranović Kokoris, Jovana; Jovanović, Ivan; Pantović, Vukica; Krstić, Miljan; Stanojković, Milica; Milošević, Verica; Ugrenović, Slađana; Stojanović, Vesna
2017-02-01
The aim of this research was to quantify the changes in the morphology and density of the anterior pituitary folliculostellate (FS) and luteinizing hormone (LH) cells. Material was tissue of the pituitary gland of the 14 male cadavers. Tissue slices were immunohistochemically stained with monoclonal anti-LH antibody and polyclonal anti-S100 antibody for the detection of LH and FS cells, respectively. Digital images of the stained slices were afterwards morphometrically analyzed by ImageJ. Results of the morphometric analysis showed significant increase of the FS cells volume density in cases older than 70 years. Volume density of the LH cells did not significantly change, whereas their area significantly increased with age. Nucleocytoplasmic ratio of the LH cells gradually decreased and became significant after the age of 70. Finally, volume density of the FS cell significantly correlated with LH cells area and nucleocytoplasmic ratio. From all above cited, we concluded that in men, density and size of the FS cells increase with age. Long-term hypertrophy of the LH cells results in their functional decline after the age of 70. Strong correlation between FS cells and LH cells morphometric parameters might point to age-related interaction between these two cell groups. Copyright © 2016 Elsevier Ltd. All rights reserved.
1994-02-01
numerical treatment. An explicit numerical procedure based on Runqe-Kutta time stepping for cell-centered, hexahedral finite volumes is...An explicit numerical procedure based on Runge-Kutta time stepping for cell-centered, hexahedral finite volumes is outlined for the approximate...Discretization 16 3.1 Cell-Centered Finite -Volume Discretization in Space 16 3.2 Artificial Dissipation 17 3.3 Time Integration 21 3.4 Convergence
Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.
Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter
2014-07-01
Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.
The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization
Ullah, Ghanim; Wei, Yina; Dahlem, Markus A; Wechselberger, Martin; Schiff, Steven J
2015-01-01
Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states. PMID:26273829
Moles of a Substance per Cell Is a Highly Informative Dosing Metric in Cell Culture
Wagner, Brett A.; Buettner, Garry R.
2015-01-01
Background The biological consequences upon exposure of cells in culture to a dose of xenobiotic are not only dependent on biological variables, but also the physical aspects of experiments e.g. cell number and media volume. Dependence on physical aspects is often overlooked due to the unrecognized ambiguity in the dominant metric used to express exposure, i.e. initial concentration of xenobiotic delivered to the culture medium over the cells. We hypothesize that for many xenobiotics, specifying dose as moles per cell will reduce this ambiguity. Dose as moles per cell can also provide additional information not easily obtainable with traditional dosing metrics. Methods Here, 1,4-benzoquinone and oligomycin A are used as model compounds to investigate moles per cell as an informative dosing metric. Mechanistic insight into reactions with intracellular molecules, differences between sequential and bolus addition of xenobiotic and the influence of cell volume and protein content on toxicity are also investigated. Results When the dose of 1,4-benzoquinone or oligomycin A was specified as moles per cell, toxicity was independent of the physical conditions used (number of cells, volume of medium). When using moles per cell as a dose-metric, direct quantitative comparisons can be made between biochemical or biological endpoints and the dose of xenobiotic applied. For example, the toxicity of 1,4-benzoquinone correlated inversely with intracellular volume for all five cell lines exposed (C6, MDA-MB231, A549, MIA PaCa-2, and HepG2). Conclusions Moles per cell is a useful and informative dosing metric in cell culture. This dosing metric is a scalable parameter that: can reduce ambiguity between experiments having different physical conditions; provides additional mechanistic information; allows direct comparison between different cells; affords a more uniform platform for experimental design; addresses the important issue of repeatability of experimental results, and could increase the translatability of information gained from in vitro experiments. PMID:26172833
Evaluation of solar cells for potential space satellite power applications
NASA Technical Reports Server (NTRS)
1977-01-01
The evaluation focused on the following subjects: (1) the relative merits of alternative solar cell materials, based on performance and availability, (2) the best manufacturing methods for various solar cell options and the effects of extremely large production volumes on their ultimate costs and operational characteristics, (3) the areas of uncertainty in achieving large solar cell production volumes, (4) the effects of concentration ratios on solar array mass and system performance, (5) the factors influencing solar cell life in the radiation environment during transport to and in geosynchronous orbit, and (6) the merits of conducting solar cell manufacturing operations in space.
Kuo, J; Shi, C; Cisewski, S; Zhang, L; Kern, M J; Yao, H
2011-07-01
To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. TMJ discs from pigs aged 6-8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve-fitting of the recorded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. The overall cell density [mean, 95% confidence interval (CI)] was 51.3 (21.3-81.3) × 10(6) cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (P<0.02) and 29.1% higher than the posterior band (P<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (P<0.04) and 25.4% higher than the lateral region (P<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44 (0.44-2.44) μmol/mL wet tissue/h and 28.7 (12.2-45.2)nmol/10(6)cells/h, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (P<0.02) and cell based (P<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Kuo, Jonathan; Shi, Changcheng; Cisewski, Sarah; Zhang, Lixia; Kern, Michael J.; Yao, Hai
2011-01-01
Objective To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. Design TMJ discs from pigs aged 6–8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve fitting of the recoded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. Results The overall cell density (mean, 95% CI) was 51.3(21.3–81.3)×106cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (p<0.02) and 29.1% higher than the posterior band (p<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (p<0.04) and 25.4% higher than the lateral region (p<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44(0.44–2.44) μmol/mL wet tissue/hr and 28.7(12.2–45.2) nmol/106 cells/hr, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (p<0.02) and cell based (p<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. Conclusions The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to pathological events that impede nutrient supply. PMID:21397032
Matsuura, Hazuki; Nango, Nobuhito; Hirata, Aiko; Kawano, Shigeyuki
2013-01-01
Haematococcus pluvialis is a freshwater species of green algae and is well known for its accumulation of the strong antioxidant astaxanthin, which is used in aquaculture, various pharmaceuticals, and cosmetics. High levels of astaxanthin are present in cysts, which rapidly accumulate when the environmental conditions become unfavorable for normal cell growth. It is not understood, however, how accumulation of high levels of astaxanthin, which is soluble in oil, becomes possible during encystment. Here, we performed ultrastructural 3D reconstruction based on over 350 serial sections per cell to visualize the dynamics of astaxanthin accumulation and subcellular changes during the encystment of H. pluvialis. This study showcases the marked changes in subcellular elements, such as chloroplast degeneration, in the transition from green coccoid cells to red cyst cells during encystment. In green coccoid cells, chloroplasts accounted for 41.7% of the total cell volume, whereas the relative volume of astaxanthin was very low (0.2%). In contrast, oil droplets containing astaxanthin predominated in cyst cells (52.2%), in which the total chloroplast volume was markedly decreased (9.7%). Volumetric observations also demonstrated that the relative volumes of the cell wall, starch grains, pyrenoids, mitochondria, the Golgi apparatus, and the nucleus in a cyst cell are smaller than those in green coccid cells. Our data indicated that chloroplasts are degraded, resulting in a net-like morphology, but do not completely disappear, even at the red cyst stage. PMID:23326471
Measuring and Modeling Xenon Uptake in Plastic Beta-Cells
NASA Astrophysics Data System (ADS)
Suarez, R.; Hayes, J. C.; Harper, W. W.; Humble, P.; Ripplinger, M. D.; Stephenson, D. E.; Williams, R. M.
2013-12-01
The precision of the stable xenon volume measurement in atmospheric monitoring radio-xenon systems is a critical parameter used to determine the activity concentration of a radio-xenon sample. Typically these types of systems use a plastic scintillating beta-cell as part of a beta-gamma detection scheme to measure the radioactivity present in the gas sample. Challenges arise when performing the stable xenon calculation during or after radioactive counting of the sample due to xenon uptake into the plastic beta-cells. Plastic beta cells can adsorb as much as 5% of the sample during counting. If quantification is performed after counting, the uptake of xenon into the plastic results in an underestimation of the xenon volume measurement. This behavior also causes what is typically known as 'memory effect' in the cell. Experiments were conducted using a small volume low pressure range thermal conductivity sensor to quantify the amount of xenon uptake into the cell over a given period of time. Understanding the xenon uptake in the cell provides a better estimate of the stable volume which improves the overall measurement capability of the system. The results from these experiments along with modeling will be presented.
Three-dimensional intracellular structure of a whole rice mesophyll cell observed with FIB-SEM.
Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Yamane, Koji; Taniguchi, Mitsutaka
2017-07-01
Ultrathin sections of rice leaf blades observed two-dimensionally using a transmission electron microscope (TEM) show that the chlorenchyma is composed of lobed mesophyll cells, with intricate cell boundaries, and lined with chloroplasts. The lobed cell shape and chloroplast positioning are believed to enhance the area available for the gas exchange surface for photosynthesis in rice leaves. However, a cell image revealing the three-dimensional (3-D) ultrastructure of rice mesophyll cells has not been visualized. In this study, a whole rice mesophyll cell was observed using a focused ion beam scanning electron microscope (FIB-SEM), which provides many serial sections automatically, rapidly and correctly, thereby enabling 3-D cell structure reconstruction. Rice leaf blades were fixed chemically using the method for conventional TEM observation, embedded in resin and subsequently set in the FIB-SEM chamber. Specimen blocks were sectioned transversely using the FIB, and block-face images were captured using the SEM. The sectioning and imaging were repeated overnight for 200-500 slices (each 50 nm thick). The resultant large-volume image stacks ( x = 25 μm, y = 25 μm, z = 10-25 μm) contained one or two whole mesophyll cells. The 3-D models of whole mesophyll cells were reconstructed using image processing software. The reconstructed cell models were discoid shaped with several lobes around the cell periphery. The cell shape increased the surface area, and the ratio of surface area to volume was twice that of a cylinder having the same volume. The chloroplasts occupied half the cell volume and spread as sheets along the cell lobes, covering most of the inner cell surface, with adjacent chloroplasts in close contact with each other. Cellular and sub-cellular ultrastructures of a whole mesophyll cell in a rice leaf blade are demonstrated three-dimensionally using a FIB-SEM. The 3-D models and numerical information support the hypothesis that rice mesophyll cells enhance their CO 2 absorption with increased cell surface and sheet-shaped chloroplasts. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss.
Lautenbach, A; Wernecke, M; Riedel, N; Veigel, J; Yamamura, J; Keller, S; Jung, R; Busch, P; Mann, O; Knop, F K; Holst, J J; Meier, J J; Aberle, J
2018-05-16
Obesity has been shown to trigger adaptive increases in pancreas parenchymal and fat volume. Consecutively, pancreatic steatosis may lead to beta-cell dysfunction. However, it is not known, whether the pancreatic tissue components decrease with weight loss and pancreatic steatosis is reversible following RYGB. Therefore, the objective of the study was to investigate the effects of RYGB-induced weight loss on pancreatic volume and glucose homeostasis. 11 patients were recruited in the Obesity Centre of the University Medical Centre Hamburg-Eppendorf. Before and 6 months after RYGB, total GLP-1 levels were measured during OGTT. To assess changes in visceral adipose tissue and pancreatic volume, MRI was performed. Measures of glucose homeostasis and insulin indices were assessed. Fractional beta-cell area was estimated by correlation with the C-peptide-to-glucose ratio, beta-cell mass was calculated by the product of beta-cell area and pancreas parenchymal weight. Pancreas volume decreased from 83.8 (75.7-92.0) to 70.5 (58.8-82.3) cm 3 [mean (95% CI), p=0.001]. The decrease in total volume was associated with a significant decrease in fat volume. Fasting insulin and C-peptide were lower post RYGB. HOMA-IR levels decreased, whereas insulin sensitivity increased (p=0.03). This was consistent with a reduction in the estimated beta-cell area and mass. Following RYGB, pancreatic volume and steatosis adaptively decreased to "normal" levels with accompanying improvement in glucose homeostasis. Moreover, obesity-driven beta-cell expansion seems to be reversible, however future studies must define a method to more accurately estimate functional beta-cell mass to increase our understanding of glucose homeostasis after RYGB. This article is protected by copyright. All rights reserved.
Bioreactor Expansion of Skin-Derived Precursor Schwann Cells.
Walsh, Tylor; Biernaskie, Jeff; Midha, Rajiv; Kallos, Michael S
2016-01-01
Scaling up the production of cells in a culture process is a critical step when trying to develop cell-based regenerative therapies. Static cultures often cannot be easily scaled up to clinically relevant cell numbers. Alternatively, bioreactors offer a highly valuable means to develop a clinical-ready process. To culture adherent cells in suspension, such as skin-derived precursor Schwann cells (SKP-SCs), microcarriers need to be used. Microcarriers are small spherical beads suspended within the vessel that allow for higher growth surface area to volume ratio. Here we describe the procedure of combining microcarriers with the controllability of bioreactors to generate higher cell densities in smaller reactor volumes leading to a more efficient and cost-effective cell production for applications in regenerative medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, Roxana M.; Kolios, Michael C.; Moseley, Joanne L.
Purpose: High frequency ultrasound imaging, 10-30 MHz, has the capability to assess tumor response to radiotherapy in mouse tumors as early as 24 h after treatment administration. The advantage of this technique is that the image contrast is generated by changes in the physical properties of dying cells. Therefore, a subject can be imaged before and multiple times during the treatment without the requirement of injecting specialized contrast agents. This study is motivated by a need to provide metrics of comparison between the volume and localization of cell death, assessed from histology, with the volume and localization of cell deathmore » surrogate, assessed as regions with increased echogeneity from ultrasound images. Methods: The mice were exposed to radiation doses of 2, 4, and 8 Gy. Ultrasound images were collected from each tumor before and 24 h after exposure to radiation using a broadband 25 MHz center frequency transducer. After radiotherapy, tumors exhibited hyperechoic regions in ultrasound images that corresponded to areas of cell death in histology. The ultrasound and histological images were rigidly registered. The tumors and regions of cell death were manually outlined on histological images. Similarly, the tumors and hyperechoic regions were outlined on the ultrasound images. Each set of contours was converted to a volumetric mesh in order to compare the volumes and the localization of cell death in histological and ultrasound images. Results: A shrinkage factor of 17{+-}2% was calculated from the difference in the tumor volumes evaluated from histological and ultrasound images. This was used to correct the tumor and cell death volumes assessed from histology. After this correction, the average absolute difference between the volume of cell death assessed from ultrasound and histological images was 11{+-}14% and the volume overlap was 70{+-}12%. Conclusions: The method provided metrics of comparison between the volume of cell death assessed from histology and that assessed from ultrasound images. It was applied here to evaluate the capability of ultrasound imaging to assess early tumor response to radiotherapy in mouse tumors. Similarly, it can be applied in the future to evaluate the capability of ultrasound imaging to assess early tumor response to other modalities of cancer treatment. The study contributes to an understanding of the capabilities and limitation of ultrasound imaging at noninvasively detecting cell death. This provides a foundation for future developments regarding the use of ultrasound in preclinical and clinical applications to adapt treatments based on tumor response to cancer therapy.« less
Novel T lymphocyte proliferation assessment using whole mouse cryo-imaging
NASA Astrophysics Data System (ADS)
Wuttisarnwattana, Patiwet; Raza, Syed A.; Eid, Saada; Cooke, Kenneth R.; Wilson, David L.
2014-03-01
New imaging technologies enable one to assess T-cell proliferation, an important feature of the immunological response. However, none of the traditional imaging modalities allow one to examine quantiatively T-cell function with microscopic resolution and single cell sensitivity over an entire mouse. To address this need, we established T-cells proliferation assays using 3D microscopic cryo-imaging. Assays include: (1) biodistribution of T-cells, (2) secondary lymphoid organ (SLO) volume measurement, (3) carboxyfluorescein succinimidyl ester (CFSE) dilution per cell as cells divide. To demonstrate the application, a graft-versus-host-disease (GVHD) model was used. 3D visualization show that T-cells specifically homed to the SLOs (spleen and lymph nodes) as well as GVHD target organs (such as GI-tract, liver, skin and thymus).The spleen was chosen as representative of the SLOs. For spleen size analysis, volumes of red and white pulp were measured. Spleen volumes of the allogeneic mice (with GVHD) were significantly larger than those of the syngeneic mice (without GVHD) at 72 to 120 hours post-transplant. For CFSE dilution approach, we employed color-coded volume rendering and probability density function (PDF) of single cell intensity to assess T-cell proliferation in the spleen. As compared to syngeneic T-cells, the allogeneic T-cells quickly aggregated in the spleen as indicated by increasing of CFSE signal over the first 48 hours. Then they rapidly proliferated as evidenced by reduced CFSE intensity (at 48-96 hours). Results suggest that assays can be used to study GVHD treatments using T-cell proliferation and biodistibution as assays. In summary, this is the first time that we are able to track and visualize T-cells in whole mouse with single cell sensitivity. We believe that our technique can be an alternative choice to traditional in vitro immunological proliferation assays by providing assessment of proliferation in an in vivo model.
Cell dispensing in low-volume range with the immediate drop-on-demand technology (I-DOT).
Schober, Lena; Büttner, Evy; Laske, Christopher; Traube, Andrea; Brode, Tobias; Traube, Andreas Florian; Bauernhansl, Thomas
2015-04-01
Handling and dosing of cells comprise the most critical step in the microfabrication of cell-based assay systems for screening and toxicity testing. Therefore, the immediate drop-on-demand technology (I-DOT) was developed to provide a flexible noncontact liquid handling system enabling dispensing of cells and liquid without the risk of cross-contamination down to a precise volume in the nanoliter range. Liquid is dispensed from a source plate within nozzles at the bottom by a short compressed air pulse that is given through a quick release valve into the well, thus exceeding the capillary pressure in the nozzle. Droplets of a defined volume can be spotted directly onto microplates or other cell culture devices. We present a study on the performance and biological impact of this technology by applying the cell line MCF-7, human fibroblasts, and human mesenchymal stem cells (hMSCs). For all cell types tested, viability after dispensing is comparable to the control and exhibits similar proliferation rates in the absence of apoptotic cells, and the differentiation potential of hMSCs is not impaired. The immediate drop-on-demand technology enables accurate cell dosage and offers promising potential for single-cell applications. © 2014 Society for Laboratory Automation and Screening.
Measuring P-V-T Phase Behavior with a Variable Volume View Cell
ERIC Educational Resources Information Center
Hoffmann, Markus M.; Salter, Jason D.
2004-01-01
An experiment using a variable volume cell is presented where students actively control and directly observe the phase equilibrium inside the view cell. Measuring and exploring P-V-T phase behavior through dielectric constant measurements conveys the important concept that solvent behavior can be changed continuously in the sc fluid state.
Small-volume cavity cell using hollow optical fiber for Raman scattering-based gas detection
NASA Astrophysics Data System (ADS)
Okita, Y.; Katagiri, T.; Matsuura, Y.
2011-03-01
The highly sensitive Raman cell based on the hollow optical fiber that is suitable for the real-time breath analysis is reported. Hollow optical fiber with inner coating of silver is used as a gas cell and a Stokes light collector. A very small cell whose volume is only 0.4 ml or less enables fast response and real-time measurement of trace gases. To increase the sensitivity the cell is arranged in a cavity which includes of a long-pass filter and a high reflective mirror. The sensitivity of the cavity cell is more than two times higher than that of the cell without cavity.
NASA Technical Reports Server (NTRS)
Moore, R.
1989-01-01
Primary roots of a starchless mutant of Arabidopsis thaliana L. are strongly graviresponsive despite lacking amyloplasts in their columella cells. The ultrastructures of calyptrogen and peripheral cells in wild-type as compared to mutant seedlings are not significantly different. The largest difference in cellular differentiation in caps of mutant and wild-type roots is the relative volume of plastids in columella cells. Plastids occupy 12.3% of the volume of columella cells in wild-type seedlings, but only 3.69% of columella cells in mutant seedlings. These results indicate that: (1) amyloplasts and starch are not necessary for root graviresponsiveness; (2) the increase in relative volume of plastids that usually accompanies differentiation of columella cells is not necessary for root graviresponsiveness; and (3) the absence of starch and amyloplasts does not affect the structure of calyptrogen (i.e. meristematic) and secretory (i.e. peripheral) cells in root caps. These results are discussed relative to proposed models for root gravitropism.
New Materials for Biological Fuel Cells
2012-04-01
polymer electrolyte membrane ( PEM ), to the membrane-less biological fuel cell (center figure) where the two electrodes are submerged in the same... PEM . MT15_4p166_173.indd 171 4/10/2012 3:46:31 PM REVIEW New materials for biological fuel cells APRIL 2012 | VOLUME 15 | NUMBER 4172 These...ISSN:1369 7021 © Elsevier Ltd 2012APRIL 2012 | VOLUME 15 | NUMBER 4166 New materials for biological fuel cells Over the last decade, there has
[Hemapheresis using vesicular plant separation materials].
Mavrina, L; Ehwald, R; Matthes, G; Stamminger, G
1990-01-01
The present paper deals with the separation of cells from soluble compounds of blood by means of exclusion chromatography using a recently described vesicular packing material made from the cell wall framework of the small duckweed Wolffia arrhiza. The cells of the periphere blood are hardly retarded in passing through a packing of the vesicular material and eluted as sharp peak at an elution volume which is near to 30% of the column volume. The behavior of cells is similar to that of the excluded high molecular weight plasma proteins (e.g. serumalbumin). Low molecular weight solutes (e.g. salts, glucose, urea, kreatinin), but also substances of considerable molecular weight (e.g. myoglobin and Vitamin B12) which are usually difficult to separate by dialysis from serum, are eluted at nearly 100% of the packing volume and may be separated completely from cells and high molecular weight proteins. In vitro-Tests did not show a reduced vitality of eluted blood cells.
1992-05-06
Robert Valeri, Linda E. Pivacek, Hiliary Siebens, and Mark D. Altschule ». PERFORMING ORGANIZATION NAME AND AOORESS Naval Blood Research Laboratory...Gibson JG, Peacock WC, Seligman AM, Sack T: Circulating red cell volume measured simultaneously by the radioactive iron and dye methods. J Clin
Stamatakis, K; Ladas, N P; Alygizaki-Zorba, A; Papageorgiou, G C
1999-10-15
Freshwater species of the cyanobacterial genus Synechococcus import NaCl passively, and export Na(+) actively, by means of primary and secondary extrusion mechanisms. As a result of the ion and water fluxes, cell volumes are enlarged. We show in this paper that the NaCl-induced volume enlargement of Synechococcus sp. PCC 7942 cells is attended by a rapid (k = 0.39 s(-1)) increase in chlorophyll (Chl) a fluorescence. The cell turgor threshold (measured by osmotic titration of Chl a fluorescence) was lower in the absence of NaCl (0.195 Osm kg(-1)) than in the presence of 0.4 M NaCl (0.248 Osm kg(-1)) indicating NaCl uptake by the cells. Turgor thresholds of cells suspended in NaCl-containing medium were enlarged further by protonophoric uncouplers, P-type ATPase inhibitors, and light starvation, conditions that are known to interfere with the active extrusion of Na(+) ions. Cell swelling exerts probably a regulation on the distribution of phycobilisome (PBS) excitation between photosystem II (fluorescent Chl a) and photosystem I (nonfluorescent Chl a), since it affects PBS-sensitized Chl a fluorescence, but not directly excited Chl a fluorescence. The dependence of the Chl a fluorescence of cyanobacteria on cell volumes allows probing of bioenergetic phenomena that are related to dynamic osmotic volume changes, transmembrane solute and water fluxes, plasma membrane permeabilities, and internal osmotic conditions of cyanobacterial cells. Thus, cyanobacteria may serve as quite convenient models of aquatic microorganisms in experimental studies directed toward the elucidation of perception mechanisms and defense mechanisms of water and solute stresses. Copyright 1999 Academic Press.
Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting Survival.
Qiu, Lihong; Su, Yingjun; Zhang, Dongliang; Song, Yajuan; Liu, Bei; Yu, Zhou; Guo, Shuzhong; Yi, Chenggang
2016-01-01
The Coleman centrifugation procedure generates fractions with different adipocyte and progenitor cell densities. This study aimed to identify all fractions that are feasible for implantation. Human lipoaspirates were processed by Coleman centrifugation. The centrifugates were divided arbitrarily into upper, middle, and lower layers. Adipocyte viability, morphology, numbers of stromal vascular fraction cells, and adipose-derived mesenchymal stem cells of each layer were determined. The 12-week volume retention of subcutaneously implanted 0.3-ml lipoasperate of each layer was investigated in an athymic mice model. Most damaged adipocytes were located in the upper layers, whereas the intact adipocytes were distributed in the middle and lower layers. A gradient of stromal vascular fraction cell density was formed in the centrifugates. The implant volume retentions of samples from the upper, middle, and lower layers were 33.44 ± 5.9, 55.11 ± 4.4, and 71.2 ± 5.8 percent, respectively. Furthermore, the middle and lower layers contained significantly more adipose-derived stem cells than did the upper layer. The lower layer contains more viable adipocytes and stromal vascular fraction cells leading to the highest implant volume retention, whereas the most impaired cells are distributed in the upper layer, leading to the least volume retention. Although with a lower stromal vascular fraction content, the middle layer has a substantial number of intact adipocytes that are capable of retaining partial adipose tissue volume after implantation, suggesting that the middle layer may be an alternative fat source when large volumes of fat grafts are needed for transplantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fine, L.G.; Holley, R.W.; Nasri, H.
Renal hypertrophy is characterized by an increase in cell size and protein content with minimal hyperplasia. The mechanisms of control of this pattern of cell growth have not been determined. The present studies examined whether the growth inhibitor elaborated by BSC-1 kidney epilethal cells (GI), which has nearly identical biological properties to transforming growth factor ..beta.. (TGF-..beta..), could transform a mitogenic stimulus into a hypertrophic stimulus for rabbit renal proximal tubular cells in primary culture. Insulin plus hydrocortisone increased the amount of protein per cell, cell volume, and (/sup 3/H)thymidine incorporation at 24 and 48 hr in these cells. Whenmore » added together with insulin plus hydrocortisone, GI/TGF-..beta.. inhibited the stimulatory effect of these mitogens on (/sup 3/H)thymidine incorporation but did not block the increase in protein per cell and cell volume - i.e., the cells underwent hypertrophy. The fact that this pattern persisted for 48 hr indicated that GI/TGF-..beta.. exerted a prolonged inhibitory effect on mitogenic-stimulated DNA synthesis rather than delaying its onset. Amiloride-sensitive Na/sup +/ uptake using /sup 22/Na/sup +/ as a tracer, correlated with protein per cell and cell volume rather than with DNA synthesis. These studies indicate that the control of cell size may be regulated by autocrine mechanisms mediated by the elaboration of growth inhibitory factors that alter the pattern of the growth response to mitogens.« less
Interrogating the Escherichia coli cell cycle by cell dimension perturbations
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E.; Amir, Ariel; Liu, Chenli
2016-01-01
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter’s growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ. We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed “adder-per-origin” model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation. PMID:27956612
Interrogating the Escherichia coli cell cycle by cell dimension perturbations.
Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E; Amir, Ariel; Liu, Chenli
2016-12-27
Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.
Feasibility of Autologous Cord Blood Cells for Infants with Hypoxic-Ischemic Encephalopathy
Cotten, C. Michael; Murtha, Amy P.; Goldberg, Ronald N.; Grotegut, Chad A.; Smith, P. Brian; Goldstein, Ricki F.; Fisher, Kimberley A.; Gustafson, Kathryn E.; Waters-Pick, Barbara; Swamy, Geeta K.; Rattray, Benjamin; Tan, Siddhartha; Kurtzberg, Joanne
2014-01-01
Objective To assess feasibility and safety of providing autologous umbilical cord blood (UCB) cells to neonates with hypoxic-ischemic encephalopathy (HIE). Study design We enrolled infants in the Intensive Care Nursery who were cooled for HIE and had available UCB in an open-label study of non-cyropreserved autologous volume- and red blood cell-reduced UCB cells (up to four doses adjusted for volume and RBC content,1 – 5 × 107cells/dose). We recorded UCB collection and cell infusion characteristics, and pre- and post- infusion vital signs. As exploratory analyses we compared cell recipients’ hospital outcomes (mortality, oral feeds at discharge) and one year survival with Bayley III scores ≥ 85 in 3 domains (cognitive, language, and motor development) with cooled infants who did not have available cells. Results Twenty-three infants were cooled and received cells. Median collection and infusion volumes were 36 and 4.3 milliliters. Vital signs including oxygen saturation were similar before and after infusions in the first 48 postnatal hours. Cell recipients and concurrent cooled infants had similar hospital outcomes. Thirteen of 18 (74%) cell recipients and 19 of 46 (41%) concurrent cooled infants with known 1 year outcomes survived with scores ≥ 85. Conclusions Collection, preparation and infusion of fresh autologous UCB cells for use in infants with HIE is feasible. A randomized double-blind study is needed. PMID:24388332
Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling
Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.
2011-01-01
The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319
The evolution of bacterial cell size: the internal diffusion-constraint hypothesis.
Gallet, Romain; Violle, Cyrille; Fromin, Nathalie; Jabbour-Zahab, Roula; Enquist, Brian J; Lenormand, Thomas
2017-07-01
Size is one of the most important biological traits influencing organismal ecology and evolution. However, we know little about the drivers of body size evolution in unicellulars. A long-term evolution experiment (Lenski's LTEE) in which Escherichia coli adapts to a simple glucose medium has shown that not only the growth rate and the fitness of the bacterium increase over time but also its cell size. This increase in size contradicts prominent 'external diffusion' theory (EDC) predicting that cell size should have evolved toward smaller cells. Among several scenarios, we propose and test an alternative 'internal diffusion-constraint' (IDC) hypothesis for cell size evolution. A change in cell volume affects metabolite concentrations in the cytoplasm. The IDC states that a higher metabolism can be achieved by a reduction in the molecular traffic time inside of the cell, by increasing its volume. To test this hypothesis, we studied a population from the LTEE. We show that bigger cells with greater growth and CO 2 production rates and lower mass-to-volume ratio were selected over time in the LTEE. These results are consistent with the IDC hypothesis. This novel hypothesis offers a promising approach for understanding the evolutionary constraints on cell size.
Nunes, Paula; Roth, Isabelle; Meda, Paolo; Féraille, Eric; Brown, Dennis; Hasler, Udo
2015-01-01
Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking. PMID:26045497
NASA Astrophysics Data System (ADS)
Thouvenin, Olivier; Fink, Mathias; Boccara, A. Claude
2017-02-01
Understanding volume regulation during mitosis is technically challenging. Indeed, a very sensitive non invasive imaging over time scales ranging from seconds to hours and over large fields is required. Therefore, Quantitative Phase Imaging (QPI) would be a perfect tool for such a project. However, because of asymmetric protein segregation during mitosis, an efficient separation of the refractive index and the height in the phase signal is required. Even though many strategies to make such a separation have been developed, they usually are difficult to implement, have poor sensitivity, or cannot be performed in living cells, or in a single shot. In this paper, we will discuss the use of a new technique called fluorescence exclusion to perform volume measurements. By coupling such technique with a simultaneous phase measurement, we were also able to recover the refractive index inside the cells. Fluorescence exclusion is a versatile and powerful technique that allows the volume measurement of many types of cells. A fluorescent dye, which cannot penetrate inside the cells, is mixed with the external medium in a confined environment. Therefore, the fluorescent signal depends on the inverse of the object's height. We could demonstrate both experimentally and theoretically that fluorescence exclusion can accurately measure cell volumes, even for cells much higher than the depth of focus of the objective. A local accurate height and RI measurement can also be obtained for smaller cells. We will also discuss the way to optimize the confinement of the observation chamber, either mechanically or optically.
In vivo acoustic and photoacoustic focusing of circulating cells
NASA Astrophysics Data System (ADS)
Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.
2016-03-01
In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models.
In vivo acoustic and photoacoustic focusing of circulating cells
Galanzha, Ekaterina I.; Viegas, Mark G.; Malinsky, Taras I.; Melerzanov, Alexander V.; Juratli, Mazen A.; Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Zharov, Vladimir P.
2016-01-01
In vivo flow cytometry using vessels as natural tubes with native cell flows has revolutionized the study of rare circulating tumor cells in a complex blood background. However, the presence of many blood cells in the detection volume makes it difficult to count each cell in this volume. We introduce method for manipulation of circulating cells in vivo with the use of gradient acoustic forces induced by ultrasound and photoacoustic waves. In a murine model, we demonstrated cell trapping, redirecting and focusing in blood and lymph flow into a tight stream, noninvasive wall-free transportation of blood, and the potential for photoacoustic detection of sickle cells without labeling and of leukocytes targeted by functionalized nanoparticles. Integration of cell focusing with intravital imaging methods may provide a versatile biological tool for single-cell analysis in circulation, with a focus on in vivo needleless blood tests, and preclinical studies of human diseases in animal models. PMID:26979811
Effect of azathioprine on Na(+)/H(+) exchanger activity in dendritic cells.
Bhandaru, Madhuri; Pasham, Venkanna; Yang, Wenting; Bobbala, Diwakar; Rotte, Anand; Lang, Florian
2012-01-01
Azathioprine is a powerful immunosuppressive drug, which is partially effective by interfering with the maturation and function of dendritic cells (DCs), antigen-presenting cells linking innate and adaptive immunity. DCs are stimulated by bacterial lipopolysaccharides (LPS), which trigger the formation of reactive oxygen species (ROS), paralleled by activation of the Na(+)/H(+) exchanger. The carrier is involved in the regulation of cytosolic pH, cell volume and migration. The present study explored whether azathioprine influences Na(+)/H(+) exchanger activity in DCs. DCs were isolated from murine bone marrow, cytosolic pH (pH(i)) was estimated utilizing 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF-AM) fluorescence, Na(+)/H(+) exchanger activity from the Na(+)-dependent realkalinization following an ammonium pulse, cell volume from forward scatter in FACS analysis, ROS production from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, TNFα release utilizing ELISA, and migration utilizing transwell migration assays. Exposure of DCs to lipopolysaccharide (LPS, 1 μg/ml) led to a transient increase of Na(+)/H(+) exchanger activity, an effect paralleled by ROS formation, increased cell volume, TNFα production and stimulated migration. Azathioprine (10 μM) did not significantly alter the Na(+)/H(+) exchanger activity, cell volume and ROS formation prior to LPS exposure but significantly blunted the LPS-induced stimulation of Na(+)/H(+) exchanger activity, ROS formation, cell swelling, TNFα production and cell migration. In conclusion, azathioprine interferes with the activation of dendritic cell Na(+)/H(+) exchanger by bacterial lipopolysaccharides, an effect likely participating in the anti-inflammatory action of the drug. Copyright © 2012 S. Karger AG, Basel.
Addressable droplet microarrays for single cell protein analysis.
Salehi-Reyhani, Ali; Burgin, Edward; Ces, Oscar; Willison, Keith R; Klug, David R
2014-11-07
Addressable droplet microarrays are potentially attractive as a way to achieve miniaturised, reduced volume, high sensitivity analyses without the need to fabricate microfluidic devices or small volume chambers. We report a practical method for producing oil-encapsulated addressable droplet microarrays which can be used for such analyses. To demonstrate their utility, we undertake a series of single cell analyses, to determine the variation in copy number of p53 proteins in cells of a human cancer cell line.
Determination of Urea Permeability in Red Cells by Minimum Method
Sha'afi, R. I.; Rich, G. T.; Mikulecky, D. C.; Solomon, A. K.
1970-01-01
A new method has been developed for measuring the permeability coefficient, ω, of small nonelectrolytes. The method depends upon a mathematical analysis of the time course of cell volume changes in the neighborhood of the minimum volume following addition of a permeating solute to an isosmolal buffer. Coefficients determined by the minimum volume method agree with those obtained using radioactive tracers. ω for urea in human red cells was found to decrease as the volume flow, Jv, into the cell increased. Such behavior is entirely unexpected for a single uniform rate-limiting barrier on the basis of the linear phenomenological equations derived from irreversible thermodynamics. However, the present findings are consonant with a complex membrane system consisting of a tight barrier on the outer face of the human red cell membrane and a somewhat less restrictive barrier behind it closer to the inner membrane face. A theoretical analysis of such a series model has been made which makes predictions consistent with the experimental findings. PMID:5435779
Even-Or, Ehud; Di Mola, Maria; Ali, Muhammad; Courtney, Sarah; McDougall, Elizabeth; Alexander, Sarah; Schechter, Tal; Whitlock, James A; Licht, Christoph; Krueger, Joerg
2017-06-01
The manufacturing of cellular products for immunotherapy, such as chimeric antigen receptor T cells, requires successful collection of mononuclear cells. Collections from children with high-risk leukemia present a challenge, especially because the established COBE Spectra apheresis device is being replaced by the novel Spectra Optia device (Optia) in many institutions. Published experience for mononuclear cell collections in children with Optia is lacking. Our aim was to compare the two collection devices and describe modified settings on the Optia to optimize mononuclear cell collections. As a quality initiative, we retrospectively collected and compared data from mononuclear cell collections on both devices. Collected data included patient's clinical characteristics; collection parameters, including precollection lymphocyte/CD3 counts, total blood volumes processed, runtimes, and side effects (including complete blood count and electrolyte changes); and product characteristics, including volumes and cell counts. Collection efficiencies and collection ratios were calculated. Twenty-six mononuclear cell collections were performed on 20 pediatric patients: 11 with COBE and 15 with Optia. Adequate mononuclear cell products were successfully collected with a single procedure from all patients except one, with mean calculated mononuclear cell collection efficiency that was significantly higher from Optia collections compared with COBE collections (57.9 ± 4.6% vs 40.3 ± 6.2%, respectively; p = 0.04). CD3-positive yields were comparable on both machines (p = 0.34) with significantly smaller blood volumes processed on Optia. Collected products had larger volumes on Optia. No significant side effects attributed to the procedure were noted. Mononuclear cell apheresis using the Optia device in children is more efficient and is as safe as that with the COBE device. © 2017 AABB.
Rectification of the water permeability in COS-7 cells at 22, 10 and 0°C.
Peckys, Diana B; Kleinhans, F W; Mazur, Peter
2011-01-01
The osmotic and permeability parameters of a cell membrane are essential physico-chemical properties of a cell and particularly important with respect to cell volume changes and the regulation thereof. Here, we report the hydraulic conductivity, L(p), the non-osmotic volume, V(b), and the Arrhenius activation energy, E(a), of mammalian COS-7 cells. The ratio of V(b) to the isotonic cell volume, V(c iso), was 0.29. E(a), the activation energy required for the permeation of water through the cell membrane, was 10,700, and 12,000 cal/mol under hyper- and hypotonic conditions, respectively. Average values for L(p) were calculated from swell/shrink curves by using an integrated equation for L(p). The curves represented the volume changes of 358 individually measured cells, placed into solutions of nonpermeating solutes of 157 or 602 mOsm/kg (at 0, 10 or 22°C) and imaged over time. L(p) estimates for all six combinations of osmolality and temperature were calculated, resulting in values of 0.11, 0.21, and 0.10 µm/min/atm for exosmotic flow and 0.79, 1.73 and 1.87 µm/min/atm for endosmotic flow (at 0, 10 and 22°C, respectively). The unexpected finding of several fold higher L(p) values for endosmotic flow indicates highly asymmetric membrane permeability for water in COS-7. This phenomenon is known as rectification and has mainly been reported for plant cell, but only rarely for animal cells. Although the mechanism underlying the strong rectification found in COS-7 cells is yet unknown, it is a phenomenon of biological interest and has important practical consequences, for instance, in the development of optimal cryopreservation.
Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy.
Mravec, Filip; Obruca, Stanislav; Krzyzanek, Vladislav; Sedlacek, Petr; Hrubanova, Kamila; Samek, Ota; Kucera, Dan; Benesova, Pavla; Nebesarova, Jana
2016-05-01
Many bacteria are capable of accumulating intracellular granules of polyhydroxyalkanoates (PHA). In this work, we developed confocal microscopy analysis of bacterial cells to study changes in the diameters of cells as well as PHA granules during growth and PHA accumulation in the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha). The cell envelope was stained by DiD(®) fluorescent probe and PHA granules by Nile Red. Signals from both probes were separated based on their spectral and fluorescence life-time properties. During growth and PHA accumulation, bacterial cells increased their length but the width of the cells remained constant. The volume fraction of PHA granules in cells increased during PHA accumulation, nevertheless, its value did not exceed 40 vol. % regardless of the PHA weight content. It seems that bacterial cultures lengthen the cells in order to control the PHA volume portion. However, since similar changes in cell length were also observed in a PHA non-accumulating mutant, it seems that there is no direct control mechanism, which regulates the prolongation of the cells with respect to PHA granules volume. It is more likely that PHA biosynthesis and the length of cells are influenced by the same external stimuli such as nutrient limitation. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Silver nanoparticle-induced degranulation observed with quantitative phase microscopy
NASA Astrophysics Data System (ADS)
Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung
2010-07-01
Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 μg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca2+]i) and histamine with fluorescent methods.
Optimization-based mesh correction with volume and convexity constraints
D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; ...
2016-02-24
In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimizationmore » problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less
Madkaikar, M; Gupta, M; Ghosh, K; Swaminathan, S; Sonawane, L; Mohanty, D
2007-01-01
Human cord blood is now an established source of stem cells for haematopoietic reconstitution. Red blood cell (RBC) depletion is required to reduce the cord blood unit volume for commercial banking. Red cell sedimentation using hydroxy ethyl starch (HES) is a standard procedure in most cord blood banks. However, while standardising the procedure for cord blood banking, a significant loss of nucleated cells (NC) may be encountered during standard HES sedimentation protocols. This study compares four procedures for cord blood processing to obtain optimal yield of nucleated cells. Gelatin, dextran, 6% HES and 6% HES with an equal volume of phosphate-buffered saline (PBS) were compared for RBC depletion and NC recovery. Dilution of the cord blood unit with an equal volume of PBS prior to sedimentation with HES resulted in maximum NC recovery (99% [99.5 +/- 1.3%]). Although standard procedures using 6% HES are well established in Western countries, they may not be applicable in India, as a variety of factors that can affect RBC sedimentation (e.g., iron deficiency, hypoalbuminaemia, thalassaemia trait, etc.) may reduce RBC sedimentation and thus reduce NC recovery. While diluting cord blood with an equal volume of PBS is a simple method to improve the NC recovery, it does involve an additional processing step.
Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C
2016-08-01
As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. © 2016 Society for Laboratory Automation and Screening.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils.
Boehler, R; Molaison, J J; Haberl, B
2017-08-01
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.
High pressure and high temperature apparatus
Voronov, Oleg A.
2005-09-13
A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.
Free stream capturing in fluid conservation law for moving coordinates in three dimensions
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.
Microfluidic cell isolation technology for drug testing of single tumor cells and their clusters.
Bithi, Swastika S; Vanapalli, Siva A
2017-02-02
Drug assays with patient-derived cells such as circulating tumor cells requires manipulating small sample volumes without loss of rare disease-causing cells. Here, we report an effective technology for isolating and analyzing individual tumor cells and their clusters from minute sample volumes using an optimized microfluidic device integrated with pipettes. The method involves using hand pipetting to create an array of cell-laden nanoliter-sized droplets immobilized in a microfluidic device without loss of tumor cells during the pipetting process. Using this technology, we demonstrate single-cell analysis of tumor cell response to the chemotherapy drug doxorubicin. We find that even though individual tumor cells display diverse uptake profiles of the drug, the onset of apoptosis is determined by accumulation of a critical intracellular concentration of doxorubicin. Experiments with clusters of tumor cells compartmentalized in microfluidic drops reveal that cells within a cluster have higher viability than their single-cell counterparts when exposed to doxorubicin. This result suggests that circulating tumor cell clusters might be able to better survive chemotherapy drug treatment. Our technology is a promising tool for understanding tumor cell-drug interactions in patient-derived samples including rare cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, T.; Sato, F.; Saga, K.
Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less
Rubinow, Marisa J; Mahajan, Gouri; May, Warren; Overholser, James C; Jurjus, George J; Dieter, Lesa; Herbst, Nicole; Steffens, David C; Miguel-Hidalgo, Jose J; Rajkowska, Grazyna; Stockmeier, Craig A
2016-01-01
Functional imaging studies consistently report abnormal amygdala activity in major depressive disorder (MDD). Neuroanatomical correlates are less clear: imaging studies have produced mixed results on amygdala volume, and postmortem neuroanatomic studies have only examined cell densities in portions of the amygdala or its subregions in MDD. Here, we present a stereological analysis of the volume of, and the total number of, neurons, glia, and neurovascular (pericyte and endothelial) cells in the basolateral amygdala in MDD. Postmortem tissues from 13 subjects with MDD and 10 controls were examined. Sections (~15/subject) taken throughout the rostral-caudal extent of the basolateral amygdala (BLA) were stained for Nissl substance and utilized for stereological estimation of volume and cell numbers. Results indicate that depressed subjects had a larger lateral nucleus than controls and a greater number of total BLA neurovascular cells than controls. There were no differences in the number or density of neurons or glia between depressed and control subjects. These findings present a more detailed picture of BLA cellular anatomy in depression than has previously been available. Further studies are needed to determine whether the greater number of neurovascular cells in depressed subjects may be related to increased amygdala activity in depression.
An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells
Diot, Steven; François, Marianne M.
2015-10-22
In this study, we are interested in an interface reconstruction method for 3D arbitrary convex cells that could be used in multi-material flow simulations for instance. We assume that the interface is represented by a plane whose normal vector is known and we focus on the volume-matching step that consists in finding the plane constant so that it splits the cell according to a given volume fraction. We follow the same approach as in the recent authors' publication for 2D arbitrary convex cells in planar and axisymmetrical geometries, namely we derive an analytical formula for the volume of the specificmore » prismatoids obtained when decomposing the cell using the planes that are parallel to the interface and passing through all the cell nodes. This formula is used to bracket the interface plane constant such that the volume-matching problem is rewritten in a single prismatoid in which the same formula is used to find the final solution. Finally, the proposed method is tested against an important number of reproducible configurations and shown to be at least five times faster.« less
How effectively does a clinostat mimic the ultrastructural effects of microgravity on plant cells?
NASA Technical Reports Server (NTRS)
Moore, R.
1990-01-01
Columella cells of seedlings of Zea mays L. cv. Bear Hybrid grown in the microgravity of orbital flight allocate significantly larger relative-volumes to hyaloplasm and lipid bodies, and significantly smaller relative-volumes to dictyosomes, plastids, and starch than do columella cells of seedlings grown at 1 g. The ultrastructure of columella cells of seedlings grown at 1 g and on a rotating clinostat is not significantly different. However, the ultrastructure of cells exposed to these treatments differs significantly from that of seedlings grown in microgravity. These results indicate that the actions of a rotating clinostat do not mimic the ultrastructural effects of microgravity in columella cells of Z. mays.
Perturbation of nucleo-cytoplasmic transport affects size of nucleus and nucleolus in human cells.
Ganguly, Abira; Bhattacharjee, Chumki; Bhave, Madhura; Kailaje, Vaishali; Jain, Bhawik K; Sengupta, Isha; Rangarajan, Annapoorni; Bhattacharyya, Dibyendu
2016-03-01
Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation. © 2016 Federation of European Biochemical Societies.
Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong
2015-11-17
We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.
Kerr, Warwick Estevam; Akahira, Yukio; Camargo, Conceição A.
1975-01-01
Cell number and volume of corpora allata was determined for 8 phases of development, the first prepupal stage to adults 30 days old, in the social Apidae Melipona quadrifasciata. In the second prepupal stage a strong correlation was found between cell number and body weight ( r=0.651**), and cell number and corpora allata volume in prepupal stage (r=0.535*), which indicates that juvenile hormone has a definite role in caste determination in Melipona. The distribution of the volume of corpus allatum suggest a 3:1 segregation between bees with high volume of corpora allata against low and medium volume. This implies that genes xa and xb code for an enzyme that directly participates in juvenile hormone production. It was also concluded that the number of cells in the second prepupal stage is more important than the weight of the prepupa for caste determination. A scheme summarizing the genic control of sex and caste determination in Melipona bees in the prepupal phase is given. PMID:1213273
Effect of cell-size on the energy absorption features of closed-cell aluminium foams
NASA Astrophysics Data System (ADS)
Nammi, S. K.; Edwards, G.; Shirvani, H.
2016-11-01
The effect of cell-size on the compressive response and energy absorption features of closed-cell aluminium (Al) foam were investigated by finite element method. Micromechanical models were constructed with a repeating unit-cell (RUC) which was sectioned from tetrakaidecahedra structure. Using this RUC, three Al foam models with different cell-sizes (large, medium and small) and all of same density, were built. These three different cell-size pieces of foam occupy the same volume and their domains contained 8, 27 and 64 RUCs respectively. However, the smaller cell-size foam has larger surface area to volume ratio compared to other two. Mechanical behaviour was modelled under uniaxial loading. All three aggregates (3D arrays of RUCs) of different cell-sizes showed an elastic region at the initial stage, then followed by a plateau, and finally, a densification region. The smaller cell size foam exhibited a higher peak-stress and a greater densification strain comparing other two cell-sizes investigated. It was demonstrated that energy absorption capabilities of smaller cell-size foams was higher compared to the larger cell-sizes examined.
AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.
Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J
2015-04-01
A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.
Raijmakers, R; de Witte, T; Koekman, E; Wessels, J; Haanen, C
1986-01-01
Isopycnic density floatation centrifugation has been proven to be a suitable technique to enrich bone marrow aspirates for clonogenic cells on a small scale. We have tested a Haemonetics semicontinuous blood cell separator in order to process large volumes of bone marrow with minimal bone marrow manipulation. The efficacy of isopycnic density floatation was tested in a one and a two-step procedure. Both procedures showed a recovery of about 20% of the nucleated cells and 1-2% of the erythrocytes. The enrichment of clonogenic cells in the one-step procedure appeared superior to the two-step enrichment, first separating buffy coat cells. The recovery of clonogenic cells was 70 and 50%, respectively. Repopulation capacity of the low-density cell fraction containing the clonogenic cells was excellent after autologous reinfusion (6 cases) and allogeneic bone marrow transplantation (3 cases). Fast enrichment of large volumes of bone marrow aspirates with low-density cells containing the clonogenic cells by isopycnic density floatation centrifugation can be done safely using a Haemonetics blood cell separator.
Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.
2018-02-16
In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.
Commandeering Channel Voltage Sensors for Secretion, Cell Turgor, and Volume Control.
Karnik, Rucha; Waghmare, Sakharam; Zhang, Ben; Larson, Emily; Lefoulon, Cécile; Gonzalez, Wendy; Blatt, Michael R
2017-01-01
Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H + -ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adragna, Norma C; Ravilla, Nagendra B; Lauf, Peter K; Begum, Gulnaz; Khanna, Arjun R; Sun, Dandan; Kahle, Kristopher T
2015-01-01
The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K(+) content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.
Adragna, Norma C.; Ravilla, Nagendra B.; Lauf, Peter K.; Begum, Gulnaz; Khanna, Arjun R.; Sun, Dandan; Kahle, Kristopher T.
2015-01-01
The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K+ and Cl− efflux via activation of K+ channels, volume-regulated anion channels (VRACs), and the K+-Cl− cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl− cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K+ content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD. PMID:26217182
Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells.
Meléndez, Giselle C; Li, Jianping; Law, Brittany A; Janicki, Joseph S; Supowit, Scott C; Levick, Scott P
2011-12-01
Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Volume overload was induced by aortocaval fistula in TAC1(-/-) mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1(-/-) mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1(-/-) mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1(-/-) group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix.
Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells
Meléndez, Giselle C.; Li, Jianping; Law, Brittany A.; Janicki, Joseph S.; Supowit, Scott C.; Levick, Scott P.
2011-01-01
Aims Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Methods and results Volume overload was induced by aortocaval fistula in TAC1−/− mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1−/− mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1−/− mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1−/− group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Conclusions Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix. PMID:21908647
1985-01-01
Duck red cells exhibit specific volume-sensitive ion transport processes that are inhibited by furosemide, but not by ouabain. Swelling cells in a hypotonic synthetic medium activates a chloride- dependent, but sodium-independent, potassium transport. Shrinking cells in a hypertonic synthetic medium stimulates an electrically neutral co- transport of [Na + K + 2 Cl] with an associated 1:1 K/K (or K/Rb) exchange. These shrinkage-induced modes can also be activated in both hypo- and hypertonic solutions by beta-adrenergic catecholamines (e.g., norepinephrine). Freshly drawn cells spontaneously shrink approximately 4-5% when removed from the influence of endogenous plasma catecholamines, either by incubation in a catecholamine-free, plasma- like synthetic medium, or in plasma to which a beta-receptor blocking dose of propranolol has been added. This spontaneous shrinkage resembles the response of hypotonically swollen cells in that it is due to a net loss of KCl with no change in cell sodium. Norepinephrine abolishes the net potassium transport seen in both fresh and hypotonically swollen cells. Moreover, cells swollen in diluted plasma, at physiological pH and extracellular potassium, show no net loss of KCl and water ("volume-regulatory decrease") unless propranolol is added. Examination of the individual cation fluxes in the presence of catecholamines demonstrates that activation of [Na + K + 2Cl] co- transport with its associated K/Rb exchange prevents, or overrides, swelling-induced [K + Cl] co-transport. These results, therefore, cast doubt on whether the swelling-induced [K + Cl] system can serve a volume-regulatory function under in vivo conditions. PMID:3998706
Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.
Chang, Hana; Knothe Tate, Melissa L
2011-12-01
In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness and remodeling. We hypothesize that the spatiotemporal organization of tubulin and actin elements of the cytoskeleton changes in response to volume and shape changing stresses emulating those during development, prior to the first beating of the heart or twitching of muscle. Our approach was to quantify the change over baseline in spatiotemporal distribution of actin and tubulin in live C3H/10T1/2 model stem cells subjected to volume changing stresses induced by seeding at density as well as low magnitude, short duration, shape changing (shear) stresses induced by fluid flow (0.5 or 1.0 dyne/cm2 for 30/60/90 minutes). Upon exposure to fluid flow, both tubulin thickness (height) and concentration (fluorescence intensity) change significantly over baseline, as a function of proximity to neighboring cells (density) and the substrate (apical-basal height). Given our recently published studies showing amplification of stress gradients (flow velocity) with increasing distance to nearest neighbors and the substrate, i.e. with decreasing density and toward the apical side of the cell, tubulin adaptation appears to depend significantly on the magnitude of the stress to which the cell is exposed locally. In contrast, adaptation of actin to the changing mechanical milieu is more global, exhibiting less significant differences attributable to nearest neighbors or boundaries than differences attributable to magnitude of the stress to which the cell is exposed globally (0.5 versus 1.0 dyne/cm2). Furthermore, changes in the actin cytoskeletal distribution correlate positively with one pre-mesenchymal condensation marker (Msx2) and negatively with early markers of chondrogenesis (ColIIaI alone, indicative of pre-hypertrophic chondrogenesis) and osteogenesis (Runx2). Changes in the tubulin cytoskeletal distribution correlate positively with a marker of pericondensation (Sox9 alone), negatively with chondrogenesis (ColIIaI) and positively with adipogenesis (Ppar-gamma 2). Taken as a whole, exposure of MSCs to volume and shape changing stresses results in emergent anisotropy of cytoskeletal architecture (structure), which relate to emergent cell fate (function).
Choudhury, Mahua G.; Saha, Nirmalendu
2016-01-01
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment. PMID:26950213
Choudhury, Mahua G; Saha, Nirmalendu
2016-01-01
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.
NASA Technical Reports Server (NTRS)
Roberts, W. E.
1984-01-01
The effects of 18.5 days of weightlessness aboard a satellite, stress of restricted feeding, stress of noise and vibration to simulate space flight and 21 days of head down suspension via the Morey-Holton model for simulated weightlessness was studied. Nuclear size of fibroblastlike cells in PDL on the anterior surface of maxillary first molars was classified as: (1) A-cells, self perpetuating precursors with a nuclear volume 80 micron B-cells, nonosteogenic fibroblasts with a nuclear volume of 80-119 micron 3, C-cells, preosteoblasts that are in G1 stage of the cell cycle with a nuclear size of 120-170 micro, and D-cells, preosteoblasts that are in G2 stage of the cell cycle with a nuclear size 170 micro.
Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina
2014-01-01
Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and CNS damage after middle cerebral artery occlusion (MCAO) that could be prevented by transfer of IL-10+ B-cells. The purpose of this study was to determine if the beneficial immunoregulatory effects on MCAO of the IL-10+ B-cell subpopulation also extends to B-cell-sufficient mice that would better represent stroke subjects. CNS inflammation and infarct volumes were evaluated in male C57BL/6J (WT) mice that received either RPMI or IL-10+ B-cells and underwent 60 min of middle cerebral artery occlusion (MCAO) followed by 96 hours of reperfusion. Transfer of IL-10+ B-cells markedly reduced infarct volume in WT recipient mice when given 24 hours prior to or 4 hours after MCAO. B-cell protected MCAO mice had increased regulatory subpopulations in the periphery, reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres of the IL-10+ B-cell-treated group. Moreover, transfer of IL-10+ B-cells 24 hours before MCAO led to a significant preservation of regulatory immune subsets in the IL-10+ B-cell protected group presumably indicating their role in immunomodulatory mechanisms, post-stroke. Our studies are the first to demonstrate a major immunoregulatory role for IL-10+ regulatory B-cells in preventing and treating MCAO in WT mice and also implicating their potential role in attenuating complications due to post-stroke immunosuppression. PMID:24374817
Glatiramer Acetate administration does not reduce damage after cerebral ischemia in mice.
Poittevin, Marine; Deroide, Nicolas; Azibani, Feriel; Delcayre, Claude; Giannesini, Claire; Levy, Bernard I; Pocard, Marc; Kubis, Nathalie
2013-01-15
Inflammation plays a key role in ischemic stroke pathophysiology: microglial/macrophage cells and type-1 helper cells (Th1) seem deleterious, while type-2 helper cells (Th2) and regulatory T cells (Treg) seem protective. CD4 Th0 differentiation is modulated by microglial cytokine secretion. Glatiramer Acetate (GA) is an immunomodulatory drug that has been approved for the treatment of human multiple sclerosis by means of a number of mechanisms: reduced microglial activation and pro-inflammatory cytokine production, Th0 differentiation shifting from Th2 to Th2 and Treg with anti-inflammatory cytokine production and increased neurogenesis. We induced permanent (pMCAo) or transient middle cerebral artery occlusion (tMCAo) and GA (2 mg) or vehicle was injected subcutaneously immediately after cerebral ischemia. Mice were sacrificed at D3 to measure neurological deficit, infarct volume, microglial cell density and qPCR of TNFα and IL-1β (pro-inflammatory microglial cytokines), IFNγ (Th2 cytokine), IL-4 (Th2 cytokine), TGFβ and IL-10 (Treg cytokines), and at D7 to evaluate neurological deficit, infarct volume and neurogenesis assessment. We showed that in GA-treated pMCAo mice, infarct volume, microglial cell density and cytokine secretion were not significantly modified at D3, while neurogenesis was enhanced at D7 without significant infarct volume reduction. In GA-treated tMCAo mice, microglial pro-inflammatory cytokines IL-1β and TNFα were significantly decreased without modification of microglial/macrophage cell density, cytokine secretion, neurological deficit or infarct volume at D3, or modification of neurological deficit, neurogenesis or infarct volume at D7. In conclusion, Glatiramer Acetate administered after cerebral ischemia does not reduce infarct volume or improve neurological deficit in mice despite a significant increase in neurogenesis in pMCAo and a microglial pro-inflammatory cytokine reduction in tMCAo. Copyright © 2012 Elsevier B.V. All rights reserved.
Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell
NASA Astrophysics Data System (ADS)
Hazen, R. M.
2002-05-01
Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive large-volume presses side-by-side with a wide variety of diamond-anvil cells.
Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells.
Milenkovic, Andrea; Brandl, Caroline; Milenkovic, Vladimir M; Jendryke, Thomas; Sirianant, Lalida; Wanitchakool, Potchanart; Zimmermann, Stephanie; Reiff, Charlotte M; Horling, Franziska; Schrewe, Heinrich; Schreiber, Rainer; Kunzelmann, Karl; Wetzel, Christian H; Weber, Bernhard H F
2015-05-19
In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1(-/-)) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1(-/-) mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex--that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, Y; Dahlman, E; Leder, K
Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethallymore » damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.« less
Characteristics and quality of intra-operative cell salvage in paediatric scoliosis surgery.
Perez-Ferrer, A; Gredilla-Díaz, E; de Vicente-Sánchez, J; Navarro-Suay, R; Gilsanz-Rodríguez, F
2016-02-01
To determine the haematological and microbiological characteristics of blood recovered by using a cell saver with a rigid centrifuge bowl (100ml) in paediatric scoliosis surgery and to determine whether it conforms to the standard expected in adult patients. A cross-sectional, descriptive cohort study was performed on 24 consecutive red blood cell (RBC) units recovered from the surgical field and processed by a Haemolite® 2+ (Haemonetics Corp., Braintree, MA, EE. UU.) cell saver. Data were collected regarding age, weight, surgical approach (anterior or posterior), processed shed volume and volume of autologous RBC recovered, full blood count, and blood culture obtained from the RBC concentrate, and incidence of fever after reinfusion. The processed shed volume was very low (939±569ml) with high variability (coefficient of variation=0.6), unlike the recovered volume 129±50ml (coefficient of variation=0.38). A statistically significant correlation between the processed shed volume and recovered RBC concentrate haematocrit was found (Pearson, r=.659, P=.001). Haematological parameters in the recovered concentrate were: Hb 11±5.3g dl(-1); haematocrit: 32.1±15.4% (lower than expected); white cells 5.34±4.22×103 ul(-)1; platelets 37.88±23.5×103 ul(-1) (mean±SD). Blood culture was positive in the RBC concentrate recovered in 13 cases (54.2%) in which Staphylococcus coagulase (-) was isolated. Cell salvage machines with rigid centrifuge bowls (including paediatric small volume) do not obtain the expected haematocrit if low volumes are processed, and therefore they are not the best choice in paediatric surgery. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Tachibana, K; Okada, K; Kobayashi, R; Ishihara, Y
2016-08-01
We describe the possibility of high-sensitivity noninvasive blood glucose measurement based on photoacoustic spectroscopy (PAS). The demand for noninvasive blood glucose-level measurement has increased due to the explosive increase in diabetic patients. We have developed a noninvasive blood glucose-level measurement based on PAS. The conventional method uses a straight-type resonant cell. However, the cell volume is large, which results in a low detection sensitivity and difficult portability. In this paper, a small-sized Helmholtz-type resonant cell is proposed to improve detection sensitivity and portability by reducing the cell dead volume. First, the acoustic property of the small-sized Helmholtz-type resonant cell was evaluated by performing an experiment using a silicone rubber. As a result, the detection sensitivity of the small-sized Helmholtz-type resonant cell was approximately two times larger than that of the conventional straight-type resonant cell. In addition, the inside volume was approximately 30 times smaller. Second, the detection limits of glucose concentration were estimated by performing an experiment using glucose solutions. The experimental results showed that a glucose concentration of approximately 1% was detected by the small-sized Helmholtz-type resonant cell. Although these results on the sensitivity of blood glucose-level measurement are currently insufficient, they suggest that miniaturization of a resonance cell is effective in the application of noninvasive blood glucose-level measurement.
Yang, Dongmei; Pan, Shaoan; Ding, Yiting; Tyree, Melvin T
2017-03-01
This paper provides a mini-review of evidence for negative turgor pressure in leaf cells starting with experimental evidence in the late 1950s and ending with biomechanical models published in 2014. In the present study, biomechanical models were used to predict how negative turgor pressure might be manifested in dead tissue, and experiments were conducted to test the predictions. The main findings were as follows: (i) Tissues killed by heating to 60 or 80 °C or by freezing in liquid nitrogen all became equally leaky to cell sap solutes and all seemed to pass freely through the cell walls. (ii) Once cell sap solutes could freely pass the cell walls, the shape of pressure-volume curves was dramatically altered between living and dead cells. (iii) Pressure-volume curves of dead tissue seem to measure negative turgor defined as negative when inside minus outside pressure is negative. (iv) Robinia pseudoacacia leaves with small palisade cells had more negative turgor than Metasequoia glyptostroboides with large cells. (v) The absolute difference in negative turgor between R. pseudoacacia and M. glyptostroboides approached as much as 1.0 MPa in some cases. The differences in the manifestation of negative turgor in living versus dead tissue are discussed. © 2016 John Wiley & Sons Ltd.
Influence of microgravity on cellular differentiation in root caps of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.
1987-01-01
We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils
Boehler, R.; Molaison, J. J.; Haberl, B.
2017-08-17
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less
Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging
NASA Astrophysics Data System (ADS)
Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro
2015-05-01
Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.
Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.
Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R
2016-12-12
Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM volume data at different levels of resolution can yield comprehensive information, including statistics, morphology and organization of cells and tissue. We predict, that hierarchical imaging will be a first step in tackling the big data issue inevitably connected with volume EM.
Microfluidic devices for cell culture and handling in organ-on-a-chip applications
NASA Astrophysics Data System (ADS)
Becker, Holger; Schulz, Ingo; Mosig, Alexander; Jahn, Tobias; Gärtner, Claudia
2014-03-01
For many problems in system biology or pharmacology, in-vivo-like models of cell-cell interactions or organ functions are highly sought after. Conventional stationary cell culture in 2D plates quickly reaches its limitations with respect to an in-vivo like expression and function of individual cell types. Microfabrication technologies and microfluidics offer an attractive solution to these problems. The ability to generate flow as well as geometrical conditions for cell culture and manipulation close to the in-vivo situation allows for an improved design of experiments and the modeling of organ-like functionalities. Furthermore, reduced internal volumes lead to a reduction in reagent volumes necessary as well as an increased assay sensitivity. In this paper we present a range of microfluidic devices designed for the co-culturing of a variety of cells. The influence of substrate materials and surface chemistry on the cell morphology and viability for long-term cell culture has been investigated as well as strategies and medium supply for on-chip cell cultivation.
Crowe, Jacob D; Zarger, Rachael A; Hodge, David B
2017-10-04
Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.
Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays
NASA Technical Reports Server (NTRS)
Moore, R.; McClelen, C. E.
1985-01-01
Root graviresponsiveness in normal and carotenoid-deficient mutant seedlings of Zea mays was not significantly different. Columella cells in roots of mutant seedlings were characterized by fewer, smaller, and a reduced relative volume of plastids as compared to columella cells of normal seedlings. Plastids in columella cells of mutant seedlings possessed reduced amounts of starch. Although approximately 10 per cent of the columella cells in mutant seedlings lacked starch, their plastids were located at the bottom of the cell. These results suggest that (i) carotenoids are not necessary for root gravitropism, (ii) graviresponsiveness is not necessarily proportional to the size, number, or relative volume of plastids in columella cells, and (iii) sedimentation of plastids in columella cells may not result directly from their increased density due to starch content. Plastids in columella cells of normal and mutant seedlings were associated with bands of microtubule-like structures, suggesting that these structures may be involved in 'positioning' plastids in the cell.
NASA Astrophysics Data System (ADS)
Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir
2016-03-01
The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.
Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy
Aguet, François; Upadhyayula, Srigokul; Gaudin, Raphaël; Chou, Yi-ying; Cocucci, Emanuele; He, Kangmin; Chen, Bi-Chang; Mosaliganti, Kishore; Pasham, Mithun; Skillern, Wesley; Legant, Wesley R.; Liu, Tsung-Li; Findlay, Greg; Marino, Eric; Danuser, Gaudenz; Megason, Sean; Betzig, Eric; Kirchhausen, Tom
2016-01-01
Membrane remodeling is an essential part of transferring components to and from the cell surface and membrane-bound organelles and for changes in cell shape, which are particularly critical during cell division. Earlier analyses, based on classical optical live-cell imaging and mostly restricted by technical necessity to the attached bottom surface, showed persistent formation of endocytic clathrin pits and vesicles during mitosis. Taking advantage of the resolution, speed, and noninvasive illumination of the newly developed lattice light-sheet fluorescence microscope, we reexamined their assembly dynamics over the entire cell surface and found that clathrin pits form at a lower rate during late mitosis. Full-cell imaging measurements of cell surface area and volume throughout the cell cycle of single cells in culture and in zebrafish embryos showed that the total surface increased rapidly during the transition from telophase to cytokinesis, whereas cell volume increased slightly in metaphase and was relatively constant during cytokinesis. These applications demonstrate the advantage of lattice light-sheet microscopy and enable a new standard for imaging membrane dynamics in single cells and multicellular assemblies. PMID:27535432
Pietersz, R N; Dekker, W J; Reesink, H A
1991-01-01
The effect of automated removal of increasing volumes of buffy coat in a 'top and bottom' system on the composition of red cell concentrates (RCC) was investigated. The volume of the buffy coat was adjusted to group 1:50 ml (n = 31), group 2: 70 ml (n = 31) and group 3: 100 ml (n = 31), respectively. The numbers of platelets and leukocytes in the buffy coats were comparable between the groups, whereas the red cell volumes in the buffy coats showed a significant difference (17 +/- 3.6 ml group 1, versus 22 +/- 4.1 ml group 2 and 26 +/- 3.88 ml group 3; p less than 0.001). The volumes, hematocrits and cell counts of the RCC were not significantly different. The plasma volumes were inversely correlated with the volume of buffy coat removed, i.e. 268 +/- 19 ml group 1, versus 257 +/- 15 ml group 2 and 233 +/- 20 ml group 3 (p less than 0.001). We conclude that in the 'top and bottom' system an increase of the volume of the buffy coat from 50 to 100 ml did not improve the quality of the RCC regarding contamination with leukocytes and platelets.
Polli, Roberson S.; Malheiros, Jackeline M.; dos Santos, Renan; Hamani, Clement; Longo, Beatriz M.; Tannús, Alberto; Mello, Luiz E.; Covolan, Luciene
2014-01-01
Kainic acid (KA) or pilocarpine (PILO) have been used in rats to model human temporal lobe epilepsy (TLE) but the distribution and severity of structural lesions between these two models may differ. Magnetic resonance imaging (MRI) studies have used quantitative measurements of hippocampal T2 (T2HP) relaxation time and volume, but simultaneous comparative results have not been reported yet. The aim of this study was to compare the MRI T2HP and volume with histological data and frequency of seizures in both models. KA- and PILO-treated rats were imaged with a 2 T MRI scanner. T2HP and volume values were correlated with the number of cells, mossy fiber sprouting, and spontaneous recurrent seizures (SRS) frequency over the 9 months following status epilepticus (SE). Compared to controls, KA-treated rats had unaltered T2HP, pronounced reduction in hippocampal volume and concomitant cell reduction in granule cell layer, CA1 and CA3 at 3 months post SE. In contrast, hippocampal volume was unchanged in PILO-treated animals despite detectable increased T2HP and cell loss in granule cell layer, CA1 and CA3. In the following 6 months, MRI hippocampal volume remained stable with increase of T2HP signal in the KA-treated group. The number of CA1 and CA3 cells was smaller than age-matched CTL group. In contrast, PILO group had MRI volumetric reduction accompanied by reduction in the number of CA1 and CA3 cells. In this group, T2HP signal was unaltered at 6 or 9 months after status. Reductions in the number of cells were not progressive in both models. Notably, the SRS frequency was higher in PILO than in the KA model. The volumetry data correlated well with tissue damage in the epileptic brain, suggesting that MRI may be useful for tracking longitudinal hippocampal changes, allowing the assessment of individual variability and disease progression. Our results indicate that the temporal changes in hippocampal morphology are distinct for both models of TLE and that these are not significantly correlated to the frequency of SRS. PMID:25071699
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Seong Jin; Li, Jianlin; Mohanty, Debasish
2017-01-01
The work herein reports on studies aimed at exploring the correlation between electrolyte volume and electrochemical performance of full cell, pouch-cells consisting of graphite/ Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC-532) as the electrodes and 1.2 M LiPF6 in ethylene carbonate:ethylmethyl carbonate (EC:EMC) as the electrolyte. It is demonstrated that a minimum electrolyte volume factor of 1.9 times the total pore volume of cell components (cathode, anode, and separator) is needed for long-term cyclability and low impedance. Less electrolyte results in an increase of the measured ohmic resistances. Increased resistance ratios for charge transfer and passivation layers at cathode, relativemore » to initial values, were 1.5–2.0 after 100 cycles. At the cathode, the resistance from charge transfer was 2–3 times higher than for passivation layers. Differential voltage analysis showed that anodes were less delithiated after discharging as the cells were cycled.« less
An, Seong Jin; Li, Jianlin; Mohanty, Debasish; ...
2017-04-07
The work herein reports on studies aimed at exploring the correlation between electrolyte volume and electrochemical performance of full cell, pouch-cells consisting of graphite/ Li 1.02Ni 0.50Mn 0.29Co 0.19O 2 (NMC-532) as the electrodes and 1.2 M LiPF 6 in ethylene carbonate:ethylmethyl carbonate (EC:EMC) as the electrolyte. In addition, it is demonstrated that a minimum electrolyte volume factor of 1.9 times the total pore volume of cell components (cathode, anode, and separator) is needed for long-term cyclability and low impedance. Less electrolyte results in an increase of the measured Ohmic resistances. Increased resistance ratios for charge transfer and passivation layersmore » at cathode, relative to initial values, were 1.5 2.0 after 100 cycles. At the cathode, the resistance from charge transfer was 2-3 times higher than for passivation layers. Lastly, differential voltage analysis showed that anodes were less delithiated after discharging as the cells were cycled.« less
Schoeman, Rogier M; Kemna, Evelien W M; Wolbers, Floor; van den Berg, Albert
2014-02-01
In this article, we present a microfluidic device capable of successive high-yield single-cell encapsulation in droplets, with additional droplet pairing, fusion, and shrinkage. Deterministic single-cell encapsulation is realized using Dean-coupled inertial ordering of cells in a Yin-Yang-shaped curved microchannel using a double T-junction, with a frequency over 2000 Hz, followed by controlled droplet pairing with a 100% success rate. Subsequently, droplet fusion is realized using electrical actuation resulting in electro-coalescence of two droplets, each containing a single HL60 cell, with 95% efficiency. Finally, volume reduction of the fused droplet up to 75% is achieved by a triple pitchfork structure. This droplet volume reduction is necessary to obtain close cell-cell membrane contact necessary for final cell electrofusion, leading to hybridoma formation, which is the ultimate aim of this research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Correa, P.N.; Bard, V.; Axelrad, A.A.
1990-01-01
We have used countercurrent centrifugal elutriation (CCE) to determine the distribution of cells with respect to cell volume and buoyant density for an erythroleukemia cell line (JG6) transformed by the polycythemia strain of Friend virus (FV-P), and to determine the effect of inducing the cells to differentiate with dimethylsulfoxide (DMSO) on this distribution. CCE made it possible to obtain suspensions of modal JG6 populations virtually free of dead cells and uniform with respect to volume and buoyant density. These modal populations were assayed for specific binding of erythropoietin (Epo). Between 500 and 550 Epo receptors per cell were detected. Thesemore » belonged to a single class having a dissociation constant of 0.36 nM. DMSO induction of differentiation of the JG6 cells had no effect on the number of Epo receptors expressed.« less
Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.
2003-01-01
NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.
Eifler, Robert L; Lind, Judith; Falkenhagen, Dieter; Weber, Viktoria; Fischer, Michael B; Zeillinger, Robert
2011-03-01
The aim of this study was to determine the applicability of a sequential process using leukapheresis, elutriation, and fluorescence-activated cell sorting (FACS) to enrich and isolate circulating tumor cells from a large blood volume to allow further molecular analysis. Mononuclear cells were collected from 10 L of blood by leukapheresis, to which carboxyfluorescein succinimidyl ester prelabeled CaOV-3 tumor cells were spiked at a ratio of 26 to 10⁶ leukocytes. Elutriation separated the spiked leukapheresates primarily by cell size into distinct fractions, and leukocytes and tumor cells, characterized as carboxyfluorescein succinimidyl ester positive, EpCAM positive and CD45 negative events, were quantified by flow cytometry. Tumor cells were isolated from the last fraction using FACS or anti-EpCAM coupled immunomagnetic beads, and their recovery and purity determined by fluorescent microscopy and real-time PCR. Leukapheresis collected 13.5 x 10⁹ mononuclear cells with 87% efficiency. In total, 53 to 78% of spiked tumor cells were pre-enriched in the last elutriation fraction among 1.6 x 10⁹ monocytes. Flow cytometry predicted a circulating tumor cell purity of ~90% giving an enrichment of 100,000-fold following leukapheresis, elutriation, and FACS, where CaOV-3 cells were identified as EpCAM positive and CD45 negative events. FACS confirmed this purity. Alternatively, immunomagnetic bead adsorption recovered 10% of tumor cells with a median purity of 3.5%. This proof of concept study demonstrated that elutriation and FACS following leukapheresis are able to enrich and isolate tumor cells from a large blood volume for molecular characterization. Copyright © 2010 International Clinical Cytometry Society.
Rakoski, Mirko S.; Heinemann, Dag; Schomaker, Markus; Ripken, Tammo; Meyer, Heiko
2015-01-01
Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy. PMID:25909631
Comparative stereology of the mouse and finch left ventricle.
Bossen, E H; Sommer, J R; Waugh, R A
1978-01-01
The volume fractions and surface per unit cell volume of some subcellular components of the left ventricles of the finch and mouse were quantitated by stereologic techniques. These species were chosen for study because they have similar heart rates but differ morphologically in some respects: fiber diameter is larger in the mouse; the mouse has transverse tubules while the finch does not; and the finch has a form of junctional sarcoplasmic reticulum (JSR), extended JSR (EJSR), located in the cell interior with no direct plasmalemmal contact, while the mouse interior JSR (IJSR) abuts on transverse tubules. Our data show that the volume fraction (Vv) and surface area per unit cell volume (Sv) of total SR, and free SR (FSR) are similar. The volume fractions of mitochondria, myofibrils, and total junctional SR were also similar. The Sv of the cell surface of the finch was similar to the Sv of the cell surface of the mouse (Sv-plasmalemma plus Sv of the transverse tubules). The principal difference was in the distribution of JSR; the mouse peripheral JSR (PJSR) represents only 9% of the total JSR, while the finch PJSR accounts for 24% of the bird's JSR. The similar volume fractions of total junctional SR (PJSR + EJSR in the finch; PJSR + IJSR in the mouse) suggest that the EJSR is not an embryologic remnant, and raises the possibility that some function of JSR is independent of plasmalemmal contact.
Utility of Thin-Film Solar Cells on Flexible Substrates for Space Power
NASA Technical Reports Server (NTRS)
Dickman, J. E.; Hepp, A. F.; Morel, D. L.; Ferekides, C. S.; Tuttle, J. R.; Hoffman, D. J.; Dhere, N. G.
2004-01-01
The thin-film solar cell program at NASA GRC is developing solar cell technologies for space applications which address two critical metrics: specific power (power per unit mass) and launch stowed volume. To be competitive for many space applications, an array using thin film solar cells must significantly increase specific power while reducing stowed volume when compared to the present baseline technology utilizing crystalline solar cells. The NASA GRC program is developing two approaches. Since the vast majority of the mass of a thin film solar cell is in the substrate, a thin film solar cell on a very lightweight flexible substrate (polymer or metal films) is being developed as the first approach. The second approach is the development of multijunction thin film solar cells. Total cell efficiency can be increased by stacking multiple cells having bandgaps tuned to convert the spectrum passing through the upper cells to the lower cells. Once developed, the two approaches will be merged to yield a multijunction, thin film solar cell on a very lightweight, flexible substrate. The ultimate utility of such solar cells in space require the development of monolithic interconnections, lightweight array structures, and ultra-lightweight support and deployment techniques.
Elisabeth, Nathalie H; Gustave, Sylvie D D; Gros, Olivier
2012-08-01
The shallow-water bivalve Codakia orbiculata which harbors gill-endosymbiotic sulfur-oxidizing γ-proteobacteria can lose and acquire its endosymbionts throughout its life. Long-term starvation and recolonization experiments led to changes in the organization of cells in the lateral zone of gill filaments. This plasticity is linked to the presence or absence of gill-endosymbionts. Herein, we propose that this reorganization can be explained by three hypotheses: (a) a variation in the number of bacteriocytes and granule cells due to proliferation or apoptosis processes, (b) a variation of the volume of these two cell types without modification in the number, and (c) a combination of both number and cell volume variation. To test these hypotheses, we analyzed cell reorganization in terms of proliferation and apoptosis in adults submitted to starvation and returned to the field using catalyzed reporter deposition fluorescence in situ hybridization, immunohistochemistry, and structural analyses. We observed that cell and tissue reorganization in gills filaments is due to a variation in cell relative abundance that maybe associated with a variation in cell apparent volume and depends on the environment. In fact, bacteriocytes mostly multiply in freshly collected and newly recolonized individuals, and excess bacteriocytes are eliminated in later recolonization stages. We highlight that host tissue regeneration in gill filaments of this symbiotic bivalve can occur by both replication of existing cells and division of undifferentiated cells localized in tissular bridges, which might be a tissue-specific multipotent stem cell zone. Copyright © 2012 Wiley Periodicals, Inc.
Differential optoacoustic absorption detector
NASA Technical Reports Server (NTRS)
Shumate, M. S. (Inventor)
1978-01-01
A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.
Falin, Rebecca A.; Miyazaki, Hiroaki
2011-01-01
Mammalian Ste20-like proline/alanine-rich kinase (SPAK) and oxidative stress-responsive 1 (OSR1) kinases phosphorylate and regulate cation-coupled Cl− cotransporter activity in response to cell volume changes. SPAK and OSR1 are activated via phosphorylation by upstream with-no-lysine (WNK) kinases. In Caenorhabditis elegans, the SPAK/OSR1 ortholog germinal center kinase (GCK)-3 binds to and regulates the activity of the cell volume- and meiotic cell cycle-dependent ClC anion channel CLH-3b. We tested the hypothesis that WNK kinases function in the GCK-3/CLH-3b signaling cascade. CLH-3b heterologously expressed in human embryonic kidney (HEK) cells was unaffected by coexpression with the single C. elegans WNK kinase, WNK-1, or kinase-dead WNK-1 dominant-negative mutants. RNA interference (RNAi) knockdown of the single Drosophila WNK kinase had no effect on the activity of CLH-3b expressed in Drosophila S2 cells. Similarly, RNAi silencing of C. elegans WNK-1 had no effect on basal or cell volume-sensitive activity of CLH-3b expressed endogenously in worm oocytes. Previous yeast 2-hybrid studies suggested that ERK kinases may function upstream of GCK-3. Pharmacological inhibition of ERK signaling disrupted CLH-3b activity in HEK cells in a GCK-3-dependent manner. RNAi silencing of the C. elegans ERK kinase MPK-1 or the ERK phosphorylating/activating kinase MEK-2 constitutively activated native CLH-3b. MEK-2 and MPK-1 play important roles in regulating the meiotic cell cycle in C. elegans oocytes. Cell cycle-dependent changes in MPK-1 correlate with the pattern of CLH-3b activation observed during oocyte meiotic maturation. We postulate that MEK-2/MPK-1 functions upstream from GCK-3 to regulate its activity during cell volume and meiotic cell cycle changes. PMID:21160027
European Science Notes, Volume 41, Number 1.
1987-01-01
extract which also *body, HNKI, stains dorsal root ganglion exhibited a trophic effect could be re- (DRG) cells and is selective for neural placed by... effect on central as well as peripheral to migrate just after the neural tube neurons. closes and that these cells migrate Neuronal Development...viscous effects which are ex- tions used pseudounsteady, cell -centered cluded from the computation-. In some finite volume methods. Quite different
Cryo-imaging of fluorescently labeled single cells in a mouse
NASA Astrophysics Data System (ADS)
Steyer, Grant J.; Roy, Debashish; Salvado, Olivier; Stone, Meredith E.; Wilson, David L.
2009-02-01
We developed a cryo-imaging system to provide single-cell detection of fluorescently labeled cells in mouse, with particular applicability to stem cells and metastatic cancer. The Case cryoimaging system consists of a fluorescence microscope, robotic imaging positioner, customized cryostat, PC-based control system, and visualization/analysis software. The system alternates between sectioning (10-40 μm) and imaging, collecting color brightfield and fluorescent blockface image volumes >60GB. In mouse experiments, we imaged quantum-dot labeled stem cells, GFP-labeled cancer and stem cells, and cell-size fluorescent microspheres. To remove subsurface fluorescence, we used a simplified model of light-tissue interaction whereby the next image was scaled, blurred, and subtracted from the current image. We estimated scaling and blurring parameters by minimizing entropy of subtracted images. Tissue specific attenuation parameters were found [uT : heart (267 +/- 47.6 μm), liver (218 +/- 27.1 μm), brain (161 +/- 27.4 μm)] to be within the range of estimates in the literature. "Next image" processing removed subsurface fluorescence equally well across multiple tissues (brain, kidney, liver, adipose tissue, etc.), and analysis of 200 microsphere images in the brain gave 97+/-2% reduction of subsurface fluorescence. Fluorescent signals were determined to arise from single cells based upon geometric and integrated intensity measurements. Next image processing greatly improved axial resolution, enabled high quality 3D volume renderings, and improved enumeration of single cells with connected component analysis by up to 24%. Analysis of image volumes identified metastatic cancer sites, found homing of stem cells to injury sites, and showed microsphere distribution correlated with blood flow patterns. We developed and evaluated cryo-imaging to provide single-cell detection of fluorescently labeled cells in mouse. Our cryo-imaging system provides extreme (>60GB), micron-scale, fluorescence, and bright field image data. Here we describe our image preprocessing, analysis, and visualization techniques. Processing improves axial resolution, reduces subsurface fluorescence by 97%, and enables single cell detection and counting. High quality 3D volume renderings enable us to evaluate cell distribution patterns. Applications include the myriad of biomedical experiments using fluorescent reporter gene and exogenous fluorophore labeling of cells in applications such as stem cell regenerative medicine, cancer, tissue engineering, etc.
Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys
NASA Technical Reports Server (NTRS)
Ibrahim, Ahmed
2002-01-01
This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.
Kallianpur, Kalpana J; Valcour, Victor G; Lerdlum, Sukalaya; Busovaca, Edgar; Agsalda, Melissa; Sithinamsuwan, Pasiri; Chalermchai, Thep; Fletcher, James L K; Tipsuk, Somporn; Shikuma, Cecilia M; Shiramizu, Bruce T; Ananworanich, Jintanat
2014-07-17
To examine associations between regional brain volumes and HIV DNA in peripheral CD14 cells (monocytes) among HIV-infected individuals naive to combination antiretroviral therapy (cART). A prospective study of HIV-infected Thai individuals who met Thai national criteria for cART initiation. Enrolment was stratified by HIV DNA in a blinded fashion. CD14 cells were isolated from peripheral mononuclear cells to high purity (median 91.4% monocytes by flow cytometry), and HIV DNA was quantified by multiplex real-time PCR. Baseline regional brain volumes obtained by T1-weighted 1.5-Tesla MRI were compared between HIV DNA groups using analysis of covariance (ANCOVA). We studied 60 individuals with mean (SD) age of 34.7 (7.0) years, CD4 T-lymphocyte count of 232 (137) cells/μl and log10 plasma HIV RNA of 4.8 (0.73). Median (interquartile range, IQR) HIV DNA copy number per 10 CD14 cells was 54 (102). Using our previously determined optimal cut-point of 45 copies/10 cells for this cohort, a threshold value above which CD14 HIV DNA identified HIV-associated neurocognitive disorders (HANDs), we found that CD14 HIV DNA ≥ 45 copies/10 cells was associated with reduced volumes of the nucleus accumbens (P=0.021), brainstem (P=0.033) and total gray matter (P=0.045) independently of age, CD4 cell count and intracranial volume. HIV DNA burden in CD14 monocytes is directly linked to brain volumetric loss. Our findings implicate peripheral viral reservoirs in HIV-associated brain atrophy and support their involvement in the neuropathogenesis of HAND, underscoring the need for therapies that target these cells.
Innervation of single fungiform taste buds during development in rat.
Krimm, R F; Hill, D L
1998-08-17
To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size.
The thermal expansion of (Fe1-y Ni y )Si.
Hunt, Simon A; Wann, Elizabeth T H; Dobson, David P; Vočadlo, Lindunka; Wood, Ian G
2017-08-23
We have measured the thermal expansion of (Fe 1-y Ni y )Si for y = 0, 0.1 and 0.2, between 40 and 1273 K. Above ~700 K the unit-cell volumes of the samples decrease approximately linearly with increasing Ni content. Below ~200 K the unit-cell volume of FeSi falls to a value between that of (Fe 0.9 Ni 0.1 )Si and (Fe 0.8 Ni 0.2 )Si. We attribute this extra contraction of the FeSi, which is a narrow band-gap semiconductor, to the depopulation of the conduction band at low temperatures; in the two alloys the additional electrons introduced by the substitution of Ni lead to the conduction band always being populated. We have fit the unit-cell volume data with a Debye internal energy model of thermal expansion and an additional volume term, above 800 K, to take account of the volumetric changes associated with changes in the composition of the sample. Using the thermophysical parameters of the fit we have estimated the band gap in FeSi to be 21(1) meV and the unit-cell volume change in FeSi associated with the depopulation of the conduction band to be 0.066(35) Å 3 /unit-cell.
Exocytosis from chromaffin cells: hydrostatic pressure slows vesicle fusion
Stühmer, Walter
2015-01-01
Pressure affects reaction kinetics because chemical transitions involve changes in volume, and therefore pressure is a standard thermodynamic parameter to measure these volume changes. Many organisms live in environments at external pressures other than one atmosphere (0.1 MPa). Marine animals have adapted to live at depths of over 7000 m (at pressures over 70 MPa), and microorganisms living in trenches at over 110 MPa have been retrieved. Here, kinetic changes in secretion from chromaffin cells, measured as capacitance changes using the patch-clamp technique at pressures of up to 20 MPa are presented. It is known that these high pressures drastically slow down physiological functions. High hydrostatic pressure also affects the kinetics of ion channel gating and the amount of current carried by them, and it drastically slows down synaptic transmission. The results presented here indicate a similar change in volume (activation volume) of 390 ± 57 Å3 for large dense-core vesicles undergoing fusion in chromaffin cells and for degranulation of mast cells. It is significantly larger than activation volumes of voltage-gated ion channels in chromaffin cells. This information will be useful in finding possible protein conformational changes during the reactions involved in vesicle fusion and in testing possible molecular dynamic models of secretory processes. PMID:26009771
Volumetric Analysis of 3-D-Cultured Colonies in Wet Alginate Spots Using 384-Pillar Plate.
Lee, Dong Woo; Choi, Yea-Jun; Lee, Sang-Yun; Kim, Myoung-Hee; Doh, Il; Ryu, Gyu Ha; Choi, Soo-Mi
2018-06-01
The volumetric analysis of three-dimensional (3-D)-cultured colonies in alginate spots has been proposed to increase drug efficacy. In a previously developed pillar/well chip platform, colonies within spots are usually stained and dried for analysis of cell viability using two-dimensional (2-D) fluorescent images. Since the number of viable cells in colonies is directly related to colony volume, we proposed the 3-D analysis of colonies for high-accuracy cell viability calculation. The spots were immersed in buffer, and the 3-D volume of each colony was calculated from the 2-D stacking fluorescent images of the spot with different focal positions. In the experiments with human gastric carcinoma cells and anticancer drugs, we compared cell viability values calculated using the 2-D area and 3-D volume of colonies in the wet and dried alginate spots, respectively. The IC 50 value calculated using the 3-D volume of the colonies (9.5 μM) was less than that calculated in the 2-D area analysis (121.5 μM). We observed that the colony showed a more sensitive drug response regarding volume calculated from the 3-D image reconstructed using several confocal images than regarding colony area calculated in the 2-D analysis.
Stephens, T. C.; Peacock, J. H.
1977-01-01
The relationship between tumour volume response and cell kill in B16 melanoma following treatment in vivo with cyclophosphamide (CY) and 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU) was investigated. Tumour volume response, expressed as growth delay, was estimated from measurements of tumour dimensions. Depression of in vitro colony-forming ability of cells from treated tumours was used as the measure of tumour cell kill. The relationship between these parameters was clearly different for the two agents studied. CY produced more growth delay (7.5 days) per decade of tumour cell kill than CCNU (2 to 3.5 days). The possibility that this was due to a technical artefact was rejected in favour of an alternative explanation that different rates of cellular repopulation in tumours treated with CY and CCNU might be responsible. Cellular repopulation was measured directly, by performing cell-survival assays at various times after treatment with doses of CY and CCNU which produced about 3 decades of cell kill. The rate of repopulation by clonogenic cells was much slower after treatment with CY than with CCNU, and this appears to account for the longer duration of the growth delay obtained with CY. PMID:921888
Regulating the Membrane Transport Activity and Death of Cells via Electroosmotic Manipulation.
Hui, Tsz Hin; Kwan, Kin Wah; Chun Yip, Timothy Tak; Fong, Hong Wai; Ngan, Kai Cheong; Yu, Miao; Yao, Shuhuai; Wan Ngan, Alfonso Hin; Lin, Yuan
2016-06-21
Although the volume of living cells has been known to heavily influence their behavior and fate, a method allowing us to control the cell size in a programmable manner is still lacking. Here, we develop a technique in which precise changes in the cellular volume can be conveniently introduced by varying the voltage applied across a Nafion membrane that separates the culture medium from a reservoir. It is found that, unlike sudden osmotic shocks, active ion transport across the membrane of leukemia K562 cells will not be triggered by a gradual change in the extracellular osmolarity. Furthermore, when subjected to the same applied voltage, different lung and nasopharyngeal epithelial cancer cells will undergo larger volumetric changes and have a 5-10% higher death rate compared to their normal counterparts. We show that such distinct response is largely caused by the overexpression of aquaporin-4 in tumor cells, with knockout of this water channel protein resulting in a markedly reduced change in the cellular volume. Finally, by taking into account the exchange of water/ion molecules across the Nafion film and the cell membrane, a theoretical model is also proposed to describe the voltage-induced size changes of cells, which explain our experimental observations very well. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Petryk, Alicia A.; Misra, Adwiteeya; Mazur, Courtney M.; Petryk, James D.; Hoopes, P. J.
2015-03-01
The use of nanotechnology for the treatment of cancer affords the possibility of highly specific tumor targeting and improved treatment efficacy. Iron oxide magnetic nanoparticles (IONPs) have demonstrated success as an ablative mono-therapy and targetable adjuvant therapy. However, the relative therapeutic value of intracellular vs. extracellular IONPs remains unclear. Our research demonstrates that both extracellular and intracellular IONPs generate cytotoxicity when excited by an alternating magnetic field (AMF). While killing individual cells via intracellular IONP heating is an attractive goal, theoretical models and experimental results suggest that this may not be possible due to limitations of cell volume, applied AMF, IONP concentration and specific absorption rate (SAR). The goal of this study was to examine the importance of tumor size (cell number) with respect to IONP concentration. Mouse mammary adenocarcinoma cells were incubated with IONPs, washed, spun into different pellet sizes (0.1, 0.5 and 2 million cells) and exposed to AMF. The level of heating and associated cytotoxicity depended primarily on the number of IONPs /amount Fe per cell pellet volume and the relative volume of the cell pellet. Specifically, larger cell pellets achieved greater relative cytotoxicity due to greater iron amounts, close association and subsequently higher temperatures.
Blood volume changes. [weightlessness effects
NASA Technical Reports Server (NTRS)
Johnson, P. C.; Driscoll, T. B.; Leblance, A. D.
1974-01-01
Analysis of radionuclide volume determinations made for the crewmembers of selected Gemini and Apollo missions showed that orbital spaceflight has an effect on red cell mass. Because the methods and the protocol developed for earlier flights were used for the crews of the three Skylab missions, direct comparisons are possible. After each Skylab mission, decreases were found in crewmembers' red cell masses. The mean red cell mass decrease of 11 percent or 232 milliliters was approximately equal to the 10 percent mean red cell mass decrease of the Apollo 14 to 17 crewmembers. The red cell mass drop was greatest and the postrecovery reticulocyte response least for crewmembers of the 28-day Skylab 2 mission. Analyses of data from the red cell mass determinations indicate that the red cell mass drops occurred in the first 30 days of flight and that a gradual recovery of the red cell mass deficits began approximately 60 days after launch. The beginning of red cell mass regeneration during the Skylab 4 flight may explain the higher postmission reticulocyte counts.
Comparison between cylindrical and prismatic lithium-ion cell costs using a process based cost model
NASA Astrophysics Data System (ADS)
Ciez, Rebecca E.; Whitacre, J. F.
2017-02-01
The relative size and age of the US electric vehicle market means that a few vehicles are able to drive market-wide trends in the battery chemistries and cell formats on the road today. Three lithium-ion chemistries account for nearly all of the storage capacity, and half of the cells are cylindrical. However, no specific model exists to examine the costs of manufacturing these cylindrical cells. Here we present a process-based cost model tailored to the cylindrical lithium-ion cells currently used in the EV market. We examine the costs for varied cell dimensions, electrode thicknesses, chemistries, and production volumes. Although cost savings are possible from increasing cell dimensions and electrode thicknesses, economies of scale have already been reached, and future cost reductions from increased production volumes are minimal. Prismatic cells, which are able to further capitalize on the cost reduction from larger formats, can offer further reductions than those possible for cylindrical cells.
Kazanis, Ilias; Ffrench-Constant, Charles
2012-05-01
The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience.
Díaz-Piedra, Pablo; Cervantes-Villagrana, Alberto Rafael; Ramos-Jiménez, Raúl; Presno-Bernal, José Miguel; Cervantes-Villagrana, Rodolfo Daniel
2015-01-01
Hemoglobin S is an abnormal protein that induces morphological changes in erythrocyte in low-oxygen conditions. In Mexico, it is reported that up to 13.7% of the population with mutation in one allele are considered asymptomatic (sickle cell trait). The sickle cell trait and diabetes mellitus are conditions that occur together in more than one million patients worldwide. Both diseases possibly produce microvascular changes in retinopathy and acute chest syndrome. The aim of this study was to evaluate the induction of sickle cells in samples of diabetic patients with sickle cell trait to identify altered red cell parameters. We obtained samples of diabetic patients to determine hemoglobin A1c and S; furthermore, red blood cell biometrics data were analyzed. We found that older men with diabetes were susceptible to generate sickle cells and this correlated with reduced red blood cell count and an increase in media cell volume. In samples of women diabetes, there were no differences. We conclude that samples from patients with sickle cell trait and diabetes can cause sickle cells with high frequency in men, with lower red blood cells count and increased mean corpuscular volume as susceptibility parameters.
At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology.
Gerweck, Leo E; Wakimoto, Hiroaki
2016-03-01
Reports that a small subset of tumor cells initiate and sustain tumor growth, are resistant to radiation and drugs, and bear specific markers have led to an explosion of cancer stem cell research. These reports imply that the evaluation of therapeutic response by changes in tumor volume is misleading, as volume changes reflect the response of the sensitive rather than the resistant tumorigenic cell population. The reports further suggest that the marker-based selection of the tumor cell population will facilitate the development of radiation treatment schedules, sensitizers, and drugs that specifically target the resistant tumorigenic cells that give rise to treatment failure. This review presents evidence that contests the observations that cancer stem cell markers reliably identify the subset of tumor cells that sustain tumor growth and that the marker-identified population is radioresistant relative to the marker-negative cells. Experimental studies show that cells and tumors that survive large radiation doses are not more radioresistant than unirradiated cells and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells, in combination with the fraction of unsorted tumor cells that are tumor initiating, predicts tumor radiocurability. ©2016 American Association for Cancer Research.
Correlation of live-cell imaging with volume scanning electron microscopy.
Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger
2017-01-01
Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Pang, Shujie; Zhang, Lin; Shi, Yiquan; Liu, Yixin
2014-01-01
Unclassified mixed germ cell-sex cord-stromal tumor composed of germ cells and sex cord derivatives is a rare neoplasm. Approximately 10% of such tumors have malignant germ cell components. We report the case of a 28 year-old female with a right adnexal mass measuring 8 cm in greatest dimension, containing areas with both germ cell and sex cord components. The germ cell portion contained multiple growth patterns with a malignant appearance, while the sex cord element consisted mainly of annular tubules. Within the malignant germ cell elements was a dysgerminoma that accounted for approximately 75% of the tumor volume. Other malignant germ cell elements included yolk sac tumor, embryonal carcinoma, and choriocarcinoma, which comprised about 15% of the tumor volume. The annular tubule structures comprised about 10% of the total tumor volume. To our knowledge, this is the first case reported in the literature of an unclassified mixed germ cell-sex cord-stromal tumor associated with embryonal carcinoma components. The patient had a 46XX karyotype, regular menstrual periods, and no evidence of gross abnormalities in the contralateral ovary. The patient remained clinically well and disease-free 2 years after surgery. In addition to a thorough case description, the literature concerning this entity is reviewed and discussed.
MANIFESTATIONS OF INJURY IN YEAST CELLS EXPOSED TO SUBZERO TEMPERATURES II.
Mazur, Peter
1961-01-01
Mazur, Peter (Oak Ridge National Laboratory, Oak Ridge, Tenn.). Manifestations of injury in yeast cells exposed to subzero temperatures. II. Changes in specific gravity and in the concentration and quantity of cell solids. J. Bacteriol. 82:673–684. 1961.—It has previously been established that subjecting cells of Saccharomyces cerevisiae to rapid cooling to −30 C results in cell death and in certain morphological alterations. The alterations consisted of the loss of the central vacuole and a 50% decrease in volume. The present experiments were concerned with determining whether the volume decrease was the result of the loss of water alone or of water plus cellular solutes. The density of the “frozenthawed” cells was found to increase from 1.14 to 1.25 g/cm3 on the basis of measurements of the sedimentation rate of the cells. Interferometric and refractometric measurements indicated, furthermore, that the concentration of cell solids increased from 20 to 28%, whereas the total mass of cell solids decreased from 25 to 17 μμg/cell. The decrease in cell volume was thus shown to be the result of loss of solution from the cells, a solution containing 11 to 16% solids. Measurements of the rate of dialysis suggested that most or all of these solids had a molecular weight below 600. The findings are consistent with the view that low-temperature exposure destroyed the vacuolar membrane and sufficiently damaged the permeability barriers of the cell to permit escape of low molecular weight compounds. The damage was present a few seconds after thawing, and may, therefore, have been a direct result of intracellular ice crystals which, on the basis of previous studies, are believed to be responsible for death from low-temperature exposure. PMID:14471819
High-Volume Production of Lightweight Multijunction Solar Cells
NASA Technical Reports Server (NTRS)
Youtsey, Christopher
2015-01-01
MicroLink Devices, Inc., has transitioned its 6-inch epitaxial lift-off (ELO) solar cell fabrication process into a manufacturing platform capable of sustaining large-volume production. This Phase II project improves the ELO process by reducing cycle time and increasing the yield of large-area devices. In addition, all critical device fabrication processes have transitioned to 6-inch production tool sets designed for volume production. An emphasis on automated cassette-to-cassette and batch processes minimizes operator dependence and cell performance variability. MicroLink Devices established a pilot production line capable of at least 1,500 6-inch wafers per month at greater than 80 percent yield. The company also increased the yield and manufacturability of the 6-inch reclaim process, which is crucial to reducing the cost of the cells.
Measuring osmosis and hemolysis of red blood cells.
Goodhead, Lauren K; MacMillan, Frances M
2017-06-01
Since the discovery of the composition and structure of the mammalian cell membrane, biologists have had a clearer understanding of how substances enter and exit the cell's interior. The selectively permeable nature of the cell membrane allows the movement of some solutes and prevents the movement of others. This has important consequences for cell volume and the integrity of the cell and, as a result, is of utmost clinical importance, for example in the administration of isotonic intravenous infusions. The concepts of osmolarity and tonicity are often confused by students as impermeant isosmotic solutes such as NaCl are also isotonic; however, isosmotic solutes such as urea are actually hypotonic due to the permeant nature of the membrane. By placing red blood cells in solutions of differing osmolarities and tonicities, this experiment demonstrates the effects of osmosis and the resultant changes in cell volume. Using hemoglobin standard solutions, where known concentrations of hemoglobin are produced, the proportion of hemolysis and the effect of this on resultant hematocrit can be estimated. No change in cell volume occurs in isotonic NaCl, and, by placing blood cells in hypotonic NaCl, incomplete hemolysis occurs. By changing the bathing solution to either distilled water or isosmotic urea, complete hemolysis occurs due to their hypotonic effects. With the use of animal blood in this practical, students gain useful experience in handling tissue fluids and calculating dilutions and can appreciate the science behind clinical scenarios. Copyright © 2017 the American Physiological Society.
( sup 99m Tc)diphosphonate uptake and hemodynamics in arthritis of the immature dog knee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E.S.; Soballe, K.; Henriksen, T.B.
1991-03-01
The relationship between (99mTc)diphosphonate uptake and bone hemodynamics was studied in canine carrageenan-induced juvenile chronic arthritis. Blood flow was determined with microspheres, plasma and red cell volumes were measured by labeled fibrinogen and red cells, and the microvascular volume and mean transit time of blood were calculated. Normal femoral epiphyses had lower central and higher subchondral blood flow and diphosphonate uptake values. Epiphyseal vascular volume was uniform, resulting in a greater transit time of blood centrally. In arthritis, blood flow and diphosphonate uptake were increased subchondrally and unaffected centrally, while epiphyseal vascular volume was increased throughout, leading to prolonged transitmore » time centrally. The normal metaphyses had low blood flow and diphosphonate uptake values in cancellous bone and very high values in growth plates, but a large vascular volume throughout. The mean transit time therefore was low in growth plates and high in adjacent cancellous bone. Arthritis caused decreased blood flow and diphosphonate uptake in growth plates but increased vascular volume and transit time of blood. Diphosphonate uptake correlated positively with blood flow and plasma volume and negatively with red cell volume in a nonlinear fashion. Thus, changes in diphosphonate uptake and microvascular hemodynamics occur in both epiphyseal and metaphyseal bone in chronic synovitis of the immature knee. The (99mTc)diphosphonate bone scan seems to reflect blood flow, plasma volume, and red cell volume of bone.« less
Sun, Jiashu; Stowers, Chris C.; Boczko, Erik M.
2012-01-01
We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill’s function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation. PMID:20717618
Sun, Jiashu; Stowers, Chris C; Boczko, Erik M; Li, Deyu
2010-11-07
We report on measurements of the volume growth rate of ten individual budding yeast cells using a recently developed MOSFET-based microfluidic Coulter counter. The MOSFET-based microfluidic Coulter counter is very sensitive, provides signals that are immune from the baseline drift, and can work with cell culture media of complex composition. These desirable features allow us to directly measure the volume growth rate of single cells of Saccharomyces cerevisiae LYH3865 strain budding yeast in YNB culture media over a whole cell cycle. Results indicate that all budding yeast follow a sigmoid volume growth profile with reduced growth rates at the initial stage before the bud emerges and the final stage after the daughter gets mature. Analysis of the data indicates that even though all piecewise linear, Gomperitz, and Hill's function models can fit the global growth profile equally well, the data strongly support local exponential growth phenomenon. Accurate volume growth measurements are important for applications in systems biology where quantitative parameters are required for modeling and simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, L.R.; Orringer, E.P.
Swelling hemoglobin CC erythrocytes stimulates a ouabain-insensitive K flux that restores original cell volume. Studies were performed with the K analog, /sup 86/Rb. This volume regulatory pathway was characterized for its anion dependence, sensitivity to loop diuretics, and requirement for Na. The swelling-induced K flux was eliminated if intracellular chloride was replaced by nitrate and both swelling-activated K influx and efflux were partially inhibited by 1 mM furosemide or bumetanide. K influx in swollen hemoglobin CC cells was not diminished when Na in the incubation medium was replaced with choline, indicating Na independence of the swelling-induced flux. Identical experiments withmore » hemoglobin AA cells also demonstrated a swelling-induced increase in K flux, but the magnitude and duration of this increase were considerably less than that seen with hemoglobin CC cells. The increased K flux in hemoglobin AA cells was likewise sensitive to anion replacement and to loop diuretics and did not require the presence of Na. These data indicate that a volume-activated K pathway with similar transport characteristics exists in both hemoglobin CC and AA red cells.« less
Numerical Simulation of Thawing Process of Biological Tissue
NASA Astrophysics Data System (ADS)
Momose, Noboru; Tada, Yukio; Hayashi, Yujiro
Heat transfer and simplified physicochemical model for thawing of the frozen biological cell element consisting of cell and extracellular region was proposed. The melting of intra-and extra-cellular ice, the water transport through cell membrane and other microscale behavior during thawing process were discussed as a function of temperature. Recovery of the cell volume and change of osmotic pressure difference during thawing were clarified theortically in connection with heating velocity, initial cell volume and membrane permeability. Extending this model, the thawing of cellular tissue consisted of numerous cell elements was also simulated. There was a position where osmotic pressure difference became maximum during thawing. Summarizing these results, the thawing damage due to osmotic stress was discussed in relation with the heating operation and the size effect of tissue.
NASA Astrophysics Data System (ADS)
Rosenfeld, D.; Hu, J.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E.; Zhang, R.
2017-12-01
A methodology to track the evolution of the hydrometeors and electrification of convective cells is presented and applied to various convective clouds from warm showers to super-cells. The input radar data are obtained from the polarimetric NEXRAD weather radars, The information on cloud electrification is obtained from Lightning Mapping Arrays (LMA). The development time and height of the hydrometeors and electrification requires tracking the evolution and lifecycle of convective cells. A new methodology for Multi-Cell Identification and Tracking (MCIT) is presented in this study. This new algorithm is applied to time series of radar volume scans. A cell is defined as a local maximum in the Vertical Integrated Liquid (VIL), and the echo area is divided between cells using a watershed algorithm. The tracking of the cells between radar volume scans is done by identifying the two cells in consecutive radar scans that have maximum common VIL. The vertical profile of the polarimetric radar properties are used for constructing the time-height cross section of the cell properties around the peak reflectivity as a function of height. The LMA sources that occur within the cell area are integrated as a function of height as well for each time step, as determined by the radar volume scans. The result of the tracking can provide insights to the evolution of storms, hydrometer types, precipitation initiation and cloud electrification under different thermodynamic, aerosol and geographic conditions. The details of the MCIT algorithm, its products and their performance for different types of storm are described in this poster.
Ke, W-M; Xie, S-B; Li, X-J; Zhang, S-Q; Lai, J; Ye, Y-N; Gao, Z-L; Chen, P-J
2011-09-01
Hepatitis B virus (HBV) DNA levels and liver histological necroinflammation grades are correlated with the antiviral efficacy. It is necessary to clarify the relationship between HBV replication levels apportioned by the same hepatic parenchyma cell volume and severity of liver histological necroinflammation grades in both hepatitis B e antigen (HBeAg)-positive and HBeAg-negative chronic hepatitis B. The serum HBV DNA levels apportioned by the same hepatic parenchyma cell volume were compared between HBeAg-positive and HBeAg-negative chronic hepatitis B as well as among liver histological necroinflammation grades 1, 2, 3 and 4, respectively. There were no differences in the serum HBV DNA levels between HBeAg-positive and HBeAg-negative chronic hepatitis B as well as among liver histological necroinflammation grades 1, 2, 3 and 4. However, there were differences in the serum HBV DNA levels apportioned by the same hepatic parenchyma cell volume among liver histological necroinflammation grades 1, 2, 3 and 4 in both HBeAg-positive and HBeAg-negative chronic hepatitis B, respectively. There were no differences in HBV DNA levels with the same liver histological necroinflammation grade activated by HBV wild-type and variant strains. After the differences in hepatic parenchyma cell volume for HBV replication of the same liver histological necroinflammation grade accompanied by different hepatic fibrosis stages were adjusted, the serum HBV DNA level apportioned by the same hepatic parenchyma cell volume was correlated with the severity of liver histological necroinflammation grade. © 2011 Blackwell Publishing Ltd.
The density of apical cells of dark-grown protonemata of the moss Ceratodon purpureus
NASA Technical Reports Server (NTRS)
Schwuchow, J. M.; Kern, V. D.; Wagner, T.; Sack, F. D.
2000-01-01
Determinations of plant or algal cell density (cell mass divided by volume) have rarely accounted for the extracellular matrix or shrinkage during isolation. Three techniques were used to indirectly estimate the density of intact apical cells from protonemata of the moss Ceratodon purpureus. First, the volume fraction of each cell component was determined by stereology, and published values for component density were used to extrapolate to the entire cell. Second, protonemal tips were immersed in bovine serum albumin solutions of different densities, and then the equilibrium density was corrected for the mass of the cell wall. Third, apical cell protoplasts were centrifuged in low-osmolarity gradients, and values were corrected for shrinkage during protoplast isolation. Values from centrifugation (1.004 to 1.015 g/cm3) were considerably lower than from other methods (1.046 to 1.085 g/cm3). This work appears to provide the first corrected estimates of the density of any plant cell. It also documents a method for the isolation of protoplasts specifically from apical cells of protonemal filaments.
Berlin, J; Quisenberry, J E; Bailey, F; Woodworth, M; McMichael, B L
1982-07-01
Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study.Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae.
Low Volume Resuscitation with Cell Impermeants
2014-10-01
function even in the low volume state. This is likely due to low resistance to flow in the peripheral capillaries due to prevention of cell swelling...limited in their effectiveness. Attempts to modify basic intravenous crystalloids for prehospital resuscitation by adding hypertonic NaCl or starch
Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput.
Ferguson, Sophie; Steyer, Anna M; Mayhew, Terry M; Schwab, Yannick; Lucocq, John Milton
2017-06-01
Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5-10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell-cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.
Laforge, François O; Carpino, James; Rotenberg, Susan A; Mirkin, Michael V
2007-07-17
The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10(-18) to 10(-12) liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems.
Laforge, François O.; Carpino, James; Rotenberg, Susan A.; Mirkin, Michael V.
2007-01-01
The ability to manipulate ultrasmall volumes of liquids is essential in such diverse fields as cell biology, microfluidics, capillary chromatography, and nanolithography. In cell biology, it is often necessary to inject material of high molecular weight (e.g., DNA, proteins) into living cells because their membranes are impermeable to such molecules. All techniques currently used for microinjection are plagued by two common problems: the relatively large injector size and volume of injected fluid, and poor control of the amount of injected material. Here we demonstrate the possibility of electrochemical control of the fluid motion that allows one to sample and dispense attoliter-to-picoliter (10−18 to 10−12 liter) volumes of either aqueous or nonaqueous solutions. By changing the voltage applied across the liquid/liquid interface, one can produce a sufficient force to draw solution inside a nanopipette and then inject it into an immobilized biological cell. A high success rate was achieved in injections of fluorescent dyes into cultured human breast cells. The injection of femtoliter-range volumes can be monitored by video microscopy, and current/resistance-based approaches can be used to control injections from very small pipettes. Other potential applications of the electrochemical syringe include fluid dispensing in nanolithography and pumping in microfluidic systems. PMID:17620612
Bukovsky, Antonin
2015-02-25
In vitro maturation (IVM) and in vitro fertilization (IVF) technologies are facing with growing demands of older women to conceive. Although ovarian stem cells (OSCs) of older women are capable of producing in vitro fresh oocyte-like cells (OLCs), such cells cannot respond to IVM and IVF due to the lack of granulosa cells required for their maturation. Follicular renewal is also dependent on support of circulating blood mononuclear cells. They induce intermediary stages of meiosis (metaphase I chromosomal duplication and crossover, anaphase, telophase, and cytokinesis) in newly emerging ovarian germ cells, as for the first time demonstrated here, induce formation of granulosa cells, and stimulate follicular growth and development. A pretreatment of OSC culture with mononuclear cells collected from blood of a young healthy fertile woman may cause differentiation of bipotential OSCs into both developing germ and granulosa cells. A small blood volume replacement may enable treatment of ovarian infertility in vivo. The transferred mononuclear cells may temporarily rejuvenate virtually all tissues, including improvement of the function of endocrine tissues. Formation of new follicles and their development may be sufficient for IVM and IVF. The novel proposed in vitro approaches may be used as a second possibility. Infertility of human males affects almost a half of the infertility cases worldwide. Small blood volume replacement from young healthy fertile men may also be easy approach for the improvement of sperm quality in older or other affected men. In addition, body rejuvenation by small blood volume replacement from young healthy individuals of the same sex could represent a decline of in vitro methodology in favor of in vivo treatment for human functional diseases. Here we propose for the first time that blood mononuclear cells are essential for rejuvenation of those tissues, where immune system components participate in an appropriate division and differentiation of tissue stem cells. If needed, small blood volume replacement from distinct young healthy individuals could be utilized in six month intervals for repair of young altered or aged reproductive and other tissue functions. Systemic and local use of honey bee propolis tincture is an alternative option for functional rejuvenation of some tissues.
Fuel Cells Utilizing Oxygen From Air at Low Pressures
NASA Technical Reports Server (NTRS)
Cisar, Alan; Boyer, Chris; Greenwald, Charles
2006-01-01
A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.
Endocrine considerations in the red-cell-mass and plasma volume changes of the Skylab 2 and 3 crews
NASA Technical Reports Server (NTRS)
Johnson, P. C.; Leach, C. S.; Driscoll, T.
1975-01-01
The effect of unknown endocrine changes on blood volume of crewmembers was investigated. The results are presented in tabular form. The fact that some of the changes were in the wrong direction suggests that changes in endocrine function were not the primary cause of the decreases in the plasma volume and red cell mass.
NASA Astrophysics Data System (ADS)
Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong
2018-02-01
The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.
Advances in understanding the pathogenesis of the red cell volume disorders.
Badens, Catherine; Guizouarn, Hélène
2016-09-01
Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies. © 2016 John Wiley & Sons Ltd.
Mechanical confinement regulates cartilage matrix formation by chondrocytes
NASA Astrophysics Data System (ADS)
Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit
2017-12-01
Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.
Volume regulation and shape bifurcation in the cell nucleus
Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.
2015-01-01
ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474
Volume regulation and shape bifurcation in the cell nucleus.
Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X
2015-09-15
Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.
Rehm, K E; Sunesara, I; Tull, M T; Marshall, G D
2016-01-01
Endurance-based exercise training can lead to alterations in components of the immune system, but it is unknown how psychological stress (another potent immunomodulator) may impact these changes. The purpose of this study was to determine the moderating role of psychological stress on exercise-induced immune changes. Twenty-nine recreational runners were recruited for this study four weeks before completing a marathon. Each subject reported: weekly training volume (miles/wk) for the week prior to the study visit; completed the Perceived Stress Scale (PSS), the state version of the State-Trait Anxiety Inventory (STAI) and the Penn State Worry Questionnaire (PSWQ); and donated blood for assessment of CD4+ T cell subpopulations and mitogen-induced cytokine production. Participants ran an average of 30 (±13.4) miles (1 mile=1.6 km) per week. Average values (SD) for immune biomarkers were: regulatory T cells (Treg), 3.2% (±1.2%); type 1 regulatory cells (Tr1), 27.1% (±8.3%); T helper 3 (Th3), 1.8% (±0.7%); interferon gamma (IFNγ), 3.1 pg/ml (±1.0); interleukin (IL)-4, 1.4 pg/ml (±1.1); IFNγ/IL-4, 8.6 (±1.2); IL-10, 512 pg/ml (±288). There was a significant relationship between running volume and both Treg cell numbers (slope of the regression line (β)=0.05, p less than 0.001) and IL-10 production β=-10.6, p=0.002), and there was a trending relationship between running volume and Tr1 cell numbers (β=-0.2%, p=0.064). Perceived stress was a trending moderator of the running volume-Treg relationship, whereas worry was a significant moderator of the running volume-IFNγ and running volume-IFNγ/IL-4 relationships. These data indicate that various forms of psychological stress can impact endurance exercise-based changes in certain immune biomarkers. These changes may reflect an increased susceptibility to clinical risks in some individuals.
Legland, David; Guillon, Fabienne; Kiêu, Kiên; Bouchet, Brigitte; Devaux, Marie-Françoise
2010-01-01
Background and Aims The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or to a specific genotype, or to describe the cellular structure heterogeneity within the fruit. Methods An integrated method is presented to describe the cellular structure of the whole fruit from partial three-dimensional (3D) observations, involving the following steps: (1) fruit sampling, (2) 3D image acquisition and processing and (3) measurement and estimation of relevant 3D morphological parameters. This method was applied to characterize DR12 mutant and wild-type tomatoes (Solanum lycopersicum). Key Results The cellular structure was described using the total volume of the pericarp, the surface area of the cell walls and the ratio of cell-wall surface area to pericarp volume, referred to as the cell-wall surface density. The heterogeneity of cellular structure within the fruit was investigated by estimating variations in the cell-wall surface density with distance to the epidermis. Conclusions The DR12 mutant presents a greater pericarp volume and an increase of cell-wall surface density under the epidermis. PMID:19952012
Fabry, M E; Romero, J R; Buchanan, I D; Suzuka, S M; Stamatoyannopoulos, G; Nagel, R L; Canessa, M
1991-07-01
We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density-gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N-methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.
A replacement for islet equivalents with improved reliability and validity.
Huang, Han-Hung; Ramachandran, Karthik; Stehno-Bittel, Lisa
2013-10-01
Islet equivalent (IE), the standard estimate of isolated islet volume, is an essential measure to determine the amount of transplanted islet tissue in the clinic and is used in research laboratories to normalize results, yet it is based on the false assumption that all islets are spherical. Here, we developed and tested a new easy-to-use method to quantify islet volume with greater accuracy. Isolated rat islets were dissociated into single cells, and the total cell number per islet was determined by using computer-assisted cytometry. Based on the cell number per islet, we created a regression model to convert islet diameter to cell number with a high R2 value (0.8) and good validity and reliability with the same model applicable to young and old rats and males or females. Conventional IE measurements overestimated the tissue volume of islets. To compare results obtained using IE or our new method, we compared Glut2 protein levels determined by Western Blot and proinsulin content via ELISA between small (diameter≤100 μm) and large (diameter≥200 μm) islets. When normalized by IE, large islets showed significantly lower Glut2 level and proinsulin content. However, when normalized by cell number, large and small islets had no difference in Glut2 levels, but large islets contained more proinsulin. In conclusion, normalizing islet volume by IE overestimated the tissue volume, which may lead to erroneous results. Normalizing by cell number is a more accurate method to quantify tissue amounts used in islet transplantation and research.
Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.
Kim, Jong-yoon
2007-12-01
The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.
Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi
2013-02-01
A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.
Klisch, K; Pfarrer, C; Schuler, G; Hoffmann, B; Leiser, R
1999-08-01
The vast majority of trophoblast giant cells in the ruminant placenta are binuclear and are believed to derive from mononuclear trophoblastic cells by a single acytokinetic mitosis. There is no satisfactory explanation for the generation of the small proportion of trophoblast giant cells with one, three, or more nuclei. In this light-and electronmicroscopic study of bovine placentomal tissue from the second half of gestation, developmental stages of the trophoblast giant cells are investigated. Large mitotic figures indicate mitotic polyploidization, which is proposed to be due to two subsequent acytokinetic mitoses. Tripolar mitoses offer an explanation for the development of trinucleate trophoblast giant cells. Measurements of nuclear volumes in a series of semithin sections revealed that three size classes of trophoblast giant cells occur. The approximately doubling of nuclear volume between each class is thought to reflect different levels of DNA content that result from polyploidization in this cell type. Although trinuclear feto-maternal hybrid cells are the standard outcome of the fusion of binuclear trophoblast giant cells with uterine epithelial cells, some syncytia with at least five nuclei were observed in the uterine epithelium.
Murata, Kazuhisa; Hayashi, Ken; Nakamura, Kei-ichiro
2018-01-01
Purpose To reevaluate the effect of internal limiting membrane peeling during vitrectomy on the Müller cell damage, we examined the ultrastructure of the internal limiting membrane by using focused ion beam/scanning electron microscopy (FIB/SEM). Methods A total of 12 internal limiting membranes obtained during surgery in both the macular hole and the idiopathic epiretinal membrane groups were processed for observation by FIB/SEM. Three-dimensional structures of the internal limiting membrane were analyzed. Results The number of cell fragments in the macular hole group was 5.07 ± 1.03 per unit area of internal limiting membrane (100 μm2). The total volume of cell fragments was 3.54 ± 1.24 μm3/100 μm2. In contrast, the number of cell fragments in the epiretinal membrane group was 12.85 ± 3.45/100 μm2, and the total volume of cell fragments was 10.45 ± 2.77 μm3/100 μm2. Data for both values were significantly higher than those observed in the macular hole group (P = 0.0024 and P = 0.0022, respectively, Mann-Whitney U test). No statistical difference was found for the mean volume of the cell fragment between the two groups. Conclusions All of the internal limiting membrane examined in this study showed cell fragments on the retinal surface of the internal limiting membrane. As compared with macular hole, epiretinal membrane exhibited a higher number and total volume of cell fragments, indicating that internal limiting membrane peeling for epiretinal membrane might have a higher risk of causing inner retinal damage. Translational Relevance FIB/SEM was a useful tool for three-dimensional quantitative analysis of the internal limiting membrane. PMID:29423341
Rasmussen, Bo Sonnich; Lykke Sørensen, Celine; Vester-Glowinski, Peter Viktor; Herly, Mikkel; Trojahn Kølle, Stig-Frederik; Fischer-Nielsen, Anne; Drzewiecki, Krzysztof Tadeusz
2017-07-01
Large volume fat grafting is limited by unpredictable volume loss; therefore, methods of improving graft retention have been developed. Fat graft enrichment with either stromal vascular fraction (SVF) cells or adipose tissue-derived stem/stromal cells (ASCs) has been investigated in several animal and human studies, and significantly improved graft retention has been reported. Improvement of graft retention and the feasibility of these techniques are equally important in evaluating the clinical relevance of cell enrichment. We conducted a systematic search of PubMed to identify studies on fat graft enrichment that used either SVF cells or ASCs, and only studies reporting volume assessment were included. A total of 38 articles (15 human and 23 animal) were included to investigate the effects of cell enrichment on graft retention as well as the feasibility and clinical relevance of cell-enriched fat grafting. Improvements in graft retention, the SVF to fat (SVF:fat) ratio, and the ASC concentration used for enrichment were emphasized. We proposed an increased retention rate greater than 1.5-fold relative to nonenriched grafts and a maximum SVF:fat ratio of 1:1 as the thresholds for clinical relevance and feasibility, respectively. Nine studies fulfilled these criteria, whereof 6 used ASCs for enrichment. We found no convincing evidence of a clinically relevant effect of SVF enrichment in humans. ASC enrichment has shown promising results in enhancing graft retention, but additional clinical trials are needed to substantiate this claim and also determine the optimal concentration of SVF cells/ASCs for enrichment. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.
Ben Naceur, Chiraz; Maxime, Valérie; Ben Mansour, Hedi; Le Tilly, Véronique; Sire, Olivier
2016-11-01
Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a relevant and accurate tool to estimate the biological hazards of micropollutants in the water. Copyright © 2016 Elsevier Inc. All rights reserved.
Tahlawi, Asma; Li, Kang
2018-01-01
Tissue vasculature efficiently distributes nutrients, removes metabolites, and possesses selective cellular permeability for tissue growth and function. Engineered tissue models have been limited by small volumes, low cell densities, and invasive cell extraction due to ineffective nutrient diffusion and cell-biomaterial attachment. Herein, we describe the fabrication and testing of ceramic hollow fibre membranes (HFs) able to separate red blood cells (RBCs) and mononuclear cells (MNCs) and be incorporated into 3D tissue models to improve nutrient and metabolite exchange. These HFs filtered RBCs from human umbilical cord blood (CB) suspensions of 20% RBCs to produce 90% RBC filtrate suspensions. When incorporated within 5 mL of 3D collagen-coated polyurethane porous scaffold, medium-perfused HFs maintained nontoxic glucose, lactate, pH levels, and higher cell densities over 21 days of culture in comparison to nonperfused 0.125 mL scaffolds. This hollow fibre bioreactor (HFBR) required a smaller per-cell medium requirement and operated at cell densities > 10-fold higher than current 2D methods whilst allowing for continuous cell harvest through HFs. Herein, we propose HFs to improve 3D cell culture nutrient and metabolite diffusion, increase culture volume and cell density, and continuously harvest products for translational cell therapy biomanufacturing protocols. PMID:29760729
NASA Astrophysics Data System (ADS)
Peterson, Ronald W.; Wand, A. Joshua
2005-09-01
The design of a sample cell for high-performance nuclear magnetic resonance (NMR) at elevated pressure is described. The cell has been optimized for the study of encapsulated proteins dissolved in low viscosity fluids but is suitable for more general nuclear magnetic resonance (NMR) spectroscopy of biomolecules at elevated pressure. The NMR cell is comprised of an alumina-toughened zirconia tube mounted on a self-sealing nonmagnetic metallic valve. The cell has several advantages, including relatively low cost, excellent NMR performance, high-pressure tolerance, chemical inertness, and a relatively large active volume. Also described is a low volume sample preparation device that allows for the preparation of samples under high hydrostatic pressure and their subsequent transfer to the NMR cell.
Adult murine CNS stem cells express aquaporin channels.
La Porta, Caterina A M; Gena, Patrizia; Gritti, Angela; Fascio, Umberto; Svelto, Maria; Calamita, Giuseppe
2006-02-01
Fluid homoeostasis is of critical importance in many functions of the CNS (central nervous system) as indicated by the fact that dysregulation of cell volume underlies clinical conditions such as brain oedema and hypoxia. Water balance is also important during neurogenesis as neural stem cells move considerable amounts of water into or out of the cell to rapidly change their volume during differentiation. Consistent with the relevance of water transport in CNS, multiple AQP (aquaporin) water channels have been recognized and partially characterized in brain cell function. However, the presence and distribution of AQPs in CNS stem cells has not yet been assessed. In the present study, we investigate the expression and subcellular localization of AQPs in murine ANSCs (adult neural stem cells). Considerable AQP8 mRNAs were found in ANSCs where, as expected, the transcript of two additional AQPs, AQP4 and AQP9, was also detected. Immunoblotting with subcellular membrane fractions of ANSCs showed predominant expression of AQP8 in the mitochondria-enriched fraction. This result was consistent with the spotted immunoreactivity profile encountered within the ANSCs by confocal immunofluorescence. AQP8 may have a role in mitochondrial volume regulation during ANSC differentiation. Recognition of AQPs in ANSCs is a step forward in our knowledge of water homoeostasis in the CNS and provides useful information for the purposes of stem cell technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter, Justin R; May, Peter T; Potts, Rodney J
Statistics of radar-retrievals of precipitation are presented. A K-means clustering algorithm is applied to an historical record of radiosonde measurements which identified three major synoptic regimes; a dry, stable regime with mainly westerly winds prevalent during winter, a moist south easterly trade wind regime and a moist northerly regime both prevalent during summer. These are referred to as westerly, trade wind and northerly regimes, respectively. Cell statistics are calculated using an objective cell identification and tracking methodology on data obtained from a nearby S-band radar. Cell statistics are investigated for the entire radar observational period and also during sub-periods correspondingmore » to the three major synoptic regimes. The statistics investigated are cell initiation location, area, rainrate, volume, height, height of the maximum reflectivity, volume greater than 40 dBZ and storm speed and direction. Cells are found predominantly along the elevated topography. The cell statistics reveal that storms which form in the dry, stable westerly regime are of comparable size to the deep cells which form in the northerly regime, larger than those in the trade regime and, furthermore, have the largest rainrate. However, they occur less frequently and have shorter lifetimes than cells in the other regimes. Diurnal statistics of precipitation area and rainrate exhibit early morning and mid afternoon peaks, although the areal coverage lags the rainrate by several hours indicative of a transition from convective to stratiform precipitation. The probability distributions of cell area, rainrate, volume, height and height of the maximum re ectivity are found to follow lognormal distributions.« less
Luethy, D; Stefanovski, D; Salber, R; Sweeney, R W
2017-11-01
Calculation of desired whole blood transfusion volume relies on an estimate of an animal's circulating blood volume, generally accepted to be 0.08 L/kg or 8% of the animal's body weight in kilograms. To use packed cell volume before and after whole blood transfusion to evaluate the accuracy of a commonly used equation to predict packed cell volume after transfusion in small ruminants and South American camelids; to determine the nature and frequency of adverse transfusion reactions in small ruminants and camelids after whole blood transfusion. Fifty-eight small ruminants and 22 alpacas that received whole blood transfusions for anemia. Retrospective case series; medical record review for small ruminants and camelids that received whole blood transfusions during hospitalization. Mean volume of distribution of blood as a fraction of body weight in sheep (0.075 L/kg, 7.5% BW) and goats (0.076 L/kg, 7.6% BW) differed significantly (P < 0.01) from alpacas (0.103 L/kg, 10.3% BW). Mild transfusion reactions were noted in 16% of transfusions. The generally accepted value of 8% for circulating blood volume (volume of distribution of blood) is adequate for calculation of transfusion volumes; however, use of the species-specific circulating blood volume can improve calculation of transfusion volume to predict and achieve desired packed cell volume. The incidence of transfusion reactions in small ruminants and camelids is low. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.
Enakpene, Evbu O; Adebiyi, Adewole A; Ogah, Okechukwu S; Olaniyi, John A; Aje, Akinyemi; Adeoye, Moshood A; Falase, Ayodele O
2014-10-01
Pulmonary hypertension is emerging as one of the causes of morbidity and mortality in adults with sickle cell disease. The prevalence of pulmonary hypertension in Nigerian adults with sickle cell anaemia is unknown. We decided to estimate the pulmonary artery systolic and diastolic pressures in subjects with sickle cell anaemia seen at the University College Hospital, Ibadan, Nigeria, and to determine the frequency of pulmonary hypertension among them. Ninety patients (38 males and 52 females) with sickle cell anaemia in steady state and comparable age- and sex-matched normal controls had a clinical evaluation and echocardiographic examination. The mean age of the subjects with sickle cell anaemia was 24.0 (9.00) years while the mean age for the control group was 24.0 (7.00) years. The frequency of pulmonary hypertension as assessed by a tricuspid regurgitant jet velocity of > 2.5 m/s in this study was 12.2%. Larger left ventricular dimensions and volumes, higher stroke volume and increased left ventricular mass indexed by body surface area were found to be associated with pulmonary hypertension. A multivariate analysis of the potential predictors of pulmonary hypertension in this study showed that male sex and lower packed cell volume (PCV) were independent predictors of pulmonary hypertension in patients with sickle cell anaemia. We conclude that pulmonary artery systolic and diastolic pressures are higher in subjects with sickle cell disease than normal controls. Male sex and low PCV are independent determinants of pulmonary arterial pressure in subjects with sickle cell anaemia in Nigeria.
Flow-through electroporation based on constant voltage for large-volume transfection of cells.
Geng, Tao; Zhan, Yihong; Wang, Hsiang-Yu; Witting, Scott R; Cornetta, Kenneth G; Lu, Chang
2010-05-21
Genetic modification of cells is a critical step involved in many cell therapy and gene therapy protocols. In these applications, cell samples of large volume (10(8)-10(9)cells) are often processed for transfection. This poses new challenges for current transfection methods and practices. Here we present a novel flow-through electroporation method for delivery of genes into cells at high flow rates (up to approximately 20 mL/min) based on disposable microfluidic chips, a syringe pump, and a low-cost direct current (DC) power supply that provides a constant voltage. By eliminating pulse generators used in conventional electroporation, we dramatically lowered the cost of the apparatus and improved the stability and consistency of the electroporation field for long-time operation. We tested the delivery of pEFGP-C1 plasmids encoding enhanced green fluorescent protein into Chinese hamster ovary (CHO-K1) cells in the devices of various dimensions and geometries. Cells were mixed with plasmids and then flowed through a fluidic channel continuously while a constant voltage was established across the device. Together with the applied voltage, the geometry and dimensions of the fluidic channel determined the electrical parameters of the electroporation. With the optimal design, approximately 75% of the viable CHO cells were transfected after the procedure. We also generalize the guidelines for scaling up these flow-through electroporation devices. We envision that this technique will serve as a generic and low-cost tool for a variety of clinical applications requiring large volume of transfected cells. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, Pauline; Hoffmann, Xenia-Katharina; Ebeling, Britta
2013-05-24
Highlights: •We investigate reprogramming of gene expression in multinucleate single cells. •Cells of two differentiation control mutants are fused. •Fused cells proceed to alternative gene expression patterns. •The population of nuclei damps stochastic fluctuations in gene expression. •Dynamic processes of cellular reprogramming can be observed by repeated sampling of a cell. -- Abstract: Nonlinear dynamic processes involving the differential regulation of transcription factors are considered to impact the reprogramming of stem cells, germ cells, and somatic cells. Here, we fused two multinucleate plasmodial cells of Physarum polycephalum mutants defective in different sporulation control genes while being in different physiological states.more » The resulting heterokaryons established one of two significantly different expression patterns of marker genes while the plasmodial halves that were fused to each other synchronized spontaneously. Spontaneous synchronization suggests that switch-like control mechanisms spread over and finally control the entire plasmodium as a result of cytoplasmic mixing. Regulatory molecules due to the large volume of the vigorously streaming cytoplasm will define concentrations in acting on the population of nuclei and in the global setting of switches. Mixing of a large cytoplasmic volume is expected to damp stochasticity when individual nuclei deliver certain RNAs at low copy number into the cytoplasm. We conclude that spontaneous synchronization, the damping of molecular noise in gene expression by the large cytoplasmic volume, and the option to take multiple macroscopic samples from the same plasmodium provide unique options for studying the dynamics of cellular reprogramming at the single cell level.« less
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance
Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.
2015-01-01
ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968
Carlisle, L; Steel, K; Forge, A
1990-11-01
Deafness in the viable dominant spotting mouse mutant is due to a primary defect of the stria vascularis which results in absence of the positive endocochlear potential in scala media. Endocochlear potentials were measured and the structure of stria vascularis of mutants with potentials close to zero was compared with that in normal littermate controls by use of morphometric methods. The stria vascularis was significantly thinner in mutants. Marginal cells were not significantly different from controls in terms of volume density or intramembrane particle density but the network density of tight junctions was significantly reduced in the mutants. A virtual absence of gap junctions between basal cells and marginal or intermediate cells was observed, but intramembrane particle density and junctional complexes between adjacent basal cells were not different from controls. The volume density of basal cells was significantly greater in mutants. Intermediate cells accounted for a significantly smaller volume density of the stria vascularis in mutants and had a lower density of intramembrane particles than controls. Melanocytes were not identified in the stria vascularis of mutants. These results suggest that communication between marginal, intermediate and basal cells might be important to the normal function of the stria vascularis.
Overcoming the Practical Barriers to Spinal Cord Cell Transplantation for ALS
2013-10-01
not be neglected. Moreover, escalating numbers and volumes of injections seem to be associated with lack of accuracy and reflux . Histological...with intact segments. Histological analysis will also determine whether reflux occurs with volume escalation as well as with fast (hand-held...analysis of reflux and transient morbidity with number and volume of injection of hNPCs (Boulis). Create a cell bank of astrocyte restricted
Effect of Water Stress on Cotton Leaves 1
Berlin, Jerry; Quisenberry, J. E.; Bailey, Franklin; Woodworth, Margaret; McMichael, B. L.
1982-01-01
Palisade cells from fully expanded leaves from irrigated and nonirrigated, field grown cotton (Gossypium hirsutum L. cv. Paymaster 266) were subjected to a microscopic examination to evaluate the effect of water stress on subcellular structures. The water potential difference between the two treatments was 13 bars at the time of sampling. The dimensions of the palisade cells and their density per unit leaf area were determined by light microscopy. Palisade cells from stressed plants had the same diameter, but were taller than their counterparts in irrigated plants. The density of the palisade cells was the same in both treatments as was the fractional volume of the intercellular space. It was concluded that the reduced leaf area observed in the stressed plants resulted primarily from a mitotic sensitivity to water stress. Further, expansion of palisade cells was not inhibited by the stress imposed in this study. Morphometric analysis of electron micrographs was used to evaluate the subcellular structure of palisade cells from nonstressed and stressed plants. The fractional volumes of cell walls, total cytoplasm, chloroplasts, starch granules, intrachloroplast bodies, mitochondria, peroxisomes, and central vacuoles were determined. The surface densities of grana and stroma lamellae, outer chloroplast membranes, mitochondrial cristae, endoplasmic reticulum and Golgi cisternae were also measured. The number of chloroplasts, mitochondria, and peroxisomes were determined. These data were expressed as actual volumes, areas, and numbers per palisade cell for each treatment. Palisade cells from stressed plants had thinner cell walls, larger central vacuoles and approximately the same amount of cytoplasm compared to cells from nonstressed plants. Within the cytoplasm, stressed plants had more but smaller chloroplasts with increased grana and stroma lamellae surfaces, larger mithchondria with reduced cristae surfaces, smaller peroxisomes and reduced membrane surfaces of endoplasmic reticulum and Golgi cisternae. Images Fig. 1 PMID:16662453
Streak Imaging Flow Cytometer for Rare Cell Analysis.
Balsam, Joshua; Bruck, Hugh Alan; Ossandon, Miguel; Prickril, Ben; Rasooly, Avraham
2017-01-01
There is a need for simple and affordable techniques for cytology for clinical applications, especially for point-of-care (POC) medical diagnostics in resource-poor settings. However, this often requires adapting expensive and complex laboratory-based techniques that often require significant power and are too massive to transport easily. One such technique is flow cytometry, which has great potential for modification due to the simplicity of the principle of optical tracking of cells. However, it is limited in that regard due to the flow focusing technique used to isolate cells for optical detection. This technique inherently reduces the flow rate and is therefore unsuitable for rapid detection of rare cells which require large volume for analysis.To address these limitations, we developed a low-cost, mobile flow cytometer based on streak imaging. In our new configuration we utilize a simple webcam for optical detection over a large area associated with a wide-field flow cell. The new flow cell is capable of larger volume and higher throughput fluorescence detection of rare cells than the flow cells with hydrodynamic focusing used in conventional flow cytometry. The webcam is an inexpensive, commercially available system, and for fluorescence analysis we use a 1 W 450 nm blue laser to excite Syto-9 stained cells with emission at 535 nm. We were able to detect low concentrations of stained cells at high flow rates of 10 mL/min, which is suitable for rapidly analyzing larger specimen volumes to detect rare cells at appropriate concentration levels. The new rapid detection capabilities, combined with the simplicity and low cost of this device, suggest a potential for clinical POC flow cytometry in resource-poor settings associated with global health.
Kraft, Peter; Scholtyschik, Karolina; Schuhmann, Michael K; Kleinschnitz, Christoph
2017-01-01
While it has been shown that different T-cell subsets have a detrimental role in the acute phase of ischemic stroke, data on the impact of dendritic cells (DC) are missing. Classic DC can be characterized by the cluster of differentiation (CD)11c surface antigen. In this study, we depleted CD11c+ cells by using a CD11c-diphtheria toxin (DTX) receptor mouse strain that allows selective depletion of CD11c+ cells by DTX injection. For stroke induction, we used the model of transient middle cerebral artery occlusion (tMCAO) and analyzed stroke volume and functional outcome on days 1 and 3 as well as expression of prototypical pro- and anti-inflammatory cytokines on day 1 after tMCAO. Three different protocols for CD11c+ cell depletion, tMCAO duration, and readout time point were applied. Injection of DTX (5 or 100 ng/g) reliably depleted CD11c+ cells without influencing the fractions of other immune cell subsets. CD11c+ cell depletion had no impact on stroke volume, but mice with a longer DTX pretreatment performed worse than those with vehicle treatment. CD11c+ cell depletion led to a decrease in cortical interleukin (IL)-1β and IL-6 messenger ribonucleic acid levels. We show, for the first time, that CD11c+ cell depletion does not influence stroke volume in a mouse model of focal cerebral ischemia. Nevertheless, given the unspecificity of the CD11c surface antigen for DC, mouse models that allow a more selective depletion of DC are needed to investigate the role of DC in stroke pathophysiology. © 2017 S. Karger AG, Basel.
Niemeyer, María Isabel; Hougaard, Charlotte; Hoffmann, Else K; Jørgensen, Finn; Stutzin, Andrés; Sepúlveda, Francisco V
2000-01-01
The K+ and Cl− currents activated by hypotonic cell swelling were studied in Ehrlich ascites tumour cells using the whole-cell recording mode of the patch-clamp technique. Currents were measured in the absence of added intracellular Ca2+ and with strong buffering of Ca2+. K+ current activated by cell swelling was measured as outward current at the Cl− equilibrium potential (ECl) under quasi-physiological gradients. It could be abolished by replacing extracellular Na+ with K+, thereby cancelling the driving force. Replacement with other cations suggested a selectivity sequence of K+ > Rb+ > NH4≈ Na+≈ Li+; Cs+ appeared to be inhibitory. The current-voltage relationship of the volume-sensitive K+ current was well fitted with the Goldman-Hodgkin-Katz current equation between -130 and +20 mV with a permeability coefficient of around 10−6 cm s−1 with both physiological and high-K+ extracellular solutions. The class III antiarrhythmic drug clofilium blocked the volume-sensitive K+ current in a voltage-independent manner with an IC50 of 32 μM. Clofilium was also found to be a strong inhibitor of the regulatory volume decrease response of Ehrlich cells. Cell swelling-activated K+ currents of Ehrlich cells are voltage and calcium insensitive and are resistant to a range of K+ channel inhibitors. These characteristics are similar to those of the so-called background K+ channels. Noise analysis of whole-cell current was consistent with a unitary conductance of 5.5 pS for the single channels underlying the K+ current evoked by cell swelling, measured at 0 mV under a quasi-physiological K+ gradient. PMID:10790156
Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua
2006-03-01
To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.
Development of an in silico stochastic 4D model of tumor growth with angiogenesis.
Forster, Jake C; Douglass, Michael J J; Harriss-Phillips, Wendy M; Bezak, Eva
2017-04-01
A stochastic computer model of tumour growth with spatial and temporal components that includes tumour angiogenesis was developed. In the current work it was used to simulate head and neck tumour growth. The model also provides the foundation for a 4D cellular radiotherapy simulation tool. The model, developed in Matlab, contains cell positions randomised in 3D space without overlap. Blood vessels are represented by strings of blood vessel units which branch outwards to achieve the desired tumour relative vascular volume. Hypoxic cells have an increased cell cycle time and become quiescent at oxygen tensions less than 1 mmHg. Necrotic cells are resorbed. A hierarchy of stem cells, transit cells and differentiated cells is considered along with differentiated cell loss. Model parameters include the relative vascular volume (2-10%), blood oxygenation (20-100 mmHg), distance from vessels to the onset of necrosis (80-300 μm) and probability for stem cells to undergo symmetric division (2%). Simulations were performed to observe the effects of hypoxia on tumour growth rate for head and neck cancers. Simulations were run on a supercomputer with eligible parts running in parallel on 12 cores. Using biologically plausible model parameters for head and neck cancers, the tumour volume doubling time varied from 45 ± 5 days (n = 3) for well oxygenated tumours to 87 ± 5 days (n = 3) for severely hypoxic tumours. The main achievements of the current model were randomised cell positions and the connected vasculature structure between the cells. These developments will also be beneficial when irradiating the simulated tumours using Monte Carlo track structure methods. © 2017 American Association of Physicists in Medicine.
A low-volume cavity ring-down spectrometer for sample-limited applications
NASA Astrophysics Data System (ADS)
Stowasser, C.; Farinas, A. D.; Ware, J.; Wistisen, D. W.; Rella, C.; Wahl, E.; Crosson, E.; Blunier, T.
2014-08-01
In atmospheric and environmental sciences, optical spectrometers are used for the measurements of greenhouse gas mole fractions and the isotopic composition of water vapor or greenhouse gases. The large sample cell volumes (tens of milliliters to several liters) in commercially available spectrometers constrain the usefulness of such instruments for applications that are limited in sample size and/or need to track fast variations in the sample stream. In an effort to make spectrometers more suitable for sample-limited applications, we developed a low-volume analyzer capable of measuring mole fractions of methane and carbon monoxide based on a commercial cavity ring-down spectrometer. The instrument has a small sample cell (9.6 ml) and can selectively be operated at a sample cell pressure of 140, 45, or 20 Torr (effective internal volume of 1.8, 0.57, and 0.25 ml). We present the new sample cell design and the flow path configuration, which are optimized for small sample sizes. To quantify the spectrometer's usefulness for sample-limited applications, we determine the renewal rate of sample molecules within the low-volume spectrometer. Furthermore, we show that the performance of the low-volume spectrometer matches the performance of the standard commercial analyzers by investigating linearity, precision, and instrumental drift.
'Tumour volume' as a predictor of survival after resection of non-small-cell lung cancer (NSCLC)
Jefferson, M. F.; Pendleton, N.; Faragher, E. B.; Dixon, G. R.; Myskow, M. W.; Horan, M. A.
1996-01-01
Many factors have been individually related to outcome in populations of non-small-cell lung cancer (NSCLC) patients. Factors responsible for the outcome of an individual after surgical resection are poorly understood. We have examined the importance of 'tumour volume' in determining prognosis of patients following resection of NSCLC in a multivariate model. Cox's proportional hazard analysis was used to determine the relative prognostic significance of stage, patient age, gender, tumour cell-type, nodal score and estimated 'tumour volume' in 669 cases with NSCLC treated with surgical resection, of which 280 had died. All factors (except tumour cell-type, P = 0.33) were individually related to survival (P < 0.05). When examined together, survival time was significantly and independently related to 'tumour volume' and stage (P < 0.001), and other factors ceased to be significant. In cases with stage I or II tumours, risk of death was found to increase significantly with increasing estimated 'tumour volume' (23.8% relative increase in hazard to death per doubling of 'tumour volume', 95% confidence interval 13.2-35.2%, P < 0.001 stage I; P < 0.006 stage II). In cases with stage IIIa tumours this factor alone was the significant prognostic variable. In conclusion, an estimate of 'tumour volume' significantly improves prediction of prognosis for individual NSCLC patients with UICC stage I or II tumours. PMID:8695364
Bresler, V; Montgomery, W L; Fishelson, L; Pollak, P E
1998-11-01
Epulopiscium fishelsoni, gut symbiont of the brown surgeonfish (Acanthurus nigrofuscus) in the Red Sea, attains a larger size than any other eubacterium, varies 10- to 20-fold in length (and >2, 000-fold in volume), and undergoes a complex daily life cycle. In early morning, nucleoids contain highly condensed DNA in elongate, chromosome-like structures which are physically separated from the general cytoplasm. Cell division involves production of two (rarely three) nucleoids within a cell, deposition of cell walls around expanded nucleoids, and emergence of daughter cells from the parent cell. Fluorescence measurements of DNA, RNA, and other cell components indicate the following. DNA quantity is proportional to cell volume over cell lengths of approximately 30 micrometers to >500 micrometers. For cells of a given size, nucleoids of cells with two nucleoids (binucleoid) contain approximately equal amounts of DNA. And each nucleoid of a binucleoid cell contains one-half the DNA of the single nucleoid in a uninucleoid cell of the same size. The life cycle involves approximately equal subdivision of DNA among daughter cells, formation of apical caps of condensed DNA from previously decondensed and diffusely distributed DNA, and "pinching" of DNA near the middle of the cell in the absence of new wall formation. Mechanisms underlying these patterns remain unclear, but formation of daughter nucleoids and cells occurs both during diurnal periods of host feeding and bacterial cell growth and during nocturnal periods of host inactivity when mean bacterial cell size declines.
Bassiouny, M R; El-Chennawi, F; Mansour, A K; Yahia, S; Darwish, A
2015-06-01
Umbilical cord blood (UCB) contains stem cells and can be used as an alternative to bone marrow transplantation. Engraftment is dependent on the total nucleated cell (TNC) and CD34+ cell counts of the cord blood units. This study was designed to evaluate the effect of the method of collection of the UCB on the yield of the cord blood units. Informed consent was obtained from 100 eligible mothers for donation of cord blood. Both in utero and ex utero methods were used for collection. The cord blood volume was measured. The TNC and the CD34+ cell counts were enumerated. We have found that in utero collection gave significantly larger volumes of cord blood and higher TNC counts than ex utero collection. There was no significant difference between both methods regarding the CD34+ cell counts. This study revealed a significant correlation between the volume of the collected cord blood and both TNC and CD34+ cell counts. It is better to collect cord blood in utero before placental delivery to optimize the quality of the cord blood unit. © 2015 AABB.
Red blood cell and iron metabolism during space flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2002-01-01
Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.
1998-04-13
and Sydnor, 1968). The lymphoid system can also be affected resulting in lymphopenia. Toxic effects have been observed in the rapidly dividing cells ...polycyclic aromatic hydrocarbons have demonstrated the toxic effects of these compounds on rapidly proliferating cells . An intraperitoneal injection...b); however, higher doses are reported to result in testicular effects and decreased hemoglobin and packed cell volume (Kluwe et al, 1982; Gray et
Concept of multiple-cell cavity for axion dark matter search
NASA Astrophysics Data System (ADS)
Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.
2018-02-01
In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.
Yurinskaya, Valentina; Aksenov, Nikolay; Moshkov, Alexey; Model, Michael; Goryachaya, Tatyana; Vereninov, Alexey
2017-10-01
A decrease in flow cytometric forward light scatter (FSC) is commonly interpreted as a sign of apoptotic cell volume decrease (AVD). However, the intensity of light scattering depends not only on the cell size but also on its other characteristics, such as hydration, which may affect the scattering in the opposite way. That makes estimation of AVD by FSC problematic. Here, we aimed to clarify the relationship between light scattering, cell hydration (assayed by buoyant density) and cell size by the Coulter technique. We used human lymphoid cells U937 exposed to staurosporine, etoposide or hypertonic stress as an apoptotic model. An initial increase in FSC was found to occur in apoptotic cells treated with staurosporine and hypertonic solutions; it is accompanied by cell dehydration and is absent in apoptosis caused by etoposide that is consistent with the lack of dehydration in this case. Thus, the effect of dehydration on the scattering signal outweighs the effect of reduction in cell size. The subsequent FSC decrease, which occurred in parallel to accumulation of annexin-positive cells, was similar in apoptosis caused by all three types of inducers. We conclude that an increase, but not a decrease in light scattering, indicates the initial cell volume decrease associated with apoptotic cell dehydration.
The use of biomarkers to describe plasma-, red cell-, and blood volume from a simple blood test.
Lobigs, Louisa Margit; Sottas, Pierre-Edouard; Bourdon, Pitre Collier; Nikolovski, Zoran; El-Gingo, Mohamed; Varamenti, Evdokia; Peeling, Peter; Dawson, Brian; Schumacher, Yorck Olaf
2017-01-01
Plasma volume and red cell mass are key health markers used to monitor numerous disease states, such as heart failure, kidney disease, or sepsis. Nevertheless, there is currently no practically applicable method to easily measure absolute plasma or red cell volumes in a clinical setting. Here, a novel marker for plasma volume and red cell mass was developed through analysis of the observed variability caused by plasma volume shifts in common biochemical measures, selected based on their propensity to present with low variations over time. Once a month for 6 months, serum and whole blood samples were collected from 33 active males. Concurrently, the CO-rebreathing method was applied to determine target levels of hemoglobin mass (HbM) and blood volumes. The variability of 18 common chemistry markers and 27 Full Blood Count variables was investigated and matched to the observed plasma volume variation. After the removal of between-subject variations using a Bayesian model, multivariate analysis identified two sets of 8 and 15 biomarkers explaining 68% and 69% of plasma volume variance, respectively. The final multiparametric model contains a weighting function to allow for isolated abnormalities in single biomarkers. This proof-of-concept investigation describes a novel approach to estimate absolute vascular volumes, with a simple blood test. Despite the physiological instability of critically ill patients, it is hypothesized the model, with its multiparametric approach and weighting function, maintains the capacity to describe vascular volumes. This model has potential to transform volume management in clinical settings. Am. J. Hematol. 92:62-67, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
International review of cytology. Volume 109: A survey of cell biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourne, G.; Jeon, K.W.; Friedlander, M.
1987-01-01
This book's contents are: Local Regulation of Testicular Function;Microtubules and DNA Replication;Differentiation of Spermatogenic Cells from Vertebrates in Vitro;The Developmental Program of Spermiogenesis in Drosophila: A Genetic Analysis;Cell Motility and Ionic Relations in Characean Cells as Revealed by Internal Perfusion and Other Cell Models;and The Culture of Oral Epithelium. Each chapter includes references.
Volume reduction of hot cell plastic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, F W; Henscheid, J P; Lewis, L C
1989-09-19
The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.
Single-cell measurement of red blood cell oxygen affinity.
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan
2015-08-11
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.
Single-cell measurement of red blood cell oxygen affinity
Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan
2015-01-01
Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973
Netti, Vanina; Pizzoni, Alejandro; Peréz-Domínguez, Martha; Ford, Paula; Pasantes-Morales, Herminia; Ramos-Mandujano, Gerardo; Capurro, Claudia
2018-05-23
Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca 2+ release from intracellular stores. Here we investigate the contribution of Taurine (Tau) and Glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca 2+ -dependency in MIO-M1 cells. Swelling-induced [ 3 -H]-Tau/[ 3 H]-Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [ 3 H]-Tau and [ 3 H]-Glu (Tau > Glu) blunted by the VRAC inhibitors DCPIB and CBX, reducing RVD. Only [ 3 H]-Tau efflux was dependent on Ca 2+ release from intracellular stores. RVD was unaffected in a Ca 2+ -free medium, probably due to Ca 2+ -independent Tau and Glu release, but was reduced by chelating intracellular Ca 2+ . The inhibition of phosphatidylinositol-3-kinase reduced [ 3 H]-Glu efflux but also the Ca 2+ -insensitive [ 3 H]-Tau fraction and decreased RVD, evidencing the relevance of this Ca 2+ -independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca 2+ influence on amino acid release support the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology.
Winkelman, James W; Tanasijevic, Milenko J; Zahniser, David J
2017-08-01
- A novel automated slide-based approach to the complete blood count and white blood cell differential count is introduced. - To present proof of concept for an image-based approach to complete blood count, based on a new slide preparation technique. A preliminary data comparison with the current flow-based technology is shown. - A prototype instrument uses a proprietary method and technology to deposit a precise volume of undiluted peripheral whole blood in a monolayer onto a glass microscope slide so that every cell can be distinguished, counted, and imaged. The slide is stained, and then multispectral image analysis is used to measure the complete blood count parameters. Images from a 600-cell white blood cell differential count, as well as 5000 red blood cells and a variable number of platelets, that are present in 600 high-power fields are made available for a technologist to view on a computer screen. An initial comparison of the basic complete blood count parameters was performed, comparing 1857 specimens on both the new instrument and a flow-based hematology analyzer. - Excellent correlations were obtained between the prototype instrument and a flow-based system. The primary parameters of white blood cell, red blood cell, and platelet counts resulted in correlation coefficients (r) of 0.99, 0.99, and 0.98, respectively. Other indices included hemoglobin (r = 0.99), hematocrit (r = 0.99), mean cellular volume (r = 0.90), mean corpuscular hemoglobin (r = 0.97), and mean platelet volume (r = 0.87). For the automated white blood cell differential counts, r values were calculated for neutrophils (r = 0.98), lymphocytes (r = 0.97), monocytes (r = 0.76), eosinophils (r = 0.96), and basophils (r = 0.63). - Quantitative results for components of the complete blood count and automated white blood cell differential count can be developed by image analysis of a monolayer preparation of a known volume of peripheral blood.
Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine
2018-07-01
The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, T.; Keszthelyi, B.; Peer, J.
1962-02-25
Ten patients suffering from polycythemia vera were divided into three groups for evaluation purposes. The first group (2 patients) consisted of the mildest cases in which the hematocrit values were 55% or less. The second group (2 patients) had a hematocrit values of 55% or higher, and the red cell and plasma voiumes were higher than normal. The third group consisted of the severest cases with hematocrit values of 70 to 80%, red cell counts of 6 to 8 million/ mm/sup 3, and red cell and plasma volumes two to four times normai. Blood volumes were determined with /sup 32/Pmore » or /sup 51/Cr. The patients showed clinical improvement after the first treatment with /sup 32/P and hematologic examination indicated that the red cell count dropped, while hemogiobin value, white cell count, thrombocyte count, and hematocrit decreased. After the second / sup 32/P treatment the blood volume did not decrease appreciably, but plasma volume increased, leading to improvement of the patient's condition. Venesection may still be used as a therapeutic means when an immediate reduction of the blood volume is desired. This can be achieved by /sup 32/P therapy only after severai treatments. The /sup 32/P dose varied with the severity of the illness from one treatment of five mC /sup 32/P in the patients with hematocrits of 55% to two doses of 4.2 mC in those with values of 58%, and three mC /sup 32/P in another patient with a hematocrit of 82%. (BBB)« less
Breece, Elizabeth; Paciotti, Brian; Nordahl, Christine Wu; Ozonoff, Sally; Van de Water, Judy A.; Rogers, Sally J.; Amaral, David; Ashwood, Paul
2012-01-01
The pathophysiology of Autism Spectrum Disorder (ASD) is not yet known; however, studies suggest that dysfunction of the immune system affects many children with ASD. Increasing evidence points to dysfunction of the innate immune system including activation of microglia and perivascular macrophages, increases in inflammatory cytokines/chemokines in brain tissue and CSF, and abnormal peripheral monocyte cell function. Dendritic cells are major players in innate immunity and have important functions in the phagocytosis of pathogens or debris, antigen presentation, activation of naïve T cells, induction of tolerance and cytokine/chemokine production. In this study, we assessed circulating frequencies of myeloid dendritic cells (defined as Lin-1−BDCA1+CD11c+ and Lin-1−BDCA3+CD123−) and plasmacytoid dendritic cells (Lin-1− BDCA2+CD123+ or Lin-1−BDCA4+ CD11c−) in 57 children with ASD, and 29 typically developing controls of the same age, all of who were enrolled as part of the Autism Phenome Project (APP). The frequencies of dendritic cells and associations with behavioral assessment and MRI measurements of amygdala volume were compared in the same participants. The frequencies of myeloid dendritic cells were significantly increased in children with ASD compared to typically developing controls (p < 0.03). Elevated frequencies of myeloid dendritic cells were positively associated with abnormal right and left amygdala enlargement, severity of gastrointestinal symptoms and increased repetitive behaviors. The frequencies of plasmacytoid dendritic cells were also associated with amygdala volumes as well as developmental regression in children with ASD. Dendritic cells play key roles in modulating immune responses and differences in frequencies or functions of these cells may result in immune dysfunction in children with ASD. These data further implicate innate immune cells in the complex pathophysiology of ASD. PMID:23063420
NASA Astrophysics Data System (ADS)
Yang, Geer; Zhang, Aili; Xu, Lisa X.; He, Xiaoming
2009-06-01
In this study, a set of models for predicting the diffusion-limited ice nucleation and growth inside biological cells were established. Both the heterogeneous and homogeneous nucleation mechanisms were considered in the models. Molecular mobility including viscosity and mutual diffusion coefficient of aqueous cryoprotectant (i.e., glycerol here) solutions was estimated using models derived from the free volume theory for glass transition, which makes it possible to predict the two most important physical properties (i.e., viscosity and mutual diffusion coefficient) over wide ranges of temperature and concentration as encountered in cryopreservation. After being verified using experimental data, the models were used to predict the critical cooling rate (defined as the cooling rate required so that the crystallized volume is less than 0.1% of the cell volume) as a function of the initial glycerol concentration in a number of cell types with different sizes. For slowing freezing, it was found that the required critical cooling rate is cell-type dependent with influences from cell size and the ice nucleation and water transport parameters. In general, the critical cooling rate does not change significantly with the initial glycerol concentration used and tends to be higher for smaller cells. For vitrification, the required critical cooling rate does change significantly with the initial glycerol concentration used and tends to decrease with the decrease in cell size. However, the required critical cooling rate can be similar for cells with very different sizes. It was further found that the thermodynamic and kinetic parameters for intracellular ice formation associated with different cells rather than the cell size per se significantly affect the critical cooling rates required for vitrification. For all cell types, it was found that homogeneous nucleation dominates at ultrafast cooling rates and/or high glycerol concentrations, whereas heterogeneous nucleation becomes important only during slow freezing with a low initial glycerol concentration (<1.5-2M), particularly for large cells such as mouse oocytes.
NASA Technical Reports Server (NTRS)
Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.
2004-01-01
Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.
The optimal density of cellular solids in axial tension.
Mihai, L Angela; Alayyash, Khulud; Wyatt, Hayley
2017-05-01
For cellular bodies with uniform cell size, wall thickness, and shape, an important question is whether the same volume of material has the same effect when arranged as many small cells or as fewer large cells. To answer this question, for finite element models of periodic structures of Mooney-type material with different structural geometry and subject to large strain deformations, we identify a nonlinear elastic modulus as the ratio between the mean effective stress and the mean effective strain in the solid cell walls, and show that this modulus increases when the thickness of the walls increases, as well as when the number of cells increases while the volume of solid material remains fixed. Since, under the specified conditions, this nonlinear elastic modulus increases also as the corresponding mean stress increases, either the mean modulus or the mean stress can be employed as indicator when the optimum wall thickness or number of cells is sought.
Study of five cell salvage machines in coronary artery surgery.
Burman, J F; Westlake, A S; Davidson, S J; Rutherford, L C; Rayner, A S; Wright, A M; Morgan, C J; Pepper, J R
2002-06-01
We evaluated the effectiveness, ease of use and safety of five machines for blood salvage during coronary artery surgery. All were equally effective in concentrating red cells. We measured haemoglobin, packed cell volume, free haemoglobin, white cells, neutrophil elastase, platelets, thrombin-antithrombin complex (TAT), prothrombin activation peptide F1.2, fibrin degradation product (d-dimers), tissue plasminogen activator (tPA) and heparin in wound blood, in washed cell suspensions and in a unit of bank blood prepared for each patient. All machines were equally safe and easy to use and were equally effective in removing heparin and the physiological components measured. There were no adverse effects on patients. Clotting factors are severely depleted both in salvaged blood, even before washing, and in bank blood. Cell savers are a valuable adjunct to coronary artery surgery, but careful monitoring of coagulation is required when the volumes of either bank blood or salvaged blood are large.
Lopes, R A; Costa, J R; Piccolo, A M; Petenusci, S O
1982-01-01
The authors studied morphological, morphometric, and histochemically the mucosubstances and proteins in the salivary glands of the lizard Ameiva. Based on the results, the authors concluded: 1. The labial salivary gland is formed by small mucous and mucoserous glands; the sublingual gland by mucoserous cells. 2. Mucous cells show neutral and sulphated mucosubstances and sialic acid. Mucoserous cells of the labial gland show neutral mucosubstance, sialic acid, hyaluronic acid and protein radicals. Mucoserous cells of the sublingual gland show neutral mucosubstance, sialic acid and protein radicals. 3. The average values for acinar area were: 1,198.11 microns 2 for mucoserous acini and 2,105.95 microns 2 for mucous acini of the labial salivary gland. The average values for nucleus volume were: 47.41 microns 3 for mucoserous cells and 38.97 microns 4 for mucous cells. 4. The average values for acinar area and nuclear volume of the mucoserous cells of the subingual gland were respectively: 1,474.62 microns 2 and 67.77 microns 3.
NASA Technical Reports Server (NTRS)
Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.
1985-01-01
The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.
Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.
1996-01-01
A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, Michael J; Jacobson, Stephen C
2012-09-18
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN
2007-07-03
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
40 CFR 86.1829-01 - Durability and emission testing requirements; waivers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... under the provisions of § 86.1828-10(c) and (g). (4) Electric vehicles and fuel cell vehicles. For electric vehicles and fuel cell vehicles, manufacturers may provide a statement in the application for..., including, but not limited to, canister type, canister volume, canister working capacity, fuel tank volume...
Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes
USDA-ARS?s Scientific Manuscript database
Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...
Intracerebral Cell Implantation: Preparation and Characterization of Cell Suspensions.
Rossetti, Tiziana; Nicholls, Francesca; Modo, Michel
2016-01-01
Intracerebral cell transplantation is increasingly finding a clinical translation. However, the number of cells surviving after implantation is low (5-10%) compared to the number of cells injected. Although significant efforts have been made with regard to the investigation of apoptosis of cells after implantation, very little optimization of cell preparation and administration has been undertaken. Moreover, there is a general neglect of the biophysical aspects of cell injection. Cell transplantation can only be an efficient therapeutic approach if an optimal transfer of cells from the dish to the brain can be ensured. We therefore focused on the in vitro aspects of cell preparation of a clinical-grade human neural stem cell (NSC) line for intracerebral cell implantation. NSCs were suspended in five different vehicles: phosphate-buffered saline (PBS), Dulbecco's modified Eagle medium (DMEM), artificial cerebral spinal fluid (aCSF), HypoThermosol, and Pluronic. Suspension accuracy, consistency, and cell settling were determined for different cell volume fractions in addition to cell viability, cell membrane damage, and clumping. Maintenance of cells in suspension was evaluated while being stored for 8 h on ice, at room temperature, or physiological normothermia. Significant differences between suspension vehicles and cellular volume fractions were evident. HypoThermosol and Pluronic performed best, with PBS, aCSF, and DMEM exhibiting less consistency, especially in maintaining a suspension and preserving viability under different storage conditions. These results provide the basis to further investigate these preparation parameters during the intracerebral delivery of NSCs to provide an optimized delivery process that can ensure an efficient clinical translation.
Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation
Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan
2010-01-01
Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939
Mobile flow cytometer for mHealth.
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2015-01-01
Flow cytometry is used for cell counting and analysis in numerous clinical and environmental applications. However flow cytometry is not used in mHealth mainly because current flow cytometers are large, expensive, power-intensive devices designed to operate in a laboratory. Their design results in a lack of portability and makes them unsuitable for mHealth applications. Another limitation of current technology is the low volumetric throughput rates that are not suitable for rapid detection of rare cells.To address these limitations, we describe here a novel, low-cost, mobile flow cytometer based on wide-field imaging with a webcam for large volume and high throughput fluorescence detection of rare cells as a simulation for circulating tumor cells (CTCs) detection. The mobile flow cytometer uses a commercially available webcam capable of 187 frames per second video capture at a resolution of 320 × 240 pixels. For fluorescence detection, a 1 W 450 nm blue laser is used for excitation of Syto-9 fluorescently stained cells detected at 535 nm. A wide-field flow cell was developed for large volume analysis that allows for the linear velocity of target cells to be lower than in conventional hydrodynamic focusing flow cells typically used in cytometry. The mobile flow cytometer was found to be capable of detecting low concentrations at flow rates of 500 μL/min, suitable for rare cell detection in large volumes. The simplicity and low cost of this device suggests that it may have a potential clinical use for mHealth flow cytometry for resource-poor settings associated with global health.
Fan, Hai-Tian; Morishima, Shigeru; Kida, Hajime; Okada, Yasunobu
2001-01-01
Some phenol derivatives are known to block volume-sensitive Cl− channels. However, effects on the channel of the bisphenol phloretin, which is a known blocker of glucose uniport and anion antiport, have not been examined. In the present study, we investigated the effects of phloretin on volume-sensitive Cl− channels in comparison with cyclic AMP-activated CFTR Cl− channels and Ca2+-activated Cl− channels using the whole-cell patch-clamp technique.Extracellular application of phloretin (over 10 μM) voltage-independently, and in a concentration-dependent manner (IC50 ∼30 μM), inhibited the Cl− current activated by a hypotonic challenge in human epithelial T84, Intestine 407 cells and mouse mammary C127/CFTR cells.In contrast, at 30 μM phloretin failed to inhibit cyclic AMP-activated Cl− currents in T84 and C127/CFTR cells. Higher concentrations (over 100 μM) of phloretin, however, partially inhibited the CFTR Cl− currents in a voltage-dependent manner.At 30 and 300 μM, phloretin showed no inhibitory effect on Ca2+-dependent Cl− currents induced by ionomycin in T84 cells.It is concluded that phloretin preferentially blocks volume-sensitive Cl− channels at low concentrations (below 100 μM) and also inhibits cyclic AMP-activated Cl− channels at higher concentrations, whereas phloretin does not inhibit Ca2+-activated Cl− channels in epithelial cells. PMID:11487521
Giant Cells of Escherichia coli
Adler, Howard I.; Terry, Claude E.; Hardigree, Alice A.
1968-01-01
A mutant strain of Escherichia coli K-12 produced amorphous cells when grown in a variety of media. The lon− allele, known to increase the radiation sensitivity of the cytokinesis mechanism, was introduced into the mutant by means of conjugation. Cells of this recombinant strain grew, after exposure to radiation, into giant amorphous cells, approximately 500 to 1,000 times the volume of a normal E. coli cell. These giant cells are analogous to the filaments formed after the irradiation of lon− rod-shaped cells. Images PMID:4866096
Hunziker, E B; Wagner, J; Zapf, J
1994-01-01
Skeletal growth depends upon enchondral ossification in growth plate cartilage, within which chondrocytes undergo well defined stages of maturation. We infused IGF-I or growth hormone (GH), two key regulators of skeletal growth, into hypophysectomized rats and compared their effects on growth plate chondrocyte differentiation using qualitative and quantitative autoradiography, stereology, and incident light fluorescence microscopy. Stem cell cycle time was shortened from 50 to 15 and 8 d after treatment with IGF-I and GH, respectively. Proliferating cell cycle time decreased from 11 to 4.5 and 3 d, and duration of the hypertrophic phase decreased from 6 to 4 and 2.8 d. Average matrix volume per cell at each differentiation stage was similar for normal, hormone-treated, and untreated hypophysectomized groups. Mean cell volume and cell height were significantly reduced by hypophysectomy at the proliferative and hypertrophic stages, but were restored to physiological values by IGF-I and GH. In contrast, cell productivity, i.e., increases in cell volume, height, and matrix production per unit of time, did not reach normal values with either IGF-I or GH, and this parameter was inversely proportional to cell cycle time or phase duration. IGF-I and GH are thus capable of stimulating growth plate chondrocytes at all stages of differentiation, albeit to variable degrees with respect to individual cell activities. Although it is generally accepted that GH acts at both the stem and proliferating phases of chondrocyte differentiation, our data represent the first evidence in vivo that IGF-I is also capable of stimulating stem cells. Images PMID:8132746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohi, J M
1992-09-01
This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&Dmore » and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.« less
Controlling cell volume for efficient PHB production by Halomonas.
Jiang, Xiao-Ran; Yao, Zhi-Hao; Chen, Guo-Qiang
2017-11-01
Bacterial morphology is decided by cytoskeleton protein MreB and cell division protein FtsZ encoded by essential genes mreB and ftsZ, respectively. Inactivating mreB and ftsZ lead to increasing cell sizes and cell lengths, respectively, yet seriously reduce cell growth ability. Here we develop a temperature-responsible plasmid expression system for compensated expression of relevant gene(s) in mreB or ftsZ disrupted recombinants H. campaniensis LS21, allowing mreB or ftsZ disrupted recombinants to grow normally at 30°C in a bioreactor for 12h so that a certain cell density can be reached, followed by 36h cell size expansions or cell shape elongations at elevated 37°C at which the mreB and ftsZ encoded plasmid pTKmf failed to replicate in the recombinants and thus lost themselves. Finally, 80% PHB yield increase was achieved via controllable morphology manipulated H. campaniensis LS21. It is concluded that controllable expanding cell volumes (widths or lengths) provides more spaces for accumulating more inclusion body polyhydroxybutyrate (PHB) and the resulting cell gravity precipitation benefits the final separation of cells and product during downstream. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Kozlowski, J; Czarnoleski, M; François-Krassowska, A; Maciak, S; Pis, T
2010-12-23
We examined cell size correlations between tissues, and cell size to body mass relationships in passerine birds, amphibians and mammals. The size correlated highly between all cell types in birds and amphibians; mammalian tissues clustered by size correlation in three tissue groups. Erythrocyte size correlated well with the volume of other cell types in birds and amphibians, but poorly in mammals. In birds, body mass correlated positively with the size of all cell types including erythrocytes, and in mammals only with the sizes of some cell types. Size of mammalian erythrocytes correlated with body mass only within the most taxonomically uniform group of species (rodents and lagomorphs). Cell volume increased with body mass of birds and mammals to less than 0.3 power, indicating that body size evolved mostly by changes in cell number. Our evidence suggests that epigenetic mechanisms determining cell size relationships in tissues are conservative in birds and amphibians, but less stringent in mammals. The patterns of cell size to body mass relationships we obtained challenge some key assumptions of fractal and cellular models used by allometric theory to explain mass-scaling of metabolism. We suggest that the assumptions in both models are not universal, and that such models need reformulation.
NASA Astrophysics Data System (ADS)
Smith, Zachary J.; Gao, Tingjuan; Lin, Tzu-Yin; Carrade-Holt, Danielle; Lane, Stephen M.; Matthews, Dennis L.; Dwyre, Denis M.; Wachsmann-Hogiu, Sebastian
2016-03-01
Cell counting in human body fluids such as blood, urine, and CSF is a critical step in the diagnostic process for many diseases. Current automated methods for cell counting are based on flow cytometry systems. However, these automated methods are bulky, costly, require significant user expertise, and are not well suited to counting cells in fluids other than blood. Therefore, their use is limited to large central laboratories that process enough volume of blood to recoup the significant capital investment these instruments require. We present in this talk a combination of a (1) low-cost microscope system, (2) simple sample preparation method, and (3) fully automated analysis designed for providing cell counts in blood and body fluids. We show results on both humans and companion and farm animals, showing that accurate red cell, white cell, and platelet counts, as well as hemoglobin concentration, can be accurately obtained in blood, as well as a 3-part white cell differential in human samples. We can also accurately count red and white cells in body fluids with a limit of detection ~3 orders of magnitude smaller than current automated instruments. This method uses less than 1 microliter of blood, and less than 5 microliters of body fluids to make its measurements, making it highly compatible with finger-stick style collections, as well as appropriate for small animals such as laboratory mice where larger volume blood collections are dangerous to the animal's health.
The entrance of water into beef and dog red cells.
VILLEGAS, R; BARTON, T C; SOLOMON, A K
1958-11-20
The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.
Treatment of internal sources in the finite-volume ELLAM
Healy, R.W.; ,; ,; ,; ,; ,
2000-01-01
The finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) is a mass-conservative approach for solving the advection-dispersion equation. The method has been shown to be accurate and efficient for solving advection-dominated problems of solute transport in ground water in 1, 2, and 3 dimensions. Previous implementations of FVELLAM have had difficulty in representing internal sources because the standard assumption of lowest order Raviart-Thomas velocity field does not hold for source cells. Therefore, tracking of particles within source cells is problematic. A new approach has been developed to account for internal sources in FVELLAM. It is assumed that the source is uniformly distributed across a grid cell and that instantaneous mixing takes place within the cell, such that concentration is uniform across the cell at any time. Sub-time steps are used in the time-integration scheme to track mass outflow from the edges of the source cell. This avoids the need for tracking within the source cell. We describe the new method and compare results for a test problem with a wide range of cell Peclet numbers.
Foam structure :from soap froth to solid foams.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraynik, Andrew Michael
2003-01-01
The properties of solid foams depend on their structure, which usually evolves in the fluid state as gas bubbles expand to form polyhedral cells. The characteristic feature of foam structure-randomly packed cells of different sizes and shapes-is examined in this article by considering soap froth. This material can be modeled as a network of minimal surfaces that divide space into polyhedral cells. The cell-level geometry of random soap froth is calculated with Brakke's Surface Evolver software. The distribution of cell volumes ranges from monodisperse to highly polydisperse. Topological and geometric properties, such as surface area and edge length, of themore » entire foam and individual cells, are discussed. The shape of struts in solid foams is related to Plateau borders in liquid foams and calculated for different volume fractions of material. The models of soap froth are used as templates to produce finite element models of open-cell foams. Three-dimensional images of open-cell foams obtained with x-ray microtomography allow virtual reconstruction of skeletal structures that compare well with the Surface Evolver simulations of soap-froth geometry.« less
Self-digitization chip for single-cell genotyping of cancer-related mutations
Monroe, Luke D.; Kreutz, Jason E.; Schneider, Thomas; Fujimoto, Bryant S.; Chiu, Daniel T.; Radich, Jerald P.; Paguirigan, Amy L.
2018-01-01
Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis. PMID:29718986
Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng
2015-12-22
Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.
Taste bud cell dynamics during normal and sodium-restricted development.
Hendricks, Susan J; Brunjes, Peter C; Hill, David L
2004-04-26
Taste bud volume increases over the postnatal period to match the number of neurons providing innervation. To clarify age-related changes in fungiform taste bud volume, the current study investigated developmental changes in taste bud cell number, proliferation rate, and life span. Taste bud growth can largely be accounted for by addition of cytokeratin-19-positive taste bud cells. Examination of taste bud cell kinetics with 3H-thymidine autoradiography revealed that cell life span and turnover periods were not altered during normal development but that cells were produced more rapidly in young rats, a prominent modification that could lead to increased taste bud size. By comparison, dietary sodium restriction instituted during pre- and postnatal development results in small taste buds at adulthood as a result of fewer cytokeratin-19-positive cells. The dietary manipulation also had profound influences on taste bud growth kinetics, including an increased latency for cells to enter the taste bud and longer life span and turnover periods. These studies provide fundamental, new information about taste bud development under normal conditions and after environmental manipulations that impact nerve/target matching. Copyright 2004 Wiley-Liss, Inc.
Multiscale Modeling of Cell Interaction in Angiogenesis: From the Micro- to Macro-scale
NASA Astrophysics Data System (ADS)
Pillay, Samara; Maini, Philip; Byrne, Helen
Solid tumors require a supply of nutrients to grow in size. To this end, tumors induce the growth of new blood vessels from existing vasculature through the process of angiogenesis. In this work, we use a discrete agent-based approach to model the behavior of individual endothelial cells during angiogenesis. We incorporate crowding effects through volume exclusion, motility of cells through biased random walks, and include birth and death processes. We use the transition probabilities associated with the discrete models to determine collective cell behavior, in terms of partial differential equations, using a Markov chain and master equation framework. We find that the cell-level dynamics gives rise to a migrating cell front in the form of a traveling wave on the macro-scale. The behavior of this front depends on the cell interactions that are included and the extent to which volume exclusion is taken into account in the discrete micro-scale model. We also find that well-established continuum models of angiogenesis cannot distinguish between certain types of cell behavior on the micro-scale. This may impact drug development strategies based on these models.
Self-digitization chip for single-cell genotyping of cancer-related mutations.
Thompson, Alison M; Smith, Jordan L; Monroe, Luke D; Kreutz, Jason E; Schneider, Thomas; Fujimoto, Bryant S; Chiu, Daniel T; Radich, Jerald P; Paguirigan, Amy L
2018-01-01
Cancer is a heterogeneous disease, and patient-level genetic assessments can guide therapy choice and impact prognosis. However, little is known about the impact of genetic variability within a tumor, intratumoral heterogeneity (ITH), on disease progression or outcome. Current approaches using bulk tumor specimens can suggest the presence of ITH, but only single-cell genetic methods have the resolution to describe the underlying clonal structures themselves. Current techniques tend to be labor and resource intensive and challenging to characterize with respect to sources of biological and technical variability. We have developed a platform using a microfluidic self-digitization chip to partition cells in stationary volumes for cell imaging and allele-specific PCR. Genotyping data from only confirmed single-cell volumes is obtained and subject to a variety of relevant quality control assessments such as allele dropout, false positive, and false negative rates. We demonstrate single-cell genotyping of the NPM1 type A mutation, an important prognostic indicator in acute myeloid leukemia, on single cells of the cell line OCI-AML3, describing a more complex zygosity distribution than would be predicted via bulk analysis.
Leaf shape: genetic controls and environmental factors.
Tsukaya, Hirokazu
2005-01-01
In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.
Thermal Runaway Severity Reduction Assessment and Implementation: On Li-Ion Batteries
NASA Technical Reports Server (NTRS)
Darcy, Eric
2015-01-01
Preventing cell-cell thermal runaway propagation and flames/sparks from exiting battery enclosure is possible with proper thermal & electrical design and cell thermal runaway ejecta/effluent management and can be had with minimal mass/volume penalty.
Chugh, Rishi Man; Chaturvedi, Madhusudan; Yerneni, Lakshmana Kumar
2016-01-01
Growth-arrested feeder cells following Mitomycin C treatment are instrumental in stem cell culture allowing development of regenerative strategies and alternatives to animal testing in drug discovery. The concentration of Mitomycin C and feeder cell type was described to affect feeder performance but the criticality of feeder cell exposure density was not addressed. We hypothesize that the exposure cell density influences the effectiveness of Mitomycin C in an arithmetic manner. Three different exposure cell densities of Swiss 3T3 fibroblasts were treated with a range of Mitomycin C concentrations for 2h. The cells were replaced and the viable cells counted on 3, 6, 9, 12 and 20days. The cell extinctions were compared with doses per cell which were derived by dividing the product of concentration and volume of Mitomycin C solution with exposure cell number. The periodic post-treatment feeder cell extinctions were not just dependent on Mitomycin C concentration but also on dose per cell. Analysis of linearity between viable cell number and Mitomycin C dose per cell derived from the concentrations of 3 to 10μg/ml revealed four distinct categories of growth-arrest. Confluent cultures exposed to low concentration showed growth-arrest failure. The in vitro cell density titration can facilitate prediction of a compound's operational in vivo dosing. For containing the growth arrest failure, an arithmetic volume derivation strategy is proposed by fixing the exposure density to a safe limit. The feeder extinction characteristics are critical for streamlining the stem cell based pharmacological and toxicological assays. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Samantha B; Lee-Goldman, Alexandria; Ravikrishnan, Janani; Zheng, Lili; Lin, Henry
2018-04-01
Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed. © 2017 Wiley Periodicals, Inc.
Bresler, V.; Montgomery, W. L.; Fishelson, L.; Pollak, P. E.
1998-01-01
Epulopiscium fishelsoni, gut symbiont of the brown surgeonfish (Acanthurus nigrofuscus) in the Red Sea, attains a larger size than any other eubacterium, varies 10- to 20-fold in length (and >2,000-fold in volume), and undergoes a complex daily life cycle. In early morning, nucleoids contain highly condensed DNA in elongate, chromosome-like structures which are physically separated from the general cytoplasm. Cell division involves production of two (rarely three) nucleoids within a cell, deposition of cell walls around expanded nucleoids, and emergence of daughter cells from the parent cell. Fluorescence measurements of DNA, RNA, and other cell components indicate the following. DNA quantity is proportional to cell volume over cell lengths of ∼30 μm to >500 μm. For cells of a given size, nucleoids of cells with two nucleoids (binucleoid) contain approximately equal amounts of DNA. And each nucleoid of a binucleoid cell contains one-half the DNA of the single nucleoid in a uninucleoid cell of the same size. The life cycle involves approximately equal subdivision of DNA among daughter cells, formation of apical caps of condensed DNA from previously decondensed and diffusely distributed DNA, and “pinching” of DNA near the middle of the cell in the absence of new wall formation. Mechanisms underlying these patterns remain unclear, but formation of daughter nucleoids and cells occurs both during diurnal periods of host feeding and bacterial cell growth and during nocturnal periods of host inactivity when mean bacterial cell size declines. PMID:9791108
Design of a TEM cell EMP simulator
NASA Astrophysics Data System (ADS)
Sevat, Pete
1991-06-01
Electromagnetic pulse (EMP) simulators are designed to simulate the EMP generated by a nuclear weapon and are used to harden equipment against the effects of EMP. A transverse electromagnetic (TEM) cell is a square or rectangular coaxial transmission line tapered at each end to form a closed cell. The cell is fed at one end with a signal generator, a continuous wave or pulse generator, and terminated at the other end with a resistor equal to the characteristic impedance of the line. An advantage of the TEM cell is that the field is well characterized and reasonably uniform. A small, symmetric, TEM cell EMP simulator is described which is intended for applications such as susceptibility testing of small equipment, calibration of sensors, design and testing of countermeasures, measurement of transfer functions, and research and development. A detailed design is presented for a 50 ohm and 100 ohm TEM cell with an inner volume of 4 m(exp 3) and a test volume of 0.24 m(exp 3). The pulse generator and terminating network are integrated into the cell to form a completely shielded structure. In this way no interference from the inside of the cell to the outside, or vice versa, will occur.
Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types
NASA Astrophysics Data System (ADS)
Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard
2015-04-01
Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.
Crisalli, Lisa M; Hinkle, Joanne T; Walling, Christopher C; Sell, Mary; Frey, Noelle V; Hexner, Elizabeth O; Loren, Alison W; Luger, Selina M; Stadtmauer, Edward A; Porter, David L; Reshef, Ran
2018-06-01
Allogeneic hematopoietic stem cell transplantation (HSCT) with reduced-intensity conditioning (RIC) offers a curative option for patients with hematologic malignancies who are unable to undergo myeloablative conditioning, but its success is limited by high rates of relapse. Several studies have suggested a role for T cell doses in peripheral blood stem cell grafts in RIC HSCT. Because T cell dose is typically not known until after the collection, and apheresis blood volume is easily modifiable, we hypothesized that higher donor apheresis blood volumes would improve transplantation outcomes through an effect on graft composition. Thus, we analyzed the relationships between apheresis volume, graft composition, and transplantation outcomes in 142 consecutive patients undergoing unrelated donor allogeneic RIC HSCT. We found that apheresis volume ≥15 L was associated with a significantly decreased risk of relapse (adjusted hazard ratio [aHR], .48; 95% confidence interval [CI], .28 to .84]; P = .01) and improved relapse-free survival (aHR, .56; 95% CI, .35 to .89; P = .02) and overall survival (aHR, .55; 95% CI, .34 to .91; P = .02). A high apheresis volume was not associated with increased rates of acute or chronic graft-versus-host disease. These results demonstrate that an apheresis volume of at least 15 L is independently predictive of improved transplantation outcomes after RIC allogeneic HSCT. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Simanonok, K. E.; Srinivasan, R. S.; Charles, J. B.
1993-01-01
Central volume expansion due to fluid shifts in weightlessness is believed to activate adaptive reflexes which ultimately result in a reduction of the total circulating blood volume. However, the flight data suggests that a central volume overdistention does not persist, in which case some other factor or factors must be responsible for body fluid losses. We used a computer simulation to test the hypothesis that factors other than central volume overdistention are involved in the loss of blood volume and other body fluid volumes observed in weightlessness and in weightless simulations. Additionally, the simulation was used to identify these factors. The results predict that atrial volumes and pressures return to their prebedrest baseline values within the first day of exposure to head down tilt (HDT) as the blood volume is reduced by an elevated urine formation. They indicate that the mechanisms for large and prolonged body fluid losses in weightlessness is red cell hemoconcentration that elevates blood viscosity and peripheral resistance, thereby lowering capillary pressure. This causes a prolonged alteration of the balance of Starling forces, depressing the extracellular fluid volume until the hematocrit is returned to normal through a reduction of the red cell mass, which also allows some restoration of the plasma volume. We conclude that the red cell mass becomes the physiologic driver for a large 'undershoot' of the body fluid volumes after the normalization of atrial volumes and pressures.
1990 fuel cell seminar: Program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-12-31
This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.
Redox environment in stem and differentiated cells: A quantitative approach.
Lyublinskaya, O G; Ivanova, Ju S; Pugovkina, N A; Kozhukharova, I V; Kovaleva, Z V; Shatrova, A N; Aksenov, N D; Zenin, V V; Kaulin, Yu A; Gamaley, I A; Nikolsky, N N
2017-08-01
Stem cells are believed to maintain a specific intracellular redox status through a combination of enhanced removal capacity and limited production of ROS. In the present study, we challenge this assumption by developing a quantitative approach for the analysis of the pro- and antioxidant ability of human embryonic stem cells in comparison with their differentiated descendants, as well as adult stem and non-stem cells. Our measurements showed that embryonic stem cells are characterized by low ROS level, low rate of extracellular hydrogen peroxide removal and low threshold for peroxide-induced cytotoxicity. However, biochemical normalization of these parameters to cell volume/protein leads to matching of normalized values in stem and differentiated cells and shows that tested in the present study cells (human embryonic stem cells and their fibroblast-like progenies, adult mesenchymal stem cells, lymphocytes, HeLa) maintain similar intracellular redox status. Based on these observations, we propose to use ROS concentration averaged over the cell volume instead of ROS level as a measure of intracellular redox balance. We show that attempts to use ROS level for comparative analysis of redox status of morphologically different cells could lead to false conclusions. Methods for the assessment of ROS concentration based on flow cytometry analysis with the use of H 2 DCFDA dye and HyPer, genetically encoded probe for hydrogen peroxide, are discussed. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
O'Connor, Timothy; Rawat, Siddharth; Markman, Adam; Javidi, Bahram
2018-03-01
We propose a compact imaging system that integrates an augmented reality head mounted device with digital holographic microscopy for automated cell identification and visualization. A shearing interferometer is used to produce holograms of biological cells, which are recorded using customized smart glasses containing an external camera. After image acquisition, segmentation is performed to isolate regions of interest containing biological cells in the field-of-view, followed by digital reconstruction of the cells, which is used to generate a three-dimensional (3D) pseudocolor optical path length profile. Morphological features are extracted from the cell's optical path length map, including mean optical path length, coefficient of variation, optical volume, projected area, projected area to optical volume ratio, cell skewness, and cell kurtosis. Classification is performed using the random forest classifier, support vector machines, and K-nearest neighbor, and the results are compared. Finally, the augmented reality device displays the cell's pseudocolor 3D rendering of its optical path length profile, extracted features, and the identified cell's type or class. The proposed system could allow a healthcare worker to quickly visualize cells using augmented reality smart glasses and extract the relevant information for rapid diagnosis. To the best of our knowledge, this is the first report on the integration of digital holographic microscopy with augmented reality devices for automated cell identification and visualization.
Bamdad, M; David, L; Grolière, C A
1995-12-01
A study of the toxicity of epinigericin, an antibiotic ionophor, towards the ciliate Tetrahymena pyriformis showed that this molecule stopped cell division, increased cell volume and led to a more basic intracellular pH. The action of epinigericin was probably linked to its function as an ionophor. The ionic selectivity of this molecule is still not known. The raising of the intracellular pH of ciliates by this antibiotic may be linked to its toxic action and its iontransport mechanism in Tetrahymena.
Hematology and immunology studies - The second manned Skylab mission
NASA Technical Reports Server (NTRS)
Kimzey, S. L.; Johnson, P. C.; Ritzman, S. E.; Mengel, C. E.
1976-01-01
The hematologic and immunologic functions of the Skylab 3 astronauts were monitored during the preflight, inflight, and postflight phases of the mission. Plasma protein profiles showed high consistency in all phases. A transient suppression of lymphocyte responsiveness was observed postflight. A reduction in the circulating blood volume due to drops in both the plasma volume and red cell mass was found. The loss of red cell mass is most likely a suppressed erythrypoiesis. The functional integrity of the circulating red cells did not appear to be compromised in the course of flight.
Biointerface dynamics--Multi scale modeling considerations.
Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko
2015-08-01
Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.
Luque-Oliveros, Manuel; Garcia-Carpintero, Maria Angeles; Cauli, Omar
2017-01-01
Patients undergoing cardiac surgery with extracorporeal circulation (ECC) frequently present haemorrhages as a complication associated with high morbidity and mortality. One of the factors that influences this risk is the volume of blood infused during surgery. The objective of this study was to determine the optimal volume of autologous blood that can be processed during cardiac surgery with ECC. We also determined the number of salvaged red blood cells to be reinfused into the patient in order to minimize the risk of haemorrhage in the postoperative period. This was an observational retrospective cross-sectional study performed in 162 ECC cardiac surgery patients. Data regarding the sociodemographic profiles of the patients, their pathologies and surgical treatments, and the blood volume recovered, processed, and reinfused after cell salvage were collected. We also evaluated the occurrence of postoperative haemorrhage. The volume of blood infused after cell salvage had a statistically significant effect (p < 0.01) on the risk of post-operative haemorrhage; the receiver operating characteristic sensitivity was 0.813 and the optimal blood volume cut-off was 1800 ml. The best clinical outcome (16.7% of patients presenting haemorrhages) was in patients that had received less than 1800 ml of recovered and processed autologous blood, which represented a volume of up to 580 ml reinfused red blood cells. The optimum thresholds for autologous processed blood and red blood cells reinfused into the patient were 1800 and 580 ml, respectively. Increasing these thresholds augmented the risk of haemorrhage as an immediate postoperative period complication. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Anatomic comparison of traditional and enucleation partial nephrectomy specimens.
Calaway, Adam C; Gondim, Dibson D; Flack, Chandra K; Jacob, Joseph M; Idrees, Muhammad T; Boris, Ronald S
2017-05-01
To compare pseudocapsule (PC) properties of clear cell renal cell carcinoma tumors removed via both traditional partial nephrectomy (PNx) and enucleative techniques as well as quantify the difference in volume of normal renal parenchyma removed between groups. A retrospective review of clear cell PNx specimens between 2011 and 2014 was performed. All patients undergoing tumor enucleation (TE) were included. A single pathologist reviewed the pathological specimens. This cohort was compared with a previously collected clear cell traditional PNx database. A total of 47 clear cell partial nephrectomies were reviewed (34 PNx and 13 TE). Invasion of tumor completely through the PC and positive surgical margins were seen in 2 (5.8%) and 1 (7.7%) of traditional and TE specimens, respectively (P = 0.82). PC mean (0.63 vs. 0.52mm), maximum (1.39 vs. 1.65mm), and minimum thickness (0.27 vs. 0.19mm) were similar between cohorts (P = 0.29, P = 0.36, and P = 0.44). Gross specimen volume varied considerably between the 2 groups (35.6 vs. 17.9cm 3 , P≤0.05) although tumor volume did not (12 vs. 14.2cm 3 , P = 0.64). The renal tumor consisted of only 37% of the total volume of the traditional PNx specimens compared to 80% of the volume in TEs (P<0.01). Four TE specimens (31%) were "true" TEs (no additional parenchyma identified outside of the PC). PC properties appear independent of surgical technique. True TEs are uncommon. Regardless, there is considerable volume discrepancy of normal renal parenchymal removed between enucleative and nonenucleative PNx groups. Copyright © 2017 Elsevier Inc. All rights reserved.
Ross, D W
1986-05-01
The phenomenon of leukemic cell maturation requires a measurement of myeloid maturation to understand the process and to exploit it as a means of therapy for leukemia. The HL-60 leukemic cell line was used as a model of induced leukemic cell maturation in order to develop a method of quantitating granulocytic and monocytic maturation in response to drug therapy. An automated flow cytochemistry system (Hemalog-D) was employed to measure mean cell volume, myeloperoxidase (MPO), and nonspecific esterase (NSE). For granulocytic maturation induced by vitamin A or DMSO, MPO and cell volume decreased by 50%, maintaining a constant mean cellular MPO concentration throughout maturation from promyelocyte to neutrophil-like forms. For monocytic maturation induced by low-dose ARA-c, the mean NSE increased substantially, while cell volume remained constant. Unlike MPO concentration, NSE was truly inducible and thus a useful quantitative measure of maturation caused by low-dose ARA-c. Flow cytochemistry and cytofluorometry may be developed to allow for quantitative monitoring of therapeutic trials of induced maturation in human leukemias. However, this will require adapting these techniques to the complexity of human leukemias in vivo, and the necessity of handling heterogeneous populations encountered in bone marrow samples.
Linkage effects between deposit discovery and postdiscovery exploratory drilling
Drew, Lawrence J.
1975-01-01
For the 1950-71 period of petroleum exploration in the Powder River Basin, northeastern Wyoming and southeastern Montana, three specific topics were investigated. First, the wildcat wells drilled during the ambient phases of exploration are estimated to have discovered 2.80 times as much petroleum per well as the wildcat wells drilled during the cyclical phases of exploration, periods when exploration plays were active. Second, the hypothesis was tested and verified that during ambient phases of exploration the discovery of deposits could be anticipated by a small but statistically significant rise in the ambient drilling rate during the year prior to the year of discovery. Closer examination of the data suggests that this anticipation effect decreases through time. Third, a regression model utilizing the two independent variables of (1) the volume of petroleum contained in each deposit discovered in a cell and the directly adjacent cells and (2) the respective depths of these deposits was constructed to predict the expected yearly cyclical wildcat drilling rate in four 30 by 30 min (approximately 860 mi2) sized cells. In two of these cells relatively large volumes of petroleum were discovered, whereas in the other two cells smaller volumes were discovered. The predicted and actual rates of wildcat drilling which occurred in each cell agreed rather closely.
Crystal structure studies with the Paris-Edinburgh cell: Neutron scattering aspects
NASA Astrophysics Data System (ADS)
Loveday, J. S.; Wilson, R. M.; Nelmes, R. J.; Besson, J. M.; Klotz, S.; Hamel, G.; Hull, S.
1994-07-01
The count rates achieved in neutron powder diffraction experiments create difficulties for high-pressure experiments because large sample volumes (˜100 mm3) must be used. Until recently it has been difficult to build suitable pressure cells with such large volumes and hence the maximum pressure for neutron diffraction has remained at the relatively low value of 3 GPa. We have now developed a pressure cell (the Paris-Edinburgh cell) which is capable of exceeding 10 GPa with a sample volume of ˜100 mm3 for use at the U.K. spallation source ISIS. Considerable effort has been devoted to the opimization of the cell, shielding, and detector geometry to enable the best possible data to be recorded. Finite-element calculations to correct for the systematic errors introduced by the attenuation of the pressure-cell materials have been developed and tested. As a result of this work we are now able to obtain accurate structural data to ˜12 GPa and recent studies of phase IV of ND3, the behaviour of the O-D bondlength in D2O ice VIII, and the structural pressure dependence of B4C illustrate the importance of the extension of neutron-diffraction studies to such pressures.
Correlation between normal glucose-6-phosphate dehydrogenase level and haematological parameters.
Ajlaan, S K; al-Naama, L M; al-Naama, M M
2000-01-01
The study involved 143 individuals and aimed to correlate normal glucose-6-phosphate dehydrogenase (G6PD) level with haematological parameters. A statistically significant negative correlation was found between G6PD level and haemoglobin, packed cell volume, red blood cell count, mean corpuscular haemoglobin and mean corpuscular volume. A statistically significant positive correlation was found between G6PD level and white blood cell count and reticulocyte count, but no significant correlation was found between G6PD level and mean corpuscular haemoglobin concentration. The negative correlation between G6PD level and haemoglobin suggests that anaemic people have higher G6PD levels than normal individuals. The positive correlation between G6PD level and white blood cell count indicates that white blood cells may play an important role in contributing to G6PD level.
Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Britton, D. L.
1983-01-01
Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.
Cell Size Regulation in Bacteria
NASA Astrophysics Data System (ADS)
Amir, Ariel
2014-05-01
Various bacteria such as the canonical gram negative Escherichia coli or the well-studied gram positive Bacillus subtilis divide symmetrically after they approximately double their volume. Their size at division is not constant, but is typically distributed over a narrow range. Here, we propose an analytically tractable model for cell size control, and calculate the cell size and interdivision time distributions, as well as the correlations between these variables. We suggest ways of extracting the model parameters from experimental data, and show that existing data for E. coli supports partial size control, and a particular explanation: a cell attempts to add a constant volume from the time of initiation of DNA replication to the next initiation event. This hypothesis accounts for the experimentally observed correlations between mother and daughter cells as well as the exponential dependence of size on growth rate.
The plant cytoskeleton controls regulatory volume increase.
Liu, Qiong; Qiao, Fei; Ismail, Ahmed; Chang, Xiaoli; Nick, Peter
2013-09-01
The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change. Copyright © 2013 Elsevier B.V. All rights reserved.
Nambiar, Dhanya; Prajapati, Vandana; Agarwal, Rajesh; Singh, Rana P
2013-06-28
Silibinin suppresses the growth of many cancers; however, its efficacy against pancreatic cancer has not been evaluated in established preclinical models. Here, we investigated in vitro and in vivo effects of silibinin against lower and advanced stages of human pancreatic carcinoma cells. Silibinin (25-100μM) treatment for 24-72h caused a dose- and time-dependent cell growth inhibition of 27-77% (P<0.05-0.001) in BxPC-3 cells, and 22-45% (P<0.01-0.001) in PANC-1 cells. Silibinin showed a strong dose-dependent G1 arrest in BxPC-3 cells (upto 72% versus 45% in control; P<0.001), but a moderate response in advanced PANC-1 cells. Cell death observed in cell growth assay, was accompanied by up to 3-fold increase (P<0.001) in apoptosis in BxPC-3 cells, and showed only slight effect on PANC-1 cells. Dietary feeding of silibinin (0.5%, w/w in AIN-93M diet for 7weeks) inhibited BxPC-3 and PANC-1 tumor xenografts growth in nude mice without any apparent change in body weight gain and diet consumption. Tumor volume and weight were decreased by 47% and 34% (P⩽0.001) in BxPC-3 xenograft, respectively. PANC-1 xenograft showed slower growth kinetics and silibinin decreased tumor volume by 34% (P<0.001) by 7weeks. Another 4weeks of silibinin treatment to PANC-1 xenograft showed 28% and 33% decrease in tumor volume and weight, respectively. Silibinin-fed group of BxPC-3 tumors showed decreased cell proliferation and angiogenesis and an increased apoptosis, however, considerable inhibitory effect was observed only for angiogenesis in PANC-1 tumors. Overall, these findings show both in vitro as well as in vivo anticancer efficacy of silibinin against pancreatic cancer that could involve inhibition of cell proliferation, cell cycle arrest, apoptosis induction and/or decrease in tumor angiogenesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
2014-10-01
McCue P, Lisanti MP, Wang C, Davis RJ, Mardon G, Pestell RG. The Endogenous Cell-Fate Factor Dachshund Restrains Prostate Epithelial Cell Migration via...Loro E, Pestell RG. “Inhibition of Breast Tumor Stem Cells Expansion by the Endogenous Cell Fate Determination Factor Dachshund.” Chapter in Volume
Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations
ERIC Educational Resources Information Center
Shirkhanzadeh, M.
2009-01-01
A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halevy, I.; Zamir, G; Winterrose, M
The phase stability of a commercial purity (Ti-CP), high purity (Ti-HP) and Ti-6Al-4V alloy were investigated in a diamond anvil cell up to 32 GPa and 298 K using a polychromatic X-ray beam. The Ti-CP and Ti-HP shown the same HCP (c/a {approx} 0.632) to Hexagonal (c/a {approx} 1.63) non reversible martensitic transition at about 9 GPa. The as received Ti-6Al-4V shows a very low relative volume fraction {beta}-Ti/{alpha}-Ti. No phase changes were observed in the Ti-6Al-4V alloy in the pressure range of this study. The {alpha} phase of the Ti-6Al-4V shows monotonic volume cell pressure dependence. This volume changemore » is reversible and non-hysteretic. The cell of the a phase recovered its original volume when the pressure was released.« less
Attoliter Control of Microliquid
NASA Astrophysics Data System (ADS)
Imura, Fumito; Kuroiwa, Hiroyuki; Nakada, Akira; Kosaka, Kouji; Kubota, Hiroshi
2007-11-01
The technology of the sub-femtoliter volume control of liquids in nanometer range pipettes (nanopipettes) has been developed for carrying out surgical operations on living cells. We focus attention on an interface forming between oil and water in a nanopipette. The interface position can be moved by increasing or decreasing the input pressure. If the volume of liquid in the nanopipette can be controlled by moving the position of the interface, cell organelles can be discharged or suctioned and a drug-solution can be injected into the cell. Quantity volume control in the pico-attoliter range using a tapered nanopipette is controlled by the condition of an interface with a convex shape toward the top of the nanopipette. The volume can be controlled by the input pressure corresponding to the interfacial radius without the use of a microscope by preliminarily preparing the pipette shape and the interface radius as a function of the input pressure.
Particle detection systems and methods
Morris, Christopher L.; Makela, Mark F.
2010-05-11
Techniques, apparatus and systems for detecting particles such as muons and neutrons. In one implementation, a particle detection system employs a plurality of drift cells, which can be for example sealed gas-filled drift tubes, arranged on sides of a volume to be scanned to track incoming and outgoing charged particles, such as cosmic ray-produced muons. The drift cells can include a neutron sensitive medium to enable concurrent counting of neutrons. The system can selectively detect devices or materials, such as iron, lead, gold, uranium, plutonium, and/or tungsten, occupying the volume from multiple scattering of the charged particles passing through the volume and can concurrently detect any unshielded neutron sources occupying the volume from neutrons emitted therefrom. If necessary, the drift cells can be used to also detect gamma rays. The system can be employed to inspect occupied vehicles at border crossings for nuclear threat objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu; Donnelly, Eric D.; Strauss, Jonathan B.
Purpose: To evaluate high-dose-rate (HDR) vaginal cuff brachytherapy (VCBT) in the treatment of endometrial cancer in a cylindrical target volume with either a varied or a constant cancer cell distributions using the linear quadratic (LQ) model. Methods: A Monte Carlo (MC) technique was used to calculate the 3D dose distribution of HDR VCBT over a variety of cylinder diameters and treatment lengths. A treatment planning system (TPS) was used to make plans for the various cylinder diameters, treatment lengths, and prescriptions using the clinical protocol. The dwell times obtained from the TPS were fed into MC. The LQ model wasmore » used to evaluate the therapeutic outcome of two brachytherapy regimens prescribed either at 0.5 cm depth (5.5 Gy × 4 fractions) or at the vaginal mucosal surface (8.8 Gy × 4 fractions) for the treatment of endometrial cancer. An experimentally determined endometrial cancer cell distribution, which showed a varied and resembled a half-Gaussian distribution, was used in radiobiology modeling. The equivalent uniform dose (EUD) to cancer cells was calculated for each treatment scenario. The therapeutic ratio (TR) was defined by comparing VCBT with a uniform dose radiotherapy plan in term of normal cell survival at the same level of cancer cell killing. Calculations of clinical impact were run twice assuming two different types of cancer cell density distributions in the cylindrical target volume: (1) a half-Gaussian or (2) a uniform distribution. Results: EUDs were weakly dependent on cylinder size, treatment length, and the prescription depth, but strongly dependent on the cancer cell distribution. TRs were strongly dependent on the cylinder size, treatment length, types of the cancer cell distributions, and the sensitivity of normal tissue. With a half-Gaussian distribution of cancer cells which populated at the vaginal mucosa the most, the EUDs were between 6.9 Gy × 4 and 7.8 Gy × 4, the TRs were in the range from (5.0){sup 4} to (13.4){sup 4} for the radiosensitive normal tissue depending on the cylinder size, treatment lengths, prescription depth, and dose as well. However, for a uniform cancer cell distribution, the EUDs were between 6.3 Gy × 4 and 7.1 Gy × 4, and the TRs were found to be between (1.4){sup 4} and (1.7){sup 4}. For the uniformly interspersed cancer and radio-resistant normal cells, the TRs were less than 1. The two VCBT prescription regimens were found to be equivalent in terms of EUDs and TRs. Conclusions: HDR VCBT strongly favors cylindrical target volume with the cancer cell distribution following its dosimetric trend. Assuming a half-Gaussian distribution of cancer cells, the HDR VCBT provides a considerable radiobiological advantage over the external beam radiotherapy (EBRT) in terms of sparing more normal tissues while maintaining the same level of cancer cell killing. But for the uniform cancer cell distribution and radio-resistant normal tissue, the radiobiology outcome of the HDR VCBT does not show an advantage over the EBRT. This study strongly suggests that radiation therapy design should consider the cancer cell distribution inside the target volume in addition to the shape of target.« less
Wijlemans, Joost W; de Greef, Martijn; Schubert, Gerald; Bartels, Lambertus W; Moonen, Chrit T W; van den Bosch, Maurice A A J; Ries, Mario
2015-01-01
Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) allows for noninvasive thermal ablation under real-time temperature imaging guidance. The purpose of this study was to assess the feasibility and safety of MR-HIFU ablation of liver tissue in a clinically acceptable setting. The experimental protocol was designed with a clinical ablation procedure of a small malignant tumor in mind; the procedures were performed within a clinically feasible time frame and care was taken to avoid adverse events. The main outcome was the size and quality of the ablated liver tissue volume on imaging and histology. Secondary outcomes were safety and treatment time. Healthy pigs (n = 10) under general anesthesia were positioned on a clinical MR-HIFU system, which consisted of an HIFU tabletop with a skin cooling system integrated into a 1.5-T MR scanner. A liver tissue volume was ablated with multiple sonication cells (4 × 4 × 10 mm, 450 W). Both MR thermometry and sonication were respiratory-gated using a pencil beam navigator on the diaphragm. Contrast-enhanced T1-weighted (CE-T1w) imaging was performed for treatment evaluation. Targeted total treatment time was 3 hours. The abdominal wall, liver, and adjacent organs were inspected postmortem for thermal damage. Ablated tissue volumes were processed for cell viability staining. The ablated volumes were analyzed using MR imaging, MR thermometry, and cell viability histology. Eleven volume ablations were performed in 10 animals, resulting in a median nonperfused volume (NPV) on CE-T1w imaging of 1.6 mL (interquartile range [IQR], 0.8-2.3; range, 0.7-3.0). Cell viability histology showed a damaged volume of 1.5 mL (IQR, 1.1-1.8; range, 0.7-2.3). The NPV was confluent in 10 of the 11 cases. The ablated tissue volume on cell viability histology was confluent in all 9 available cases. In all cases, there was a good correspondence between the aspects of the NPV on CE-T1w and the ablated volume on cell viability histology. Two treatment-related adverse events occurred: 1 animal had a 7-mm skin burn and 1 animal showed evidence of thermal damage on the surface of the spleen. Median ablation time was 108 minutes (IQR, 101-120; range, 96-181 minutes) and median total treatment time was 180 minutes (IQR, 165-224; 130-250 minutes). Our results demonstrate the feasibility and safety of MR-HIFU ablation of liver tissue volumes. The imaging data and cell viability histology show, for the first time, that confluent ablation volumes can be achieved with motion-gated ablation and MR guidance. These results were obtained using a readily available MR-HIFU system with only minor modifications, within a clinically acceptable time frame, and with only minor adverse events. This shows that this technique is sufficiently reliable and safe to initiate a clinical trial.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
NASA Astrophysics Data System (ADS)
Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei
2015-12-01
The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.
The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles.
Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo
2016-01-01
Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient ( P f ) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, P f determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast P f . We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites ( P f / P s ), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements, which very likely involve considerable cell volume changes within seconds to hours.
The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles
Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo
2016-01-01
Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements, which very likely involve considerable cell volume changes within seconds to hours. PMID:27695468
Wong, M; Wuethrich, P; Eggli, P; Hunziker, E
1996-05-01
A new methodology was developed to measure spatial variations in chondrocyte/matrix structural parameters and chondrocyte biosynthetic activity in articular cartilage. This technique is based on the use of a laser scanning confocal microscope that can "optically" section chemically fixed, unembedded tissue. The confocal images are used for morphometric measurement of stereologic parameters such as cell density (cells/mm3), cell volume fraction (%), surface density (l/cm), mean cell volume (micron3), and mean cell surface area (micron2). Adjacent pieces of tissue are simultaneously processed for conventional liquid emulsion autoradiography, and a semiautomated grain counting program is used to measure the silver grain density at regions corresponding to the same sites used for structural measurements. An estimate of chondrocyte biosynthetic activity in terms of grains per cell is obtained by dividing the value for grain density by that for cell density. In this paper, the newly developed methodology was applied to characterize the zone-specific behavior of adult articular cartilage in the free-swelling state. Cylinders of young adult bovine articular cartilage were labelled with either [3H]proline or [35S]sulfate, and chondrocyte biosynthesis and structural parameters were measured from the articular surface to the tidemark. The results showed that chondrocytes of the radial zone occupied twice the volume and surface area of the chondrocytes of the superficial zone but were 10 times more synthetically active. This efficient and unbiased technique may prove useful in studying the correlation between mechanically induced changes in cell form and biosynthetic activity within inhomogeneous tissue as well as metabolic changes in cartilage due to ageing and disease.
Guardado-Mendoza, Rodolfo; Davalli, Alberto M.; Chavez, Alberto O.; Hubbard, Gene B.; Dick, Edward J.; Majluf-Cruz, Abraham; Tene-Perez, Carlos E.; Goldschmidt, Lukasz; Hart, John; Perego, Carla; Comuzzie, Anthony G.; Tejero, Maria Elizabeth; Finzi, Giovanna; Placidi, Claudia; La Rosa, Stefano; Capella, Carlo; Halff, Glenn; Gastaldelli, Amalia; DeFronzo, Ralph A.; Folli, Franco
2009-01-01
β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables. PMID:19666551
Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing.
Roy, Ankita; Goodman, Joshua H; Begum, Gulnaz; Donnelly, Bridget F; Pittman, Gabrielle; Weinman, Edward J; Sun, Dandan; Subramanya, Arohan R
2015-02-15
Sodium-coupled SLC12 cation chloride cotransporters play important roles in cell volume and chloride homeostasis, epithelial fluid secretion, and renal tubular salt reabsorption. These cotransporters are phosphorylated and activated indirectly by With-No-Lysine (WNK) kinases through their downstream effector kinases, Ste20- and SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Multiple WNK kinases can coexist within a single cell type, although their relative contributions to SPAK/OSR1 activation and salt transport remain incompletely understood. Deletion of specific WNKs from cells that natively express a functional WNK-SPAK/OSR1 network will help resolve these knowledge gaps. Here, we outline a simple method to selectively knock out full-length WNK1 expression from mammalian cells using RNA-guided clustered regularly interspaced short palindromic repeats/Cas9 endonucleases. Two clonal cell lines were generated by using a single-guide RNA (sgRNA) targeting exon 1 of the WNK1 gene, which produced indels that abolished WNK1 protein expression. Both cell lines exhibited reduced endogenous WNK4 protein abundance, indicating that WNK1 is required for WNK4 stability. Consistent with an on-target effect, the reduced WNK4 abundance was associated with increased expression of the KLHL3/cullin-3 E3 ubiquitin ligase complex and was rescued by exogenous WNK1 overexpression. Although the morphology of the knockout cells was indistinguishable from control, they exhibited low baseline SPAK/OSR1 activity and failed to trigger regulatory volume increase after hypertonic stress, confirming an essential role for WNK1 in cell volume regulation. Collectively, our data show how this new, powerful, and accessible gene-editing technology can be used to dissect and analyze WNK signaling networks.
Bartunek, Jozef; Terzic, Andre; Davison, Beth A; Filippatos, Gerasimos S; Radovanovic, Slavica; Beleslin, Branko; Merkely, Bela; Musialek, Piotr; Wojakowski, Wojciech; Andreka, Peter; Horvath, Ivan G; Katz, Amos; Dolatabadi, Dariouch; El Nakadi, Badih; Arandjelovic, Aleksandra; Edes, Istvan; Seferovic, Petar M; Obradovic, Slobodan; Vanderheyden, Marc; Jagic, Nikola; Petrov, Ivo; Atar, Shaul; Halabi, Majdi; Gelev, Valeri L; Shochat, Michael K; Kasprzak, Jaroslaw D; Sanz-Ruiz, Ricardo; Heyndrickx, Guy R; Nyolczas, Noémi; Legrand, Victor; Guédès, Antoine; Heyse, Alex; Moccetti, Tiziano; Fernandez-Aviles, Francisco; Jimenez-Quevedo, Pilar; Bayes-Genis, Antoni; Hernandez-Garcia, Jose Maria; Ribichini, Flavio; Gruchala, Marcin; Waldman, Scott A; Teerlink, John R; Gersh, Bernard J; Povsic, Thomas J; Henry, Timothy D; Metra, Marco; Hajjar, Roger J; Tendera, Michal; Behfar, Atta; Alexandre, Bertrand; Seron, Aymeric; Stough, Wendy Gattis; Sherman, Warren; Cotter, Gad; Wijns, William
2017-03-01
Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein-Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann-Whitney estimator 0.54, 95% confidence interval [CI] 0.47-0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200-370 mL (60% of patients) (Mann-Whitney estimator 0.61, 95% CI 0.52-0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.
Zeng, Dingyuan; Lin, Jiajing; He, Hongying; Tan, Guangping; Lan, Ying; Jiang, Fuyan; Sheng, Shuting
2018-02-01
The present study aimed to investigate the therapeutic effect and safety of targeted use of Fas-expressing adenoviruses combined with γδ T cell-mediated killing to treat human ovarian cancer xenografts in BALB/c mice. Shuttle plasmids containing control elements of human telomerase reverse transcriptase promoter and two-step transcriptional amplification system were constructed and packaged into adenovirus-5 vectors to generate expression of an exogenous Fas gene. A mouse xenograft model of human ovarian carcinoma was constructed. A total of 35 BALB/c mice were randomly divided into five groups, which were injected with PBS, γδ T cells, Fas-expressing adenoviruses, taxol, or Fas-expressing adenovirus and γδ T cells. The weight and volume of tumors in mice in each group was monitored. Tissue sections of the various tissues of mice in the Fas-expressing adenovirus and γδ T cells group was compared with those in the PBS group to evaluate the safety of Fas-expressing adenovirus and γδ T cells in the treatment of human ovarian cancer xenograft tumors. The results of the present study indicated that mice in all treatment groups were alive at the end of the treatment course. Tumor weight and volume was the highest in the PBS group, followed successively by the adenovirus group, the γδ T cell group, the adenovirus and γδ T cell group, and the taxol group. The weight and volume inhibition rate in adenovirus and γδ T cell group were significantly higher compared with in the PBS group (P<0.05). Pathological observation of tissue samples revealed that none of vital organs in the adenovirus and γδ T cell group developed any evident morphological changes during treatment, when compared with healthy controls. In conclusion, the combined therapy with Fas-expressing adenoviruses and γδ T cells is efficient and safe for the treatment of mouse human ovarian carcinoma xenografts.
Bartunek, Jozef; Terzic, Andre; Davison, Beth A.; Filippatos, Gerasimos S.; Radovanovic, Slavica; Beleslin, Branko; Merkely, Bela; Musialek, Piotr; Wojakowski, Wojciech; Andreka, Peter; Horvath, Ivan G.; Katz, Amos; Dolatabadi, Dariouch; El Nakadi, Badih; Arandjelovic, Aleksandra; Edes, Istvan; Seferovic, Petar M.; Obradovic, Slobodan; Vanderheyden, Marc; Jagic, Nikola; Petrov, Ivo; Atar, Shaul; Halabi, Majdi; Gelev, Valeri L.; Shochat, Michael K.; Kasprzak, Jaroslaw D.; Sanz-Ruiz, Ricardo; Heyndrickx, Guy R.; Nyolczas, Noémi; Legrand, Victor; Guédès, Antoine; Heyse, Alex; Moccetti, Tiziano; Fernandez-Aviles, Francisco; Jimenez-Quevedo, Pilar; Bayes-Genis, Antoni; Hernandez-Garcia, Jose Maria; Ribichini, Flavio; Gruchala, Marcin; Waldman, Scott A.; Teerlink, John R.; Gersh, Bernard J.; Povsic, Thomas J.; Henry, Timothy D.; Metra, Marco; Hajjar, Roger J.; Tendera, Michal; Behfar, Atta; Alexandre, Bertrand; Seron, Aymeric; Stough, Wendy Gattis; Sherman, Warren; Cotter, Gad; Wijns, William
2017-01-01
Aims Cardiopoietic cells, produced through cardiogenic conditioning of patients’ mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. Methods and results This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein–Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann–Whitney estimator 0.54, 95% confidence interval [CI] 0.47–0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200–370 mL (60% of patients) (Mann–Whitney estimator 0.61, 95% CI 0.52–0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. Conclusion The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted. PMID:28025189
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Miyahira, T. F.; Weiss, R. S.
1979-01-01
Computed statistical averages and standard deviations with respect to the measured cells for each intensity temperature measurement condition are presented. Display averages and standard deviations of the cell characteristics in a two dimensional array format are shown: one dimension representing incoming light intensity, and another, the cell temperature. Programs for calculating the temperature coefficients of the pertinent cell electrical parameters are presented, and postirradiation data are summarized.
Loginov, V I
1993-01-01
Immunocytochemical analysis of thyroid gland C-cells of the rats exposed to a 14-day space flight revealed a decrease in the number of C-cells, volume of their nuclei and a declined percentage of active secretory C-cells, which point to a decline of calcitonin proactive and calcitonin secretory hypofunction of the thyroid C-cells system in flown rats. Tail suspension as a microgravity model caused similar changes in C-cells.
Penicillin reduces eustachian tube gland tissue changes in acute otitis media.
Andersen, Henrik; Thomsen, Jens; Cayé-Thomasen, Per
2005-08-01
The volume of the mucous paratubal glands and the number of the mucus-producing goblet cells in the middle ear and Eustachian tube (ET) are increased after experimental acute otitis media (AOM). The present investigation examines a potential effect of penicillin on the changes in goblet cell density and gland structures of the ET during and after AOM. Middle ear inoculation of Streptococcus pneumoniae in 50 rats. Two days later, 25 rats were given penicillin V as one daily dose for 5 days. Twenty-five rats received no treatment. Five animals from each group were sacrificed on days 4, 8, 16, 90, and 180. The ET was dissected and decalcified, followed by paraffin embedding, serial transverse sectioning, and PAS/alcian blue staining. The goblet cell density and the paratubal gland composition and volume were determined in every 20th section, using a light microscope. Penicillin reduced the increase of goblet cell density from day 8 and through 6 months, whereas the increase of the paratubal mucous gland volume was unaffected by treatment. We conclude that penicillin reduces the increase of ET goblet cell density during and after acute otitis media, whereas the paratubal gland volume remains unaffected. An increased mucosal secretory capacity and indicated excessive secretion of mucus may contribute to the deteriorated ET function found after AOM and thus predispose, sustain, or aggravate middle ear disease. This may be prevented by penicillin treatment.
Progress in batteries and solar cells - Volume 6
NASA Astrophysics Data System (ADS)
Shimotake, Hiroshi; Voss, Ernst
The present conference encompasses topics in lithium cell development, manganese cell design, lead-acid batteries, fuel cells, nickel-cadmium and other rechargeable batteries, and battery chargers and related power systems. Attention is given to molten carbonate fuel cells, prospects for sodium/sulfur propulsion batteries, ultrathin lithium batteries, solid state batteries, a gelled electrolyte lead-acid battery for deep discharge applications, and phosphoric acid fuel cells. Also discussed are computer-based battery monitors, a novel nickel-iron battery for electric vehicle applications, conductive polymer electrode electrochemical cells, and catalyst- and electrode-related research for phosphoric acid fuel cells.
Brain nuclei in actively courting red-sided garter snakes: a paradigm of neural trimorphism.
Krohmer, Randolph W; DeMarchi, Geno A; Baleckaitis, Daniel D; Lutterschmidt, Deborah I; Mason, Robert T
2011-03-28
During the breeding season, two distinct male phenotypes are exhibited by red-sided garter snakes (Thamnophis sirtalis parietalis), with courtship behavior being directed not only toward females, but also toward a sub-population of males called she-males. She-males are morphologically identical to other males except for a circulating androgen level three times that of normal males and their ability to produce a female-like pheromone. As in other vertebrates, limbic nuclei in the red-sided garter snake brain are involved in the control of sexual behaviors. For example, an intact anterior hypothalamus pre-optic area (AHPOA) is essential for the initiation and maintenance of reproduction. To determine if brain morphology varies among the three behavioral phenotypes (i.e., males, she-males, and females) during the breeding season, we examined the volume, cell size and cell density of the AHPOA as well as a control region, the external nucleus of the optic tract (ENOT). We used Luxol Fast Blue and Ziehl's Fuchsin to visualize neurons and glial cells, respectively. No significant differences were observed among the three behavioral phenotypes in the volume, cell size or density in the control region. In contrast, the volume, cell size and density of the AHPOA of she-males were significantly greater than those of both male and female snakes. While the volume of the AHPOA was significantly greater in females compared to males, no differences were observed in cell size or density. These differences in brain morphology suggest a possible underlying mechanism for phenotypic-specific behavioral patterns. Copyright © 2010 Elsevier Inc. All rights reserved.
Henríquez, C.; Riquelme, T. T.; Vera, D.; Julio-Kalajzić, F.; Ehrenfeld, P.; Melvin, J. E.; Figueroa, C. D.; Sarmiento, J.; Flores, C. A.
2017-01-01
Aim Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. Methods Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. Results We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1−/− mice are significantly less effective at recruiting neutrophils into the site of inflammation. Conclusions These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions. PMID:26138196
Patients with sickle cell disease taking hydroxyurea in the Hemocentro Regional de Montes Claros
Santos, Fernanda Kelle de Souza; Maia, Caroline Nogueira
2011-01-01
Background The development of therapies for sickle cell disease has received special attention, particularly those that reduce the polymerization of hemoglobin S. Hydroxyurea is a commonly used medication because it has the ability to raise levels of fetal hemoglobin, decrease the frequency of vaso-occlusive episodes and thus improve the clinical course of sickle cell disease patients. Objective To study hematological data and the clinical profile of sickle cell disease patients taking hydroxyurea in a regional blood center. Methods From the charts of 20 patients with sickle cell anemia, the clinical outcomes and a number of hematological variables were analyzed before and during treatment with hydroxyurea. Results The patients' ages ranged from 6 to 41 years old, most were dark skinned and there was a predominance of women. The main symptom that defined whether patients were prescribed hydroxyurea was painful crises followed by hospitalizations. During treatment with hydroxyurea there were significant increases in hemoglobin, fetal hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin. The reticulocyte and white blood cell counts dropped significantly with treatment. A positive correlation was found between fetal hemoglobin and mean corpuscular volume before and during treatment. Additionally, a correlation was found between the white blood cell and reticulocyte counts before treatment with hydroxyurea. Conclusion Most patients showed improvements with treatment as demonstrated by increases in hemoglobin, fetal hemoglobin and mean corpuscular volume, as well as by reductions in the reticulocyte and white blood cell counts. Clinically, more than 50% of patients had a significant reduction of events. PMID:23284256
Isolation of mesenchymal stromal/stem cells from cryopreserved umbilical cord blood cells.
Fujii, Sumie; Miura, Yasuo; Iwasa, Masaki; Yoshioka, Satoshi; Fujishiro, Aya; Sugino, Noriko; Kaneko, Hitomi; Nakagawa, Yoko; Hirai, Hideyo; Takaori-Kondo, Akifumi; Ichinohe, Tatsuo; Maekawa, Taira
2017-07-05
Umbilical cord blood (UCB) has advantages over other tissues because it can be obtained without an invasive procedure and complex processing. We explored the availability of cryopreserved UCB cells as a source of mesenchymal stromal/stem cells (MSCs). MSCs were successfully isolated from six of 30 UCB units (median volume, 34.0 mL; median nucleated cell number, 4.4×10 8 ) that were processed and cryopreserved using CP-1/human serum albumin. This isolation rate was lower than that (57%) from non-cryopreserved UCB cells. The number of nucleated cells before and after hydroxyethyl starch separation, UCB unit volume, and cell viability after thawing did not significantly differ between UCB units from which MSCs were successfully isolated and those from which they were not. When CryoSure-DEX40 was used as a cryoprotectant, MSCs were isolated from two of ten UCB units. Logistic regression analysis demonstrated that the cryopreservation method was not significantly associated with the success of MSC isolation. The isolated MSCs had a similar morphology and surface marker expression profile as bone marrow-derived MSCs and were able to differentiate into osteogenic, adipogenic, and chondrogenic cells. In summary, MSCs can be isolated from cryopreserved UCB cells. However, the cryopreservation process reduces the isolation rate; therefore, freshly donated UCB cells are preferable for the isolation of MSCs.
In vitro toxicity testing with microplate cell cultures: Impact of cell binding.
Gülden, Michael; Schreiner, Jeannine; Seibert, Hasso
2015-06-05
In vitro generated data on toxic potencies are generally based on nominal concentrations. However, cellular and extracellular binding and elimination processes may reduce the available free fraction of a compound. Then, nominal effective concentrations do not represent appropriate measures of toxic exposure in vitro and underestimate toxic potencies. In this study it was investigated whether cell binding can affect the availability of chemicals in microplate based toxicity assays. To this end the cytotoxicity of compounds like mercury chloride, digitonin and alcohol ethoxylates, accumulated by cells via different modes, was investigated in 96-well microplate cultures with varying concentrations of Balb/c 3T3 cells. The median effective nominal concentrations of all but one of the tested compounds depended linearly from the cell concentration. Applying a previously developed equilibrium distribution model cell concentration-independent median effective extracellular concentrations and cell burdens, respectively, could be calculated. The compounds were accumulated by the cells with bioconcentration factors, BCF, between 480 and ≥ 25,000. Cell binding of the alcohol ethoxylates was correlated with their lipophilicity. The results show that significant cell binding can occur even at the small cell volume fractions (∼ 1 × 10(-5) to 3 × 10(-3) L/L) encountered in microplate assays. To what extent cell binding affects the bioavailability depends on the BCF and the cell volume fraction. EC50 measurements in the presence of at least two different cell concentrations allow for excluding or detecting significant cell binding and for determining more appropriate measures of toxic exposure in vitro like median effective extracellular (free) concentrations or cell burdens. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
‘Living cantilever arrays’ for characterization of mass of single live cells in fluids†
Park, Kidong; Jang, Jaesung; Irimia, Daniel; Sturgis, Jennifer; Lee, James; Robinson, J. Paul; Toner, Mehmet; Bashir, Rashid
2013-01-01
The size of a cell is a fundamental physiological property and is closely regulated by various environmental and genetic factors. Optical or confocal microscopy can be used to measure the dimensions of adherent cells, and Coulter counter or flow cytometry (forward scattering light intensity) can be used to estimate the volume of single cells in a flow. Although these methods could be used to obtain the mass of single live cells, no method suitable for directly measuring the mass of single adherent cells without detaching them from the surface is currently available. We report the design, fabrication, and testing of ‘living cantilever arrays’, an approach to measure the mass of single adherent live cells in fluid using silicon cantilever mass sensor. HeLa cells were injected into microfluidic channels with a linear array of functionalized silicon cantilevers and the cells were subsequently captured on the cantilevers with positive dielectrophoresis. The captured cells were then cultured on the cantilevers in a microfluidic environment and the resonant frequencies of the cantilevers were measured. The mass of a single HeLa cell was extracted from the resonance frequency shift of the cantilever and was found to be close to the mass value calculated from the cell density from the literature and the cell volume obtained from confocal microscopy. This approach can provide a new method for mass measurement of a single adherent cell in its physiological condition in a non-invasive manner, as well as optical observations of the same cell. We believe this technology would be very valuable for single cell time-course studies of adherent live cells. PMID:18584076
Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C
2007-06-01
Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.
Size and Carbon Content of Sub-seafloor Microbial Cells
NASA Astrophysics Data System (ADS)
Braun, S.; Morono, Y.; Littmann, S.; Jørgensen, B. B.; Lomstein, B. A.
2015-12-01
Into the seafloor, a radical decline in nutrient and energy availability poses strong metabolic demands to any residing life. However, a sedimentary microbial ecosystem seems to maintain itself close to what we understand to be the energetic limit of life. Since a complex sediment matrix is interfering with the analysis of whole cells and sub-cellular compounds such as cell wall and membrane molecules, little is known about the physiological properties of cells in the deep biosphere. Here we focus on the size and carbon content of cells from a 90-m sediment drill core retrieved in October 2013 at Landsort Deep, Baltic Sea, in 437 meters water depth. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via fluorescence microscopy (FM), scanning electron microscopy (SEM), and stimulated emission depletion microscopy (STED). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography after cells had additionally been purified by fluorescence activated cell sorting (FACS). Cell-carbon turnover times were estimated using an amino acid racemization model that is based on the built-in molecular clock of aspartic acid, which due to racemization alternates between the D- and L-isomeric configurations over timescales of thousands of years at low in-situ temperatures (≈4˚C). We find that the majority of microbial cells in the sediment have coccoid or rod-shaped morphology, and that absolute values for cell volume are strongly dependent on the method used, spanning three orders of magnitude from approximately 0.001 to 1 µm3 for both coccoid and rod-shaped cells. From the surface to the deepest sample measured (≈60 mbsf), cell volume decreases by an order of magnitude, and carbon content is in the lower range (<20 fg C cell-1) of what has been reported in the literature as conversion factors. Cell-carbon is turned over approximately every 50-600 years, and total carbon oxidation rates decrease from ≈3400 to <60 nmol cm-3 yr-1 with depth, as inferred from amino acid racemization modeling. Given the large extent of marine sediments on Earth, our data will shed light on the energetic limits of life on our planet and will be important for estimating global biomass budgets.
Felo, Michael; Christensen, Brandon; Higgins, John
2013-01-01
The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined. © 2013 American Institute of Chemical Engineers.
Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis
NASA Astrophysics Data System (ADS)
Kim, Jong-Yoon
2007-12-01
The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell’s internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee’s behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.
Gold Nanoparticle Quantitation by Whole Cell Tomography.
Sanders, Aric W; Jeerage, Kavita M; Schwartz, Cindi L; Curtin, Alexandra E; Chiaramonti, Ann N
2015-12-22
Many proposed biomedical applications for engineered gold nanoparticles require their incorporation by mammalian cells in specific numbers and locations. Here, the number of gold nanoparticles inside of individual mammalian stem cells was characterized using fast focused ion beam-scanning electron microscopy based tomography. Enhanced optical microscopy was used to provide a multiscale map of the in vitro sample, which allows cells of interest to be identified within their local environment. Cells were then serially sectioned using a gallium ion beam and imaged using a scanning electron beam. To confirm the accuracy of single cross sections, nanoparticles in similar cross sections were imaged using transmission electron microscopy and scanning helium ion microscopy. Complete tomographic series were then used to count the nanoparticles inside of each cell and measure their spatial distribution. We investigated the influence of slice thickness on counting single particles and clusters as well as nanoparticle packing within clusters. For 60 nm citrate stabilized particles, the nanoparticle cluster packing volume is 2.15 ± 0.20 times the volume of the bare gold nanoparticles.
Redey, Laszlo I.; Myles, Kevin M.; Vissers, Donald R.; Prakash, Jai
1996-01-01
An electrochemical cell with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated .beta." alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated .beta." alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof.
Freeze substitution in 3 hours or less.
McDonald, K L; Webb, R I
2011-09-01
Freeze substitution is a process for low temperature dehydration and fixation of rapidly frozen cells that usually takes days to complete. New methods for freeze substitution have been developed that require only basic laboratory tools: a platform shaker, liquid nitrogen, a metal block with holes for cryotubes and an insulated container such as an ice bucket. With this equipment, excellent freeze substitution results can be obtained in as little as 90 min for cells of small volume such as bacteria and tissue culture cells. For cells of greater volume or that have significant diffusion barriers such as cuticles or thick cell walls, one can extend the time to 3 h or more with dry ice. The 3-h method works well for all manner of specimens, including plants and Caenorhabditis elegans as well as smaller samples. Here, we present the basics of the techniques and some results from Nicotiana leaves, C. elegans adult worms, Escherichia coli and baby hamster kidney tissue culture cells. © 2011 The Authors Journal of Microscopy © 2011 Royal Microscopical Society.
Cholecystokinin-producing (I) cells of intestinal mucosa in dexamethasone-treated rats.
Glišić, Radmila; Koko, Vesna; Cvijić, Gordana; Milošević, Maja Čakić; Obradović, Jasmina
2011-11-10
The aim of this study was to investigate the morphological, immunohistochemical and ultrastructural changes of cholecystokinin-producing (I) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2mg/kg dexamethasone, rats developed diabetes similar to human diabetes mellitus type 2. The mean diameter of the duodenum was significantly decreased due to significant reduction of volume fraction and profile area of lamina propria. There was a decrease in volume fraction and number of cholecystokinin (CCK)-producing cells per mm(2) of mucosa, as well as their numerical density, but without statistical significance. Also, dexamethasone induced appearance of hyperactive duodenal I-cells with small number of granules and dilated endoplasmic reticulum. In conclusion, the present study showed that morphological changes in duodenum cholecystokinin-producing (I) cells occurred in diabetic rats, in a manner which, suggests compensatory effort of CCK cells in diabetic condition. Copyright © 2011 Elsevier B.V. All rights reserved.
van Doorn, Wouter G; Kirasak, Kanjana; Ketsa, Saichol
2015-04-01
Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation. Copyright © 2015 Elsevier GmbH. All rights reserved.
Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.
1996-11-12
A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.
Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes
NASA Technical Reports Server (NTRS)
Britton, Doris L.; Willis, Bob; Pickett, David F.
2003-01-01
The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.
He, Zhen; Ferguson, Sherry A; Cui, Li; Greenfield, L John; Paule, Merle G
2013-01-01
The sexually dimorphic nucleus of the preoptic area (SDN-POA) has received increased attention due to its apparent sensitivity to estrogen-like compounds found in food and food containers. The mechanisms that regulate SDN-POA volume remain unclear as is the extent of postweaning development of the SDN-POA. Here we demonstrate that the female Sprague-Dawley SDN-POA volume increased from weaning to adulthood, although this increase was not statistically significant as it was in males. The number of cells positive for Ki67, a marker of cell proliferation, in both the SDN-POA and the hypothalamus was significantly higher at weaning than at adulthood in male rats. In contrast, the number of Ki67-positive cells was significantly higher in the hypothalamus but not in the SDN-POA (p>0.05) at weaning than at adulthood in female rats. A subset of the Ki67-positive cells in the SDN-POA displayed the morphology of dividing cells. Nestin-immunoreactivity delineated a potential macroscopic neural stem cell niche in the rostral end of the 3rd ventricle. In conclusion, stem cells may partially account for the sexually dimorphic postweaning development of the SDN-POA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vadlamani, Bhaskar S; An, Ke; Jagannathan, M.
2014-01-01
The design and performance of a novel in-situ electrochemical cell that greatly facilitates the neutron diffraction study of complex phase transitions in small volume electrodes of Li-ion cells, is presented in this work. Diffraction patterns that are Rietveld-refinable could be obtained simultaneously for all the electrodes, which demonstrates that the cell is best suited to explore electrode phase transitions driven by the lithiation and delithiation processes. This has been facilitated by the use of single crystal (100) Si sheets as casing material and the planar cell configuration, giving improved signal-to-noise ratio relative to other casing materials. The in-situ cell hasmore » also been designed for easy assembly and to facilitate rapid experiments. The effectiveness of cell is demonstrated by tracking the neutron diffraction patterns during the charging of graphite/LiCoO2 and graphite/LiMn2O4 cells. It is shown that good quality neutron diffraction data can be obtained and that most of the finer details of the phase transitions, and the associated changes in crystallographic parameters in these electrodes, can be captured.« less
Areman, E M; Cullis, H; Spitzer, T; Sacher, R A
1991-10-01
A concentrate of mononuclear bone marrow cells is often desired for ex vivo treatment with pharmacologic agents, monoclonal antibodies, cytokines, and other agents prior to transplantation. A method has been developed for automated separation of mononuclear cells from large volumes of harvested bone marrow. A programmable instrument originally designed for clinical ex vivo cell separation and the plasma-pheresis of patients and blood donors was adapted to permit rapid preparation, in a closed sterile system, of a bone marrow product enriched with mononuclear cells. A mean (+/- SEM) of 53 +/- 30 percent of the original mononuclear cells was recovered in a volume of 125 +/- 42 mL containing 82 +/- 12 percent mononuclear cells. This technique removed 95 +/- 9 percent of the red cells in the original marrow. No density gradient materials or sedimenting agents were employed in this process. Of 36 marrows processed by this technique, 19 autologous (6 of which were purged with 4-hydroperoxycyclophosphamide) and 7 allogeneic marrows have been transplanted, with all evaluable patients achieving a neutrophil count of 0.5 x 10(9) per L in a mean (+/- SEM) of 21 +/- 6 days.
Evolution of power sources for implantable cardioverter defibrillators
NASA Astrophysics Data System (ADS)
Crespi, Ann M.; Somdahl, Sonja K.; Schmidt, Craig L.; Skarstad, Paul M.
The evolution of seven generations of power sources for implantable cardioverter defibrillators (ICD) is presented. The packaging efficiency of the power sources has steadily increased, resulting in smaller, lighter batteries while maintaining the required electrical characteristics. The main areas for improvement were reduction of headspace volume, reduction of separator volume, and a change from a two-cell battery to a single cell.
Dartsch, P C; Hildenbrand, S; Kimmel, R; Schmahl, F W
1998-09-01
In contrast to trivalent chromium (Cr(III)) compounds, hexavalent chromium ((Cr(VI)) compounds are oxidizing agents capable of directly inducing tissue damage and possessing carcinogenic, mutagenic and teratogenic potency. After oral or dermal absorption of Cr(VI), the kidney is the main target organ for chromium accumulation, which might result in acute tubular necrosis in humans. In contrast, an acute toxic effect of Cr(VI) on the liver has not yet been described. Therefore, we used two established epithelial cell lines from the kidney (Opossum kidney cells) and the liver (Hep G2 cells) to design an in vitro-assay which is able to examine acute toxic effects of chromium compounds. Cells of both cell lines were treated with various concentrations of Cr(III) and Cr(VI) ranging from 0.01 micromol/l to 1 mmol/l for 24 h. Thereafter, cell morphology, organization of the intracellular cytoskeleton, number of viable cells and mean cell volume were examined. The results show that Cr(VI), but not Cr(III), has an acute cytotoxic effect and causes a dose-dependent loss in cell viability. The effective dose that caused 50% of cell death was 5 micromol/l for kidney epithelial cells and 50 micromol/l for liver epithelial cells. This means that kidney epithelial cells are 10 times more sensitive towards Cr(VI) treatment than liver epithelial cells and this might explain the known nephrotoxicity in vivo. The loss in cell viability was accompanied by a rounding and detachment of the cells and a marked reduction of intracellular F-actin-containing stress fibers. Microtubules and intermediate-sized filaments were observed to be unaffected. Only in the case of kidney epithelial cells, a dose-dependent cell volume increase was observed after Cr(VI) treatment at concentrations up to 50 micromol/l. At higher concentrations, the cell volume decreased due to the high number of cells undergoing lysis and the appearance of cellular fragments. Various chloride channel blockers with different specificities, molecular structures and inhibitory potentials were tested for their ability to prevent Cr(VI)-induced cell damage. None of the channel blockers was able to inhibit cell damage, suggesting that the uptake of Cr(VI) through the general anion transport system of the cell membrane might be only one facet of cellular uptake and toxification. The data presented here not only confirm the different organ-specific effects of Cr(III) and Cr(VI), but also provide a basis for future experiments on the understanding of acute toxicity of Cr(VI) compounds. Moreover, the results demonstrate that the designed in vitro-assay might be a useful tool to prove whether non-toxic Cr(III) can be oxidized to Cr(VI) under specific industrial conditions (for example, in the leather or chrome industry).
Remote excitation fluorescence correlation spectroscopy using silver nanowires
NASA Astrophysics Data System (ADS)
Su, Liang; Yuan, Haifeng; Lu, Gang; Hofkens, Johan; Roeffaers, Maarten; Uji-i, Hiroshi
2014-11-01
Fluorescence correlation spectroscopy (FCS), a powerful tool to resolve local properties, dynamical process of molecules, rotational and translational diffusion motions, relies on the fluctuations of florescence observables in the observation volume. In the case of rare transition events or small dynamical fluctuations, FCS requires few molecules or even single molecules in the observation volume at a time to minimize the background signals. Metal nanoparticle which possess unique localized surface plasmon resonance (LSPR) have been used to reduce the observation volume down to sub-diffraction limited scale while maintain at high analyst concentration up to tens of micromolar. Nevertheless, the applications of functionalized nanoparticles in living cell are limited due to the continuous diffusion after cell uptake, which makes it difficult to target the region of interests in the cell. In this work, we demonstrate the use of silver nanowires for remote excitation FCS on fluorescent molecules in solution. By using propagation surface plasmon polaritons (SPPs) which supported by the silver nanowire to excite the fluorescence, both illumination and observation volume can be reduced simultaneously. In such a way, less perturbation is induced to the target region, and this will broaden the application scope of silver nanowire as tip in single cell endoscopy.
Cell Salvage Used in Scoliosis Surgery: Is It Really Effective?
Liu, Jia-Ming; Fu, Bi-Qi; Chen, Wen-Zhao; Chen, Jiang-Wei; Huang, Shan-Hu; Liu, Zhi-Li
2017-05-01
Scoliosis surgery usually is associated with large volume of intraoperative blood loss, and cell salvage is used commonly to filter and retranfusion autologous blood to patients. The efficacy of using cell salvage in scoliosis surgery, however, is still controversial. The purpose of this study is to make clear that intraoperative use of cell salvage is effective to decrease the volume of perioperative allogenic blood transfusion in scoliosis surgery. A meta-analysis was conducted to identify the relevant studies from PubMed, Embase, Medline, Cochrane library, and Google scholar until July 2016. All randomized trials and controlled clinical studies comparing the clinical outcomes of using cell salvage versus noncell salvage in scoliosis surgery were retrieved for the meta-analysis. The data were analyzed by RevMan 5.3. A total of 7 studies with 562 patients were included in this meta-analysis. Based on the analysis, the volumes of perioperative and postoperative allogenic red blood cell (RBC) transfusion in cell salvage group were significantly less than those in control group (P = 0.04 and P = 0.01); however, no significant difference was detected in the amount of intraoperative allogenic RBC transfusion and the risk of patients needing allogenic blood transfusion between the 2 groups (P = 0.14 and P = 0.61). Both the hemoglobin and hematocrit levels on the first day after surgery were significantly greater in cell salvage group than those in control group (P = 0.002 and P < 0.001). No significant differences, however, were noted in neither hemoglobin nor hematocrit level at the time of discharge between the 2 groups (P = 0.76 and P = 0.32). One of the included study reported the number of patients with complications related to transfusion in the two groups, which was not significant different (P = 0.507). Cell salvage significantly reduced the volumes of perioperative and postoperative allogenic RBC transfusion in scoliosis surgery and increased the hemoglobin and hematocrit levels on the first day postoperatively. In addition, it seemed not to increase the rate of transfusion complications during the surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Experiences of the Dresdner Cord Blood Bank, supported by the Deutsche Knochenmarkspenderdatei.
Ordemann, R; Petzold, K; Hölig, K; Schaffer, B; Mauersberger, S; Ehninger, G; Ehminger, G
1999-01-01
Allogeneic bone marrow and peripheral blood stem cell transplantation is the treatment of choice for some malignant hematologic diseases, marrow failure syndromes, and severe congenital immunodeficiency states. Since Gluckman et al reported in 1988 the first successful human leukocyte antigen (HLA)-matched sibling umbilical cord blood stem cell transplantation, it has been known that cord blood is a valuable source of hematopoietic stem cells. The Cord Blood Bank at the University Hospital of Dresden was founded in 1997 and started collecting, processing, and cryoconserving umbilical cord blood in August 1997. The cord blood bank is supported by the largest German donor registry: Deutsche Knochenmarkspenderdatei (DKMS) in Tubingen, Germany. With the informed consent of the mothers, the collection is performed in collaboration with six hospitals in Dresden, Berlin, and Bautzen. We routinely perform a volume reduction by centrifuging the blood bag and expressing the leukocyte-rich supernatant. Routinely, sterility, total nucleated cells (TNC), CD34+ cell count, HLA class I and II, ABO/Rh blood group, and colony-forming units are evaluated. The maternal blood is screened for anti-immunodeficiency virus (anti-HIV), anti-hepatitis C virus (anti-HCV), anti-hepatitis B surface antigen (HBsAg), anti-hepatitis B surface (anti-HBs), anti-hepatitis B core (anti-HBc), anticytomegalovirus (anti-CMV), and toxoplasmosis and with Treponema pallidum hemagglutination assay (TPHA). More than 1,000 cord blood units could be collected. Because of the required volume and cell count and because of sterility, 50% of the collected units had to be discharged. Our results are comparable with data of other cord blood banks: mean volume 79 mL; cell count after volume reduction-TNC, 7.16 x 10(8); mononucleated cells (MNC), 3.75 x 10(8); CD34+ cells, 1.95 x 10(6); colony-forming units (CFU), 67.1 x 10(4). To increase the pool of potential umbilical cord blood units and in order to evaluate the possibility for unrelated transplants, cryopreservation and banking of large numbers of cord bloods are necessary.
An affordable method to obtain cultured endothelial cells from peripheral blood
Bueno-Betí, Carlos; Novella, Susana; Lázaro-Franco, Macarena; Pérez-Cremades, Daniel; Heras, Magda; Sanchís, Juan; Hermenegildo, Carlos
2013-01-01
The culture of endothelial progenitor cells (EPC) provides an excellent tool to research on EPC biology and vascular regeneration and vasculogenesis. The use of different protocols to obtain EPC cultures makes it difficult to obtain comparable results in different groups. This work offers a systematic comparison of the main variables of most commonly used protocols for EPC isolation, culture and functional evaluation. Peripheral blood samples from healthy individuals were recovered and mononuclear cells were cultured. Different recovery and culture conditions were tested: blood volume, blood anticoagulant, coating matrix and percentage of foetal bovine serum (FBS) in culture media. The success of culture procedure, first colonies of endothelial cells appearance time, correlation with number of circulating EPC (cEPC) and functional comparison with human umbilical vein endothelial cells (HUVEC) were studied. The use of heparin, a minimum blood volume of 30 ml, fibronectin as a coating matrix and endothelial growing media-2 supplemented with 20% FBS increased the success of obtaining EPC cultures up to 80% of the processed samples while reducing EPC colony appearance mean time to a minimum of 13 days. Blood samples exhibiting higher cEPC numbers resulted in reduced EPC colony appearance mean time. Cells isolated by using this combination were endothelial cell-like EPCs morphological and phenotypically. Functionally, cultured EPC showed decreased growing and vasculogenic capacity when compared to HUVEC. Thus, above-mentioned conditions allow the isolation and culture of EPC with smaller blood volumes and shorter times than currently used protocols. PMID:24118735
Altuntas, Fevzi; Kocyigit, Ismail; Ozturk, Ahmet; Kaynar, Leylagul; Sari, Ismail; Oztekin, Mehmet; Solmaz, Musa; Eser, Bulent; Cetin, Mustafa; Unal, Ali
2007-04-01
Peripheral blood progenitor cells (PBPC) are commonly used as a stem cell source for autologous transplantation. This study was undertaken to evaluate blood cell separators with respect to separation results and content of the harvest. Forty autologous PBPC collections in patients with hematological malignancies were performed with either the Amicus or the COM.TEC cell separators. The median product volume was lower with the Amicus compared to the COM.TEC (125 mL vs. 300 mL; p < 0.001). There was no statistically significant difference in the median number of CD34+ cell/kg in product between the Amicus and the COM.TEC (3.0 x 10(6) vs. 4.1 x 10(6); p = 0.129). There was a statistically higher mean volume of ACD used in collections on the Amicus compared to the COM.TEC (1040 +/- 241 mL vs. 868 +/- 176 mL; p = 0.019). There was a statistical difference in platelet (PLT) contamination of the products between the Amicus and the COM.TEC (0.3 x 10(11) vs. 1.1 x 10(11); p < 0.001). The median % decrease in PB PLT count was statistically higher in the COM.TEC compared to the Amicus instruments (18.5% vs. 9.5%; p = 0.028). In conclusion, both instruments collected PBPCs efficiently. However, Amicus has the advantage of lower PLT contamination in the product, and less decrease in PB platelet count with lower product volume in autologous setting.
Liquid chromatography/Fourier transform IR spectrometry interface flow cell
Johnson, Charles C.; Taylor, Larry T.
1986-01-01
A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.
Kim-Wanner, Soo-Zin; Bug, Gesine; Steinmann, Juliane; Ajib, Salem; Sorg, Nadine; Poppe, Carolin; Bunos, Milica; Wingenfeld, Eva; Hümmer, Christiane; Luxembourg, Beate; Seifried, Erhard; Bonig, Halvard
2017-08-11
Red blood cell (RBC) depletion is a standard graft manipulation technique for ABO-incompatible bone marrow (BM) transplants. The BM processing module for Spectra Optia, "BMC", was previously introduced. We here report the largest series to date of routine quality data after performing 50 clinical-scale RBC-depletions. Fifty successive RBC-depletions from autologous (n = 5) and allogeneic (n = 45) BM transplants were performed with the Spectra Optia BMC apheresis suite. Product quality was assessed before and after processing for volume, RBC and leukocyte content; RBC-depletion and stem cell (CD34+ cells) recovery was calculated there from. Clinical engraftment data were collected from 26/45 allogeneic recipients. Median RBC removal was 98.2% (range 90.8-99.1%), median CD34+ cell recovery was 93.6%, minimum recovery being 72%, total product volume was reduced to 7.5% (range 4.7-23.0%). Products engrafted with expected probability and kinetics. Performance indicators were stable over time. Spectra Optia BMC is a robust and efficient technology for RBC-depletion and volume reduction of BM, providing near-complete RBC removal and excellent CD34+ cell recovery.
Liquid chromatography/Fourier transform IR spectrometry interface flow cell
Johnson, C.C.; Taylor, L.T.
1985-01-04
A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.
Expression of LRRC8/VRAC Currents in Xenopus Oocytes: Advantages and Caveats.
Gaitán-Peñas, Héctor; Pusch, Michael; Estévez, Raúl
2018-03-02
Volume-regulated anion channels (VRACs) play a role in controlling cell volume by opening upon cell swelling. Apart from controlling cell volume, their function is important in many other physiological processes, such as transport of metabolites or drugs, and extracellular signal transduction. VRACs are formed by heteromers of the pannexin homologous protein LRRC8A (also named Swell1) with other LRRC8 members (B, C, D, and E). LRRC8 proteins are difficult to study, since they are expressed in all cells of our body, and the channel stoichiometry can be changed by overexpression, resulting in non-functional heteromers. Two different strategies have been developed to overcome this issue: complementation by transient transfection of LRRC8 genome-edited cell lines, and reconstitution in lipid bilayers. Alternatively, we have used Xenopus oocytes as a simple system to study LRRC8 proteins. Here, we have reviewed all previous experiments that have been performed with VRAC and LRRC8 proteins in Xenopus oocytes. We also discuss future strategies that may be used to perform structure-function analysis of the VRAC in oocytes and other systems, in order to understand its role in controlling multiple physiological functions.
The TMI Regenerative Solid Oxide Fuel Cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.; Ruhl, Robert C.; Petrik, Michael
1996-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. Systems generally consist of photovoltaic solar arrays which operate (during sunlight cycles) to provide system power and regenerate fuel (hydrogen) via water electrolysis and (during dark cycles) fuel cells convert hydrogen into electricity. Common configurations use two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Reliability, power to weight and power to volume ratios could be greatly improved if both power production (fuel cells) and power storage (electrolysis) functions can be integrated into a single unit. The solid oxide fuel cell (SOFC) based design integrates fuel cell and electrolyzer functions and potentially simplifies system requirements. The integrated fuel cell/electrolyzer design also utilizes innovative gas storage concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H20 electrode (SOFC anode/electrolyzer cathode) materials for regenerative fuel cells. Tests have shown improved cell performance in both fuel and electrolysis modes in reversible fuel cell tests. Regenerative fuel cell efficiencies, ratio of power out (fuel cell mode) to power in (electrolyzer mode), improved from 50 percent using conventional electrode materials to over 80 percent. The new materials will allow a single SOFC system to operate as both the electolyzer and fuel cell. Preliminary system designs have also been developed to show the technical feasibility of using the design for space applications requiring high energy storage efficiencies and high specific energy. Small space systems also have potential for dual-use, terrestrial applications.
Pore size engineering applied to starved electrochemical cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Thaller, L. H.
1982-01-01
To maximize performance in starved, multiplate cells, the cell design should rely on techniques which widen the volume tolerance characteristics. These involve engineering capillary pressure differences between the components of an electrochemical cell and using these forces to promote redistribution of electrolyte to the desired optimum values. This can be implemented in practice by prescribing pore size distributions for porous back-up plates, reservoirs, and electrodes. In addition, electrolyte volume management can be controlled by incorporating different pore size distributions into the separator. In a nickel/hydrogen cell, the separator must contain pores similar in size to the small pores of both the nickel and hydrogen electrodes in order to maintain an optimum conductive path for the electrolyte. The pore size distributions of all components should overlap in such a way as to prevent drying of the separator and/or flooding of the hydrogen electrode.
Advanced nickel-hydrogen cell configuration study
NASA Technical Reports Server (NTRS)
1983-01-01
Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.
Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries
NASA Technical Reports Server (NTRS)
Abbey, K. M.; Britton, D. L.
1983-01-01
Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571
Shah, Rhythm R; Linville, Taylor W; Whynot, Andrew D; Brazel, Christopher S
2016-09-01
Single-use bioprocessing bags are gaining popularity due to ease of use, lower risk of contamination, and ease of process scale-up. Bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP), a degradant of tris(2,4-di-tert-butylphenyl)phosphite, marketed as Irgafos 168®, which is an antioxidant stabilizer added to resins, has been identified as a potentially toxic leachate which may impact the performance of single-use, multilayer bioprocessing bags. In this study, the toxicity of bDtBPP was tested on CHO-K1 cells grown as adherent or suspended cells. The EC50 (effective concentration to cause 50% cell death) for adherent cells was found to be one order of magnitude higher than that for suspended CHO-K1 cells. While CHO-K1 cells had good cell viability when exposed to moderate concentrations of bDtBPP, the degradant was shown to impact the viable cell density (VCD) at much lower concentrations. Hence, in developing an industry-standard assay for testing the cytotoxicity of leachates, suspended cells (as commonly used in the bioprocessing industry) would likely be most sensitive, particularly when reporting EC50 values based on VCD. The effects of mixing, cell culture volume, and exposure duration were also evaluated for suspended CHO-K1 cells. It was found that the sensitivity of cell culture to leachates from single-use plastic bags was enhanced for suspended cells cultured for longer exposure times and when the cells were subjected to continuous agitation, both of which are important considerations in the production of biopharmaceuticals. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1318-1323, 2016. © 2016 American Institute of Chemical Engineers.
Three-dimensional Model of Tissue and Heavy Ions Effects
NASA Technical Reports Server (NTRS)
Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.
2007-01-01
A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.
Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.
Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P
2006-03-01
The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.
Jin, Xiaoxia; Abbot, Stewart; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Zhao, Rui; Kameneva, Marina V.; Moore, Lee R.; Chalmers, Jeffrey J.; Zborowski, Maciej
2012-01-01
Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes. PMID:22952572
de Carvalho Scharf Santana, Natália; Lima, Natália Alves; Desoti, Vânia Cristina; Bidóia, Danielle Lazarin; de Souza Bonfim Mendonça, Patrícia; Ratti, Bianca Altrão; Nakamura, Tânia Ueda; Nakamura, Celso Vataru; Consolaro, Marcia Edilaine Lopes; Ximenes, Valdecir Farias; de Oliveira Silva, Sueli
2016-10-01
Cervical cancer is characterized as an important public health problem. According to latest estimates, cancer of the cervix is the fourth most common cancer among women. Due to its high prevalence, the search for new and efficient drugs to treat this infection is continuous. The progression of HPV-associated cervical cancer involves the expression of two viral proteins, E6 and E7, which are rapidly degraded by the ubiquitin-proteasome system through the increase in reactive oxygen species generation. Vitamins are essential to human substances, participate in the regulation of metabolism, and facilitate the process of energy transfer. Some early studies have indicated that vitamin K3 exerts antitumor activity by inducing cell death by apoptosis through an increase in the generation of reactive oxygen species. Thus, we evaluated the antiproliferative effect and a likely mechanism of action of vitamin K3 against cervical epithelial cells transformed by HPV 16 (SiHa cells) assessing the production of total ROS, the mitochondrial membrane potential, the cell morphology, the cell volume, and the cell membrane integrity. Our results show that vitamin K3 induces an increase in ROS production in SiHa cells, triggering biochemical and morphological events, such as depolarization of mitochondrial membrane potential and decreasing cell volume. Our data showed that vitamin K3 generates an oxidative imbalance in SiHa cells, leading to mechanisms that induce cell death by apoptosis.
Guerra, Matías; González, Karina; González, Carlos; Parra, Boris; Martínez, Miguel
2015-09-01
Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.
Time related variations in stem cell harvesting of umbilical cord blood
NASA Astrophysics Data System (ADS)
Mazzoccoli, Gianluigi; Miscio, Giuseppe; Fontana, Andrea; Copetti, Massimiliano; Francavilla, Massimo; Bosi, Alberto; Perfetto, Federico; Valoriani, Alice; de Cata, Angelo; Santodirocco, Michele; Totaro, Angela; Rubino, Rosa; di Mauro, Lazzaro; Tarquini, Roberto
2016-02-01
Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery. Few data exist regarding as to how time influences UCB collection and banking patterns. We retrospectively analyzed 17.936 cord blood donations collected from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized multivariable linear mixed models showed that CBV, TNC and CD34+ cell were associated with known obstetric and neonatal parameters and showed rhythmic patterns in different time domains and frequency ranges. The present findings confirm that volume, total nucleated cells and stem cells of the UCB donations are hallmarked by rhythmic patterns in different time domains and frequency ranges and suggest that temporal rhythms in addition to known obstetric and neonatal parameters influence CBV, TNC and CD34+ cell content in UBC units.
Wegman, F; Poldervaart, M T; van der Helm, Y J; Oner, F C; Dhert, W J; Alblas, J
2015-07-27
Bone morphogenetic protein-2 (BMP-2) gene delivery has shown to induce bone formation in vivo in cell-based tissue engineering. In addition, the chemoattractant stromal cell-derived factor-1α (SDF-1α, also known as CXCL12) is known to recruit multipotent stromal cells towards its release site where it enhances vascularisation and possibly contributes to osteogenic differentiation. To investigate potential cooperative behaviour for bone formation, we investigated combined release of BMP-2 and SDF-1α on ectopic bone formation in mice. Multipotent stromal cell-seeded and cell-free constructs with BMP-2 plasmid DNA and /or SDF-1α loaded onto gelatin microparticles, were implanted subcutaneously in mice for a period of 6 weeks. Histological analysis and histomorphometry revealed that the onset of bone formation and the formed bone volume were both enhanced by the combination of BMP-2 and SDF-1α compared to controls in cell-seeded constructs. Samples without seeded multipotent stromal cells failed to induce any bone formation. We conclude that the addition of stromal cell-derived factor-1α to a cell-seeded alginate based bone morphogenetic protein-2 plasmid DNA construct has an additive effect on bone formation and can be considered a promising combination for bone regeneration.
Ascidian notochord morphogenesis
Jiang, Di; Smith, William C.
2010-01-01
The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate models systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pre-gastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidian species produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord, while others appear to make intercellular vacuoles. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes. PMID:17497687
Ascidian notochord morphogenesis.
Jiang, Di; Smith, William C
2007-07-01
The development of the notochord involves a complex set of cellular behaviors. While these morphogenic behaviors are common to all chordates, the ascidian provides a particularly attractive experimental model because of its relative simplicity. In particular, all notochord morphogenesis in ascidians takes place with only 40 cells, as opposed to the hundreds of cells in vertebrate model systems. Initial steps in ascidian notochord development convert a monolayer of epithelial-like cells in the pregastrula embryo to a cylindrical rod of single-cell diameter. Convergent extension is responsible for the intercalation of notochord cells and some degree of notochord elongation, while a second phase of elongation is observed as the notochord narrows medially and increases in volume. The mechanism by which the volume of the notochord increases differs between ascidian species. Some ascidians produce extracellular pockets that will eventually coalesce to form a lumen running the length of the notochord; whereas others do not. By either mechanism, the resulting notochord serves as a hydrostatic skeleton allowing for the locomotion of the swimming larva. Several basic cell behaviors, such as cell shape changes, cell rearrangement, establishment of cell polarity, and alteration of extracellular environment, are displayed in the process of notochord morphogenesis. Modern analysis of ascidian notochord morphogenesis promises to contribute to our understanding of these fundamental biological processes. Copyright 2007 Wiley-Liss, Inc.
The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.
Smith, D J; Schulte, M; Bischof, J C
1998-10-01
Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled volume values for Lpg and ELp were very similar, but the overall fit was considered worse than for the individual volume parameters. A unique way of presenting the curve-fitting results supports a clear trend of reduction of both biophysical parameters in the presence of DMSO, and no clear trend in cooling rate dependence of the biophysical parameters. In addition, these results suggest that close proximity of the experimental cell volume data to the equilibrium volume curve may significantly reduce the efficiency of the curve-fitting process.
Major, Rebeka D; Kluge, Martin; Jara, Maximilian; Nösser, Maximilian; Horner, Rosa; Gassner, Joseph; Struecker, Benjamin; Tang, Peter; Lippert, Steffen; Reutzel-Selke, Anja; Geisel, Dominik; Denecke, Timm; Stockmann, Martin; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael
2018-03-01
The need for primary human hepatocytes is constantly growing for basic research, as well as for therapeutic applications. However, the isolation outcome strongly depends on the quality of liver tissue, and we are still lacking a preoperative test that allows the prediction of the hepatocyte isolation outcome. In this study, we evaluated the "maximal liver function capacity test" (LiMAx) as predictive test for the quantitative and qualitative outcome of hepatocyte isolation. This test is already used in clinical routine to measure preoperative and to predict postoperative liver function. The patient's preoperative mean LiMAx was obtained from the patient records, and preoperative computed tomography and magnetic resonance images were used to calculate the whole liver volume to adjust the mean LiMAx. The outcome parameters of the hepatocyte isolation procedures were analyzed in correlation with the adjusted mean LiMAx. Primary human hepatocytes were isolated from partial hepatectomies (n = 64). From these 64 hepatectomies we included 48 to our study and correlated their isolation outcome parameters with volume corrected LiMAx values. From a total of 11 hepatocyte isolation procedures, metabolic parameters (albumin, urea, and aspartate aminotransferase or AST) were assessed during the hepatocyte cultivation period of 5 days. The volume adjusted mean LiMAx showed a significant positive correlation with the total cell yield (p = 0.049; r = 0.242; n = 48). The correlations of volume adjusted LiMAx values with viable cell yield and cell viability did not reach statistical significance. To create a more homogenous study group regarding tumor entities, subgroup analyses were performed. A subgroup analysis of isolations from patients with colorectal metastasis revealed a significant correlation between volume adjusted mean LiMAx and total cell yield (p = 0.012; r = 0.488; n = 21) and viable cell yield (p = 0.034; r = 0.405; n = 21), whereas a subgroup analysis of isolations of patients with carcinoma of the biliary tree showed significant correlations of volume adjusted mean LiMAx with cell viability (r = 0.387; p = 0.046; n = 20) and lacked significant correlations with total cell yield (r = -0.060; p = 0.401; n = 20) and viable cell yield (r = 0.012; p = 0.480; n = 20). The volume-adjusted mean LiMAx did not show a significant correlation with any of the metabolic parameters. In conclusion, the LiMAx test might be a useful tool to predict the quantitative outcome of hepatocyte isolation, as long as underlying liver disease is taken into consideration.
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.
1980-01-01
Electrical characteristics of Hughes Liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature.
On strain and stress in living cells
NASA Astrophysics Data System (ADS)
Cox, Brian N.; Smith, David W.
2014-11-01
Recent theoretical simulations of amelogenesis and network formation and new, simple analyses of the basic multicellular unit (BMU) allow estimation of the order of magnitude of the strain energy density in populations of living cells in their natural environment. A similar simple calculation translates recent measurements of the force-displacement relation for contacting cells (cell-cell adhesion energy) into equivalent volume energy densities, which are formed by averaging the changes in contact energy caused by a cell's migration over the cell's volume. The rates of change of these mechanical energy densities (energy density rates) are then compared to the order of magnitude of the metabolic activity of a cell, expressed as a rate of production of metabolic energy per unit volume. The mechanical energy density rates are 4-5 orders of magnitude smaller than the metabolic energy density rate in amelogenesis or bone remodeling in the BMU, which involve modest cell migration velocities, and 2-3 orders of magnitude smaller for innervation of the gut or angiogenesis, where migration rates are among the highest for all cell types. For representative cell-cell adhesion gradients, the mechanical energy density rate is 6 orders of magnitude smaller than the metabolic energy density rate. The results call into question the validity of using simple constitutive laws to represent living cells. They also imply that cells need not migrate as inanimate objects of gradients in an energy field, but are better regarded as self-powered automata that may elect to be guided by such gradients or move otherwise. Thus Ġel=d/dt 1/2 >[(C11+C12)ɛ02+2μγ02]=(C11+C12)ɛ0ɛ˙0+2μγ0γ˙0 or Ġel=ηEɛ0ɛ˙0+η‧Eγ0γ˙0 with 1.4≤η≤3.4 and 0.7≤η‧≤0.8 for Poisson's ratio in the range 0.2≤ν≤0.4 and η=1.95 and η‧=0.75 for ν=0.3. The spatial distribution of shear strains arising within an individual cell as cells slide past one another during amelogenesis is not known in detail. However, estimates can be inferred from the known relative velocities of the cells' centers of mass. When averaged over a volume comparable to the cell size, representative values of the strain are, to order of magnitude, ɛ0≈0.1 and γ0≈0.1. The shape distortions of cells seen, for example, in Fig. 1c, imply peak strains in minor segments of a cell of magnitude unity, ɛ0≈1 and γ0≈1; these values represent the upper bound of plausible values and are included for discussion of the extremes of attainable strain energy rates.Given the strain magnitudes, the strain rates follow from the fact that a cell switches from one contacting neighbor in the adjacent row to the next in approximately 0.25 d, during which motion the strains might vary from zero to their maximum values and back again. Thus the most probable shear strain rate is inferred to be γ˙0=10-6 s-1 and the most probable tensile strain rate is inferred to be ɛ˙0≈10-6 s-1, with high bounds γ˙0=10-5 s-1 and ɛ˙0=10-5 s-1.
Simplified Bioreactor For Growing Mammalian Cells
NASA Technical Reports Server (NTRS)
Spaulding, Glenn F.
1995-01-01
Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.
Higher biomolecules yield in phytoplankton under copper exposure.
Silva, Jaqueline Carmo; Echeveste, Pedro; Lombardi, Ana Teresa
2018-05-30
Copper is an important metal for industry, and its toxic threshold in natural ecosystems has increased since the industrial revolution. As an essential nutrient, it is required in minute amounts, being toxic in slightly increased concentrations, causing great biochemical transformation in microalgae. This study aimed at investigating the physiology of Scenedesmus quadricauda, a cosmopolitan species, exposed to copper concentrations including those that trigger intracellular biochemical modifications. The Cu exposure concentrations tested ranged from 0.1 to 25 µM, thus including environmentally important levels. Microalgae cultures were kept under controlled environmental conditions and monitored daily for cell density, in vivo chlorophyll a, and photosynthetic quantum yield (Φ M ). After 24 h growth, free Cu 2+ ions were determined, and after 96 h, cellular Cu concentration, total carbohydrates, proteins, lipids, and cell volume were determined. The results showed that both free Cu 2+ ions and cellular Cu increased with Cu increase in culture medium. Microalgae cell abundance and in vivo chlorophyll a were mostly affected at 2.5 µM Cu exposure (3.8 pg Cu cell -1 ) and above. Approximately 31% decrease of photosynthetic quantum yield was obtained at the highest Cu exposure concentration (25 µM; 25 pg Cu cell -1 ) in comparison with the control. However, at environmentally relevant copper concentrations (0.5 µM Cu; 0.4 pg Cu cell -1 ) cell volume increased in comparison with the control. Considering biomolecules accumulation per unit cell volume, the highest carbohydrates and proteins yield was obtained at 1.0 µM Cu (1.1 pg Cu cell -1 ), while for lipids higher Cu was necessary (2.5 µM Cu; 3.8 pg Cu cell -1 ). This study is a contribution to the understanding of the effects of environmentally significant copper concentrations in the physiology of S. quadricauda, as well as to biotechnological approach to increase biomolecule yield in microalgae production. Copyright © 2018 Elsevier Inc. All rights reserved.
Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design
NASA Technical Reports Server (NTRS)
Cable, Thomas L.; Setlock, John A.; Farmer, Serene C.; Eckel, Andy J.
2009-01-01
The NASA Glenn Research Center is developing both a novel cell design (BSC) and a novel ceramic fabrication technique to produce fuel cells predicted to exceed a specific power density of 1.0 kW/kg. The NASA Glenn cell design has taken a completely different approach among planar designs by removing the metal interconnect and returning to the use of a thin, doped LaCrO3 interconnect. The cell is structurally symmetrical. Both electrodes support the thin electrolyte and contain micro-channels for gas flow-- a geometry referred to as a bi-electrode supported cell or BSC. The cell characteristics have been demonstrated under both SOFC and SOE conditions. Electrolysis tests verify that this cell design operates at very high electrochemical voltage efficiencies (EVE) and high H2O conversion percentages, even at the low flow rates predicted for closed loop systems encountered in unmanned aerial vehicle (UAV) applications. For UAVs the volume, weight and the efficiency are critical as they determine the size of the water tank, the solar panel size, and other system requirements. For UAVs, regenerative solid oxide fuel cell stacks (RSOFC) use solar panels during daylight to generate power for electrolysis and then operate in fuel cell mode during the night to power the UAV and electronics. Recent studies, performed by NASA for a more electric commercial aircraft, evaluated SOFCs for auxiliary power units (APUs). System studies were also conducted for regenerative RSOFC systems. One common requirement for aerospace SOFCs and RSOFCs, determined independently in each application study, was the need for high specific power density and volume density, on the order of 1.0 kW/kg and greater than 1.0 kW/L. Until recently the best reported performance for SOFCs was 0.2 kW/kg or less for stacks. NASA Glenn is working to prototype the light weight, low volume BSC design for such high specific power aerospace applications.
Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong
2015-02-26
The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamics of Escherichia coli’s passive response to a sudden decrease in external osmolarity
Buda, Renata; Liu, Yunxiao; Yang, Jin; Hegde, Smitha; Stevenson, Keiran; Bai, Fan; Pilizota, Teuta
2016-01-01
For most cells, a sudden decrease in external osmolarity results in fast water influx that can burst the cell. To survive, cells rely on the passive response of mechanosensitive channels, which open under increased membrane tension and allow the release of cytoplasmic solutes and water. Although the gating and the molecular structure of mechanosensitive channels found in Escherichia coli have been extensively studied, the overall dynamics of the whole cellular response remain poorly understood. Here, we characterize E. coli’s passive response to a sudden hypoosmotic shock (downshock) on a single-cell level. We show that initial fast volume expansion is followed by a slow volume recovery that can end below the initial value. Similar response patterns were observed at downshocks of a wide range of magnitudes. Although wild-type cells adapted to osmotic downshocks and resumed growing, cells of a double-mutant (ΔmscL,ΔmscS) strain expanded, but failed to fully recover, often lysing or not resuming growth at high osmotic downshocks. We propose a theoretical model to explain our observations by simulating mechanosensitive channels opening, and subsequent solute efflux and water flux. The model illustrates how solute efflux, driven by mechanical pressure and solute chemical potential, competes with water influx to reduce cellular osmotic pressure and allow volume recovery. Our work highlights the vital role of mechanosensation in bacterial survival. PMID:27647888
Boll, I T
2001-08-01
The high-resolution phase-contrast, time-lapse cinematography using oil immersion lenses and 16-mm film demonstrates the kinetic cell events as maturation, locomotion, mitosis, and apoptosis of cells cultivated at 37 degrees C for up to 10 days. 0.5 v/v frozen-thawed sera with presumably high cytokine concentrations were added to the plasma or agar clot. Vital progenitor cells from human bone marrow and blood have a large, bright, unstructured nucleus with a large nucleolus and a narrow rim of cytoplasm (nuclear/cytoplasmic volume ratio = 0.7). Their nuclei are 6-14 micrometer in diameter and double their volume within 8 h. Many (70%) move at a mean speed of 2 micrometer/min, and many (30%) multiply with alpha-2alpha mitoses, generating progenitor cell families. Various disturbances during the course of mitosis lead to the formation of polyploid cells, thereby yielding the megakaryocytic cell line. Some of the progenitor cells undergo asymmetric alpha-alphan mitoses: One of the two initially identical daughter cells remains a progenitor cell in the morphological sense, whereas the other daughter cell - depending on the size of its mother cell - matures in the same culture medium to form a granulocytopoietic, monocytopoietic or erythrocytopoietic cell line. - In acute myeloid leukemias (AML), the blasts and their nuclei are slightly larger than the corresponding progenitor cells and move faster (5 micrometer/min). Symmetric alpha-2alpha mitoses permit unlimited multiplication of the leukemic blasts if contact with cytotoxic lymphocytes does not render them apoptotic. This results in more stromal cells than normal. Granulocytopenia, monocytopenia, and anemia occur due to the genetic impairment of signaling control for asymmetric alpha-alphan mitoses, and thrombocytopenia occurs due to the reduction in polyploidization. Copyright 2001 S. Karger GmbH, Freiburg
NASA Astrophysics Data System (ADS)
Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.
A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.
A microfabricated bio-sensor for erythrocytes deformability and volume distributions analysis
NASA Astrophysics Data System (ADS)
Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri
2007-12-01
The deformability of erythrocytes is of great importance for oxygen delivery in the microcirculation. Reduced RBC deformability is associated with several types of hemolytic anaemias, malaria, sepsis and diabetes. Aging of erythrocytes is also associated with loss of deformability as well as reduction in cell volume. An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. The system produces valuable data such as velocity profiles of RBCs, spatial distribution within the microchannel, cell volume and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured for the first time. Such DI curves were obtained for normal and Thalassemia RBCs and their diagnostic potential was demonstrated. The spatial distribution and velocity of RBCs and rigid microspheres were measured. Both RBC and rigid spheres showed enhanced inward lateral migration, however the RBCs form a depletion region at the center of flow. The volume and surface area of the flowing cells have been estimated based on a fluid mechanics model and experimental results and fell within the normal range. Hence, the system developed, provides means for examining the behavior of individual RBCs in microchannels, and may serve as a microfabricated diagnostic device for deformability and volume measurements.
NASA Technical Reports Server (NTRS)
1973-01-01
Technological aspects of solar energy conversion by photovoltaic cells are considered. The advantage of the single crystal silicon solar cell approach is developed through comparisons with polycrystalline silicon, cadmium sulfide/copper sulfide thin film cells, and other materials and devices.
greenhouse effect. Hydrogen has very high energy for its weight, but very low energy for its volume, so new make a hydrogen economy a reality include: Fuel Cells - Improving fuel cell technology and materials needed for fuel cells. Production - Developing technology to efficiently and cost-effectively make
Solar power satellite system definition study. Volume 4: Silicon solar cell annealing test, phase 1
NASA Technical Reports Server (NTRS)
Walker, F.
1979-01-01
Laser annealing tests were conducted on ten 50 micron cells. Two were control cells that were not irradiated. These showed no loss in output due to exposure to the laser. Two cells were broken in handling. Six cells were successfully tested. All cells tested without breakage showed some recovery. One cell was subjected to two cycles and showed recovery on both cycles. Cells that were moderately degraded appeared to recover more completely than those more severly degraded. Exposure times ranged from two to ten seconds at 500 degrees centigrade. There was some indication that longer exposure was beneficial.
Adaptive Meshing of Ship Air-Wake Flowfields
2014-10-21
performs cut- cell operations at geometry boundaries. A second-order spatial finite-volume scheme has been incorporated with explicit first order...The cells intersected by the geometry are handled using the “cut- cell ” approach, which is basically creating arbitrary polyhedral elements with...appropriate surface boundary conditions. Any cells completely outside the computational domain are tagged external and not solved in the flow solution
Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I; Merkulova-Rainon, Tatyana; Kubis, Nathalie
2018-01-01
Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18-24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF- β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions . This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.
Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction
Schröder, Andreas
2018-01-01
The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus. PMID:29630597
Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice
Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I.; Merkulova-Rainon, Tatyana
2018-01-01
Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase. PMID:29736174
Predictive Flow Control to Minimize Convective Time Delays
2013-08-19
simulation. The CFO solver used is Cobalt, an unstructured finite-volume code developed for the solution of the compress- ible Navier-Stokes...cell-centered fin ite volume approach applicable to arbitrary cell topologies (e.g, hexahedra, prisms, tetrahedra). The spatial operator uses a Riemann ... solver , least squares gradient calculations using QR factorizati on to provide second order accuracy in space. A point implicit method using
Space Photovoltaic Research and Technology 1995
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1995-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
Space Photovoltaic Research and Technology 1995
NASA Technical Reports Server (NTRS)
Landis, Geoffrey (Compiler)
1996-01-01
The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.
INCREASED BLOOD VOLUME IN POLYCYTHEMIA VERA AND THE EFFECT ON IT OF TREATMENT WITH P$sup 3$$sup 2$
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burger, T.; Keszthelyi, B.; Peer, J.
1961-01-01
The effect of this treatment was studied in 3 patients with polycythemia vera having hematocrits of 70-80% and red cell counts of 6-8 x 10/sup 6/. Plasma volume was also elevated and the red cell volume was decreased to 80-5 mu m/sup 3/ from a normal mean of 87. After a single injection of 3-10 mc inorganic P/sup 32/O/sub 4/, subjective symptoms improved as well as the hematologic values. Hematocrit, hemoglobin, and counts of erythrocytes, leukocytes, and thrombocytes fell. Blood volume and viscosity also declined. (H.H.D.)
Fick, J M; P Ronkainen, A; Madden, R; Sawatsky, A; Tiitu, V; Herzog, W; Korhonen, R K
2016-12-08
We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Henríquez, C; Riquelme, T T; Vera, D; Julio-Kalajzić, F; Ehrenfeld, P; Melvin, J E; Figueroa, C D; Sarmiento, J; Flores, C A
2016-01-01
Neutrophils are the first cells to arrive at sites of injury. Nevertheless, many inflammatory diseases are characterized by an uncontrolled infiltration and action of these cells. Cell migration depends on volume changes that are governed by ion channel activity, but potassium channels in neutrophil have not been clearly identified. We aim to test whether KCa3.1 participates in neutrophil migration and other relevant functions of the cell. Cytometer and confocal measurements to determine changes in cell volume were used. Cells isolated from human, mouse and horse were tested for KCa3.1-dependent chemotaxis. Chemokinetics, calcium handling and release of reactive oxygen species were measured to determine the role of KCa3.1 in those processes. A mouse model was used to test for neutrophil recruitment after acute lung injury in vivo. We show for the first time that KCa3.1 is expressed in mammalian neutrophils. When the channel is inhibited by a pharmacological blocker or by genetic silencing, it profoundly affects cell volume regulation, and chemotactic and chemokinetic properties of the cells. We also demonstrated that pharmacological inhibition of KCa3.1 did not affect calcium entry or reactive oxygen species production in neutrophils. Using a mouse model of acute lung injury, we observed that Kca3.1(-/-) mice are significantly less effective at recruiting neutrophils into the site of inflammation. These results demonstrate that KCa3.1 channels are key actors in the migration capacity of neutrophils, and its inhibition did not affect other relevant cellular functions. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Chen, Yantian; Bloemen, Veerle; Impens, Saartje; Moesen, Maarten; Luyten, Frank P; Schrooten, Jan
2011-12-01
Cell seeding into scaffolds plays a crucial role in the development of efficient bone tissue engineering constructs. Hence, it becomes imperative to identify the key factors that quantitatively predict reproducible and efficient seeding protocols. In this study, the optimization of a cell seeding process was investigated using design of experiments (DOE) statistical methods. Five seeding factors (cell type, scaffold type, seeding volume, seeding density, and seeding time) were selected and investigated by means of two response parameters, critically related to the cell seeding process: cell seeding efficiency (CSE) and cell-specific viability (CSV). In addition, cell spatial distribution (CSD) was analyzed by Live/Dead staining assays. Analysis identified a number of statistically significant main factor effects and interactions. Among the five seeding factors, only seeding volume and seeding time significantly affected CSE and CSV. Also, cell and scaffold type were involved in the interactions with other seeding factors. Within the investigated ranges, optimal conditions in terms of CSV and CSD were obtained when seeding cells in a regular scaffold with an excess of medium. The results of this case study contribute to a better understanding and definition of optimal process parameters for cell seeding. A DOE strategy can identify and optimize critical process variables to reduce the variability and assists in determining which variables should be carefully controlled during good manufacturing practice production to enable a clinically relevant implant.
Competition for Space Is Controlled by Apoptosis-Induced Change of Local Epithelial Topology.
Tsuboi, Alice; Ohsawa, Shizue; Umetsu, Daiki; Sando, Yukari; Kuranaga, Erina; Igaki, Tatsushi; Fujimoto, Koichi
2018-06-11
During the initial stage of tumor progression, oncogenic cells spread despite spatial confinement imposed by surrounding normal tissue. This spread of oncogenic cells (winners) is thought to be governed by selective killing of surrounding normal cells (losers) through a phenomenon called "cell competition" (i.e., supercompetition). Although the mechanisms underlying loser elimination are increasingly apparent, it is not clear how winner cells selectively occupy the space made available following loser apoptosis. Here, we combined live imaging analyses of two different oncogenic clones (Yki/YAP activation and Ras activation) in the Drosophila epithelium with computer simulation of tissue mechanics to elucidate such a mechanism. Contrary to the previous expectation that cell volume loss after apoptosis of loser cells was simply compensated for by the faster proliferation of winner cells, we found that the lost volume was compensated for by rapid cell expansion of winners. Mechanistically, the rapid winner-dominated cell expansion was driven by apoptosis-induced epithelial junction remodeling, which causes re-connection of local cellular connectivity (cell topology) in a manner that selectively increases winner apical surface area. In silico experiments further confirmed that repetition of loser elimination accelerates tissue-scale winner expansion through topological changes over time. Our proposed mechanism for linking loser death and winner expansion provides a new perspective on how tissue homeostasis disruption can initiate from an oncogenic mutation. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Altered peripheral profile of blood cells in Alzheimer disease
Chen, Si-Han; Bu, Xian-Le; Jin, Wang-Sheng; Shen, Lin-Lin; Wang, Jun; Zhuang, Zheng-Qian; Zhang, Tao; Zeng, Fan; Yao, Xiu-Qing; Zhou, Hua-Dong; Wang, Yan-Jiang
2017-01-01
Abstract Alzheimer disease (AD) has been made a global priority for its multifactorial pathogenesis and lack of disease-modifying therapies. We sought to investigate the changes of profile of blood routine in AD and its correlation with the disease severity. In all, 92 AD patients and 84 age and sex-matched normal controls were enrolled and their profiles of blood routine were evaluated. Alzheimer disease patients had increased levels of mean corpuscular hemoglobin, mean corpuscular volume, red cell distribution width-standard deviation, mean platelet volume,and decreased levels of platelet distribution width, red blood cell, hematocrit, hemoglobin, lymphocyte, and basophil compared with normal controls. Alterations in quantity and quality of blood cells may be involved in the pathogenesis of AD and contribute to the disease progression. PMID:28538375
KÜLtz; Somero
1995-01-01
Long-jawed mudsuckers (Gillichthys mirabilis) were acclimated to sea water (SW) at 7 °C, SW at 26 °C or dilute sea water (DSW) at 26 °C for 5 months. Gill cells were isolated and the proportion of mitochondria-rich (MR) cells was determined. The number of cells harvested amounted to 4.7x10(7)±0.6x10(7) to 10.6x10(7)±1.1x10(7) and the yield was between 7.1x10(8)±0.6x10(8) and 10.7x10(8)±1.4x10(8) cells g-1 gill epithelial mass. Cell viability was 96.8±0.4 to 97.8±0.6 %. The number, size and volume of MR cells decreased significantly during DSW acclimation, but did not change during thermal acclimation. The protein content was not influenced by osmotic or thermal acclimation and ranged between 20.0±1.6 and 22.1±1.5 pg cell-1. Using a new method, which is based on the formation of plasma membrane channels by alamethicin, we were able to permeabilize gill cells. For the first time, the Na+/K+-ATPase and H+-ATPase activities of fish gills were determined in intact cells in situ. The activity of both ATPases was dependent on alamethicin concentration (optimum 100 µg mg-1 protein) and on preincubation time (optimum 10 min). The in situ activity of both ATPases was influenced by osmotic, but not thermal, acclimation. A positive linear correlation was found between in situ Na+/K+-ATPase activity and total MR cell volume. However, we show, for the first time, that a negative linear correlation exists between H+-ATPase activity and total MR cell volume, suggesting a localization of H+-ATPase in pavement cells. In permeabilized cells, the activity of both ATPases was 2.63.9 times higher than that of crude homogenates and 1.62.1 times higher than that of permeabilized homogenate vesicles. We hypothesize that in crude homogenates three-quarters of Na+/K+-ATPase and two-thirds of H+-ATPase activity are not detectable both because of a mixture of inside-out and right-side-out vesicles and because of the disruption of membrane and enzyme integrity.
Bone remodelling: its local regulation and the emergence of bone fragility.
Martin, T John; Seeman, Ego
2008-10-01
Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.
Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss)
Gingerich, W.H.; Pityer, R.A.; Rach, J.J.
1990-01-01
1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA).2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain.3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines.4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.
Effect of leg exercise training on vascular volumes during 30 days of 6 deg head-down bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.
1992-01-01
In order to investigate the effects of leg exercise training on vascular volumes during 30 d of 6-deg head-down bed rest, plasma and red cell volumes, body density, and water balance were measured in 19 men confined to bed rest (BR). One group had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise (ITE) for 60 min/d, and the third near-maximal intermittent isokinetic exercise (IKE) for 60 min/d. Mean energy costs for the NOE, IKE, and ITE regimens were determined. Body densities within groups and mean urine volumes between groups were unchanged during BR. Changes in red cell volume followed changes in plasma volume. There was close coupling between resting plasma volume and plasma protein and osmotic content. It is argued that the ITE training protocol is better than the IKE protocol for maintaining plasma volume during prolonged exposure to BR.
Gyöngyösi, Mariann; Wojakowski, Wojciech; Lemarchand, Patricia; Lunde, Ketil; Tendera, Michal; Bartunek, Jozef; Marban, Eduardo; Assmus, Birgit; Henry, Timothy D; Traverse, Jay H; Moyé, Lemuel A; Sürder, Daniel; Corti, Roberto; Huikuri, Heikki; Miettinen, Johanna; Wöhrle, Jochen; Obradovic, Slobodan; Roncalli, Jérome; Malliaras, Konstantinos; Pokushalov, Evgeny; Romanov, Alexander; Kastrup, Jens; Bergmann, Martin W; Atsma, Douwe E; Diederichsen, Axel; Edes, Istvan; Benedek, Imre; Benedek, Theodora; Pejkov, Hristo; Nyolczas, Noemi; Pavo, Noemi; Bergler-Klein, Jutta; Pavo, Imre J; Sylven, Christer; Berti, Sergio; Navarese, Eliano P; Maurer, Gerald
2015-04-10
The meta-Analysis of Cell-based CaRdiac study is the first prospectively declared collaborative multinational database, including individual data of patients with ischemic heart disease treated with cell therapy. We analyzed the safety and efficacy of intracoronary cell therapy after acute myocardial infarction (AMI), including individual patient data from 12 randomized trials (ASTAMI, Aalst, BOOST, BONAMI, CADUCEUS, FINCELL, REGENT, REPAIR-AMI, SCAMI, SWISS-AMI, TIME, LATE-TIME; n=1252). The primary end point was freedom from combined major adverse cardiac and cerebrovascular events (including all-cause death, AMI recurrance, stroke, and target vessel revascularization). The secondary end point was freedom from hard clinical end points (death, AMI recurrence, or stroke), assessed with random-effects meta-analyses and Cox regressions for interactions. Secondary efficacy end points included changes in end-diastolic volume, end-systolic volume, and ejection fraction, analyzed with random-effects meta-analyses and ANCOVA. We reported weighted mean differences between cell therapy and control groups. No effect of cell therapy on major adverse cardiac and cerebrovascular events (14.0% versus 16.3%; hazard ratio, 0.86; 95% confidence interval, 0.63-1.18) or death (1.4% versus 2.1%) or death/AMI recurrence/stroke (2.9% versus 4.7%) was identified in comparison with controls. No changes in ejection fraction (mean difference: 0.96%; 95% confidence interval, -0.2 to 2.1), end-diastolic volume, or systolic volume were observed compared with controls. These results were not influenced by anterior AMI location, reduced baseline ejection fraction, or the use of MRI for assessing left ventricular parameters. This meta-analysis of individual patient data from randomized trials in patients with recent AMI revealed that intracoronary cell therapy provided no benefit, in terms of clinical events or changes in left ventricular function. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01098591. © 2015 American Heart Association, Inc.
Piezo1 links mechanical forces to red blood cell volume.
Cahalan, Stuart M; Lukacs, Viktor; Ranade, Sanjeev S; Chien, Shu; Bandell, Michael; Patapoutian, Ardem
2015-05-22
Red blood cells (RBCs) experience significant mechanical forces while recirculating, but the consequences of these forces are not fully understood. Recent work has shown that gain-of-function mutations in mechanically activated Piezo1 cation channels are associated with the dehydrating RBC disease xerocytosis, implicating a role of mechanotransduction in RBC volume regulation. However, the mechanisms by which these mutations result in RBC dehydration are unknown. In this study, we show that RBCs exhibit robust calcium entry in response to mechanical stretch and that this entry is dependent on Piezo1 expression. Furthermore, RBCs from blood-cell-specific Piezo1 conditional knockout mice are overhydrated and exhibit increased fragility both in vitro and in vivo. Finally, we show that Yoda1, a chemical activator of Piezo1, causes calcium influx and subsequent dehydration of RBCs via downstream activation of the KCa3.1 Gardos channel, directly implicating Piezo1 signaling in RBC volume control. Therefore, mechanically activated Piezo1 plays an essential role in RBC volume homeostasis.
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN
2003-02-25
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The method and apparatus are implemented on a fluidic microchip to provide high serial throughput. The method and device of the invention also lend themselves to multiple parallel analyses and manipulation to provide greater throughput for the generation of biochemical information. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter biochemical reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The individual reaction volumes are manipulated in serial fashion analogous to a digital shift register. The method and apparatus according to this invention have application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
Gornicka-Pawlak, El Bieta; Janowski, Miroslaw; Habich, Aleksandra; Jablonska, Anna; Drela, Katarzyna; Kozlowska, Hanna; Lukomska, Barbara; Sypecka, Joanna; Domanska-Janik, Krystyna
2011-01-01
The aim of the study was to evaluate therapeutic effectiveness of intra-arterial infusion of human umbilical cord blood (HUCB) derived cells at different stages of their neural conversion. Freshly isolated mononuclear cells (D-0), neurally directed progenitors (D-3) and neural-like stem cells derived from umbilical cord blood (NSC) were compared. Focal brain damage was induced in rats by stereotactic injection of ouabain into dorsolateral striatum Three days later 10(7) of different subsets of HUCB cells were infused into the right internal carotid artery. Following surgery rats were housed in enriched environment for 30 days. Behavioral assessment consisted of tests for sensorimotor deficits (walking beam, rotarod, vibrissae elicited forelimb placing, apomorphine induced rotations), cognitive impairments (habit learning and object recognition) and exploratory behavior (open field). Thirty days after surgery the lesion volume was measured and the presence of donor cells was detected in the brain at mRNA level. At the same time immunohistochemical analysis of brain tissue was performed to estimate the local tissue response of ouabain injured rats and its modulation after HUCB cells systemic treatment. Functional effects of different subsets of cord blood cells shared substantial diversity in various behavioral tests. An additional analysis showed that D-0 HUCB cells were the most effective in functional restoration and reduction of brain lesion volume. None of transplanted cord blood derived cell fractions were detected in rat's brains at 30(th) day after treatment. This may suggest that the mechanism(s) underlying positive effects of HUCB derived cell may concern the other than direct neural cell supplementation. In addition increased immunoreactivity of markers indicating local cells proliferation and migration suggests stimulation of endogenous reparative processes by HUCB D-0 cell interarterial infusion.
Automated single cell sorting and deposition in submicroliter drops
NASA Astrophysics Data System (ADS)
Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-08-01
Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.
Live-cell mass profiling: an emerging approach in quantitative biophysics.
Zangle, Thomas A; Teitell, Michael A
2014-12-01
Cell mass, volume and growth rate are tightly controlled biophysical parameters in cellular development and homeostasis, and pathological cell growth defines cancer in metazoans. The first measurements of cell mass were made in the 1950s, but only recently have advances in computer science and microfabrication spurred the rapid development of precision mass-quantifying approaches. Here we discuss available techniques for quantifying the mass of single live cells with an emphasis on relative features, capabilities and drawbacks for different applications.
Blood volume and red cell life span (M113), part C
NASA Technical Reports Server (NTRS)
Johnson, P. C., Jr.
1973-01-01
Prechamber, in-chamber, and postchamber blood samples taken from Skylab simulation crewmembers did not indicate significant shortening of the red cell life span during the mission. This does not suggest that the space simulation environment could not be associated with red cell enzyme changes. It does show that any changes in enzymes were not sufficiently great to significantly shorten red cell survival. There was no evidence of bone marrow erythropoetic suppression nor was there any evidence of increased red cell destruction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids.
An investigation of microstructural characteristics of contact-lens polymers
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Eftekhari, Abe; Upchurch, Billy T.; Burns, Karen S.
1990-01-01
The free volume and gas permeability in several contact lens specimens were measured as part of a Space Commercialization Program. Free volume was measured using positron lifetime spectroscopy, while permeability for O2, N2, CO2 gases was measured using mass spectrometry and polarography. Permeability for all gases increases with the mean free volume cell size in the test samples. As might be expected, the specimens with the highest free volume fraction also exhibit the lowest Rockwell Hardness Number. An interesting corollary is the finding that the presence of fluorine atoms in the lens chemical structure inhibits filling up of their free volume cells. This is expected to allow the lenses to breathe freely while in actual use.
The TMI regenerable solid oxide fuel cell
NASA Technical Reports Server (NTRS)
Cable, Thomas L.
1995-01-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
The TMI regenerable solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Cable, Thomas L.
1995-04-01
Energy storage and production in space requires rugged, reliable hardware which minimizes weight, volume, and maintenance while maximizing power output and usable energy storage. These systems generally consist of photovoltaic solar arrays which operate during sunlight cycles to provide system power and regenerate fuel (hydrogen) via water electrolysis; during dark cycles, hydrogen is converted by the fuel cell into system. The currently preferred configuration uses two separate systems (fuel cell and electrolyzer) in conjunction with photovoltaic cells. Fuel cell/electrolyzer system simplicity, reliability, and power-to-weight and power-to-volume ratios could be greatly improved if both power production (fuel cell) and power storage (electrolysis) functions can be integrated into a single unit. The Technology Management, Inc. (TMI), solid oxide fuel cell-based system offers the opportunity to both integrate fuel cell and electrolyzer functions into one unit and potentially simplify system requirements. Based an the TMI solid oxide fuel cell (SOPC) technology, the TMI integrated fuel cell/electrolyzer utilizes innovative gas storage and operational concepts and operates like a rechargeable 'hydrogen-oxygen battery'. Preliminary research has been completed on improved H2/H2O electrode (SOFC anode/electrolyzer cathode) materials for solid oxide, regenerative fuel cells. Improved H2/H2O electrode materials showed improved cell performance in both fuel cell and electrolysis modes in reversible cell tests. ln reversible fuel cell/electrolyzer mode, regenerative fuel cell efficiencies (ratio of power out (fuel cell mode) to power in (electrolyzer model)) improved from 50 percent (using conventional electrode materials) to over 80 percent. The new materials will allow the TMI SOFC system to operate as both the electrolyzer and fuel cell in a single unit. Preliminary system designs have also been developed which indicate the technical feasibility of using the TMI SOFC technology for space applications with high energy storage efficiencies and high specific energy. Development of small space systems would also have potential dual-use, terrestrial applications.
Zhou, E. H.; Trepat, X.; Park, C. Y.; Lenormand, G.; Oliver, M. N.; Mijailovich, S. M.; Hardin, C.; Weitz, D. A.; Butler, J. P.; Fredberg, J. J.
2009-01-01
Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type. PMID:19520830
Automated processing of human bone marrow grafts for transplantation.
Zingsem, J; Zeiler, T; Zimmermanm, R; Weisbach, V; Mitschulat, H; Schmid, H; Beyer, J; Siegert, W; Eckstein, R
1993-01-01
Prior to purging or cryopreservation, we concentrated 21 bone marrow (BM) harvests using a modification of the 'grancollect-protocol' of the Fresenius AS 104 cell separator with the P1-Y set. Within 40-70 min, the initial marrow volume of 1,265 ml (+/- 537 ml) was processed two to three times. A mean of 47% (+/- 21%) of the initial mononuclear cells was recovered in a mean volume of 128 ml (+36 ml). The recovery of clonogenic cells, measured by CFU-GM assays, was 68% (+/- 47%). Red blood cells in the BM concentrates were reduced to 7% (+/- 4%) of the initial number. The procedure was efficient and yielded a BM cell fraction suitable for purging, cryopreservation and transplantation. At this time, 10 of the 21 patients whose BM was processed using this technique have been transplanted. Seven of these 10 patients have been grafted using the BM alone. Three of the 10 patients showed reduced cell viability and colony growth in the thawed BM samples, and therefore obtained BM and peripheral blood-derived stem cells. All transplanted patients showed an evaluable engraftment, achieving 1,000 granulocytes per microliter of peripheral blood in a mean of 18 days.
Leung, Kaston; Klaus, Anders; Lin, Bill K; Laks, Emma; Biele, Justina; Lai, Daniel; Bashashati, Ali; Huang, Yi-Fei; Aniba, Radhouane; Moksa, Michelle; Steif, Adi; Mes-Masson, Anne-Marie; Hirst, Martin; Shah, Sohrab P; Aparicio, Samuel; Hansen, Carl L
2016-07-26
The genomes of large numbers of single cells must be sequenced to further understanding of the biological significance of genomic heterogeneity in complex systems. Whole genome amplification (WGA) of single cells is generally the first step in such studies, but is prone to nonuniformity that can compromise genomic measurement accuracy. Despite recent advances, robust performance in high-throughput single-cell WGA remains elusive. Here, we introduce droplet multiple displacement amplification (MDA), a method that uses commercially available liquid dispensing to perform high-throughput single-cell MDA in nanoliter volumes. The performance of droplet MDA is characterized using a large dataset of 129 normal diploid cells, and is shown to exceed previously reported single-cell WGA methods in amplification uniformity, genome coverage, and/or robustness. We achieve up to 80% coverage of a single-cell genome at 5× sequencing depth, and demonstrate excellent single-nucleotide variant (SNV) detection using targeted sequencing of droplet MDA product to achieve a median allelic dropout of 15%, and using whole genome sequencing to achieve false and true positive rates of 9.66 × 10(-6) and 68.8%, respectively, in a G1-phase cell. We further show that droplet MDA allows for the detection of copy number variants (CNVs) as small as 30 kb in single cells of an ovarian cancer cell line and as small as 9 Mb in two high-grade serous ovarian cancer samples using only 0.02× depth. Droplet MDA provides an accessible and scalable method for performing robust and accurate CNV and SNV measurements on large numbers of single cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jing; Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu; Zhang, Jun-ying
Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosismore » were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.« less
Marcos, Ricardo; Correia-Gomes, Carla
2016-12-01
Male/female differences in enzyme activity and gene expression in the liver are known to be attenuated with ageing. Nevertheless, the effect of ageing on liver structure and quantitative cell morphology remains unknown. Male and female Wistar rats aged 2, 6, 12 and 18 months were examined by means of stereological techniques and immunohistochemical tagging of hepatocytes (HEP), liver sinusoidal endothelial cells (LSEC), Kupffer cells (KC) and hepatic stellate cells (HSC) in order to assess the total number and number per gram of these cells throughout life. The mean cell volume of HEP and HSC, the lobular position and the collagen content of the liver were also evaluated with stereological techniques. The number per gram of HSC was similar for both genders and was maintained throughout ageing. The mean volume of HSC was also conserved but differences in the cell body and lobular location were observed. Statistically significant gender differences in HEP were noted in young rats (females had smaller and more binucleated HEP) but were attenuated with ageing. The same occurred for KC and LSEC, since the higher number per gram in young females disappeared in older animals. Liver collagen increased with ageing but only in males. Thus, the numbers of these four cell types are related throughout ageing, with well-defined cell ratios. The shape and lobular position of HSC change with ageing in both males and females. Gender dimorphism in HEP, KC and LSEC of young rat liver disappears with ageing.
Hossain, Md Shakhawath; Bergstrom, D J; Chen, X B
2015-11-01
The in vitro chondrocyte cell culture process in a perfusion bioreactor provides enhanced nutrient supply as well as the flow-induced shear stress that may have a positive influence on the cell growth. Mathematical and computational modelling of such a culture process, by solving the coupled flow, mass transfer and cell growth equations simultaneously, can provide important insight into the biomechanical environment of a bioreactor and the related cell growth process. To do this, a two-way coupling between the local flow field and cell growth is required. Notably, most of the computational and mathematical models to date have not taken into account the influence of the cell growth on the local flow field and nutrient concentration. The present research aimed at developing a mathematical model and performing a numerical simulation using the lattice Boltzmann method to predict the chondrocyte cell growth without a scaffold on a flat plate placed inside a perfusion bioreactor. The model considers the two-way coupling between the cell growth and local flow field, and the simulation has been performed for 174 culture days. To incorporate the cell growth into the model, a control-volume-based surface growth modelling approach has been adopted. The simulation results show the variation of local fluid velocity, shear stress and concentration distribution during the culture period due to the growth of the cell phase and also illustrate that the shear stress can increase the cell volume fraction to a certain extent.
Optimised cord blood sample selection for small‑scale CD34+ cell immunomagnetic isolation.
Perdomo-Arciniegas, Ana-María; Vernot, Jean-Paul
2012-03-01
Haematopoietic stem cells (HSCs) are defined as multipotential cells, capable of self-renewal and reconstituting in vivo the haematopoietic compartment. The CD34 antigen is considered an important HSCs marker in humans. Immunomagnetic isolation, by targeting CD34 antigen, is widely used for human HSC separation. This method allows the enrichment of human HSCs that are present at low frequencies in umbilical cord blood (CB). Immunomagnetic CD34+-cell isolation reproducibility, regarding cell yield and purity, is affected by the CD34+ cell frequency and total cell numbers present in a given sample; CB HSC purification may thus yield variable results, which also depend on the volume and density fractionation-derived cell loss of a CB sample. The uncertainty of such an outcome and associated technical costs call for a cost-effective sample screening strategy. A correlation analysis using clinical and laboratory data from 59 CB samples was performed to establish predictive variables for CD34+-immunomagnetic HSCs isolation. This study described the positive association of CD34+-cell isolation with white and red cell numbers present after cell fractionation. Furthermore, purity has been correlated with lymphocyte percentages. Predictive variable cut-off values, which are particularly useful in situations involving low CB volumes being collected (such as prevalent late umbilical cord clamping clinical practice), were proposed for HSC isolation sampling. Using the simple and cost-effective CB sample screening criteria described here would lead to avoiding costly inefficient sample purification, thereby ensuring that pure CD34+ cells are obtained in the desired numbers following CD34 immunomagnetic isolation.
NASA Astrophysics Data System (ADS)
Thaller, Lawrence H.; Zimmerman, Albert H.
In the early 1980s, the battery group at the NASA Lewis Research Center (LeRC) reviewed the design issues associated with nickel/hydrogen cells for low-earth orbit applications. In 1984, these issues included gas management, liquid management, plate expansion, and the recombination of oxygen during overcharge. The design effort by that group followed principles set forth in an earlier LeRC paper that introduced the topic of pore size engineering. Also in 1984, the beneficial effect of lower electrolyte concentrations on cycle life was verified by Hughes Aircraft as part of a LeRC-funded study. Subsequent life cycle tests of these concepts have been carried out that essentially have verified all of this earlier work. During the past decade, some of the mysteries involved in the active material of the nickel electrode have been resolved by careful research done at several laboratories. While attention has been paid to understanding and modeling abnormal nickel/hydrogen cell behaviors, not enough attention has been paid to the potassium ion content in these cells, and more recently, in batteries. Examining the potassium ion content of different portions of the cell or battery is a convenient way of following the conductivity, mass transport properties, and electrolyte volume in each of the cell or battery portions under consideration. Several of the consequences of solvent and solute changes within fuel cells have been well known for some time. However, only recently have these consequences been applied to nickel/hydrogen and nickel/cadmium cell designs. As a result of these studies, several unusual cell performance signatures can now be satisfactorily explained in terms of movement of the solvent and solute components in the electrolyte. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel/hydrogen and nickel/cadmium cells. Sample calculations of the concentration or volume changes that can take place within operating cells will be presented. With the aid of an accurate model of an operating cell or battery, the impact of changes of potassium ion content within a potential cell design can be estimated. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the components used in the cell or battery design. The three areas follow. (i) The gamma phase uptake of potassium ion can result in a lowering of the electrolyte concentration. This leads to a higher electrolyte resistance as well as electrolyte diffusional limitations on the discharge rate. This phenomenon also impacts the response of the cell to a reconditioning cycle. (ii) The transport of water vapor from a warmer to a cooler portion of the cell or battery under the driving force of a vapor pressure gradient has already impacted cells when water vapor condenses on a colder cell wall. This paper will explore the convective and diffusive movement of gases saturated with water vapor from a warmer plate pack to a cooler one, both with and without liquid communication. (iii) The impact of low-level shunt currents in multicell configurations results in the net movement of potassium hydroxide from one part of the battery to another. This movement impacts the electrolyte volume/vapor pressure relationships within the cell or battery.
He, Zhen; Ferguson, Sherry A.; Cui, Li; Greenfield, L. John; Paule, Merle G.
2013-01-01
The sexually dimorphic nucleus of the preoptic area (SDN-POA) has received increased attention due to its apparent sensitivity to estrogen-like compounds found in food and food containers. The mechanisms that regulate SDN-POA volume remain unclear as is the extent of postweaning development of the SDN-POA. Here we demonstrate that the female Sprague-Dawley SDN-POA volume increased from weaning to adulthood, although this increase was not statistically significant as it was in males. The number of cells positive for Ki67, a marker of cell proliferation, in both the SDN-POA and the hypothalamus was significantly higher at weaning than at adulthood in male rats. In contrast, the number of Ki67-positive cells was significantly higher in the hypothalamus but not in the SDN-POA (p>0.05) at weaning than at adulthood in female rats. A subset of the Ki67-positive cells in the SDN-POA displayed the morphology of dividing cells. Nestin-immunoreactivity delineated a potential macroscopic neural stem cell niche in the rostral end of the 3rd ventricle. In conclusion, stem cells may partially account for the sexually dimorphic postweaning development of the SDN-POA. PMID:23383001
Ueda, Erica; Feng, Wenqian; Levkin, Pavel A
2016-10-01
High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gepp, Michael M; Ehrhart, Friederike; Shirley, Stephen G; Howitz, Steffen; Zimmermann, Heiko
2009-01-01
We present a tool for dispensing very low volumes (20 nL or more) of ultra high viscosity (UHV) medical-grade alginate hydrogels. It uses a modified piezo-driven micrometering valve, integrated into a versatile system that allows fast prototyping of encapsulation procedures and scaffold production. Valves show excellent dispensing properties for UHV alginate in concentrations of 0.4% and 0.7% and also for aqueous liquids. An optimized process flow provides excellent handling of biological samples under sterile conditions. This technique allows the encapsulation of adherent cells and structuring of substrates for biotechnology and regenerative medicine. A variety of cell lines showed at least 70% viability after encapsulation (including cell lines that are relevant in regenerative medicine like Hep G2), and time-lapse analysis revealed cells proliferating and showing limited motility under alginate spots. Cells show metabolic activity, gene product expression, and physiological function. Encapsulated cells have contact with the substrate and can exchange metabolites while being isolated from macromolecules in the environment. Contactless dispensing allows structuring of substrates with alginate, isolation and transfer of cell-alginate complexes, and the dispensing of biological active hydrogels like extracellular matrix-derived gels.
Zaldibar, B; Cancio, I; Soto, M; Marigómez, I
2007-11-01
Slugs, Arion ater (L), have been proposed as sentinel organisms to assess soil health. In slugs under the influence of pollutants, digestive cell loss and the concomitant increase of excretory cells of the digestive gland have been described. The aim of the present work was to determine up to what extent digestive cell loss affects biomarkers and whether the affectation is reversible after exposure to a mixture of metal and organic pollutants. Slugs were dosed with a mixture of cadmium and kerosene in the food for 27 days. Apart from chemical analyses, the volume density of black silver deposits (Vv(BSD)) after autometallography, and acyl-CoA oxidase (AOX) activity were used as biomarkers of exposure to metals and organic compounds, respectively. As effect biomarkers, changes in the volume density of the cell types that constitute the digestive gland epithelium were calculated. Proliferating cells were identified by means of bromodeoxyuridine (BrdU) immunohistochemistry. Results revealed that the mixture of pollutants provoked an increase in Vv(BSD) and AOX activity and a decrease in the number of digestive cells. These changes had no effect in the digestive gland accumulation capacity or in the effect and exposure biomarkers employed. BrdU-labelling showed that exposure to pollutants provoked an enhanced digestive cell proliferation.
Rheological behavior of rat mesangial cells during swelling in vitro.
Craelius, W; Huang, C J; Guber, H; Palant, C E
1997-01-01
The response of cells to mechanical forces depends on the rheological properties of their membranes and cytoplasm. To characterize those properties, mechanical and electrical responses to swelling were measured in rat mesangial cells (MC) using electrophysiologic and video microscopic techniques. Ion transport rates during hyposmotic exposures were measured with whole-cell recording electrodes. Results showed that cell swelling varied nonlinearly with positive internal pressure, consistent with a viscoelastic cytoplasm. The extrapolated area expansivity modulus for small deformations was estimated to be 450 dyne/cm. Cell swelling, caused either by positive pipet pressure or hyposmotic exposure (40-60 mOsm Kg-1), rapidly induced an outwardly rectifying membrane conductance with an outward magnitude 4-5 times the baseline conductance of 0.9 +/- 0.5 nS (p < .01). Swelling-induced (SI) current was weakly selective for K+ over Na+, partially reversed upon return to isotonicity, and was antagonized by 0.5 mM GdCl3 (p < 0.02; n = 6). Isolated cells treated with GdCl3 rapidly lysed after hypotonic exposure, in contrast to untreated cells that exhibited regulatory volume decrease (RVD). Our results indicate that volume regulation by MC depends upon a large swelling-induced K+ efflux, and suggest that swelling in MC is a viscoelastic process, with a viscosity dependent on the degree of swelling.
Impens, Saartje; Chen, Yantian; Mullens, Steven; Luyten, Frank; Schrooten, Jan
2010-12-01
The repair of large and complex bone defects could be helped by a cell-based bone tissue engineering strategy. A reliable and consistent cell-seeding methodology is a mandatory step in bringing bone tissue engineering into the clinic. However, optimization of the cell-seeding step is only relevant when it can be reliably evaluated. The cell seeding efficiency (CSE) plays a fundamental role herein. Results showed that cell lysis and the definition used to determine the CSE played a key role in quantifying the CSE. The definition of CSE should therefore be consistent and unambiguous. The study of the influence of five drop-seeding-related parameters within the studied test conditions showed that (i) the cell density and (ii) the seeding vessel did not significantly affect the CSE, whereas (iii) the volume of seeding medium-to-free scaffold volume ratio (MFR), (iv) the seeding time, and (v) the scaffold morphology did. Prolonging the incubation time increased the CSE up to a plateau value at 4 h. Increasing the MFR or permeability by changing the morphology of the scaffolds significantly reduced the CSE. These results confirm that cell seeding optimization is needed and that an evidence-based selection of the seeding conditions is favored.
Lew, Virgilio L; Tiffert, Teresa; Etzion, Zipora; Perdomo, Deisy; Daw, Nuala; Macdonald, Lynn; Bookchin, Robert M
2005-01-01
The Ca(2+)-activated K+ channels of human red blood cells (RBCs) (Gardos channels, hIK1, hSK4) can mediate rapid cell dehydration, of particular relevance to the pathophysiology of sickle cell disease. Previous investigations gave widely discrepant estimates of the number of Gardos channels per RBC, from as few as 1 to 3 to as many as 300, with large cell-to-cell differences, suggesting that RBCs could differ extensively in their susceptibility to dehydration by elevated Ca2+. Here we investigated the distribution of dehydration rates induced by maximal and uniform Ca2+ loads in normal (AA) and sickle (SS) RBCs by measuring the time-dependent changes in osmotic fragility and RBC volume distributions. We found a remarkable conservation of osmotic lysis and volume distribution profiles during Ca(2+)-induced dehydration, indicating overall uniformity of dehydration rates among AA and SS RBCs. In light of these results, alternative interpretations were suggested for the previously proposed low estimates and heterogeneity of channel numbers per cell. The results support the view that stochastic Ca2+ permeabilization rather than Gardos-channel variation is the main determinant selecting which SS cells dehydrate through Gardos channels in each sickling episode.
Omori, Yoshinori; Honmou, Osamu; Harada, Kuniaki; Suzuki, Junpei; Houkin, Kiyohiro; Kocsis, Jeffery D
2008-10-21
The systemic injection of human mesenchymal stem cells (hMSCs) prepared from adult bone marrow has therapeutic benefits after cerebral artery occlusion in rats, and may have multiple therapeutic effects at various sites and times within the lesion as the cells respond to a particular pathological microenvironment. However, the comparative therapeutic benefits of multiple injections of hMSCs at different time points after cerebral artery occlusion in rats remain unclear. In this study, we induced middle cerebral artery occlusion (MCAO) in rats using intra-luminal vascular occlusion, and infused hMSCs intravenously at a single 6 h time point (low and high cell doses) and various multiple time points after MCAO. From MRI analyses lesion volume was reduced in all hMSC cell injection groups as compared to serum alone injections. However, the greatest therapeutic benefit was achieved following a single high cell dose injection at 6 h post-MCAO, rather than multiple lower cell infusions over multiple time points. Three-dimensional analysis of capillary vessels in the lesion indicated that the capillary volume was equally increased in all of the cell-injected groups. Thus, differences in functional outcome in the hMSC transplantation subgroups are not likely the result of differences in angiogenesis, but rather from differences in neuroprotective effects.
Multilayer cell-seeded polymer nanofiber constructs for soft-tissue reconstruction.
Barker, Daniel A; Bowers, Daniel T; Hughley, Brian; Chance, Elizabeth W; Klembczyk, Kevin J; Brayman, Kenneth L; Park, Stephen S; Botchwey, Edward A
2013-09-01
Cell seeding throughout the thickness of a nanofiber construct allows for patient-specific implant alternatives with long-lasting effects, earlier integration, and reduced inflammation when compared with traditional implants. Cell seeding may improve implant integration with host tissue; however, the effect of cell seeding on thick nanofiber constructs has not been studied. To use a novel cell-preseeded nanofiber tissue engineering technique to create a 3-dimensional biocompatible implant alternative to decellularized extracellular matrix. Animal study with mammalian cell culture to study tissue engineered scaffolds. Academic research laboratory. Thirty-six Sprague-Dawley rats. The rats each received 4 implant types. The grafts included rat primary (enhanced green fluorescent protein-positive [eGFP+]) fibroblast-seeded polycaprolactone (PCL)/collagen nanofiber scaffold, PCL/collagen cell-free nanofiber scaffold, acellular human cadaveric dermis (AlloDerm), and acellular porcine dermis (ENDURAGen). Rats were monitored postoperatively and received enrofloxacin in the drinking water for 4 days prophylactically and buprenorphine (0.2-0.5 mg/kg administered subcutaneously twice a day postoperatively for pain for 48 hours). The viability of NIH/3T3 fibroblasts cultured on PCL electrospun nanofibers was evaluated using fluorescence microscopy. Soft-tissue remodeling was examined histologically and with novel ex vivo volume determinations of implants using micro-computed tomography of cell-seeded implants relative to nanofibers without cells and commonly used dermal grafts of porcine and human origin (ENDURAGen and AlloDerm, respectively). The fate and distribution of eGFP+ seeded donor fibroblasts were assessed using immunohistochemistry. Fibroblasts migrated across nanofiber layers within 12 hours and remained viable on a single layer for up to 14 days. Scanning electron microscopy confirmed a nanoscale structure with a mean (SD) diameter of 158 (72) nm. Low extrusion rates demonstrated the excellent biocompatibility in vivo. Histological examination of the scaffolds demonstrated minimal inflammation. Cell seeding encouraged rapid vascularization of the nanofiber implants. Cells of donor origin (eGFP+) declined with the duration of implantation. Implant volume was not significantly affected for up to 8 weeks by the preseeding of cells (P > .05). Polymer nanofiber-based scaffolds mimic natural extracellular matrix. Preseeding the nanofiber construct with cells improved vascularization without notable effects on volume. An effect of cell preseeding on scaffold vascularization was evident beyond the presence of preseeded cells. This 3-dimensional, multilayer method of cell seeding throughout a 1-mm-thick construct is simple and feasible for clinical application. Further development of this technique may affect the clinical practice of facial plastic and reconstructive surgeons.
9 CFR 113.46 - Detection of cytopathogenic and/or hemadsorbing agents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... volume of a 0.2 percent red blood cell suspension to uniformly cover the surface of the monolayer of cultured cells. Suspensions of washed guinea pig and chicken red blood cells shall be used. These... examine for hemadsorption. (4) If no hemadsorption is apparent, repeat step (b)(2) of this section and...
9 CFR 113.46 - Detection of cytopathogenic and/or hemadsorbing agents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... volume of a 0.2 percent red blood cell suspension to uniformly cover the surface of the monolayer of cultured cells. Suspensions of washed guinea pig and chicken red blood cells shall be used. These... examine for hemadsorption. (4) If no hemadsorption is apparent, repeat step (b)(2) of this section and...
9 CFR 113.46 - Detection of cytopathogenic and/or hemadsorbing agents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... volume of a 0.2 percent red blood cell suspension to uniformly cover the surface of the monolayer of cultured cells. Suspensions of washed guinea pig and chicken red blood cells shall be used. These... examine for hemadsorption. (4) If no hemadsorption is apparent, repeat step (b)(2) of this section and...
9 CFR 113.46 - Detection of cytopathogenic and/or hemadsorbing agents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... volume of a 0.2 percent red blood cell suspension to uniformly cover the surface of the monolayer of cultured cells. Suspensions of washed guinea pig and chicken red blood cells shall be used. These... examine for hemadsorption. (4) If no hemadsorption is apparent, repeat step (b)(2) of this section and...
How-to-Do-It: Why Don't Cells Grow Larger? A Lab Exercise.
ERIC Educational Resources Information Center
Stanek, Joseph A., Jr.
1983-01-01
Describes a laboratory investigation designed to analyze surface area to volume ratio related to cell division. Uses agar-gel "cells" with pH indicator added which are then "fed" acid for a measured time. Discusses procedures and materials used, providing a sample data table and important guiding questions. (JM)