Sample records for cell volume decrease

  1. Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58-2667 involves the BKCa ion channel.

    PubMed

    Dismuke, William M; Sharif, Najam A; Ellis, Dorette Z

    2009-07-01

    There is a correlation between cell volume changes and changes in the rate of aqueous humor outflow; agents that decrease trabecular meshwork (TM) cell volume increase the rate of aqueous humor outflow. This study investigated the effects of the nitric oxide (NO)-independent activators of soluble guanylate cyclase (sGC), YC-1, and BAY-58-2667 on TM cell volume and the signal transduction pathways and ion channel involved. Cell volume was measured with the use of calcein AM fluorescent dye, detected by confocal microscopy. Inhibitors and activators of sGC, 3',5'-cyclic guanosine monophosphate (cGMP), protein kinase G (PKG), and the BK(Ca) channel were used to characterize their involvement in the YC-1- and BAY-58-2667-induced regulation of TM cell volume. cGMP was assayed by an enzyme immunoassay. YC-1 (10 nM-200 microM) and BAY-58-2667 (10 nM-100 microM) each elicited a biphasic effect on TM cell volume. YC-1 (1 microM) increased TM cell volume, but higher concentrations decreased TM cell volume. Similarly, BAY-58-2667 (100 nM) increased TM cell volume, but higher concentrations decreased cell volume. The YC-1-induced cell volume decrease was mimicked by 8-Br-cGMP and abolished by the sGC inhibitor ODQ, the PKG inhibitor (RP)-8-Br-PET-cGMP-S, and the BK(Ca) channel inhibitor IBTX. The BAY-58-2667-induced cell volume decrease was mimicked by 8-Br-cGMP and was abolished by the PKG inhibitor and the BK(Ca) channel inhibitor. Unlike the YC-1 response, ODQ potentiated the BAY-58-2667-induced decreases in cell volume. These data suggest that the NO-independent decrease in TM cell volume is mediated by the sGC/cGMP/PKG pathway and involves K(+) efflux.

  2. Destruction of newly released red blood cells in space flight

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.

    1996-01-01

    Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.

  3. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma.

    PubMed

    Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2016-01-01

    Background : Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods : Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results : Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion : The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone.

  4. Inhibition of Regulatory Volume Decrease Enhances the Cytocidal Effect of Hypotonic Shock in Hepatocellular Carcinoma

    PubMed Central

    Kudou, Michihiro; Shiozaki, Atsushi; Kosuga, Toshiyuki; Ichikawa, Daisuke; Konishi, Hirotaka; Morimura, Ryo; Komatsu, Shuhei; Ikoma, Hisashi; Fujiwara, Hitoshi; Okamoto, Kazuma; Hosogi, Shigekuni; Nakahari, Takashi; Marunaka, Yoshinori; Otsuji, Eigo

    2016-01-01

    Background: Hypotonic shock induces cytocidal effects through cell rupture, and cancer therapy based on this mechanism has been clinically administered to hepatocellular carcinoma patients. We herein investigated the effectiveness of hypotonic shock combined with the inhibition of regulatory volume decrease as cancer therapy for hepatocellular carcinoma. Methods: Morphological changes in human hepatocellular carcinoma cell lines were observed under a differential interference contrast microscope connected to a high-speed digital video camera. Cell volume changes under hypotonic shock with or without chloride, potassium, or water channel blockers were observed using a high-resolution flow cytometer. In order to investigate cytocidal effects, the number of surviving cells was compared after exposure to hypotonic solution with and without each channel blocker (re-incubation experiment). Results: Video recordings showed that cells exposed to distilled water rapidly swelled and then ruptured. Cell volume measurements revealed regulatory volume decrease under mild hypotonic shock, whereas severe hypotonic shock increased the number of broken fragments as a result of cell rupture. Moreover, regulatory volume decrease was inhibited in cells treated with each channel blocker. Re-incubation experiments showed the cytocidal effects of hypotonic shock in cells exposed to hypotonic solution, and additional treatments with each channel blocker enhanced these effects. Conclusion: The inhibition of regulatory volume decrease with chloride, potassium, or water channel blockers may enhance the cytocidal effects of hypotonic shock in hepatocellular carcinoma. Hypotonic shock combined with the inhibition of regulatory volume decrease was a more effective therapy than hypotonic shock alone. PMID:27471568

  5. Effect of cytoplasmic volume on developmental competence of buffalo (Bubalus bubalis) embryos produced through hand-made cloning.

    PubMed

    Panda, Sudeepta K; George, Aman; Saha, Ambika P; Sharma, Ruchi; Manik, Radhey S; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K

    2011-06-01

    This study examined the effects of cytoplasmic volume on the developmental competence of hand-made cloned buffalo embryos. Two different cell types, that is, buffalo fetal fibroblast (BFF) and buffalo embryonic stem (ES) cell-like cells were taken as donor cell and fused with one, two, or three demicytoplasts to generate embryos with decreased, normal (control), and increased cytoplasmic volume. Using BFF as a nuclear donor, the cleavage rate was similar in all the groups (p > 0.05), but the blastocysts rate was significantly lower (p < 0.05) for embryos generated with decreased cytoplasmic volume. Using ES cell-like cells, the cleavage and blastocyst rate with increased cytoplasmic volume was significantly higher (p < 0.05) compared that with reduced cytoplasmic volume. Blastocysts produced from embryos having increased cytoplasmic volume had significantly higher (p < 0.05) cell number than normal (control) embryos in both BFF and ES cell-like cells groups. Pregnancies were established in all the groups except for the embryos reconstructed with decreased cytoplasmic volume. The pregnancy rate was almost double for embryos reconstructed using increased cytoplasmic volume compared to that with the controls. Most of the pregnancies aborted in the first trimester and one live calf was delivered through Caesarean, which died 4 h after birth.

  6. Cell volume regulation and apoptotic volume decrease in rat distal colon superficial enterocytes.

    PubMed

    Antico, Stefania; Lionetto, Maria Giulia; Giordano, Maria Elena; Caricato, Roberto; Schettino, Trifone

    2013-01-01

    The colon epithelium is physiologically exposed to osmotic stress, and the activation of cell volume regulation mechanisms is essential in colonocyte physiology. Moreover, colon is characterized by a high apoptotic rate of mature cells balancing the high division rate of stem cells. The aim of the present work was to investigate the main cell volume regulation mechanisms in rat colon surface colonocytes and their role in apoptosis. Cell volume changes were measured by light microscopy and video imaging on colon explants; apoptosis sign appearance was monitored by confocal microscopy on annexin V/propidium iodide labeled explants. Superficial colonocytes showed a dynamic regulation of their cell volume during anisosmotic conditions with a Regulatory Volume Increase (RVI) response following hypertonic shrinkage and Regulatory Volume Decrease (RVD) response following hypotonic swelling. RVI was completely inhibited by bumetanide, while RVD was completely abolished by high K(+) or iberiotoxin treatment and by extracellular Ca(2+) removal. DIDS incubation was also able to affect the RVD response. When colon explants were exposed to H2O2 as apoptotic inducer, colonocytes underwent an isotonic volume decrease ascribable to Apoptotic Volume Decrease (AVD) within about four hours of exposure. AVD was shown to precede annexin V positivity. It was also inhibited by high K(+) or iberiotoxin treatment. Interestingly, treatment with iberiotoxin significantly inhibited apoptosis progression. In rat superficial colonocytes K(+) efflux through high conductance Ca(2+)-activated K(+) channels (BK channels) was demonstrated to be the main mechanism of RVD and to plays also a crucial role in the AVD process and in the progression of apoptosis. © 2013 S. Karger AG, Basel.

  7. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss.

    PubMed

    Lautenbach, A; Wernecke, M; Riedel, N; Veigel, J; Yamamura, J; Keller, S; Jung, R; Busch, P; Mann, O; Knop, F K; Holst, J J; Meier, J J; Aberle, J

    2018-05-16

    Obesity has been shown to trigger adaptive increases in pancreas parenchymal and fat volume. Consecutively, pancreatic steatosis may lead to beta-cell dysfunction. However, it is not known, whether the pancreatic tissue components decrease with weight loss and pancreatic steatosis is reversible following RYGB. Therefore, the objective of the study was to investigate the effects of RYGB-induced weight loss on pancreatic volume and glucose homeostasis. 11 patients were recruited in the Obesity Centre of the University Medical Centre Hamburg-Eppendorf. Before and 6 months after RYGB, total GLP-1 levels were measured during OGTT. To assess changes in visceral adipose tissue and pancreatic volume, MRI was performed. Measures of glucose homeostasis and insulin indices were assessed. Fractional beta-cell area was estimated by correlation with the C-peptide-to-glucose ratio, beta-cell mass was calculated by the product of beta-cell area and pancreas parenchymal weight. Pancreas volume decreased from 83.8 (75.7-92.0) to 70.5 (58.8-82.3) cm 3 [mean (95% CI), p=0.001]. The decrease in total volume was associated with a significant decrease in fat volume. Fasting insulin and C-peptide were lower post RYGB. HOMA-IR levels decreased, whereas insulin sensitivity increased (p=0.03). This was consistent with a reduction in the estimated beta-cell area and mass. Following RYGB, pancreatic volume and steatosis adaptively decreased to "normal" levels with accompanying improvement in glucose homeostasis. Moreover, obesity-driven beta-cell expansion seems to be reversible, however future studies must define a method to more accurately estimate functional beta-cell mass to increase our understanding of glucose homeostasis after RYGB. This article is protected by copyright. All rights reserved.

  8. Ion channels involved in cell volume regulation: effects on migration, proliferation, and programmed cell death in non adherent EAT cells and adherent ELA cells.

    PubMed

    Hoffmann, Else Kay

    2011-01-01

    This mini review outlines studies of cell volume regulation in two closely related mammalian cell lines: nonadherent Ehrlich ascites tumour cells (EATC) and adherent Ehrlich Lettre ascites (ELA) cells. Focus is on the regulatory volume decrease (RVD) that occurs after cell swelling, the volume regulatory ion channels involved, and the mechanisms (cellular signalling pathways) that regulate these channels. Finally, I shall also briefly review current investigations in these two cell lines that focuses on how changes in cell volume can regulate cell functions such as cell migration, proliferation, and programmed cell death. Copyright © 2011 S. Karger AG, Basel.

  9. Cell volume change through water efflux impacts cell stiffness and stem cell fate

    PubMed Central

    Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.

    2017-01-01

    Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology. PMID:28973866

  10. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.

    PubMed

    Kim, Jong-yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  11. An assessment of the effects of cell size on AGNPS modeling of watershed runoff

    USGS Publications Warehouse

    Wu, S.-S.; Usery, E.L.; Finn, M.P.; Bosch, D.D.

    2008-01-01

    This study investigates the changes in simulated watershed runoff from the Agricultural NonPoint Source (AGNPS) pollution model as a function of model input cell size resolution for eight different cell sizes (30 m, 60 m, 120 m, 210 m, 240 m, 480 m, 960 m, and 1920 m) for the Little River Watershed (Georgia, USA). Overland cell runoff (area-weighted cell runoff), total runoff volume, clustering statistics, and hot spot patterns were examined for the different cell sizes and trends identified. Total runoff volumes decreased with increasing cell size. Using data sets of 210-m cell size or smaller in conjunction with a representative watershed boundary allows one to model the runoff volumes within 0.2 percent accuracy. The runoff clustering statistics decrease with increasing cell size; a cell size of 960 m or smaller is necessary to indicate significant high-runoff clustering. Runoff hot spot areas have a decreasing trend with increasing cell size; a cell size of 240 m or smaller is required to detect important hot spots. Conclusions regarding cell size effects on runoff estimation cannot be applied to local watershed areas due to the inconsistent changes of runoff volume with cell size; but, optimal cells sizes for clustering and hot spot analyses are applicable to local watershed areas due to the consistent trends.

  12. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    PubMed

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  13. Studies on the erythron and the ferrokinetic responses in beagles adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Beckman, D. A.; Evans, J. W.; Oyama, J.

    1978-01-01

    Red cell survival, ferrokinetics, and hematologic parameters were investigated in beagle dogs exposed to chronic hypergravity (2.6 Gx). Ineffective erythropoiesis, red cell mass, plasma volume, and Cr-51-elution were significantly increased; maximum Fe-59 incorporation was decreased; and there was no change in the mean erythrocyte life span following autologous injection of Cr-51-labeled red cells and Fe-59-labeled transferrin. Red cell count, F(cells), total body hemoglobin (Hb), susceptability to osmotic lysis, and differential reticulocyte count were increased. White blood cell count, venous blood %Hb, mean cell volume, mean cell Hb, mean cell Hb concentration, and serum iron were decreased. No changes were observed for body mass, mg Fe per g Hb, iron binding capacity, percent saturation of iron carrying capacity, or the electrophoretic mobility of purified Hb. This study indicated that chronic exposure to hypergravity induced changes in red cell size, volume, total mass, and membrane permeability.

  14. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell’s internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee’s behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  15. Numeric and volumetric changes in Leydig cells during aging of rats.

    PubMed

    Neves, Bruno Vinicius Duarte; Lorenzini, Fernando; Veronez, Djanira; Miranda, Eduardo Pereira de; Neves, Gabriela Duarte; Fraga, Rogério de

    2017-10-01

    To analyze the effects of aging in rats on the nuclear volume, cytoplasmic volume, and total volume of Leydig cells, as well as their number. Seventy-two Wistar rats were divided into six subgroups of 12 rats, which underwent right orchiectomy at 3, 6, 9, 12, 18, and 24 months of age. The weight and volume of the resected testicles were assessed. A stereological study of Leydig cells was conducted, which included measurements of cell number and nuclear, cytoplasmic, and total cell volumes. The weight and volume of the resected testicles showed reductions with age. Only the subgroup composed of 24-month old rats showed a decrease in the nuclear volume of Leydig cells. Significant reductions in the cytoplasmic volume and total volume of Leydig cells were observed in 18- and 24-month old rats. The number of Leydig cells did not vary significantly with age. Aging in rats resulted in reduction of the nuclear, cytoplasmic, and total cell volumes of Leydig cells. There was no change in the total number of these cells during aging.

  16. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss.

    PubMed

    Andersson, Daniel P; Eriksson Hogling, Daniel; Thorell, Anders; Toft, Eva; Qvisth, Veronica; Näslund, Erik; Thörne, Anders; Wirén, Mikael; Löfgren, Patrik; Hoffstedt, Johan; Dahlman, Ingrid; Mejhert, Niklas; Rydén, Mikael; Arner, Erik; Arner, Peter

    2014-07-01

    Large subcutaneous fat cells associate with insulin resistance and high risk of developing type 2 diabetes. We investigated if changes in fat cell volume and fat mass correlate with improvements in the metabolic risk profile after bariatric surgery in obese patients. Fat cell volume and number were measured in abdominal subcutaneous adipose tissue in 62 obese women before and 2 years after Roux-en-Y gastric bypass (RYGB). Regional body fat mass by dual-energy X-ray absorptiometry; insulin sensitivity by hyperinsulinemic-euglycemic clamp; and plasma glucose, insulin, and lipid profile were assessed. RYGB decreased body weight by 33%, which was accompanied by decreased adipocyte volume but not number. Fat mass in the measured regions decreased and all metabolic parameters were improved after RYGB (P < 0.0001). Whereas reduced subcutaneous fat cell size correlated strongly with improved insulin sensitivity (P = 0.0057), regional changes in fat mass did not, except for a weak correlation between changes in visceral fat mass and insulin sensitivity and triglycerides. The curve-linear relationship between fat cell size and fat mass was altered after weight loss (P = 0.03). After bariatric surgery in obese women, a reduction in subcutaneous fat cell volume associates more strongly with improvement of insulin sensitivity than fat mass reduction per se. An altered relationship between adipocyte size and fat mass may be important for improving insulin sensitivity after weight loss. Fat cell size reduction could constitute a target to improve insulin sensitivity. © 2014 by the American Diabetes Association.

  17. Rat pancreatic B-cells after chronic alcohol feeding. A morphometric and fine structural study.

    PubMed

    Koko, V; Todorović, V; Nikolić, J A; Glisić, R; Cakić, M; Lacković, V; Petronijević, L; Stojković, M; Varagić, J; Janić, B

    1995-04-01

    Quantitative analysis of the light microscopic and fine structure of rat islet B-cells was carried out in chronic alcoholism. Absolute pancreatic weight and volume were similar in groups C (control) and E (ethanol), but relative pancreatic weight in group E rat was decreased. The results for fasting blood glucose and insulin levels were similar in the two groups of animals. There was a significantly reduced total pancreatic islet volume in E rats. The total number of endocrine cells both per islet and per microns2 of islet was similar in the two groups of animals. The volume density and number of B-cells per islet and per microns2 of islet were not changed in ethanol-treated rats as compared with the control. On the other hand, diameter, surface area and volume of the B-cells and their nuclei were found to be statistically significantly decreased. Histological examination revealed that islet blood vessels were dilated in alcoholic rats. Over the 4-month period of ethanol intake a significant decrease in cell profile area, nuclear profile area and volume density of cytoplasmic granules and an increase in the profile area and volume density of endoplasmic reticulum occurred. The gross histological alteration seen in most B-cells of the ethanol-treated rats was irregularity of the nuclear envelope with deep invagination and with margination of heterochromatin and many empty granules or granules without clear electron dense crystals of insulin. The present results indicate some optical and structural abnormalities of B-cells in chronic alcoholism that may be related to cell dysfunction and may contribute, at least in part, to the endocrine pancreas functional disturbance.

  18. Fluid shear stress enhances the cell volume decrease of osteoblast cells by increasing the expression of the ClC-3 chloride channel

    PubMed Central

    LIU, LI; CAI, SIYI; QIU, GUIXING; LIN, JIN

    2016-01-01

    ClC-3 is a volume-sensitive chloride channel that is responsible for cell volume adjustment and regulatory cell volume decrease (RVD). In order to evaluate the effects of fluid shear stress (FSS) stimulation on the osteoblast ClC-3 chloride channel, MC3T3-E1 cells were stimulated by FSS in the experimental group. Fluorescence quantitative polymerase chain reaction was used to detect changes in ClC-3 mRNA expression, the chloride ion fluorescent probe N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE) was used to detect the chloride channel activity, and whole-cell patch clamping was used to monitor the changes in the volume-sensitive chloride current activated by a hypotonic environment following mechanical stimulation. The results show that the expression of the osteoblast chloride channel ClC-3 was significantly higher in the FSS group compared with the control group. MQAE fluorescence intensity was significantly reduced in the FSS group compared to the control group, suggesting that mechanical stimulation increased chloride channel activity and increased the efflux of intracellular chloride ions. Image analysis of osteoblast volume changes showed that osteoblast RVD was enhanced by mechanical stimulation. Whole-cell patch clamping showed that the osteoblast volume-sensitive chloride current was larger in the stimulated group compared to the control group, suggesting that elevated ClC-3 chloride channel expression results in an increased volume-sensitive chloride current. In conclusion, FSS stimulation enhances the RVD of osteoblast cell by increasing the expression of the ClC-3 and enhancing the chloride channel activity. PMID:27073622

  19. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis

    PubMed Central

    Choudhury, Mahua G.; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment. PMID:26950213

  20. Induction of Inducible Nitric Oxide Synthase by Lipopolysaccharide and the Influences of Cell Volume Changes, Stress Hormones and Oxidative Stress on Nitric Oxide Efflux from the Perfused Liver of Air-Breathing Catfish, Heteropneustes fossilis.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2016-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by bacterial contaminants, and different environmental insults like osmotic, hyper-ammonia, dehydration and oxidative stresses in its natural habitats throughout the year. The main objectives of the present investigation were to determine (a) the possible induction of inducible nitric oxide synthase (iNOS) gene with enhanced production of nitric oxide (NO) by intra-peritoneal injection of lipopolysaccharide (LPS) (a bacterial endotoxin), and (b) to determine the effects of hepatic cell volume changes due to anisotonicity or by infusion of certain metabolites, stress hormones and by induction of oxidative stress on production of NO from the iNOS-induced perfused liver of singhi catfish. Intra-peritoneal injection of LPS led to induction of iNOS gene and localized tissue specific expression of iNOS enzyme with more production and accumulation of NO in different tissues of singhi catfish. Further, changes of hydration status/cell volume, caused either by anisotonicity or by infusion of certain metabolites such as glutamine plus glycine and adenosine, affected the NO production from the perfused liver of iNOS-induced singhi catfish. In general, increase of hydration status/cell swelling due to hypotonicity caused decrease, and decrease of hydration status/cell shrinkage due to hypertonicity caused increase of NO efflux from the perfused liver, thus suggesting that changes in hydration status/cell volume of hepatic cells serve as a potent modulator for regulating the NO production. Significant increase of NO efflux from the perfused liver was also observed while infusing the liver with stress hormones like epinephrine and norepinephrine, accompanied with decrease of hydration status/cell volume of hepatic cells. Further, oxidative stress, caused due to infusion of t-butyl hydroperoxide and hydrogen peroxide separately, in the perfused liver of singhi catfish, resulted in significant increase of NO efflux accompanied with decrease of hydration status/cell volume of hepatic cells. However, the reasons for these cell volume-sensitive changes of NO efflux from the liver of singhi catfish are not fully understood with the available data. Nonetheless, enhanced or decreased production of NO from the perfused liver under osmotic stress, in presence of stress hormones and oxidative stress reflected its potential role in cellular homeostasis and also for better adaptations under environmental challenges. This is the first report of osmosensitive and oxidative stress-induced changes of NO production and efflux from the liver of any teleosts. Further, the level of expression of iNOS in this singhi catfish could also serve as an important indicator to determine the pathological status of the external environment.

  1. Regulation of cell volume by glycosaminoglycans.

    PubMed

    Joerges, Jelena; Schulz, Tobias; Wegner, Jeannine; Schumacher, Udo; Prehm, Peter

    2012-01-01

    Cell volume is regulated by a delicate balance between ion distribution across the plasma membrane and the osmotic properties of intra- and extracellular components. Using a fluorescent calcein indicator, we analysed the effects of glycosaminoglycans on the cell volume of hyaluronan producing fibroblasts and hyaluronan deficient HEK cells over a time period of 30 h. Exogenous glycosaminoglycans induced cell blebbing after 2 min and swelling of fibroblasts to about 110% of untreated cell volume at low concentrations which decreased at higher concentrations. HEK cells did not show cell blebbing and responded by shrinking to 65% of untreated cell volume. Heparin induced swelling of both fibroblasts and HEK cells. Hyaluronidase treatment or inhibition of hyaluronan export led to cell shrinkage indicating that the hyaluronan coat maintained fibroblasts in a swollen state. These observations were explained by the combined action of the Donnan effect and molecular crowding. Copyright © 2011 Wiley Periodicals, Inc.

  2. A comparative study of U937 cell size changes during apoptosis initiation by flow cytometry, light scattering, water assay and electronic sizing.

    PubMed

    Yurinskaya, Valentina; Aksenov, Nikolay; Moshkov, Alexey; Model, Michael; Goryachaya, Tatyana; Vereninov, Alexey

    2017-10-01

    A decrease in flow cytometric forward light scatter (FSC) is commonly interpreted as a sign of apoptotic cell volume decrease (AVD). However, the intensity of light scattering depends not only on the cell size but also on its other characteristics, such as hydration, which may affect the scattering in the opposite way. That makes estimation of AVD by FSC problematic. Here, we aimed to clarify the relationship between light scattering, cell hydration (assayed by buoyant density) and cell size by the Coulter technique. We used human lymphoid cells U937 exposed to staurosporine, etoposide or hypertonic stress as an apoptotic model. An initial increase in FSC was found to occur in apoptotic cells treated with staurosporine and hypertonic solutions; it is accompanied by cell dehydration and is absent in apoptosis caused by etoposide that is consistent with the lack of dehydration in this case. Thus, the effect of dehydration on the scattering signal outweighs the effect of reduction in cell size. The subsequent FSC decrease, which occurred in parallel to accumulation of annexin-positive cells, was similar in apoptosis caused by all three types of inducers. We conclude that an increase, but not a decrease in light scattering, indicates the initial cell volume decrease associated with apoptotic cell dehydration.

  3. Blood volume changes. [weightlessness effects

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Driscoll, T. B.; Leblance, A. D.

    1974-01-01

    Analysis of radionuclide volume determinations made for the crewmembers of selected Gemini and Apollo missions showed that orbital spaceflight has an effect on red cell mass. Because the methods and the protocol developed for earlier flights were used for the crews of the three Skylab missions, direct comparisons are possible. After each Skylab mission, decreases were found in crewmembers' red cell masses. The mean red cell mass decrease of 11 percent or 232 milliliters was approximately equal to the 10 percent mean red cell mass decrease of the Apollo 14 to 17 crewmembers. The red cell mass drop was greatest and the postrecovery reticulocyte response least for crewmembers of the 28-day Skylab 2 mission. Analyses of data from the red cell mass determinations indicate that the red cell mass drops occurred in the first 30 days of flight and that a gradual recovery of the red cell mass deficits began approximately 60 days after launch. The beginning of red cell mass regeneration during the Skylab 4 flight may explain the higher postmission reticulocyte counts.

  4. Adenovirus-mediated hAQP1 expression in irradiated mouse salivary glands causes recovery of saliva secretion by enhancing acinar cell volume decrease

    PubMed Central

    Teos, LY; Zheng, C-Y; Liu, X; Swaim, WD; Goldsmith, CM; Cotrim, AP; Baum, BJ; Ambudkar, IS

    2017-01-01

    Head and neck irradiation (IR) during cancer treatment causes by-stander effects on the salivary glands leading to irreversible loss of saliva secretion. The mechanism underlying loss of fluid secretion is not understood and no adequate therapy is currently available. Delivery of an adenoviral vector encoding human aquaporin-1 (hAQP1) into the salivary glands of human subjects and animal models with radiation-induced salivary hypofunction leads to significant recovery of saliva secretion and symptomatic relief in subjects. To elucidate the mechanism underlying loss of salivary secretion and the basis for AdhAQP1-dependent recovery of salivary gland function we assessed submandibular gland function in control mice and mice 2 and 8 months after treatment with a single 15-Gy dose of IR (delivered to the salivary gland region). Salivary secretion and neurotransmitter-stimulated changes in acinar cell volume, an in vitro read-out for fluid secretion, were monitored. Consistent with the sustained 60% loss of fluid secretion following IR, a carbachol (CCh)-induced decrease in acinar cell volume from the glands of mice post IR was transient and attenuated as compared with that in cells from non-IR age-matched mice. The hAQP1 expression in non-IR mice induced no significant effect on salivary fluid secretion or CCh-stimulated cell volume changes, except in acinar cells from 8-month group where the initial rate of cell shrinkage was increased. Importantly, the expression of hAQP1 in the glands of mice post IR induced recovery of salivary fluid secretion and a volume decrease in acinar cells to levels similar to those in cells from non-IR mice. The initial rates of CCh-stimulated cell volume reduction in acinar cells from hAQP1-expressing glands post IR were similar to those from control cells. Altogether, the data suggest that expression of hAQP1 increases the water permeability of acinar cells, which underlies the recovery of fluid secretion in the salivary glands functionally compromised post IR. PMID:26966862

  5. Intracellular ion concentrations and cell volume during cholinergic stimulation of eccrine secretory coil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Sato, F.; Saga, K.

    Methacholine (MCh)-induced changes in intracellular concentrations of Na, K, and Cl (( Na)i, (K)i, and (Cl)i, respectively) and in cellular dry mass (a measure of cell shrinkage) were examined in isolated monkey eccrine sweat secretory coils by electron probe X-ray microanalysis using the peripheral standard method. To further confirm the occurrence of cell shrinkage during MCh stimulation, the change in cell volume of dissociated clear and dark cells were directly determined under a light microscope equipped with differential interference contrast (DIC) optics. X-ray microanalysis revealed a biphasic increase in cellular dry mass in clear cells during continuous MCh stimulation; anmore » initial increase of dry mass to 158% (of control) followed by a plateau at 140%, which correspond to the decrease in cell volume of 37 and 29%, respectively. The latter agrees with the MCh-induced cell shrinkage of 29% in dissociated clear cells. The MCh-induced increase in dry mass in myoepithelial cells was less than half that of clear cells. During the steady state of MCh stimulation, both (K+)i and (Cl)i of clear cells decreased by about 45%, whereas (Na)i increased in such a way to maintain the sum of (Na) i + (K)i constant. There was a small (12-15 mM) increase in (Na)i and a decrease in (K)i in myoepithelial cells during stimulation with MCh. Dissociated dark cells failed to significantly shrink during MCh stimulation. The decrease in (Cl)i in the face of constant (Na)i + (K)i suggests the accumulation of unknown anion(s) inside the clear cell during MCh stimulation.« less

  6. Endocrine considerations in the red-cell-mass and plasma volume changes of the Skylab 2 and 3 crews

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Leach, C. S.; Driscoll, T.

    1975-01-01

    The effect of unknown endocrine changes on blood volume of crewmembers was investigated. The results are presented in tabular form. The fact that some of the changes were in the wrong direction suggests that changes in endocrine function were not the primary cause of the decreases in the plasma volume and red cell mass.

  7. Effect of osteoblastic culture conditions on the structure of poly(DL-lactic-co-glycolic acid) foam scaffolds

    NASA Technical Reports Server (NTRS)

    Goldstein, A. S.; Zhu, G.; Morris, G. E.; Meszlenyi, R. K.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) foams are an osteoconductive support that holds promise for the development of bone tissue in vitro and implantation into orthopedic defects. Because it is desirable that foams maintain their shape and size, we examined a variety of foams cultured in vitro with osteoblastic cells. Foams were prepared with different porosities and pore sizes by the method of solvent casting/porogen leaching using 80, 85, and 90 wt% NaCl sieved with particle sizes of 150-300 and 300-500 microm and characterized by mercury intrusion porosimetry. Foams seeded with cells were found to have volumes after 7 days in static culture that decreased with increasing porosity: the least porous exhibited no change in volume while the most porous foams decreased by 39 +/- 10%. In addition, a correlation was observed between decreasing foam volume after 7 days in culture and decreasing internal surface area of the foams prior to seeding. Furthermore, foams prepared with the 300-500 microm porogen had lower porosities, greater mean wall thicknesses between adjacent pores, and larger volumes after 7 days in culture than those prepared with the smaller porogen. Two culture conditions for maintaining cells, static and agitated (in a rotary vessel), were found to have similar influences on foam size, cell density, and osteoblastic function for 7 and 14 days in culture. Finally, we examined unseeded foams in aqueous solutions of pH 3.0, 5.0, and 7.4 and found no significant decrease in foam size with degradation. This study demonstrates that adherent osteoblastic cells may collapse very porous PLGA foams prepared by solvent casting/particulate leaching: a potentially undesirable property for repair of orthopedic defects.

  8. Blood volume and orthostatic responses of men and women to a 13-day bedrest

    NASA Technical Reports Server (NTRS)

    Fortney, S.; Driscoll, T.; Steinmann, L.; Alfrey, C.

    1992-01-01

    Changes in blood volume during space flight are thought to contribute to decrements in postflight orthostatic function. The purpose of this study was to determine whether gender affects red cell mass and plasma volume during a short exposure to simulated microgravity, and whether gender differences in orthostatic tolerance ensure. Methods: Ten men (31.5 plus or minus 5.2 years, STD) and eleven normally menstruating women (33.3) plus or minus 6.0 STD) underwent 13 days of 6 degree head-down bedrest. Plasma volume (Iodine 125 labeled human serum albumin) and red cell mass (Carbon 51 labeled red blood cells) were measured before bedrest and on bedrest day 13. On the same days, orthostatic tolerance (OT) was determined as the maximal pressure during a presyncopalimited lower body negative pressure test. Results: Plasma volume (PV) and red cell mass (RCM) decreased in both groups with a greater PV decrease (P less than 0.05) in men (6.3 plus or minus 0.7 ml/kg) than in women (4.1 plus or minus 0.6 ml/kg). Decreases in red cell mass were similar (1.7 plus or minus 0.2 ml/kg in men and 1.7 plus or minus 0.2 ml/kg in women). OT was similar for men and women before bedrest (minus 78 plus or minus 6 mmHg in men versus minus 70 plus or minus 4 mmHg in women) and decreased by a similar degree (by an average of 11 mmHg in both groups) after bedrest. The changes in OT did not correlate with changes in plasma volume during bedrest (r(exp 2) = 0.002). Conclusion: Thus, although female hormones may protect PV during bedrest, they do no appear to offer an advantage in terms of loss of orthostatic function.

  9. MANIFESTATIONS OF INJURY IN YEAST CELLS EXPOSED TO SUBZERO TEMPERATURES II.

    PubMed Central

    Mazur, Peter

    1961-01-01

    Mazur, Peter (Oak Ridge National Laboratory, Oak Ridge, Tenn.). Manifestations of injury in yeast cells exposed to subzero temperatures. II. Changes in specific gravity and in the concentration and quantity of cell solids. J. Bacteriol. 82:673–684. 1961.—It has previously been established that subjecting cells of Saccharomyces cerevisiae to rapid cooling to −30 C results in cell death and in certain morphological alterations. The alterations consisted of the loss of the central vacuole and a 50% decrease in volume. The present experiments were concerned with determining whether the volume decrease was the result of the loss of water alone or of water plus cellular solutes. The density of the “frozenthawed” cells was found to increase from 1.14 to 1.25 g/cm3 on the basis of measurements of the sedimentation rate of the cells. Interferometric and refractometric measurements indicated, furthermore, that the concentration of cell solids increased from 20 to 28%, whereas the total mass of cell solids decreased from 25 to 17 μμg/cell. The decrease in cell volume was thus shown to be the result of loss of solution from the cells, a solution containing 11 to 16% solids. Measurements of the rate of dialysis suggested that most or all of these solids had a molecular weight below 600. The findings are consistent with the view that low-temperature exposure destroyed the vacuolar membrane and sufficiently damaged the permeability barriers of the cell to permit escape of low molecular weight compounds. The damage was present a few seconds after thawing, and may, therefore, have been a direct result of intracellular ice crystals which, on the basis of previous studies, are believed to be responsible for death from low-temperature exposure. PMID:14471819

  10. Oyster's cells regulatory volume decrease: A new tool for evaluating the toxicity of low concentration hydrocarbons in marine waters.

    PubMed

    Ben Naceur, Chiraz; Maxime, Valérie; Ben Mansour, Hedi; Le Tilly, Véronique; Sire, Olivier

    2016-11-01

    Human activities require fossil fuels for transport and energy, a substantial part of which can accidentally or voluntarily (oil spillage) flow to the marine environment and cause adverse effects in human and ecosystems' health. This experiment was designed to estimate the suitability of an original cellular biomarker to early quantify the biological risk associated to hydrocarbons pollutants in seawater. Oocytes and hepatopancreas cells, isolated from oyster (Crassostrea gigas), were tested for their capacity to regulate their volume following a hypo-osmotic challenge. Cell volumes were estimated from cell images recorded at regular time intervals during a 90min-period. When exposed to diluted seawater (osmolalities from 895 to 712mosmkg(-1)), both cell types first swell and then undergo a shrinkage known as Regulatory Volume Decrease (RVD). This process is inversely proportional to the magnitude of the osmotic shock and is best fitted using a first-order exponential decay model. The Recovered Volume Factor (RVF) calculated from this model appears to be an accurate tool to compare cells responses. As shown by an about 50% decrease in RVF, the RVD process was significantly inhibited in cells sampled from oysters previously exposed to a low concentration of diesel oil (8.4mgL(-1) during 24h). This toxic effect was interpreted as a decreased permeability of the cell membranes resulting from an alteration of their lipidic structure by diesel oil compounds. In contrast, the previous contact of oysters with diesel did not induce any rise in the gills glutathione S-transferase specific activity. Therefore, this work demonstrates that the study of the RVD process of cells selected from sentinel animal species could be an alternative bioassay for the monitoring of hydrocarbons and probably, of various chemicals in the environment liable to alter the cellular regulations. Especially, given the high sensitivity of this biomarker compared with a proven one, it could become a relevant and accurate tool to estimate the biological hazards of micropollutants in the water. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Antisense oligonucleotides suppress cell-volume-induced activation of chloride channels.

    PubMed

    Gschwentner, M; Nagl, U O; Wöll, E; Schmarda, A; Ritter, M; Paulmichl, M

    1995-08-01

    Cell volume regulation is an essential feature of most cells. After swelling in hypotonic media, the simultaneous activation of potassium and chloride channels is believed to be the initial, time-determining step in cell volume regulation. The activation of both pathways is functionally linked and enables the cells to lose ions and water, subsequently leading to cell shrinkage and readjustment of the initial volume. NIH 3T3 fibroblasts efficiently regulate their volume after swelling and bear chloride channels that are activated by decreasing extracellular osmolarity. The chloride current elicited in these cells after swelling is reminiscent of the current found in oocytes expressing an outwardly rectifying chloride current termed ICln. Introduction of antisense oligodeoxynucleotides complementary to the first 30 nucleotides of the coding region of the ICln channel into NIH 3T3 fibroblasts suppresses the activation of the swelling-induced chloride current. The experiments directly demonstrate an unambiguous link between a volume-activated chloride current and a cloned protein involved in chloride transport.

  12. Optical volume and mass measurements show that mammalian cells swell during mitosis

    PubMed Central

    Zlotek-Zlotkiewicz, Ewa; Monnier, Sylvain; Cappello, Giovanni; Le Berre, Mael

    2015-01-01

    The extent, mechanism, and function of cell volume changes during specific cellular events, such as cell migration and cell division, have been poorly studied, mostly because of a lack of adequate techniques. Here we unambiguously report that a large range of mammalian cell types display a significant increase in volume during mitosis (up to 30%). We further show that this increase in volume is tightly linked to the mitotic state of the cell and not to its spread or rounded shape and is independent of the presence of an intact actomyosin cortex. Importantly, this volume increase is not accompanied by an increase in dry mass and thus corresponds to a decrease in cell density. This mitotic swelling might have important consequences for mitotic progression: it might contribute to produce strong pushing forces, allowing mitotic cells to round up; it might also, by lowering cytoplasmic density, contribute to the large change of physicochemical properties observed in mitotic cells. PMID:26598614

  13. Fenretinide

    PubMed Central

    Pavone, Mary Ellen; Malpani, Saurabh S.; Dyson, Matthew; Kim, J. Julie; Bulun, Serdar E.

    2016-01-01

    Objective: Fenretinide is a synthetic retinoid analogue that promotes apoptosis but has decreased toxicity when compared to other retinoids. We have previously shown that retinoic acid (RA) production in endometriotic tissue is decreased, resulting in reduced estrogen metabolism and apoptotic resistance. We hypothesize fenretinide may induce apoptosis in endometriotic cells and tissues, thereby reducing disease burden. Materials and Methods: Primary endometriotic stromal cells were collected, isolated, cultured, and treated with fenretinide in doses from 0 to 20 µmol/L. Cell count, viability, and immunoblots were performed to examine apoptosis. Quantitative reverse transcription-polymerase chain reaction from endometriotic cells treated with fenretinide was used to examine expression of genes involved in RA signaling including stimulated by RA 6 (STRA6), cellular RA binding protein 2 (CRABP2), and fatty acid binding protein 5 (FABP5). Endometriotic tissue was xenografted subcutaneously into the flanks of mice which were treated with fenretinide for 2 weeks, after which the mice were killed and lesion volumes calculated. Statistical analysis was performed using t test and analysis of variance. Results: Treatment with fenretinide significantly decreased total cell count (doses 5-20 µL) and viability (doses 10-20 µmol/L). Fenretinide increased protein levels of the apoptotic marker poly (ADP ribose) polymerase (starting at 10 µmol/L) and decreased proliferation marker proliferating cell nuclear antigen (10 µmol/L, starting at 8-day treatment). Examination of genes involved in retinoid uptake and action showed that treatment induced STRA6 expression while expression of CRABP2 and FABP5 remained unchanged. Fenretinide also significantly decreased the endometriotic lesion xenograft volume. Conclusions: Fenretinide increases STRA6 expression thereby potentially reversing the pathological loss of retinoid availability. Treatment with this compound induces apoptosis. In vivo treatments decrease lesion volume. Targeting the RA signaling pathway may be a promising novel treatment for women with endometriosis. PMID:26919975

  14. Computational Fluid Dynamics-Population Balance Model Simulation of Effects of Cell Design and Operating Parameters on Gas-Liquid Two-Phase Flows and Bubble Distribution Characteristics in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong

    2018-02-01

    The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.

  15. Miniaturization Technologies for Efficient Single-Cell Library Preparation for Next-Generation Sequencing.

    PubMed

    Mora-Castilla, Sergio; To, Cuong; Vaezeslami, Soheila; Morey, Robert; Srinivasan, Srimeenakshi; Dumdie, Jennifer N; Cook-Andersen, Heidi; Jenkins, Joby; Laurent, Louise C

    2016-08-01

    As the cost of next-generation sequencing has decreased, library preparation costs have become a more significant proportion of the total cost, especially for high-throughput applications such as single-cell RNA profiling. Here, we have applied novel technologies to scale down reaction volumes for library preparation. Our system consisted of in vitro differentiated human embryonic stem cells representing two stages of pancreatic differentiation, for which we prepared multiple biological and technical replicates. We used the Fluidigm (San Francisco, CA) C1 single-cell Autoprep System for single-cell complementary DNA (cDNA) generation and an enzyme-based tagmentation system (Nextera XT; Illumina, San Diego, CA) with a nanoliter liquid handler (mosquito HTS; TTP Labtech, Royston, UK) for library preparation, reducing the reaction volume down to 2 µL and using as little as 20 pg of input cDNA. The resulting sequencing data were bioinformatically analyzed and correlated among the different library reaction volumes. Our results showed that decreasing the reaction volume did not interfere with the quality or the reproducibility of the sequencing data, and the transcriptional data from the scaled-down libraries allowed us to distinguish between single cells. Thus, we have developed a process to enable efficient and cost-effective high-throughput single-cell transcriptome sequencing. © 2016 Society for Laboratory Automation and Screening.

  16. Red blood cell decreases of microgravity

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  17. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  18. Impaired succinic dehydrogenase activity of rat Purkinje cell mitochondria during aging.

    PubMed

    Fattoretti, P; Bertoni-Freddari, C; Caselli, U; Paoloni, R; Meier-Ruge, W

    1998-03-16

    The perikaryal Purkinje cell mitochondria positive to the copper ferrocyanide histochemical reaction for succinic dehydrogenase (SDH) have been investigated by means of semiautomatic morphometric methods in rats of 3, 12 and 24 months of age. The number of organelles/microm3 of Purkinje cell cytoplasm (Numeric density: Nv), the average mitochondrial volume (V) and the mitochondrial volume fraction (Volume density: Vv) were the ultrastructural parameters taken into account. Nv was significantly higher at 12 than at 3 and 24 months of age. V was significantly decreased at 12 and 24 months of age, but no difference was envisaged between adult and old rats. Vv was significantly decreased in old animals vs. the other age groups. In young and old rats, the percentage of organelles larger than 0.32 microm3 was 13.5 and 11%, respectively, while these enlarged mitochondria accounted for less than 1% in the adult group. Since SDH activity is of critical importance when energy demand is high, the marked decrease of Vv supports an impaired capacity of the old Purkinje cells to match actual energy supply at sustained transmission of the nervous impulse. However, the high percentage of enlarged organelles found in old rats may witness a morphofunctional compensatory response.

  19. Ionic imbalance, in addition to molecular crowding, abates cytoskeletal dynamics and vesicle motility during hypertonic stress

    PubMed Central

    Nunes, Paula; Roth, Isabelle; Meda, Paolo; Féraille, Eric; Brown, Dennis; Hasler, Udo

    2015-01-01

    Cell volume homeostasis is vital for the maintenance of optimal protein density and cellular function. Numerous mammalian cell types are routinely exposed to acute hypertonic challenge and shrink. Molecular crowding modifies biochemical reaction rates and decreases macromolecule diffusion. Cell volume is restored rapidly by ion influx but at the expense of elevated intracellular sodium and chloride levels that persist long after challenge. Although recent studies have highlighted the role of molecular crowding on the effects of hypertonicity, the effects of ionic imbalance on cellular trafficking dynamics in living cells are largely unexplored. By tracking distinct fluorescently labeled endosome/vesicle populations by live-cell imaging, we show that vesicle motility is reduced dramatically in a variety of cell types at the onset of hypertonic challenge. Live-cell imaging of actin and tubulin revealed similar arrested microfilament motility upon challenge. Vesicle motility recovered long after cell volume, a process that required functional regulatory volume increase and was accelerated by a return of extracellular osmolality to isosmotic levels. This delay suggests that, although volume-induced molecular crowding contributes to trafficking defects, it alone cannot explain the observed effects. Using fluorescent indicators and FRET-based probes, we found that intracellular ATP abundance and mitochondrial potential were reduced by hypertonicity and recovered after longer periods of time. Similar to the effects of osmotic challenge, isovolumetric elevation of intracellular chloride concentration by ionophores transiently decreased ATP production by mitochondria and abated microfilament and vesicle motility. These data illustrate how perturbed ionic balance, in addition to molecular crowding, affects membrane trafficking. PMID:26045497

  20. Effects of isotretinoin on the platelet counts and the mean platelet volume in patients with acne vulgaris.

    PubMed

    Ataseven, Arzu; Ugur Bilgin, Aynur

    2014-01-01

    Aim. The aim of this study was to evaluate the platelet counts and the mean platelet volume in patients who received isotretinoin for the treatment of acne vulgaris. Method. A total of 110 patients were included in this retrospective study. Complete blood count parameters were recorded prior to and three-months following the treatment. Results. Both platelet counts and the mean platelet volume were significantly decreased following the treatment. No significant differences were noted on the levels of hemoglobin, hematocrit, and white blood cell count. Conclusion. Platelet counts and mean platelet volume significantly decreased following isotretinoin treatment. Since the decrease of platelet counts and the mean platelet volume was seen concomitantly, it is concluded that the effect of isotretinoin was through the suppression of bone marrow.

  1. In vitro and in vivo anticancer efficacy of silibinin against human pancreatic cancer BxPC-3 and PANC-1 cells.

    PubMed

    Nambiar, Dhanya; Prajapati, Vandana; Agarwal, Rajesh; Singh, Rana P

    2013-06-28

    Silibinin suppresses the growth of many cancers; however, its efficacy against pancreatic cancer has not been evaluated in established preclinical models. Here, we investigated in vitro and in vivo effects of silibinin against lower and advanced stages of human pancreatic carcinoma cells. Silibinin (25-100μM) treatment for 24-72h caused a dose- and time-dependent cell growth inhibition of 27-77% (P<0.05-0.001) in BxPC-3 cells, and 22-45% (P<0.01-0.001) in PANC-1 cells. Silibinin showed a strong dose-dependent G1 arrest in BxPC-3 cells (upto 72% versus 45% in control; P<0.001), but a moderate response in advanced PANC-1 cells. Cell death observed in cell growth assay, was accompanied by up to 3-fold increase (P<0.001) in apoptosis in BxPC-3 cells, and showed only slight effect on PANC-1 cells. Dietary feeding of silibinin (0.5%, w/w in AIN-93M diet for 7weeks) inhibited BxPC-3 and PANC-1 tumor xenografts growth in nude mice without any apparent change in body weight gain and diet consumption. Tumor volume and weight were decreased by 47% and 34% (P⩽0.001) in BxPC-3 xenograft, respectively. PANC-1 xenograft showed slower growth kinetics and silibinin decreased tumor volume by 34% (P<0.001) by 7weeks. Another 4weeks of silibinin treatment to PANC-1 xenograft showed 28% and 33% decrease in tumor volume and weight, respectively. Silibinin-fed group of BxPC-3 tumors showed decreased cell proliferation and angiogenesis and an increased apoptosis, however, considerable inhibitory effect was observed only for angiogenesis in PANC-1 tumors. Overall, these findings show both in vitro as well as in vivo anticancer efficacy of silibinin against pancreatic cancer that could involve inhibition of cell proliferation, cell cycle arrest, apoptosis induction and/or decrease in tumor angiogenesis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. A mild transient decrease of peripheral red blood cell counts induced by a suprapharmacological dose of pegylated human megakaryocyte growth and development factor in rats.

    PubMed

    Harada, K; Ide, Y; Tazunoki, Y; Imai, A; Yanagida, M; Kikuchi, Y; Imai, A; Ishii, H; Kawahara, J; Izumi, H; Kusaka, M; Tokiwa, T

    1999-07-01

    Previous studies have shown that pegylated recombinant human megakaryocyte growth and development factor (PEG-rHuMGDF) at suprapharmacological dose induces a mild transient decrease of red blood cell counts according to thrombopoiesis in normal mice. To unravel the mechanism underlying this mild transient decrease of red blood cells, we have studied the effect of PEG-rHuMGDF on the circulating plasma and blood volume, and the serum biochemical parameters of anaemia and splenectomy. Also, we have performed histological studies of the bone marrow and the spleen of PEG-rHuMGDF-treated rats. PEG-rHuMGDF (300 microg kg(-1)]) or vehicle was subcutaneously administered to rats once a day for up to five days. From day 6 after the start of PEG-rHuMGDF administration, the platelet counts and plateletcrit levels were significantly increased, reaching peak values on day 10, and recovering to normal by day 20. The red blood cell counts and the haematocrit levels were significantly decreased on day 6 to 13. The decreases in red blood cell levels and haematocrit produced by PEG-rHuMGDF treatment were mild and had recovered by day 15. The plasma and blood volumes were significantly increased on day 10 in PEG-rHuMGDF-treated rats. No alteration of the serum biochemical parameters for anaemia, iron or total bilirubin, were observed on day 10. The histological examination on day 10 revealed a marked increase in megakaryocytes and a slight decrease in erythropoiesis in the bone marrow of rats that received PEG-rHuMGDF (300 microg kg(-1)). There was also a slight increase in splenic megakaryocytes and erythropoiesis. The decrease of red blood cells by PEG-rHuMGDF was not affected by splenectomy. These results suggest that the mild transient decrease of red blood cells induced by PEG-rHuMGDF treatment for up to five days is based mainly on the increases in the plasma and blood volume. These events are secondary changes due to the regulation of the excess production of megakaryocytes in the marrow and the peripheral platelets.

  3. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    PubMed Central

    Braun, Stefan; Morono, Yuki; Littmann, Sten; Kuypers, Marcel; Aslan, Hüsnü; Dong, Mingdong; Jørgensen, Bo B.; Lomstein, Bente Aa.

    2016-01-01

    The discovery of a microbial ecosystem in ocean sediments has evoked interest in life under extreme energy limitation and its role in global element cycling. However, fundamental parameters such as the size and the amount of biomass of sub-seafloor microbial cells are poorly constrained. Here we determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via epifluorescence microscopy (FM) and scanning electron microscopy (SEM). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography (HPLC) after cells had been purified by fluorescence-activated cell sorting (FACS). The majority of microbial cells in the sediment have coccoid or slightly elongated morphology. From the sediment surface to the deepest investigated sample (~60 m below the seafloor), the cell volume of both coccoid and elongated cells decreased by an order of magnitude from ~0.05 to 0.005 μm3. The cell-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates of volume- and biomass-specific cellular rates of energy metabolism in the deep biosphere and will improve global estimates of microbial biomass. PMID:27630628

  4. Plasma clots gelled by different amounts of calcium for stem cell delivery.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2013-01-01

    Freshly prepared autologous plasma clots may serve as a carrier matrix for expanded multipotent mesenchymal stromal cells (MSCs) or bone marrow cells. By varying the calcium concentration, plasma clots with different properties can be produced. The purpose of this in vitro study was to determine the optimal calcium concentrations for the clotting process, intra-clot cell viability, and clot lysis. Different plasma clots were prepared by adding an equal volume of RPMI1640 (with or without MSCs) to citrate plasma (either containing platelets or platelet-free). Clotting was initiated by the addition of CaCl(2) (10 g/100 ml H(2)O, 10 % solution). The final concentration of CaCl(2) ranged from 1 to 10 % by volume of plasma. Viability and distribution of the MSCs were analysed by calcein-AM/propidium iodide staining. MSC-embedded plasma clots were dissolved with trypsin (0.25 %), and recovered cells were further incubated for 1 week under cell culture conditions. The viability of MSCs embedded in clots formed by the addition of 1-8 % by volume CaCl2 was not affected by incubation of up to 1 week. In contrast, clots produced by higher volumes of CaCl(2) solutions (9-10 % by volume of plasma) showed decreased numbers of viable cells. Intra-clot cell proliferation was highest in clots produced by addition of 5 % CaCl(2) by plasma volume. Osteocalcin release was not influenced in platelet-free plasma but decreased in platelet-containing plasma. Morphological analysis of stained recovered MSCs revealed that lysis of the plasma clot did not affect cell morphology or subsequent spontaneous proliferation. Clot formation and clot stability can be controlled by changing the concentration of CaCl(2) added to plasma. The addition of 5 % CaCl(2) produced a plasma clot with optimal results for stem cell delivery.

  5. Passive potassium transport in low potassium sheep red cells: dependence upon cell volume and chloride.

    PubMed Central

    Dunham, P B; Ellory, J C

    1981-01-01

    The major pathway of passive K influx (ouabain-insensitive) was characterized in low-K type (LK) red cells of sheep. 1. Passive K transport in these cells was highly sensitive to variations in cell volume; it increased threefold or more in cells swollen osmotically by 10%, and decreased up to twofold in cells shrunken 5-10%. Active K influx was insensitive to changes in cell volume. Three different methods for varying cell volume osmotically all gave similar results. 2. The volume-sensitive pathway was specific for K in that Na influx did not vary with changes in cell volume. 3. The volume-sensitive K influx was a saturable function of external K concentration. It was slightly inhibited by Na, whereas K influx in shrunken cells was unaffected by Na. 4. Passive K influx was dependent on the major anion in the medium in that replacement of Cl with any of six other anions resulted in a reduction of K influx by 50-80% (replacement of Cl by Br caused an increase in K influx). The activation of K influx by Cl followed sigmoid kinetics. 5. Passive K influx is inhibited by anti-L antibody. The antibody affected only that portion of influx which was Cl-dependent and volume-sensitve. Of the subfractions of the antibody, it is anti-L1 which inhibits passive K transport. 6. Pretreatment of cells with iodoacetamide reduced the sensitivity of K influx to cell volume in that the influx was reduced in swollen IAA-treated cells and increased in shrunken IAA-cells. 7. Intracellular Ca has no role in altering passive K transport in LK sheep cells. Therefore, the major pathway of passive K transport in LK sheep red cells is sensitive to changes in cell volume, specific for K, dependent on Cl, and inhibited by anti-L1 antibody, The minor pathway, observed in shrunken cells, has none of these properties. PMID:6798197

  6. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    PubMed

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  7. PATHOLOGIC SIGNIFICANCE OF BLOOD VOLUME CHANGES IN UNTREATED POLYCYTHEMIA VERA AND AFTER P$sup 32$ THERAPY (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, T.; Keszthelyi, B.; Peer, J.

    1962-02-25

    Ten patients suffering from polycythemia vera were divided into three groups for evaluation purposes. The first group (2 patients) consisted of the mildest cases in which the hematocrit values were 55% or less. The second group (2 patients) had a hematocrit values of 55% or higher, and the red cell and plasma voiumes were higher than normal. The third group consisted of the severest cases with hematocrit values of 70 to 80%, red cell counts of 6 to 8 million/ mm/sup 3, and red cell and plasma volumes two to four times normai. Blood volumes were determined with /sup 32/Pmore » or /sup 51/Cr. The patients showed clinical improvement after the first treatment with /sup 32/P and hematologic examination indicated that the red cell count dropped, while hemogiobin value, white cell count, thrombocyte count, and hematocrit decreased. After the second / sup 32/P treatment the blood volume did not decrease appreciably, but plasma volume increased, leading to improvement of the patient's condition. Venesection may still be used as a therapeutic means when an immediate reduction of the blood volume is desired. This can be achieved by /sup 32/P therapy only after severai treatments. The /sup 32/P dose varied with the severity of the illness from one treatment of five mC /sup 32/P in the patients with hematocrits of 55% to two doses of 4.2 mC in those with values of 58%, and three mC /sup 32/P in another patient with a hematocrit of 82%. (BBB)« less

  8. Diatom Cell Size, Coloniality and Motility: Trade-Offs between Temperature, Salinity and Nutrient Supply with Climate Change

    PubMed Central

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how “body size” (cells and colonies) and motility change along temperature (2–26°C) and salinity (0.5–7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels. PMID:25279720

  9. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change.

    PubMed

    Svensson, Filip; Norberg, Jon; Snoeijs, Pauline

    2014-01-01

    Reduction in body size has been proposed as a universal response of organisms, both to warming and to decreased salinity. However, it is still controversial if size reduction is caused by temperature or salinity on their own, or if other factors interfere as well. We used natural benthic diatom communities to explore how "body size" (cells and colonies) and motility change along temperature (2-26°C) and salinity (0.5-7.8) gradients in the brackish Baltic Sea. Fourth-corner analysis confirmed that small cell and colony sizes were associated with high temperature in summer. Average community cell volume decreased linearly with 2.2% per °C. However, cells were larger with artificial warming when nutrient concentrations were high in the cold season. Average community cell volume increased by 5.2% per °C of artificial warming from 0 to 8.5°C and simultaneously there was a selection for motility, which probably helped to optimize growth rates by trade-offs between nutrient supply and irradiation. Along the Baltic Sea salinity gradient cell size decreased with decreasing salinity, apparently mediated by nutrient stoichiometry. Altogether, our results suggest that climate change in this century may polarize seasonality by creating two new niches, with elevated temperature at high nutrient concentrations in the cold season (increasing cell size) and elevated temperature at low nutrient concentrations in the warm season (decreasing cell size). Higher temperature in summer and lower salinity by increased land-runoff are expected to decrease the average cell size of primary producers, which is likely to affect the transfer of energy to higher trophic levels.

  10. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions

    PubMed Central

    1985-01-01

    Duck red cells exhibit specific volume-sensitive ion transport processes that are inhibited by furosemide, but not by ouabain. Swelling cells in a hypotonic synthetic medium activates a chloride- dependent, but sodium-independent, potassium transport. Shrinking cells in a hypertonic synthetic medium stimulates an electrically neutral co- transport of [Na + K + 2 Cl] with an associated 1:1 K/K (or K/Rb) exchange. These shrinkage-induced modes can also be activated in both hypo- and hypertonic solutions by beta-adrenergic catecholamines (e.g., norepinephrine). Freshly drawn cells spontaneously shrink approximately 4-5% when removed from the influence of endogenous plasma catecholamines, either by incubation in a catecholamine-free, plasma- like synthetic medium, or in plasma to which a beta-receptor blocking dose of propranolol has been added. This spontaneous shrinkage resembles the response of hypotonically swollen cells in that it is due to a net loss of KCl with no change in cell sodium. Norepinephrine abolishes the net potassium transport seen in both fresh and hypotonically swollen cells. Moreover, cells swollen in diluted plasma, at physiological pH and extracellular potassium, show no net loss of KCl and water ("volume-regulatory decrease") unless propranolol is added. Examination of the individual cation fluxes in the presence of catecholamines demonstrates that activation of [Na + K + 2Cl] co- transport with its associated K/Rb exchange prevents, or overrides, swelling-induced [K + Cl] co-transport. These results, therefore, cast doubt on whether the swelling-induced [K + Cl] system can serve a volume-regulatory function under in vivo conditions. PMID:3998706

  11. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    PubMed

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Three-dimensional confocal morphometry – a new approach for studying dynamic changes in cell morphology in brain slices

    PubMed Central

    Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank

    2007-01-01

    Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344

  13. Remedial Investigation/Baseline Risk Assessment for the Ravines and Beach Area Study areas of the Surplus Operable Unit, Fort Sheridan, Illinois, Volume 3 - BRA Text and BRA Appendices A-L

    DTIC Science & Technology

    1998-04-13

    and Sydnor, 1968). The lymphoid system can also be affected resulting in lymphopenia. Toxic effects have been observed in the rapidly dividing cells ...polycyclic aromatic hydrocarbons have demonstrated the toxic effects of these compounds on rapidly proliferating cells . An intraperitoneal injection...b); however, higher doses are reported to result in testicular effects and decreased hemoglobin and packed cell volume (Kluwe et al, 1982; Gray et

  14. Effects of cell phone use on semen parameters: Results from the MARHCS cohort study in Chongqing, China.

    PubMed

    Zhang, Guowei; Yan, Huan; Chen, Qing; Liu, Kaijun; Ling, Xi; Sun, Lei; Zhou, Niya; Wang, Zhi; Zou, Peng; Wang, Xiaogang; Tan, Lu; Cui, Zhihong; Zhou, Ziyuan; Liu, Jinyi; Ao, Lin; Cao, Jia

    2016-05-01

    Epidemiological and experimental evidence for detrimental effects of cell phone use on semen quality is still equivocal. And that recruiting participants from infertility clinic not from general population may raise the possibility of a selection bias. To investigate effects of cell phone use on semen parameters in a general population,We screened and documented the cell phone use information of 794 young men from the Male Reproductive Health in Chongqing College students (MARHCS) cohort study in 2013, followed by 666 and 568 in 2014 and 2015, respectively. In the univariate regression analyses, we found that the daily duration of talking on the cell phone was significantly associated with decreased semen parameters, including sperm concentration [β coefficient=-6.32% per unit daily duration of talking on the cell phone (h); 95% confidence interval (CI), -11.94, -0.34] and total sperm count (-8.23; 95% CI, -14.38, -1.63) in 2013; semen volume (-8.37; 95% CI, -15.93, -0.13) and total sperm count (-16.59; 95% CI, -29.91, -0.73) in 2015]. Internet use via cellular networks was also associated with decreased sperm concentration and total sperm counts in 2013 and decreased semen volume in 2015. Multivariate analyses were used to adjust for the effects of potential confounders, and significant negative associations between internet use and semen parameters remained. Consistent but nonsignificant negative associations between talking on the cell phone and semen parameters persisted throughout the three study years, and the negative association was statistically significant in a mixed model that considered all three years of data on talking on the cell phone and semen quality. Our results showed that certain aspects of cell phone use may negatively affect sperm quality in men by decreasing the semen volume, sperm concentration, or sperm count, thus impairing male fertility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Influence of Crystal Expansion/Contraction on Zeolite Membrane Permeation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorenson, Stephanie G; Payzant, E Andrew; Noble, Richard D

    X-ray diffraction was used to measure the unit cell parameters of B-ZSM-5, SAPO-34, and NaA zeolite powders as a function of adsorbate loading at 303 K, and in one case, at elevated temperatures. Most adsorbates expanded the zeolite crystals below saturation loading at 303 K: n-hexane and SF6 in B-ZSM-5, methanol and CO2 in SAPO-34, and methanol in NaA zeolite. As the loadings increased, the crystals expanded more. Changes in the unit cell volumes of B-ZSM-5 and SAPO-34 zeolite powders correlated with changes in permeation through zeolite membranes defects. When the zeolite crystals expanded or contracted upon adsorption, the defectmore » sizes decreased or increased. In B-ZSM-5 membranes, the fluxes through defects decreased dramatically when n-hexane or SF6 adsorbed. In contrast, i-butane adsorption at 303 K contracted B-ZSM-5 crystals at low loadings and expanded them at higher loadings. Correspondingly, the flux through B-ZSM-5 membrane defects increased at low i-butane loadings and decreased at high loading because the defects increased in size at low loading and decreased at high loadings. At 398 K and 473 K, n-hexane expanded the B-ZSM-5 unit cell more as the temperature increased from 303 to 473 K. The silicalite-1 and B-ZSM-5 unit cell volumes expanded similarly upon n-hexane adsorption at 303 K; boron substitution had little effect on volume expansion.« less

  16. INCREASED BLOOD VOLUME IN POLYCYTHEMIA VERA AND THE EFFECT ON IT OF TREATMENT WITH P$sup 3$$sup 2$

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, T.; Keszthelyi, B.; Peer, J.

    1961-01-01

    The effect of this treatment was studied in 3 patients with polycythemia vera having hematocrits of 70-80% and red cell counts of 6-8 x 10/sup 6/. Plasma volume was also elevated and the red cell volume was decreased to 80-5 mu m/sup 3/ from a normal mean of 87. After a single injection of 3-10 mc inorganic P/sup 32/O/sub 4/, subjective symptoms improved as well as the hematologic values. Hematocrit, hemoglobin, and counts of erythrocytes, leukocytes, and thrombocytes fell. Blood volume and viscosity also declined. (H.H.D.)

  17. Cholecystokinin-producing (I) cells of intestinal mucosa in dexamethasone-treated rats.

    PubMed

    Glišić, Radmila; Koko, Vesna; Cvijić, Gordana; Milošević, Maja Čakić; Obradović, Jasmina

    2011-11-10

    The aim of this study was to investigate the morphological, immunohistochemical and ultrastructural changes of cholecystokinin-producing (I) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2mg/kg dexamethasone, rats developed diabetes similar to human diabetes mellitus type 2. The mean diameter of the duodenum was significantly decreased due to significant reduction of volume fraction and profile area of lamina propria. There was a decrease in volume fraction and number of cholecystokinin (CCK)-producing cells per mm(2) of mucosa, as well as their numerical density, but without statistical significance. Also, dexamethasone induced appearance of hyperactive duodenal I-cells with small number of granules and dilated endoplasmic reticulum. In conclusion, the present study showed that morphological changes in duodenum cholecystokinin-producing (I) cells occurred in diabetic rats, in a manner which, suggests compensatory effort of CCK cells in diabetic condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Influence of microgravity on cellular differentiation in root caps of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; Fondren, W. M.; McClelen, C. E.; Wang, C. L.

    1987-01-01

    We launched imbibed seeds of Zea mays into outer space aboard the space shuttle Columbia to determine the influence of microgravity on cellular differentiation in root caps. The influence of microgravity varied with different stages of cellular differentiation. Overall, microgravity tended to 1) increase relative volumes of hyaloplasm and lipid bodies, 2) decrease the relative volumes of plastids, mitochondria, dictyosomes, and the vacuome, and 3) exert no influence on the relative volume of nuclei in cells comprising the root cap. The reduced allocation of dictyosomal volume in peripheral cells of flight-grown seedlings correlated positively with their secretion of significantly less mucilage than peripheral cells of Earth-grown seedlings. These results indicate that 1) microgravity alters the patterns of cellular differentiation and structures of all cell types comprising the root cap, and 2) the influence of microgravity on cellular differentiation in root caps of Zea mays is organelle specific.

  19. Regulation of Blood Volume During Spaceflight

    NASA Technical Reports Server (NTRS)

    Alfrey, Clarence P.

    1997-01-01

    The effects of spaceflight on erythropoiesis and blood volume in the rat were studied during the 14-day NASA Spacelab Life Sciences 2 (SLS-2) Shuttle mission. Measurements included red blood cell mass (RBCM), plasma volume (PV), iron utilization and iron utilization in response to an injection of erythropoietin. Red blood cell (RBC) survival, splenic sequestration and erythrocyte morphology were also evaluated. At landing, the RBCM adjusted for body weight was significantly lower in the flight animals than in the ground controls. While the PV was also decreased, the change was not statistically significant. Incorporation of iron into circulating RBCs was normal when measured after five days of spaceflight and the rat responded normally to the single in-flight injection of erythropoietin. No change in RBC morphology could be attributed to spaceflight. A normal survival was found for the RBC population that was represented by Cr-51 labeled RBCS. These results demonstrate that rats, like humans, return from spaceflight with a decreased RBCM and total blood volume.

  20. Interrogating the Escherichia coli cell cycle by cell dimension perturbations

    PubMed Central

    Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E.; Amir, Ariel; Liu, Chenli

    2016-01-01

    Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter’s growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ. We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed “adder-per-origin” model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation. PMID:27956612

  1. Interrogating the Escherichia coli cell cycle by cell dimension perturbations.

    PubMed

    Zheng, Hai; Ho, Po-Yi; Jiang, Meiling; Tang, Bin; Liu, Weirong; Li, Dengjin; Yu, Xuefeng; Kleckner, Nancy E; Amir, Ariel; Liu, Chenli

    2016-12-27

    Bacteria tightly regulate and coordinate the various events in their cell cycles to duplicate themselves accurately and to control their cell sizes. Growth of Escherichia coli, in particular, follows a relation known as Schaechter's growth law. This law says that the average cell volume scales exponentially with growth rate, with a scaling exponent equal to the time from initiation of a round of DNA replication to the cell division at which the corresponding sister chromosomes segregate. Here, we sought to test the robustness of the growth law to systematic perturbations in cell dimensions achieved by varying the expression levels of mreB and ftsZ We found that decreasing the mreB level resulted in increased cell width, with little change in cell length, whereas decreasing the ftsZ level resulted in increased cell length. Furthermore, the time from replication termination to cell division increased with the perturbed dimension in both cases. Moreover, the growth law remained valid over a range of growth conditions and dimension perturbations. The growth law can be quantitatively interpreted as a consequence of a tight coupling of cell division to replication initiation. Thus, its robustness to perturbations in cell dimensions strongly supports models in which the timing of replication initiation governs that of cell division, and cell volume is the key phenomenological variable governing the timing of replication initiation. These conclusions are discussed in the context of our recently proposed "adder-per-origin" model, in which cells add a constant volume per origin between initiations and divide a constant time after initiation.

  2. Early in situ changes in chondrocyte biomechanical responses due to a partial meniscectomy in the lateral compartment of the mature rabbit knee joint.

    PubMed

    Fick, J M; P Ronkainen, A; Madden, R; Sawatsky, A; Tiitu, V; Herzog, W; Korhonen, R K

    2016-12-08

    We determined the biomechanical responses of chondrocytes to indentation at specific locations within the superficial zone of cartilage (i.e. patellar, femoral groove, femoral condylar and tibial plateau sites) taken from female New Zealand white rabbits three days after a partial meniscectomy in the lateral compartment of a knee joint. Confocal laser scanning microscopy combined with a custom indentation system was utilized to image chondrocyte responses at sites taken from ten contralateral and experimental knee joints. Cell volume, height, width and depth changes, global, local axial and transverse strains and Young׳s moduli were determined. Histological assessment was performed and proteoglycan content from the superficial zone of each site was determined. Relative to contralateral group cells, patellar, femoral groove and lateral femoral condyle cells in the experimental group underwent greater volume decreases (p < 0.05), due to smaller lateral expansions (with greater decreases in cell height only for the lateral femoral condyle cells; p < 0.05) whereas medial femoral and medial tibial plateau cells underwent smaller volume decreases (p < 0.05), due to less deformation in cell height (p < 0.05). Proteoglycan content was reduced in the patellar (p > 0.05), femoral groove, medial femoral condyle and medial tibial plateau experimental sites (p < 0.05). The findings suggest: (i) cell biomechanical responses to cartilage loading in the rabbit knee joint can become altered as early as 3 days after a partial meniscectomy, (ii) are site-specific, and (iii) occur before alterations in tissue mechanics or changes detectable with histology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Evidence for Decreased Brain Parenchymal Volume After Large Intracerebral Hemorrhages: a Potential Mechanism Limiting Intracranial Pressure Rises.

    PubMed

    Williamson, Michael R; Colbourne, Frederick

    2017-08-01

    Potentially fatal intracranial pressure (ICP) rises commonly occur after large intracerebral hemorrhages (ICH). We monitored ICP after infusing 100-160 μL of autologous blood (vs. 0 μL control) into the striatum of rats in order to test the validity of this common model with regard to ICP elevations. Other endpoints included body temperature, behavioral impairment, lesion volume, and edema. Also, we evaluated hippocampal CA1 sector and somatosensory cortical neuron morphology to assess whether global ischemic injury occurred. Despite massive blood infusions, ICP only modestly increased (160 μL 10.8 ± 2.1 mmHg for <36 h vs. control 3.4 ± 0.5 mmHg), with little peri-hematoma edema at 3 days. Body temperature was not affected. Behavioral deficits and tissue loss were infusion volume-dependent. There was no histological evidence of hippocampal or cortical injury, indicating that cell death was confined to the hematoma and closely surrounding tissue. Surprisingly, the most severe hemorrhages significantly increased cell density (~15-20%) and reduced cell body size (~30%) in regions outside the injury site. Additionally, decreased cell size and increased density were observed after collagenase-induced ICH. Parenchymal volume is seemingly reduced after large ICH. Thus, in addition to well-known compliance mechanisms (e.g., displacement of cerebrospinal fluid and cerebral blood), reduced brain parenchymal volume appears to limit ICP rises in rodents with very large mass lesions.

  4. Determination of Urea Permeability in Red Cells by Minimum Method

    PubMed Central

    Sha'afi, R. I.; Rich, G. T.; Mikulecky, D. C.; Solomon, A. K.

    1970-01-01

    A new method has been developed for measuring the permeability coefficient, ω, of small nonelectrolytes. The method depends upon a mathematical analysis of the time course of cell volume changes in the neighborhood of the minimum volume following addition of a permeating solute to an isosmolal buffer. Coefficients determined by the minimum volume method agree with those obtained using radioactive tracers. ω for urea in human red cells was found to decrease as the volume flow, Jv, into the cell increased. Such behavior is entirely unexpected for a single uniform rate-limiting barrier on the basis of the linear phenomenological equations derived from irreversible thermodynamics. However, the present findings are consonant with a complex membrane system consisting of a tight barrier on the outer face of the human red cell membrane and a somewhat less restrictive barrier behind it closer to the inner membrane face. A theoretical analysis of such a series model has been made which makes predictions consistent with the experimental findings. PMID:5435779

  5. Effect of Microstructural Parameters on the Relative Densities of Metal Foams

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Kerr, Jacob A.

    2010-01-01

    A detailed quantitative microstructural analyses of primarily open cell FeCrAlY and 314 stainless steel metal foams with different relative densities and pores per inch (p.p.i.) were undertaken in the present investigation to determine the effect of microstructural parameters on the relative densities of metal foams. Several elements of the microstructure, such as longitudinal and transverse cell sizes, cell areas and perimeters, ligament dimensions, cell shapes and volume fractions of closed and open cells, were measured. The cross-sections of the foam ligaments showed a large number of shrinkage cavities, and their circularity factors and average sizes were determined. The volume fractions of closed cells increased linearly with increasing relative density. In contrast, the volume fractions of the open cells and ligaments decreased with increasing relative density. The relative densities and p.p.i. were not significantly dependent on cell size, cell perimeter and ligament dimensions within the limits of experimental scatter. A phenomenological model is proposed to rationalize the present microstructural observations.

  6. Partial Red Blood Cell Exchange in Children and Young Patients with Sickle Cell Disease: Manual Versus Automated Procedure.

    PubMed

    Escobar, Carlos; Moniz, Marta; Nunes, Pedro; Abadesso, Clara; Ferreira, Teresa; Barra, António; Lichtner, Anabela; Loureiro, Helena; Dias, Alexandra; Almeida, Helena

    2017-10-31

    The benefits of manual versus automated red blood cell exchange have rarely been documented and studies in young sickle cell disease patients are scarce. We aim to describe and compare our experience in these two procedures. Young patients (≤ 21 years old) who underwent manual- or automated-red blood cell exchange for prevention or treatment of sickle cell disease complications were included. Clinical, technical and hematological data were prospectively recorded and analyzed. Ninety-four red blood cell exchange sessions were performed over a period of 68 months, including 57 manual and 37 automated, 63 for chronic complications prevention, 30 for acute complications and one in the pre-operative setting. Mean decrease in sickle hemoglobin levels was higher in automated-red blood cell exchange (p < 0.001) and permitted a higher sickle hemoglobin level decrease per volume removed (p < 0.001), while hemoglobin and hematocrit remained stable. Ferritin levels on chronic patients decreased 54%. Most frequent concern was catheter outflow obstruction on manual-red blood cell exchange and access alarm on automated-red blood cell exchange. No major complication or alloimunization was recorded. Automated-red blood cell exchange decreased sickle hemoglobin levels more efficiently than manual procedure in the setting of acute and chronic complications of sickle cell disease, with minor technical concerns mainly due to vascular access. The threshold of sickle hemoglobin should be individualized for clinical and hematological goals. In our cohort of young patients, the need for an acceptable venous access was a limiting factor, but iron-overload was avoided. Automated red blood cell exchange is safe and well tolerated. It permits a higher sickle hemoglobin removal efficacy, better volume status control and iron-overload avoidance.

  7. Superficial Collagen Fibril Modulus and Pericellular Fixed Charge Density Modulate Chondrocyte Volumetric Behaviour in Early Osteoarthritis

    PubMed Central

    Turunen, Siru M.; Han, Sang Kuy; Herzog, Walter; Korhonen, Rami K.

    2013-01-01

    The aim of this study was to investigate if the experimentally detected altered chondrocyte volumetric behavior in early osteoarthritis can be explained by changes in the extracellular and pericellular matrix properties of cartilage. Based on our own experimental tests and the literature, the structural and mechanical parameters for normal and osteoarthritic cartilage were implemented into a multiscale fibril-reinforced poroelastic swelling model. Model simulations were compared with experimentally observed cell volume changes in mechanically loaded cartilage, obtained from anterior cruciate ligament transected rabbit knees. We found that the cell volume increased by 7% in the osteoarthritic cartilage model following mechanical loading of the tissue. In contrast, the cell volume decreased by 4% in normal cartilage model. These findings were consistent with the experimental results. Increased local transversal tissue strain due to the reduced collagen fibril stiffness accompanied with the reduced fixed charge density of the pericellular matrix could increase the cell volume up to 12%. These findings suggest that the increase in the cell volume in mechanically loaded osteoarthritic cartilage is primarily explained by the reduction in the pericellular fixed charge density, while the superficial collagen fibril stiffness is suggested to contribute secondarily to the cell volume behavior. PMID:23634175

  8. [Microscopic structure of the epithelium of the oviducts in cows during the estrus cycle].

    PubMed

    Uhrín, V

    1983-03-01

    The mucous membrane of a cow is covered with ciliary and secretory cells. The so-called basal cells occur at the basal membrane. The counts of ciliary cells vary during the sexual cycle: they reach the maximum (up to 68%) during oestrus. About 13% of cells lose cilia during metoestrus and at the beginning of dioestrus. Reciliation occurs during pro-oestrus. Light and dark ciliary cells can be discerned by the staining of cytoplasm and by the density of nuclei. A higher variability was found in the secretory cells. There are light and dark cells, cells with a wedge shape and rod-shaped cells. Their frequency and function are discussed. Mitoses of epithelium were found in rare cases. The relative volume of epithelium and the mucous membrane of connective tissues change during the sexual cycle. The volume of secretory cells increases during metoestrus and dioestrus and the volume of ciliary cells increases during pro-oestrus and heat. The volume of nuclei decreases in metoestrus and mainly in dioestrus. PAS positive granules occur in the cytoplasm of secretory cells, mainly during metoestrus, in the apical regions. Ptyalin-resistant polysaccharides, besides glycogen, were detected in the cells. The occurrence rate of lipids varies just slightly during the oestrous cycle.

  9. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    PubMed Central

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  10. Dormancy in Deinococcus sp. UDEC-P1 as a survival strategy to escape from deleterious effects of carbon starvation and temperature.

    PubMed

    Guerra, Matías; González, Karina; González, Carlos; Parra, Boris; Martínez, Miguel

    2015-09-01

    Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  11. The COX-2 Selective Blocker Etodolac Inhibits TNFα-Induced Apoptosis in Isolated Rabbit Articular Chondrocytes

    PubMed Central

    Kumagai, Kousuke; Kubo, Mitsuhiko; Imai, Shinji; Toyoda, Futoshi; Maeda, Tsutomu; Okumura, Noriaki; Matsuura, Hiroshi; Matsusue, Yoshitaka

    2013-01-01

    Chondrocyte apoptosis contributes to the disruption of cartilage integrity in osteoarthritis (OA). Recently, we reported that activation of volume-sensitive Cl− current (ICl,vol) mediates cell shrinkage, triggering apoptosis in rabbit articular chondrocytes. A cyclooxygenase (COX) blocker is frequently used for the treatment of OA. In the present study, we examined in vitro effects of selective blockers of COX on the TNFα-induced activation of ICl,vol in rabbit chondrocytes using the patch-clamp technique. Exposure of isolated chondrocytes to TNFα resulted in an obvious increase in membrane Cl− conductance. The TNFα-evoked Cl− current exhibited electrophysiological and pharmacological properties similar to those of ICl,vol. Pretreatment of cells with selective COX-2 blocker etodolac markedly inhibited ICl,vol activation by TNFα as well as subsequent apoptotic events such as apoptotic cell volume decrease (AVD) and elevation of caspase-3/7 activity. In contrast, a COX-1 blocker had no effect on the decrease in cell volume or the increase in caspase-3/7 activity induced by TNFα. Thus, the COX-2-selective blocker had an inhibitory effect on TNFα-induced apoptotic events, which suggests that this drug would have efficacy for the treatment of OA. PMID:24084720

  12. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Schwartz, J; Mayr, N

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor volume variation curves measured during radiotherapy with conventional fractionation. The proposed method can be used for treatment evaluation and adaptation.« less

  13. Experimental evidence for negative turgor pressure in small leaf cells of Robinia pseudoacacia L versus large cells of Metasequoia glyptostroboides Hu et W.C. Cheng. 2. Höfler diagrams below the volume of zero turgor and the theoretical implication for pressure-volume curves of living cells.

    PubMed

    Yang, Dongmei; Li, Junhui; Ding, Yiting; Tyree, Melvin T

    2017-03-01

    The physiological advantages of negative turgor pressure, P t , in leaf cells are water saving and homeostasis of reactants. This paper advances methods for detecting the occurrence of negative P t in leaves. Biomechanical models of pressure-volume (PV) curves predict that negative P t does not change the linearity of PV curve plots of inverse balance pressure, P B , versus relative water loss, but it does predict changes in either the y-intercept or the x-intercept of the plots depending on where cell collapse occurs in the P B domain because of negative P t . PV curve analysis of Robinia leaves revealed a shift in the x-intercept (x-axis is relative water loss) of PV curves, caused by negative P t of palisade cells. The low x-intercept of the PV curve was explained by the non-collapse of palisade cells in Robinia in the P B domain. Non-collapse means that P t smoothly falls from positive to negative values with decreasing cell volume without a dramatic change in slope. The magnitude of negative turgor in non-collapsing living cells was as low as -1.3 MPa and the relative volume of the non-collapsing cell equaled 58% of the total leaf cell volume. This study adds to the growing evidence for negative P t . © 2016 John Wiley & Sons Ltd.

  14. Time Course and Variability of Polycythemic Response in Men at High Altitude

    NASA Technical Reports Server (NTRS)

    Grover, R. F.; Seiland, M.; McCullough, R. G.; Greenleaf, J. E.; Dahms, T. E.; Wolfel, E.; Reeves, J. T.

    2000-01-01

    Ten young men were exposed to 4,300 m (PB 460 Torr) for three weeks. Plasma volume (PV, Evans Blue dye). and blood volume (BV, carbon monoxide) measured simultaneously, and red cell volume (RCV) calculated from hematocrit, were determined twice at sea level and after 9-11 and 19-20 days at high altitude. After 19-20 days. half the subjects increased RCV +19.4 +/- 1.8% (p<0.001); the other 5 subjects had no significant change in RCV. All 10 subjects had a sustained decrease in PV (-16.2 +/- 1.9%, p<0.05) at altitude. Consequently, compared with sea level values, BV was unchanged (-3.1 +/- 1.8%) in the group with increased RCV, but BV decreased significantly (-12.2 +/- 1.4%, p<0.05) in the other group. Variability in RCV response was not explained by differences, in hypoxemic stimulus or the erythropoictin and reticulocyte responses. Since RCV reflects the balance between red cell. production and destruction, accelerated red cell destruction may have occurred in those individuals with no net change in RCV.

  15. Dynamics of Escherichia coli’s passive response to a sudden decrease in external osmolarity

    PubMed Central

    Buda, Renata; Liu, Yunxiao; Yang, Jin; Hegde, Smitha; Stevenson, Keiran; Bai, Fan; Pilizota, Teuta

    2016-01-01

    For most cells, a sudden decrease in external osmolarity results in fast water influx that can burst the cell. To survive, cells rely on the passive response of mechanosensitive channels, which open under increased membrane tension and allow the release of cytoplasmic solutes and water. Although the gating and the molecular structure of mechanosensitive channels found in Escherichia coli have been extensively studied, the overall dynamics of the whole cellular response remain poorly understood. Here, we characterize E. coli’s passive response to a sudden hypoosmotic shock (downshock) on a single-cell level. We show that initial fast volume expansion is followed by a slow volume recovery that can end below the initial value. Similar response patterns were observed at downshocks of a wide range of magnitudes. Although wild-type cells adapted to osmotic downshocks and resumed growing, cells of a double-mutant (ΔmscL,ΔmscS) strain expanded, but failed to fully recover, often lysing or not resuming growth at high osmotic downshocks. We propose a theoretical model to explain our observations by simulating mechanosensitive channels opening, and subsequent solute efflux and water flux. The model illustrates how solute efflux, driven by mechanical pressure and solute chemical potential, competes with water influx to reduce cellular osmotic pressure and allow volume recovery. Our work highlights the vital role of mechanosensation in bacterial survival. PMID:27647888

  16. Longitudinal 3.0T MRI analysis of changes in lymph node volume and apparent diffusion coefficient in an experimental animal model of metastatic and hyperplastic lymph nodes.

    PubMed

    Klerkx, Wenche M; Geldof, Albert A; Heintz, A Peter; van Diest, Paul J; Visser, Fredy; Mali, Willem P; Veldhuis, Wouter B

    2011-05-01

    To perform a longitudinal analysis of changes in lymph node volume and apparent diffusion coefficient (ADC) in healthy, metastatic, and hyperplastic lymph nodes. Three groups of four female Copenhagen rats were studied. Metastasis was induced by injecting cells with a high metastatic potential in their left hind footpad. Reactive nodes were induced by injecting Complete Freund Adjuvant (CFA). Imaging was performed at baseline and at 2, 5, 8, 11, and 14 days after tumor cell injection. Finally, lymph nodes were examined histopathologically. The model was highly efficient in inducing lymphadenopathy: subcutaneous cell or CFA inoculation resulted in ipsilateral metastatic or reactive popliteal lymph nodes in all rats. Metastatic nodal volumes increased exponentially from 5-7 mm(3) at baseline to 25 mm(3) at day 14, while the control node remained 5 mm(3). The hyperplastic nodes showed a rapid volume increase reaching a plateau at day 6. The ADC of metastatic nodes significantly decreased (range 13%-32%), but this decrease was also seen in reactive nodes. Metastatic and hyperplastic lymph nodes differed in terms of enlargement patterns and ADC changes. Enlarged reactive or malignant nodes could not be differentiated based on their ADC values. Copyright © 2011 Wiley-Liss, Inc.

  17. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, N.E.; Huff, J.R.; Leddy, J.

    1987-10-16

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode. 4 figs., 1 tab.

  18. Composite electrode for use in electrochemical cells

    DOEpatents

    Vanderborgh, Nicholas E.; Huff, James R.; Leddy, Johna

    1989-01-01

    A porous composite electrode for use in electrochemical cells. The electrode has a first face and a second face defining a relatively thin section therebetween. The electrode is comprised of an ion conducting material, an electron conducting material, and an electrocatalyst. The volume concentration of the ion conducting material is greatest at the first face and is decreased across the section, while the volume concentration of the electron conducting material is greatest at the second face and decreases across the section of the electrode. Substantially all of the electrocatalyst is positioned within the electrode section in a relatively narrow zone where the rate of electron transport of the electrode is approximately equal to the rate of ion transport of the electrode.

  19. Nuclear apoptotic volume decrease in individual cells: Confocal microscopy imaging and kinetic modeling.

    PubMed

    Khalo, Irina V; Konokhova, Anastasiya I; Orlova, Darya Y; Trusov, Konstantin V; Yurkin, Maxim A; Bartova, Eva; Kozubek, Stanislav; Maltsev, Valeri P; Chernyshev, Andrei V

    2018-05-30

    The dynamics of nuclear morphology changes during apoptosis remains poorly investigated and understood. Using 3D time-lapse confocal microscopy we performed a study of early-stage apoptotic nuclear morphological changes induced by etoposide in single living HepG2 cells. These observations provide a definitive evidence that nuclear apoptotic volume decrease (AVD) is occurring simultaneously with peripheral chromatin condensation (so called "apoptotic ring"). In order to describe quantitatively the dynamics of nuclear morphological changes in the early stage of apoptosis we suggest a general molecular kinetic model, which fits well the obtained experimental data in our study. Results of this work may clarify molecular mechanisms of nuclear morphology changes during apoptosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Attoliter Control of Microliquid

    NASA Astrophysics Data System (ADS)

    Imura, Fumito; Kuroiwa, Hiroyuki; Nakada, Akira; Kosaka, Kouji; Kubota, Hiroshi

    2007-11-01

    The technology of the sub-femtoliter volume control of liquids in nanometer range pipettes (nanopipettes) has been developed for carrying out surgical operations on living cells. We focus attention on an interface forming between oil and water in a nanopipette. The interface position can be moved by increasing or decreasing the input pressure. If the volume of liquid in the nanopipette can be controlled by moving the position of the interface, cell organelles can be discharged or suctioned and a drug-solution can be injected into the cell. Quantity volume control in the pico-attoliter range using a tapered nanopipette is controlled by the condition of an interface with a convex shape toward the top of the nanopipette. The volume can be controlled by the input pressure corresponding to the interfacial radius without the use of a microscope by preliminarily preparing the pipette shape and the interface radius as a function of the input pressure.

  1. Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells.

    PubMed

    Liu, Jiang; Periyasamy, Sankaridrug M; Gunning, William; Fedorova, Olga V; Bagrov, Alexei Y; Malhotra, Deepak; Xie, Zijian; Shapiro, Joseph I

    2002-12-01

    The decreases in proximal tubule sodium reabsorption seen with chronic renal failure and volume expansion have been ascribed to circulating digitalis-like substances (DLS). However, the circulating concentrations of DLS do not acutely inhibit the sodium pump to a degree consistent with the observed changes in proximal tubule sodium reabsorption. We examined how cell lines that simulated proximal (LLC-PK1) and distal tubule (MDCK) cells responded to acute (30 min) and long-term (up to 12 hours) Na+,K+-ATPase inhibition with DLS. In LLC-PK1, but not MDCK cells, low concentrations of ouabain decreased 86Rb uptake profoundly in a time and dose dependent manner. In LLC-PK1 cells grown to confluence, transcellular 22Na flux was markedly reduced in concert with the decreases in 86Rb uptake. Similar findings were observed with marinobufagenin (MBG) and deproteinated extract of serum derived from patients with chronic renal failure. However, inhibition of the Na+,K+-ATPase with low extracellular potassium concentrations did not produce any of these effects. Western and Northern blots detected no change in alpha1 Na+,K+-ATPase protein and message RNA, respectively, in LLC-PK1 cells treated with ouabain for 12 hours. However, the decrease in enzymatic activity of Na+,K+-ATPase of these cells was comparable to observed decreases in 86Rb uptake. Differential centrifugation as well as biotinylation experiments demonstrated a shift of the Na+,K+-ATPase from the plasmalemma with prolonged ouabain treatment. The results show that binding of cardiac glycosides by proximal (but not distal) tubular cells results in internalization of Na+,K+-ATPase with the net effect to amplify inhibition of the Na+,K+-ATPase. As the circulating concentrations of DLS increase with chronic renal failure and volume expansion, we suggest that this phenomenon explains some of the decreased sodium reabsorption by the proximal tubule seen in these conditions.

  2. Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells.

    PubMed

    Wurm, Antje; Lipp, Stephan; Pannicke, Thomas; Linnertz, Regina; Krügel, Ute; Schulz, Angela; Färber, Katrin; Zahn, Dirk; Grosse, Johannes; Wiedemann, Peter; Chen, Ju; Schöneberg, Torsten; Illes, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2010-03-01

    Intense neuronal activity in the sensory retina is associated with a volume increase of neuronal cells (Uckermann et al., J. Neurosci. 2004, 24:10149) and a decrease in the osmolarity of the extracellular space fluid (Dmitriev et al., Vis. Neurosci. 1999, 16:1157). Here, we show the existence of an endogenous purinergic mechanism that prevents hypoosmotic swelling of retinal glial (Müller) cells in mice. In contrast to the cells from wild-type mice, hypoosmotic stress induced rapid swelling of glial cell somata in retinal slices from mice deficient in P2Y(1), adenosine A(1) receptors, or ecto-5'-nucleotidase (CD73). Consistently, glial cell bodies in retinal slices from wild-type mice displayed osmotic swelling when P2Y(1) or A(1) receptors, or CD73, were pharmacologically blocked. Exogenous ATP, UTP, and UDP inhibited glial swelling in retinal slices, while the swelling of isolated glial cells was prevented by ATP but not by UTP or UDP, suggesting that uracil nucleotides indirectly regulate the glial cell volume via activation of neuronal P2Y(4/6) and neuron-to-glia signaling. It is suggested that autocrine/paracrine activation of purinergic receptors and enzymes is crucially involved in the regulation of the glial cell volume.

  3. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    PubMed

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Comparison of the Fenwal Amicus and Fresenius Com.Tec cell separators for autologous peripheral blood progenitor cell collection.

    PubMed

    Altuntas, Fevzi; Kocyigit, Ismail; Ozturk, Ahmet; Kaynar, Leylagul; Sari, Ismail; Oztekin, Mehmet; Solmaz, Musa; Eser, Bulent; Cetin, Mustafa; Unal, Ali

    2007-04-01

    Peripheral blood progenitor cells (PBPC) are commonly used as a stem cell source for autologous transplantation. This study was undertaken to evaluate blood cell separators with respect to separation results and content of the harvest. Forty autologous PBPC collections in patients with hematological malignancies were performed with either the Amicus or the COM.TEC cell separators. The median product volume was lower with the Amicus compared to the COM.TEC (125 mL vs. 300 mL; p < 0.001). There was no statistically significant difference in the median number of CD34+ cell/kg in product between the Amicus and the COM.TEC (3.0 x 10(6) vs. 4.1 x 10(6); p = 0.129). There was a statistically higher mean volume of ACD used in collections on the Amicus compared to the COM.TEC (1040 +/- 241 mL vs. 868 +/- 176 mL; p = 0.019). There was a statistical difference in platelet (PLT) contamination of the products between the Amicus and the COM.TEC (0.3 x 10(11) vs. 1.1 x 10(11); p < 0.001). The median % decrease in PB PLT count was statistically higher in the COM.TEC compared to the Amicus instruments (18.5% vs. 9.5%; p = 0.028). In conclusion, both instruments collected PBPCs efficiently. However, Amicus has the advantage of lower PLT contamination in the product, and less decrease in PB platelet count with lower product volume in autologous setting.

  5. ( sup 99m Tc)diphosphonate uptake and hemodynamics in arthritis of the immature dog knee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E.S.; Soballe, K.; Henriksen, T.B.

    1991-03-01

    The relationship between (99mTc)diphosphonate uptake and bone hemodynamics was studied in canine carrageenan-induced juvenile chronic arthritis. Blood flow was determined with microspheres, plasma and red cell volumes were measured by labeled fibrinogen and red cells, and the microvascular volume and mean transit time of blood were calculated. Normal femoral epiphyses had lower central and higher subchondral blood flow and diphosphonate uptake values. Epiphyseal vascular volume was uniform, resulting in a greater transit time of blood centrally. In arthritis, blood flow and diphosphonate uptake were increased subchondrally and unaffected centrally, while epiphyseal vascular volume was increased throughout, leading to prolonged transitmore » time centrally. The normal metaphyses had low blood flow and diphosphonate uptake values in cancellous bone and very high values in growth plates, but a large vascular volume throughout. The mean transit time therefore was low in growth plates and high in adjacent cancellous bone. Arthritis caused decreased blood flow and diphosphonate uptake in growth plates but increased vascular volume and transit time of blood. Diphosphonate uptake correlated positively with blood flow and plasma volume and negatively with red cell volume in a nonlinear fashion. Thus, changes in diphosphonate uptake and microvascular hemodynamics occur in both epiphyseal and metaphyseal bone in chronic synovitis of the immature knee. The (99mTc)diphosphonate bone scan seems to reflect blood flow, plasma volume, and red cell volume of bone.« less

  6. Vancomycin Reduces Cell Wall Stiffness and Slows Swim Speed of the Lyme Disease Bacterium.

    PubMed

    Harman, Michael W; Hamby, Alex E; Boltyanskiy, Ross; Belperron, Alexia A; Bockenstedt, Linda K; Kress, Holger; Dufresne, Eric R; Wolgemuth, Charles W

    2017-02-28

    Borrelia burgdorferi, the spirochete that causes Lyme disease, is a tick-transmitted pathogen that requires motility to invade and colonize mammalian and tick hosts. These bacteria use a unique undulating flat-wave shape to penetrate and propel themselves through host tissues. Previous mathematical modeling has suggested that the morphology and motility of these spirochetes depends crucially on the flagellar/cell wall stiffness ratio. Here, we test this prediction using the antibiotic vancomycin to weaken the cell wall. We found that low to moderate doses of vancomycin (≤2.0 μg/mL for 24 h) produced small alterations in cell shape and that as the dose was increased, cell speed decreased. Vancomycin concentrations >1.0 μg/mL also inhibited cell growth and led to bleb formation on a fraction of the cells. To quantitatively assess how vancomycin affects cell stiffness, we used optical traps to bend unflagellated mutants of B. burgdorferi. We found that in the presence of vancomycin, cell wall stiffness gradually decreased over time, with a 40% reduction in the bending stiffness after 36 h. Under the same conditions, the swimming speed of wild-type B. burgdorferi slowed by ∼15%, with only marginal changes to cell morphology. Interestingly, our biophysical model for the swimming dynamics of B. burgdorferi suggested that cell speed should increase with decreasing cell stiffness. We show that this discrepancy can be resolved if the periplasmic volume decreases as the cell wall becomes softer. These results provide a testable hypothesis for how alterations of cell wall stiffness affect periplasmic volume regulation. Furthermore, since motility is crucial to the virulence of B. burgdorferi, the results suggest that sublethal doses of antibiotics could negatively impact spirochete survival by impeding their swim speed, thereby enabling their capture and elimination by phagocytes. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Release of Taurine and Glutamate contributes to cell volume regulation in human retinal Müller cells: Differences in modulation by calcium.

    PubMed

    Netti, Vanina; Pizzoni, Alejandro; Peréz-Domínguez, Martha; Ford, Paula; Pasantes-Morales, Herminia; Ramos-Mandujano, Gerardo; Capurro, Claudia

    2018-05-23

    Neuronal activity in the retina generates osmotic gradients that lead to Müller cell swelling, followed by a regulatory volume decrease (RVD) response, partially due to the isoosmotic efflux of KCl and water. However, our previous studies in a human Müller cell line (MIO-M1) demonstrated that an important fraction of RVD may also involve the efflux of organic solutes. We also showed that RVD depends on the swelling-induced Ca 2+ release from intracellular stores. Here we investigate the contribution of Taurine (Tau) and Glutamate (Glu), the most relevant amino acids in Müller cells, to RVD through the volume-regulated anion channel (VRAC), as well as their Ca 2+ -dependency in MIO-M1 cells. Swelling-induced [ 3 -H]-Tau/[ 3 H]-Glu release was assessed by radiotracer assays and cell volume by fluorescence videomicroscopy. Results showed that cells exhibited an osmosensitive efflux of [ 3 H]-Tau and [ 3 H]-Glu (Tau > Glu) blunted by the VRAC inhibitors DCPIB and CBX, reducing RVD. Only [ 3 H]-Tau efflux was dependent on Ca 2+ release from intracellular stores. RVD was unaffected in a Ca 2+ -free medium, probably due to Ca 2+ -independent Tau and Glu release, but was reduced by chelating intracellular Ca 2+ . The inhibition of phosphatidylinositol-3-kinase reduced [ 3 H]-Glu efflux but also the Ca 2+ -insensitive [ 3 H]-Tau fraction and decreased RVD, evidencing the relevance of this Ca 2+ -independent pathway. We propose that VRAC-mediated Tau and Glu release has a relevant role in RVD in Müller cells. The observed disparities in Ca 2+ influence on amino acid release support the presence of VRAC isoforms that may differ in substrate selectivity and regulatory mechanisms, with important implications for retinal physiology.

  8. Mast cell stabilization decreases cardiomyocyte and LV function in dogs with isolated mitral regurgitation.

    PubMed

    Pat, Betty; Killingsworth, Cheryl; Chen, Yuanwen; Gladden, James D; Walcott, Greg; Powell, Pamela C; Denney, Thomas; Gupta, Himanshu; Desai, Ravi; Tillson, Michael; Dillon, A Ray; Dell'italia, Louis J

    2010-09-01

    Mast cells are increased in isolated mitral regurgitation (MR) in the dog and may mediate extracellular matrix loss and left ventricular (LV) dilatation. We tested the hypothesis that mast cell stabilization would attenuate LV remodeling and improve function in the MR dog. MR was induced in adult dogs randomized to no treatment (MR, n = 5) or to the mast cell stabilizer, ketotifen (MR + MCS, n = 4) for 4 months. LV hemodynamics were obtained at baseline and after 4 months of MR and magnetic resonance imaging (MRI) was performed at sacrifice. MRI-derived, serial, short-axis LV end-diastolic (ED) and end-systolic (ES) volumes, LVED volume/mass ratio, and LV 3-dimensional radius/wall thickness were increased in MR and MR + MCS dogs compared with normal dogs (n = 6) (P < .05). Interstitial collagen was decreased by 30% in both MR and MR + MCS versus normal dogs (P < .05). LV contractility by LV maximum time-varying elastance was significantly depressed in MR and MR + MCS dogs. Furthermore, cardiomyocyte fractional shortening was decreased in MR versus normal dogs and further depressed in MR + MCS dogs (P < .05). In vitro administration of ketotifen to normal cardiomyocytes also significantly decreased fractional shortening and calcium transients. Chronic mast cell stabilization did not attenuate eccentric LV remodeling or collagen loss in MR. However, MCS therapy had a detrimental effect on LV function because of a direct negative inotropic effect on cardiomyocyte function. Published by Elsevier Inc.

  9. Low birth weight is associated with impaired murine kidney development and function.

    PubMed

    Barnett, Christina; Nnoli, Oluwadara; Abdulmahdi, Wasan; Nesi, Lauren; Shen, Michael; Zullo, Joseph A; Payne, David L; Azar, Tala; Dwivedi, Parth; Syed, Kunzah; Gromis, Jonathan; Lipphardt, Mark; Jules, Edson; Maranda, Eric L; Patel, Amy; Rabadi, May M; Ratliff, Brian B

    2017-08-01

    BackgroundLow birth weight (LBW) neonates have impaired kidney development that leaves them susceptible to kidney disease and hypertension during adulthood. The study here identifies events that blunt nephrogenesis and kidney development in the murine LBW neonate.MethodsWe examined survival, kidney development, GFR, gene expression, and cyto-/chemokines in the LBW offspring of malnourished (caloric and protein-restricted) pregnant mice.ResultsMalnourished pregnant mothers gave birth to LBW neonates that had 40% reduced body weight and 54% decreased survival. Renal blood perfusion was reduced by 37%, whereas kidney volume and GFR were diminished in the LBW neonate. During gestation, the LBW neonatal kidney had 2.2-fold increased apoptosis, 76% decreased SIX2+ progenitor cells, downregulation of mesenchymal-to-epithelial signaling factors Wnt9b and Fgf8, 64% less renal vesicle formation, and 32% fewer nephrons than controls. At birth, increased plasma levels of IL-1β, IL-6, IL-12(p70), and granulocyte-macrophage colony-stimulating factor in the LBW neonate reduced SIX2+ progenitor cells.ConclusionIncreased pro-inflammatory cytokines in the LBW neonate decrease SIX2+ stem cells in the developing kidney. Reduced renal stem cells (along with the decreased mesenchymal-to-epithelial signaling) blunt renal vesicle generation, nephron formation, and kidney development. Subsequently, the mouse LBW neonate has reduced glomeruli volume, renal perfusion, and GFR.

  10. Gastrin producing G-cells after chronic ethanol and low protein nutrition.

    PubMed

    Koko, V; Todorović, V; Varagić, J; Micev, M; Korać, A; Bajcetić, M; Cakić-Milosević, M; Nedeljković, M; Drndarević, N

    1998-11-01

    Male Wistar rats, (2 months old), randomly divided according to the diet offered to four groups (C-control; A- alcoholized, PD-protein-deprived, A-PD- alcoholized protein-deprived). In group A and A-PD rats, the number of gastrin producing G-cells was significantly lower. The volume density of G-cells was significantly decreased in alcoholic rats. Fasting serum gastrin level (FSGL) significantly raised due to combined effect of alcohol consumption and protein malnutrition. In group A rats, the profile area of G-cells and their nuclei increased. In PD rats, the profile area of G cells also increased. There were no differences in nucleus/cell ratio due to alcohol ingestion alone, but it decreased significantly in PD and A-PD rats. Pale and lucent types of granules were predominantly seen in G-cells of animals of group A and A-PD. Mean diameter of granules increased in A, PD and A-PD rats. Other endocrine cells (ECL, D, EC) also decreased in number in A rats. Somatostatin producing D-cells decreased significantly in A-PD rats, both in fundic and pyloric mucosa.

  11. Differential effects of insulin-like growth factor I and growth hormone on developmental stages of rat growth plate chondrocytes in vivo.

    PubMed Central

    Hunziker, E B; Wagner, J; Zapf, J

    1994-01-01

    Skeletal growth depends upon enchondral ossification in growth plate cartilage, within which chondrocytes undergo well defined stages of maturation. We infused IGF-I or growth hormone (GH), two key regulators of skeletal growth, into hypophysectomized rats and compared their effects on growth plate chondrocyte differentiation using qualitative and quantitative autoradiography, stereology, and incident light fluorescence microscopy. Stem cell cycle time was shortened from 50 to 15 and 8 d after treatment with IGF-I and GH, respectively. Proliferating cell cycle time decreased from 11 to 4.5 and 3 d, and duration of the hypertrophic phase decreased from 6 to 4 and 2.8 d. Average matrix volume per cell at each differentiation stage was similar for normal, hormone-treated, and untreated hypophysectomized groups. Mean cell volume and cell height were significantly reduced by hypophysectomy at the proliferative and hypertrophic stages, but were restored to physiological values by IGF-I and GH. In contrast, cell productivity, i.e., increases in cell volume, height, and matrix production per unit of time, did not reach normal values with either IGF-I or GH, and this parameter was inversely proportional to cell cycle time or phase duration. IGF-I and GH are thus capable of stimulating growth plate chondrocytes at all stages of differentiation, albeit to variable degrees with respect to individual cell activities. Although it is generally accepted that GH acts at both the stem and proliferating phases of chondrocyte differentiation, our data represent the first evidence in vivo that IGF-I is also capable of stimulating stem cells. Images PMID:8132746

  12. The thermal expansion of (Fe1-y Ni y )Si.

    PubMed

    Hunt, Simon A; Wann, Elizabeth T H; Dobson, David P; Vočadlo, Lindunka; Wood, Ian G

    2017-08-23

    We have measured the thermal expansion of (Fe 1-y Ni y )Si for y  =  0, 0.1 and 0.2, between 40 and 1273 K. Above ~700 K the unit-cell volumes of the samples decrease approximately linearly with increasing Ni content. Below ~200 K the unit-cell volume of FeSi falls to a value between that of (Fe 0.9 Ni 0.1 )Si and (Fe 0.8 Ni 0.2 )Si. We attribute this extra contraction of the FeSi, which is a narrow band-gap semiconductor, to the depopulation of the conduction band at low temperatures; in the two alloys the additional electrons introduced by the substitution of Ni lead to the conduction band always being populated. We have fit the unit-cell volume data with a Debye internal energy model of thermal expansion and an additional volume term, above 800 K, to take account of the volumetric changes associated with changes in the composition of the sample. Using the thermophysical parameters of the fit we have estimated the band gap in FeSi to be 21(1) meV and the unit-cell volume change in FeSi associated with the depopulation of the conduction band to be 0.066(35) Å 3 /unit-cell.

  13. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    PubMed

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  14. Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    PubMed Central

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923

  15. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis.

    PubMed

    Adragna, Norma C; Ravilla, Nagendra B; Lauf, Peter K; Begum, Gulnaz; Khanna, Arjun R; Sun, Dandan; Kahle, Kristopher T

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K(+) content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD.

  16. Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis

    PubMed Central

    Adragna, Norma C.; Ravilla, Nagendra B.; Lauf, Peter K.; Begum, Gulnaz; Khanna, Arjun R.; Sun, Dandan; Kahle, Kristopher T.

    2015-01-01

    The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K+ and Cl− efflux via activation of K+ channels, volume-regulated anion channels (VRACs), and the K+-Cl− cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na+-K+-2Cl− cotransporter isoform 1 (NKCC1). This results in a rapid (<10 min) and significant (>90%) reduction in intracellular K+ content (Ki) via both Cl-dependent (KCC3a + NKCC1) and Cl-independent [DCPIB (VRAC inhibitor)-sensitive] pathways, which collectively renders cells less prone to acute swelling in hypotonic osmotic stress. Together, these data demonstrate the phosphorylation state of Thr991/Thr1048 in KCC3a encodes a potent switch of transporter activity, Ki homeostasis, and cell volume regulation, and reveal novel observations into the functional interaction among ion transport molecules involved in RVD. PMID:26217182

  17. Pancreatic islet amyloidosis, β-cell apoptosis, and α-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons

    PubMed Central

    Guardado-Mendoza, Rodolfo; Davalli, Alberto M.; Chavez, Alberto O.; Hubbard, Gene B.; Dick, Edward J.; Majluf-Cruz, Abraham; Tene-Perez, Carlos E.; Goldschmidt, Lukasz; Hart, John; Perego, Carla; Comuzzie, Anthony G.; Tejero, Maria Elizabeth; Finzi, Giovanna; Placidi, Claudia; La Rosa, Stefano; Capella, Carlo; Halff, Glenn; Gastaldelli, Amalia; DeFronzo, Ralph A.; Folli, Franco

    2009-01-01

    β-Cell dysfunction is an important factor in the development of hyperglycemia of type-2 diabetes mellitus, and pancreatic islet amyloidosis (IA) has been postulated to be one of the main contributors to impaired insulin secretion. The aim of this study was to evaluate the correlation of IA with metabolic parameters and its effect on islets of Langerhans remodeling and relative endocrine-cell volume in baboons. We sequenced the amylin peptide, determined the fibrillogenic propensities, and evaluated pancreatic histology, clinical and biochemical characteristics, and endocrine cell proliferation and apoptosis in 150 baboons with different metabolic status. Amylin sequence in the baboon was 92% similar to humans and showed superimposable fibrillogenic propensities. IA severity correlated with fasting plasma glucose (FPG) (r = 0.662, P < 0.001) and HbA1c (r = 0.726, P < 0.001), as well as with free fatty acid, glucagon values, decreased homeostasis model assessment (HOMA) insulin resistance, and HOMA-B. IA severity was associated with a decreased relative β-cell volume, and increased relative α-cell volume and hyperglucagonemia. These results strongly support the concept that IA and β-cell apoptosis in concert with α-cell proliferation and hypertrophy are key determinants of islets of Langerhans “dysfunctional remodeling” and hyperglycemia in the baboon, a nonhuman primate model of type-2 diabetes mellitus. The most important determinants of IA were age and FPG (R2 = 0.519, P < 0.0001), and different FPG levels were sensitive and specific to predict IA severity. Finally, a predictive model for islet amyloid severity was generated with age and FPG as required variables. PMID:19666551

  18. Mechanisms responsible for decreased glomerular filtration in hibernation and hypothermia

    NASA Technical Reports Server (NTRS)

    Tempel, G. E.; Musacchia, X. J.; Jones, S. B.

    1977-01-01

    Measurements of blood pressure, heart rate, red blood cell and plasma volumes, and relative distribution of cardiac output were made on hibernating and hypothermic adult male and female golden hamsters weighing 120-140 g to study the mechanisms underlying the elimination or marked depression of renal function in hibernation and hypothermia. The results suggest that the elimination or marked depression in renal function reported in hibernation and hypothermia may partly be explained by alterations in cardiovascular system function. Renal perfusion pressure which decreases nearly 60% in both hibernation and hypothermia and a decrease in plasma volume of roughly 35% in the hypothermic animal might both be expected to markedly alter glomerular function.

  19. Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  20. Early exposure to thirdhand cigarette smoke affects body mass and the development of immunity in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, Bo; Snijders, Antoine M.; Huang, Yurong

    Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less

  1. Early exposure to thirdhand cigarette smoke affects body mass and the development of immunity in mice

    DOE PAGES

    Hang, Bo; Snijders, Antoine M.; Huang, Yurong; ...

    2017-02-03

    Thirdhand smoke (THS) is the fraction of cigarette smoke that persists in indoor environments after smoking. We investigated the effects of neonatal and adult THS exposure on bodyweight and blood cell populations in C57BL/6 J mice. At the end of neonatal exposure, THS-treated male and female mice had significantly lower bodyweight than their respective control mice. However, five weeks after neonatal exposure ended, THS-treated mice weighed the same as controls. In contrast, adult THS exposure did not change bodyweight of mice. On the other hand, both neonatal and adult THS exposure had profound effects on the hematopoietic system. Fourteen weeksmore » after neonatal THS exposure ended, eosinophil number and platelet volume were significantly higher, while hematocrit, mean cell volume, and platelet counts were significantly lower compared to control. Similarly, adult THS exposure also decreased platelet counts and increased neutrophil counts. Moreover, both neonatal and adult THS exposure caused a significant increase in percentage of B-cells and significantly decreased percentage of myeloid cells. Our results demonstrate that neonatal THS exposure decreases bodyweight and that THS exposure induces persistent changes in the hematopoietic system independent of age at exposure. These results also suggest that THS exposure may have adverse effects on human health.« less

  2. Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.; Willis, Bob; Pickett, David F.

    2003-01-01

    The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.

  3. Effectiveness of octreotide in controlling fasting hypergastrinemia and related enterochromaffin-like cell growth.

    PubMed

    Ferraro, G; Annibale, B; Marignani, M; Azzoni, C; D'Adda, T; D'Ambra, G; Bordi, C; delle Fave, G

    1996-02-01

    The effects of long term (6-month), high (500-micrograms), once a day administration of octreotide on enterochromaffin-like (ECL) cell proliferation were evaluated in eight patients with hypergastrinemic atrophic gastritis at risk for the development of gastric carcinoids. Fasting gastrin levels were determined during treatment and up to 6 months after the end of treatment. Chromogranin A, hCG alpha, and somatostatin-immunostained cells were morphometrically evaluated in biopsy specimens of corpus mucosa taken before and after treatment. The results showed that gastrin levels significantly decreased from 950 to 238 ng/L (-74.9%; P < 0.01) at the end of treatment, a decrease that persisted 6 months after the end of treatment (450 ng/L; P < 0.05). The volume density of CgA cells (mostly ECL cells) decreased from 3.7% to 2.1% of the epithelial component (-43%; P < 0.014), that of hCG alpha-storing ECL cells decreased by 85% (P < 0.0007), and that of somatostatin-stained cells decreased by 74% (P < 0.04). No clinically significant side-effects were found. It is concluded that octreotide treatment as used in the present study is safe and effective in reducing hypergastrinemia and associated ECL cell changes in patients with atrophic gastritis. The decrease in D cells is consistent with the occurrence of somatostatin receptors and related autocrine regulation in these cells.

  4. Excess plasma membrane and effects of ionic amphipaths on mechanics of outer hair cell lateral wall.

    PubMed

    Morimoto, Noriko; Raphael, Robert M; Nygren, Anders; Brownell, William E

    2002-05-01

    The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.

  5. Leaf shape: genetic controls and environmental factors.

    PubMed

    Tsukaya, Hirokazu

    2005-01-01

    In recent years, many genes have been identified that are involved in the developmental processes of leaf morphogenesis. Here, I review the mechanisms of leaf shape control in a model plant, Arabidopsis thaliana, focusing on genes that fulfill special roles in leaf development. The lateral, two-dimensional expansion of leaf blades is highly dependent on the determination of the dorsoventrality of the primordia, a defining characteristic of leaves. Having a determinate fate is also a characteristic feature of leaves and is controlled by many factors. Lateral expansion is not only controlled by general regulators of cell cycling, but also by the multi-level regulation of meristematic activities, e.g., specific control of cell proliferation in the leaf-length direction, in leaf margins and in parenchymatous cells. In collaboration with the polarized control of leaf cell elongation, these redundant and specialized regulating systems for cell cycling in leaf lamina may realize the elegantly smooth, flat structure of leaves. The unified, flat shape of leaves is also dependent on the fine integration of cell proliferation and cell enlargement. Interestingly, while a decrease in the number of cells in leaf primordia can trigger a cell volume increase, an increase in the number of cells does not trigger a cell volume decrease. This phenomenon is termed compensation and suggests the existence of some systems for integration between cell cycling and cell enlargement in leaf primordia via cell-cell communication. The environmental adjustment of leaf expansion to light conditions and gravity is also summarized.

  6. [An immunocytochemical study of the C-cell function of the thyroid in rats exposed on the Kosmos-2044 biosatellite].

    PubMed

    Loginov, V I

    1993-01-01

    Immunocytochemical analysis of thyroid gland C-cells of the rats exposed to a 14-day space flight revealed a decrease in the number of C-cells, volume of their nuclei and a declined percentage of active secretory C-cells, which point to a decline of calcitonin proactive and calcitonin secretory hypofunction of the thyroid C-cells system in flown rats. Tail suspension as a microgravity model caused similar changes in C-cells.

  7. Hematologic parameters of astrorats flown on SL-3

    NASA Technical Reports Server (NTRS)

    Lange, R. D.; Andrews, R. B.; Gibson, L. A.; Wright, P.; Dunn, C. D. R.

    1985-01-01

    Hematologic studies were performed on a group of large and small rats which were sacrificed after flying in life sciences shuttle engineering flight SL-3. The results are presented on flight (F) and control (C) 200 gm rats. The small flight animals demonstrated a significant increase in hematocrits, red blood cell counts, hemoglobins and peripheral blood percentages of neutrophils as well as a decrease in percentage of lymphocytes. Erythropoietin (Ep) determinations were similar for the two groups as were the bone marrow an spleen differential counts. In vitro cultures for erythroid colonies of bone marrow showed that in response to different doses of Ep, in all cases where differnces were statistically significant, the F rats had increased colony counts. The changes in red cell parameters could be caused by a decrease in plasma volume. However, no isotopic studies were possible on this flight and this lack points up the need for such studies to determine the red cell mass and plasma volume.

  8. Comparison of Pre- and Postoperative Hemoglobin and Hematocrit Levels in Hip Arthroscopy

    PubMed Central

    Seijas, Roberto; Espinosa, Wenceslao; Sallent, Andrea; Cuscó, Xavier; Cugat, Ramón; Ares, Oscar

    2015-01-01

    Purpose : to assess the loss in hematocrit and hemoglobin, if any, 24 hours after hip arthroscopy. Methods : thirty-five patients were included. Laboratory tests including complete blood count and white blood cells were performed one week prior to surgery and 24 hours after. Surgical time, volume of saline perfusion and pump perfusion was also recorded. Results : mean preoperative hematocrit was 42.01% (4.63 SD), whereas mean postoperative hematocrit at 24 h decreased to 36.78% (SD 5.11) (p <0.021.). Mean preoperative hemoglobin was 14.23 g/dL (1.73 SD), and mean postoperative hemoglobin at 24 h decreased to 12.40 g/dL (SD 1.92) (p =0.03.). Platelets and white blood cells, as well as the remaining biochemical parameters showed no significant difference between preoperative and postoperative samples. Lost blood volume worked out with the logarithmic method for estimated blood loss was which 0.78 liters (SD 0.45). Lost blood volume taking into account, the red blood cell mass was also 0.78 liters (SD 0.45). Conclusion : a significant decrease in hemoglobin and hematocrit after hip arthroscopy was observed. Although patients did not show clinical signs of anemia or bleeding, blood loss should be considered when planning a hip arthroscopy, especially in patients at risk of anemia. According to our results, we recommend a postoperative control analysis at 24 h. Level of Evidence : level II, Diagnostic Study. PMID:26401169

  9. In Vivo and In Vitro Effects of ATM/ATR Signaling Pathway on Proliferation, Apoptosis, and Radiosensitivity of Nasopharyngeal Carcinoma Cells.

    PubMed

    Wang, Ming; Liu, Gang; Shan, Guo-Ping; Wang, Bing-Bing

    2017-08-01

    The study investigated the ability of ataxia-telangiectasia mutated (ATM)/Rad3-related (ATR) signaling pathway to influence the proliferation, apoptosis, and radiosensitivity of nasopharyngeal carcinoma (NPC) cells. NPC tissues and corresponding adjacent normal tissues were collected from 143 NPC patients. The NPC CNE2 cells were assigned into a control group, X-ray group, CGK-733 group, and X-ray+CGK-733 group. The mRNA levels of ATM and ATR were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and the protein levels of ATM and ATR using western blotting. The positive expression of ATM and ATR in tissues and nude mouse tumor tissues was determined by immunohistochemistry. Cell proliferation, migration, invasion, and apoptosis rates were analyzed by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, scratch test, transwell assay, and flow cytometry, respectively. A nude mouse model of NPC was established to observe tumor volume and growth. The mRNA levels of ATR and ATM and the expression of ATR and ATM protein in NPC tissues were significantly higher than those in adjacent normal tissues. The colony formation assay showed that the colony-forming rate decreased, showing radiation dose-dependent and CGK-733 concentration-dependent manners. Expression of ATM, ATR, Chk1, and Chk2 was evidently increased in the X-ray, CGK-733, and X-ray+CGK-733groups compared with the control group, and the aforementioned expression was highest in the X-ray+CGK-733 group among the four groups. The cell proliferation, invasion, and migration were decreased, tumor volume decreased and cell apoptosis increased in the X-ray, CGK-733, and X-ray+CGK-733 groups compared with the control group; the X-ray+CGK-733 group exhibited lowest cell proliferation, invasion and migration, smallest tumor volume, and highest cell apoptosis among the four groups. Inhibition of ATM/ATR signaling pathway reduces proliferation and enhances apoptosis and radiosensitivity of NPC cells.

  10. Effects of cell volume changes on membrane ionic permeabilities and sodium transport in frog skin (Rana ridibunda).

    PubMed

    Costa, P M; Fernandes, P L; Ferreira, H G; Ferreira, K T; Giraldez, F

    1987-12-01

    1. Membrane potential and conductances and short-circuit current were continuously measured with microelectrodes and conventional electrophysiological techniques in a stripped preparation of frog skin epithelium. The effects of the removal of chloride or sodium ions and the concentration or dilution of the serosal (inner) bathing solution were studied. 2. Chloride- or sodium-free solutions produced a cell depolarization of about 30 mV in parallel with a fall in the short-circuit current. Mucosal and serosal membrane conductances both decreased and the sodium permeability of the mucosal barrier was calculated to fall to about one-half its value in standard Ringer solution. The observed decrease in the short-circuit current is probably related to the combined effect of the decrease in sodium permeability and the decrease in the driving force across the mucosal membrane. 3. The removal of chloride or sodium ions reduced the depolarization caused by serosal perfusion with high-potassium solutions (50 mM-KCl). The ratio of the change in cell membrane potential under short-circuit conditions to the change in the potassium equilibrium potential (delta Ec(s.c.)/delta EK), was 0.59 in standard Ringer solution and 0.26 and 0.24 after the removal of chloride or sodium respectively. The depolarizing effect of barium-containing solutions (2 mM-BaCl2) was also markedly reduced in chloride- or sodium-free solutions, suggesting a decrease of the potassium selectivity of the serosal membrane in these conditions. 4. Increasing the osmolality of the serosal bathing solution produced similar effects, i.e. cell depolarization, fall in the short-circuit current and membrane conductances and reduction of the depolarizing effect of high-potassium and barium solutions. On the contrary, dilution of the serosal bath produced the opposite effects, consistent with an increase in the serosal permeability to potassium. 5. The effects of chloride- or sodium-free solutions were reversed by the dilution of the serosal bath. Cells repolarized when exposed to low-osmolality solutions after being in the absence of serosal chloride or sodium. The repolarization ran in parallel with the restoration of the short-circuit current and the potassium selectivity of the serosal membrane. 6. The results show that the effects produced by the removal of sodium or chloride ions from the serosal bathing solution are most probably mediated by a reduction in cell volume. Cell volume changes would lead to changes in the serosal membrane selectivity to potassium and thus to changes in cell membrane potential and sodium transport.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential

    PubMed Central

    ALAM, BADRUL; MAJUMDER, RAJIB; AKTER, SHAHINA; LEE, SANG-HAN

    2015-01-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential. PMID:25624910

  12. Piper betle extracts exhibit antitumor activity by augmenting antioxidant potential.

    PubMed

    Alam, Badrul; Majumder, Rajib; Akter, Shahina; Lee, Sang-Han

    2015-02-01

    The present study was conducted to evaluate the methanolic extract of Piper betle leaves (MPBL) and its organic fractions with regard to antitumor activity against Ehrlich ascites carcinoma (EAC) in Swiss albino mice and to confirm their antioxidant activities. At 24 h post-intraperitoneal inoculation of tumor cells into mice, extracts were administered at 25, 50 and 100 mg/kg body weight for nine consecutive days. The antitumor effects of the extracts were then assessed according to tumor volume, packed cell count, viable and non-viable tumor cell count, median survival time and increase in life span of EAC-bearing mice. Next, hematological profiles and serum biochemical parameters were calculated, and antioxidant properties were assessed by estimating lipid peroxidation, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) levels. MPBL and the ethylacetate fraction (EPBL) at a dose of 100 mg/kg induced a significant decrease in tumor volume, packed cell volume and viable cell count and increased the life span of the EAC-bearing mice (P<0.05). Hematological and serum biochemical profiles were restored to normal levels in the extract-treated mice compared with the EAC control mice. MPBL and EPBL treatment significantly decreased lipid peroxidation (P<0.05) and restored GSH, SOD and CAT levels towards normal compared with the EAC control. Taken together, the results of the present study demonstrated that Piper betle extracts exhibit significant antitumor activity, which may be attributed to the augmentation of endogenous antioxidant potential.

  13. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi.

    PubMed

    Müller, Marius N; Trull, Thomas W; Hallegraeff, Gustaaf M

    2017-08-01

    Future oceanic conditions induced by anthropogenic greenhouse gas emissions include warming, acidification and reduced nutrient supply due to increased stratification. Some parts of the Southern Ocean are expected to show rapid changes, especially for carbonate mineral saturation. Here we compare the physiological response of the model coccolithophore Emiliania huxleyi (strain EHSO 5.14, originating from 50 o S, 149 o E) with pH/CO 2 gradients (mimicking ocean acidification ranging from 1 to 4 × current pCO 2 levels) under nutrient-limited (nitrogen and phosphorus) and -replete conditions. Both nutrient limitations decreased per cell photosynthesis (particulate organic carbon (POC) production) and calcification (particulate inorganic carbon (PIC) production) rates for all pCO 2 levels, with more than 50% reductions under nitrogen limitation. These impacts, however, became indistinguishable from nutrient-replete conditions when normalized to cell volume. Calcification decreased three-fold and linearly with increasing pCO 2 under all nutrient conditions, and was accompanied by a smaller ~30% nonlinear reduction in POC production, manifested mainly above 3 × current pCO 2 . Our results suggest that normalization to cell volume allows the major impacts of nutrient limitation (changed cell sizes and reduced PIC and POC production rates) to be treated independently of the major impacts of increasing pCO 2 and, additionally, stresses the importance of including cell volume measurements to the toolbox of standard physiological analysis of coccolithophores in field and laboratory studies.

  14. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi

    PubMed Central

    Müller, Marius N; Trull, Thomas W; Hallegraeff, Gustaaf M

    2017-01-01

    Future oceanic conditions induced by anthropogenic greenhouse gas emissions include warming, acidification and reduced nutrient supply due to increased stratification. Some parts of the Southern Ocean are expected to show rapid changes, especially for carbonate mineral saturation. Here we compare the physiological response of the model coccolithophore Emiliania huxleyi (strain EHSO 5.14, originating from 50oS, 149oE) with pH/CO2 gradients (mimicking ocean acidification ranging from 1 to 4 × current pCO2 levels) under nutrient-limited (nitrogen and phosphorus) and -replete conditions. Both nutrient limitations decreased per cell photosynthesis (particulate organic carbon (POC) production) and calcification (particulate inorganic carbon (PIC) production) rates for all pCO2 levels, with more than 50% reductions under nitrogen limitation. These impacts, however, became indistinguishable from nutrient-replete conditions when normalized to cell volume. Calcification decreased three-fold and linearly with increasing pCO2 under all nutrient conditions, and was accompanied by a smaller ~30% nonlinear reduction in POC production, manifested mainly above 3 × current pCO2. Our results suggest that normalization to cell volume allows the major impacts of nutrient limitation (changed cell sizes and reduced PIC and POC production rates) to be treated independently of the major impacts of increasing pCO2 and, additionally, stresses the importance of including cell volume measurements to the toolbox of standard physiological analysis of coccolithophores in field and laboratory studies. PMID:28430186

  15. Thermal expansion of coesite determined by synchrotron powder X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Kulik, Eleonora; Murzin, Vadim; Kawaguchi, Shogo; Nishiyama, Norimasa; Katsura, Tomoo

    2018-05-01

    Thermal expansion of synthetic coesite was studied with synchrotron powder X-ray diffraction in the temperature range of 100-1000 K. We determined the unit cell parameters of monoclinic coesite (a, b, c, and β) every 50 K in this temperature range. We observed that a and b parameters increase with increasing temperature, while c decreases. The β angle also decreases with temperature and approaches 120°. As a result, the unit cell volume expands by only 0.7% in this temperature range. Our measurements provide thermal expansion coefficients of coesite as a function of temperature: it increases from 3.4 × 10-6 K-1 at 100 K to 9.3 × 10-6 K-1 at 600 K and remains nearly constant above this temperature. The Suzuki model based on the zero-pressure Mie-Grüneisen equation of state was implemented to fit the unit cell volume data. The refined parameters are {V_0} = 546.30(2) Å3, Q = 7.20(12) × 106 J/mol and {θ D} = 1018(43) K, where {θ D} is the Debye temperature and {V_0} is the unit cell volume at 0 K with an assumption that {K^' } is equal to 1.8. The obtained Debye temperature is consistent with that determined in a previous study for heat capacity measurements.

  16. Modeling the cell-type dependence of diffusion-limited intracellular ice nucleation and growth during both vitrification and slow freezing

    NASA Astrophysics Data System (ADS)

    Yang, Geer; Zhang, Aili; Xu, Lisa X.; He, Xiaoming

    2009-06-01

    In this study, a set of models for predicting the diffusion-limited ice nucleation and growth inside biological cells were established. Both the heterogeneous and homogeneous nucleation mechanisms were considered in the models. Molecular mobility including viscosity and mutual diffusion coefficient of aqueous cryoprotectant (i.e., glycerol here) solutions was estimated using models derived from the free volume theory for glass transition, which makes it possible to predict the two most important physical properties (i.e., viscosity and mutual diffusion coefficient) over wide ranges of temperature and concentration as encountered in cryopreservation. After being verified using experimental data, the models were used to predict the critical cooling rate (defined as the cooling rate required so that the crystallized volume is less than 0.1% of the cell volume) as a function of the initial glycerol concentration in a number of cell types with different sizes. For slowing freezing, it was found that the required critical cooling rate is cell-type dependent with influences from cell size and the ice nucleation and water transport parameters. In general, the critical cooling rate does not change significantly with the initial glycerol concentration used and tends to be higher for smaller cells. For vitrification, the required critical cooling rate does change significantly with the initial glycerol concentration used and tends to decrease with the decrease in cell size. However, the required critical cooling rate can be similar for cells with very different sizes. It was further found that the thermodynamic and kinetic parameters for intracellular ice formation associated with different cells rather than the cell size per se significantly affect the critical cooling rates required for vitrification. For all cell types, it was found that homogeneous nucleation dominates at ultrafast cooling rates and/or high glycerol concentrations, whereas heterogeneous nucleation becomes important only during slow freezing with a low initial glycerol concentration (<1.5-2M), particularly for large cells such as mouse oocytes.

  17. Characterization of volume holographic optical elements recorded in Bayfol HX photopolymer for solar photovoltaic applications.

    PubMed

    Marín-Sáez, Julia; Atencia, Jesús; Chemisana, Daniel; Collados, María-Victoria

    2016-03-21

    Volume Holographic Optical Elements (HOEs) present interesting characteristics for photovoltaic applications as they can select spectrum for concentrating the target bandwidth and avoiding non-desired wavelengths, which can cause the decrease of the performance on the cell, for instance by overheating it. Volume HOEs have been recorded on Bayfol HX photopolymer to test the suitability of this material for solar concentrating photovoltaic systems. The HOEs were recorded at 532 nm and provided a dynamic range, reaching close to 100% efficiency at 800 nm. The diffracted spectrum had a FWHM of 230 nm when illuminating at Bragg angle. These characteristics prove HOEs recorded on Bayfol HX photopolymer are suitable for concentrating solar light onto photovoltaic cells sensitive to that wavelength range.

  18. Three-Dimensional Ultrastructural Study of Oil and Astaxanthin Accumulation during Encystment in the Green Alga Haematococcus pluvialis

    PubMed Central

    Matsuura, Hazuki; Nango, Nobuhito; Hirata, Aiko; Kawano, Shigeyuki

    2013-01-01

    Haematococcus pluvialis is a freshwater species of green algae and is well known for its accumulation of the strong antioxidant astaxanthin, which is used in aquaculture, various pharmaceuticals, and cosmetics. High levels of astaxanthin are present in cysts, which rapidly accumulate when the environmental conditions become unfavorable for normal cell growth. It is not understood, however, how accumulation of high levels of astaxanthin, which is soluble in oil, becomes possible during encystment. Here, we performed ultrastructural 3D reconstruction based on over 350 serial sections per cell to visualize the dynamics of astaxanthin accumulation and subcellular changes during the encystment of H. pluvialis. This study showcases the marked changes in subcellular elements, such as chloroplast degeneration, in the transition from green coccoid cells to red cyst cells during encystment. In green coccoid cells, chloroplasts accounted for 41.7% of the total cell volume, whereas the relative volume of astaxanthin was very low (0.2%). In contrast, oil droplets containing astaxanthin predominated in cyst cells (52.2%), in which the total chloroplast volume was markedly decreased (9.7%). Volumetric observations also demonstrated that the relative volumes of the cell wall, starch grains, pyrenoids, mitochondria, the Golgi apparatus, and the nucleus in a cyst cell are smaller than those in green coccid cells. Our data indicated that chloroplasts are degraded, resulting in a net-like morphology, but do not completely disappear, even at the red cyst stage. PMID:23326471

  19. A Randomized Controlled Trial of Low-Dose Tranexamic Acid versus Placebo to Reduce Red Blood Cell Transfusion During Complex Multilevel Spine Fusion Surgery.

    PubMed

    Carabini, Louanne M; Moreland, Natalie C; Vealey, Ryan J; Bebawy, John F; Koski, Tyler R; Koht, Antoun; Gupta, Dhanesh K; Avram, Michael J

    2018-02-01

    Multilevel spine fusion surgery for adult deformity correction is associated with significant blood loss and coagulopathy. Tranexamic acid reduces blood loss in high-risk surgery, but the efficacy of a low-dose regimen is unknown. Sixty-one patients undergoing multilevel complex spinal fusion with and without osteotomies were randomly assigned to receive low-dose tranexamic acid (10 mg/kg loading dose, then 1 mg·kg -1 ·hr -1 throughout surgery) or placebo. The primary outcome was the total volume of red blood cells transfused intraoperatively. Thirty-one patients received tranexamic acid, and 30 patients received placebo. Patient demographics, risk of major transfusion, preoperative hemoglobin, and surgical risk of the 2 groups were similar. There was a significant decrease in total volume of red blood cells transfused (placebo group median 1460 mL vs. tranexamic acid group 1140 mL; median difference 463 mL, 95% confidence interval 15 to 914 mL, P = 0.034), with a decrease in cell saver transfusion (placebo group median 490 mL vs. tranexamic acid group 256 mL; median difference 166 mL, 95% confidence interval 0 to 368 mL, P = 0.042). The decrease in packed red blood cell transfusion did not reach statistical significance (placebo group median 1050 mL vs. tranexamic acid group 600 mL; median difference 300 mL, 95% confidence interval 0 to 600 mL, P = 0.097). Our results support the use of low-dose tranexamic acid during complex multilevel spine fusion surgery to decrease total red blood cell transfusion. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effect of curcumin on Bcl-2 and Bax expression in nude mice prostate cancer.

    PubMed

    Yang, Jiayi; Ning, Jianping; Peng, Linlin; He, Dan

    2015-01-01

    Prostate cancer is a common malignant tumor in urinary system. Curcumin has curative effect on many kinds of cancers and can inhibit prostate cancer (PC)-3 cells proliferation. This study aimed to explore the curcumin induced prostate cancer cell apoptosis and apoptosis related proteins Bcl-2 and Bax expression. PC-3 cells were injected subcutaneously to the nude mice to establish the tumor model. The nude mice were randomly divided into group C (normal saline), group B (6% polyethylene glycol and 6% anhydrous ethanol), group H, M, L (100 mg/kg, 50 mg/kg, and 25 mg/kg curcumin). The tumor volume was measured every 6 days to draw the tumor growth curve. The mice were killed at the 30(th) day after injection to weight the tumor. TUNEL assay was applied to determine cell apoptosis. Immunohistochemistry was used to detect Bcl-2 and Bax expression. The tumor volume and weight in group H, M, L were significantly lower than the control group (C, B) (P<0.05), and the inhibitory rate increased following the curcumin dose increase. Compared with the control group, Bcl-2 expression in group H, M, L gradually decreased, while Bax protein expression increased (P<0.05). The cell apoptosis rate showed no statistical difference between group B and C, while it increased in curcumin group H, M, and L (P<0.05). Curcumin could inhibit PC-3 growth, decrease tumor volume, reduce tumor weight, and induce cell apoptosis under the skin of nude mice by up-regulating Bax and down-regulating Bcl-2.

  1. Macroautophagy and microautophagy in relation to vacuole formation in mesophyll cells of Dendrobium tepals.

    PubMed

    van Doorn, Wouter G; Kirasak, Kanjana; Ketsa, Saichol

    2015-04-01

    Prior to flower opening, mesophyll cells at the vascular bundles of Dendrobium tepals showed a large increase in vacuolar volume, partially at the expense of the cytoplasm. Electron micrographs indicated that this increase in vacuolar volume was mainly due to vacuole fusion. Macroautophagous structures typical of plant cells were observed. Only a small part of the decrease in cytoplasmic volume seemed due to macroautophagy. The vacuoles contained vesicles of various types, including multilamellar bodies. It was not clear if these vacuolar inclusions were due to macroautophagy or microautophagy. Only a single structure was observed of a protruding vacuole, indicating microautophagy. It is concluded that macroautophagy occurs in these cells but its role in vacuole formation seems small, while a possible role of microautophagy in vacuole formation might be hypothesized. Careful labeling of organelle membranes seems required to advance our insight in plant macro- and microautophagy and their roles in vacuole formation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Higher Donor Apheresis Blood Volumes Are Associated with Reduced Relapse Risk and Improved Survival in Reduced-Intensity Allogeneic Transplantations with Unrelated Donors.

    PubMed

    Crisalli, Lisa M; Hinkle, Joanne T; Walling, Christopher C; Sell, Mary; Frey, Noelle V; Hexner, Elizabeth O; Loren, Alison W; Luger, Selina M; Stadtmauer, Edward A; Porter, David L; Reshef, Ran

    2018-06-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) with reduced-intensity conditioning (RIC) offers a curative option for patients with hematologic malignancies who are unable to undergo myeloablative conditioning, but its success is limited by high rates of relapse. Several studies have suggested a role for T cell doses in peripheral blood stem cell grafts in RIC HSCT. Because T cell dose is typically not known until after the collection, and apheresis blood volume is easily modifiable, we hypothesized that higher donor apheresis blood volumes would improve transplantation outcomes through an effect on graft composition. Thus, we analyzed the relationships between apheresis volume, graft composition, and transplantation outcomes in 142 consecutive patients undergoing unrelated donor allogeneic RIC HSCT. We found that apheresis volume ≥15 L was associated with a significantly decreased risk of relapse (adjusted hazard ratio [aHR], .48; 95% confidence interval [CI], .28 to .84]; P = .01) and improved relapse-free survival (aHR, .56; 95% CI, .35 to .89; P = .02) and overall survival (aHR, .55; 95% CI, .34 to .91; P = .02). A high apheresis volume was not associated with increased rates of acute or chronic graft-versus-host disease. These results demonstrate that an apheresis volume of at least 15 L is independently predictive of improved transplantation outcomes after RIC allogeneic HSCT. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism.

    PubMed

    Miyazaki, Tsuyoshi; Kobayashi, Shigeru; Takeno, Kenichi; Yayama, Takafumi; Meir, Adam; Baba, Hisatoshi

    2011-07-01

    A lot of studies on the effect of intra-articular injections are clinical, but many questions on the effect of lidocaine to articular chondrocytes remain unanswered. This study was performed to determine the effects of varying concentrations and exposure times of lidocaine on the viability and proteoglycan metabolism of chondrocytes in vitro. Cartilage was obtained from metatarsal joints of adult bovines. Chondrocytes in alginate beads were cultured in medium containing 6% fetal calf serum at 370 mOsmol at cell densities of 4 million cells/ml. They were then cultured for 24 h under 21% oxygen with 0.125, 0.25, 0.5, and 1% lidocaine and without lidocaine as control. The cell viability profile across intact beads was determined by manual counting using fluorescent probes and transmission electron microscopy. Lactate production was measured enzymatically as a marker of energy metabolism. Glycosaminoglycan (GAG) accumulation was measured using a modified dimethylmethylene blue assay. Cell viability decreased in a time- and dose-dependent manner in the concentration range of 0.125-1.0% lidocaine under the confocal microscope. Under the electron microscope, apoptosis increased as the concentration of lidocaine increased. GAG accumulation/tissue volume decreases as the concentration of lidocaine increased. However, GAG produced per million cells and the rate of lactate production per live cell were significantly higher for cells cultured at 0.5 and 1% lidocaine than the control group. Bovine chondrocytes cultured in alginate beads under high oxygen pressure are negatively influenced by increasing concentrations of lidocaine. Cell viability and proteoglycan production (GAG accumulation/tissue volume) decreased as the concentration of lidocaine increased. These data suggest caution in prolonged exposure of cartilage to high concentration lidocaine. Repeated joint injection of lidocaine potentially worsens osteoarthrosis by accelerating cartilage degradation.

  4. Ion transport in a human lens epithelial cell line exposed to hyposmotic and apoptotic stress.

    PubMed

    Chimote, Ameet A; Adragna, Norma C; Lauf, Peter K

    2010-04-01

    Membrane transport changes in human lens epithelial (HLE-B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, K(i), uptake of the K congener rubidium, Rb(i), and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein-kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2-fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% K(i) loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of K(i), and accompanying water, and Rb(i) uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 microM STP exposure, the cells lost approximately 40% water and approximately 60% K(i), respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and K(i) loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4-aminopyridine (4-AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE-B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro-apoptotic STP-activation of 4-AP-sensitive voltage-gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110-122, 2010. (c) 2009 Wiley-Liss, Inc.

  5. Calcium regulates the cell-to-cell water flow pathway in maize roots during variable water conditions.

    PubMed

    Wu, Yan; Liu, Xiaofang; Wang, Weifeng; Zhang, Suiqi; Xu, Bingcheng

    2012-09-01

    Soil water shortages can decrease root hydraulic conductivity and affect Ca uptake and movement through the plant. In this study, the effects of extra Ca(2+) applied in nutrient solution on the hydraulic properties of the whole roots (Lp(r)) and cortical cells (Lp(cell)) of maize (Zea mays L.) subjected to variable water conditions were investigated. Under well-watered conditions, extra Ca(2+) significantly increased the root Ca content, total root length, and lateral root number; however, it reduced the root cortical cell volume, Lp(r), and Lp(cell). Hg(2+) inhibition experiments suggested that extra Ca(2+) could reduce the contribution of the cell-to-cell water flow pathway. Osmotic stress (10% PEG6000) significantly decreased the cortical cell volume, Lp(r), and Lp(cell) in the control plants, but smaller decreases were observed in the extra Ca(2+) plants. The Hg(2+) treatment reduced the Lp(r) larger in the extra Ca(2+) plants (74.6%) than in the control plants (53.2%), suggesting a higher contribution of the cell-to-cell pathway. The larger Hg(2+) inhibition of the Lp(cell) in the extra Ca(2+) roots (67.2%) when compared to the controls (56.4%) indicated that extra Ca(2+) can mitigate the inhibition of aquaporin expression and/or activity levels via osmotic stress. After 2 d of rehydration, the extra Ca(2+) helped the Lp(r) and Lp(cell) to recover almost completely, but these properties only partially recovered in the control plants. In conclusion, extra Ca(2+) may adjust the contribution of cell-to-cell pathway by regulating the expression and/or activity levels of AQPs according to water availability; this regulation may weaken negative effects and optimize water use. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Relating Nanoscale Accessibility within Plant Cell Walls to Improved Enzyme Hydrolysis Yields in Corn Stover Subjected to Diverse Pretreatments.

    PubMed

    Crowe, Jacob D; Zarger, Rachael A; Hodge, David B

    2017-10-04

    Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.

  7. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  8. Structure-function relationships in the stem cell's mechanical world A: seeding protocols as a means to control shape and fate of live stem cells.

    PubMed

    Zimmermann, Joshua A; Knothe Tate, Melissa L

    2011-12-01

    Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell volume was shown to be dependent on initial seeding density whereas nucleus shape was shown to depend on developmental context but not seeding density. Both smaller cell volumes and flatter nuclei were found to correlate with increased expression of markers for mesenchymal condensation as well as chondrogenic and osteogenic differentiation but a decreased expression of pre-condensation and adipogenic markers. Considering the data presented here, both seeding density and protocol significantly alter the morphology of mesenchymal stem cells even at very early stages of cell culture. Thus, these design parameters may play a critical role in the success of tissue engineering strategies seeking to recreate condensation events. However, a better understanding of how these changes in cell volume and nucleus shape relate to the differentiation of MSCs is important for prescribing precise seeding conditions necessary for the development of the desired tissue type. In a companion study (Part B, following), we address the effect of concomitant volume and shape changing stresses on spatiotemporal distribution of the cytoskeletal proteins actin and tubulin. Taken together, these studies bring us one step closer to our ultimate goal of elucidating the dynamics of nucleus and cell shape change as tissue templates grow (cell proliferation) and specialize (cell differentiation).

  9. Altered peripheral profile of blood cells in Alzheimer disease

    PubMed Central

    Chen, Si-Han; Bu, Xian-Le; Jin, Wang-Sheng; Shen, Lin-Lin; Wang, Jun; Zhuang, Zheng-Qian; Zhang, Tao; Zeng, Fan; Yao, Xiu-Qing; Zhou, Hua-Dong; Wang, Yan-Jiang

    2017-01-01

    Abstract Alzheimer disease (AD) has been made a global priority for its multifactorial pathogenesis and lack of disease-modifying therapies. We sought to investigate the changes of profile of blood routine in AD and its correlation with the disease severity. In all, 92 AD patients and 84 age and sex-matched normal controls were enrolled and their profiles of blood routine were evaluated. Alzheimer disease patients had increased levels of mean corpuscular hemoglobin, mean corpuscular volume, red cell distribution width-standard deviation, mean platelet volume,and decreased levels of platelet distribution width, red blood cell, hematocrit, hemoglobin, lymphocyte, and basophil compared with normal controls. Alterations in quantity and quality of blood cells may be involved in the pathogenesis of AD and contribute to the disease progression. PMID:28538375

  10. The entrance of water into beef and dog red cells.

    PubMed

    VILLEGAS, R; BARTON, T C; SOLOMON, A K

    1958-11-20

    The rate constants for diffusion of THO across the red cell membrane of beef and dog, and the rate of entrance of water into the erythrocytes of these species under an osmotic pressure gradient have been measured. For water entrance into the erythrocyte by diffusion the rate constants are 0.10 +/- 0.02 msec.(-1) (beef) and 0.14 +/- 0.03 msec.(-1) (dog); the permeability coefficients for water entrance under a pressure gradient of 1 osmol./cm(3) are 0.28 See PDF for Equation These values permit the calculation of an equivalent pore radius for the erythrocyte membrane of 4.1 A for beef and 7.4 A for dog. In the beef red cell the change in THO diffusion due to osmotically produced cell volume shifts has been studied. The resistance to THO diffusion increases as the cell volume increases. At the maximum volume, (1.06 times normal), THO diffusion is decreased to 0.84 times the normal rate. This change in diffusion is attributed to swelling of the cellular membrane.

  11. Morphometric analysis of the folliculostellate cells and luteinizing hormone gonadotropic cells of the anterior pituitary of the men during the aging process.

    PubMed

    Čukuranović Kokoris, Jovana; Jovanović, Ivan; Pantović, Vukica; Krstić, Miljan; Stanojković, Milica; Milošević, Verica; Ugrenović, Slađana; Stojanović, Vesna

    2017-02-01

    The aim of this research was to quantify the changes in the morphology and density of the anterior pituitary folliculostellate (FS) and luteinizing hormone (LH) cells. Material was tissue of the pituitary gland of the 14 male cadavers. Tissue slices were immunohistochemically stained with monoclonal anti-LH antibody and polyclonal anti-S100 antibody for the detection of LH and FS cells, respectively. Digital images of the stained slices were afterwards morphometrically analyzed by ImageJ. Results of the morphometric analysis showed significant increase of the FS cells volume density in cases older than 70 years. Volume density of the LH cells did not significantly change, whereas their area significantly increased with age. Nucleocytoplasmic ratio of the LH cells gradually decreased and became significant after the age of 70. Finally, volume density of the FS cell significantly correlated with LH cells area and nucleocytoplasmic ratio. From all above cited, we concluded that in men, density and size of the FS cells increase with age. Long-term hypertrophy of the LH cells results in their functional decline after the age of 70. Strong correlation between FS cells and LH cells morphometric parameters might point to age-related interaction between these two cell groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture.

    PubMed

    Ye, D; Karnati, S K R; Wagner, B; Firkins, J L; Eastridge, M L; Aldrich, J M

    2018-06-01

    The interaction of monensin and essential oil was hypothesized to suppress protozoa and methane production while maintaining normal rumen function. The objective of this study was to determine the effects of feeding monensin (MON) and CinnaGar (CIN, a commercial blend of cinnamaldehyde and garlic oil; Provimi North America, Brookville, OH) on ruminal fermentation characteristics. Continuous culture fermentors (n = 4) were maintained in 4 experimental periods in a 4 × 4 Latin square design. Four dietary treatments were arranged in a 2 × 2 factorial: (1) control diet, 37 g/d of dry matter (40 g/d at ∼92.5% dry matter) of a 50:50 forage:concentrate diet containing no additive; (2) MON at 11 g/909 kg of dry matter; (3) CIN at 0.0043% of dry matter; and (4) a combination of MON and CIN at the levels in (2) and (3). Treatment had no effects on protozoal populations, concentration of NH 3 N, total N flow of effluent, production of total volatile fatty acids, or flows of conjugated linoleic acid and total C18 fatty acids. The MON decreased acetate:propionate ratio and biohydrogenation of both total C18 and 18:1 cis-9 but increased protozoal generation time, concentration of peptide, and flow of 18:1 trans-11. The MON tended to decrease protozoal counts in effluent and flow of 18:0 but tended to increase propionate production. The CIN decreased true organic matter digestibility and protozoal N flow of effluent but increased nonammonia, nonmicrobial N flow. The CIN tended to decrease protozoal counts, microbial N flow, and neutral detergent fiber digestibility but tended to increase biohydrogenation of total C18, 18:2, and 18:3. The CIN tended to increase isovalerate production. The MON and CIN tended to interact for increased methane production and bacterial N flow. A second experiment was conducted to determine the effects of MON and CIN on protozoal nitrogen and cell volume in vitro. Four treatments included (1) control (feed only), (2) feed + 0.0043% dry matter CIN, (3) feed + 2.82 μM MON, and (4) feed + CIN + MON at the same levels as in (2) and (3). With no interactions, MON addition decreased percentage of protozoa that were motile and tended to decrease cell volume at 6 h. The CIN did not affect cell count or other indicators of motility or volume at either 3 or 6 h. Under the conditions of our study, we did not detect an additive response for MON and CIN to decrease protozoal counts or methane production. A 3-dimensional method is suggested to better estimate protozoal cell volume. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Effect of leg exercise training on vascular volumes during 30 days of 6 degrees head-down bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.

    1992-01-01

    Plasma and red cell volumes, body density, and water balance were measured in 19 men (32-42 yr) confined to bed rest (BR). One group (n = 5) had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise for 60 min/day (ITE; n = 7), and the third near-maximal intermittent isokinetic exercise for 60 min/day (IKE; n = 7). Caloric intake was 2,678-2,840 kcal/day; mean body weight (n = 19) decreased by 0.58 +/- 0.35 (SE) kg during BR due to a negative fluid balance (diuresis) on day 1. Mean energy costs for the NOE, and IKE, and ITE regimens were 83 (3.6 +/- 0.2 ml O2.min-1.kg-1), 214 (8.9 +/- 0.5 ml.min-1.kg-1), and 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1), respectively. Body densities within groups and mean urine volumes (1,752-1,846 ml/day) between groups were unchanged during BR. Resting changes in plasma volume (ml/kg) after BR were -1.5 +/- 2.3% (NS) in ITE, -14.7 +/- 2.8% (P less than 0.05) in NOE, and -16.8 +/- 2.9% (P less than 0.05) in IKE, and mean water balances during BR were +295, -106, and +169 ml/24 h, respectively. Changes in red cell volume followed changes in plasma volume. The significant chronic decreases in plasma volume in the IKE and NOE groups and its maintenance in the ITE group could not be accounted for by water balance or by responses of the plasma osmotic, protein, vasopressin, or aldosterone concentrations or plasma renin activity. There was close coupling between resting plasma volume and plasma protein and osmotic content.(ABSTRACT TRUNCATED AT 250 WORDS).

  14. The new approaches to preservation of graft cell integrity in preservation for transplantation.

    PubMed

    Gewartowska, Magdalena; Olszewski, Waldemar L

    2005-01-01

    Restoration of cell plasma membrane integrity after injury is essential for the survival of animal cells. In case of graft preservation or during chemotherapy in cancer, cell membrane integrity and the process of its repair are disrupted. Cytoprotective substances are important in such cases, as well as in other diseases, for example in myocardial infarction, acute insults and in chronic neurodegenerative diseases. Hyperosmolarity is a condition in which cell membrane stability may be damaged in vivo but preserved in the in vitro conditions. Hypertonicity causes water leaving from cells by osmosis, decreasing cell volume and increasing of intracellular ionic strength. High intracellular ionic strength perturbs cellular function by decreasing the rates of biochemical reaction. We review the new experimentally studied cytoprotective substances and their application in cell membrane protection. Moreover, we present our data on the effects of hyperosmolarity and its protective effect on cell internal structure.

  15. Impact of computed tomography and {sup 18}F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small-cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deniaud-Alexandre, Elisabeth; Touboul, Emmanuel; Lerouge, Delphine

    2005-12-01

    Purpose: To report a retrospective study concerning the impact of fused {sup 18}F-fluoro-deoxy-D-glucose (FDG)-hybrid positron emission tomography (PET) and CT images on three-dimensional conformal radiotherapy planning for patients with non-small-cell lung cancer. Methods and Materials: A total of 101 patients consecutively treated for Stage I-III non-small-cell lung cancer were studied. Each patient underwent CT and FDG-hybrid PET for simulation treatment in the same treatment position. Images were coregistered using five fiducial markers. Target volume delineation was initially performed on the CT images, and the corresponding FDG-PET data were subsequently used as an overlay to the CT data to define themore » target volume. Results: {sup 18}F-fluoro-deoxy-D-glucose-PET identified previously undetected distant metastatic disease in 8 patients, making them ineligible for curative conformal radiotherapy (1 patient presented with some positive uptake corresponding to concomitant pulmonary tuberculosis). Another patient was ineligible for curative treatment because the fused PET-CT images demonstrated excessively extensive intrathoracic disease. The gross tumor volume (GTV) was decreased by CT-PET image fusion in 21 patients (23%) and was increased in 24 patients (26%). The GTV reduction was {>=}25% in 7 patients because CT-PET image fusion reduced the pulmonary GTV in 6 patients (3 patients with atelectasis) and the mediastinal nodal GTV in 1 patient. The GTV increase was {>=}25% in 14 patients owing to an increase in the pulmonary GTV in 11 patients (4 patients with atelectasis) and detection of occult mediastinal lymph node involvement in 3 patients. Of 81 patients receiving a total dose of {>=}60 Gy at the International Commission on Radiation Units and Measurements point, after CT-PET image fusion, the percentage of total lung volume receiving >20 Gy increased in 15 cases and decreased in 22. The percentage of total heart volume receiving >36 Gy increased in 8 patients and decreased in 14. The spinal cord volume receiving at least 45 Gy (2 patients) decreased. Multivariate analysis showed that tumor with atelectasis was the single independent factor that resulted in a significant effect on the modification of the size of the GTV by FDG-PET: tumor with atelectasis (with vs. without atelectasis, p = 0.0001). Conclusion: The results of our study have confirmed that integrated hybrid PET/CT in the treatment position and coregistered images have an impact on treatment planning and management of non-small-cell lung cancer. However, FDG images using dedicated PET scanners and respiration-gated acquisition protocols could improve the PET-CT image coregistration. Furthermore, the impact on treatment outcome remains to be demonstrated.« less

  16. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells.

    PubMed

    Milenkovic, Andrea; Brandl, Caroline; Milenkovic, Vladimir M; Jendryke, Thomas; Sirianant, Lalida; Wanitchakool, Potchanart; Zimmermann, Stephanie; Reiff, Charlotte M; Horling, Franziska; Schrewe, Heinrich; Schreiber, Rainer; Kunzelmann, Karl; Wetzel, Christian H; Weber, Bernhard H F

    2015-05-19

    In response to cell swelling, volume-regulated anion channels (VRACs) participate in a process known as regulatory volume decrease (RVD). Only recently, first insight into the molecular identity of mammalian VRACs was obtained by the discovery of the leucine-rich repeats containing 8A (LRRC8A) gene. Here, we show that bestrophin 1 (BEST1) but not LRRC8A is crucial for volume regulation in human retinal pigment epithelium (RPE) cells. Whole-cell patch-clamp recordings in RPE derived from human-induced pluripotent stem cells (hiPSC) exhibit an outwardly rectifying chloride current with characteristic functional properties of VRACs. This current is severely reduced in hiPSC-RPE cells derived from macular dystrophy patients with pathologic BEST1 mutations. Disruption of the orthologous mouse gene (Best1(-/-)) does not result in obvious retinal pathology but leads to a severe subfertility phenotype in agreement with minor endogenous expression of Best1 in murine RPE but highly abundant expression in mouse testis. Sperm from Best1(-/-) mice showed reduced motility and abnormal sperm morphology, indicating an inability in RVD. Together, our data suggest that the molecular identity of VRACs is more complex--that is, instead of a single ubiquitous channel, VRACs could be formed by cell type- or tissue-specific subunit composition. Our findings provide the basis to further examine VRAC diversity in normal and diseased cell physiology, which is key to exploring novel therapeutic approaches in VRAC-associated pathologies.

  17. Glatiramer Acetate administration does not reduce damage after cerebral ischemia in mice.

    PubMed

    Poittevin, Marine; Deroide, Nicolas; Azibani, Feriel; Delcayre, Claude; Giannesini, Claire; Levy, Bernard I; Pocard, Marc; Kubis, Nathalie

    2013-01-15

    Inflammation plays a key role in ischemic stroke pathophysiology: microglial/macrophage cells and type-1 helper cells (Th1) seem deleterious, while type-2 helper cells (Th2) and regulatory T cells (Treg) seem protective. CD4 Th0 differentiation is modulated by microglial cytokine secretion. Glatiramer Acetate (GA) is an immunomodulatory drug that has been approved for the treatment of human multiple sclerosis by means of a number of mechanisms: reduced microglial activation and pro-inflammatory cytokine production, Th0 differentiation shifting from Th2 to Th2 and Treg with anti-inflammatory cytokine production and increased neurogenesis. We induced permanent (pMCAo) or transient middle cerebral artery occlusion (tMCAo) and GA (2 mg) or vehicle was injected subcutaneously immediately after cerebral ischemia. Mice were sacrificed at D3 to measure neurological deficit, infarct volume, microglial cell density and qPCR of TNFα and IL-1β (pro-inflammatory microglial cytokines), IFNγ (Th2 cytokine), IL-4 (Th2 cytokine), TGFβ and IL-10 (Treg cytokines), and at D7 to evaluate neurological deficit, infarct volume and neurogenesis assessment. We showed that in GA-treated pMCAo mice, infarct volume, microglial cell density and cytokine secretion were not significantly modified at D3, while neurogenesis was enhanced at D7 without significant infarct volume reduction. In GA-treated tMCAo mice, microglial pro-inflammatory cytokines IL-1β and TNFα were significantly decreased without modification of microglial/macrophage cell density, cytokine secretion, neurological deficit or infarct volume at D3, or modification of neurological deficit, neurogenesis or infarct volume at D7. In conclusion, Glatiramer Acetate administered after cerebral ischemia does not reduce infarct volume or improve neurological deficit in mice despite a significant increase in neurogenesis in pMCAo and a microglial pro-inflammatory cytokine reduction in tMCAo. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. [Transfusion supply optimization in multiple-discipline surgical hospital].

    PubMed

    Solov'eva, I N; Trekova, N A; Krapivkin, I A

    2016-01-01

    To define optimal variant of transfusion supply of hospital by blood components and to decrease donor blood expense via application of blood preserving technologies. Donor blood components expense, volume of hemotransfusions and their proportion for the period 2012-2014 were analyzed. Number of recipients of packed red cells, fresh-frozen plasma and packed platelets reduced 18.5%, 25% and 80% respectively. Need for donor plasma decreased 35%. Expense of autologous plasma in cardiac surgery was 76% of overall volume. Preoperative plasma sampling is introduced in patients with aortic aneurysm. Number of cardiac interventions performed without donor blood is increased 7-31% depending on its complexity.

  19. Lung function, transfusion, pulmonary capillary blood volume and sickle cell disease.

    PubMed

    Lunt, Alan; McGhee, Emily; Robinson, Polly; Rees, David; Height, Susan; Greenough, Anne

    2016-02-01

    Lung function abnormalities occur in children with sickle cell disease (SCD) and may be associated with elevated pulmonary blood volume. To investigate that association, we determined whether blood transfusion in SCD children acutely increased pulmonary capillary blood volume (PCBV) and increased respiratory system resistance (Rrs5). Measurements of Rrs5 and spirometry were made before and after blood transfusion in 18 children, median age 14.2 (6.6-18.5) years. Diffusing capacity for carbon monoxide and nitric oxide were assessed to calculate the PCBV. Post transfusion, the median Rrs5 had increased from 127.4 to 141.3% predicted (p<0.0001) and pulmonary capillary blood volume from 39.7 to 64.1 ml/m2 (p<0.0001); forced expiratory volume in one second (p=0.0056) and vital capacity (p=0.0008) decreased. The increase in Rrs5 correlated with the increase in PCBV (r=0.50, p=0.0493). Increased pulmonary capillary blood volume may at least partially explain the lung function abnormalities in SCD children. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.

  1. Optimization for the blockade of epidermal growth factor receptor signaling for therapy of human pancreatic carcinoma.

    PubMed

    Solorzano, C C; Baker, C H; Tsan, R; Traxler, P; Cohen, P; Buchdunger, E; Killion, J J; Fidler, I J

    2001-08-01

    We determined the optimal administration schedule of a novel epidermal growth factor receptor (EGFR) protein tyrosine kinase inhibitor (PKI), PKI 166 (4-(R)-phenethylamino-6-(hydroxyl)phenyl-7H-pyrrolo[2.3-d]-pyrimidine), alone or in combination with gemcitabine (administered i.p.) for therapy of L3.6pl human pancreatic carcinoma growing in the pancreas of nude mice. Seven days after orthotopic implantation of L3.6pl cells, the mice received daily oral doses of PKI 166. PKI 166 therapy significantly inhibited phosphorylation of the EGFR without affecting EGFR expression. EGFR phosphorylation was restored 72 h after cessation of therapy. Seven days after orthotopic injection of L3.6pl cells, groups of mice received daily or thrice weekly oral doses of PKI 166 alone or in combination with gemcitabine. Treatment with PKI 166 (daily), PKI 166 (3 times/week), or gemcitabine alone produced a 72%, 69%, or 70% reduction in the volume of pancreatic tumors in mice, respectively. Daily oral PKI 166 or thrice weekly oral PKI 166 in combination with injected gemcitabine produced 97% and 95% decreases in volume of pancreatic cancers and significant inhibition of lymph node and liver metastasis. Daily oral PKI 166 produced a 20% decrease in body weight, whereas treatment 3 times/week did not. Decreased microvessel density, decreased proliferating cell nuclear antigen staining, and increased tumor cell and endothelial cell apoptosis correlated with therapeutic success. Collectively, our results demonstrate that three weekly oral administrations of an EGFR tyrosine kinase inhibitor in combination with gemcitabine are sufficient to significantly inhibit primary and metastatic human pancreatic carcinoma.

  2. Effect of dislocations on properties of heteroepitaxial InP solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Curtis, H. B.; Brinker, D. J.; Jenkins, P.; Faur, M.

    1991-01-01

    The apparently unrelated phenomena of temperature dependency, carrier removal and photoluminescence are shown to be affected by the high dislocation densities present in heteroepitaxial InP solar cells. Using homoepitaxial InP cells as a baseline, it is found that the relatively high dislocation densities present in heteroepitaxial InP/GaAs cells lead to increased volumes of dVoc/dt and carrier removal rate and substantial decreases in photoluminescence spectral intensities. With respect to dVoc/dt, the observed effect is attributed to the tendency of dislocations to reduce Voc. Although the basic cause for the observed increase in carrier removal rate is unclear, it is speculated that the decreased photoluminescence intensity is attributable to defect levels introduced by dislocations in the heteroepitaxial cells.

  3. Research opportunities in loss of red blood cell mass in space flight

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.; Fisher, K. D.

    1985-01-01

    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.

  4. Furosemide- and bumetanide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain.

    PubMed

    Kimelberg, H K; Frangakis, M V

    1985-12-30

    K+ and Cl- transport using 42K+ and 36Cl- was studied in primary astrocyte cultures prepared from neonatal rat brains. A component of 42K+ uptake was sensitive to both furosemide and bumetanide with maximum inhibition being obtained at 1 and 0.01 mM concentrations of the inhibitors, respectively. Furosemide and bumetanide also markedly inhibited uptake of 36Cl-. 42K+ uptake in the presence of ouabain was also sensitive to the omission of medium Na+ and Cl-. These results suggest the existence of a K+ + Na+ + Cl- cotransport system in astrocyte cultures which in many cells has been shown to be involved in volume regulation. We studied volume changes using uptake of [14C]3-O- methyl-D-glucose ([14C]3-OMG), and also ion transport, in attached cells in response to exposure to hyper- or hypotonic medium. Exposure to medium made hypertonic with mannitol resulted in shrinkage of the [14C]3-OMG space of the cells, but did not affect 36Cl- content, expressed as nmol/mg protein. Exposure to hypotonic medium led to a marked increase in the [14C]3-OMG space, rapidly followed by a decrease towards control values. After the cells were then exposed to isotonic medium there was an immediate decrease followed by a slower increase in the [14C]3-OMG space. The increase in the [14C]3-OMG space was partially inhibited by 1 mM furosemide.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Influences of red blood cell and platelet counts on the distribution and elimination of crystalloid fluid.

    PubMed

    Hahn, Robert G

    2017-01-01

    A high number of blood cells increases the viscosity of the blood. The present study explored whether variations in blood cell counts are relevant to the distribution and elimination of infused crystalloid fluid. On three different occasions, 10 healthy male volunteers received an intravenous infusion of 25mL/kg of Ringer's acetate, Ringer's lactate, and isotonic saline over 30min. Blood hemoglobin and urinary excretion were monitored for 4h and used as input in a two-volume kinetic model, using nonlinear mixed effects software. The covariates used in the kinetic model were red blood cell and platelet counts, the total leukocyte count, the use of isotonic saline, and the arterial pressure. Red blood cell and platelet counts in the upper end of the normal range were associated with a decreased rate of distribution and redistribution of crystalloid fluid. Simulations showed that high counts were correlated with volume expansion of the peripheral (interstitial) fluid space, while the plasma volume was less affected. In contrast, the total leukocyte count had no influence on the distribution, redistribution, or elimination. The use of isotonic saline caused a transient reduction in the systolic arterial pressure (P<0.05) and doubled the half-life of infused fluid in the body when compared to the two Ringer solutions. Isotonic saline did not decrease the serum potassium concentration, despite the fact that saline is potassium-free. High red blood cell and platelet counts are associated with peripheral accumulation of infused crystalloid fluid. Copyright © 2017 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.

  6. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice.

    PubMed

    Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I; Merkulova-Rainon, Tatyana; Kubis, Nathalie

    2018-01-01

    Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18-24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF- β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions . This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.

  7. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice

    PubMed Central

    Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I.; Merkulova-Rainon, Tatyana

    2018-01-01

    Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase. PMID:29736174

  8. Oxotremorine treatment restores hippocampal neurogenesis and ameliorates depression-like behaviour in chronically stressed rats.

    PubMed

    Veena, J; Srikumar, B N; Mahati, K; Raju, T R; Shankaranarayana Rao, B S

    2011-09-01

    Chronic stress results in cognitive impairment, affects hippocampal neurogenesis and is known to precipitate affective disorders such as depression. In addition to stress, neurotransmitters such as acetylcholine (ACh) modulate adult neurogenesis. Earlier, we have shown that oxotremorine, a cholinergic muscarinic agonist, ameliorates stress-induced cognitive impairment and restores cholinergic function. In the current study, we have looked into the possible involvement of adult neurogenesis in cognitive restoration by oxotremorine. Further, we have assessed the effect of oxotremorine treatment on depression-like behaviour and hippocampal volumes in stressed animals. Chronic restraint stressed rats were treated with either vehicle or oxotremorine. For neurogenesis studies, proliferation, survival and differentiation of the progenitor cells in the hippocampus were examined using 5'-bromo-2-deoxyuridine immunohistochemistry. Depression-like behaviour was evaluated using forced swim test (FST) and sucrose consumption test (SCT). Volumes were estimated using Cavalieri's estimator. Hippocampal neurogenesis was severely decreased in stressed rats. Ten days of oxotremorine treatment to stressed animals partially restored proliferation and survival, while it completely restored the differentiation of the newly formed cells. Stressed rats showed increased immobility and decreased sucrose preference in the FST and SCT, respectively, and oxotremorine ameliorated this depression-like behaviour. In addition, oxotremorine treatment recovered the stress-induced decrease in hippocampal volume. These results indicate that the restoration of impaired neurogenesis and hippocampal volume could be associated with the behavioural recovery by oxotremorine. Our results imply the muscarinic regulation of adult neurogenesis and incite the potential utility of cholinomimetics in ameliorating cognitive dysfunction in stress-related disorders.

  9. Hypoxia increases erythropoiesis and decreases thrombocytopoiesis in mice: a comparison of two mouse strains.

    PubMed

    Cottrell, M B; Jackson, C W; McDonald, T P

    1991-07-01

    Several previous studies have shown that hypoxia increases erythropoiesis and decreases thrombocytopoiesis in mice. It has been postulated that the thrombocytopenia is caused by stem cell competition between the erythrocytic and megakaryocytic cell lines. In the present work, we compared the effects of severe hypoxia (5.5-6.0% O2) in both male and female C3H and BALB/c mice by measuring their abilities to produce red blood cells and platelets. All mice had significant increases in packed cell volumes and marked decreases in platelet production after hypoxia; however, there were significant differences in the degree of stimulation in the two mouse strains. After 14 days of hypoxia, the percentage of 35S incorporation into platelets, total circulating platelet counts and total circulating platelet masses were lower in C3H mice than in BALB/c mice, but platelet sizes were larger. Also, hypoxia caused greater changes in male mice than in female mice, with male C3H mice showing the greatest increase in packed cell volumes and the lowest platelet counts of all mice tested. The least responses were observed in female BALB/c mice. BALB/c mice had higher P50 (right-shifted O2 dissociation curves) and lower erythrocyte 2,3-diphosphoglycerate values than C3H mice, indicating a lower hemoglobin O2 affinity for BALB/c mice. The results indicate that the effects of hypoxia are not direct upon platelet production, but that the thrombocytopenia is a result of stimulation of erythropoiesis. These data support the stem cell competition hypothesis and illustrate that the degree of the inverse relationship between red blood cells and platelet production of hypoxic mice is dependent, to a large degree, upon the sex and strain of mice that are used.

  10. Oxidation-induced calcium-dependent dehydration of normal human red blood cells.

    PubMed

    Shcherbachenko, Irina M; Lisovskaya, Irina L; Tikhonov, Vladimir P

    2007-05-01

    Phenazine-methosulphate (PMS) is a strong oxidant that induces reactive oxygen species (ROS) formation in cells. Though it has been shown that PMS increases the red blood cell (RBC) membrane permeability to K(+), the hypotheses on the mechanism of PMS-induced effects are contradictory and there are no data on volume changes induced by this oxidant. Therefore, the influence of the PMS + ascorbate oxidative system on the volume of normal human RBCs was studied. In a Ca(2 + )-containing medium, PMS + ascorbate caused dehydration (shrinking) of RBCs judged by: (1) changes in the density and osmotic resistance distributions of RBCs, and (2) a decrease in their low-angle scattering assessed by FACS analysis. The dehydration resulted from activation of the Gardos channels, was PMS and ascorbate concentration-dependent, was associated with broadening of the density and osmotic resistance distributions of the RBCs, and decreased in the presence of the taxifolin and rutin antioxidants. These findings contribute to a better understanding of the physiology and pathology of oxidatively-modified RBCs and may be of practical significance in estimating the antioxidant activity of various substances.

  11. Enhanced cell volume regulation: a key protective mechanism of ischemic preconditioning in rabbit ventricular myocytes.

    PubMed

    Diaz, Roberto J; Armstrong, Stephen C; Batthish, Michelle; Backx, Peter H; Ganote, Charles E; Wilson, Gregory J

    2003-01-01

    Accumulation of osmotically active metabolites, which create an osmotic gradient estimated at ~60 mOsM, and cell swelling are prominent features of ischemic myocardial cell death. This study tests the hypothesis that reduction of ischemic swelling by enhanced cell volume regulation is a key mechanism in the delay of ischemic myocardial cell death by ischemic preconditioning (IPC). Experimental protocols address whether: (i) IPC triggers a cell volume regulation mechanism that reduces cardiomyocyte swelling during subsequent index ischemia; (ii) this reduction in ischemic cell swelling is sufficient in magnitude to account for the IPC protection; (iii) the molecular mechanism that mediates IPC also mediates cell volume regulation. Two experimental models with rabbit ventricular myocytes were studied: freshly isolated pelleted myocytes and 48-h cultured myocytes. Myocytes were preconditioned either by distinct short simulated ischemia (SI)/simulated reperfusion protocols (IPC), or by subjecting myocytes to a pharmacological preconditioning (PPC) protocol (1 microM calyculin A, or 1 microM N(6)-2-(4-aminophenyl)ethyladenosine (APNEA), prior to subjecting them to either different durations of long SI or 30 min hypo-osmotic stress. Cell death (percent blue square myocytes) was monitored by trypan blue staining. Cell swelling was determined by either the bromododecane cell flotation assay (qualitative) or video/confocal microscopy (quantitative). Simulated ischemia induced myocyte swelling in both the models. In pelleted myocytes, IPC or PPC with either calyculin A or APNEA produced a marked reduction of ischemic cell swelling as determined by the cell floatation assay. In cultured myocytes, IPC substantially reduced ischemic cell swelling (P < 0.001). This IPC effect on ischemic cell swelling was related to an IPC and PPC (with APNEA) mediated triggering of cell volume regulatory decrease (RVD). IPC and APNEA also significantly (P < 0.001) reduced hypo-osmotic cell swelling. This IPC and APNEA effect was blocked by either adenosine receptor, PKC or Cl(-) channel inhibition. The osmolar equivalent for IPC protection approximated 50-60 mOsM, an osmotic gradient similar to the estimated ischemic osmotic load for preconditioned and non-preconditioned myocytes. The results suggest that cell volume regulation is a key mechanism that accounts for most of the IPC protection in cardiomyocytes.

  12. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    PubMed

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor types.

  13. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  14. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans.

    PubMed

    Yun, JiEun; Lee, Dong Gun

    2017-03-01

    Chlorogenic acid (CRA) is an abundant phenolic compound in the human diet. CRA has a potent antifungal effect, inducing cell death in Candida albicans. However, there are no further studies to investigate the antifungal mechanism of CRA, associated with ion channels. To evaluate the inhibitory effects on CRA-induced cell death, C. albicans cells were pretreated with potassium and chloride channel blockers, separately. Flow cytometry was carried out to detect several hallmarks of apoptosis, such as cell cycle arrest, caspase activation, and DNA fragmentation, after staining of the cells with SYTOX green, FITC-VAD-FMK, and TUNEL. CRA caused excessive potassium efflux, and an apoptotic volume decrease (AVD) was observed. This change, in turn, induced cytosolic calcium uptake and cell cycle arrest in C. albicans. Moreover, CRA induced caspase activation and DNA fragmentation, which are considered apoptotic markers. In contrast, the potassium efflux and proapoptotic changes were inhibited when potassium channels were blocked, whereas there was no inhibitory effect when chloride channels were blocked. CRA induces potassium efflux, leading to AVD and G2/M cell cycle arrest in C. albicans. Therefore, potassium efflux via potassium channels regulates the CRA-induced apoptosis, stimulating several apoptotic processes. This study improves the understanding of the antifungal mechanism of CRA and its association with ion homeostasis, thereby pointing to a role of potassium channels in CRA-induced apoptosis. Copyright © 2016. Published by Elsevier B.V.

  15. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    PubMed Central

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on IClswell can be ruled out. Furthermore, we show that curcumin exposure induces apoptosis in human kidney cells, and at a concentration of 5.0–10 μM induces the appearance of a sub-population of cells with a dramatically increased volume. In these cells the regulation of the cell volume seems to be impaired, most likely as a consequence of the IClswell blockade. Similarly, 50 μM curcumin induced apoptosis, caused cell cycle arrest in G1-phase and increased the volume of human colorectal adenocarcinoma HT-29 cells. The cell cycle arrest in G1 phase may be the mechanism underlying the volume increase observed in this cell line after exposure to curcumin. PMID:22178266

  16. Endurance Capacity Changes Following Induced Erythrocythemia - The Utility of Frozen Blood Component Technology.

    DTIC Science & Technology

    1982-11-01

    to prewithdrawal levels , otherwise an RBC volume greater than that withdrawn must be infused to get the same effect. 4. Glycerol frozen storage of RBCs...increases inside the cell to levels which denature proteins. There are two widely ased methods of freezing with glycerol: (1) Fast freezing the RBCs in...decrease. This decreased ability is associated with a decrease in RBC concentration of a compound called 2,3- diphosphoglycerate (2,3-DPG) (ref 3, 4). With

  17. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: effects of SOM230.

    PubMed

    Egger, Christine; Gérard, Christelle; Vidotto, Nella; Accart, Nathalie; Cannet, Catherine; Dunbar, Andrew; Tigani, Bruno; Piaia, Alessandro; Jarai, Gabor; Jarman, Elizabeth; Schmid, Herbert A; Beckmann, Nicolau

    2014-06-15

    Idiopathic pulmonary fibrosis is a progressive and lethal disease, characterized by loss of lung elasticity and alveolar surface area, secondary to alveolar epithelial cell injury, reactive inflammation, proliferation of fibroblasts, and deposition of extracellular matrix. The effects of oropharyngeal aspiration of bleomycin in Sprague-Dawley rats and C57BL/6 mice, as well as of intratracheal administration of ovalbumin to actively sensitized Brown Norway rats on total lung volume as assessed noninvasively by magnetic resonance imaging (MRI) were investigated here. Lung injury and volume were quantified by using nongated or respiratory-gated MRI acquisitions [ultrashort echo time (UTE) or gradient-echo techniques]. Lung function of bleomycin-challenged rats was examined additionally using a flexiVent system. Postmortem analyses included histology of collagen and hydroxyproline assays. Bleomycin induced an increase of MRI-assessed total lung volume, lung dry and wet weights, and hydroxyproline content as well as collagen amount. In bleomycin-treated rats, gated MRI showed an increased volume of the lung in the inspiratory and expiratory phases of the respiratory cycle and a temporary decrease of tidal volume. Decreased dynamic lung compliance was found in bleomycin-challenged rats. Bleomycin-induced increase of MRI-detected lung volume was consistent with tissue deposition during fibrotic processes resulting in decreased lung elasticity, whereas influences by edema or emphysema could be excluded. In ovalbumin-challenged rats, total lung volume quantified by MRI remained unchanged. The somatostatin analog, SOM230, was shown to have therapeutic effects on established bleomycin-induced fibrosis in rats. This work suggests MRI-detected total lung volume as readout for tissue-deposition in small rodent bleomycin models of pulmonary fibrosis. Copyright © 2014 the American Physiological Society.

  18. Intensive Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1997-01-01

    Intensive exercise training during bed rest attenuates deconditioning. Med. Sci. Sports Exerc., Vol. 29, No. 2, pp. 207-215, 1997. A 30-d 6 deg head-down bed rest project was conducted to evaluate variable high-intensity, short-duration, isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent resistive isokinetic exercise (IKE) training regimens designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (adaptive) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Major findings are summarized in this paper. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volumes, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (f) attenuated the decrease in peak VO2 by 50%, (g) attenuated loss of red cell volume by 40% but had no effect on loss of plasma volume, (b) induced positive body water balance, (i) had no adverse effect on quality of sleep or concentration, and 0) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regimens and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  19. Intensity-modulated proton therapy for elective nodal irradiation and involved-field radiation in the definitive treatment of locally advanced non-small-cell lung cancer: a dosimetric study.

    PubMed

    Kesarwala, Aparna H; Ko, Christine J; Ning, Holly; Xanthopoulos, Eric; Haglund, Karl E; O'Meara, William P; Simone, Charles B; Rengan, Ramesh

    2015-05-01

    Photon involved-field (IF) radiation therapy (IFRT), the standard for locally advanced (LA) non-small cell lung cancer (NSCLC), results in favorable outcomes without increased isolated nodal failures, perhaps from scattered dose to elective nodal stations. Because of the high conformality of intensity-modulated proton therapy (IMPT), proton IFRT could increase nodal failures. We investigated the feasibility of IMPT for elective nodal irradiation (ENI) in LA-NSCLC. IMPT IFRT plans were generated to the same total dose of 66.6-72 Gy received by 20 LA-NSCLC patients treated with photon IFRT. IMPT ENI plans were generated to 46 cobalt Gray equivalent (CGE) to elective nodal planning treatment volumes (PTV) plus 24 CGE to IF-PTVs. Proton IFRT and ENI improved the IF-PTV percentage of volume receiving 95% of the prescribed dose (D95) by 4% (P < .01) compared with photon IFRT. All evaluated dosimetric parameters improved significantly with both proton plans. The lung percentage of volume receiving 20 Gy/CGE (V20) and mean lung dose decreased 18% (P < .01) and 36% (P < .01), respectively, with proton IFRT, and 11% (P = .03) and 26% (P < .01) with ENI. The mean esophagus dose decreased 16% with IFRT and 12% with ENI; heart V25 decreased 63% with both (all P < .01). This study demonstrates the feasibility of IMPT for LA-NSCLC ENI. Potential decreased toxicity indicates that IMPT could allow ENI while maintaining a favorable therapeutic ratio compared with photon IFRT. Published by Elsevier Inc.

  20. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells.

    PubMed

    Meléndez, Giselle C; Li, Jianping; Law, Brittany A; Janicki, Joseph S; Supowit, Scott C; Levick, Scott P

    2011-12-01

    Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Volume overload was induced by aortocaval fistula in TAC1(-/-) mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1(-/-) mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1(-/-) mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1(-/-) group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix.

  1. Substance P induces adverse myocardial remodelling via a mechanism involving cardiac mast cells

    PubMed Central

    Meléndez, Giselle C.; Li, Jianping; Law, Brittany A.; Janicki, Joseph S.; Supowit, Scott C.; Levick, Scott P.

    2011-01-01

    Aims Substance P and neurokinin A (NKA) are sensory nerve neuropeptides encoded by the TAC1 gene. Substance P is a mast cell secretagogue and mast cells are known to play a role in adverse myocardial remodelling. Therefore, we wondered whether substance P and/or NKA modulates myocardial remodelling via a mast cell-mediated mechanism. Methods and results Volume overload was induced by aortocaval fistula in TAC1−/− mice and their respective wild types. Left ventricular internal diameter of wild-type (WT) fistulas increased by 31.9%; this was prevented in TAC1−/− mice (4.2%). Matrix metalloproteinase (MMP) activity was significantly increased in WT fistula mice and was prevented in TAC1−/− mice. Myocardial collagen volume fraction was decreased in WT fistula mice; this collagen degradation was not observed in the TAC1−/− group. There were no significant differences between any groups in tumour necrosis factor (TNF)-α or cell death. Cardiac mast cells were isolated from rat hearts and stimulated with substance P or NKA. We found that these cells degranulated only to substance P, via the neurokinin-1 receptor. To determine the effect of substance P on mast cells in vivo, volume overload was created in Sprague-Dawley rats treated with the NK-1 receptor antagonist L732138 (5 mg/kg/day) for a period of 3 days. L732138 prevented: (i) increases in cardiac mast cell density; (ii) increased myocardial TNF-α; and (iii) collagen degradation. Conclusions Our studies suggest that substance P may be important in mediating adverse myocardial remodelling secondary to volume overload by activating cardiac mast cells, leading to increased TNF-α and MMP activation with subsequent degradation of the extracellular matrix. PMID:21908647

  2. A Novel Approach for Using Dielectric Spectroscopy to Predict Viable Cell Volume (VCV) in Early Process Development

    PubMed Central

    Downey, Brandon J; Graham, Lisa J; Breit, Jeffrey F; Glutting, Nathaniel K

    2014-01-01

    Online monitoring of viable cell volume (VCV) is essential to the development, monitoring, and control of bioprocesses. The commercial availability of steam-sterilizable dielectric-spectroscopy probes has enabled successful adoption of this technology as a key noninvasive method to measure VCV for cell-culture processes. Technological challenges still exist, however. For some cell lines, the technique's accuracy in predicting the VCV from probe-permittivity measurements declines as the viability of the cell culture decreases. To investigate the cause of this decrease in accuracy, divergences in predicted vs. actual VCV measurements were directly related to the shape of dielectric frequency scans collected during a cell culture. The changes in the shape of the beta dispersion, which are associated with changes in cell state, are quantified by applying a novel “area ratio” (AR) metric to frequency-scanning data from the dielectric-spectroscopy probes. The AR metric is then used to relate the shape of the beta dispersion to single-frequency permittivity measurements to accurately predict the offline VCV throughout an entire fed-batch run, regardless of cell state. This work demonstrates the possible feasibility of quantifying the shape of the beta dispersion, determined from frequency-scanning data, for enhanced measurement of VCV in mammalian cell cultures by applying a novel shape-characterization technique. In addition, this work demonstrates the utility of using changes in the shape of the beta dispersion to quantify cell health. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:479–487, 2014 PMID:24851255

  3. Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice.

    PubMed

    Harris, Jamie; Herrero-Garcia, Erika; Russo, Angela; Kajdacsy-Balla, Andre; O'Bryan, John P; Chiu, Bill

    2017-11-01

    Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.

  4. Effect of a syringe aspiration technique versus a mechanical suction technique and use of N-butylscopolammonium bromide on the quantity and quality of bronchoalveolar lavage fluid samples obtained from horses with the summer pasture endophenotype of equine asthma.

    PubMed

    Bowser, Jacquelyn E; Costa, Lais R R; Rodil, Alba U; Lopp, Christine T; Johnson, Melanie E; Wills, Robert W; Swiderski, Cyprianna E

    2018-03-01

    OBJECTIVE To evaluate the effect of 2 bronchoalveolar lavage (BAL) sampling techniques and the use of N-butylscopolammonium bromide (NBB) on the quantity and quality of BAL fluid (BALF) samples obtained from horses with the summer pasture endophenotype of equine asthma. ANIMALS 8 horses with the summer pasture endophenotype of equine asthma. PROCEDURES BAL was performed bilaterally (right and left lung sites) with a flexible videoendoscope passed through the left or right nasal passage. During lavage of the first lung site, a BALF sample was collected by means of either gentle syringe aspiration or mechanical suction with a pressure-regulated wall-mounted suction pump. The endoscope was then maneuvered into the contralateral lung site, and lavage was performed with the alternate fluid retrieval technique. For each horse, BAL was performed bilaterally once with and once without premedication with NBB (21-day interval). The BALF samples retrieved were evaluated for volume, total cell count, differential cell count, RBC count, and total protein concentration. RESULTS Use of syringe aspiration significantly increased total BALF volume (mean volume increase, 40 mL [approx 7.5% yield]) and decreased total RBC count (mean decrease, 142 cells/μL), compared with use of mechanical suction. The BALF nucleated cell count and differential cell count did not differ between BAL procedures. Use of NBB had no effect on BALF retrieval. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that retrieval of BALF by syringe aspiration may increase yield and reduce barotrauma in horses at increased risk of bronchoconstriction and bronchiolar collapse. Further studies to determine the usefulness of NBB and other bronchodilators during BAL procedures in horses are warranted.

  5. Numerical modeling of heat transfer and pasteurizing value during thermal processing of intact egg.

    PubMed

    Abbasnezhad, Behzad; Hamdami, Nasser; Monteau, Jean-Yves; Vatankhah, Hamed

    2016-01-01

    Thermal Pasteurization of Eggs, as a widely used nutritive food, has been simulated. A three-dimensional numerical model, computational fluid dynamics codes of heat transfer equations using heat natural convection, and conduction mechanisms, based on finite element method, was developed to study the effect of air cell size and eggshell thickness. The model, confirmed by comparing experimental and numerical results, was able to predict the temperature profiles, the slowest heating zone, and the required heating time during pasteurization of intact eggs. The results showed that the air cell acted as a heat insulator. Increasing the air cell volume resulted in decreasing of the heat transfer rate, and the increasing the required time of pasteurization (up to 14%). The findings show that the effect on thermal pasteurization of the eggshell thickness was not considerable in comparison to the air cell volume.

  6. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    PubMed

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p < 0.05). IgG leakage, tight junction protein loss, and inflammatory cytokines IL-1β, IL-6, and TNF-α reduced in mesenchymal stem cell-treated mice compared to the control group following ischemia (p < 0.05). After transplantation, MMP-9 was decreased in protein and activity levels as compared with controls (p < 0.05). Furthermore, myeloperoxidase-positive cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p < 0.05). The results showed that mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  7. Physiological responses of mules on prolonged exposure to high altitude (3 650 m)

    NASA Astrophysics Data System (ADS)

    Riar, S. S.; Shankar Bhat, K.; Sen Gupta, J.

    1982-06-01

    Eight healthy male animals were inducted and kept for 2 1/2 years at 3 650 m altitude and subjected to normal work schedules. Physiological measurements viz. heart rate, blood pressure, minute ventilation, oxygen consumption, respiration rate, hemoglobin, packed cell haematocrit volume and eosinophil count were made on these animals at periodic intervals. On acute induction to an altitude of 3 650 m these animals demonstrated a sudden increase in tidal volume, a decrease in Rf and no change in VE, suggesting a decreased dead space/tidal volume ratio at altitude. However, all these changes stabilised within 3 weeks but on prolongation of stay, the physical state of these animals was adversely affected. The respiratory adjustments occurring on return to sea level appear to be a response to thermal stress. The initial increase in heart rate and blood pressure stabilised by the 2nd week.

  8. Measurement of myeloid maturation by flow cytochemistry in HL-60 leukemia: esterase is inducible, myeloperoxidase is not.

    PubMed

    Ross, D W

    1986-05-01

    The phenomenon of leukemic cell maturation requires a measurement of myeloid maturation to understand the process and to exploit it as a means of therapy for leukemia. The HL-60 leukemic cell line was used as a model of induced leukemic cell maturation in order to develop a method of quantitating granulocytic and monocytic maturation in response to drug therapy. An automated flow cytochemistry system (Hemalog-D) was employed to measure mean cell volume, myeloperoxidase (MPO), and nonspecific esterase (NSE). For granulocytic maturation induced by vitamin A or DMSO, MPO and cell volume decreased by 50%, maintaining a constant mean cellular MPO concentration throughout maturation from promyelocyte to neutrophil-like forms. For monocytic maturation induced by low-dose ARA-c, the mean NSE increased substantially, while cell volume remained constant. Unlike MPO concentration, NSE was truly inducible and thus a useful quantitative measure of maturation caused by low-dose ARA-c. Flow cytochemistry and cytofluorometry may be developed to allow for quantitative monitoring of therapeutic trials of induced maturation in human leukemias. However, this will require adapting these techniques to the complexity of human leukemias in vivo, and the necessity of handling heterogeneous populations encountered in bone marrow samples.

  9. Linkage effects between deposit discovery and postdiscovery exploratory drilling

    USGS Publications Warehouse

    Drew, Lawrence J.

    1975-01-01

    For the 1950-71 period of petroleum exploration in the Powder River Basin, northeastern Wyoming and southeastern Montana, three specific topics were investigated. First, the wildcat wells drilled during the ambient phases of exploration are estimated to have discovered 2.80 times as much petroleum per well as the wildcat wells drilled during the cyclical phases of exploration, periods when exploration plays were active. Second, the hypothesis was tested and verified that during ambient phases of exploration the discovery of deposits could be anticipated by a small but statistically significant rise in the ambient drilling rate during the year prior to the year of discovery. Closer examination of the data suggests that this anticipation effect decreases through time. Third, a regression model utilizing the two independent variables of (1) the volume of petroleum contained in each deposit discovered in a cell and the directly adjacent cells and (2) the respective depths of these deposits was constructed to predict the expected yearly cyclical wildcat drilling rate in four 30 by 30 min (approximately 860 mi2) sized cells. In two of these cells relatively large volumes of petroleum were discovered, whereas in the other two cells smaller volumes were discovered. The predicted and actual rates of wildcat drilling which occurred in each cell agreed rather closely.

  10. Structural features of blood lymphocytes according to data of atomic force microscopy in alloxan induced diabetic rats

    NASA Astrophysics Data System (ADS)

    Stolbovskaya, Olga V.; Khayrullin, Radik M.; Kostishko, Boris B.; Bakhtiyarov, Rinat I.

    2018-04-01

    Structural changes in blood lymphocytes during the development of alloxan induced diabetes in rats were revealed. The changes were characterized by decreased volume, surface area, flatness coefficient of cells in comparison with normal lymphocytes. A consistent increase in the Young's modulus of rat lymphocytes during the development of diabetes in comparison with the Young's modulus of normal lymphocytes has been established, which indicates a decrease of the elastic-viscous properties of the cell membrane, changes in the molecular structure of its and in the organization of the lymphocyte cytoskeleton. It was found that during the development of induced diabetes the roughness and adhesiveness of the cytoplasmic membrane of blood lymphocytes decrease.

  11. Impaired Cell Volume Regulation in Intestinal Crypt Epithelia of Cystic Fibrosis Mice

    NASA Astrophysics Data System (ADS)

    Valverde, M. A.; O'Brien, J. A.; Sepulveda, F. V.; Ratcliff, R. A.; Evans, M. J.; Colledge, W. H.

    1995-09-01

    Cystic fibrosis is a disease characterized by abnormalities in the epithelia of the lungs, intestine, salivary and sweat glands, liver, and reproductive systems, often as a result of inadequate hydration of their secretions. The primary defect in cystic fibrosis is the altered activity of a cAMP-activated Cl^- channel, the cystic fibrosis transmembrane conductance regulator (CFTR) channel. However, it is not clear how a defect in the CFTR Cl^- channel function leads to the observed pathological changes. Although much is known about the structural properties and regulation of the CFTR, little is known of its relationship to cellular functions other than the cAMP-dependent Cl^- secretion. Here we report that cell volume regulation after hypotonic challenge is also defective in intestinal crypt epithelial cells isolated from CFTR -/- mutant mice. Moreover, the impairment of the regulatory volume decrease in CFTR -/- crypts appears to be related to the inability of a K^+ conductance to provide a pathway for the exit of this cation during the volume adjustments. This provides evidence that the lack of CFTR protein may have additional consequences for the cellular function other than the abnormal cAMP-mediated Cl^- secretion.

  12. Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells.

    PubMed

    Petit, Laetitia; Gibert, Maryse; Gourch, Abdelkader; Bens, Marcelle; Vandewalle, Alain; Popoff, Michel R

    2003-03-01

    Epsilon toxin is produced by Clostridium perfringens types B and D which are responsible for fatal intestinal diseases in animals. The main biological activity of epsilon toxin is the production of oedema in various organs. We have previously found that epsilon toxin forms a large membrane complex in MDCK cells which is not internalized into cell, and induces cell volume enlargement and loss of cell viability (Petit, L., Gibert, M., Gillet, D., Laurent-Winter, C., Boquet, P., Popoff, M. R. (1997) J Bacteriol 179, 6480-6487). Here, we show that epsilon toxin is very potent to decrease the trans-epithelial electrical resistance of polarized MDCK cells grown on filters without altering the organization of the junctional complexes. The dose-dependent decrease in trans-epithelial electrical resistance, more marked when the toxin was applied to the apical side than to the basal side of MDCK cells, was associated with a moderate increase of the paracellular permeability to low-molecular-weight compounds but not to macromolecules. Epsilon toxin probably acts by forming large membrane pores which permit the flux of ions and other molecules such as the entry of propidium iodide and finally to the loss of cell viability.

  13. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    PubMed

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-12-22

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.

  14. Polyphenolics from mango (Mangifera indica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice.

    PubMed

    Nemec, Matthew J; Kim, Hyemee; Marciante, Alexandria B; Barnes, Ryan C; Hendrick, Erik D; Bisson, William H; Talcott, Stephen T; Mertens-Talcott, Susanne U

    2017-03-01

    The objective of this study was to assess the underlying mechanisms of mango polyphenol decreased cell proliferation and tumor volume in ductal carcinoma in situ breast cancer. We hypothesized that mango polyphenols suppress signaling along the AKT/mTOR axis while up-regulating AMPK. To test this hypothesis, mango polyphenols (0.8 mg gallic acid equivalents per day) and pyrogallol (0.2 mg/day) were administered for 4 weeks to mice xenografted with MCF10DCIS.com cells subcutaneously (n=10 per group). Tumor volumes were significantly decreased, both mango and pyrogallol groups displayed greater than 50% decreased volume compared to control. There was a significant reduction of phosphorylated protein levels of IR, IRS1, IGF-1R, and mTOR by mango; while pyrogallol significantly reduced the phosphorylation levels of IR, IRS1, IGF-1R, p70S6K, and ERK. The protein levels of Sestrin2, which is involved in AMPK-signaling, were significantly elevated in both groups. Also, mango significantly elevated AMPK phosphorylation and pyrogallol significantly elevated LKB1 protein levels. In an in vitro model, mango and pyrogallol increased reactive oxygen species (ROS) generation and arrested cells in S phase. In silico modeling indicates that pyrogallol has the potential to bind directly to the allosteric binding site of AMPK, inducing activation. When AMPK expression was down-regulated using siRNA in vitro, pyrogallol reversed the reduced expression of AMPK. This indicates that pyrogallol not only activates AMPK, but also increases constitutive protein expression. These results suggest that mango polyphenols and their major microbial metabolite, pyrogallol, inhibit proliferation of breast cancer cells through ROS-dependent up-regulation of AMPK and down-regulation of the AKT/mTOR pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Role of peripheral pooling in porcine Escherichia coli sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teule, G.J.; von Lingen, A.; Verwey von Vught, M.A.

    In anesthesized pigs the effects of E. coli (2 X 10(8)/kg) on hemodynamics and red cell distribution were studied. After injection of 99m-Tc red cells (15 mCi), regional radioactivity was followed during 3 hours. Gated bloodpool studies were performed to measure end-diastolic volumes (EDV). Escherichia coli E. coli was infused in 14 pigs, while 7 animals served as controls. E. coli resulted in an early increase in pulmonary arterial pressure. Systemic arterial pressure decreased gradually, while cardiac output did not change significantly. The gated studies revealed that especially left ventricular end-diastolic volume (LVEDV) declined, to 50% of the basal value.more » Regional radioactivity did not change over lungs, liver and abdomen. Splenic activity declined markedly. Over the hindlimb a significant increase (29 +/- 8%) was observed. It is concluded that E. coli infusion in pigs induces a hemodynamic pattern similar to human sepsis. The decrease in LVEDV is probably related to peripheral pooling and a change in right ventricle (RV) performance.« less

  16. Hierarchical imaging: a new concept for targeted imaging of large volumes from cells to tissues.

    PubMed

    Wacker, Irene; Spomer, Waldemar; Hofmann, Andreas; Thaler, Marlene; Hillmer, Stefan; Gengenbach, Ulrich; Schröder, Rasmus R

    2016-12-12

    Imaging large volumes such as entire cells or small model organisms at nanoscale resolution seemed an unrealistic, rather tedious task so far. Now, technical advances have lead to several electron microscopy (EM) large volume imaging techniques. One is array tomography, where ribbons of ultrathin serial sections are deposited on solid substrates like silicon wafers or glass coverslips. To ensure reliable retrieval of multiple ribbons from the boat of a diamond knife we introduce a substrate holder with 7 axes of translation or rotation specifically designed for that purpose. With this device we are able to deposit hundreds of sections in an ordered way in an area of 22 × 22 mm, the size of a coverslip. Imaging such arrays in a standard wide field fluorescence microscope produces reconstructions with 200 nm lateral resolution and 100 nm (the section thickness) resolution in z. By hierarchical imaging cascades in the scanning electron microscope (SEM), using a new software platform, we can address volumes from single cells to complete organs. In our first example, a cell population isolated from zebrafish spleen, we characterize different cell types according to their organelle inventory by segmenting 3D reconstructions of complete cells imaged with nanoscale resolution. In addition, by screening large numbers of cells at decreased resolution we can define the percentage at which different cell types are present in our preparation. With the second example, the root tip of cress, we illustrate how combining information from intermediate resolution data with high resolution data from selected regions of interest can drastically reduce the amount of data that has to be recorded. By imaging only the interesting parts of a sample considerably less data need to be stored, handled and eventually analysed. Our custom-designed substrate holder allows reproducible generation of section libraries, which can then be imaged in a hierarchical way. We demonstrate, that EM volume data at different levels of resolution can yield comprehensive information, including statistics, morphology and organization of cells and tissue. We predict, that hierarchical imaging will be a first step in tackling the big data issue inevitably connected with volume EM.

  17. Changes of vessel-cells complex in zones of adaptive remodeling of the bone tissue under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Rodionova, N.; Oganov, V.; Nosova, L.

    The development and differentiation of osteogenic cells in organism happen in closely topographical and functional connection with blood capillaries. We formerly proofed, that small-differentiated cells, which are in the population of perivascular cells are osteogenic cells -precursors . At the present time it is actually to clear up, how these biostructures react on conditions of less of biomechanical load on skeleton bones. We researched peculiarities of blood-bed structure and perivascular cells in metaphises of thighbones and tibial bones in rats, which were onboard the American space station SLS-2 and in experiments of modeling hypokinesia. There were used methods of cytochemistry, histology and electron microscopy. We established, that under the support and functional load decreasing in zones of bones adaptive remodeling, comparatively to control, on histosections the own volume of sinusoid capillaries reduces. The small vessels prevail here. The spaces of sinusoid capillaries are limited by 1 2 cells of the endothelia. Endotheliocytes in- general have the typical ultrastructure. Basal membranes are expressed not-distinctly. Perivascular cells don't create the unbroken layer. The population of these cells is not-homogeneous. It includes enclosed to endothelia small-differentiated forms and separating cells with sings of fibroblastic differentiation (the own volume of rough endoplasmic reticulum in cytoplasm induces). The part of these cells reacts on the alkaline phosphatase (the marker of the osteogenic differentiation). Under the conditions of support load decreasing (especially under the microgravity) there is a tendency to reducing of separating osteogenic cells number. We noted the priority of differentiating fibroblasts. It leads to further development in zones of bone remodeling of hearths of fibrous tissue, that doesn't mineralize. The obtained data are seen as one of mechanisms of osteoporosis and osteopenia development under the deficite of support load.

  18. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice.

    PubMed

    Esener, Obb; Balkan, B M; Armutak, E I; Uvez, A; Yildiz, G; Hafizoglu, M; Yilmazer, N; Gurel-Gurevin, E

    2018-04-12

    Donkey milk and donkey milk kefir exhibit antiproliferative, antimutagenic and antibacterial effects. We investigated the effects of donkey milk and donkey milk kefir on oxidative stress, apoptosis and proliferation in Ehrlich ascites carcinoma (EAC) in mice. Thirty-four adult male Swiss albino mice were divided into four groups as follows: group 1, administered 0.5 ml water; group 2, administered 0.5 ml water + EAC cells; group 3, administered 0.5 ml donkey milk + EAC cells; group 4, administered 0.5 ml donkey milk kefir + EAC cells. We introduced 2.5 x 10 6 EAC cells into each animal by subcutaneous injection. Tap water, donkey milk and donkey milk kefir were administered by gavage for 10 days. Animals were sacrificed on day 11. After measuring the short and long diameters of the tumors, tissues were processed for histology. To determine oxidative stress, cell death and proliferation iNOS and eNOS, active caspase-3 and proliferating cell nuclear antigen were assessed using immunohistochemistry. A TUNEL assay also was used to detect apoptosis. Tumor volume decreased in the donkey milk kefir group compared to the control and donkey milk groups. Tumor volume increased in the donkey milk group compared to the control group. Proliferating cell nuclear antigen levels were higher in the donkey milk kefir group compared to the control and donkey milk groups. The number of apoptotic cells was less in the donkey milk group, compared to the control, whereas it was highest in the donkey milk kefir group. Donkey milk administration increased eNOS levels and decreased iNOS levels, compared to the control group. In the donkey milk kefir group, iNOS levels were significantly lower than those of the control and donkey milk groups, while eNOS levels were similar to the control group. Donkey milk kefir induced apoptosis, suppressed proliferation and decreased co-expression of iNOS and eNOS. Donkey milk promoted development of the tumors. Therefore, donkey milk kefir appears to be more beneficial for treating breast cancer than donkey milk.

  19. Plumbing the depths: extracellular water storage in specialized leaf structures and its functional expression in a three-domain pressure -volume relationship.

    PubMed

    Nguyen, Hoa T; Meir, Patrick; Wolfe, Joe; Mencuccini, Maurizio; Ball, Marilyn C

    2017-07-01

    A three-domain pressure-volume relationship (PV curve) was studied in relation to leaf anatomical structure during dehydration in the grey mangrove, Avicennia marina. In domain 1, relative water content (RWC) declined 13% with 0.85 MPa decrease in leaf water potential, reflecting a decrease in extracellular water stored primarily in trichomes and petiolar cisternae. In domain 2, RWC decreased by another 12% with a further reduction in leaf water potential to -5.1 MPa, the turgor loss point. Given the osmotic potential at full turgor (-4.2 MPa) and the effective modulus of elasticity (~40 MPa), domain 2 emphasized the role of cell wall elasticity in conserving cellular hydration during leaf water loss. Domain 3 was dominated by osmotic effects and characterized by plasmolysis in most tissues and cell types without cell wall collapse. Extracellular and cellular water storage could support an evaporation rate of 1 mmol m -2 s -1 for up to 54 and 50 min, respectively, before turgor loss was reached. This study emphasized the importance of leaf anatomy for the interpretation of PV curves, and identified extracellular water storage sites that enable transient water use without substantive turgor loss when other factors, such as high soil salinity, constrain rates of water transport. © 2016 John Wiley & Sons Ltd.

  20. Inhibition of CDK-mediated phosphorylation of Smad3 results in decreased oncogenesis in triple negative breast cancer cells

    PubMed Central

    Tarasewicz, Elizabeth; Rivas, Lisbi; Hamdan, Randala; Dokic, Danijela; Parimi, Vamsi; Bernabe, Beatriz Penalver; Thomas, Alexandra; Shea, Lonnie D; Jeruss, Jacqueline S

    2014-01-01

    Breast cancer onset and disease progression have been linked to members of the TGFβ superfamily and their downstream signaling components, the Smads. Alterations in Smad3 signaling are associated with the dichotomous role of TGFβ in malignancy, mediating both tumor suppressant and pro-metastatic behaviors. Overexpression of cell cycle regulators, cyclins D and E, renders cyclin-dependent kinases (CDKs) 4/2 hyperactive. Noncanonical phosphorylation of Smad3 by CDK4/2 inhibits tumor suppressant actions of Smad3. We hypothesized that CDK inhibition (CDKi) would restore Smad3 action and help promote cancer cell regression. Treatment of triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-436, Hs578T) with CDK2i or CDK4i resulted in increased Smad3 activity and decreased cell migration. Transfection with a 5M Smad3 construct containing inhibitory mutations in 5 CDK phosphorylation sites also resulted in decreased TNBC cell migration and invasion. MDA-MB-231 cells treated with CDK2i or CDK4i resulted in decreased Smad3 protein phosphorylation at the CDK phosphorylation T179 site, decreased MMP2 and c-myc expression, and increased p15 and p21 expression. Using a novel transfected cell array, we found that CDK2i treatment decreased activity of the epithelial-to-mesenchymal transition related transcription factors Snail and Twist. In vivo studies in an MDA-MB-231 tumor model showed that individual and combination treatment with paclitaxel and CDK2i resulted in decreased tumor volume and Ki67 staining. Collectively, these data support further investigation of targeted CDK inhibitors as a promising therapeutic strategy for TNBC, a breast cancer subtype with limited treatment options. PMID:25485498

  1. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.

    PubMed

    Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C

    2007-06-01

    Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.

  2. Size and Carbon Content of Sub-seafloor Microbial Cells

    NASA Astrophysics Data System (ADS)

    Braun, S.; Morono, Y.; Littmann, S.; Jørgensen, B. B.; Lomstein, B. A.

    2015-12-01

    Into the seafloor, a radical decline in nutrient and energy availability poses strong metabolic demands to any residing life. However, a sedimentary microbial ecosystem seems to maintain itself close to what we understand to be the energetic limit of life. Since a complex sediment matrix is interfering with the analysis of whole cells and sub-cellular compounds such as cell wall and membrane molecules, little is known about the physiological properties of cells in the deep biosphere. Here we focus on the size and carbon content of cells from a 90-m sediment drill core retrieved in October 2013 at Landsort Deep, Baltic Sea, in 437 meters water depth. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density centrifugation and visualized via fluorescence microscopy (FM), scanning electron microscopy (SEM), and stimulated emission depletion microscopy (STED). Total cell-carbon was calculated from amino acid-carbon, which was analyzed by high-performance liquid chromatography after cells had additionally been purified by fluorescence activated cell sorting (FACS). Cell-carbon turnover times were estimated using an amino acid racemization model that is based on the built-in molecular clock of aspartic acid, which due to racemization alternates between the D- and L-isomeric configurations over timescales of thousands of years at low in-situ temperatures (≈4˚C). We find that the majority of microbial cells in the sediment have coccoid or rod-shaped morphology, and that absolute values for cell volume are strongly dependent on the method used, spanning three orders of magnitude from approximately 0.001 to 1 µm3 for both coccoid and rod-shaped cells. From the surface to the deepest sample measured (≈60 mbsf), cell volume decreases by an order of magnitude, and carbon content is in the lower range (<20 fg C cell-1) of what has been reported in the literature as conversion factors. Cell-carbon is turned over approximately every 50-600 years, and total carbon oxidation rates decrease from ≈3400 to <60 nmol cm-3 yr-1 with depth, as inferred from amino acid racemization modeling. Given the large extent of marine sediments on Earth, our data will shed light on the energetic limits of life on our planet and will be important for estimating global biomass budgets.

  3. Conditional disruption of the prolyl hydroxylase domain-containing protein 2 (Phd2) gene defines its key role in skeletal development.

    PubMed

    Cheng, Shaohong; Xing, Weirong; Pourteymoor, Sheila; Mohan, Subburaman

    2014-10-01

    We have previously shown that the increase in osterix (Osx) expression during osteoblast maturation is dependent on the activity of the prolyl hydroxylase domain-containing protein 2 (Phd2), a key regulator of protein levels of the hypoxia-inducible factor family proteins in many tissues. In this study, we generated conditional Phd2 knockout mice (cKO) in osteoblast lineage cells by crossing floxed Phd2 mice with a Col1α2-iCre line to investigate the function of Phd2 in vivo. The cKO mice developed short stature and premature death at 12 to 14 weeks of age. Bone mineral content, bone area, and bone mineral density were decreased in femurs and tibias, but not vertebrae of the cKO mice compared to WT mice. The total volume (TV), bone volume (BV), and bone volume fraction (BV/TV) in the femoral trabecular bones of cKO mice were significantly decreased. Cross-sectional area of the femoral mid-diaphysis was also reduced in the cKO mice. The reduced bone size and trabecular bone volume in the cKO mice were a result of impaired bone formation but not bone resorption as revealed by dynamic histomorphometric analyses. Bone marrow stromal cells derived from cKO mice formed fewer and smaller nodules when cultured with mineralization medium. Quantitative RT-PCR and immunohistochemistry detected reduced expression of Osx, osteocalcin, and bone sialoprotein in cKO bone cells. These data indicate that Phd2 plays an important role in regulating bone formation in part by modulating expression of Osx and bone formation marker genes. © 2014 American Society for Bone and Mineral Research.

  4. Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas

    PubMed Central

    Miyatake, Shin-Ichi; Kawabata, Shinji; Nonoguchi, Naosuke; Yokoyama, Kunio; Kuroiwa, Toshihiko; Matsui, Hideki; Ono, Koji

    2009-01-01

    Pseudoprogression has been recognized and widely accepted in the treatment of malignant gliomas, as transient increases in the volume of the enhanced area just after chemoradiotherapy, especially using temozolomide. We experienced a similar phenomenon in the treatment of malignant gliomas and meningiomas using boron neutron capture therapy (BNCT), a cell-selective form of particle radiation. Here, we introduce representative cases and analyze the pathogenesis. Fifty-two cases of malignant glioma and 13 cases of malignant meningioma who were treated by BNCT were reviewed retrospectively mainly via MR images. Eleven of 52 malignant gliomas and 3 of 13 malignant meningiomas showed transient increases of enhanced volume in MR images within 3 months after BNCT. Among these cases, five patients with glioma underwent surgery because of suspicion of relapse. In histology, most of the specimens showed necrosis with small amounts of residual tumor cells. Ki-67 labeling showed decreased positivity compared with previous samples from the individuals. Fluoride-labeled boronophenylalanine PET was applied in four and two cases of malignant gliomas and meningiomas, respectively, at the time of transient increase of lesions. These PET scans showed decreased lesion:normal brain ratios in all cases compared with scans obtained prior to BNCT. With or without surgery, all lesions were decreased or stable in size during observation. Transient increases in enhanced volume in malignant gliomas and meningiomas immediately after BNCT seemed to be pseudoprogression. This pathogenesis was considered as treatment-related intratumoral necrosis in the subacute phase after BNCT. PMID:19289492

  5. [Morphological studies of rat adrenal glands after space flight on "Kosmos-1667"].

    PubMed

    Prodan, N G; Bara'nska, V

    1989-01-01

    Histological and histomorphometric examinations of rat adrenals after a 7-day flight revealed the following changes: blood congestion in the cortex and medulla, progressive delipoidization of the cortex, slight enlargement of the nuclear volume of glomerular and fascicular zones, vacuolization of the cytoplasm of medulla cells, reduction of the area of noradrenocyte islets and cell nuclei of the medulla; the adrenal weight remained however unchanged. It is concluded that an early period of adaptation to microgravity was accompanied by a weak stress-reaction. Upon return to Earth the rats developed an acute gravitational stress. From the morphological point of view the stress manifested as: increased volume of nuclei in fascicular cells, decreased content of lipids in them, and greater vacuolization of the cytoplasm of medulla cells. The lack of medulla hypertrophy, reduction of the area of noradrenocyte islets and nuclei of medulla cells suggest that 7-day exposure to microgravity did not exert of stimulating effect on the sympathetic system of rats.

  6. Intravenously Delivered Mesenchymal Stem Cells: Systemic Anti-Inflammatory Effects Improve Left Ventricular Dysfunction in Acute Myocardial Infarction and Ischemic Cardiomyopathy.

    PubMed

    Luger, Dror; Lipinski, Michael J; Westman, Peter C; Glover, David K; Dimastromatteo, Julien; Frias, Juan C; Albelda, M Teresa; Sikora, Sergey; Kharazi, Alex; Vertelov, Grigory; Waksman, Ron; Epstein, Stephen E

    2017-05-12

    Virtually all mesenchymal stem cell (MSC) studies assume that therapeutic effects accrue from local myocardial effects of engrafted MSCs. Because few intravenously administered MSCs engraft in the myocardium, studies have mainly utilized direct myocardial delivery. We adopted a different paradigm. To test whether intravenously administered MSCs reduce left ventricular (LV) dysfunction both post-acute myocardial infarction and in ischemic cardiomyopathy and that these effects are caused, at least partly, by systemic anti-inflammatory activities. Mice underwent 45 minutes of left anterior descending artery occlusion. Human MSCs, grown chronically at 5% O 2 , were administered intravenously. LV function was assessed by serial echocardiography, 2,3,5-triphenyltetrazolium chloride staining determined infarct size, and fluorescence-activated cell sorting assessed cell composition. Fluorescent and radiolabeled MSCs (1×10 6 ) were injected 24 hours post-myocardial infarction and homed to regions of myocardial injury; however, the myocardium contained only a small proportion of total MSCs. Mice received 2×10 6 MSCs or saline intravenously 24 hours post-myocardial infarction (n=16 per group). At day 21, we harvested blood and spleens for fluorescence-activated cell sorting and hearts for 2,3,5-triphenyltetrazolium chloride staining. Adverse LV remodeling and deteriorating LV ejection fraction occurred in control mice with large infarcts (≥25% LV). Intravenous MSCs eliminated the progressive deterioration in LV end-diastolic volume and LV end-systolic volume. MSCs significantly decreased natural killer cells in the heart and spleen and neutrophils in the heart. Specific natural killer cell depletion 24 hours pre-acute myocardial infarction significantly improved infarct size, LV ejection fraction, and adverse LV remodeling, changes associated with decreased neutrophils in the heart. In an ischemic cardiomyopathy model, mice 4 weeks post-myocardial infarction were randomized to tail-vein injection of 2×10 6 MSCs, with injection repeated at week 3 (n=16) versus PBS control (n=16). MSCs significantly increased LV ejection fraction and decreased LV end-systolic volume. Intravenously administered MSCs for acute myocardial infarction attenuate the progressive deterioration in LV function and adverse remodeling in mice with large infarcts, and in ischemic cardiomyopathy, they improve LV function, effects apparently modulated in part by systemic anti-inflammatory activities. © 2017 American Heart Association, Inc.

  7. A hypothesis of target cell formation in sickle cell disease.

    PubMed

    Wong, P

    2016-08-01

    A fraction of erythrocytes appear as target cells in stained blood smears in sickle cell disease, due to a inheritance of the hemoglobin variant Hb S, polymerizing upon deoxygenation. These cells appear in a three dimension as thin cups. A process of their formation in this disease is proposed based on a band 3-based mechanism of the erythrocyte shape control, able to explain the erythrocyte echinocytosis by glucose depletion. It indicates that their formation is due to a stomatocytogenic slow outward transport of the dibasic form of endogenous Pi with an H(+) by band 3, promoted by the decrease of the Donnan ratio, which decreases cell pH and volume, attributed by a decrease of cell KCl concentration by the higher efflux of K(+)Cl(-) cotransport and Ca(2+) activation of the Gardos channel. Its implications are briefly discussed with respect to target cells per se, target cell formation in other hemoglobinopathies, acquired and inherited disorders of the lipid metabolism and dehydrated hereditary stomatocytosis as well as a stomatocyte presence in a double heterozygote of Hb S and Hb C and of an involvement of the process of target cell formation in acanthocytosis in acquired and inherited disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Continuous blood densitometry - Fluid shifts after graded hemorrhage in animals

    NASA Technical Reports Server (NTRS)

    Hinghofer-Szalkay, H.

    1986-01-01

    Rapid fluid shifts in four pigs and two dogs subjected to graded hemorrhage are investigated. Arterial blood density (BD), mean arterial pressure (MAP), central venous pressure (CVP), arterial plasma density (PD), hematocrit (Hct) and erythrocyte density were measured. The apparatus and mechancial oscillator technique for measuring density are described. Fluid shifts between red blood cells and blood plasma and alterations in the whole-body-to-large vessel Hct, F(cell) are studied using two models. The bases of the model calculations are discussed. A decrease in MAP, CVP, and BP is detected at the beginning of hemorrhaging; continued bleeding results in further BD decrease correlating with volume displacement. The data reveal that at 15 ml/kg blood loss the mean PD and BD dropped by 0.99 + or - 0.15 and 2.42 + or 0.26 g/liter, respectively, and the Hct dropped by 2.40 + or 0.47 units. The data reveal that inward-shifted fluid has a higher density than normal ultrafiltrate and/or there is a rise in the F(cell) ratio. It is noted that rapid fluid replacement ranged from 5.8 + or - 0.8 to 10.6 + or - 2.0 percent of the initial plasma volume.

  9. Impaired Cerebellar Maturation, Growth Restriction, and Circulating Insulin-Like Growth Factor 1 in Preterm Rabbit Pups

    PubMed Central

    Sveinsdóttir, Kristbjörg; Länsberg, John-Kalle; Sveinsdóttir, Snjólaug; Garwicz, Martin; Ohlsson, Lennart; Hellström, Ann; Smith, Lois; Gram, Magnus; Ley, David

    2018-01-01

    Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population. PMID:28972955

  10. Beta-Adrenergic Blockade Does not Prevent Polycythemia or Decrease in Plasma Volume in Men at 4300 m Altitude

    NASA Technical Reports Server (NTRS)

    Grover, R. F.; Selland, M. A.; McCullough, R. G.; Dahms, T. E.; Wolfel, E. E.; Butterfield, G. E.; Reeves, J. T.; Greenleaf, J. E.

    1998-01-01

    When humans ascend to high altitude (ALT) their plasma volume (PV) and total blood volume (BV) decrease during the first few days. With continued residence over several weeks, the hypoxia-induced stimulation of erythropoietin increases red cell production which tends to restore BV. Because hypoxia also activates the beta-adrenergic system, which stimulates red blood cell production, we investigated the effect of adrenergic beta-receptor inhibition with propranolol on fluid volumes and the polycythemic response in 11 healthy unacclimatized men (21-33 years old exposed to an ALT of 4300 m (barometric pressure 460 Torr) for 3 weeks on Pikes Peak, Colorado. PV was determined by the Evans blue dye method (PV(sub EB)), BV by the carbon monoxide method (BV(sub CO)), red cell volume (RCV)was calculated from hematocrit (Hct) and BV(sub CO), and serum erythropoietin concentration ([EPO]) and reticulocyte count, were also determined. All determinations were made at sea level and after 9-11 (ALT-10) and 9-20 (ALT-20) days at ALT. At sea level and ALT, six men received propranolol (pro, 240 mg/day), and five received a placebo (pla). Effective beta-blockade did not modify the mean (SE) maximal values of [EPO] [pla: 24.9 (3.5) vs pro: 24.5 (1.5) mU/ml] or reticulocyte count [pla: 2.7 (0.7) vs pro: 2.2 (0.5)%]; nor changes in PV(sub EB)[pla: -15.8 (3.8) vs pro: -19.9 (2.8)%], RCV(sub CO) [pla: +7.0 (6.7) vs pro: +10.1 (6.1)%], or BV(sub CO) [pla: -7.3 (2.3) vs pro: -7.1 (3.9)%]. In the absence of weight loss, a redistribution of body water with no net loss is implied. Hence, activation of the beta-adrenergic system did not appear to affect the hypovolemic or polycythemic responses that occurred during 3 weeks at 4300 m ALT in these subjects.

  11. Evidence for a Humoral Mechanism in Volume Expansion Natriuresis

    PubMed Central

    Kaloyanides, George J.; Azer, Maher

    1971-01-01

    The role of a humoral mechanism in the natriuresis induced by volume expansion was evaluated using an isolated dog kidney perfused by a second dog which had been pretreated with desoxycorticosterone acetate (DOCA). Expansion of the perfusion dog with an equilibrated volume of blood from a reservoir, resulted in an increase in UnaV (sodium excretion) from 153.6±27.9 (sem) to 345.5±57.8 μEq/min, P<0.001. FEna (fractional sodium excretion) increased from 3.4±0.6 to 8.1±1.2%, P<0.01. The natriuresis occurred in the face of a significant decrease in Cin, RBF, and renal arterial pressure, and in the absence of any change in plasma protein concentration or packed cell volume. In a control group of experiments, sodium excretion did not change when the perfusion dog was not volume expanded, although Cin (inulin clearance) and RBF (renal blood flow) decreased to the same degree as in the expanded group. These data support the conclusion that volume expansion of the perfusion dog either stimulated the release of a natriuretic factor or suppressed the release of an antinatriuretic factor which was manifested by an increase in sodium excretion in the isolated kidney. PMID:5097568

  12. Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer.

    PubMed

    Rao, Shreyas S; Stoehr, Jenna; Dokic, Danijela; Wan, Lei; Decker, Joseph T; Konopka, Kristine; Thomas, Alexandra L; Wu, Jia; Kaklamani, Virginia G; Shea, Lonnie D; Jeruss, Jacqueline S

    2017-10-13

    Activation of CDK2 in triple negative breast cancer (TNBC) can contribute to non-canonical phosphorylation of a TGFβ signaling component, Smad3, promoting cell proliferation and migration. Inhibition of CDK2 was shown to decrease breast cancer oncogenesis. Eribulin chemotherapy was used effectively in the treatment of TNBC. To this end, we tested therapeutic efficacy of a novel CDK2/9 inhibitor, CYC065, eribulin, and the combination of CYC065 and eribulin in 3 different TNBC cell lines, and an in vivo xenograft model. Specifically, we characterized cell proliferation, apoptosis, migration, cell cycle associated protein expression, treatment-related transcription factor activity, and tumor growth in TNBC. Treatment with CYC065 and eribulin in combination had a superior effect on decreasing cell proliferation, inducing apoptosis, and inhibiting migration in TNBC cell lines in vitro . Combination therapy inhibited non-canonical Smad3 phosphorylation at the T179 site in the protein linker region, and resulted in increased p15 and decreased c-myc expression. In a transcription factor array, combination treatment significantly increased activity of AP1 and decreased activity of factors including NFκB, SP1, E2F, and SMAD3. In an in vivo xenograft model of TNBC, individual and combination treatments resulted in a decrease in both tumor volume and mitotic indices. Taken together, these studies highlight the potential of this novel drug combination, CYC065 and eribulin, to suppress the growth of TNBC cells in vitro and in vivo, warranting further clinical investigation.

  13. SU-E-T-751: Three-Component Kinetic Model of Tumor Growth and Radiation Response for Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y; Dahlman, E; Leder, K

    Purpose: To develop and study a kinetic model of tumor growth and its response to stereotactic radiosurgery (SRS) by assuming that the cells in irradiated tumor volume were made of three types. Methods: A set of ordinary differential equations (ODEs) were derived for three types of cells and a tumor growth rate. It is assumed that the cells were composed of actively proliferating cells, lethally damaged-dividing cells, and non-dividing cells. We modeled the tumor volume growth with a time-dependent growth rate to simulate the saturation of growth. After SRS, the proliferating cells were permanently damaged and converted to the lethallymore » damaged cells. The amount of damaged cells were estimated by the LQ-model. The damaged cells gradually stopped dividing/proliferating and died with a constant rate. The dead cells were cleared from their original location with a constant rate. The total tumor volume was the sum of the three components. The ODEs were numerically solved with appropriate initial conditions for a given dosage. The proposed model was used to model an animal experiment, for which the temporal change of a rhabdomyosarcoma tumor volume grown in a rat was measured with time resolution sufficient to test the model. Results: To fit the model to the experimental data, the following characteristics were needed with the model parameters. The α-value in the LQ-model was smaller than the commonly used value; furthermore, it decreased with increasing dose. At the same time, the tumor growth rate after SRS had to increase. Conclusions: The new 3-component model of tumor could simulate the experimental data very well. The current study suggested that the radiation sensitivity and the growth rate of the proliferating tumor cells may change after irradiation and it depended on the dosage used for SRS. These preliminary observations must be confirmed by future animal experiments.« less

  14. Cardiovascular consequences of bed rest: effect on maximal oxygen uptake

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1997-01-01

    Maximal oxygen uptake (VO2max) is reduced in healthy individuals confined to bed rest, suggesting it is independent of any disease state. The magnitude of reduction in VO2max is dependent on duration of bed rest and the initial level of aerobic fitness (VO2max), but it appears to be independent of age or gender. Bed rest induces an elevated maximal heart rate which, in turn, is associated with decreased cardiac vagal tone, increased sympathetic catecholamine secretion, and greater cardiac beta-receptor sensitivity. Despite the elevation in heart rate, VO2max is reduced primarily from decreased maximal stroke volume and cardiac output. An elevated ejection fraction during exercise following bed rest suggests that the lower stroke volume is not caused by ventricular dysfunction but is primarily the result of decreased venous return associated with lower circulating blood volume, reduced central venous pressure, and higher venous compliance in the lower extremities. VO2max, stroke volume, and cardiac output are further compromised by exercise in the upright posture. The contribution of hypovolemia to reduced cardiac output during exercise following bed rest is supported by the close relationship between the relative magnitude (% delta) and time course of change in blood volume and VO2max during bed rest, and also by the fact that retention of plasma volume is associated with maintenance of VO2max after bed rest. Arteriovenous oxygen difference during maximal exercise is not altered by bed rest, suggesting that peripheral mechanisms may not contribute significantly to the decreased VO2max. However reduction in baseline and maximal muscle blood flow, red blood cell volume, and capillarization in working muscles represent peripheral mechanisms that may contribute to limited oxygen delivery and, subsequently, lowered VO2max. Thus, alterations in cardiac and vascular functions induced by prolonged confinement to bed rest contribute to diminution of maximal oxygen uptake and reserve capacity to perform physical work.

  15. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    PubMed

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  16. Inorganic mercury accumulation in brain following waterborne exposure elicits a deficit on the number of brain cells and impairs swimming behavior in fish (white seabream-Diplodus sargus).

    PubMed

    Pereira, Patrícia; Puga, Sónia; Cardoso, Vera; Pinto-Ribeiro, Filipa; Raimundo, Joana; Barata, Marisa; Pousão-Ferreira, Pedro; Pacheco, Mário; Almeida, Armando

    2016-01-01

    The current study contributes to fill the knowledge gap on the neurotoxicity of inorganic mercury (iHg) in fish through the implementation of a combined evaluation of brain morphometric alterations (volume and total number of neurons plus glial cells in specific regions of the brain) and swimming behavior (endpoints related with the motor activity and mood/anxiety-like status). White seabream (Diplodus sargus) was exposed to realistic levels of iHg in water (2μgL(-1)) during 7 (E7) and 14 days (E14). After that, fish were allowed to recover for 28 days (PE28) in order to evaluate brain regeneration and reversibility of behavioral syndromes. A significant reduction in the number of cells in hypothalamus, optic tectum and cerebellum was found at E7, accompanied by relevant changes on swimming behavior. Moreover, the decrease in the number of neurons and glia in the molecular layer of the cerebellum was followed by a contraction of its volume. This is the first time that a deficit on the number of cells is reported in fish brain after iHg exposure. Interestingly, a recovery of hypothalamus and cerebellum occurred at E14, as evidenced by the identical number of cells found in exposed and control fish, and volume of cerebellum, which might be associated with an adaptive phenomenon. After 28 days post-exposure, the optic tectum continued to show a decrease in the number of cells, pointing out a higher vulnerability of this region. These morphometric alterations coincided with numerous changes on swimming behavior, related both with fish motor function and mood/anxiety-like status. Overall, current data pointed out the iHg potential to induce brain morphometric alterations, emphasizing a long-lasting neurobehavioral hazard. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Nutrient shielding in clusters of cells

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2013-06-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells' spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude among different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ.

  18. Study of Ti 4+ substitution in ZrW 2O 8 negative thermal expansion materials

    NASA Astrophysics Data System (ADS)

    De Buysser, Klaartje; Van Driessche, Isabel; Putte, Bart Vande; Schaubroeck, Joseph; Hoste, Serge

    2007-08-01

    Powder XRD-analysis and thermo-mechanical analysis on sintered TiO 2-WO 3-ZrO 2 mixtures revealed the formation of Zr 1-xTi xW 2O 8 solid solutions. A noticeable decrease in unit cell parameter ' a' and in the order-disorder transition temperature could be seen in the case of Zr 1-xTi xW 2O 8 solid solutions. Studies performed on other ZrW 2O 8 solid solutions have attributed an increase in phase transition temperature to a decrease in free lattice volume, whereas a decrease in phase transition temperature was suggested to be due to the presence of a more disordered state. Our studies indicate that the phase transition temperature in our materials is strongly influenced by the bond dissociation energy of the substituting ion-oxygen bond. A decrease in bond strength may compensate for the effect of a decrease in lattice free volume, lowering the phase transition temperature as the degree of substitution by Ti 4+ increases. This hypothesis is proved by differential scanning calorimetry.

  19. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    NASA Astrophysics Data System (ADS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  20. Treatment of experimental stroke with IL-10-producing B-cells reduces infarct size and peripheral and CNS inflammation in wild-type B-cell-sufficient mice

    PubMed Central

    Bodhankar, Sheetal; Chen, Yingxin; Vandenbark, Arthur A.; Murphy, Stephanie J.; Offner, Halina

    2014-01-01

    Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that absence of B-cells led to larger infarct volumes and CNS damage after middle cerebral artery occlusion (MCAO) that could be prevented by transfer of IL-10+ B-cells. The purpose of this study was to determine if the beneficial immunoregulatory effects on MCAO of the IL-10+ B-cell subpopulation also extends to B-cell-sufficient mice that would better represent stroke subjects. CNS inflammation and infarct volumes were evaluated in male C57BL/6J (WT) mice that received either RPMI or IL-10+ B-cells and underwent 60 min of middle cerebral artery occlusion (MCAO) followed by 96 hours of reperfusion. Transfer of IL-10+ B-cells markedly reduced infarct volume in WT recipient mice when given 24 hours prior to or 4 hours after MCAO. B-cell protected MCAO mice had increased regulatory subpopulations in the periphery, reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres of the IL-10+ B-cell-treated group. Moreover, transfer of IL-10+ B-cells 24 hours before MCAO led to a significant preservation of regulatory immune subsets in the IL-10+ B-cell protected group presumably indicating their role in immunomodulatory mechanisms, post-stroke. Our studies are the first to demonstrate a major immunoregulatory role for IL-10+ regulatory B-cells in preventing and treating MCAO in WT mice and also implicating their potential role in attenuating complications due to post-stroke immunosuppression. PMID:24374817

  1. Biofabricated Structures Reconstruct Functional Urinary Bladders in Radiation-injured Rat Bladders.

    PubMed

    Imamura, Tetsuya; Shimamura, Mitsuru; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Silwal Gautam, Sudha; Ishizuka, Osamu

    2018-05-08

    The ability to repair damaged urinary bladders through the application of bone marrow-derived cells is in the earliest stages of development. We investigated the application of bone marrow-derived cells to repair radiation-injured bladders. We used a three-dimensional (3D) bioprinting robot system to biofabricate bone marrow-derived cell structures. We then determined if the biofabricated structures could restore the tissues and functions of radiation-injured bladders. The bladders of female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2-Gy once a week for 5 weeks. Adherent and proliferating bone marrow-derived cells harvested from the femurs of male 17-week-old green fluorescence protein-transfected Tg-SD rats were cultured in collagen-coated flasks. Bone marrow-derived cell spheroids were formed in 96-well plates. Three layers of spheroids were assembled by the bioprinter onto a 9x9 microneedle array. The assembled spheroids were perfusion cultured for 7 days, and then the microneedle array was removed. Two weeks after the last radiation treatment, the biofabricated structures were transplanted into an incision on the anterior wall of the bladders (n=10). Control rats received the same surgery but without the biofabricated structures (sham-structure, n=12). At 2 and 4 weeks after surgery, the sham-structure control bladder tissues exhibited disorganized smooth muscle layers, decreased nerve cells, and significant fibrosis with increased presence of fibrosis-marker P4HB-positive cells and hypoxia-marker HIF1α-positive cells. The transplanted structures survived within the recipient tissues, and blood vessels extended within them from the recipient tissues. The bone marrow-derived cells in the structures differentiated into smooth muscle cells and formed smooth muscle clusters. The recipient tissues near the transplanted structures had distinct smooth muscle layers and reconstructed nerve cells, and only minimal fibrosis with decreased presence of P4HB- and HIF1α-positive cells. At 4 weeks after surgery, the sham-structure control rats exhibited significant urinary frequency symptoms with irregular and short voiding intervals, and low micturition volumes. In contrast, the structure-transplanted rats had regular micturition with longer voiding intervals and higher micturition volumes compared to the control rats. Further, the residual volume of the structure-transplanted rats was lower than for the controls. Therefore, transplantation of biofabricated bone marrow-derived cell structures reconstructed functional bladders.

  2. High-altitude haematology: Quechua-Aymara comparisons.

    PubMed

    Arnaud, J; Quilici, J C; Rivière, G

    1981-01-01

    Haematological studies have been carried out at various altitudes between 450 m and 4800 m, on two separate human groups (Quechuas and Aymaras) living in South America. Changes in the haematological parameters do not develop linearly in relation to the attitude. Th impact of chronic hypoxia on erythropoiesis is greater above 3000 m. The haemogram varies quantitatively and not qualitatively (mean corpuscular volume and mean haemoglobin concentration remain constant). The haematological study also reveals the greater adaptability to high altitude of the Aymaras, an adaptability characterized by an increase in red cell count and concentration and a decrease in red cell volume. The adaptative phenomena observed in the Quechuas are reversible, whereas they persist in the Aymaras when they migrate to the lowlands (450 m).

  3. Effect of temperature on the formation of creep substructure in sodium chloride single crystals

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Pharr, George M.

    1992-01-01

    The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.

  4. Atomic force microscopic study of the influence of physical stresses on Saccharomyces cerevisiae and Schizosaccharomyces pombe.

    PubMed

    Adya, Ashok K; Canetta, Elisabetta; Walker, Graeme M

    2006-01-01

    Morphological changes in the cell surfaces of the budding yeast Saccharomyces cerevisiae (strain NCYC 1681), and the fission yeast Schizosaccharomyces pombe (strain DVPB 1354), in response to thermal and osmotic stresses, were investigated using an atomic force microscope. With this microscope imaging, together with measurements of culture viability and cell size, it was possible to relate topological changes of the cell surface at nanoscale with cellular stress physiology. As expected, when the yeasts were exposed to thermostress or osmostress, their viability together with the mean cell volume decreased in conjunction with the increase in thermal or osmotic shock. Nevertheless, the viability of cells stressed for up to 1 h remained relatively high. For example, viabilities were >50% and >90% for the thermostressed, and >60% and >70% for the osmostressed S. cerevisiae and Schiz. pombe, respectively. Mean cell volume measurements, and bearing and roughness analyses of atomic force microscope images of stressed yeasts indicate that Schiz. pombe may be more resistant to physical stresses than S. cerevisiae. Overall, this study has highlighted the usefulness of atomic force microscope in studies of yeast stress physiology.

  5. Analyzing the effects of mechanical and osmotic loading on glycosaminoglycan synthesis rate in cartilaginous tissues.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2015-02-26

    The glycosaminoglycan (GAG) plays an important role in cartilaginous tissues to support and transmit mechanical loads. Many extracellular biophysical stimuli could affect GAG synthesis by cells. It has been hypothesized that the change of cell volume is a primary mechanism for cells to perceive the stimuli. Experimental studies have shown that the maximum synthesis rate of GAG is achieved at an optimal cell volume, larger or smaller than this level the GAG synthesis rate decreases. Based on the hypothesis and experimental findings in the literature, we proposed a mathematical model to quantitatively describe the cell volume dependent GAG synthesis rate in the cartilaginous tissues. Using this model, we investigated the effects of osmotic loading and mechanical loading on GAG synthesis rate. It is found our proposed mathematical model is able to well describe the change of GAG synthesis rate in isolated cells or in cartilage with variations of the osmotic loading or mechanical loading. This model is important for evaluating the GAG synthesis activity within cartilaginous tissues as well as understanding the role of mechanical loading in tissue growth or degeneration. It is also important for designing a bioreactor system with proper extracellular environment or mechanical loading for growing tissue at the maximum synthesis rate of the extracellular matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon

    2010-11-01

    Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.

  7. Modulation of red cell mass by neocytolysis in space and on Earth

    NASA Technical Reports Server (NTRS)

    Rice, L.; Alfrey, C. P.

    2000-01-01

    Astronauts predictably experience anemia after return from space. Upon entering microgravity, the blood volume in the extremities pools centrally and plasma volume decreases, causing plethora and erythropoietin suppression. There ensues neocytolysis, selective hemolysis of the youngest circulating red cells, allowing rapid adaptation to the space environment but becoming maladaptive on re-entry to a gravitational field. The existence of this physiologic control process was confirmed in polycythemic high-altitude dwellers transported to sea level. Pathologic neocytolysis contributes to the anemia of renal failure. Understanding the process has implications for optimizing erythropoietin-dosing schedules and the therapy of other human disorders. Human and rodent models of neocytolysis are being created to help find out how interactions between endothelial cells, reticuloendothelial phagocytes and young erythrocytes are altered, and to shed light on the expression of surface adhesion molecules underlying this process. Thus, unraveling a problem for space travelers has uncovered a physiologic process controlling the red cell mass that can be applied to human disorders on Earth.

  8. The ultrastructure and genetic traits of plants under the condition of hypobaric and hypoxia

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Tang, Yongkang; Wang, Shulei; Cheng, Quanyong; Zhao, Qi

    This study analyzed the cellular, sub-cellular and molecular levels, particle composition and volume changes of Indian lettuce under the conditions of hypobaric and hypoxia. Firstly, in the hypobaric and hypoxia conditions, two kinds of sample showed a decrease in the num-ber of cells, the increase in volume and the deflation in nuclear size. Secondly, Significant changes of the chloroplast ultrastructure have taken place in the two conditions. Thirdly, in the hypoxia condition, the chloroplast grana lamellae fractured and aggregated, which caused the chloroplasts to enlarge, their lamellae to reduce,become vaguer and finally to disintegrate. Fourthly, the volume change and aggregation of the chloroplasts induced mitochondria to ap-proach the chloroplasts. Fifthly, cytoskeleton immunofluorescence positioning results showed that the microtubules had decreased in number, shortened in length and gathered in the vicinity of the nucleus. In addition, total leaf DNA-sequence alignment found no rbcl gene mutation in the extreme conditions. Keywords: Chloroplast Ultrastructure Cytoskeleton rbcl gene Indian lettuce

  9. The study of the structural features of the lymphocytes from cattle with and without retroviral infection using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Artemev, Dmitry A.; Krasnikova, Ekaterina S.; Stolbovskaya, Olga V.; Krasnikov, Aleksandr V.; Kostishko, Boris B.; Roman, Radionov V.

    2018-04-01

    The results of the study of morphological and biophysical parameters of cell membranes of fixed lymphocytes from cattle with and without retroviral infection using atomic force microscopy have been presented. It is found that lymphocytes morphometric characteristics, such as diameter, height, volume, in case of BLV and BIV-BLV infection decrease by 18.5 and 22.7%, 9.0 and 25.0%, 4.4 and 35.3%, respectively, in comparison with the intact ones. It is maybe a sign of the cells immaturity or the degenerative processes development. However, the lymphocytes' morphometric characteristics in case of BIV infection increase by 45.8%, 12.7% and 35.8%, respectively, compared with the intact lymphocytes. It may be caused by the active replicative processes in BIV-infected cells. It is found that the adhesive properties and the roughness of cell surface of the lymphocytes from cattle with BLV, BIV, BIV-BLV infection increase in 2.3, 3.4, 3.0 times and by 37.3%, 19.2%, 14.8%, respectively, in comparison with the control cows' lymphocytes. A decrease in the Young's modulus of lymphocytes from cattle with BIV, BLV and BIV-BLV infection of 35.8%, 33.8% and 33.1%, respectively, compared to the control has been shown. It may indicate not only an increase in the cytolemma stiffness, but also an increase in the cell turgor as a result of volume index raising.

  10. Embryotoxicity of Corexit 9500 in mallard ducks (Anas platyrhynchos).

    PubMed

    Wooten, Kimberly J; Finch, Bryson E; Smith, Philip N

    2012-04-01

    Embryotoxicity of the oil dispersant Corexit 9500 was examined using fertilized mallard duck eggs. Corexit 9500 was topically applied below the air cell to eggs in volumes ranging from 0 to 100 μL on day 3 of incubation. The highest incidence of mortality occurred at developmental stage 4, one day post-Corexit 9500 application. Hatching success was significantly decreased among eggs treated with ≥ 20 μL of Corexit 9500 as compared to controls (P ≤ 0.047). No egg treated with ≥ 40 μL successfully hatched. The application volume resulting in 50% mortality (corrected for control survival) was determined to be 15.5 μL. Developmental stage at embryo death was also significantly decreased compared to controls in eggs exposed to 40 μL (P = 0.0042) and above.

  11. [Effect of glutamate on membrane potential and volume of the skeletal muscle fibers in rats following NO-synthase inhibition in vivo].

    PubMed

    Khairova, P A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh

    2002-11-01

    Cross-sectional area (CSA) of muscle fibers incubated in culture medium 199 for 3 hours dramatically increases, whereas resting membrane potential (RMP) decreases compared to "freshly-isolated" muscles. Both glutamate and sodium nitroprusside prevent these changes. MK-801, a specific inhibitor of NMDA-receptors, eliminates protective effects of glutamate on both CSA and RMP. NO-synthase inhibition in vivo promotes an increase of initial CSA and decrease of mean RMP. Under these conditions, effects of glutamate and sodium nitroprusside on CSA and RMP of denervated muscles are less obvious. It has been concluded that synaptic glutamate is able to participate in regulation of RMP and cell volume in muscle fibers through the activation of postsynaptic NMDA-receptors and muscle NO-synthase.

  12. An affordable method to obtain cultured endothelial cells from peripheral blood

    PubMed Central

    Bueno-Betí, Carlos; Novella, Susana; Lázaro-Franco, Macarena; Pérez-Cremades, Daniel; Heras, Magda; Sanchís, Juan; Hermenegildo, Carlos

    2013-01-01

    The culture of endothelial progenitor cells (EPC) provides an excellent tool to research on EPC biology and vascular regeneration and vasculogenesis. The use of different protocols to obtain EPC cultures makes it difficult to obtain comparable results in different groups. This work offers a systematic comparison of the main variables of most commonly used protocols for EPC isolation, culture and functional evaluation. Peripheral blood samples from healthy individuals were recovered and mononuclear cells were cultured. Different recovery and culture conditions were tested: blood volume, blood anticoagulant, coating matrix and percentage of foetal bovine serum (FBS) in culture media. The success of culture procedure, first colonies of endothelial cells appearance time, correlation with number of circulating EPC (cEPC) and functional comparison with human umbilical vein endothelial cells (HUVEC) were studied. The use of heparin, a minimum blood volume of 30 ml, fibronectin as a coating matrix and endothelial growing media-2 supplemented with 20% FBS increased the success of obtaining EPC cultures up to 80% of the processed samples while reducing EPC colony appearance mean time to a minimum of 13 days. Blood samples exhibiting higher cEPC numbers resulted in reduced EPC colony appearance mean time. Cells isolated by using this combination were endothelial cell-like EPCs morphological and phenotypically. Functionally, cultured EPC showed decreased growing and vasculogenic capacity when compared to HUVEC. Thus, above-mentioned conditions allow the isolation and culture of EPC with smaller blood volumes and shorter times than currently used protocols. PMID:24118735

  13. Molecular mechanism and therapeutic implications of selinexor (KPT-330) in liposarcoma

    PubMed Central

    Mayakonda, Anand; Said, Jonathan W; Doan, Ngan B; Chien, Wenwen; Ganesan, Trivadi S; Huey, Linda Shyue Chuang; Venkatachalam, Nachiyappan; Baloglu, Erkan; Shacham, Sharon; Kauffman, Michael; Koeffler, H. Phillip

    2017-01-01

    Exportin-1 mediates nuclear export of multiple tumor suppressor and growth regulatory proteins. Aberrant expression of exportin-1 is noted in human malignancies, resulting in cytoplasmic mislocalization of its target proteins. We investigated the efficacy of selinexor against liposarcoma cells both in vitro and in vivo. Exportin-1 was highly expressed in liposarcoma samples and cell lines as determined by immunohistochemistry, western blot, and immunofluorescence assay. Knockdown of endogenous exportin-1 inhibited proliferation of liposarcoma cells. Selinexor also significantly decreased cell proliferation as well as induced cell cycle arrest and apoptosis of liposarcoma cells. The drug also significantly decreased tumor volumes and weights of liposarcoma xenografts. Importantly, selinexor inhibited insulin-like growth factor 1 (IGF1) activation of IGF-1R/AKT pathway through upregulation of insulin-like growth factor binding protein 5 (IGFBP5). Further, overexpression and knockdown experiments showed that IGFBP5 acts as a tumor suppressor and its expression was restored upon selinexor treatment of liposarcoma cells. Selinexor decreased aurora kinase A and B levels in these cells and inhibitors of these kinases suppressed the growth of the liposarcoma cells. Overall, our study showed that selinexor treatment restored tumor suppressive function of IGFBP5 and inhibited aurora kinase A and B in liposarcoma cells supporting the usefulness of selinexor as a potential therapeutic strategy for the treatment of this cancer. PMID:27893412

  14. Drag reducing polymers improve coronary flow reserve through modulation of capillary resistance.

    PubMed

    Pacella, John J; Kameneva, Marina V; Villanueva, Flordeliza S

    2009-01-01

    We have shown that drag-reducing polymers (DRP) reduce microvascular resistance and improve myocardial perfusion during coronary stenosis. We used myocardial contrast echocardiography (MCE) and mathematical modeling to define the DRP microvascular effects. A non-flow-limiting left anterior descending (LAD) stenosis was created in 8 dogs. Intramyocardial blood volume, RBC velocity and flow in the LAD and circumflex (CX) beds were obtained from MCE at baseline, and in hyperemia, stenosis, hyperemia + stenosis, and hyperemia + stenosis + DRP. Microvascular resistances were calculated from a lumped-parameter model. During stenosis + hyperemia, LAD bed microvascular resistance increased (p<0.015), and capillary volume (p<0.002) and red cell velocity (p<0.0004) decreased relative to baseline. With DRP, during stenosis and hyperemia, LAD bed microvascular resistance decreased (p<0.04); there was an increase in capillary volume (p<0.007), RBC velocity (p<0.006), and flow (p<0.05). Decreased model-computed capillary resistance accounted for the reduction in LAD bed resistance after DRP. We conclude that DRP improve flow reserve during coronary stenosis by modulating capillary resistance. Primary modification of the rheological properties of blood to affect capillary resistance is a novel approach for the treatment of acute coronary syndromes.

  15. [Morphological analysis of bone dynamics and metabolic bone disease. Effect of loading on bone tissue].

    PubMed

    Sakai, Akinori

    2011-04-01

    We developed a voluntarily climbing animal model to investigate the effect of skeletal loading on bone tissue. At the cross section of the mid-femur, climbing exercise increases outer diameter and area of cortical bone. The mechanical strength of the femur is increased. This change of cortical volume and structure is more marked in anti-gravity exercise, such as climbing and jumping, than aerobic exercise. At the bone marrow area, climbing exercise increases trabecular bone volume and osteoblast number, while it decreases fat volume and adipocyte number. Skeletal loading promotes differentiation from mesenchymal stem cells to osteoblasts and suppresses that to adipocytes by facilitating the signal through PTH÷PTHrP receptor.

  16. Inflight Assay of Red Blood Cell Deformability

    NASA Technical Reports Server (NTRS)

    Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.

    1985-01-01

    Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.

  17. Estimating the impact of somatic cell count on the value of milk utilising parameters obtained from the published literature.

    PubMed

    Geary, Una; Lopez-Villalobos, Nicolas; O'Brien, Bernadette; Garrick, Dorian J; Shalloo, Laurence

    2014-05-01

    The impact of mastitis on milk value per litre independent of the effect of mastitis on milk volume, was quantified for Ireland using a meta-analysis and a processing sector model. Changes in raw milk composition, cheese processing and composition associated with increased bulk milk somatic cell count (BMSCC) were incorporated into the model. Processing costs and market values were representative of current industry values. It was assumed that as BMSCC increased (i) milk fat and milk protein increased and milk lactose decreased, (ii) fat and protein recoveries decreased, (iii) cheese protein decreased and cheese moisture increased. Five BMSCC categories were examined from ⩽100 000 to >400 000 cells/ml. The analysis showed that as BMSCC increased the production quantities reduced. An increase in BMSCC from 100 000 to >400 000 cells/ml saw a reduction in net revenue of 3·2% per annum (€51·3 million) which corresponded to a reduction in the value of raw milk of €0·0096 cents/l.

  18. Nicotinamide attenuates the ischemic brain injury-induced decrease of Akt activation and Bad phosphorylation.

    PubMed

    Koh, Phil-Ok

    2011-07-08

    Nicotinamide protects cortical neuronal cells against cerebral ischemic injury through activation of various cytoprotective mechanisms. Here, this study confirmed the neuroprotective effects of nicotinamide in focal cerebral ischemic injury and investigated whether nicotinamide modulates a crucial survival pathway, Akt and its downstream targets. Adult male rats were treated with vehicle or nicotinamide (500 mg/kg) 2h after the onset of middle cerebral artery occlusion (MCAO). Brains were collected 24h after MCAO and infarct volumes were analyzed. Nicotinamide significantly reduced the infarct volume in the cerebral cortex. Potential activation was measured by phosphorylation of PDK1 at Ser(241), Akt at Ser(473), and Bad at Ser(136) using Western blot analysis. Nicotinamide prevented the injury-induced decrease of pPDK1, pAkt, and pBad levels. 14-3-3 levels were not different between vehicle- and nicotinamide-treated animals. However, pBad and 14-3-3 interaction levels decreased during MCAO, but were maintained in the presence of nicotinamide, compared to levels in control animals. These findings suggest that nicotinamide attenuates cell death due to focal cerebral ischemic injury and that neuroprotective effects are mediated through the Akt signaling pathway, thus enhancing neuronal survival. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post,J.; Bish, D.; Heaney, P.

    2007-01-01

    Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less

  20. Structure-function relationships in the stem cell's mechanical world B: emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure.

    PubMed

    Chang, Hana; Knothe Tate, Melissa L

    2011-12-01

    In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness and remodeling. We hypothesize that the spatiotemporal organization of tubulin and actin elements of the cytoskeleton changes in response to volume and shape changing stresses emulating those during development, prior to the first beating of the heart or twitching of muscle. Our approach was to quantify the change over baseline in spatiotemporal distribution of actin and tubulin in live C3H/10T1/2 model stem cells subjected to volume changing stresses induced by seeding at density as well as low magnitude, short duration, shape changing (shear) stresses induced by fluid flow (0.5 or 1.0 dyne/cm2 for 30/60/90 minutes). Upon exposure to fluid flow, both tubulin thickness (height) and concentration (fluorescence intensity) change significantly over baseline, as a function of proximity to neighboring cells (density) and the substrate (apical-basal height). Given our recently published studies showing amplification of stress gradients (flow velocity) with increasing distance to nearest neighbors and the substrate, i.e. with decreasing density and toward the apical side of the cell, tubulin adaptation appears to depend significantly on the magnitude of the stress to which the cell is exposed locally. In contrast, adaptation of actin to the changing mechanical milieu is more global, exhibiting less significant differences attributable to nearest neighbors or boundaries than differences attributable to magnitude of the stress to which the cell is exposed globally (0.5 versus 1.0 dyne/cm2). Furthermore, changes in the actin cytoskeletal distribution correlate positively with one pre-mesenchymal condensation marker (Msx2) and negatively with early markers of chondrogenesis (ColIIaI alone, indicative of pre-hypertrophic chondrogenesis) and osteogenesis (Runx2). Changes in the tubulin cytoskeletal distribution correlate positively with a marker of pericondensation (Sox9 alone), negatively with chondrogenesis (ColIIaI) and positively with adipogenesis (Ppar-gamma 2). Taken as a whole, exposure of MSCs to volume and shape changing stresses results in emergent anisotropy of cytoskeletal architecture (structure), which relate to emergent cell fate (function).

  1. Coagulability and Rheology: Hematologic Benefits From Exercise, Fish, and Aspirin. Implications for Athletes and Nonathletes.

    PubMed

    Eichner, E R

    1986-10-01

    In brief: Physical activity makes the blood more fluid and less likely to clot. The healthy hematologic adaptations to exercise (enhanced fibrinolysis, expanded plasma volume, decreased hematocrit, increased red cell deformability, and decreased blood viscosity) seem to enhance the delivery of oxygen and decrease the risk of thrombosis. Regular exercise, then, by changing the blood, may offer the elite athlete enhanced performance and the general population reduced risk of heart attack. Increased amounts of fish in the diet and-for selected persons-low-dose aspirin, may be useful antithrombotic adjuncts to exercise.

  2. Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues.

    PubMed

    Phothiset, Suphatta; Charoenrein, Sanguansri

    2014-01-30

    During storage, frozen fruit may be thawed and refrozen many times before consumption, which may be extremely damaging to the texture of the frozen fruit and reverse the advantage of fast freezing. The effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues were investigated. The frozen-thawed papayas had an increase in drip loss and a decrease in firmness with increasing number of freeze-thaw cycles. Light microscopy showed irregular shapes and cell damage in parenchyma cells of frozen-thawed papayas, whereas transmission electron microscopy showed loss of cell wall materials in middle lamella. Moreover, destruction of cell wall was observed after being subjected to five freeze-thaw cycles. These changes related with a significant decrease in alcohol-insoluble solids, Na₂CO₃- and 24% KOH-soluble fractions and an increase in the water-, EDTA- and 4% KOH-soluble fractions. This was due to a decrease in the molecular mass of pectic and hemicellulosic polymers in frozen-thawed papayas using high-performance size-exclusion chromatography. The freezing and thawing processes caused fine structural damage and cell wall composition changes which contributed to a loss of drip volume and firmness of papaya tissues. © 2013 Society of Chemical Industry.

  3. Investigations in Producing Porous NiAl by Combustion Synthesis

    NASA Astrophysics Data System (ADS)

    Zhong, Songming

    In recent years, nickel aluminide (NiAl) intermetallic foam, which combines the advantages of nickel-based alloy and metallic foam, has attracted great attention due to its extraordinary properties. In this present work, nickel aluminide (NiAl) foam has been reactively processed from elemental powder (nickel and aluminium) with different types and percentage of volume of a foaming agent (TiH2 or CaCO3), using a combustion synthesis (CS) approach. Most of the previous research has focused on producing close-cell NiAl intermetallic foam; however, this paper presents a new combustion synthesis process to fabricate a hybrid open-cell and close-cell NiAl intermetallic foam. Mixed elemental powder was compacted at moderate pressure generating closed and open porosity with green compact; as a result, part of the liberated gas could escape from the sample, which resulted in producing open-cell pores, in addition, closed cell pores in the product. The effect of foaming agent type and volume percentage on the product is discussed. An increase in volume percentage of TiH2 was found to have beneficial effects on increasing porosity; however, with the increase of volume percentage of CaCO3, there is a big drop in porosity because the low viscosity under high temperature makes more liberated gas escape and pores collapse. According to XRD and EDX analysis, despite the present of multiple phases in samples, NiAl was still the major phase. Hardness measurement shows that high hardness value was obtained at sample of low grain size, hardness value increases with decreasing grain size.

  4. Small and cheap: accurate differential blood count with minimal sample volume by laser scanning cytometry (LSC)

    NASA Astrophysics Data System (ADS)

    Mittag, Anja; Lenz, Dominik; Smith, Paul J.; Pach, Susanne; Tarnok, Attila

    2005-04-01

    Aim: In patients, e.g. with congenital heart diseases, a differential blood count is needed for diagnosis. To this end by standard automatic analyzers 500 μl of blood is required from the patients. In case of newborns and infants this is a substantial volume, especially after operations associated with blood loss. Therefore, aim of this study was to develop a method to determine a differential blood picture with a substantially reduced specimen volume. Methods: To generate a differential blood picture 10 μl EDTA blood were mixed with 10 μl of a DRAQ5 solution (500μM, Biostatus) and 10 μl of an antibody mixture (CD45-FITC, CD14-PE, diluted with PBS). 20 μl of this cell suspension was filled into a Neubauer counting chamber. Due to the defined volume of the chamber it is possible to determine the cell count per volume. The trigger for leukocyte counting was set on DRAQ5 signal in order to be able to distinguish nucleated white blood cells from erythrocytes. Different leukocyte subsets could be distinguished due to the used fluorescence labeled antibodies. For erythrocyte counting cell suspension was diluted another 150 times. 20 μl of this dilution was analyzed in a microchamber by LSC with trigger set on forward scatter signal. Results: This method allows a substantial decrease of blood sample volume for generation of a differential blood picture (10 μl instead of 500μl). There was a high correlation between our method and the results of routine laboratory (r2=0.96, p<0.0001 n=40). For all parameters intra-assay variance was less than 7 %. Conclusions: In patients with low blood volume such as neonates and in critically ill infants every effort has to be taken to reduce the blood volume needed for diagnostics. With this method only 2% of standard sample volume is needed to generate a differential blood picture. Costs are below that of routine laboratory. We suggest this method to be established in paediatric cardiology for routine diagnostics and for resource poor settings.

  5. cDNA cloning and functional characterization of the mouse Ca2+-gated K+ channel, mIK1. Roles in regulatory volume decrease and erythroid differentiation.

    PubMed

    Vandorpe, D H; Shmukler, B E; Jiang, L; Lim, B; Maylie, J; Adelman, J P; de Franceschi, L; Cappellini, M D; Brugnara, C; Alper, S L

    1998-08-21

    We have cloned from murine erythroleukemia (MEL) cells, thymus, and stomach the cDNA encoding the Ca2+-gated K+ (KCa) channel, mIK1, the mouse homolog of hIK1 (Ishii, T. M., Silvia, C., Hirschberg, B., Bond, C. T., Adelman, J. P., and Maylie, J. (1997) Proc. Natl. Acad. Sci.(U. S. A. 94, 11651-11656). mIK1 mRNA was detected at varied levels in many tissue types. mIK1 KCa channel activity expressed in Xenopus oocytes closely resembled the Kca of red cells (Gardos channel) and MEL cells in its single channel conductance, lack of voltage-sensitivity of activation, inward rectification, and Ca2+ concentration dependence. mIK1 also resembled the erythroid channel in its pharmacological properties, mediating whole cell and unitary currents sensitive to low nM concentrations of both clotrimazole (CLT) and its des-imidazolyl metabolite, 2-chlorophenyl-bisphenyl-methanol, and to low nM concentrations of iodocharybdotoxin. Whereas control oocytes subjected to hypotonic swelling remained swollen, mIK1 expression conferred on oocytes a novel, Ca2+-dependent, CLT-sensitive regulatory volume decrease response. Hypotonic swelling of voltage-clamped mIK1-expressing oocytes increased outward currents that were Ca2+-dependent, CLT-sensitive, and reversed near the K+ equilibrium potential. mIK1 mRNA levels in ES cells increased steadily during erythroid differentiation in culture, in contrast to other KCa mRNAs examined. Low nanomolar concentrations of CLT inhibited proliferation and erythroid differentiation of peripheral blood stem cells in liquid culture.

  6. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons.

    PubMed

    Gerbaix, Maude; Gnyubkin, Vasily; Farlay, Delphine; Olivier, Cécile; Ammann, Patrick; Courbon, Guillaume; Laroche, Norbert; Genthial, Rachel; Follet, Hélène; Peyrin, Françoise; Shenkman, Boris; Gauquelin-Koch, Guillemette; Vico, Laurence

    2017-06-01

    The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.

  7. Transection of Preganglionic Axons Leads to CNS Neuronal Plasticity Followed by Survival and Target Reinnervation

    PubMed Central

    Coulibaly, Aminata P.; Gannon, Sean M.; Hawk, Kiel; Walsh, Brian F.; Isaacson, Lori G.

    2013-01-01

    The goals of the present study were to investigate the changes in sympathetic preganglionic neurons following transection of distal axons in the cervical sympathetic trunk (CST) that innervate the superior cervical ganglion (SCG) and to assess changes in the protein expression of brain derived neurotrophic factor (BDNF) and its receptor TrkB in the thoracic spinal cord. . At 1 week, a significant decrease in soma volume and reduced soma expression of choline acetyltransferase (ChAT) in the intermediolateral cell column (IML) of T1 spinal cord were observed, with both ChAT-ir and non-immunoreactive neurons expressing the injury marker activating transcription factor 3. . These changes were transient, and at later time points, ChAT expression and soma volume returned to control values and the number of ATF3 neurons declined. No evidence for cell loss or neuronal apoptosis was detected at any time point. Protein levels of BDNF and/or full length TrkB in the spinal cord were increased throughout the survival period. In the SCG, both ChAT-ir axons and ChAT protein remained decreased at 16 weeks, but were increased compared to the 10 week time point. These results suggest that though IML neurons show reduced ChAT expression and cell volume at 1 week following CST transection, at later time points, the neurons recovered and exhibited no significant signs of neurodegeneration. The alterations in BDNF and/or TrkB may have contributed to the survival of the IML neurons and the recovery of ChAT expression, as well as to the reinnervation of the SCG. PMID:23891533

  8. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells

    PubMed Central

    Mairbäurl, Heimo

    2013-01-01

    During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called “sports anemia.” This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise. PMID:24273518

  9. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats

    PubMed Central

    Pirmoradi, Leila; Noorafshan, Ali; Safaee, Akbar; Dehghani, Gholam Abbas

    2016-01-01

    Background: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Results: Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.190.08 vs. 0.970.27 ng/dL, P<0.002). The respective high BG (53249 vs. 14446 mg/dL, P<0.0001) and reduced plasma insulin (0.260.15 vs. 0.540.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.90.2 vs. 3.030.6 mm3, P<0.003) and TBCN (0.990.1 vs. 3.20.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.90.8 and 4.071.0 mm3, P<0.003) and TBCN (1.50.3 and 3.80.6 x 106, P<0.03). Conclusion: Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers. PMID:26459400

  10. Depletion of CD11c+ Cells Does Not Influence Outcomes in Mice Subjected to Transient Middle Cerebral Artery Occlusion.

    PubMed

    Kraft, Peter; Scholtyschik, Karolina; Schuhmann, Michael K; Kleinschnitz, Christoph

    2017-01-01

    While it has been shown that different T-cell subsets have a detrimental role in the acute phase of ischemic stroke, data on the impact of dendritic cells (DC) are missing. Classic DC can be characterized by the cluster of differentiation (CD)11c surface antigen. In this study, we depleted CD11c+ cells by using a CD11c-diphtheria toxin (DTX) receptor mouse strain that allows selective depletion of CD11c+ cells by DTX injection. For stroke induction, we used the model of transient middle cerebral artery occlusion (tMCAO) and analyzed stroke volume and functional outcome on days 1 and 3 as well as expression of prototypical pro- and anti-inflammatory cytokines on day 1 after tMCAO. Three different protocols for CD11c+ cell depletion, tMCAO duration, and readout time point were applied. Injection of DTX (5 or 100 ng/g) reliably depleted CD11c+ cells without influencing the fractions of other immune cell subsets. CD11c+ cell depletion had no impact on stroke volume, but mice with a longer DTX pretreatment performed worse than those with vehicle treatment. CD11c+ cell depletion led to a decrease in cortical interleukin (IL)-1β and IL-6 messenger ribonucleic acid levels. We show, for the first time, that CD11c+ cell depletion does not influence stroke volume in a mouse model of focal cerebral ischemia. Nevertheless, given the unspecificity of the CD11c surface antigen for DC, mouse models that allow a more selective depletion of DC are needed to investigate the role of DC in stroke pathophysiology. © 2017 S. Karger AG, Basel.

  11. Characterisation of a cell swelling-activated K+-selective conductance of Ehrlich mouse ascites tumour cells

    PubMed Central

    Niemeyer, María Isabel; Hougaard, Charlotte; Hoffmann, Else K; Jørgensen, Finn; Stutzin, Andrés; Sepúlveda, Francisco V

    2000-01-01

    The K+ and Cl− currents activated by hypotonic cell swelling were studied in Ehrlich ascites tumour cells using the whole-cell recording mode of the patch-clamp technique. Currents were measured in the absence of added intracellular Ca2+ and with strong buffering of Ca2+. K+ current activated by cell swelling was measured as outward current at the Cl− equilibrium potential (ECl) under quasi-physiological gradients. It could be abolished by replacing extracellular Na+ with K+, thereby cancelling the driving force. Replacement with other cations suggested a selectivity sequence of K+ > Rb+ > NH4≈ Na+≈ Li+; Cs+ appeared to be inhibitory. The current-voltage relationship of the volume-sensitive K+ current was well fitted with the Goldman-Hodgkin-Katz current equation between -130 and +20 mV with a permeability coefficient of around 10−6 cm s−1 with both physiological and high-K+ extracellular solutions. The class III antiarrhythmic drug clofilium blocked the volume-sensitive K+ current in a voltage-independent manner with an IC50 of 32 μM. Clofilium was also found to be a strong inhibitor of the regulatory volume decrease response of Ehrlich cells. Cell swelling-activated K+ currents of Ehrlich cells are voltage and calcium insensitive and are resistant to a range of K+ channel inhibitors. These characteristics are similar to those of the so-called background K+ channels. Noise analysis of whole-cell current was consistent with a unitary conductance of 5.5 pS for the single channels underlying the K+ current evoked by cell swelling, measured at 0 mV under a quasi-physiological K+ gradient. PMID:10790156

  12. [Isolation and purification of BMScs of GFP transgenic mouse using the method of adhering to cuture plastic in different time].

    PubMed

    Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua

    2006-03-01

    To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.

  13. Experiment K-6-07. Metabolic and morphologic properties of muscle fibers after spaceflight

    NASA Technical Reports Server (NTRS)

    Edgerton, R.; Miu, B.; Martin, Thomas P.; Roy, R.; Marini, J.; Leger, J. J.; Oganov, V.; Ilyina-Kakueva, E.

    1990-01-01

    The present study demonstrates that the general capability of skeletal muscle to maintain its proteins decreases rapidly in response to space flight. The present findings suggest further that the magnitude of enzymatic and cell volumes changes in response to space flight depend on several factors including the muscle and its fiber type composition. It appears that in order to associate physiological relevance to the observed enzymatic changes, cell volume should be considered also. Although it remains unclear as to the stimulus, or lack of stimulus, that triggers the rapid changes in muscle proteins in response to space flight, ground-based models of muscle atrophy suggest that the reduction in mechanical loading of muscle may be more important than the total amount of activation over a 24-hr period.

  14. Changes in brain cell shape create residual extracellular space volume and explain tortuosity behavior during osmotic challenge.

    PubMed

    Chen, K C; Nicholson, C

    2000-07-18

    Diffusion of molecules in brain extracellular space is constrained by two macroscopic parameters, tortuosity factor lambda and volume fraction alpha. Recent studies in brain slices show that when osmolarity is reduced, lambda increases while alpha decreases. In contrast, with increased osmolarity, alpha increases, but lambda attains a plateau. Using homogenization theory and a variety of lattice models, we found that the plateau behavior of lambda can be explained if the shape of brain cells changes nonuniformly during the shrinking or swelling induced by osmotic challenge. The nonuniform cellular shrinkage creates residual extracellular space that temporarily traps diffusing molecules, thus impeding the macroscopic diffusion. The paper also discusses the definition of tortuosity and its independence of the measurement frame of reference.

  15. Mucoactive effects of naringin in lipopolysaccharide-induced acute lung injury mice and beagle dogs.

    PubMed

    Chen, Yan; Wu, Hao; Nie, Yi-chu; Li, Pei-bo; Shen, Jian-gang; Su, Wei-wei

    2014-07-01

    Our previous study has demonstrated that naringin attenuates EGF-induced MUC5AC hypersecretion in A549 cells by suppressing the cooperative activities of MAPKs/AP-1 and IKKs/IκB/NF-κB signaling pathways. However, the volume of airway mucus is determined by two factors including the number of mucous cells and capacity of mucus secretion. The aim of the present study is to explore the mucoactive effects of naringin in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice and beagle dogs. The results demonstrated that naringin of 12.4 mg/kg treatment significantly decreased LPS-induced enhancement of sputum volume and pulmonary inflammation, remarkably increased the subglottic sputum volume and solids content in sputum of lower trachea, while partially, but not fully, significantly increased the elasticity and viscosity of sputum in lower trachea of beagle dogs. Moreover, the MUC5AC content in BALF and goblet-cells in large airways of LPS-induced ALI mice were significantly attenuated by dexamethasone (5 mg/kg), ambroxol (25 mg/kg), and naringin (15, 60 mg/kg). However, the goblet-cells hyperplasia in small airways induced by LPS was only significantly inhibited by dexamethasone and naringin (60 mg/kg). In conclusion, naringin exhibits mucoactive effects through multiple targets which including reduction of goblet cells hyperplasia and mucus hypersecretion, as well as promotion of sputum excretion. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Monte Carlo calculated microdosimetric spread for cell nucleus-sized targets exposed to brachytherapy 125I and 192Ir sources and 60Co cell irradiation.

    PubMed

    Villegas, Fernanda; Tilly, Nina; Ahnesjö, Anders

    2013-09-07

    The stochastic nature of ionizing radiation interactions causes a microdosimetric spread in energy depositions for cell or cell nucleus-sized volumes. The magnitude of the spread may be a confounding factor in dose response analysis. The aim of this work is to give values for the microdosimetric spread for a range of doses imparted by (125)I and (192)Ir brachytherapy radionuclides, and for a (60)Co source. An upgraded version of the Monte Carlo code PENELOPE was used to obtain frequency distributions of specific energy for each of these radiation qualities and for four different cell nucleus-sized volumes. The results demonstrate that the magnitude of the microdosimetric spread increases when the target size decreases or when the energy of the radiation quality is reduced. Frequency distributions calculated according to the formalism of Kellerer and Chmelevsky using full convolution of the Monte Carlo calculated single track frequency distributions confirm that at doses exceeding 0.08 Gy for (125)I, 0.1 Gy for (192)Ir, and 0.2 Gy for (60)Co, the resulting distribution can be accurately approximated with a normal distribution. A parameterization of the width of the distribution as a function of dose and target volume of interest is presented as a convenient form for the use in response modelling or similar contexts.

  17. Effect of Neutralizing Transforming Growth Factor β1 on the Immune Response against Mycobacterium tuberculosis in Guinea Pigs

    PubMed Central

    Allen, Shannon Sedberry; Cassone, Lynne; Lasco, Todd M.; McMurray, David N.

    2004-01-01

    Transforming growth factor β (TGF-β) is a cytokine which has been shown to suppress the antimycobacterial immune responses of humans and experimental animals. In this study, the contributions of TGF-β to cytokine production in vivo were investigated by using the established guinea pig model of tuberculous pleurisy. Mycobacterium bovis BCG-vaccinated guinea pigs were injected intrapleurally with heat-killed virulent Mycobacterium tuberculosis. Eight days following induction of an antigen-specific pleural effusion, guinea pigs were injected intrapleurally with anti-TGF-β1 or isotype control antibody. The following day, pleural exudates were removed, and the fluid volume and characteristics of the infiltrating cells were determined. Pleural fluid was analyzed for total interferon (IFN) and tumor necrosis factor (TNF) protein levels by using appropriate bioassays. RNA from pleural effusion cells was examined to determine TGF-β1, TNF-α, IFN-γ, and interleukin-8 mRNA levels by using real-time PCR. Proliferative responses of pleural effusion lymphocytes were examined in response to concanavalin A and purified protein derivative (PPD) in vitro. Treatment with anti-TGF-β1 resulted in decreased pleural fluid volume and decreased cell numbers in the pleural space along with an increased percentage of lymphocytes and a decreased percentage of neutrophils. The bioactive TNF protein levels in pleural fluid were increased in guinea pigs treated with anti-TGF-β1, while the bioactive IFN protein concentrations were not altered. Expression of TGF-β1 and TNF-α mRNA was significantly increased following TGF-β1 neutralization. Finally, PPD-induced proliferative responses of pleural cells from anti-TGF-β1-treated animals were significantly enhanced. Thus, TGF-β1 may be involved in the resolution of this local, mycobacterial antigen-specific inflammatory response. PMID:14977939

  18. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan-air pouch inflammation model

    PubMed Central

    Kim, Dajeong; Park, Dongsun; Kyung, Jangbeen; Yang, Yun-Hui; Choi, Ehn-Kyoung; Lee, Yoon-Bok; Kim, Hyun-Kyu; Hwang, Bang Yeon

    2012-01-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in rat carrageenan-air pouch model. Oral administration of HSE (50-200 mg/kg) suppressed carrageenan-induced exudation and albumin leakage, as well as inflammatory cell infiltration at a high dose (200 mg/kg). Intraperitoneal injection of dexamethasone (2 mg/kg) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content without influence on the cell number. HSE lowered tumor-necrosis factor-α (TNF-α) and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased PGE2. The results indicate that HSE exhibits anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase-2-PGE2 pathways. PMID:22787488

  19. WNT1-induced Secreted Protein-1 (WISP1), a Novel Regulator of Bone Turnover and Wnt Signaling*

    PubMed Central

    Maeda, Azusa; Ono, Mitsuaki; Holmbeck, Kenn; Li, Li; Kilts, Tina M.; Kram, Vardit; Noonan, Megan L.; Yoshioka, Yuya; McNerny, Erin M. B.; Tantillo, Margaret A.; Kohn, David H.; Lyons, Karen M.; Robey, Pamela G.; Young, Marian F.

    2015-01-01

    WISP1/CCN4 (hereafter referred to as WISP1), a member of the CCN family, is found in mineralized tissues and is produced by osteoblasts and their precursors. In this study, Wisp1-deficient (Wisp1−/−) mice were generated. Using dual-energy x-ray absorptiometry, we showed that by 3 months, the total bone mineral density of Wisp1−/− mice was significantly lower than that of WT mice. Further investigation by micro-computed tomography showed that female Wisp1−/− mice had decreased trabecular bone volume/total volume and that both male and female Wisp1−/− mice had decreased cortical bone thickness accompanied by diminished biomechanical strength. The molecular basis for decreased bone mass in Wisp1−/− mice arises from reduced bone formation likely caused by osteogenic progenitors that differentiate poorly compared with WT cells. Osteoclast precursors from Wisp1−/− mice developed more tartrate-resistant acid phosphatase-positive cells in vitro and in transplants, suggesting that WISP1 is also a negative regulator of osteoclast differentiation. When bone turnover (formation and resorption) was induced by ovariectomy, Wisp1−/− mice had lower bone mineral density compared WT mice, confirming the potential for multiple roles for WISP1 in controlling bone homeostasis. Wisp1−/− bone marrow stromal cells had reduced expression of β-catenin and its target genes, potentially caused by WISP1 inhibition of SOST binding to LRP6. Taken together, our data suggest that the decreased bone mass found in Wisp1−/− mice could potentially be caused by an insufficiency in the osteodifferentiation capacity of bone marrow stromal cells arising from diminished Wnt signaling, ultimately leading to altered bone turnover and weaker biomechanically compromised bones. PMID:25864198

  20. In Vitro and In Vivo Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis

    PubMed Central

    Kaplum, Vanessa; Cogo, Juliana; Sangi, Diego Pereira; Ueda-Nakamura, Tânia; Corrêa, Arlene Gonçalves

    2016-01-01

    Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis. The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·−) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·− concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis. PMID:27001812

  1. Patients with sickle cell disease taking hydroxyurea in the Hemocentro Regional de Montes Claros

    PubMed Central

    Santos, Fernanda Kelle de Souza; Maia, Caroline Nogueira

    2011-01-01

    Background The development of therapies for sickle cell disease has received special attention, particularly those that reduce the polymerization of hemoglobin S. Hydroxyurea is a commonly used medication because it has the ability to raise levels of fetal hemoglobin, decrease the frequency of vaso-occlusive episodes and thus improve the clinical course of sickle cell disease patients. Objective To study hematological data and the clinical profile of sickle cell disease patients taking hydroxyurea in a regional blood center. Methods From the charts of 20 patients with sickle cell anemia, the clinical outcomes and a number of hematological variables were analyzed before and during treatment with hydroxyurea. Results The patients' ages ranged from 6 to 41 years old, most were dark skinned and there was a predominance of women. The main symptom that defined whether patients were prescribed hydroxyurea was painful crises followed by hospitalizations. During treatment with hydroxyurea there were significant increases in hemoglobin, fetal hemoglobin, mean corpuscular volume and mean corpuscular hemoglobin. The reticulocyte and white blood cell counts dropped significantly with treatment. A positive correlation was found between fetal hemoglobin and mean corpuscular volume before and during treatment. Additionally, a correlation was found between the white blood cell and reticulocyte counts before treatment with hydroxyurea. Conclusion Most patients showed improvements with treatment as demonstrated by increases in hemoglobin, fetal hemoglobin and mean corpuscular volume, as well as by reductions in the reticulocyte and white blood cell counts. Clinically, more than 50% of patients had a significant reduction of events. PMID:23284256

  2. Complex and region-specific changes in astroglial markers in the aging brain.

    PubMed

    Rodríguez, José J; Yeh, Chia-Yu; Terzieva, Slavica; Olabarria, Markel; Kulijewicz-Nawrot, Magdalena; Verkhratsky, Alexei

    2014-01-01

    Morphological aging of astrocytes was investigated in entorhinal cortex (EC), dentate gyrus (DG), and cornu ammonis 1 (CA1) regions of hippocampus of male SV129/C57BL6 mice of different age groups (3, 9, 18, and 24 months). Astroglial profiles were visualized by immunohistochemistry by using glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and s100β staining; these profiles were imaged using confocal or light microscopy for subsequent morphometric analysis. GFAP-positive profiles in the DG and the CA1 of the hippocampus showed progressive age-dependent hypertrophy, as indicated by an increase in surface, volume, and somata volume at 24 months of age compared with 3-month-old mice. In contrast with the hippocampal regions, aging induced a decrease in GFAP-positive astroglial profiles in the EC: the surface, volume, and cell body volume of astroglial cells at 24 months of age were decreased significantly compared with the 3-month group. The GS-positive astrocytes displayed smaller cellular surface areas at 24 months compared with 3-month-old animals in both areas of hippocampus, whereas GS-positive profiles remained unchanged in the EC of old mice. The morphometry of s100β-immunoreactive profiles revealed substantial increase in the EC, more moderate increase in the DG, and no changes in the CA1 area. Based on the morphological analysis of 3 astroglial markers, we conclude that astrocytes undergo a complex age-dependent remodeling in a brain region-specific manner. Copyright © 2014. Published by Elsevier Inc.

  3. TASK-2: a K2P K+ channel with complex regulation and diverse physiological functions

    PubMed Central

    Cid, L. Pablo; Roa-Rojas, Hugo A.; Niemeyer, María I.; González, Wendy; Araki, Masatake; Araki, Kimi; Sepúlveda, Francisco V.

    2013-01-01

    TASK-2 (K2P5.1) is a two-pore domain K+ channel belonging to the TALK subgroup of the K2P family of proteins. TASK-2 has been shown to be activated by extra- and intracellular alkalinization. Extra- and intracellular pH-sensors reside at arginine 224 and lysine 245 and might affect separate selectivity filter and inner gates respectively. TASK-2 is modulated by changes in cell volume and a regulation by direct G-protein interaction has also been proposed. Activation by extracellular alkalinization has been associated with a role of TASK-2 in kidney proximal tubule bicarbonate reabsorption, whilst intracellular pH-sensitivity might be the mechanism for its participation in central chemosensitive neurons. In addition to these functions TASK-2 has been proposed to play a part in apoptotic volume decrease in kidney cells and in volume regulation of glial cells and T-lymphocytes. TASK-2 is present in chondrocytes of hyaline cartilage, where it is proposed to play a central role in stabilizing the membrane potential. Additional sites of expression are dorsal root ganglion neurons, endocrine and exocrine pancreas and intestinal smooth muscle cells. TASK-2 has been associated with the regulation of proliferation of breast cancer cells and could become target for breast cancer therapeutics. Further work in native tissues and cells together with genetic modification will no doubt reveal the details of TASK-2 functions that we are only starting to suspect. PMID:23908634

  4. Optimization of gluten-free formulations for French-style breads.

    PubMed

    Mezaize, S; Chevallier, S; Le Bail, A; de Lamballerie, M

    2009-04-01

    The formulation of gluten-free bread, which will be suitable for patients with coeliac disease, was optimized to provide bread similar to French bread. The effects of the presence of hydrocolloids and the substitution of the flour basis by flour or proteins from different sources were studied. The added ingredients were (1) hydrocolloids (carboxymethylcellulose [CMC], guar gum, hydroxypropylmethylcellulose [HPMC], and xanthan gum), and (2) substitutes (buckwheat flour, whole egg powder, and whey proteins). The bread quality parameters measured were specific volume, dry matter of bread, crust color, crumb hardness, and gas cell size distribution. Specific volume was increased by guar gum and HPMC. Breads with guar gum had color characteristics similar to French bread. Hardness decreased with the addition of hydrocolloids, especially HPMC and guar. Breads with guar gum had the most heterogeneous cell size distribution, and guar gum was therefore selected for further formulations. Bread prepared with buckwheat flour had improved quality: an increased specific volume, a softer texture, color characteristics, and gas-cell size distribution similar to French bread. Bread with 1.9% guar gum (w/w, total flour basis) and 5% buckwheat flour (of all flours and substitutes) mimicked French bread quality attributes.

  5. Glial-Specific Functions of Microcephaly Protein WDR62 and Interaction with the Mitotic Kinase AURKA Are Essential for Drosophila Brain Growth.

    PubMed

    Lim, Nicholas R; Shohayeb, Belal; Zaytseva, Olga; Mitchell, Naomi; Millard, S Sean; Ng, Dominic C H; Quinn, Leonie M

    2017-07-11

    The second most commonly mutated gene in primary microcephaly (MCPH) patients is wd40-repeat protein 62 (wdr62), but the relative contribution of WDR62 function to the growth of major brain lineages is unknown. Here, we use Drosophila models to dissect lineage-specific WDR62 function(s). Interestingly, although neural stem cell (neuroblast)-specific depletion of WDR62 significantly decreased neuroblast number, brain size was unchanged. In contrast, glial lineage-specific WDR62 depletion significantly decreased brain volume. Moreover, loss of function in glia not only decreased the glial population but also non-autonomously caused neuroblast loss. We further demonstrated that WDR62 controls brain growth through lineage-specific interactions with master mitotic signaling kinase, AURKA. Depletion of AURKA in neuroblasts drives brain overgrowth, which was suppressed by WDR62 co-depletion. In contrast, glial-specific depletion of AURKA significantly decreased brain volume, which was further decreased by WDR62 co-depletion. Thus, dissecting relative contributions of MCPH factors to individual neural lineages will be critical for understanding complex diseases such as microcephaly. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. Blood volume responses of men and women to bed rest

    NASA Technical Reports Server (NTRS)

    Fortney, S. M.; Turner, C.; Steinmann, L.; Driscoll, T.; Alfrey, C.

    1994-01-01

    This paper reviews a series of studies that indicate that estrogens play an important role in blood volume regulation. The first study illustrates that the plasma volume (PV) of ambulatory women fluctuates during the menstrual cycle, increasing during periods of elevated estrogens. In the second study, it was shown that exogenous and endogenous elevations in blood estrogens attenuate the decrease in PV during bed rest. In the third study, the hypothesis was tested that women, who naturally have a higher blood estrogen content compared with men, will have a smaller loss of PV during bed rest. Ten men and ten women underwent a 13-day, 6 degrees head-down bed rest. Plasma volume and red cell mass (RCM) were measured before and after bed rest using 125I and 51Cr labeling, respectively. Before bed rest, the men and women had similar blood volume (BV) and PV (mL/kg body weight), but the women had a smaller (P < .01) RCM (22.2 +/- 0.9 versus 26.2 +/- 0.8 mL/kg, mean +/- SE). During bed rest, the decrease in RCM (mL/kg) was similar in men and women. However, the decrease in BV was greater in men (8.0 +/- 0.8 mL/kg versus 5.8 +/- 0.8 mL/kg), because of a greater reduction in PV (6.3 +/- 0.6 mL/kg versus 4.1 +/- 0.6 mL/kg). Because the decline in BV has been proposed to contribute to the cardiovascular deconditioning after bed rest, it is possible that women may experience less cardiac and circulatory strain on reambulation.

  7. Prostaglandins and nonsteroidal anti-inflammatory drugs. Effects on renal hemodynamics.

    PubMed

    DiBona, G F

    1986-01-17

    Renal prostaglandins are important modulators of renal hemodynamic function. Their synthesis from arachidonic acid precursor is regulated by neurohumoral vasoactive substances as well as by intrarenal factors. Endogenous renal prostaglandins exert little influence on renal blood flow and glomerular filtration rate in the basal state. In contrast, inhibition of cyclooxygenase-dependent arachidonic acid metabolism with nonsteroidal anti-inflammatory drugs in states of decreased renal perfusion causes marked alterations in these variables. Thus, clinical states characterized by decreased intravascular volume (decreased effective blood volume) with decreased renal perfusion augment the activity of various neurohumoral vasoactive systems and result in an increased dependence of renal hemodynamics on endogenous renal prostaglandin synthesis, which is stimulated, in a compensatory manner, by these same systems. The development of newer drugs that undergo biotransformation in the kidney between active and inactive forms may permit a lesser degree of renal cyclooxygenase inhibition, with the possibility of a reduction in the adverse effects on renal blood flow and glomerular filtration rate. Appropriate clinical use of nonsteroidal anti-inflammatory drugs requires careful consideration of the potential deleterious consequences of prostaglandin synthesis inhibition. Prostaglandins are considered to be autacoids and, as such, they exert their physiologic actions close to or at the site of synthesis. Therefore, production of prostaglandins, thromboxanes, and, possibly, leukotrienes in the renal cortex by the constituent cells of the glomeruli and the arterioles would be anticipated to influence their hemodynamic functions, that is, glomerular filtration rate, renal blood flow, renal vascular resistance, and juxtaglomerular granular cell renin release.

  8. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    PubMed

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Fractures in geriatric mice show decreased callus expansion and bone volume.

    PubMed

    Lopas, Luke A; Belkin, Nicole S; Mutyaba, Patricia L; Gray, Chancellor F; Hankenson, Kurt D; Ahn, Jaimo

    2014-11-01

    Poor fracture healing in geriatric populations is a significant source of morbidity, mortality, and cost to individuals and society; however, a fundamental biologic understanding of age-dependent healing remains elusive. The development of an aged-based fracture model system would allow for a mechanistic understanding that could guide future biologic treatments. Using a small animal model of long-bone fracture healing based on chronologic age, we asked how aging affected (1) the amount, density, and proportion of bone formed during healing; (2) the amount of cartilage produced and the progression to bone during healing; (3) the callus structure and timing of the fracture healing; and (4) the behavior of progenitor cells relative to the observed deficiencies of geriatric fracture healing. Transverse, traumatic tibial diaphyseal fractures were created in 5-month-old (n=104; young adult) and 25-month-old (n=107; which we defined as geriatric, and are approximately equivalent to 70-85 year-old humans) C57BL/6 mice. Fracture calluses were harvested at seven times from 0 to 40 days postfracture for micro-CT analysis (total volume, bone volume, bone volume fraction, connectivity density, structure model index, trabecular number, trabecular thickness, trabecular spacing, total mineral content, bone mineral content, tissue mineral density, bone mineral density, degree of anisotropy, and polar moment of inertia), histomorphometry (total callus area, cartilage area, percent of cartilage, hypertrophic cartilage area, percent of hypertrophic cartilage area, bone and osteoid area, percent of bone and osteoid area), and gene expression quantification (fold change). The geriatric mice produced a less robust healing response characterized by a pronounced decrease in callus amount (mean total volume at 20 days postfracture, 30.08±11.53 mm3 versus 43.19±18.39 mm3; p=0.009), density (mean bone mineral density at 20 days postfracture, 171.14±64.20 mg hydroxyapatite [HA]/cm3 versus 210.79±37.60 mg HA/cm3; p=0.016), and less total cartilage (mean cartilage area at 10 days postfracture, 101,279±46,755 square pixels versus 302,167±137,806 square pixels; p=0.013) and bone content (mean bone volume at 20 days postfracture, 11.68±3.18 mm3 versus 22.34±10.59 mm3; p<0.001) compared with the young adult mice. However, the amount of cartilage and bone relative to the total callus size was similar between the adult and geriatric mice (mean bone volume fraction at 25 days postfracture, 0.48±0.10 versus 0.50±0.13; p=0.793), and the relative expression of chondrogenic (mean fold change in SOX9 at 10 days postfracture, 135+25 versus 90±52; p=0.221) and osteogenic genes (mean fold change in osterix at 20 days postfracture, 22.2±5.3 versus 18.7±5.2; p=0.324) was similar. Analysis of mesenchymal cell proliferation in the geriatric mice relative to adult mice showed a decrease in proliferation (mean percent of undifferentiated mesenchymal cells staining proliferating cell nuclear antigen [PCNA] positive at 10 days postfracture, 25%±6.8% versus 42%±14.5%; p=0.047). Our findings suggest that the molecular program of fracture healing is intact in geriatric mice, as it is in geriatric humans, but callus expansion is reduced in magnitude. Our study showed altered healing capacity in a relevant animal model of geriatric fracture healing. The understanding that callus expansion and bone volume are decreased with aging can help guide the development of targeted therapeutics for these difficult to heal fractures.

  10. Change in the Interstitial Cells of Cajal and nNOS Positive Neuronal Cells with Aging in the Stomach of F344 Rats

    PubMed Central

    Kwon, Yong Hwan; Kim, Nayoung; Nam, Ryoung Hee; Park, Ji Hyun; Lee, Sun Min; Kim, Sung Kook; Lee, Hye Seung; Kim, Yong Sung; Lee, Dong Ho

    2017-01-01

    The gastric accommodation reflex is an important mechanism in gastric physiology. However, the aging-associated structural and functional changes in gastric relaxation have not yet been established. Thus, we evaluated the molecular changes of interstitial cell of Cajal (ICC) and neuronal nitric oxide synthase (nNOS) and the function changes in the corpus of F344 rats at different ages (6-, 31-, 74-wk and 2-yr). The proportion of the c-Kit-positive area in the submucosal border (SMB) and myenteric plexus (MP) layer was significantly lower in the older rats, as indicated by immunohistochemistry. The density of the nNOS-positive immunoreactive area also decreased with age in the SMB, circular muscle (CM), and MP. Similarly, the percent of nNOS-positive neuronal cells per total neuronal cells and the proportion of nNOS immunoreactive area of MP also decreased in aged rats. In addition, the mRNA and protein expression of c-Kit and nNOS significantly decreased with age. Expression of stem cell factor (SCF) and the pan-neuronal marker PGP 9.5 mRNA was significantly lower in the older rats than in the younger rats. Barostat studies showed no difference depending on age. Instead, the change of volume was significantly decreased by L-NG63-nitroarginine methyl ester in the 2-yr-old rats compared with the 6-wk-old rats (P = 0.003). Taken together, the quantitative and molecular nNOS changes in the stomach might play a role in the decrease of gastric accommodation with age. PMID:28045993

  11. Diversifying biological fuel cell designs by use of nanoporous filters.

    PubMed

    Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R

    2007-02-15

    The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.

  12. Intracellular Ca2+ release and Ca2+ influx during regulatory volume decrease in IMCD cells.

    PubMed

    Tinel, H; Wehner, F; Sauer, H

    1994-07-01

    Volume changes and cytosolic Ca2+ concentration ([Ca2+]i) of inner medullary collecting duct (IMCD) cells under hypotonic stress were monitored by means of confocal laser scanning microscopy and fura 2 fluorescence, respectively. Reduction of extracellular osmolality from 600 to 300 mosmol/kgH2O by omission of sucrose led to an increase in cell volume within 1 min to 135 +/- 3% (n = 9), followed by a partial regulatory volume decrease (RVD) to 109 +/- 2% (n = 9) within the ensuring 5 min. In parallel, [Ca2+]i rose from 145 +/- 9 to 433 +/- 16 nmol/l (n = 9) and thereafter reached a lower steady state of 259 +/- 9 nmol/l. Under low-Ca2+ conditions (10 nmol/l) RVD was not impeded and reduction of osmolality evoked only a transient increase of [Ca2+]i by 182 +/- 22 nmol/l (n = 6). Preincubation with 100 mumol/l 8-(N,N-diethylamino)octyl-3,4,5-trimethoxy-benzoate hydrochloride (TMB-8) or 20 mmol/l caffeine, both effective inhibitors of Ca2+ release from intracellular stores, in low Ca2+ as well as in high Ca2+, inhibited the Ca2+ response and abolished RVD. The temporal relationship between Ca2+ release from intracellular stores and Ca2+ entry was analyzed by determining fura 2 quenching, using Mn2+ as a substitute for external Ca2+. Intracellular Ca2+ release preceded Mn2+ influx by 17 +/- 3 s (n = 10). Mn2+ influx persisted during the whole period of exposure to hypotonicity, indicating that there is no time-dependent Ca2+ channel inactivation. Preincubation with TMB-8 or caffeine reduced Mn2+ influx to the control level, indicating that activation of Ca2+ channels in the plasma membrane occurs via intracellular Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Decreased Risk of Radiation Pneumonitis With Incidental Concurrent Use of Angiotensin-Converting Enzyme Inhibitors and Thoracic Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharofa, Jordan; Cohen, Eric P.; Tomic, Rade

    2012-09-01

    Purpose: Angiotensin-converting enzyme (ACE) inhibitors have been shown to mitigate radiation-induced lung injury in preclinical models. The aim of this study was to evaluate whether ACE inhibitors decrease the risk of radiation pneumonitis in lung cancer patients receiving thoracic irradiation. Methods and Materials: Patients with Stage I through III small-cell and non-small-cell lung cancer treated definitively with radiation from 2004-2009 at the Clement J. Zablocki Veterans Affairs Medical Center were retrospectively reviewed. Acute pulmonary toxicity was quantified within 6 months of completion of treatment according to the Common Terminology Criteria for Adverse Events version 4. The use of ACE inhibitors,more » nonsteroidal anti-inflammatory drugs, inhaled glucocorticosteroids, statins, and angiotensin receptor blockers; dose-volume histogram parameters; and patient factors were assessed for association with Grade 2 or higher pneumonitis. Results: A total of 162 patients met the criteria for inclusion. The majority of patients had Stage III disease (64%) and received concurrent chemotherapy (61%). Sixty-two patients were identified as ACE inhibitor users (38%). All patients had acceptable radiation plans based on dose-volume histogram constraints (V20 [volume of lung receiving at least 20 Gy] {<=}37% and mean lung dose {<=}20 Gy) with the exception of 2 patients who did not meet both criteria. Grade 2 or higher pulmonary toxicity occurred in 12 patients (7.4%). The rate of Grade 2 or higher pneumonitis was lower in ACE inhibitor users vs. nonusers (2% vs. 11%, p = 0.032). Rates of Grade 2 or higher pneumonitis were significantly increased in patients aged greater than 70 years (16% vs. 2%, p = 0.005) or in whom V5 (volume of lung receiving at least 5 Gy) was 50% or greater (13% vs. 4%, p = 0.04). V10 (volume of lung receiving at least 10 Gy), V20, V30 (volume of lung receiving at least 30 Gy), and mean lung dose were not independently associated with Grade 2 or higher pneumonitis. Conclusion: ACE inhibitors may decrease the incidence of radiation pneumonitis in patients receiving thoracic radiation for lung cancer. These findings are consistent with preclinical evidence and should be prospectively evaluated.« less

  14. Nutrient Shielding in Clusters of Cells

    PubMed Central

    Lavrentovich, Maxim O.; Koschwanez, John H.; Nelson, David R.

    2014-01-01

    Cellular nutrient consumption is influenced by both the nutrient uptake kinetics of an individual cell and the cells’ spatial arrangement. Large cell clusters or colonies have inhibited growth at the cluster's center due to the shielding of nutrients by the cells closer to the surface. We develop an effective medium theory that predicts a thickness ℓ of the outer shell of cells in the cluster that receives enough nutrient to grow. The cells are treated as partially absorbing identical spherical nutrient sinks, and we identify a dimensionless parameter ν that characterizes the absorption strength of each cell. The parameter ν can vary over many orders of magnitude between different cell types, ranging from bacteria and yeast to human tissue. The thickness ℓ decreases with increasing ν, increasing cell volume fraction ϕ, and decreasing ambient nutrient concentration ψ∞. The theoretical results are compared with numerical simulations and experiments. In the latter studies, colonies of budding yeast, Saccharomyces cerevisiae, are grown on glucose media and imaged under a confocal microscope. We measure the growth inside the colonies via a fluorescent protein reporter and compare the experimental and theoretical results for the thickness ℓ. PMID:23848711

  15. Early Postnatal Lesion of the Medial Dorsal Nucleus Leads to Loss of Dendrites and Spines in Adult Prefrontal Cortex

    PubMed Central

    Marmolejo, Naydu; Paez, Jesse; Levitt, Jonathan B.; Jones, Liesl B.

    2013-01-01

    Research suggests that the medial dorsal nucleus (MD) of the thalamus influences pyramidal cell development in the prefrontal cortex (PFC) in an activity-dependent manner. The MD is reciprocally connected to the PFC. Many psychiatric disorders, such as schizophrenia, affect the PFC, and one of the most consistent findings in schizophrenia is a decrease in volume and neuronal number in the MD. Therefore, understanding the role the MD plays in the development of the PFC is important and may help in understanding the progression of psychiatric disorders that have their root in development. Focusing on the interplay between the MD and the PFC, this study examined the hypothesis that the MD plays a role in the dendritic development of pyramidal cells in the PFC. Unilateral electrolytic lesions of the MD in Long-Evans rat pups were made on postnatal day 4 (P4), and the animals developed to P60. We then examined dendritic morphology by examining MAP2 immunostaining and by using Golgi techniques to determine basilar dendrite number and spine density. Additionally, we examined pyramidal cell density in cingulate area 1 (Cg1), prelimbic region, and dorsolateral anterior cortex, which receive afferents from the MD. Thalamic lesions caused a mean MD volume decrease of 12.4% which led to a significant decrease in MAP2 staining in both superficial and deep layers in all 3 cortical areas. The lesions also caused a significant decrease in spine density and in the number of primary and secondary basilar dendrites on superficial and deep layer pyramidal neurons in all 3 regions. No significant difference was observed in pyramidal cell density in any of the regions or layers, but a nonsignificant increase in cell density was observed in 2 regions. Our data are thus consistent with the hypothesis that the MD plays a role in the development of the PFC and, therefore, may be a good model to begin to examine neurodevelopmental disorders such as autism and schizophrenia. PMID:23406908

  16. Digestive cell turnover in digestive gland epithelium of slugs experimentally exposed to a mixture of cadmium and kerosene.

    PubMed

    Zaldibar, B; Cancio, I; Soto, M; Marigómez, I

    2007-11-01

    Slugs, Arion ater (L), have been proposed as sentinel organisms to assess soil health. In slugs under the influence of pollutants, digestive cell loss and the concomitant increase of excretory cells of the digestive gland have been described. The aim of the present work was to determine up to what extent digestive cell loss affects biomarkers and whether the affectation is reversible after exposure to a mixture of metal and organic pollutants. Slugs were dosed with a mixture of cadmium and kerosene in the food for 27 days. Apart from chemical analyses, the volume density of black silver deposits (Vv(BSD)) after autometallography, and acyl-CoA oxidase (AOX) activity were used as biomarkers of exposure to metals and organic compounds, respectively. As effect biomarkers, changes in the volume density of the cell types that constitute the digestive gland epithelium were calculated. Proliferating cells were identified by means of bromodeoxyuridine (BrdU) immunohistochemistry. Results revealed that the mixture of pollutants provoked an increase in Vv(BSD) and AOX activity and a decrease in the number of digestive cells. These changes had no effect in the digestive gland accumulation capacity or in the effect and exposure biomarkers employed. BrdU-labelling showed that exposure to pollutants provoked an enhanced digestive cell proliferation.

  17. Rheological behavior of rat mesangial cells during swelling in vitro.

    PubMed

    Craelius, W; Huang, C J; Guber, H; Palant, C E

    1997-01-01

    The response of cells to mechanical forces depends on the rheological properties of their membranes and cytoplasm. To characterize those properties, mechanical and electrical responses to swelling were measured in rat mesangial cells (MC) using electrophysiologic and video microscopic techniques. Ion transport rates during hyposmotic exposures were measured with whole-cell recording electrodes. Results showed that cell swelling varied nonlinearly with positive internal pressure, consistent with a viscoelastic cytoplasm. The extrapolated area expansivity modulus for small deformations was estimated to be 450 dyne/cm. Cell swelling, caused either by positive pipet pressure or hyposmotic exposure (40-60 mOsm Kg-1), rapidly induced an outwardly rectifying membrane conductance with an outward magnitude 4-5 times the baseline conductance of 0.9 +/- 0.5 nS (p < .01). Swelling-induced (SI) current was weakly selective for K+ over Na+, partially reversed upon return to isotonicity, and was antagonized by 0.5 mM GdCl3 (p < 0.02; n = 6). Isolated cells treated with GdCl3 rapidly lysed after hypotonic exposure, in contrast to untreated cells that exhibited regulatory volume decrease (RVD). Our results indicate that volume regulation by MC depends upon a large swelling-induced K+ efflux, and suggest that swelling in MC is a viscoelastic process, with a viscosity dependent on the degree of swelling.

  18. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition

    PubMed Central

    Zhou, E. H.; Trepat, X.; Park, C. Y.; Lenormand, G.; Oliver, M. N.; Mijailovich, S. M.; Hardin, C.; Weitz, D. A.; Butler, J. P.; Fredberg, J. J.

    2009-01-01

    Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type. PMID:19520830

  19. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    PubMed Central

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2014-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef−/− mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef−/− mice revealed down-regulation of goblet cell–specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef−/− mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. PMID:23665202

  20. Morphometric analysis of primary graft non-function in liver transplantation.

    PubMed

    Vertemati, M; Sabatella, G; Minola, E; Gambacorta, M; Goffredi, M; Vizzotto, L

    2005-04-01

    Primary graft non-function (PNF) is a life-threatening condition that is thought to be the consequence of microcirculation injury. The aim of the present study was to assess, with a computerized morphometric model, the morphological changes at reperfusion in liver biopsy specimens from patients who developed PNF after liver transplantation. Biopsy specimens were obtained at maximum ischaemia and at the end of reperfusion. Morphology included many stereological parameters, such as volumes of all parenchymal components, surface density, size distribution and mean diameter of hepatocytes. Other variables examined were intensive care unit stay, degree of steatosis, serum liver function tests and ischaemic time. In the postoperative period, the PNF group showed elevated serum levels of alanine transferase, decreased daily rate of bile production and prothrombin activity. Blood lactates were significantly higher in the PNF group than in a control group. When comparing groups, the volumetric parameters related to hepatocytes and sinusoids and the surface densities of the hepatic cells showed an inverse relationship. At the end of reperfusion, in PNF group the volume fraction of hepatocyte cytoplasm was decreased; in contrast, the volume fraction of sinusoidal lumen was markedly increased. The cell profiles showed the same inverse trend: the surface density of the parenchymal border of hepatocytes was decreased in PNF when compared with the control group, while the surface density of the vascular border was increased. In the PNF group, the surface density of the sinusoidal bed was directly correlated with alanine transferase, daily rate of bile production, prothrombin activity and cold ischaemic time. The alterations in hepatic architecture, as demonstrated by morphometric analysis in liver transplant recipients that developed PNF, provide additional information that may represent useful viability markers of the graft to complement conventional histological analysis.

  1. Changes in cell-cycle kinetics responsible for limiting somatic growth in mice

    PubMed Central

    Chang, Maria; Parker, Elizabeth A.; Muller, Tessa J. M.; Haenen, Caroline; Mistry, Maanasi; Finkielstain, Gabriela P.; Murphy-Ryan, Maureen; Barnes, Kevin M.; Sundaram, Rajeshwari; Baron, Jeffrey

    2009-01-01

    In mammals, the rate of somatic growth is rapid in early postnatal life but then slows with age, approaching zero as the animal approaches adult body size. To investigate the underlying changes in cell-cycle kinetics, [methyl-3H]thymidine and 5’-bromo-2’deoxyuridine were used to double-label proliferating cells in 1-, 2-, and 3-week-old mice for four weeks. Proliferation of renal tubular epithelial cells and hepatocytes decreased with age. The average cell-cycle time did not increase in liver and increased only 1.7 fold in kidney. The fraction of cells in S-phase that will divide again declined approximately 10 fold with age. Concurrently, average cell area increased approximately 2 fold. The findings suggest that somatic growth deceleration primarily results not from an increase in cell-cycle time but from a decrease in growth fraction (fraction of cells that continue to proliferate). During the deceleration phase, cells appear to reach a proliferative limit and undergo their final cell divisions, staggered over time. Concomitantly, cells enlarge to a greater volume, perhaps because they are relieved of the size constraint imposed by cell division. In conclusion, a decline in growth fraction with age causes somatic growth deceleration and thus sets a fundamental limit on adult body size. PMID:18535488

  2. The use of a computerized algorithm to determine single cardiac cell volumes.

    PubMed

    Marino, T A; Cook, L; Cook, P N; Dwyer, S J

    1981-04-01

    Single cardiac muscles cell volume data have been difficult to obtain, especially because the shape of a cell is quite complex. With the aid of a surface reconstruction method, a cell volume estimation algorithm has been developed that can be used on serial of cells. The cell surface is reconstructed by means of triangular tiles so that the cell is represented as a polyhedron. When this algorithm was tested on computer generated surfaces of a known volume, the difference was less than 1.6%. Serial sections of two phantoms of a known volume were also reconstructed and a comparison of the mathematically derived volumes and the computed volume estimations gave a per cent difference of between 2.8% and 4.1%. Finally cell volumes derived using conventional methods and volumes calculated using the algorithm were compared. The mean atrial muscle cell volume derived using conventional methods was 7752.7 +/- 644.7 micrometers3, while the mean computerized algorithm estimated atrial muscle cell volume was 7110.6 +/- 625.5 micrometers3. For AV bundle cells the mean cell volume obtained by conventional methods was 484.4 +/- 88.8 micrometers3 and the volume derived from the computer algorithm was 506.0 +/- 78.5 micrometers3. The differences between the volumes calculated using conventional methods and the algorithm were not significantly different.

  3. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    PubMed Central

    Jo, Andrew O.; Phuong, Tam T.T.; Verkman, Alan S.; Yarishkin, Oleg; MacAulay, Nanna

    2015-01-01

    Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4−/− and Aqp4−/− mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca2+]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca2+]i elevations but only modestly attenuated the amplitude of Ca2+ signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca2+ entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4–AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. SIGNIFICANCE STATEMENT We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation. PMID:26424896

  4. Morphometric analysis of the placenta in the New World mouse Necromys lasiurus (Rodentia, Cricetidae): a comparison of placental development in cricetids and murids

    PubMed Central

    2013-01-01

    Background Stereology is an established method to extrapolate three-dimensional quantities from two-dimensional images. It was applied to placentation in the mouse, but not yet for other rodents. Herein, we provide the first study on quantitative placental development in a sigmodontine rodent species with relatively similar gestational time. Placental structure was also compared to the mouse, in order to evaluate similarities and differences in developmental patterns at the end of gestation. Methods Fetal and placental tissues of Necromys lasiurus were collected and weighed at 3 different stages of gestation (early, mid and late gestation) for placental stereology. The total and relative volumes of placenta and of its main layers were investigated. Volume fractions of labyrinth components were quantified by the One Stop method in 31 placentae collected from different individuals, using the Mercator® software. Data generated at the end of gestation from N. lasiurus placentae were compared to those of Mus musculus domesticus obtained at the same stage. Results A significant increase in the total absolute volumes of the placenta and its main layers occurred from early to mid-gestation, followed by a reduction near term, with the labyrinth layer becoming the most prominent area. Moreover, at the end of gestation, the total volume of the mouse placenta was significantly increased compared to that of N. lasiurus although the proportions of the labyrinth layer and junctional zones were similar. Analysis of the volume fractions of the components in the labyrinth indicated a significant increase in fetal vessels and sinusoidal giant cells, a decrease in labyrinthine trophoblast whereas the proportion of maternal blood space remained stable in the course of gestation. On the other hand, in the mouse, volume fractions of fetal vessels and sinusoidal giant cells decreased whereas the volume fraction of labyrinthine trophoblast increased compared to N. lasiurus placenta. Conclusions Placental development differed between N. lasiurus and M. musculus domesticus. In particular, the low placental efficiency in N. lasiurus seemed to induce morphological optimization of fetomaternal exchanges. In conclusion, despite similar structural aspects of placentation in these species, the quantitative dynamics showed important differences. PMID:23433040

  5. Free volume of mixed cation borosilicate glass sealants elucidated by positron annihilation lifetime spectroscopy and its correlation with glass properties

    NASA Astrophysics Data System (ADS)

    Ojha, Prasanta K.; Rath, Sangram K.; Sharma, Sandeep K.; Sudarshan, Kathi; Pujari, Pradeep K.; Chongdar, Tapas K.; Gokhale, Nitin M.

    2015-01-01

    The role of La+3/Sr+2 ratios, which is varied from 0.08 to 5.09, on density, molar volume, packing fraction, free volume, thermal and electrical properties in strontium lanthanum aluminoborosilicate based glass sealants intended for solid oxide fuel cell (SOFC) applications is evaluated. The studies reveal expansion of the glass network evident from increasing molar volume and decreasing packing fraction of glasses with progressive La+3 substitutions. The molecular origin of these macroscopic structural features can be accounted for by the free volume parameters measured from positron annihilation lifetime spectroscopy (PALS). The La+3 induced expanded glass networks show increased number of subnanoscopic voids with larger sizes, as revealed from the ortho-positronium (o-Ps) lifetime and its intensity. A remarkably direct correspondence between the molar volume and fractional free volume trend is established with progressive La2O3 substitution in the glasses. The effect of these structural changes on the glass transition temperature, softening temperature, coefficient of thermal expansion, thermal stability as well as electrical conductivity has been studied.

  6. KOH concentration effect on the cycle life of nickel-hydrogen cells. 4: Results of failure analyse

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1989-01-01

    Effects of KOH concentrations on failure modes and mechanisms of nickel-hydrogen cells were studied using long cycled boiler plate cells containing electrolytes of various KOH concentrations ranging 21 to 36 percent. Life of these cells were up to 40,000 cycles in an accelerated low earth orbit (LEO) cycle regime at 80 percent depth of discharge. An interim life test results were reported earlier in J. Power Sources, 22, 213-220, 1988. The results of final life test, end-of-life cell performance, and teardown analyses are discussed. These teardown analyses included visual observations, measurements of nickel electrode capacity in an electrolyte-flooded cell, dimensional changes of cell components, SEM studies on cell cross section, BET surface area and pore volume distribution in cycled nickel electrodes, and chemical analyses. Cycle life of a nickel-hydrogen cell was improved tremendously as KOH concentration was decreased from 36 to 31 percent and from 31 to 26 percent while effect of further concentration decrease was complicated as described in our earlier report. Failure mode of high concentration (31 to 36 percent) cells was gradual capacity decrease, while that of low concentration (21 to 26 percent) cells was mainly formation of a soft short. Long cycled (25,000 to 40,000 cycles) nickel electrodes were expanded more than 50 percent of the initial value, but no correlation was found between this expansion and measured capacity. All electrodes cycled in low concentration (21 to 26 percent) cells had higher capacity than those cycled in high concentration (31 to 36 percent) cells.

  7. Effects of High Intensity Training and High Volume Training on Endothelial Microparticles and Angiogenic Growth Factors

    PubMed Central

    Achtzehn, Silvia; Schmitz, Theresa; Bloch, Wilhelm; Mester, Joachim; Werner, Nikos

    2014-01-01

    Aims Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols. Methods 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4×4 min at 95% PPO; 3. 4×30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0′, 30′, 60′ and 180′ after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities. Results VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF. Conclusion Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis. PMID:24770423

  8. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. Furthermore, this platform has great potential in both medical diagnostics and researchmore » applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.« less

  9. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    DOE PAGES

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    2016-04-07

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. Furthermore, this platform has great potential in both medical diagnostics and researchmore » applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.« less

  10. A high plasma: red blood cell transfusion ratio during liver transplantation is associated with decreased blood utilization.

    PubMed

    Pagano, M B; Metcalf, R A; Hess, J R; Reyes, J; Perkins, J D; Montenovo, M I

    2018-04-01

    During massive transfusion, the volume ratio of administered plasma (PL Vol) to red blood cell (RBC Vol) appears to be associated with reduced blood utilization and improved survival. The aim of this study was to evaluate the optimal component ratio in the setting of liver transplantation. This is a retrospective chart review of patients who underwent liver transplantation and received at least 500 ml of red blood cells from January 2013 through December 2015. Kernel smoothing analysis determined the proper component ratios to evaluate were a ≥0·85:1 ratio (high) to a ≤0·85:1 ratio (low). Two groups, plasma volume to RBC volume (PL Vol/RBC Vol) and plasma contained in the platelet units added to the plasma calculation [PL + PLT (platelet)] Vol/RBC Vol, were used to evaluate the component ratios. A total of 188 patients were included in the analysis. In the PL Vol/RBC Vol evaluation, a low ratio revealed that 1238 ml (977-1653 ml) (P < 0·0001) and 1178 ml (747-1178) (P < 0·0001) of RBC were used in excess compared to the high ratio, in the univariable and multivariable analysis, respectively. In the PL +PLT Vol/RBC Vol evaluation, a low ratio used 734 ml (193-1275) (P = 0·008) and 886 ml (431-1340) (P < 0·0001) of RBC in excess when compared to high ratio in the univariable and multivariable analysis, respectively. In patients undergoing liver transplantation, the transfusion of plasma to RBC ratio ≥0·85 was associated with decreased need of RBC transfusions. © 2018 International Society of Blood Transfusion.

  11. Strong ion exchange in centrifugal partition extraction (SIX-CPE): effect of partition cell design and dimensions on purification process efficiency.

    PubMed

    Hamzaoui, Mahmoud; Hubert, Jane; Reynaud, Romain; Marchal, Luc; Foucault, Alain; Renault, Jean-Hugues

    2012-07-20

    The aim of this article was to evaluate the influence of the column design of a hydrostatic support-free liquid-liquid chromatography device on the process efficiency when the strong ion-exchange (SIX) development mode is used. The purification of p-hydroxybenzylglucosinolate (sinalbin) from a crude aqueous extract of white mustard seeds (Sinapis alba L.) was achieved on two types of devices: a centrifugal partition chromatograph (CPC) and a centrifugal partition extractor (CPE). They differ in the number, volume and geometry of their partition cells. The SIX-CPE process was evaluated in terms of productivity and sinalbin purification capability as compared to previously optimized SIX-CPC protocols that were carried out on columns of 200 mL and 5700 mL inner volume, respectively. The objective was to determine whether the decrease in partition cell number, the increase in their volume and the use of a "twin cell" design would induce a significant increase in productivity by applying higher mobile phase flow rate while maintaining a constant separation quality. 4.6g of sinalbin (92% recovery) were isolated from 25 g of a crude white mustard seed extract, in only 32 min and with a purity of 94.7%, thus corresponding to a productivity of 28 g per hour and per liter of column volume (g/h/LV(c)). Therefore, the SIX-CPE process demonstrates promising industrial technology transfer perspectives for the large-scale isolation of ionized natural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Overendocytosis of superparamagnetic iron oxide particles increases apoptosis and triggers autophagic cell death in human osteosarcoma cell under a spinning magnetic field

    PubMed Central

    Du, Chonghua; Huang, Zhongming; Chen, Guangnan; Yan, Weiqi

    2017-01-01

    The toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) is still a vital topic of debate and the mechanisms remain unclear. In the present study, overdose SPIONs could induce osteosarcoma cell death and the effects were exaggerated when combined with spinning magnetic field (SMF). In the combination group, mitochondrial transmembrane potential decrease more obviously and reactive oxygen species (ROS) was found to generate much higher in line with that of the apoptosis ratio. Meantime, amount of autophagy was induced. Inhibiting the autophagy generation by 3-methyladenine (3-MA) increase cell viability but decrease the caspase 3/7 and caspase 8 activities in combination groups, and inhibiting apoptosis took the same effect. In the end, the SPIONs effects on xenograft mice was examed by intratumoral injection. The result showed that the combination group could greatly decrease the tumor volume and prolong the lifespan of mice. In sum, the result indicated that overdose SPIONs induced ROS generation, and excessive ROS induced by combination of SPIONs and SMF contribute to autophagy formation, which play a apoptosis-promoting role that formed as a platform to recruits initiate the caspase activities. PMID:28031531

  13. Effects of Adult Female Rat Androgenization on Brain Morphology and Metabolomic Profile.

    PubMed

    Perez-Laso, Carmen; Cerdan, Sebastián; Junque, Carme; Gómez, Ángel; Ortega, Esperanza; Mora, Mireia; Avendaño, Carlos; Gómez-Gil, Esther; Del Cerro, María Cruz Rodríguez; Guillamon, Antonio

    2017-07-06

    Androgenization in adult natal women, as in transsexual men (TM), affects brain cortical thickness and the volume of subcortical structures. In order to understand the mechanism underlying these changes we have developed an adult female rat model of androgenization. Magnetic resonance imaging and spectroscopy were used to monitor brain volume changes, white matter microstructure and ex vivo metabolic profiles over 32 days in androgenized and control subjects. Supraphysiological doses of testosterone prevents aging decrease of fractional anisotropy values, decreased general cortical volume and the relative concentrations of glutamine (Gln) and myo-Inositol (mI). An increase in the N-acetylaspartate (NAA)/mI ratio was detected d. Since mI and Gln are astrocyte markers and osmolytes, we suspect that the anabolic effects of testosterone change astrocyte osmolarity so as to extrude Mi and Gln from these cells in order to maintain osmotic homeostasis. This mechanism could explain the brain changes observed in TM and other individuals receiving androgenic anabolic steroids. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.

    PubMed

    Lindinger, Michael I; Leung, Matthew; Trajcevski, Karin E; Hawke, Thomas J

    2011-06-01

    Controversy exists as to whether mammalian skeletal muscle is capable of volume regulation in response to changes in extracellular osmolarity despite evidence that muscle fibres have the required ion transport mechanisms to transport solute and water in situ. We addressed this issue by studying the ability of skeletal muscle to regulate volume during periods of induced hyperosmotic stress using single, mouse extensor digitorum longus (EDL) muscle fibres and intact muscle (soleus and EDL). Fibres and intact muscles were loaded with the fluorophore, calcein, and the change in muscle fluorescence and width (single fibres only) used as a metric of volume change. We hypothesized that skeletal muscle exposed to increased extracellular osmolarity would elicit initial cellular shrinkage followed by a regulatory volume increase (RVI) with the RVI dependent on the sodium–potassium–chloride cotransporter (NKCC). We found that single fibres exposed to a 35% increase in extracellular osmolarity demonstrated a rapid, initial 27–32% decrease in cell volume followed by a RVI which took 10-20 min and returned cell volume to 90–110% of pre-stimulus values. Within intact muscle, exposure to increased extracellular osmolarity of varying degrees also induced a rapid, initial shrinkage followed by a gradual RVI, with a greater rate of initial cell shrinkage and a longer time for RVI to occur with increasing extracellular tonicities. Furthermore, RVI was significantly faster in slow-twitch soleus than fast-twitch EDL. Pre-treatment of muscle with bumetanide (NKCC inhibitor) or ouabain (Na+,K+-ATPase inhibitor), increased the initial volume loss and impaired the RVI response to increased extracellular osmolarity indicating that the NKCC is a primary contributor to volume regulation in skeletal muscle. It is concluded that mouse skeletal muscle initially loses volume then exhibits a RVI when exposed to increases in extracellular osmolarity. The rate of RVI is dependent on the degree of change in extracellular osmolarity, is muscle specific, and is dependent on the functioning of the NKCC and Na+, K+-ATPase.

  15. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    PubMed

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.

  16. VEGF expression and the effect of NSAIDs on ascites cell proliferation in the hen model of ovarian cancer.

    PubMed

    Urick, M E; Giles, J R; Johnson, P A

    2008-09-01

    We aimed to determine the expression of vascular endothelial growth factor (VEGF) and the effect of nonsteroidal anti-inflammatory drugs (NSAIDs) on the proliferation of cells isolated from ascites in the hen model of ovarian cancer. Ovarian tumor and normal ovary were collected from hens and ascites cells were isolated from hens with ovarian cancer. Quantitative real-time PCR was used to quantify mRNA expression. Immunohistochemical and/or Western blot analyses were used to localize protein expression in ovarian tumors, normal ovaries, and ascites cells. Cells were treated with a nonspecific, COX-1-specific, or COX-2-specific NSAID and proliferation was determined. VEGF mRNA was increased in ascites cells and there was a trend for a correlation between VEGF mRNA in ascites cells and ascites volume. VEGF protein was localized to theca cells of normal ovaries, in glandular areas of tumors, and to the cytoplasm of ascites cells. Aspirin and a COX-1-specific inhibitor decreased the proliferation of ascites cells, whereas a COX-2-specific inhibitor did not. VEGF may play a role in ovarian cancer progression in the hen and the proliferation of ascites cells can be decreased by targeting the COX-1 but not COX-2 pathway.

  17. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  18. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma

    PubMed Central

    Arrieta, O; Guevara, P; Escobar, E; García-Navarrete, R; Pineda, B; Sotelo, J

    2005-01-01

    Angiotensin II (Ang II) is a main effector peptide in the renin–angiotensin system and participates in the regulation of vascular tone. It also has a role in the expression of growth factors that induce neovascularisation which is closely associated to the growth of malignant gliomas. We have shown that the selective blockage of the AT1 receptor of angiotensin inhibites tumour growth, cell proliferation and angiogenesis of C6 rat glioma. The aim of this study was to study the effects of the blockage of AT1 receptor on the synthesis of growth factors, and in the genesis of apoptosis in cultured C6 glioma cells and in rats with C6 glioma. Administration of losartan at doses of 40 or 80 mg kg−1 to rats with C6 glioma significantly decreased tumoral volume and production of platelet-derived growth factor, vascular endothelial growth factor and basic fibroblast growth factor. It also induced apoptosis in a dose-dependent manner. Administration of Ang II increased cell proliferation of cultured C6 cells which decreased by the administration of losartan. Our results suggest that the selective blockage of AT1 diminishes tumoral growth through inhibition of growth factors and promotion of apoptosis. PMID:15785746

  19. Lake warming favours small-sized planktonic diatom species

    PubMed Central

    Winder, Monika; Reuter, John E.; Schladow, S. Geoffrey

    2008-01-01

    Diatoms contribute to a substantial portion of primary production in the oceans and many lakes. Owing to their relatively heavy cell walls and high nutrient requirements, planktonic diatoms are expected to decrease with climate warming because of reduced nutrient redistribution and increasing sinking velocities. Using a historical dataset, this study shows that diatoms were able to maintain their biovolume with increasing stratification in Lake Tahoe over the last decades; however, the diatom community structure changed. Increased stratification and reduced nitrogen to phosphorus ratios selected for small-celled diatoms, particularly within the Cyclotella genus. An empirical model showed that a shift in phytoplankton species composition and cell size was consistent within different depth strata, indicating that altered nutrient concentrations were not responsible for the change. The increase in small-celled species was sufficient to decrease the average diatom size and thus sinking velocity, which strongly influences energy transfer through the food web and carbon cycling. Our results show that within the diverse group of diatoms, small-sized species with a high surface area to volume ratio were able to adapt to a decrease in mixing intensity, supporting the hypotheses that abiotic drivers affect the size structure of planktonic communities and that warmer climate favours small-sized diatom cells. PMID:18812287

  20. Effects of Quercetin in a Mouse Model of Experimental Dry Eye.

    PubMed

    Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook

    2015-09-01

    To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P < 0.05) and decreased corneal irregularity scores (0.7 ± 0.6, P < 0.05) compared with those of the PBS group. On histological examination, the quercetin group exhibited restored smooth corneal surfaces without detaching corneal epithelial cells and had significantly increased goblet cell density (13.8 ± 0.8 cells/0.1 mm², P < 0.05) compared with the PBS group. The quercetin group also exhibited significant declines of MMP-2 (5.1-fold of control, P < 0.01), MMP-9 (2.5-fold of control, P < 0.01), ICAM-1 (2.2-fold of control, P < 0.01), and VCAM-1 (2.3-fold of control, P < 0.01) levels in the lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.

  1. Sorafenib and triptolide as combination therapy for hepatocellular carcinoma.

    PubMed

    Alsaied, Osama A; Sangwan, Veena; Banerjee, Sulagna; Krosch, Tara C; Chugh, Rohit; Saluja, Ashok; Vickers, Selwyn M; Jensen, Eric H

    2014-08-01

    Sorafenib is the only drug approved by the Food and Drug Administration for metastatic hepatocellular carcinoma (HCC). Triptolide, a diterpene triepoxide, exhibits antineoplastic properties in multiple tumor cell types. In this study, we examined the effects of these agents and their combination on HCC in vitro and in vivo models. HuH-7 and PLC/PRF/5 cells were treated with triptolide (50 nM), sorafenib (1.25 or 2.5 μM), or a combination of both. Cell viability assay (CCK-8), caspase 3&7 activation, and nuclear factor κB assays were performed. For in vivo studies, 40 mice were implanted with subcutaneous HuH7 tumors and divided into four treatment groups (n = 10); saline control, sorafenib 10 mg/kg PO daily (S), Minnelide (a prodrug of triptolide) 0.21 mg/kg intraperitoneally7 daily (M), and combination of both (C). Tumor volumes were assessed weekly. The combination of triptolide and sorafenib was superior to either drug alone in inducing apoptosis and decreasing viability, whereas triptolide alone was sufficient to decrease nuclear factor κB activity. After 2 weeks of treatment, tumor growth inhibition rates were S = 59%, M = 84%, and C = 93%, whereas tumor volumes in control animals increased by 9-fold. When crossed over to combination treatment, control mice tumor growth volumes plateaued over the following 4 weeks. The combination of sorafenib and triptolide is superior to single drug treatment in increasing cell death and apoptosis in vitro. Combining sorafenib with Minnelide inhibited tumor growth with greater efficacy than single-agent treatments. Importantly, in vivo combination treatment allowed for using a lesser dose of sorafenib (10 mg/kg), which is less than 10% of currently prescribed dose for HCC patients. Therefore, combination treatment could have translational potential in the management of HCC. Copyright © 2014 Mosby, Inc. All rights reserved.

  2. Rat hepatocytes transport water mainly via a non-channel-mediated pathway.

    PubMed

    Yano, M; Marinelli, R A; Roberts, S K; Balan, V; Pham, L; Tarara, J E; de Groen, P C; LaRusso, N F

    1996-03-22

    During bile formation by the liver, large volumes of water are transported across two epithelial barriers consisting of hepatocytes and cholangiocytes (i.e. intrahepatic bile duct epithelial cells). We recently reported that a water channel, aquaporin-channel-forming integral protein of 28 kDa, is present in cholangiocytes and suggested that it plays a major role in water transport by these cells. Since the mechanisms of water transport across hepatocytes remain obscure, we performed physiological, molecular, and biochemical studies on hepatocytes to determine if they also contain water channels. Water permeability was studied by exposing isolated rat hepatocytes to buffers of different osmolarity and measuring cell volume by quantitative phase contrast, fluorescence and laser scanning confocal microscopy. Using this method, hepatocytes exposed to hypotonic buffers at 23 degrees C increased their cell volume in a time and osmolarity-dependent manner with an osmotic water permeability coefficient of 66.4 x 10(-4) cm/s. In studies done at 10 degrees C, the osmotic water permeability coefficient decreased by 55% (p < 0.001, at 23 degrees C; t test). The derived activation energy from these studies was 12.8 kcal/mol. After incubation of hepatocytes with amphotericin B at 10 degrees C, the osmotic water permeability coefficient increased by 198% (p < 0.001) and the activation energy value decreased to 3.6 kcal/mol, consistent with the insertion of artificial water channels into the hepatocyte plasma membrane. Reverse transcriptase polymerase chain reaction with hepatocyte RNA as template did not produce cDNAs for three of the known water channels. Both the cholesterol content and the cholesterol/phospholipid ratio of hepatocyte plasma membranes were significantly (p < 0.005) less than those of cholangiocytes; membrane fluidity of hepatocytes estimated by measuring steady-state anisotropy was higher than that of cholangiocytes. Our data suggests that the osmotic flow of water across hepatocyte membranes occurs mainly by diffusion via the lipid bilayer (not by permeation through water channels as in cholangiocytes).

  3. Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model

    PubMed Central

    Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka

    2014-01-01

    Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794

  4. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  5. A study of the rheology and micro-structure of dumbbells in shear geometries

    NASA Astrophysics Data System (ADS)

    Mandal, Sandip; Khakhar, D. V.

    2018-01-01

    We study the flow of frictional, inelastic dumbbells made of two fused spheres of different aspect ratios down a rough inclined plane and in a simple shear cell, using discrete element simulations. At a fixed inclination angle, the mean velocity decreases, and the volume fraction increases significantly with increasing aspect ratio in the chute flow. At a fixed solid fraction, the shear stress and pressure decrease significantly with increasing aspect ratio in the shear cell flow. The micro-structure of the flow is characterized. The translational diffusion coefficient in the normal direction to the flow is found to scale as Dy y=b γ ˙ d2, independent of aspect ratio, where b is a constant, γ ˙ is the shear rate, and d is the diameter of the constituent spheres of the dumbbells. The effective friction coefficient (μ, the ratio of shear stress to pressure) increases by 30%-35% on increasing the aspect ratio λ, from 1.0 to 1.7, for a fixed inertial number I. The volume fraction (ϕ) also increases significantly with increasing aspect ratio, especially at high inertial numbers. The effective friction coefficient and volume fraction are found to follow simple scalings of the form μ = μ(I, λ) and ϕ = ϕ(I, λ) for all the data from both systems, and the results are in reasonable agreement with kinetic theory predictions at low I. The computational results are in reasonable agreement with the experimental data for flow in a rotating cylinder.

  6. λ-Carrageenan improves the antitumor effect of dendritic cellbased vaccine.

    PubMed

    Li, Jinyao; Aipire, Adila; Li, Jinyu; Zhu, Hongge; Wang, Yanping; Guo, Wenjia; Li, Xiaoqin; Yang, Jia; Liu, Chunling

    2017-05-02

    In this study, we investigated the effect of λ-carrageenan on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We found that λ-carrageenan dose-dependently decreased the endocytosis of DCs, promoted DC maturation and increased cytokine production through TLR4 mediated signaling pathway. λ-carrageenan treatment also enhanced the ability of DCs in the stimulating allogenic splenocyte proliferation. In TC-1 tumor mouse model, HPV peptides pulsed λ-carrageenan-DC (HPV-CGN-DC) significantly inhibited tumor growth compared with control group. The frequencies of CD4+ and CD8+ T cells in spleens of tumor mice and their activation status were significantly increased in HPV-CGN-DC group, but the frequencies of natural regulatory T cells and CD11b+Gr-1+ cells were significantly decreased. Further, HPV-CGN-DC induced strong CD8+ T cell responses, which are negatively correlated with tumor volumes. The results suggested that λ-carrageenan promoted DC maturation through TLR4 signaling pathway and could be used as the adjuvant in DC-based vaccines.

  7. Comparison of Vibrio parahaemolyticus grown in estuarine water and rich medium.

    PubMed Central

    Pace, J; Chai, T J

    1989-01-01

    Cell envelope composition and selected physiological traits of Vibrio parahaemolyticus were studied in regard to the Kanagawa phenomenon and growth conditions. Cell envelopes were prepared from cells cultured in Proteose Peptone-beef extract (Difco Laboratories, Detroit, Mich.) medium or filtered estuarine water. Protein, phospholipid, and lipopolysaccharide contents varied with culture conditions. The phospholipids present in the cell envelopes were identified as phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Phosphatidylethanolamine decreased and phosphatidylglycerol increased in cells grown in estuarine water. Profiles of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated numerous protein species, with four to six predominant proteins ranging from 26,000 to 120,000 in molecular weight. The profile of V. parahaemolyticus cell envelope proteins was unique and might be useful in the identification of the organism. Alkaline phosphatase activity was slightly higher in Kanagawa-negative strains and was higher in cells grown in estuarine water than in cells grown in rich laboratory medium. The DNA levels in estuarine water-grown cells increased, while RNA levels and cell volume decreased. Bacteriophage sensitivity typing demonstrated a close intraspecies relationship. Results indicated that Kanagawa-positive and -negative strains were closely related, but they could be grouped separately and may have undergone starvation-related physiological changes when cultured in estuarine water. Images PMID:2782869

  8. Cell Salvage Used in Scoliosis Surgery: Is It Really Effective?

    PubMed

    Liu, Jia-Ming; Fu, Bi-Qi; Chen, Wen-Zhao; Chen, Jiang-Wei; Huang, Shan-Hu; Liu, Zhi-Li

    2017-05-01

    Scoliosis surgery usually is associated with large volume of intraoperative blood loss, and cell salvage is used commonly to filter and retranfusion autologous blood to patients. The efficacy of using cell salvage in scoliosis surgery, however, is still controversial. The purpose of this study is to make clear that intraoperative use of cell salvage is effective to decrease the volume of perioperative allogenic blood transfusion in scoliosis surgery. A meta-analysis was conducted to identify the relevant studies from PubMed, Embase, Medline, Cochrane library, and Google scholar until July 2016. All randomized trials and controlled clinical studies comparing the clinical outcomes of using cell salvage versus noncell salvage in scoliosis surgery were retrieved for the meta-analysis. The data were analyzed by RevMan 5.3. A total of 7 studies with 562 patients were included in this meta-analysis. Based on the analysis, the volumes of perioperative and postoperative allogenic red blood cell (RBC) transfusion in cell salvage group were significantly less than those in control group (P = 0.04 and P = 0.01); however, no significant difference was detected in the amount of intraoperative allogenic RBC transfusion and the risk of patients needing allogenic blood transfusion between the 2 groups (P = 0.14 and P = 0.61). Both the hemoglobin and hematocrit levels on the first day after surgery were significantly greater in cell salvage group than those in control group (P = 0.002 and P < 0.001). No significant differences, however, were noted in neither hemoglobin nor hematocrit level at the time of discharge between the 2 groups (P = 0.76 and P = 0.32). One of the included study reported the number of patients with complications related to transfusion in the two groups, which was not significant different (P = 0.507). Cell salvage significantly reduced the volumes of perioperative and postoperative allogenic RBC transfusion in scoliosis surgery and increased the hemoglobin and hematocrit levels on the first day postoperatively. In addition, it seemed not to increase the rate of transfusion complications during the surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Anti-inflammatory effects of a Houttuynia cordata supercritical extract

    PubMed Central

    Shin, Sunhee; Joo, Seong Soo; Jeon, Jeong Hee; Park, Dongsun; Jang, Min-Jung; Kim, Tae-Ook; Kim, Hyun-Kyu; Hwang, Bang Yeon; Kim, Ki-Yon

    2010-01-01

    Anti-inflammatory effects of Houttuynia cordata supercritical extract (HSE) were investigated in a carrageenan-air pouch model. HSE (200 mg/kg, oral) suppressed exudation and albumin leakage, as well as inflammatory cell infiltration. Dexamethasone (2 mg/kg, i.p.) only decreased exudation and cell infiltration, while indomethacin (2 mg/kg, i.p.) reduced exudate volume and albumin content. HSE lowered tumor-necrosis factor (TNF)-α and nitric oxide (NO), as well as prostaglandin E2 (PGE2). Dexamethasone only reduced TNF-α and NO, while indomethacin decreased TNF-α and PGE2. The suppressive activity of HSE on NO and PGE2 production was confirmed in RAW 264.7. These results demonstrate that HSE exerts anti-inflammatory effects by inhibiting both TNF-α-NO and cyclooxygenase II-PGE2 pathways. PMID:20706037

  10. Biomechanical characterization of a low density silicone elastomer filled with hollow microspheres for maxillofacial prostheses.

    PubMed

    Liu, Q; Shao, L Q; Xiang, H F; Zhen, D; Zhao, N; Yang, S G; Zhang, X L; Xu, J

    2013-01-01

    An ideal material for maxillofacial prostheses has not been found. We created a novel material: silicone elastomer filled with hollow microspheres and characterized its biomechanical properties. Expancel hollow microspheres were mixed with MDX4-4210 silicone elastomer using Q7-9180 silicone fluid as diluent. The volume fractions of microspheres were 0, 5, 15, and 30% v/v (volume ratio to the total volume of MDX4-4210 and microspheres). The microspheres dispersed well in the matrix. The physical properties and biocompatibility of the composites were examined. Shock absorption was the greatest by the 5% v/v composite, and decreased with increasing concentrations of microspheres. The density, thermal conductivity, Shore A hardness, tear and tensile strength decreased with increasing concentrations of microspheres, while elongation at break increased. Importantly, the tear strength of all composites was markedly lower than that of pure silicone elastomer. Cell viability assays indicated that the composite was of good biocompatibility. The composite with a volume fraction of 5% exhibited the optimal properties for use as a maxillofacial prosthesis, though its tear strength was markedly lower than that of silicone elastomer. In conclusion, we developed a novel light and soft material with good flexibility and biocompatibility, which holds a promising prospect for clinical application as maxillofacial prosthesis.

  11. Evaluation of sorghum flour functionality and quality characteristics of gluten-free bread and cake as influenced by ozone treatment.

    PubMed

    Marston, Kathryn; Khouryieh, Hanna; Aramouni, Fadi

    2015-12-01

    Commercially milled food-grade sorghum flour was subjected to ozone at the rate of 0.06 L/min for 15, 30, and 45 min. The pH of ozone-treated flour decreased as exposure time increased. The L* (lightness) values of sorghum flour significantly increased (p < 0.05), while the b* (yellowness) values significantly decreased as ozone exposure time increased. Peak viscosity significantly increased as time of ozonation increased from 0 to 45 min. Results showed that gluten-free cake volume significantly increased as ozonation time increased. Additionally, longer ozonation exposure times increased cells per slice area, lightness, and slice brightness values in gluten-free cakes while reducing crumb firmness. Despite improving lightness and slice brightness values, ozonation did not significantly increase the specific volume of gluten-free batter-based bread. While ozonation improved the volume and texture in cakes, it did not have the same positive effects on gluten-free bread. Bread made from ozonated sorghum flour had an open ragged structure with equivalent volume to the control flour. In both applications, the increased brightness and lightness values due to ozone exposure is recommended to increase the acceptability of sorghum products. © The Author(s) 2014.

  12. Transfusion of cell saver salvaged blood in neonates and infants undergoing open heart surgery significantly reduces RBC and coagulant product transfusions and donor exposures: results of a prospective, randomized, clinical trial.

    PubMed

    Cholette, Jill M; Powers, Karen S; Alfieris, George M; Angona, Ronald; Henrichs, Kelly F; Masel, Debra; Swartz, Michael F; Daugherty, L Eugene; Belmont, Kevin; Blumberg, Neil

    2013-02-01

    To evaluate whether transfusion of cell saver salvaged, stored at the bedside for up to 24 hrs, would decrease the number of postoperative allogeneic RBC transfusions and donor exposures, and possibly improve clinical outcomes. Prospective, randomized, controlled, clinical trial. Pediatric cardiac intensive care unit. Infants weighing less than 20 kg (n = 106) presenting for cardiac surgery with cardiopulmonary bypass. Subjects were randomized to a cell saver transfusion group where cell saver blood was available for transfusion up to 24 hrs after collection, or to a control group. Cell saver subjects received cell saver blood for volume replacement and/or RBC transfusions. Control subjects received crystalloid or albumin for volume replacement and RBCs for anemia. Blood product transfusions, donor exposures, and clinical outcomes were compared between groups. Children randomized to the cell saver group had significantly fewer RBC transfusions (cell saver: 0.19 ± 0.44 vs. control: 0.75 ± 1.2; p = 0.003) and coagulant product transfusions in the first 48 hrs post-op (cell saver: 0.09 ± 0.45 vs. control: 0.62 ± 1.4; p = 0.013), and significantly fewer donor exposures (cell saver: 0.60 ± 1.4 vs. control: 2.3 ± 4.8; p = 0.019). This difference persisted over the first week post-op, but did not reach statistical significance (cell saver: 0.64 ± 1.24 vs. control: 1.1 ± 1.4; p = 0.07). There were no significant clinical outcome differences. Cell saver blood can be safely stored at the bedside for immediate transfusion for 24 hrs after collection. Administration of cell saver blood significantly reduces the number of RBC and coagulant product transfusions and donor exposures in the immediate postoperative period. Reduction of blood product transfusions has the potential to reduce transfusion-associated complications and decrease postoperative morbidity. Larger studies are needed to determine whether this transfusion strategy will improve clinical outcomes.

  13. The differentiation directions of the bone marrow stromal cells under modeling microgravity

    NASA Astrophysics Data System (ADS)

    Nesterenko, Olga; Rodionova, Natalia; Katkova, Olena

    Within experiments on rats simulating microgravity by base load remove from back limbs (duration of the experiment 1,5 months) on marrow stromal cells cultures (ex vivo, in vitro) comprising osteogenic cells-predecessors, extracted from femurs, studied their peculiarities of the colony formation ablity, the cell structure, some cytological and ultra-structural characteristics and differentiation direction. It was found that that under microgravity conditions there is a decline of the stromal cells colony formation intensity, decrease of the colonies size and cells mitotic activity that indicates decrease of their growth potential. Both in control and in experiment the colonies were presented by population of low-differentiated cells, differentiated cells and mature cells. The comparative cytological and morphometric analysis have shown that the studied stromal cells in colonies have the smaller sizes, more elongated shape, and higher nucleocytoplasmic ratio. Cells composition in the experiment colonies is reliably different by the ratio of the low-differentiating to being differentiated cells; a ratio of low-differentiated to already differentiated cells; ratio of differentiated cells to total number of all cells. In comparison with control group, amount of the cells passed trough a differentiation stage and mature cells in colonies is decreased by 3 to 4 times. Among the differentiated stromal cells in colonies increasing amount of adipocytes was revealed. The analysis of electron microscope microphotographs showed that in osteogenic cells differentiated under microgravity conditions, there is a reduction of the specific volume of a granular endoplasmic reticulum, Golgi's complex and quantity of nuclei reduction that indicates depression of the specific biosyntheses process intensity in cells. The increase of lysosomes and myelinic structures quantity is linked to organelles partial reduction. Consolidation of mitochondrias is an evidence of the cells’ energy metabolism disorder. In differentiated cells, disorganization and a cytoskeleton destruction was observed. Results showed that under microgravity conditions proliferative and differentiation (including osteogenic) potentialities of low-differentiated marrow stromal cells decreased, induction of their adipocytic differentiation was observes as well. Obtained results make a new contribution into gravitation sensitivity mechanisms understanding for stromal cells of the bone marrow which contain osteogenic cells- predecessors, features of the osteoporosis development.

  14. Decreased levels of irisin, a skeletal muscle cell-derived myokine, are related to emphysema associated with chronic obstructive pulmonary disease.

    PubMed

    Sugiyama, Yukari; Asai, Kazuhisa; Yamada, Kazuhiro; Kureya, Yuko; Ijiri, Naoki; Watanabe, Tetsuya; Kanazawa, Hiroshi; Hirata, Kazuto

    2017-01-01

    Cigarette smoking-induced oxidant-antioxidant imbalance is a factor that contributes to the pathogenesis of COPD through epithelial cell apoptosis. Irisin is a skeletal muscle cell-derived myokine associated with physical activity. Irisin is also known to decrease oxidant-induced apoptosis in patients with diabetes mellitus. However, the correlation between irisin and emphysema in COPD and its role in epithelial cell apoptosis remains unknown. Forty patients with COPD were enrolled in this study. Pulmonary function tests and measurements of the percentage of low-attenuation area on high-resolution computed tomography images were performed, and the results were evaluated for correlation with serum irisin levels. The effect of irisin on cigarette-smoke extract-induced A549 cell apoptosis and the expression of Nrf2, a transcription factor for antioxidants, was also examined in vitro. Serum irisin levels were significantly correlated with lung diffusing capacity for carbon monoxide divided by alveolar volume ( r =0.56, P <0.01) and percentage of low-attenuation area ( r =-0.79, P <0.01). Moreover, irisin significantly enhanced Nrf2 expression ( P <0.05) and reduced cigarette-smoke extract-induced A549 cell apoptosis ( P <0.05). Decreased serum irisin levels are related to emphysema in patients with COPD and involved in epithelial apoptosis, resulting in emphysema. Irisin could be a novel treatment for emphysema in patients with COPD.

  15. The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.

    PubMed

    Smith, D J; Schulte, M; Bischof, J C

    1998-10-01

    Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled volume values for Lpg and ELp were very similar, but the overall fit was considered worse than for the individual volume parameters. A unique way of presenting the curve-fitting results supports a clear trend of reduction of both biophysical parameters in the presence of DMSO, and no clear trend in cooling rate dependence of the biophysical parameters. In addition, these results suggest that close proximity of the experimental cell volume data to the equilibrium volume curve may significantly reduce the efficiency of the curve-fitting process.

  16. Stage-dependent remodeling of the nuclear envelope and lamina during rabbit early embryonic development.

    PubMed

    Popken, Jens; Schmid, Volker J; Strauss, Axel; Guengoer, Tuna; Wolf, Eckhard; Zakhartchenko, Valeri

    2016-04-22

    Utilizing 3D structured illumination microscopy, we investigated the quality and quantity of nuclear invaginations and the distribution of nuclear pores during rabbit early embryonic development and identified the exact time point of nucleoporin 153 (NUP153) association with chromatin during mitosis. Contrary to bovine early embryonic nuclei, featuring almost exclusively nuclear invaginations containing a small volume of cytoplasm, nuclei in rabbit early embryonic stages show additionally numerous invaginations containing a large volume of cytoplasm. Small-volume invaginations frequently emanated from large-volume nuclear invaginations but not vice versa, indicating a different underlying mechanism. Large- and small-volume nuclear envelope invaginations required the presence of chromatin, as they were restricted to chromatin-positive areas. The chromatin-free contact areas between nucleolar precursor bodies (NPBs) and large-volume invaginations were free of nuclear pores. Small-volume invaginations were not in contact with NPBs. The number of invaginations and isolated intranuclear vesicles per nucleus peaked at the 4-cell stage. At this stage, the nuclear surface showed highly concentrated clusters of nuclear pores surrounded by areas free of nuclear pores. Isolated intranuclear lamina vesicles were usually NUP153 negative. Cytoplasmic, randomly distributed NUP153-positive clusters were highly abundant at the zygote stage and decreased in number until they were almost absent at the 8-cell stage and later. These large NUP153 clusters may represent a maternally provided NUP153 deposit, but they were not visible as clusters during mitosis. Major genome activation at the 8- to 16-cell stage may mark the switch from a necessity for a deposit to on-demand production. NUP153 association with chromatin is initiated during metaphase before the initiation of the regeneration of the lamina. To our knowledge, the present study demonstrates for the first time major remodeling of the nuclear envelope and its underlying lamina during rabbit preimplantation development.

  17. Erythrocyte Enrichment in Hematopoietic Progenitor Cell Cultures Based on Magnetic Susceptibility of the Hemoglobin

    PubMed Central

    Jin, Xiaoxia; Abbot, Stewart; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Zhao, Rui; Kameneva, Marina V.; Moore, Lee R.; Chalmers, Jeffrey J.; Zborowski, Maciej

    2012-01-01

    Using novel media formulations, it has been demonstrated that human placenta and umbilical cord blood-derived CD34+ cells can be expanded and differentiated into erythroid cells with high efficiency. However, obtaining mature and functional erythrocytes from the immature cell cultures with high purity and in an efficient manner remains a significant challenge. A distinguishing feature of a reticulocyte and maturing erythrocyte is the increasing concentration of hemoglobin and decreasing cell volume that results in increased cell magnetophoretic mobility (MM) when exposed to high magnetic fields and gradients, under anoxic conditions. Taking advantage of these initial observations, we studied a noninvasive (label-free) magnetic separation and analysis process to enrich and identify cultured functional erythrocytes. In addition to the magnetic cell separation and cell motion analysis in the magnetic field, the cell cultures were characterized for cell sedimentation rate, cell volume distributions using differential interference microscopy, immunophenotyping (glycophorin A), hemoglobin concentration and shear-induced deformability (elongation index, EI, by ektacytometry) to test for mature erythrocyte attributes. A commercial, packed column high-gradient magnetic separator (HGMS) was used for magnetic separation. The magnetically enriched fraction comprised 80% of the maturing cells (predominantly reticulocytes) that showed near 70% overlap of EI with the reference cord blood-derived RBC and over 50% overlap with the adult donor RBCs. The results demonstrate feasibility of label-free magnetic enrichment of erythrocyte fraction of CD34+ progenitor-derived cultures based on the presence of paramagnetic hemoglobin in the maturing erythrocytes. PMID:22952572

  18. Vitamin K3 induces antiproliferative effect in cervical epithelial cells transformed by HPV 16 (SiHa cells) through the increase in reactive oxygen species production.

    PubMed

    de Carvalho Scharf Santana, Natália; Lima, Natália Alves; Desoti, Vânia Cristina; Bidóia, Danielle Lazarin; de Souza Bonfim Mendonça, Patrícia; Ratti, Bianca Altrão; Nakamura, Tânia Ueda; Nakamura, Celso Vataru; Consolaro, Marcia Edilaine Lopes; Ximenes, Valdecir Farias; de Oliveira Silva, Sueli

    2016-10-01

    Cervical cancer is characterized as an important public health problem. According to latest estimates, cancer of the cervix is the fourth most common cancer among women. Due to its high prevalence, the search for new and efficient drugs to treat this infection is continuous. The progression of HPV-associated cervical cancer involves the expression of two viral proteins, E6 and E7, which are rapidly degraded by the ubiquitin-proteasome system through the increase in reactive oxygen species generation. Vitamins are essential to human substances, participate in the regulation of metabolism, and facilitate the process of energy transfer. Some early studies have indicated that vitamin K3 exerts antitumor activity by inducing cell death by apoptosis through an increase in the generation of reactive oxygen species. Thus, we evaluated the antiproliferative effect and a likely mechanism of action of vitamin K3 against cervical epithelial cells transformed by HPV 16 (SiHa cells) assessing the production of total ROS, the mitochondrial membrane potential, the cell morphology, the cell volume, and the cell membrane integrity. Our results show that vitamin K3 induces an increase in ROS production in SiHa cells, triggering biochemical and morphological events, such as depolarization of mitochondrial membrane potential and decreasing cell volume. Our data showed that vitamin K3 generates an oxidative imbalance in SiHa cells, leading to mechanisms that induce cell death by apoptosis.

  19. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less

  20. G cells and gastrin in chronic alcohol-treated rats.

    PubMed

    Todorović, Vera; Koko, Vesna; Budec, Mirela; Mićić, Mileva; Micev, Marjan; Pavlović, Mirjana; Vignjević, Sanja; Drndarević, Neda; Mitrović, Olivera

    2008-02-01

    Numerous reports have described gastric mucosal injury in rats treated with high ethanol concentrations. However, to the best of our knowledge, ultrastructural characteristics of G cells and antral gastrin levels have not been previously reported, either in rats that chronically consumed alcohol or in human alcoholics. The goal of this study was to examine the effect of ethanol consumption (8.5 g/kg) over a 4-month period, under controlled nutritional conditions, on antral and plasma levels of gastrin, ultrastructure of G cells, morphometric characteristics of G cells by stereological methods, and analysis of endocrine cells in the gastric mucosa by immunohistochemistry. The chronic alcohol consumption resulted in a nonsignificant decrease in gastrin plasma levels and unchanged antral gastrin concentrations. A slightly damaged glandular portion of the gastric mucosa and dilatation of small blood vessels detected by histological analysis, suggests that ethanol has a toxic effect on the mucosal surface. Chronic alcohol treatment significantly decreased the number of antral G cells per unit area, and increased their cellular, nuclear, and cytoplasmatic profile areas. In addition, the volume density and diameter of G-cell granules, predominantly the pale and lucent types, were increased, indicating inhibition of gastrin release. Ethanol treatment also decreased the number of gastric somatostatin-, serotonin-, and histamine-immunoreactive cells, except the somatostatin cells in the pyloric mucosa, as well as both G: D: enterochromaffin cells (EC) cell ratios in the antrum and D: ECL cell ratios in the fundus. These results indicate that the change of morphometric parameters in G cells may be related to cellular dysfunction. Our findings also suggest that regulation of G-cell secretion was not mediated by locally produced somatostatin in ethanol-consuming rats, but may involve gastric luminal content and/or neurotransmitters of gastric nerve fibers.

  1. Competition between magnetism and superconductivity in Eu-based intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Stavinoha, Macy; Green, Lance; Chan, Julia; Morosan, Emilia

    Eu-based intermetallic compounds present a path to discover new correlated electronic behavior in quantum materials. Reports of superconductivity, intermediate valence behavior, and heavy fermions indicate that Eu-based compounds are promising routes to study the relationship between crystallography and electronic properties. The present work is focused on EuGa4, an antiferromagnet with TN = 16 K isostructural with the tetragonal RT2M2 (R = rare earth, T = transition metal, M = metal or metalloid) family that exhibits heavy fermion behavior and unconventional superconductivity. Single crystals of the doped series (Eu1-xLax)Ga4, (Eu1-xCax)Ga4, and Eu(Ga1-xAlx)4 have been grown using the self-flux method and tested for change in unit cell volume and magnetic susceptibility. Results show that doping with Ca (isoelectronic doping) and La (hole doping) reduce TN to 12.4 K and 2.3 K, respectively, for Ca doping up to x = 0.11 and La doping up to x = 0.74 without an associated change in unit cell volume. The series Eu(Ga1-xAlx)4 has shown incommensurate-to-commensurate magnetic transitions. Future studies will aim to further decrease TN and the unit cell volume using physical pressure and chemical pressure through doping. ICAM, Gordon and Betty Moore Foundation.

  2. Weights and hematology of wild black bears during hibernation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Rogers, Lynn L.; Allen, Arthur W.; Seal, U.S.

    1991-01-01

    We compared weights and hematological profiles of adult (greater than 3-yr-old) female black bears (Ursus americanus) during hibernation (after 8 January). We handled 28 bears one to four times (total of 47) over 4 yr of varying mast and berry production. Mean weight of lactating bears was greater (P less than 0.0001) than that of non-lactating females. White blood cells (P less than 0.05) and mean corpuscular volume (P = 0.005) also differed between lactating and non-lactating bears. Hemoglobin (P = 0.006) and mean corpuscular hemoglobin concentration (P = 0.02) varied among years; values were lowest during 1975, following decreased precipitation and the occurrence of a second year of mast and berry crop shortages in a three-year period. Significant (P less than 0.05) interaction between reproductive status (lactating versus non-lactating) and study year for hemoglobin, red blood cells, and packed cell volume, and increased mean corpuscular volume, suggested a greater nutritional challenge for lactating females compared to non-lactating females during the 1975 denning season. Our data suggest that hematological characteristics of denning bears may be more sensitive than weights as indicators of annual changes in nutritional status; however, other influential factors, in addition to mast and berry crop production, remain to be examined.

  3. Lysine production from methanol at 50 degrees C using Bacillus methanolicus: Modeling volume control, lysine concentration, and productivity using a three-phase continuous simulation.

    PubMed

    Lee, G H; Hur, W; Bremmon, C E; Flickinger, M C

    1996-03-20

    A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m(3)) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50 degrees C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VF(cstr)) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified simulation indicated that growth-associated production dominates in strain NOA2#13A52-8A66. (c) 1996 John Wiley & Sons, Inc.

  4. Evaluation of engraftment of superparamagnetic iron oxide-labeled mesenchymal stem cells using three-dimensional reconstruction of magnetic resonance imaging in photothrombotic cerebral infarction models of rats.

    PubMed

    Shim, Jaehyun; Kwak, Byung Kook; Jung, Jisung; Park, Serah

    2015-01-01

    To evaluate engraftment by visualizing the location of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) three-dimensionally in photothrombotic cerebral infarction (PTCI) models of rats. Magnetic resonance imaging (MRI) of an agarose block containing superparamagnetic iron oxide (SPIO)-labeled hBM-MSCs was performed using a 3.0-T MRI, T2-(T2WI), T2(*)-(T2(*)WI), and susceptibility-weighted images (SWI). PTCI was induced in 6 rats, and 2.5 × 10(5) SPIO-labeled hBM-MSCs were infused through the ipsilateral internal carotid artery (ICA group) or tail vein (IV group). MRI was performed on days 1, 3, 7, and 14 after stem cell injection. Dark signal regions were confirmed using histology. Three-dimensional MRI reconstruction was performed using the clinical workflow solution to evaluate the engraftment of hBM-MSCs. Volumetric analysis of the engraftment was also performed. The volumes of SPIO-labeled hBM-MSCs in the phantom MRI were 129.3, 68.4, and 25.9 µL using SWI, T2(*)WI, and T2WI, respectively. SPIO-labeled hBM-MSCs appeared on day 1 after injection, encircling the cerebral infarction from the ventral side. Dark signal regions matched iron positive cells and human origin (positive) cells. The volume of the engraftment was larger in the ICA group on days 1, 3, and 7, after stem cell injection (p < 0.05 on SWI). SWI was the most sensitive MRI pulse sequence (p < 0.05). The volume of infarction decreased until day 14. The engraftment of SPIO-labeled hBM-MSCs can be visualized and evaluated three-dimensionally in PTCI models of rats. The engraftment volume was larger in the ICA group than IV group on early stage within one week.

  5. Ethanol affects the development of sensory hair cells in larval zebrafish (Danio rerio).

    PubMed

    Uribe, Phillip M; Asuncion, James D; Matsui, Jonathan I

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%-1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.

  6. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  7. Manipulation of the sodium-potassium ratio as a lever for controlling cell growth and improving cell specific productivity in perfusion CHO cell cultures.

    PubMed

    Wang, Samantha B; Lee-Goldman, Alexandria; Ravikrishnan, Janani; Zheng, Lili; Lin, Henry

    2018-04-01

    Perfusion processes typically require removal of a continuous or semi-continuous volume of cell culture in order to maintain a desired target cell density. For fast growing cell lines, the product loss from this stream can be upwards of 35%, significantly reducing the overall process yield. As volume removed is directly proportional to cell growth, the ability to modulate growth during perfusion cell culture production thus becomes crucial. Leveraging existing media components to achieve such control without introducing additional supplements is most desirable because it decreases process complexity and eliminates safety and clearance concerns. Here, the impact of extracellular concentrations of sodium (Na) and potassium (K) on cell growth and productivity is explored. High throughput small-scale models of perfusion revealed Na:K ratios below 1 can significantly suppress cell growth by inducing cell cycle arrest in the G0/1 phase. A concomitant increase in cell specific productivity was also observed, reaching as high as 115 pg/cell/day for one cell line studied. Multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrated similar responses to lower Na:K media, indicating the universal applicability of such an approach. Product quality attributes were also assessed and revealed that effects were cell line specific, and can be acceptable or manageable depending on the phase of the drug development. Drastically altering Na and K levels in perfusion media as a lever to impact cell growth and productivity is proposed. © 2017 Wiley Periodicals, Inc.

  8. Flow-Cell-Induced Dispersion in Flow-through Absorbance Detection Systems: True Column Effluent Peak Variance.

    PubMed

    Dasgupta, Purnendu K; Shelor, Charles Phillip; Kadjo, Akinde Florence; Kraiczek, Karsten G

    2018-02-06

    Following a brief overview of the emergence of absorbance detection in liquid chromatography, we focus on the dispersion caused by the absorbance measurement cell and its inlet. A simple experiment is proposed wherein chromatographic flow and conditions are held constant but a variable portion of the column effluent is directed into the detector. The temporal peak variance (σ t,obs 2 ), which increases as the flow rate (F) through the detector decreases, is found to be well-described as a quadratic function of 1 / F . This allows the extrapolation of the results to zero residence time in the detector and thence the determination of the true variance of the peak prior to the detector (this includes contribution of all preceding components). This general approach should be equally applicable to detection systems other than absorbance. We also experiment where the inlet/outlet system remains the same but the path length is varied. This allows one to assess the individual contributions of the cell itself and the inlet/outlet system.to the total observed peak. The dispersion in the cell itself has often been modeled as a flow-independent parameter, dependent only on the cell volume. Except for very long path/large volume cells, this paradigm is simply incorrect.

  9. MDCK cells are capable of water secretion and reabsorption in response to changes in the ionic environment.

    PubMed

    Capra, Janne P; Eskelinen, Sinikka M

    2017-01-01

    A prerequisite for tissue electrolyte homeostasis is highly regulated ion and water transport through kidney or intestinal epithelia. In the present work, we monitored changes in the cell and luminal volumes of type II Madin-Darby canine kidney (MDCK) cells grown in a 3D environment in response to drugs, or to changes in the composition of the basal extracellular fluid. Using fluorescent markers and high-resolution spinning disc confocal microscopy, we could show that lack of sodium and potassium ions in the basal fluid (tetramethylammonium chloride (TMACl) buffer) induces a rapid increase in the cell and luminal volumes. This transepithelial water flow could be regulated by inhibitors and agonists of chloride channels. Hence, the driving force for the transepithelial water flow is chloride secretion, stimulated by hyperpolarization. Chloride ion depletion of the basal fluid (using sodium gluconate buffer) induces a strong reduction in the lumen size, indicating reabsorption of water from the lumen to the basal side. Lumen size also decreased following depolarization of the cell interior by rendering the membrane permeable to potassium. Hence, MDCK cells are capable of both absorption and secretion of chloride ions and water; negative potential within the lumen supports secretion, while depolarizing conditions promote reabsorption.

  10. Hemoglobin consumption by P. falciparum in individual erythrocytes imaged via quantitative phase spectroscopy

    NASA Astrophysics Data System (ADS)

    Rinehart, Matthew T.; Park, Han Sang; Walzer, Katelyn A.; Chi, Jen-Tsan Ashley; Wax, Adam

    2016-04-01

    Plasmodium falciparum infection causes structural and biochemical changes in red blood cells (RBCs). To quantify these changes, we apply a novel optical technique, quantitative phase spectroscopy (QPS) to characterize individual red blood cells (RBCs) during the intraerythrocytic life cycle of P. falciparum. QPS captures hyperspectral holograms of individual RBCs to measure spectroscopic changes across the visible wavelength range (475-700 nm), providing complex information, i.e. amplitude and phase, about the light field which has interacted with the cell. The complex field provides complimentary information on hemoglobin content and cell mass, which are both found to dramatically change upon infection by P. falciparum. Hb content progressively decreases with parasite life cycle, with an average 72.2% reduction observed for RBCs infected by schizont-stage P. falciparum compared to uninfected cells. Infection also resulted in a 33.1% reduction in RBC’s optical volume, a measure of the cells’ non-aqueous components. Notably, optical volume is only partially correlated with hemoglobin content, suggesting that changes in other dry mass components such as parasite mass may also be assessed using this technique. The unique ability of QPS to discriminate individual healthy and infected cells using spectroscopic changes indicates that the approach can be used to detect disease.

  11. Foam Separation of Pseudomonas fluorescens and Bacillus subtilis var. niger

    PubMed Central

    Grieves, R. B.; Wang, S. L.

    1967-01-01

    An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 μeq/ml of NaCl, KCl, Na2SO4, K2SO4, CaCl2, CaSO4, MgCl2, or MgSO4 produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 × 105 up to 1.6 × 106 to 2.8 × 107 cells per milliliter (initial suspensions contain from 3.3 × 107 to 4.8 × 107 cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 μeq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 × 104 to about 4.0 × 105 cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis. PMID:4961933

  12. Osmotic Shock Induced Protein Destabilization in Living Cells and Its Reversal by Glycine Betaine.

    PubMed

    Stadmiller, Samantha S; Gorensek-Benitez, Annelise H; Guseman, Alex J; Pielak, Gary J

    2017-04-21

    Many organisms can adapt to changes in the solute content of their surroundings (i.e., the osmolarity). Hyperosmotic shock causes water efflux and a concomitant reduction in cell volume, which is countered by the accumulation of osmolytes. This volume reduction increases the crowded nature of the cytoplasm, which is expected to affect protein stability. In contrast to traditional theory, which predicts that more crowded conditions can only increase protein stability, recent work shows that crowding can destabilize proteins through transient attractive interactions. Here, we quantify protein stability in living Escherichia coli cells before and after hyperosmotic shock in the presence and absence of the osmolyte, glycine betaine. The 7-kDa N-terminal src-homology 3 domain of Drosophila signal transduction protein drk is used as the test protein. We find that hyperosmotic shock decreases SH3 stability in cells, consistent with the idea that transient attractive interactions are important under physiologically relevant crowded conditions. The subsequent uptake of glycine betaine returns SH3 to the stability observed without osmotic shock. These results highlight the effect of transient attractive interactions on protein stability in cells and provide a new explanation for why stressed cells accumulate osmolytes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Emergency department spirometric volume and base deficit delineate risk for torso injury in stable patients

    PubMed Central

    Dunham, C Michael; Sipe, Eilynn K; Peluso, LeeAnn

    2004-01-01

    Background We sought to determine torso injury rates and sensitivities associated with fluid-positive abdominal ultrasound, metabolic acidosis (increased base deficit and lactate), and impaired pulmonary physiology (decreased spirometric volume and PaO2/FiO2). Methods Level I trauma center prospective pilot and post-pilot study (2000–2001) of stable patients. Increased base deficit was < 0.0 in ethanol-negative and ≤ -3.0 in ethanol-positive patients. Increased lactate was > 2.5 mmol/L in ethanol-negative and ≥ 3.0 mmol/L in ethanol-positive patients. Decreased PaO2/FiO2 was < 350 and decreased spirometric volume was < 1.8 L. Results Of 215 patients, 66 (30.7%) had a torso injury (abdominal/pelvic injury n = 35 and/or thoracic injury n = 43). Glasgow Coma Scale score was 14.8 ± 0.5 (13–15). Torso injury rates and sensitivities were: abdominal ultrasound negative and normal base deficit, lactate, PaO2/FiO2, and spirometric volume – 0.0% & 0.0%; normal base deficit and normal spirometric volume – 4.2% & 4.5%; chest/abdominal soft tissue injury – 37.8% & 47.0%; increased lactate – 39.7% & 47.0%; increased base deficit – 41.3% & 75.8%; increased base deficit and/or decreased spirometric volume – 43.8% & 95.5%; decreased PaO2/FiO2 – 48.9% & 33.3%; positive abdominal ultrasound – 62.5% & 7.6%; decreased spirometric volume – 73.4% & 71.2%; increased base deficit and decreased spirometric volume – 82.9% & 51.5%. Conclusions Trauma patients with normal base deficit and spirometric volume are unlikely to have a torso injury. Patients with increased base deficit or lactate, decreased spirometric volume, decreased PaO2/FiO2, or positive FAST have substantial risk for torso injury. Increased base deficit and/or decreased spirometric volume are highly sensitive for torso injury. Base deficit and spirometric volume values are readily available and increase or decrease the suspicion for torso injury. PMID:14731306

  14. Effect of oxotremorine on resting membrane potential and cell volume in skeletal muscle fibers in rats after in vivo blockade of NO-synthase.

    PubMed

    Khairova, R A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh

    2003-02-01

    Denervation of rat phrenic muscle or block of NO-synthase in vivo increased the cross-section area of muscle fibers and decreased membrane resting potential. Oxotremorine prevented the development of denervation-induced or denervation-like (i.e. induced by NO-synthase blockade) membrane depolarization and increase of the cross-sectional area of muscle fibers. Pirenzepine abolished the effects of oxotremorine. It was concluded that non-quantal acetylcholine can be involved in the regulation of skeletal muscle fiber volume via activation of M1 muscarinic receptors followed by NO synthesis.

  15. Quantitative Assessment of Proliferative Effects of Oral Vanadium on Pancreatic Islet Volumes and Beta Cell Numbers of Diabetic Rats.

    PubMed

    Pirmoradi, Leila; Noorafshan, Ali; Safaee, Akbar; Dehghani, Gholam Abbas

    2016-01-01

    Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats. Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg). Normal and diabetic rats were divided into four groups. While control normal and diabetic (CD) groups used water, vanadium-treated normal (VTN) and diabetic (VTD) groups used solutions containing vanadyl sulfate (0.5-1 mg/mL, VOSO4+5H2O). Tail blood samples were used to measure blood glucose (BG) and plasma insulin. Two months after treatment, rats were sacrificed, pancreata prepared, and stereology method was used to quantitatively evaluate total beta cell numbers (TBCN) and total islet volumes (TISVOL). Normoglycemia persisted in VTN with significantly decreased plasma insulin (0.19±0.08 vs. 0.97±0.27 ng/dL, P<0.002). The respective high BG (532±49 vs. 144±46 mg/dL, P<0.0001) and reduced plasma insulin (0.26±0.15 vs. 0.54±0.19 ng/dL, P<0.002) seen in CD were reversed in VTD during vanadium treatment or withdrawal. While the induction of diabetes, compared to their control, significantly decreased TISVOL (1.9±0.2 vs. 3.03±0.6 mm3, P<0.003) and TBCN (0.99±0.1 vs. 3.2±0.2 x 106, P<0.003), vanadium treatment significantly increased TISVOL (2.9±0.8 and 4.07±1.0 mm3, P<0.003) and TBCN (1.5±0.3 and 3.8±0.6 x 106, P<0.03). Two-month oral vanadium therapy in STZ-diabetic rats ameliorated hyperglycemia by partially restoring plasma insulin. This action was through proliferative actions of vanadium in preventing islet atrophy by increasing beta-cell numbers.

  16. Hematological changes in nephritis in poultry induced by diets high in protein, high in calcium, containing urea, or deficient in vitamin A.

    PubMed

    Chandra, M; Singh, B; Singh, N; Ahuja, S P

    1984-04-01

    Nephritis was induced in 300, 18-day-old male Arbor Acre broiler chicks by feeding diets high (42.28%) in protein, high (3.27%) in calcium, containing urea (5%), or deficient in vitamin A. Various hematological parameters were studied at weekly intervals. Normocytic-normochromic anemia, characterized by a decrease in total erythrocyte counts, hemoglobin, packed cell volume, and an increase in erythrocyte sedimentation rate, was evident in the birds kept on diets high in protein, high in calcium, or deficient in vitamin A. Increased total erythrocytes, hemoglobin packed cell volume, and erythrocyte sedimentation rate was observed in birds fed urea. Differential leucocyte counts revealed lymphopenia, heterophilia and monocytosis in birds kept on diets high in protein, containing urea, or deficient in vitamin A. However, lymphocytosis, heteropenia , and monocytosis were recorded in birds fed the high calcium diet.

  17. Neuroprotective Activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) in vitro and in vivo in Rodent Models of Brain Ischemia

    PubMed Central

    Xu, Zhenfeng; Mu, Chaofeng; Alvarez, Paloma; Ford, Byron D.; El Sayed, Khalid; Eterovic, Vesna A.; Ferchmin, Pedro A.; Hao, Jiukuan

    2015-01-01

    (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volume (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volume (120±65 mm3) than those in the rats of DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cells (neuroblastoma cells) apoptosis induced by oxygen glucose deprivation (OGD), and improved the population spikes (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to bEND5 cells (murine brain-derived endothelial cells) and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R. PMID:25677097

  18. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Carboplatin Effects Against Ovarian Cancer.

    PubMed

    Yu, Jun; Ma, Yan; Drisko, Jeanne; Chen, Qi

    2013-12-01

    Tumor resistance to platinum-based drugs has been an obstacle to the treatment of ovarian cancer. Extract of the plant Rauwolfia vomitoria has long been used by cancer patients. However, there have not been systematic studies of its anticancer activity. In an effort to enhance the effectiveness of platinum-based drugs, we investigated the anticancer effect of a Rauwolfia vomitoria extract (Rau), both alone and in combination with carboplatin (Cp). In vitro cytotoxicity and colony formation were evaluated in several ovarian cancer cell lines. In vivo effects were evaluated in an intraperitoneal ovarian cancer mouse model. The combination of Rau and Cp was assessed using Chou-Talalay's constant ratio design and median effect analysis based on the isobologram principle to determine the combination index values. Rau decreased cell growth in all 3 tested ovarian cancer cell lines dose dependently and completely inhibited formation of colonies in soft agar. Apoptosis was induced in a time- and dose-dependent manner and was the predominant form of Rau-induced cell death. Synergy of Rau with Cp was detected, with combination index values <1 and dose reduction index values for Cp ranging from 1.7- to 7-fold. Tumor growth in mice was significantly suppressed by 36% or 66% with Rau treatment alone at a low (20 mg/kg) or a high dose (50 mg/kg), respectively, an effect comparable to that of Cp alone. The volume of ascitic fluid and the number of nonblood cells in ascites were also significantly decreased. Combining Rau with Cp remarkably enhanced the effect of Cp and reduced tumor burden by 87% to 90% and ascites volume by 89% to 97%. Rau has potent antitumor activity and in combination significantly enhances the effect of Cp against ovarian cancer.

  19. An essential role for the association of CD47 to SHPS-1 in skeletal remodeling.

    PubMed

    Maile, Laura A; DeMambro, Victoria E; Wai, Christine; Lotinun, Sutada; Aday, Ariel W; Capps, Byron E; Beamer, Wesley G; Rosen, Clifford J; Clemmons, David R

    2011-09-01

    Integrin-associated protein (IAP/CD47) has been implicated in macrophage-macrophage fusion. To understand the actions of CD47 on skeletal remodeling, we compared Cd47(-/-) mice with Cd47(+/+) controls. Cd47(-/-) mice weighed less and had decreased areal bone mineral density compared with controls. Cd47(-/-) femurs were shorter in length with thinner cortices and exhibited lower trabecular bone volume owing to decreased trabecular number and thickness. Histomorphometry revealed reduced bone-formation and mineral apposition rates, accompanied by decreased osteoblast numbers. No differences in osteoclast number were observed despite a nonsignificant but 40% decrease in eroded surface/bone surface in Cd47(-/-) mice. In vitro, the number of functional osteoclasts formed by differentiating Cd47(-/-) bone marrow cells was significantly decreased compared with wild-type cultures and was associated with a decrease in bone-resorption capacity. Furthermore, by disrupting the CD47-SHPS-1 association, we found that osteoclastogenesis was markedly impaired. Assays for markers of osteoclast maturation suggested that the defect was at the point of fusion and not differentiation and was associated with a lack of SHPS-1 phosphorylation, SHP-1 phosphatase recruitment, and subsequent dephosphorylation of non-muscle cell myosin IIA. We also demonstrated a significant decrease in osteoblastogenesis in bone marrow stromal cells derived from Cd47(-/-) mice. Our finding of cell-autonomous defects in Cd47(-/-) osteoblast and osteoclast differentiation coupled with the pronounced skeletal phenotype of Cd47(-/-) mice support the conclusion that CD47 plays an important role in regulating skeletal acquisition and maintenance through its actions on both bone formation and bone resorption. Copyright © 2011 American Society for Bone and Mineral Research.

  20. Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model.

    PubMed

    Zhang, Zhen; Yang, Wen-Zhao; Zhu, Zhen-Zhen; Hu, Qian-Qian; Chen, Yan-Feng; He, Hui; Chen, Yong-Xiong; Liu, Zu-Guo

    2014-05-06

    We investigated the therapeutic effects and underlying mechanisms of topical doxycycline in a benzalkonium chloride (BAC)-induced mouse dry eye model. Eye drops containing 0.025%, 0.1% doxycycline or solvent were administered to a BAC-induced dry eye model four times daily. The clinical evaluations, including tear break-up time (BUT), fluorescein staining, inflammatory index, and tear volume, were performed on days 0, 1, 4, 7, and 10. Global specimens were collected on day 10 and processed for immunofluorescent staining, TUNEL, and periodic acid-Schiff assay. The levels of inflammatory mediators in the corneas were determined by real-time PCR. The total and phosphorylated nuclear factor-κB (NF-κB) were detected by Western blot. Both 0.025% and 0.1% doxycycline treatments resulted in increased BUT, lower fluorescein staining scores, and inflammatory index on days 4, 7, and 10, while no significant change in tear volume was observed. The 0.1% doxycycline-treated group showed more improvements in decreasing fluorescein staining scores, increasing Ki-67-positive cells, and decreasing TUNEL- and keratin-10-positive cells than other groups. The mucin-filled goblet cells in conjunctivas were increased, and the expression of CD11b and levels of matrix metalloproteinase-9, IL-1β, IL-6, TNF-α, macrophage inflammatory protein-2, and cytokine-induced neutrophil chemoattractant in corneas were decreased in both doxycycline-treated groups. In addition, doxycycline significantly reduced the phosphorylation of NF-κB activated in the BAC-treated corneas. Topical doxycycline showed clinical improvements and alleviated ocular surface inflammation on BAC-induced mouse dry eye, suggesting a potential as an anti-inflammatory agent in the clinical treatment of dry eye.

  1. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  2. Biointerface dynamics--Multi scale modeling considerations.

    PubMed

    Pajic-Lijakovic, Ivana; Levic, Steva; Nedovic, Viktor; Bugarski, Branko

    2015-08-01

    Irreversible nature of matrix structural changes around the immobilized cell aggregates caused by cell expansion is considered within the Ca-alginate microbeads. It is related to various effects: (1) cell-bulk surface effects (cell-polymer mechanical interactions) and cell surface-polymer surface effects (cell-polymer electrostatic interactions) at the bio-interface, (2) polymer-bulk volume effects (polymer-polymer mechanical and electrostatic interactions) within the perturbed boundary layers around the cell aggregates, (3) cumulative surface and volume effects within the parts of the microbead, and (4) macroscopic effects within the microbead as a whole based on multi scale modeling approaches. All modeling levels are discussed at two time scales i.e. long time scale (cell growth time) and short time scale (cell rearrangement time). Matrix structural changes results in the resistance stress generation which have the feedback impact on: (1) single and collective cell migrations, (2) cell deformation and orientation, (3) decrease of cell-to-cell separation distances, and (4) cell growth. Herein, an attempt is made to discuss and connect various multi scale modeling approaches on a range of time and space scales which have been proposed in the literature in order to shed further light to this complex course-consequence phenomenon which induces the anomalous nature of energy dissipation during the structural changes of cell aggregates and matrix quantified by the damping coefficients (the orders of the fractional derivatives). Deeper insight into the matrix partial disintegration within the boundary layers is useful for understanding and minimizing the polymer matrix resistance stress generation within the interface and on that base optimizing cell growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Rapid increase in red blood cell density driven by K:Cl cotransport in a subset of sickle cell anemia reticulocytes and discocytes.

    PubMed

    Fabry, M E; Romero, J R; Buchanan, I D; Suzuka, S M; Stamatoyannopoulos, G; Nagel, R L; Canessa, M

    1991-07-01

    We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density-gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N-methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.

  4. Lung Function before and Two Days after Open-Heart Surgery.

    PubMed

    Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta

    2012-01-01

    Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV(1): r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified.

  5. Lung Function before and Two Days after Open-Heart Surgery

    PubMed Central

    Urell, Charlotte; Westerdahl, Elisabeth; Hedenström, Hans; Janson, Christer; Emtner, Margareta

    2012-01-01

    Reduced lung volumes and atelectasis are common after open-heart surgery, and pronounced restrictive lung volume impairment has been found. The aim of this study was to investigate factors influencing lung volumes on the second postoperative day. Open-heart surgery patients (n = 107, 68 yrs, 80% male) performed spirometry both before surgery and on the second postoperative day. The factors influencing postoperative lung volumes and decrease in lung volumes were investigated with univariate and multivariate analyses. Associations between pain (measured by numeric rating scale) and decrease in postoperative lung volumes were calculated with Spearman rank correlation test. Lung volumes decreased by 50% and were less than 40% of the predictive values postoperatively. Patients with BMI >25 had lower postoperative inspiratory capacity (IC) (33 ± 14% pred.) than normal-weight patients (39 ± 15% pred.), (P = 0.04). More pain during mobilisation was associated with higher decreases in postoperative lung volumes (VC: r = 0.33, P = 0.001; FEV1: r = 0.35, P ≤ 0.0001; IC: r = 0.25, P = 0.01). Patients with high BMI are a risk group for decreased postoperative lung volumes and should therefore receive extra attention during postoperative care. As pain is related to a larger decrease in postoperative lung volumes, optimal pain relief for the patients should be identified. PMID:22924127

  6. Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera.

    PubMed

    Koh, Kyung Suk; Oh, Tae Suk; Kim, Hoon; Chung, In Wook; Lee, Kang Woo; Lee, Hyo Bo; Park, Eun Jung; Jung, Jae Seob; Shin, Il Seob; Ra, Jeong Chan; Choi, Jong Woo

    2012-09-01

    Parry-Romberg disease is a rare condition that results in progressive hemifacial atrophy, involving the skin, dermis, subcutaneous fat, muscle, and, finally, cartilage and bone. Patients have been treated with dermofat or fat grafts or by microvascular free flap transfer. We hypothesized that adipose-derived stem cells (ASCs) may improve the results of microfat grafting through enhancing angiogenesis. We evaluated the utility of ASC in microfat grafting of patients with Parry-Romberg disease by measuring the change in the hemifacial volumes after injection of ASCs with microfat grafts or microfat grafts alone. In April 2008, this investigation was approved by the Korean Food and Drug Administration and the institutional review board of the Asan Medical Center (Seoul, Korea) that monitor investigator-initiated trials. Between May 2008 and January 2009, 10 volunteers with Parry-Romberg disease (5 men and 5 women; mean age, 28 y) were recruited; 5 received ASC and microfat grafts and 5 received microfat grafts only. The mean follow-up period was 15 months. Adipose-derived stem cells were obtained from abdominal fat by liposuction and were cultured for 2 weeks. On day 14, patients were injected with fat grafts alone or plus (in the test group) 1 × 10 ASCs. Patients were evaluated postoperatively using a 3-dimensional camera and 3-dimensional CT scans, and grafted fat volumes were objectively calculated. Successful outcomes were evident in all 5 patients receiving microfat grafts and ASCs, and the survival of grafted fat was better than in patients receiving microfat grafts alone. Before surgery, the mean difference between ipsilateral and contralateral hemiface volume in patients receiving microfat grafts and ASCs was 21.71 mL decreasing to 4.47 mL after surgery. Overall resorption in this ASC group was 20.59%. The mean preoperative difference in hemiface volume in those receiving microfat grafts alone was 8.32 mL decreasing to 3.89 mL after surgery. Overall resorption in this group was 46.81%. The preoperative and postoperative volume differences between the groups was statistically significant (P = 0.002; random-effects model [SAS 9.1]). Adipose-derived stem cells enhance the survival of fat grafted into the face. A microfat graft with simultaneous ASC injection may be used to treat Parry-Romberg disease without the need for microvascular free flap transfer.

  7. Camelid heat stress: 15 cases (2003–2011)

    PubMed Central

    Norton, Piper L.; Gold, Jenifer R.; Russell, Karen E.; Schulz, Kara L.; Porter, Brian F.

    2014-01-01

    This case series describes novel findings associated with heat stress in 15 cases in South American camelids that had no pre-existing illnesses and which had clinical signs of illness after exposure to a warm environment. Novel findings include decreased packed cell volume and albumin concentration and mild spinal axonal degeneration. Heat stress should be considered in weak camelids with a history of hyperthermia. PMID:25320390

  8. CD147 expression predicts biochemical recurrence after prostatectomy independent of histologic and pathologic features.

    PubMed

    Bauman, Tyler M; Ewald, Jonathan A; Huang, Wei; Ricke, William A

    2015-07-25

    CD147 is an MMP-inducing protein often implicated in cancer progression. The purpose of this study was to investigate the expression of CD147 in prostate cancer (PCa) progression and the prognostic ability of CD147 in predicting biochemical recurrence after prostatectomy. Plasma membrane-localized CD147 protein expression was quantified in patient samples using immunohistochemistry and multispectral imaging, and expression was compared to clinico-pathological features (pathologic stage, Gleason score, tumor volume, preoperative PSA, lymph node status, surgical margins, biochemical recurrence status). CD147 specificity and expression were confirmed with immunoblotting of prostate cell lines, and CD147 mRNA expression was evaluated in public expression microarray datasets of patient prostate tumors. Expression of CD147 protein was significantly decreased in localized tumors (pT2; p = 0.02) and aggressive PCa (≥pT3; p = 0.004), and metastases (p = 0.001) compared to benign prostatic tissue. Decreased CD147 was associated with advanced pathologic stage (p = 0.009) and high Gleason score (p = 0.02), and low CD147 expression predicted biochemical recurrence (HR 0.55; 95 % CI 0.31-0.97; p = 0.04) independent of clinico-pathologic features. Immunoblot bands were detected at 44 kDa and 66 kDa, representing non-glycosylated and glycosylated forms of CD147 protein, and CD147 expression was lower in tumorigenic T10 cells than non-tumorigenic BPH-1 cells (p = 0.02). Decreased CD147 mRNA expression was associated with increased Gleason score and pathologic stage in patient tumors but is not associated with recurrence status. Membrane-associated CD147 expression is significantly decreased in PCa compared to non-malignant prostate tissue and is associated with tumor progression, and low CD147 expression predicts biochemical recurrence after prostatectomy independent of pathologic stage, Gleason score, lymph node status, surgical margins, and tumor volume in multivariable analysis.

  9. Adverse respiratory effects in rats following inhalation exposure to ammonia: respiratory dynamics and histopathology.

    PubMed

    Perkins, Michael W; Wong, Benjamin; Tressler, Justin; Rodriguez, Ashley; Sherman, Katherine; Andres, Jaclynn; Devorak, Jennifer; L Wilkins, William; Sciuto, Alfred M

    2017-01-01

    Acute respiratory dynamics and histopathology of the lungs and trachea following inhaled exposure to ammonia were investigated. Respiratory dynamic parameters were collected from male Sprague-Dawley rats (300-350 g) during (20 min) and 24 h (10 min) after inhalation exposure for 20 min to 9000, 20,000, and 23,000 ppm of ammonia in a head-only exposure system. Body weight loss, analysis of blood cells, and lungs and trachea histopathology were assessed 1, 3, and 24 h following inhalation exposure to 20,000 ppm of ammonia. Prominent decreases in minute volume (MV) and tidal volume (TV) were observed during and 24 h post-exposure in all ammonia-exposed animals. Inspiratory time (IT) and expiratory time (ET) followed similar patterns and decreased significantly during the exposure and then increased at 24 h post-exposure in all ammonia-exposed animals in comparison to air-exposed controls. Peak inspiratory (PIF) and expiratory flow (PEF) significantly decreased during the exposure to all ammonia doses, while at 24 h post-exposure they remained significantly decreased following exposure to 20,000 and 23,000 ppm. Exposure to 20,000 ppm of ammonia resulted in body weight loss at 1 and 3 h post-exposure; weight loss was significant at 24 h compared to controls. Exposure to 20,000 ppm of ammonia for 20 min resulted in increases in the total blood cell counts of white blood cells, neutrophils, and platelets at 1, 3, and 24 h post-exposure. Histopathologic evaluation of the lungs and trachea tissue of animals exposed to 20,000 ppm of ammonia at 1, 3, and 24 h post-exposure revealed various morphological changes, including alveolar, bronchial, and tracheal edema, epithelial necrosis, and exudate consisting of fibrin, hemorrhage, and inflammatory cells. The various alterations in respiratory dynamics and damage to the respiratory system observed in this study further emphasize ammonia-induced respiratory toxicity and the relevance of efficacious medical countermeasure strategies.

  10. Higher biomolecules yield in phytoplankton under copper exposure.

    PubMed

    Silva, Jaqueline Carmo; Echeveste, Pedro; Lombardi, Ana Teresa

    2018-05-30

    Copper is an important metal for industry, and its toxic threshold in natural ecosystems has increased since the industrial revolution. As an essential nutrient, it is required in minute amounts, being toxic in slightly increased concentrations, causing great biochemical transformation in microalgae. This study aimed at investigating the physiology of Scenedesmus quadricauda, a cosmopolitan species, exposed to copper concentrations including those that trigger intracellular biochemical modifications. The Cu exposure concentrations tested ranged from 0.1 to 25 µM, thus including environmentally important levels. Microalgae cultures were kept under controlled environmental conditions and monitored daily for cell density, in vivo chlorophyll a, and photosynthetic quantum yield (Φ M ). After 24 h growth, free Cu 2+ ions were determined, and after 96 h, cellular Cu concentration, total carbohydrates, proteins, lipids, and cell volume were determined. The results showed that both free Cu 2+ ions and cellular Cu increased with Cu increase in culture medium. Microalgae cell abundance and in vivo chlorophyll a were mostly affected at 2.5 µM Cu exposure (3.8 pg Cu cell -1 ) and above. Approximately 31% decrease of photosynthetic quantum yield was obtained at the highest Cu exposure concentration (25 µM; 25 pg Cu cell -1 ) in comparison with the control. However, at environmentally relevant copper concentrations (0.5 µM Cu; 0.4 pg Cu cell -1 ) cell volume increased in comparison with the control. Considering biomolecules accumulation per unit cell volume, the highest carbohydrates and proteins yield was obtained at 1.0 µM Cu (1.1 pg Cu cell -1 ), while for lipids higher Cu was necessary (2.5 µM Cu; 3.8 pg Cu cell -1 ). This study is a contribution to the understanding of the effects of environmentally significant copper concentrations in the physiology of S. quadricauda, as well as to biotechnological approach to increase biomolecule yield in microalgae production. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Regulation of the epithelial Na+ channel by membrane tension.

    PubMed

    Awayda, M S; Subramanyam, M

    1998-08-01

    The sensitivity of alphabetagamma rat epithelial Na+ channel (rENaC) to osmotically or mechanically induced changes of membrane tension was investigated in the Xenopus oocyte expression system, using both dual electrode voltage clamp and cell-attached patch clamp methodologies. ENaC whole-cell currents were insensitive to mechanical cell swelling caused by direct injection of 90 or 180 nl of 100-mM KCl. Similarly, ENaC whole-cell currents were insensitive to osmotic cell swelling caused by a 33% decrease of bathing solution osmolarity. The lack of an effect of cell swelling on ENaC was independent of the status of the actin cytoskeleton, as ENaC remained insensitive to osmotic and mechanical cell swelling in oocytes pretreated with cytochalasin B for 2-5 h. This apparent insensitivity of ENaC to increased cell volume and changes of membrane tension was also observed at the single channel level in membrane patches subjected to negative or positive pressures of 5 or 10 in. of water. However, and contrary to the lack of an effect of cell swelling, ENaC currents were inhibited by cell shrinking. A 45-min incubation in a 260-mosmol solution (a 25% increase of solution osmolarity) caused a decrease of ENaC currents (at -100 mV) from -3.42 +/- 0.34 to -2.02 +/- 0.23 microA (n = 6). This decrease of current with cell shrinking was completely blocked by pretreatment of oocytes with cytochalasin B, indicating that these changes of current are not likely related to a direct effect of cell shrinking. We conclude that alpha beta gamma rENaC is not directly mechanosensitive when expressed in a system that can produce a channel with identical properties to those found in native epithelia.

  12. Kinetics of the B1-B2 phase transition in KCl under rapid compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.

    2016-01-28

    Kinetics of the B1-B2 phase transition in KCl has been investigated under various compression rates (0.03–13.5 GPa/s) in a dynamic diamond anvil cell using time-resolved x-ray diffraction and fast imaging. Our experimental data show that the volume fraction across the transition generally gives sigmoidal curves as a function of pressure during rapid compression. Based upon classical nucleation and growth theories (Johnson-Mehl-Avrami-Kolmogorov theories), we propose a model that is applicable for studying kinetics for the compression rates studied. The fit of the experimental volume fraction as a function of pressure provides information on effective activation energy and average activation volume at amore » given compression rate. The resulting parameters are successfully used for interpreting several experimental observables that are compression-rate dependent, such as the transition time, grain size, and over-pressurization. The effective activation energy (Q{sub eff}) is found to decrease linearly with the logarithm of compression rate. When Q{sub eff} is applied to the Arrhenius equation, this relationship can be used to interpret the experimentally observed linear relationship between the logarithm of the transition time and logarithm of the compression rates. The decrease of Q{sub eff} with increasing compression rate results in the decrease of the nucleation rate, which is qualitatively in agreement with the observed change of the grain size with compression rate. The observed over-pressurization is also well explained by the model when an exponential relationship between the average activation volume and the compression rate is assumed.« less

  13. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia

    PubMed Central

    2010-01-01

    Background Although agmatine therapy in a mouse model of transient focal cerebral ischemia is highly protective against neurological injury, the mechanisms underlying the protective effects of agmatine are not fully elucidated. This study aimed to investigate the effects of agmatine on brain apoptosis, astrogliosis and edema in the rats with transient cerebral ischemia. Methods Following surgical induction of middle cerebral artery occlusion (MCAO) for 90 min, agmatine (100 mg/kg, i.p.) was injected 5 min after beginning of reperfusion and again once daily for the next 3 post-operative days. Four days after reperfusion, both motor and proprioception functions were assessed and then all rats were sacrificed for determination of brain infarct volume (2, 3, 5-triphenyltetrazolium chloride staining), apoptosis (TUNEL staining), edema (both cerebral water content and amounts of aquaporin-4 positive cells), gliosis (glial fibrillary acidic protein [GFAP]-positive cells), and neurotoxicity (inducible nitric oxide synthase [iNOS] expression). Results The results showed that agmatine treatment was found to accelerate recovery of motor (from 55 degrees to 62 degrees) and proprioception (from 54% maximal possible effect to 10% maximal possible effect) deficits and to prevent brain infarction (from 370 mm3 to 50 mm3), gliosis (from 80 GFAP-positive cells to 30 GFAP-positive cells), edema (cerebral water contents decreased from 82.5% to 79.4%; AQP4 positive cells decreased from 140 to 84 per section), apoptosis (neuronal apoptotic cells decreased from 100 to 20 per section), and neurotoxicity (iNOS expression cells decreased from 64 to 7 per section) during MCAO ischemic injury in rats. Conclusions The data suggest that agmatine may improve outcomes of transient cerebral ischemia in rats by reducing brain apoptosis, astrogliosis and edema. PMID:20815926

  14. Chloride channels are involved in sperm motility and are downregulated in spermatozoa from patients with asthenozoospermia

    PubMed Central

    Liu, Shan-Wen; Li, Yuan; Zou, Li-Li; Guan, Yu-Tao; Peng, Shuang; Zheng, Li-Xin; Deng, Shun-Mei; Zhu, Lin-Yan; Wang, Li-Wei; Chen, Li-Xin

    2017-01-01

    Human spermatozoa encounter an osmotic decrease from 330 to 290 mOsm l−1 when passing through the female reproductive tract. We aimed to evaluate the role of chloride channels in volume regulation and sperm motility from patients with asthenozoospermia. Spermatozoa were purified using Percoll density gradients. Sperm volume was measured as the forward scatter signal using flow cytometry. Sperm motility was analyzed using computer-aided sperm analysis (CASA). When transferred from an isotonic solution (330 mOsm l−1) to a hypotonic solution (290 mOsm l−1), cell volume was not changed in spermatozoa from normozoospermic men; but increased in those from asthenozoospermic samples. The addition of the chloride channel blockers, 4,4′-diisothiocyanatostilbene-2,2′- isulfonic acid (DIDS) or 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) to the hypotonic solution caused the normal spermatozoa to swell but did not increase the volume of those from the asthenozoospermic semen. DIDS and NPPB decreased sperm motility in both sets of semen samples. The inhibitory effect of NPPB on normal sperm motility was much stronger than on spermatozoa from the asthenozoospermic samples. Both sperm types expressed ClC-3 chloride channels, but the expression levels in the asthenozoospermic samples were much lower, especially in the neck and mid-piece areas. Spermatozoa from men with asthenozoospermia demonstrated lower volume regulating capacity, mobility, and ClC-3 expression levels (especially in the neck) than did normal spermatozoa. Thus, chloride channels play important roles in the regulation of sperm volume and motility and are downregulated in cases of asthenozoospermia. PMID:27270342

  15. Abnormal pulmonary function in adults with sickle cell anemia.

    PubMed

    Klings, Elizabeth S; Wyszynski, Diego F; Nolan, Vikki G; Steinberg, Martin H

    2006-06-01

    Pulmonary complications of sickle cell anemia (Hb-SS) commonly cause morbidity, yet few large studies of pulmonary function tests (PFTs) in this population have been reported. PFTs (spirometry, lung volumes, and diffusion capacity for carbon monoxide [DLCO]) from 310 adults with Hb-SS were analyzed to determine the pattern of pulmonary dysfunction and their association with other systemic complications of sickle cell disease. Raw PFT data were compared with predicted values. Each subject was subclassified into one of five groups: obstructive physiology, restrictive physiology, mixed obstructive/restrictive physiology, isolated low DLCO, or normal. The association between laboratory data of patients with decreased DLCO or restrictive physiology and those of normal subjects was assessed by multivariate linear regression. Normal PFTs were present in only 31 of 310 (10%) patients. Overall, adults with Hb-SS were characterized by decreased total lung capacities (70.2 +/- 14.7% predicted) and DLCO (64.5 +/- 19.9%). The most common PFT patterns were restrictive physiology (74%) and isolated low DLCO (13%). Decreased DLCO was associated with thrombocytosis (p = 0.05), with hepatic dysfunction (elevated alanine aminotransferase; p = 0.07), and a trend toward renal dysfunction (elevated blood urea nitrogen and creatinine; p = 0.05 and 0.07, respectively). Pulmonary function is abnormal in 90% of adult patients with Hb-SS. Common abnormalities include restrictive physiology and decreased DLCO. Decreased DLCO may indicate more severe sickle vasculopathy characterized by impaired hepatic and renal function.

  16. Evaluation of a moisturising micro-gel spray for prevention of cell dryness in oral mucosal cells: an in vitro study and evaluation in a clinical setting.

    PubMed

    Ota, Y; Morito, A; Fujisawa, K; Nishida, M; Hata, H; Ueno, T; Yurikusa, T; Murata, T

    2012-11-01

    A moisturising micro-gel spray for prevention of dryness was compared with commercial products and artificial saliva in vitro and in a clinical setting in patients with cancer. Survival of cultured human gingival epithelial cells was evaluated after treatment with each product for 15 min. A dry test was performed for products giving a 50% survival rate, in which cell survival was measured after drying of cells treated with each product. The survival rates of cells treated with the micro-gel spray and artificial saliva were significantly higher than those of control cells. The micro-gel spray was then evaluated for 1 week in patients with symptoms of dry mouth caused by cancer treatment. There was significant improvement of these symptoms at night and on awakening and of subjective symptoms of decreased salivary volume (P < 0.05). Mean visual analogue scale scores also significantly decreased (P < 0.01). These data suggest that evaluation of moisturising products for dryness prevention can be performed in cultured cells, since products that performed well in vitro also showed good efficacy for symptoms of dry mouth. The micro-gel spray was particularly effective for relieving symptoms of dry mouth in patients with cancer. © 2012 Blackwell Publishing Ltd.

  17. Ferulic acid attenuates the down-regulation of MEK/ERK/p90RSK signaling pathway in focal cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2015-02-19

    Ferulic acid provides neuroprotective effects against a middle cerebral artery occlusion (MCAO)-induced cerebral ischemia. Mitogen-activated protein kinases can regulate extensive intracellular processes including cell differentiation, growth, and death. This study further investigated whether ferulic acid modulates a protective mechanism through the activation of Raf-MEK-ERK and its downstream targets, including 90 ribosomal S6 kinase (p90RSK) and Bad during cerebral ischemic injury. Male Sprague-Dawley rats were treated with ferulic acid (100mg/kg) or vehicle after the onset of MCAO and brain tissues were collected 24h after MCAO. These results indicated that ferulic acid decreases the volume of the infarct area and the number of cells positive in terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Although MCAO injury induces a decrease in the phosphorylation of Raf-1, MEK1/2, and ERK1/2, ferulic acid treatment prevents the injury-induced decrease in these phosphorylation levels. Ferulic acid also attenuates the injury-induced decrease in p90RSK and Bad phosphorylation levels. These findings suggest that ferulic acid prevents MCAO-induced neuronal cell death and that the MEK-ERK-p90RSK-Bad signaling pathway is involved in these neuroprotective effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against Salmonella typhi

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, G.; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2017-12-01

    Polycarbonate (PC) films were irradiated by 100 MeV gold (Au7+) ions and characterized to study changes in its optical, chemical, surface morphology and thermal properties. UV-Visible spectroscopic results revealed the decrease in the optical band gap of PC after ion irradiation due to chain scission mainly at the carbonyl group which is corroborated by Fourier Transform Infrared spectroscopic results. X-ray diffractogram study showed decrease in crystallinity of PC film after irradiation. Scanning electron microscopic results showed the micropores formation in PC which results in surface roughening. Differential scanning calorimetric results revealed decrease in glass transition temperature indicating the decrease in molecular weight of PC corroborated by rheometric studies. PC films irradiated by 100 MeV Au7+ ions showed increased anti-biofilm activity against the human pathogen, Salmonella typhi (S. typhi). Morphology of S. typhi was changed due to stress of Au7+ irradiated PC. Cells length was increased with increasing fluences. The average cell length, cell volume and surface area was increased significantly (P<0.05) with increasing ion fluences. Biofilm formation was inhibited ≈ 20% at lower fluence and 96% at higher fluence, which observed to be enhanced anti-biofilm activity in Au7+ irradiated PC.

  19. Possibility of Aggravation of Tissue Sclerosis after Injection of Multipotent Mesenchymal Stromal Cells Near the Forming Cicatrix in the Experiment.

    PubMed

    Maiborodin, I V; Morozov, V V; Anikeev, A A; Figurenko, N F; Maslov, R V; Matveeva, V A; Chastikina, G A; Maiborodina, V I

    2017-08-01

    The peculiarities of tissue sclerosis after injection of autologous bone marrow multipotent mesenchymal stromal cells transfected with GFP gene and stained with Vybrant CM-Dil cell membrane dye were studied by light microscopy with luminescence. The surgical intervention consisting in ligation of the great vein was followed by tissue sclerotic transformation caused by direct damage and chronic inflammation caused by the presence of slowly resorbed ligature. Injection of stromal cells after this intervention led to formation of more extensive scar. This can attest to the possibility of stromal cells differentiation into connective tissue cells, fibroblasts, and stimulation of proliferation and collagen synthesis by host fibroblasts. A decrease in the volume of dense fibrous connective tissue due to scar reorganization at latter terms cannot not excluded.

  20. [Course of ejection fraction, regurgitation fraction and ventricular volumes during exertion in chronic aortic insufficiency. Study using technetium 99m gamma-cineangiography].

    PubMed

    Bassand, J P; Faivre, R; Berthout, P; Cardot, J C; Verdenet, J; Bidet, R; Maurat, J P

    1985-06-01

    Previous studies have shown that variations of the ejection fraction (EF) during exercise were representative of the contractile state of the left ventricle: an increased EF on effort is considered to be physiological, whilst a decrease would indicate latent LV dysfunction unmasked during exercise. This hypothesis was tested by performing Technetium 99 gamma cineangiography at equilibrium under basal conditions and at maximal effort in 8 healthy subjects and 44 patients with pure, severe aortic regurgitation to measure the ejection and regurgitant fractions and the variations in end systolic and end diastolic LV volume. In the control group the EF increased and end systolic volume decreased significantly on effort whilst the regurgitant fraction and end diastolic volume were unchanged. In the 44 patients with aortic regurgitation no significant variations in EF, end systolic and end diastolic volumes were observed because the individual values were very dispersed. Variations of the EF and end systolic volume were inversely correlated. The regurgitant fraction decreased significantly on effort. Based on the variations of the EF and end systolic volume three different types of response to effort could be identified: in 7 patients, the EF increased on effort and end systolic volume decreased without any significant variation in the end diastolic volume, as in the group of normal control subjects; in 22 patients, a reduction in EF was observed on effort, associated with an increased end systolic volume. These changes indicated latent IV dysfunction inapparent at rest and unmasked by exercise; in a third group of 15 patients, the EF decreased on effort despite a physiological decrease in end systolic volume due to a greater decrease in end diastolic volume.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Reduction of peritoneal carcinomatosis by intraperitoneal administration of phospholipids in rats

    PubMed Central

    Otto, Jens; Jansen, Petra Lynen; Lucas, Stefan; Schumpelick, Volker; Jansen, Marc

    2007-01-01

    Background Intraperitoneal tumor cell attachment after resection of gastrointestinal cancer may lead to a developing of peritoneal carcinosis. Intraabdominal application of phospholipids shows a significant decrease of adhesion formation even in case of rising tumor cell concentration. Methods In experiment A 2*106 colonic tumor cells (DHD/K12/Trb) were injected intraperitonely in female BD-IX-rats. A total of 30 rats were divided into three groups with treatments of phospholipids at 6% or 9% and the control group. In experiment B a total of 100 rats were divided into ten groups with treatments of phospholipids at 9% and the control group. A rising concentration of tumor cells (10,000, 50,000, 100,000, 250,000 and 500,000) were injected intraperitonely in female BD-IX-rats of the different groups. After 30 days, the extent of peritoneal carcinosis was determined by measuring the tumor volume, the area of attachment and the Peritoneal Cancer Index (PCI). Results In experiment A, we found a significant reduction (control group: tumor volume: 12.0 ± 4.9 ml; area of tumor adhesion: 2434.4 ± 766 mm2; PCI 28.5 ± 10.0) of peritoneal dissemination according to all evaluation methods after treatment with phospholipids 6% (tumor volume: 5.2 ± 2.2 ml; area of tumor adhesion: 1106.8 ± 689 mm2; PCI 19.0 ± 5.0) and phospholipids 9% (tumor volume: 4.0 ± 3.5 ml; area of tumor adhesion: 362.7 ± 339 mm2; PCI 13.8 ± 5.1). In experiment B we found a significant reduction of tumor volume in all different groups of rising tumor cell concentration compared to the control. As detected by the area of attachment we found a significant reduction in the subgroups 1*104, 25*104 and 50*104. The reduction in the other subgroups shows no significance. The PCI could be reduced significantly in all subgroups apart from 5*104. Conclusion In this animal study intraperitoneal application of phospholipids resulted in reduction of the extent of peritoneal carcinomatosis after intraperitoneal administration of free tumor cells. This effect was exceptionally noticed when the amount of intraperitoneal tumor cells was limited. Consequently, intraperitoneal administration of phospholipids might be effective in reducing peritoneal carcinomatosis after surgery of gastrointestinal tumors in humans. PMID:17584925

  2. Cellular pressure and volume regulation and implications for cell mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Hongyuan; Sun, Sean

    2013-03-01

    In eukaryotic cells, small changes in cell volume can serve as important signals for cell proliferation, death and migration. Volume and shape regulation also directly impacts the mechanics of the cell and multi-cellular tissues. Recent experiments found that during mitosis, eukaryotic cells establish a preferred steady volume and pressure, and the steady volume and pressure can robustly adapt to large osmotic shocks. Here we develop a mathematical model of cellular pressure and volume regulation, incorporating essential elements such as water permeation, mechano-sensitive channels, active ion pumps and active stresses in the actomyosin cortex. The model can fully explain the available experimental data, and predicts the cellular volume and pressure for several models of cell cortical mechanics. Furthermore, we show that when cells are subjected to an externally applied load, such as in an AFM indentation experiment, active regulation of volume and pressure leads to complex cellular response. We found the cell stiffness highly depends on the loading rate, which indicates the transport of water and ions might contribute to the observed viscoelasticity of cells.

  3. Mechanical and electrical anisotropy in Mimosa pudica pulvini

    PubMed Central

    Foster, Justin C; Baker, Kara D; Markin, Vladislav S

    2010-01-01

    Thigmonastic or seismonastic movements in Mimosa pudica, such as the response to touch, appear to be regulated by electrical, hydrodynamical and chemical signal transduction. The pulvinus of Mimosa pudica shows elastic properties, and we found that electrically or mechanically induced movements of the petiole were accompanied by a change of the pulvinus shape. As the petiole falls, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of water between the upper and lower parts of the pulvinus. This hydroelastic process is reversible. During the relaxation of the petiole, the volume of the lower part of the pulvinus increases and the volume of the upper part decreases. Redistribution of ions between the upper and lower parts of a pulvinus causes fast transport of water through aquaporins and causes a fast change in the volume of the motor cells. Here, the biologically closed electrochemical circuits in electrically and mechanically anisotropic pulvini of Mimosa pudica are analyzed using the charged capacitor method for electrostimulation at different voltages. Changing the polarity of electrodes leads to a strong rectification effect in a pulvinus and to different kinetics of a capacitor discharge if the applied initial voltage is 0.5 V or higher. The electrical properties of Mimosa pudica's pulvini were investigated and the equivalent electrical circuit within the pulvinus was proposed to explain the experimental data. The detailed mechanism of seismonastic movements in Mimosa pudica is discussed. PMID:20855975

  4. Mechanical and electrical anisotropy in Mimosa pudica pulvini.

    PubMed

    Volkov, Alexander G; Foster, Justin C; Baker, Kara D; Markin, Vladislav S

    2010-10-01

    Thigmonastic or seismonastic movements in Mimosa pudica, such as the response to touch, appear to be regulated by electrical, hydrodynamical, and chemical signal transduction. The pulvinus of Mimosa pudica shows elastic properties, and we found that electrically or mechanically induced movements of the petiole were accompanied by a change of the pulvinus shape. As the petiole falls, the volume of the lower part of the pulvinus decreases and the volume of the upper part increases due to the redistribution of water between the upper and lower parts of the pulvinus. This hydroelastic process is reversible. During the relaxation of the petiole, the volume of the lower part of the pulvinus increases and the volume of the upper part decreases. Redistribution of ions between the upper and lower parts of a pulvinus causes fast transport of water through aquaporins and causes a fast change in the volume of the motor cells. Here, the biologically closed electrochemical circuits in electrically and mechanically anisotropic pulvini of Mimosa pudica are analyzed using the charged capacitor method for electrostimulation at different voltages. Changing the polarity of electrodes leads to a strong rectification effect in a pulvinus and to different kinetics of a capacitor discharge if the applied initial voltage is 0.5 V or higher. The electrical properties of Mimosa pudica's pulvini were investigated and the equivalent electrical circuit within the pulvinus was proposed to explain the experimental data. The detailed mechanism of seismonastic movements in Mimosa pudica is discussed. © 2010 Landes Bioscience

  5. Structure, stability, and thermomechanical properties of Ca-substituted Pr2NiO4 + δ

    NASA Astrophysics Data System (ADS)

    Pikalova, E. Yu.; Medvedev, D. A.; Khasanov, A. F.

    2017-04-01

    Ca-substituted layered nickelates with a general Pr2- x Ca x NiO4 + δ composition ( x = 0-0.7, Δ x = 0.1) were prepared in the present work and their structural and physic-chemical properties were investigated in order to select the most optimal materials, which can be used as cathodes for solid oxide fuel cells. With an increase in Ca content in Pr2- x Ca x NiO4 + δ the following tendencies were observed: (i) a decrease in the concentration of nonstoichiometric oxygen (δ), (ii) a decrease in the unit cell parameters and volume, (iii) stabilization of the tetragonal structure, (iv) a decrease of the thermal expansion coefficients, and (v) enchancement of thermodynamic stability and compatibility with selected oxygen- and proton-conducting electrolytes. The Pr1.9Ca0.1NiO4 + δ material, having highest δ value, departs from the general "properties-composition" dependences ascertained. This indicates that oxygen non-stoichiometry has determining influence on the functional properties of layered nickelates.

  6. Acidic and alkaline pretreatments of activated carbon and their effects on the performance of air-cathodes in microbial fuel cells.

    PubMed

    Wang, Xin; Gao, Ningshengjie; Zhou, Qixing; Dong, Heng; Yu, Hongbing; Feng, Yujie

    2013-09-01

    Activated carbon (AC) is a high performing and cost effective catalyst for oxygen reduction reactions (ORRs) of air-cathodes in microbial fuel cells (MFCs). Acidic (HNO3) and alkaline (KOH) pretreatments on AC at low temperature (85°C) are conducted to enhance the performance of MFCs. The alkaline pretreatment increased the power density by 16% from 804±70 to 957±31 mW m(-2), possibly due to the decrease of ohmic resistance (from 20.58 to 19.20 Ω) and the increase of ORR activities provided by the adsorbed hydroxide ion and extra micropore area/volume after alkaline pretreatment. However, acidic pretreatment decreased the power output to 537±36 mW m(-2), which can be mainly attributed to the corrosion by adsorbed proton at the interface of AC powder and stainless steel mesh and the decreased pore area. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Characterizations of individual human red blood cells from patients with diabetes mellitus (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, SangYun; Jang, Seongsoo; Park, HyunJoo; Park, YongKeun

    2016-03-01

    We systematically measure the morphological, biochemical, and biomechanical properties of individual human red blood cells (RBCs) from patients with diabetes mellitus using quantitative phase imaging technique to characterize the diabetic red cells with respect to those of the healthy. The 3-D refractive index tomograms and 2-D dynamic membrane fluctuation maps of individual RBCs are reconstructed from a set of the retrieved complex optical fields at various laser incidence angles using the Common-path diffraction optical tomography, from which volume, surface area, sphericity, hemoglobin (Hb) concentration, Hb content, and membrane fluctuation are obtained simultaneously. The correlative relations among the retrieved red cell indices of diabetic and healthy RBCs are also investigated with capabilities of individual cell measurement. As expected, there are no significant alterations in morphologies (cellular volumes, surface area, and sphericity) between diabetic and healthy RBCs. However, despite the minute mean corpuscular Hb differences in cell blood count datasheet, the measured Hb concentrations and Hb contents of diabetic RBCs are statistically higher than those of healthy RBCs, which might be related to the glycation of Hb molecules by hyperglycemia. Meanwhile, the membrane fluctuations of diabetic RBCs are clearly diminished compared to healthy red cells, implying the significantly decreased RBC deformability. In particular, it seems that the membrane fluctuations have mild negative relationships with the reported HbA1c levels.

  8. Effect of differential photoperiod treatment on Leydig cell ultrastructure in the bank vole (Clethrionomys glareolus, S.).

    PubMed

    Tähkä, K M

    1988-08-01

    Juvenile bank voles (18-22 days of age) born and reared in a stimulatory long photoperiod (18L:6D, lights on 0600-2400 hr) were subjected either to a long photoperiod (18L:6D, Group L) or to a short photoperiod (6L:18D, lights on 0800-1400 hr, Group S) for 6 to 8 weeks whereafter the animals were killed by decapitation. Possible photoperiod-induced changes in Leydig cell ultrastructure were studied by conventional transmission electron microscopy and stereological methods. Striking differences in Leydig cell ultrastructure between the experimental groups were encountered. Light deprivation induced a marked decrease in the cytoplasmic and nuclear volume as well as in the amounts of smooth endoplasmic reticulum (SER), rough endoplasmic reticulum, mitochondria, and lipid inclusions in the Leydig cells. The number of myelin bodies and dense bodies seemed to be somewhat higher in the regressive Group S Leydig cells. These results are in good agreement with our previous histological and biochemical studies on the effects of photoperiod on Leydig cell function and suggest that in the bank vole the volume of mitochondria and SER in particular correlates positively with the steroidogenic capacity (the activity of C20 alpha 22-C27 desmolase, 17 alpha-hydroxylase, and C17-20 lyase in particular) in the Leydig cell.

  9. Effects of a restricted fetal growth environment on human kidney morphology, cell apoptosis and gene expression.

    PubMed

    Wang, Yan-Ping; Chen, Xu; Zhang, Zhi-Kun; Cui, Hong-Yan; Wang, Peng; Wang, Yue

    2015-12-01

    Kidney development is key to the onset of hypertension and cardiovascular diseases in adults, and in the fetal stage will be impaired by a lack of nutrients in utero in animal models. However, few human studies have been performed. Kidney samples from fetuses in a fetal growth restriction (FGR) environment were collected and the morphological characteristics were observed. Potentially molecular mechanisms were explored by analyzing apoptosis and kidney-development related gene expression. The results indicated that no malformations were observed in the kidney samples of the FGR group, but the mean kidney weight and volume were significantly decreased. Moreover, the ratio of apoptotic cells and Bax-positive cells was increased and the ratio of Bcl-2-positive cells was decreased in the FGR group, indicating potential apoptosis induction under an in utero FGR environment. Finally, aberrant expression of renin and angiotensinogen indicated potential kidney functional abnormalities in the FGR group. Our study suggested increased apoptosis and decreased renin and angiotensinogen expression during human kidney development in an FGR environment. The current results will be helpful to further explore the molecular mechanism of FGR and facilitate future studies of hypertension and cardiovascular diseases and the establishment of preventive methods. © The Author(s) 2014.

  10. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway.

    PubMed

    Li, Hongzhong; Huang, Jing; Yang, Bing; Xiang, Tingxiu; Yin, Xuedong; Peng, Weiyan; Cheng, Wei; Wan, Jingyuan; Luo, Fuling; Li, Hongyuan; Ren, Guosheng

    2013-10-01

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial-mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed that inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Freezing-induced cellular and membrane dehydration in the presence of cryoprotective agents.

    PubMed

    Akhoondi, Maryam; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F

    2012-09-01

    FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above -15°C, whereas membrane phase changes may continue until temperatures as low as -30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to -10°C was found to be greater than that below -10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min(-1), ∼5% of the initial osmotically active water volume is trapped inside the cells at -30°C.

  12. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part I: Analysis of infiltration shape on two different waste deposit cells.

    PubMed

    Audebert, M; Clément, R; Moreau, S; Duquennoi, C; Loisel, S; Touze-Foltz, N

    2016-09-01

    Landfill bioreactors are based on an acceleration of in-situ waste biodegradation by performing leachate recirculation. To quantify the water content and to evaluate the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). In a previous study, the MICS (multiple inversions and clustering strategy) methodology was proposed to improve the hydrodynamic interpretation of ERT results by a precise delimitation of the infiltration area. In this study, MICS was applied on two ERT time-lapse data sets recorded on different waste deposit cells in order to compare the hydrodynamic behaviour of leachate flow between the two cells. This comparison is based on an analysis of: (i) the volume of wetted waste assessed by MICS and the wetting rate, (ii) the infiltration shapes and (iii) the pore volume used by the leachate flow. This paper shows that leachate hydrodynamic behaviour is comparable from one waste deposit cell to another with: (i) a high leachate infiltration speed at the beginning of the infiltration, which decreases with time, (ii) a horizontal anisotropy of the leachate infiltration shape and (iii) a very small fraction of the pore volume used by the leachate flow. This hydrodynamic information derived from MICS results can be useful for subsurface flow modelling used to predict leachate flow at the landfill scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evaluation of plasma chemistry and haematological studies on chickens infected with Eimeria tenella and E acervulina.

    PubMed

    Fukata, T; Komba, Y; Sasai, K; Baba, E; Arakawa, A

    1997-07-12

    Plasma chemistry and haematological studies were conducted on chickens with coccidiosis. Male White Leghorn chickens, of two weeks old, were inoculated with 5 x 10(4) Eimeria tenella sporulated oocysts or with 1 x 10(6) E acervulina sporulated oocysts. Blood samples were taken four, seven and 11 days after inoculation. A wet chemistry system was applied to measure the plasma activities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyltransferase, creatine kinase, amylase and lactate dehydrogenase and the concentrations of creatine, total bilirubin, urate, total cholesterol, total protein, albumin, glucose and triglycerides. A dry chemistry system was applied to measure sodium, potassium, chloride and calcium. The number of red blood cells and packed cell volume were determined by a micro cell counter and blood pH was measured with a blood gas analyser. The erythrocyte count, packed cell volume, sodium and chloride levels in the chickens infected with E tenella were significantly (P < 0.05) lower than those of the uninfected controls. The significant decrease in blood pH of the chickens infected with E acervulina suggests malabsorption associated with duodenal lesions induced by the infection.

  14. Spatial modeling of the membrane-cytosolic interface in protein kinase signal transduction

    PubMed Central

    Schröder, Andreas

    2018-01-01

    The spatial architecture of signaling pathways and the interaction with cell size and morphology are complex, but little understood. With the advances of single cell imaging and single cell biology, it becomes crucial to understand intracellular processes in time and space. Activation of cell surface receptors often triggers a signaling cascade including the activation of membrane-attached and cytosolic signaling components, which eventually transmit the signal to the cell nucleus. Signaling proteins can form steep gradients in the cytosol, which cause strong cell size dependence. We show that the kinetics at the membrane-cytosolic interface and the ratio of cell membrane area to the enclosed cytosolic volume change the behavior of signaling cascades significantly. We suggest an estimate of average concentration for arbitrary cell shapes depending on the cell volume and cell surface area. The normalized variance, known from image analysis, is suggested as an alternative measure to quantify the deviation from the average concentration. A mathematical analysis of signal transduction in time and space is presented, providing analytical solutions for different spatial arrangements of linear signaling cascades. Quantification of signaling time scales reveals that signal propagation is faster at the membrane than at the nucleus, while this time difference decreases with the number of signaling components in the cytosol. Our investigations are complemented by numerical simulations of non-linear cascades with feedback and asymmetric cell shapes. We conclude that intracellular signal propagation is highly dependent on cell geometry and, thereby, conveys information on cell size and shape to the nucleus. PMID:29630597

  15. Zinc-blende to rocksalt transition in SiC in a laser-heated diamond-anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-04-18

    We explore the stability of the ambient pressure zinc-blende polymorph (B3) structure of silicon carbide (SiC) at high pressures and temperatures where it transforms to the rocksalt (B1) structure. We find that the transition occurs ~40 GPa lower than previously measured when heated to moderately high temperatures. A lower transition pressure is consistent with the transition pressures predicted in numerous ab initio computations. We find a large volume decrease across the transition of ~17%, with the volume drop increasing at higher formation pressures, suggesting this transition is volume driven yielding a nearly pressure-independent Clapeyron slope. Such a dramatic density increasemore » occurring at pressure is important to consider in applications where SiC is exposed to extreme conditions, such as in industrial applications or planetary interiors.« less

  16. Bioimaging of Fluorescence-Labeled Mitochondria in Subcutaneously Grafted Murine Melanoma Cells by the “In Vivo Cryotechnique”

    PubMed Central

    Lei, Ting; Huang, Zheng; Ohno, Nobuhiko; Wu, Bao; Sakoh, Takashi; Saitoh, Yurika; Saiki, Ikuo

    2014-01-01

    The microenvironments of organs with blood flow affect the metabolic profiles of cancer cells, which are influenced by mitochondrial functions. However, histopathological analyses of these aspects have been hampered by technical artifacts of conventional fixation and dehydration, including ischemia/anoxia. The purpose of this study was to combine the in vivo cryotechnique (IVCT) with fluorescent protein expression, and examine fluorescently labeled mitochondria in grafted melanoma tumors. The intensity of fluorescent proteins was maintained well in cultured B16-BL6 cells after cryotechniques followed by freeze-substitution (FS). In the subcutaneous tumors of mitochondria-targeted DsRed2 (mitoDsRed)-expressing cells, a higher number of cancer cells were found surrounding the widely opened blood vessels that contained numerous erythrocytes. Such blood vessels were immunostained positively for immunoglobulin M and ensheathed by basement membranes. MitoDsRed fluorescence was detected in scattering melanoma cells using the IVCT-FS method, and the total mitoDsRed volume in individual cancer cells was significantly decreased with the expression of markers of hypoxia. MitoDsRed was frequently distributed throughout the cytoplasm and in processes extending along basement membranes. IVCT combined with fluorescent protein expression is a useful tool to examine the behavior of fluorescently labeled cells and organelles. We propose that the mitochondrial volume is dynamically regulated in the hypoxic microenvironment and that mitochondrial distribution is modulated by cancer cell interactions with basement membranes. PMID:24394469

  17. Blood plasma levels of lipoperoxides, glutathione peroxidase, beta carotene, vitamin A and E in women with habitual abortion.

    PubMed

    Simşek, M; Naziroğlu, M; Simşek, H; Cay, M; Aksakal, M; Kumru, S

    1998-12-01

    The plasma levels of lipoperoxides, glutathione peroxidase (GSH-Px), reduced glutathione (GSH), beta carotene, vitamin A, E, some plasma biochemical and blood haematological parameters were investigated in 40 women with habitual abortion (HA) and controls. The levels of GSH, vitamin A, E and beta carotene were significantly lower in women with HA than in controls. However, the plasma levels of lipid peroxidation, alkaline phosphatase (ALP), glucose and blood haemoglobin were significantly higher in HA than in controls. In addition, plasma levels of GSH-Px, AST, ALT, total bilirubin, total protein, albumin, sodium, potassium, calcium and number of white blood cells, red blood cells, platelet and values of packet cell volume showed no significant differences between HA and controls. According to the results of this study, we observed that the levels of lipid peroxidation were increased and plasma levels of vitamin A, E and beta carotene were decreased in HA. The decrease of those antioxidants may play a significant role in women with habitual abortion.

  18. Haematological values in pregnant women in Port Harcourt, Nigeria II: Serum iron and transferrin, total and unsaturated iron binding capacity and some red cell and platelet indices.

    PubMed

    Amah-Tariah, F S; Ojeka, S O; Dapper, D V

    2011-12-20

    Previous studies on the normal values of serum iron, unsaturated iron binding capacity, total iron binding capacity, serum transferrin, percent transferrin saturation, red cell distribution width, and various platelet indices: Platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio in pregnant subjects in Nigeria are relatively scanty. Present study aims to determine the values of these parameters in apparently healthy pregnant subjects residing in Port Harcourt south eastern Nigeria; and help establish normal reference ranges of these parameters for the population under reference. Cross sectional prospective study involving 220 female subjects attending for the first time, the ante-natal clinics of a tertiary health care facility in Port Harcourt. Subjects were divided into 73, 75 and 72 subjects in the first, second and third trimester of pregnancy respectively. Serum iron and unsaturated iron binding capacity, red cell distribution width, platelet count and platelet distribution width were determined by automated methods; total iron binding capacity, serum transferrin concentrations, percent transferrin saturation, mean platelet volume and plateletcrit were calculated using appropriate formulas. The values of serum iron, unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant variations between the various trimesters of pregnancy. However, while serum iron showed significant decreases during pregnancy; unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant increases during pregnancy amongst our subjects (p<0.05). By contrast the values of red cell distribution width, platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio did not show any significant differences at the different trimesters of pregnancy in our subjects (p>0.05). The present study reports, for the first time, normative values for these parameters in apparently healthy pregnant subjects in Port Harcourt south eastern Nigeria. Apparently, increases in unsaturated and total iron binding capacity and serum transferrin values seen amongst our subjects with increasing gestation may perhaps be a mechanism to ensure a fetal adequate iron delivery on account of the decreasing serum iron concentration with gestation in our subjects. The study suggests that values of serum transferrin are perhaps a more useful screening tool for iron deficiency anemia during pregnancy amongst our subjects.

  19. Protective effect of Withania somnifera roots extract on hematoserological profiles against lead nitrate-induced toxicity in mice.

    PubMed

    Sharma, Veena; Sharma, Sadhana; Pracheta

    2012-12-01

    The in vivo protective role of hydro-methanolic root extract of Withania somnifera (WS) was evaluated in alleviating lead nitrate (LN)-induced toxicity in male Swiss albino mice by measuring hematoserological profiles. The lead-treated (20 mg/kg body wt, p.o.) albino mice (25-30 g) concurrently received the root extract (200 and 500 mg/kg body wt, p.o.) once daily for the duration of six weeks. Animals exposed to LN showed significant (P < 0.001) decline in haemoglobin content, red blood cell count, white blood cell count, packed cell volume and insignificant decrease in mean corpuscular haemoglobin and mean corpuscular haemoglobin content, while mean corpuscular volume and platelet count were increased. A significant elevation (P < 0.001) in serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, alkaline phosphatase, acid phosphatase and total cholesterol were also observed, when compared with control mice. Thus, the study demonstrated that the concurrent daily administration of root extract of WS protected the adverse effects of LN intoxication in mice.

  20. A synchronous increase in hydraulic conductive capacity and mechanical support in conifers with relatively uniform xylem structure.

    PubMed

    Jagels, Richard; Visscher, George E

    2006-02-01

    The dual function provided by longitudinal tracheids in conifers has led to a generally held trade-off concept that increasing wall thickness and/or volume of latewood tracheids improves mechanical support, while increasing cell diameter and/or volume of earlywood tracheids enhances conductive potential. Yet, some conifers have either uniform cell structure across the growth ring or, at most, a small amount of latewood. How do these trees accomplish the needs for increasing support and conduction with height growth? We examined Metasequoia glyptostroboides, a species that we previously demonstrated improves its mechanical properties with increasing age without a change in specific gravity or secondary wall microfibril angle. In this paper, we showed that lignin and extractive contents are not contributing factors, and through composite structure analysis, we eliminated a role for tracheid length. Using micromorphometric analysis, we demonstrated that as cell diameter increases, total primary wall decreases, secondary wall increases, and strength and conductive capacity increase with no change in specific gravity. Meta-analysis using other species of Cupressaceae, Podocarpaceae, and Araucariaceae provided strong corroborative evidence for this design strategy.

  1. Hemoglobin and mean platelet volume predicts diffuse T1-MRI white matter volume decrease in sickle cell disease patients.

    PubMed

    Choi, Soyoung; Bush, Adam M; Borzage, Matthew T; Joshi, Anand A; Mack, William J; Coates, Thomas D; Leahy, Richard M; Wood, John C

    2017-01-01

    Sickle cell disease (SCD) is a life-threatening genetic condition. Patients suffer from chronic systemic and cerebral vascular disease that leads to early and cumulative neurological damage. Few studies have quantified the effects of this disease on brain morphometry and even fewer efforts have been devoted to older patients despite the progressive nature of the disease. This study quantifies global and regional brain volumes in adolescent and young adult patients with SCD and racially matched controls with the aim of distinguishing between age related changes associated with normal brain maturation and damage from sickle cell disease. T1 weighted images were acquired on 33 clinically asymptomatic SCD patients (age = 21.3 ± 7.8; F = 18, M = 15) and 32 racially matched control subjects (age = 24.4 ± 7.5; F = 22, M = 10). Exclusion criteria included pregnancy, previous overt stroke, acute chest, or pain crisis hospitalization within one month. All brain volume comparisons were corrected for age and sex. Globally, grey matter volume was not different but white matter volume was 8.1% lower (p = 0.0056) in the right hemisphere and 6.8% (p = 0.0068) in the left hemisphere in SCD patients compared with controls. Multivariate analysis retained hemoglobin (β = 0.33; p = 0.0036), sex (β = 0.35; p = 0.0017) and mean platelet volume (β = 0.27; p = 0.016) as significant factors in the final prediction model for white matter volume for a combined r 2 of 0.37 (p < 0.0001). Lower white matter volume was confined to phylogenetically younger brain regions in the anterior and middle cerebral artery distributions. Our findings suggest that there are diffuse white matter abnormalities in SCD patients, especially in the frontal, parietal and temporal lobes, that are associated with low hemoglobin levels and mean platelet volume. The pattern of brain loss suggests chronic microvascular insufficiency and tissue hypoxia as the causal mechanism. However, longitudinal studies of global and regional brain morphometry can help us give further insights on the pathophysiology of SCD in the brain.

  2. Compact optical multipass matrix system design based on slicer mirrors.

    PubMed

    Guo, Yin; Sun, Liqun

    2018-02-10

    High path-to-volume ratio (PVR) and low-aberration-output beams are the two main criteria to assess the performance of multipass absorption cells. However, no substantial progress has been reported for large-numerical-aperture-coupled multipass cells, which is due to the accumulated aberrations caused by a large number of off-axis reflections. Based on Chernin's design, in this study, we modified Chernin's four-objective multipass matrix cell by using slicer mirrors to eliminate alignment difficulty and decrease the system volume. A generalized design routine based on user requirements is also proposed. Based on the automatic modeling tool package (Pyzdde) connected with Zemax and boundary conditions of the parameters selection proposed, a low-aberration-output beam and a high PVR are easily obtained compared with other multipass cells schemes. In one demo design, 108 passes (5×7 matrix spots) in a base length of 300 mm are presented. The PVR and peak-to-valley value wavefront errors are 67.5 m/L and 0.92 μm, respectively. Finally, a tolerance analysis of this optical multipass system is also presented. This work may provide better broadband optical absorption cells in terms of response time and a better detection sensitivity in versatile applications.

  3. Inverse relationship between photon flux densities and nanotesla magnetic fields over cell aggregates: Quantitative evidence for energetic conservation.

    PubMed

    Persinger, Michael A; Dotta, Blake T; Karbowski, Lukasz M; Murugan, Nirosha J

    2015-01-01

    The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 10(5)-10(6) cells was explored experimentally. The vertical component of the earth's magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10(-12) W·m(-2)) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10(-18) J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing; Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu; Zhang, Jun-ying

    Highlights: • Overexpression of HAP1 gene promotes apoptosis in MCF-7 cells after irradiation. • HAP1 reduces tumor volume in nude mice xenograft models after irradiation. • HAP1 increases radiosensitivity of breast cancer cells in vitro and vivo. - Abstract: Objectives: The purpose of this study was to investigate the relationship between huntingtin-associated protein1 (HAP1) gene and radiation therapy of breast cancer cells. Methods: HAP1 gene was transfected into breast cancer MCF-7 cells, which was confirmed by quantitative reverse transcription-polymerase chain reaction analysis (qRT-PCR) and Western blot in vitro. The changes of cell radiosensitivity were assessed by colony formation assay. Apoptosismore » were examined by flow cytometry. The expressions of two radiation-induced genes were evaluated by Western blot. Tumor growth was investigated in nude mice xenograft models in vivo. Results: Our data showed that HAP1 gene expression was significantly increased in HAP1-transfected MCF-7 cells in comparison with the parental cells or negative control cells. The survival rate in MCF-7/HAP1 cells was significantly decreased after irradiation (0, 2, 4, 6, 8 Gy), compared to cells in MCF-7 and MCF-7/Pb groups in vitro. HAP1 gene increased apoptosis in MCF-7 cells after irradiation. Additionally, the tumor volume and weight in MCF-7/HAP1 + RT group were observably lower than in MCF-7/HAP1 group and MCF-7/Pb + RT group. Conclusion: The present study indicated that HAP1 gene expression was related to the radiosensitivity of breast cancer cells and may play an important role in the regulation of cellular radiosensitivity.« less

  5. Studies of Biosilicification; The Role of Proteins, Carbohydrates and Model Compounds in Structure Control

    DTIC Science & Technology

    2005-12-31

    No. carbons Pore volume data. Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. To...interwoven polysaccharide chains embedded in a gel matrix of galacturonic acid rich polysaccharides connected by calcium bridges. This network also...picomolar levels). Also, it allows the determination of intact monosaccharides without pre or post column derivatisation, decreasing the time of

  6. A correlation between structural distortion and variation of TC in Ba1-x/2LaxBi4-x/2Ti4O15

    NASA Astrophysics Data System (ADS)

    Asha, M. Arul; Gajendra Babu, M. Veera; Abdul Kader, S. M.; Sundarakannan, B.; Srihari, V.; Sridharan, V.

    2012-06-01

    Ba and Bi ions were simultaneously substituted by La ion up to 0.3 mole fraction and studied by powder XRD and temperature dependent dielectric measurements. Perovskite slab thickness reduces due to octahedral tilting and the cell volume decreases. Low mole fraction of simultaneous substitution of La is preferred as it increases physical properties.

  7. Histologic evaluation of human benign prostatic hyperplasia treated by dutasteride: a study by xenograft model with improved severe combined immunodeficient mice.

    PubMed

    Tsujimura, Akira; Fukuhara, Shinichiro; Soda, Tetsuji; Takezawa, Kentaro; Kiuchi, Hiroshi; Takao, Tetsuya; Miyagawa, Yasushi; Nonomura, Norio; Adachi, Shigeki; Tokita, Yoriko; Nomura, Taisei

    2015-01-01

    To evaluate histologic change in human prostate samples treated with dutasteride and to elucidate direct effects of dutasteride on human prostate tissue, the present study was conducted by using a xenograft model with improved severe combined immunodeficient (super-SCID) mice, although it is well known that dutasteride reduces prostate volume. After establishment of a xenograft model of human benign prostatic hyperplasia in morphology and function, samples implanted into super-SCID mice with and without dutasteride were evaluated pathohistologically at 2 and 6 months after initiation of dutasteride administration. The proliferative index evaluated by Ki-67 staining was significantly lower in the dutasteride group than the control at 2 and 6 months after administration. Apoptotic index evaluated by the terminal transferase TdT-mediated dUTP-biotin nick end labeling staining was higher in the dutasteride group than the control at 2 and 6 months after administration. Quick scores in the dutasteride group for staining of both cyclooxygenase-2 (Cox-2) and Ras homolog gene family, member A (RhoA) were significantly lower than those in the control group at 2 and 6 months after administration. Dutasteride inhibits cell proliferation and induces apoptosis of prostatic cells, causing a reduced prostate volume. Furthermore, decreased expression of Cox-2 and RhoA within benign prostatic hyperplasia tissue by dutasteride may induce an early effect on improvement of lower urinary tract symptoms, probably by attenuating inflammation reaction of the prostate and decreasing intraurethral pressure, other than the mechanism of reduced prostate volume. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  9. High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay

    Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis ofmore » tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.« less

  10. Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.

    2018-05-01

    Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.

  11. Involvement of reactive oxygen species/c-Jun NH{sub 2}-terminal kinase pathway in kotomolide A induces apoptosis in human breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, P.-L.; Chen, C.-Y.; Tzeng, T.-F.

    2008-06-01

    The anticancer effects of kotomolide A (KTA), a new butanolide constituent isolated from the leaves of Cinnamomum kotoense (Lauraceae), on the two human breast cancer cell lines MCF-7 and MDA-MB-231, were first investigated in our study. KTA exhibited selectively antiproliferative effects in cancer cell lines without showing any toxicity in normal mammary epithelial cells. Treatment of cancer cells with KTA to trigger G2/M phase arrest was associated with increased p21/WAF1 levels and reduced amounts of cyclin A, cyclin B1, cdc2 and cdc25C. KTA induced cancer cell death treatment by triggering mitochondrial and death receptor 5 (DR5) apoptotic pathways, but didmore » not act on the Fas receptor. Exposure of MCF-7 and MDA-MB-231 cells to KTA resulted in cellular glutathione reduction and ROS generation, accompanied by JNK activation and apoptosis. Both antioxidants, NAC and catalase, significantly decreased apoptosis by inhibiting the phosphorylation of JNK and subsequently triggering DR5 cell death pathways. The reduction of JNK expression by siRNA decreased KTA-mediated Bim cleavage, DR5 upregulation and apoptosis. Furthermore, daily KTA i.p. injections in nude mice with MDA-MB-231 s.c. tumors resulted in a 50% decrease of mean tumor volume, compared with vehicle-treated controls. Taken together, the data show that cell death of breast cancer cells in response to KTA is dependent upon ROS generation and JNK activation, triggering intrinsic and extrinsic apoptotic pathways. The ROS/JNK pathway could be a useful target for novel approaches in breast cancer chemotherapy.« less

  12. Microstructural effects in drug release by solid and cellular polymeric dosage forms: A comparative study.

    PubMed

    Blaesi, Aron H; Saka, Nannaji

    2017-11-01

    In recent studies, we have introduced melt-processed polymeric cellular dosage forms to achieve both immediate drug release and predictable manufacture. Dosage forms ranging from minimally-porous solids to highly porous, open-cell and thin-walled structures were prepared, and the drug release characteristics investigated as the volume fraction of cells and the excipient molecular weight were varied. In the present study, both minimally-porous solid and cellular dosage forms consisting of various weight fractions of Acetaminophen drug and polyethylene glycol (PEG) excipient are prepared and analyzed. Microstructures of the solid forms and the cell walls range from single-phase solid solutions of the excipient and a small amount of drug molecules to two-phase composites of the excipient and tightly packed drug particles. Results of dissolution experiments show that the minimally-porous solid forms disintegrate and release drug by slow surface erosion. The erosion rate decreases as the drug weight fraction is increased. By contrast, the open-cell structures disintegrate rapidly by viscous exfoliation, and the disintegration time is independent of drug weight fraction. Drug release models suggest that the solid forms erode by convective mass transfer of the faster-eroding excipient if the drug volume fraction is small. At larger drug volume fractions, however, the slower-eroding drug particles hinder access of the free-flowing fluid to the excipient, thus slowing down erosion of the composite. Conversely, the disintegration rate of the cellular forms is limited by diffusion of the dissolution fluid into the excipient phase of the thin cell walls. Because the wall thickness is of the order of the drug particle size, and the particles are enveloped by the excipient during melt-processing, the drug particles cannot hinder diffusion through the excipient across the walls. Thus the disintegration time of the cellular forms is mostly unaffected by the volume fraction of drug in the walls. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Ultrastructure of rabbit embryos exposed to hyperthermia and anti-Hsp 70.

    PubMed

    Olexikova, L; Makarevich, A V; Pivko, J; Chrenek, P

    2013-08-01

    The aim of the study was to determine the effect of short-term hyperthermia and Hsp70 blockage on ultrastructural changes in cell organelles and nucleoli of rabbit preimplantation embryos. The embryos were cultured either at 37.5°C (control, C) or 41.5°C (hyperthermia, HT) during 6 h. The antibody against Hsp70 was added into the culture medium (4 μg/ml) of morula stage embryos from C and HT groups. After termination of the culture, the embryos were processed for transmission electron microscopy. The embryos exposed to hyperthermia showed increased volume of lipid droplets, considerable occurrence of cellular debris in the perivitelline space and slight changes in the occurrence of microvilli on the surface of trophoblastic cells. In the embryos exposed to anti-Hsp 70 at 37.5°C, there were considerable changes in mitochondria morphology, decreased volume of dense bodies in the cytoplasm and considerable changes in the occurrence of microvilli on the surface of trophoblastic cells. In the group of embryos exposed simultaneously to hyperthermia and anti-Hsp 70, mitochondria were also expanded and swollen; the volume of flocculent vesicles and lipid droplets was increased and the volume of dense bodies in the cytoplasm was diminished. General organization of the cytoplasm in groups with anti-Hsp70 was characterized by cell organelle segregation. Averaged size of the nucleolar area was significantly increased in the embryos exposed to hyperthermia, whereas in the group exposed to the anti-Hsp70 without hyperthermia it was significantly diminished. Hyperthermia also caused disintegration of compact status of the nucleoli. In presence of anti-Hsp 70, the structural changes, described within the nucleoli during hyperthermia, were not observed. In conclusion, these results document ultrastructural changes in cell organelles of rabbit preimplantation embryo caused by hyperthermia, and also changes in the nucleolar structures, at which presence of Hsp-70 inhibit these changes. © 2012 Blackwell Verlag GmbH.

  14. Assessment of the number, biomass, and cell size of bacteria in different soils using the "cascade" filtration method

    NASA Astrophysics Data System (ADS)

    Polyanskaya, L. M.; Pinchuk, I. P.; Zvyagintsev, D. G.

    2015-03-01

    Soddy-podzolic, gray forest, brown forest, primitive Antarctic soils, typical chernozems, and solonchaks were studied. Many ultrafine bacterial cells, along with fine ones, were found in all the soils studied. The gray forest, brown forest, and primitive Antarctic soils were especially distinguished in this respect. Formerly, in the works on soil microbiology, the fact of the cell size reduction was insufficiently taken into account because of the absence of reliable methods. A decrease in the number and biomass of bacteria down the profile in all the soils, except for the solonchak, was shown. In the solonchak, the bacterial number and biomass increases with decreasing salinity of the soil horizons. The bacterial biomass mainly depends on the predominance of cells of definite sizes (0.38 and 0.23 μm). In the B1fungi horizon of the primitive Antarctic soil, a considerable number of large (1.85 μm) bacterial cells was recorded, and this resulted in the maximal microbial biomass in this horizon. The data on the average volume of a cell correlate with those on the number and biomass of bacteria. The largest diameters of cells were registered in the humus and B1fungi horizons of the primitive Antarctic soil.

  15. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder.

    PubMed

    Cobb, J A; O'Neill, K; Milner, J; Mahajan, G J; Lawrence, T J; May, W L; Miguel-Hidalgo, J; Rajkowska, G; Stockmeier, C A

    2016-03-01

    Neuroimaging and postmortem studies of subjects with major depressive disorder (MDD) reveal smaller hippocampal volume with lengthening duration of illness. Pathology in astrocytes may contribute significantly to this reduced volume and to the involvement of the hippocampus in MDD. Postmortem hippocampal tissues were collected from 17 subjects with MDD and 17 psychiatrically-normal control subjects. Sections from the body of the hippocampus were immunostained for glial fibrillary acidic protein (GFAP), a marker of intermediate filament protein expressed in astrocytes. The density of GFAP-immunoreactive astrocytes was measured in the hippocampus using 3-dimensional cell counting. Hippocampal subfields were also assessed for GFAP-immunoreactive area fraction. In CA1, there was a significant positive correlation between age and either density or area fraction in MDD. The density of astrocytes in the hilus, but not CA1 or CA2/3, was significantly decreased only in depressed subjects not taking an antidepressant drug, but not for depressed subjects taking an antidepressant drug. The area fraction of GFAP-immunoreactivity was significantly decreased in the dentate gyrus in women but not men with depression. In CA2/3, the area fraction of GFAP-immunoreactivity was inversely correlated with the duration of depression in suicide victims. Astrocyte contributions to neuronal function in the hilus may be compromised in depressed subjects not taking antidepressant medication. Due to the cross-sectional nature of the present study of postmortem brain tissue, it remains to be determined whether antidepressant drug treatment prevented a decrease in GFAP-immunoreactive astrocyte density or restored cell density to normal levels. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs.

    PubMed

    Unachukwu, Uchenna; Trischler, Jordis; Goldklang, Monica; Xiao, Rui; D'Armiento, Jeanine

    2017-06-01

    The present study tested the hypothesis that maternal smoke exposure results in fetal lung growth retardation due to dysregulation in various signaling pathways, including the Wnt (wingless-related integration site)/β-catenin pathway. Pregnant female C57BL/6J mice were exposed to cigarette smoke (100-150 mg/m 3 ) or room air, and offspring were humanely killed on 12.5, 14.5, 16.5, and 18.5 d post coitum (dpc). We assessed lung stereology with Cavalieri estimation; apoptosis with proliferating cell nuclear antigen, TUNEL, and caspase assays; and gene expression with quantitative PCR (qPCR) and RNA sequencing on lung epithelium and mesenchyme retrieved by laser capture microdissection. Results demonstrated a significant decrease in body weight and lung volume of smoke-exposed embryos. At 16.5 dpc, the reduction in lung volume was due to loss of lung mesenchymal tissue correlating with a decrease in cell proliferation ( n = 10; air: 61.65% vs. smoke: 44.21%, P < 0.05). RNA sequence analysis demonstrated an alteration in the Wnt pathway, and qPCR confirmed an increased expression of secreted frizzled-related protein 1 (sFRP-1) [ n = 12; relative quantification (RQ) 1 vs. 2.33, P < 0.05] and down-regulation of Cyclin D1 ( n = 7; RQ 1 vs. 0.61, P < 0.05) in mesenchymal tissue. Furthermore, genome expression studies revealed a smoke-induced up-regulation of Rho-GTPase-dependent actin cytoskeletal signaling that can lead to loss of tissue integrity.-Unachukwu, U., Trischler, J., Goldklang, M., Xiao, R., D'Armiento, J. Maternal smoke exposure decreases mesenchymal proliferation and modulates Rho-GTPase-dependent actin cytoskeletal signaling in fetal lungs. © FASEB.

  17. Microstructure and hydrogenation properties of a melt-spun non-stoichiometric Zr-based Laves phase alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Yunlong; Li, Jinshan

    2016-01-15

    Alloy with composition of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} off normal stoichiometric proportion is selected to investigate the effect of defects introduced by non-stoichiometry on hydrogenation kinetics of Zr–Ti–V Laves phase alloys. Microstructure and phase constituent of melt-spun ribbons have been investigated in this work. The activation process, hydrogenation kinetics, thermodynamics characteristics and hydride phase constituent of as-cast alloy and melt-spun ribbons are also compared. Comparing with the as-cast alloy, the dominant Laves phase ZrV{sub 2} is preserved, V-BCC phase is reduced and α-Zr phase is replaced by a small amount of Zr{sub 3}V{sub 3}O phase in melt-spun ribbons. Melt-spun ribbonsmore » exhibit easy activation and fast initial hydrogen absorption on account of the increased specific surface area. However, the decrease in unit cell volume of the dominant phase leads to the decrease in hydrogen absorption capacity. Melt-spinning technique raises the equilibrium pressure and decreases the stability of hydride due to the decrease of unit cell volume and the elimination of α-Zr phase, respectively. Melt-spun ribbons with fine grains show improved hydrogen absorption kinetics comparing with that of the as-cast alloy. Meanwhile, the prevalent micro twins observed within melt-spun ribbons are believed to account for the improved hydrogen absorption kinetics. - Highlights: • Role of defects on hydrogenation kinetics of Zr-based alloys is proposed. • Microstructure and hydrogenation properties of as-cast/melt-spun alloy are compared. • Melt-spinning technique improves the hydrogenation kinetics of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} alloy. • Refined grains and twin defects account for improved hydrogen absorption kinetics.« less

  18. Pro-metastatic NEDD9 regulates individual cell migration via caveolin-1-dependent trafficking of integrins

    PubMed Central

    Kozyulina, Polina Y.; Loskutov, Yuriy V.; Kozyreva, Varvara K.; Rajulapati, Anuradha; Ice, Ryan J.; Jones, Brandon. C.; Pugacheva, Elena N.

    2014-01-01

    The dissemination of tumor cells relies on efficient cell adhesion and migration, which in turn depends upon endocytic trafficking of integrins. In the current work, it was found that depletion of pro-metastatic protein, NEDD9, in breast cancer (BC) cells results in a significant decrease in individual cell migration due to impaired trafficking of ligand-bound integrins. NEDD9 deficiency does not affect the expression or internalization of integrins but heightens caveolae-dependent trafficking of ligand-bound integrins to early endosomes. Increase in mobility of ligand-bound integrins is concomitant with an increase in tyrosine phosphorylation of caveolin-1 (CAV1) and volume of CAV1-vesicles. NEDD9 directly binds to CAV1 and co-localizes within CAV1 vesicles. In the absence of NEDD9, the trafficking of ligand-bound integrins from early to late endosomes is impaired, resulting in a significant decrease in degradation of ligand/integrin complexes and an increase in recycling of ligand-bound integrins from early endosomes back to the plasma membrane without ligand disengagement, thus leading to low adhesion and migration. Re-expression of NEDD9 or decrease in the amount of active, tyrosine 14 phosphorylated (Tyr14) CAV1 in NEDD9 depleted cells rescues the integrin trafficking deficiency and restores cellular adhesion and migration capacity. Collectively, these findings indicate that NEDD9 orchestrates trafficking of ligand-bound integrins through the attenuation of CAV1 activity. PMID:25319010

  19. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    NASA Astrophysics Data System (ADS)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  20. Hypergravity suppresses bone resorption in ovariectomized rats

    NASA Astrophysics Data System (ADS)

    Ikawa, Tesshu; Kawaguchi, Amu; Okabe, Takahiro; Ninomiya, Tadashi; Nakamichi, Yuko; Nakamura, Midori; Uehara, Shunsuke; Nakamura, Hiroaki; Udagawa, Nobuyuki; Takahashi, Naoyuki; Nakamura, Hiroaki; Wakitani, Shigeyuki

    2011-04-01

    The effects of gravity on bone metabolism are unclear, and little has been reported about the effects of hypergravity on the mature skeleton. Since low gravity has been shown to decrease bone volume, we hypothesized that hypergravity increases bone volume. To clarify this hypothesis, adult female rats were ovariectomized and exposed to hypergravity (2.9G) using a centrifugation system. The rats were killed 28 days after the start of loading, and the distal femoral metaphysis of the rats was studied. Bone architecture was assessed by micro-computed tomography (micro-CT) and bone mineral density was measured using peripheral quantitative CT (pQCT). Hypergravity increased the trabecular bone volume of ovariectomized rats. Histomorphometric analyses revealed that hypergravity suppressed both bone formation and resorption and increased bone volume in ovariectomized rats. Further, the cell morphology, activity, proliferation, and differentiation of osteoclasts and osteoblasts exposed to hypergravity were evaluated in vitro. Hypergravity inhibited actin ring formation in mature osteoclasts, which suggested that the osteoclast activity was suppressed. However, hypergravity had no effect on osteoblasts. These results suggest that hypergravity can stimulate an increase in bone volume by suppressing bone resorption in ovariectomized rats.

  1. High tidal volume ventilation in infant mice.

    PubMed

    Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D

    2008-06-30

    Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.

  2. The calcium paradox phenomenon: a flow rate and volume response study of calcium-free perfusion.

    PubMed

    Oksendal, A N; Jynge, P; Sellevold, O F; Rotevatn, S; Saetersdal, T

    1985-10-01

    A dose-response study concerning the importance of the flow rate (0.5 to 12 ml/min) and volume (2.5 to 60 ml) of calcium-free coronary perfusion (duration 5 min) in the induction of a calcium paradox on reperfusion (duration 15 min) with calcium-containing medium has been performed in the isolated rat heart (37 degrees C). On the basis of enzymatic, physiological, and metabolic assessments three different levels of tissue injury were identified: a minimal paradox at 1.0 ml/min or 5 ml, a subtotal paradox at 2 ml/min or 10 ml and a total paradox at 9 ml/min or 45 ml. Ultrastructural examination revealed that cellular injury following calcium repletion was always severe, and that an increase in the flow rate and volume of calcium-free perfusion increased the number of severely injured cells. During calcium-free perfusion the external lamina largely remained intact over the surface coat of the sarcolemma, but variable degrees of separation of intercalated discs were observed. It is concluded that the calcium paradox model of myocardial injury presents a rather sharp threshold related to the flow rate or volume of calcium-free coronary perfusion and that on trespassing this threshold there is a narrow zone characterized by a decreasing number of viable cells. Furthermore, the study indicates that a separation of the external lamina from the surface coat of the sarcolemma is not a prerequisite for the induction of a calcium paradox, and that cell injury may occur in the presence of intact intercalated discs.

  3. Stimulation of eryptosis by aluminium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemoeller, Olivier M.; Kiedaisch, Valentin; Dreischer, Peter

    2006-12-01

    Aluminium salts are utilized to impede intestinal phosphate absorption in chronic renal failure. Toxic side effects include anemia, which could result from impaired formation or accelerated clearance of circulating erythrocytes. Erythrocytes may be cleared secondary to suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine (PS) at the erythrocyte surface. As macrophages are equipped with PS receptors, they bind, engulf and degrade PS-exposing cells. The present experiments have been performed to explore whether Al{sup 3+} ions trigger eryptosis. The PS exposure was estimated from annexin binding and cell volume from forward scatter in FACSmore » analysis. Exposure to Al{sup 3+} ions ({>=} 10 {mu}M Al{sup 3+} for 24 h) indeed significantly increased annexin binding, an effect paralleled by decrease of forward scatter at higher concentrations ({>=} 30 {mu}M Al{sup 3+}). According to Fluo3 fluorescence Al{sup 3+} ions ({>=} 30 {mu}M for 3 h) increased cytosolic Ca{sup 2+} activity. Al{sup 3+} ions ({>=} 10 {mu}M for 24 h) further decreased cytosolic ATP concentrations. Energy depletion by removal of glucose similarly triggered annexin binding, an effect not further enhanced by Al{sup 3+} ions. The eryptosis was paralleled by release of hemoglobin, pointing to loss of cell membrane integrity. In conclusion, Al{sup 3+} ions decrease cytosolic ATP leading to activation of Ca{sup 2+}-permeable cation channels, Ca{sup 2+} entry, stimulation of cell membrane scrambling and cell shrinkage. Moreover, Al{sup 3+} ions lead to loss of cellular hemoglobin, a feature of hemolysis. Both effects are expected to decrease the life span of circulating erythrocytes and presumably contribute to the development of anemia during Al{sup 3+} intoxication.« less

  4. Effect of induction chemotherapy on estimated risk of radiation pneumonitis in bulky non–small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Neha P., E-mail: npamin@gmail.com; Miften, Moyed; Thornton, Dale

    2013-10-01

    Patients with bulky non–small cell lung cancer (NSCLC) may be at a high risk for radiation pneumonitis (RP) if treated with up-front concurrent chemoradiation. There is limited information about the effect of induction chemotherapy on the volume of normal lung subsequently irradiated. This study aims to estimate the reduction in risk of RP in patients with NSCLC after receiving induction chemotherapy. Between 2004 and 2009, 25 patients with Stage IV NSCLC were treated with chemotherapy alone (no surgery or radiation therapy [RT]) and had computed tomography (CT) scans before and after 2 cycles of chemotherapy. Simulated RT plans were createdmore » for the prechemotherapy and postchemotherapy scans so as to deliver 60 Gy to the thoracic disease in patients who had either a >20% volumetric increase or decrease in gross tumor volume (GTV) from chemotherapy. The prechemotherapy and postchemotherapy scans were analyzed to compare the percentage of lung volume receiving≥20 Gy (V20), mean lung dose (MLD), and normal tissue complication probability (NTCP). Eight patients (32%) had a GTV reduction >20%, 2 (8%) had GTV increase >20%, and 15 (60%) had stable GTV. In the 8 responders, there was an absolute median GTV decrease of 88.1 cc (7.3 to 351.6 cc) or a 48% (20% to 62%) relative reduction in tumor burden. One had >20% tumor progression during chemotherapy, yet had an improvement in dosimetric parameters postchemotherapy. Among these 9 patients, the median decrease in V20, MLD, and NTCP was 2.6% (p<0.01), 2.1 Gy (p<0.01), and 5.6% (p<0.01), respectively. Less than one-third of patients with NSCLC obtain >20% volumetric tumor reduction from chemotherapy alone. Even with that amount of volumetric reduction, the 5% reduced risk of RP was only modest and did not convert previously ineligible patients to safely receive definitive thoracic RT.« less

  5. Magnetic resonance spectroscopy for detection of choline kinase inhibition in the treatment of brain tumors

    PubMed Central

    Kumar, Manoj; Arlauckas, Sean P.; Saksena, Sona; Verma, Gaurav; Ittyerah, Ranjit; Pickup, Stephen; Popov, Anatoliy V.; Delikatny, Edward J.; Poptani, Harish

    2015-01-01

    Abnormal choline metabolism is a hallmark of cancer and is associated with oncogenesis and tumor progression. Increased choline is consistently observed in both pre-clinical tumor models and in human brain tumors by proton magnetic resonance spectroscopy (MRS). Thus, inhibition of choline metabolism using specific choline kinase inhibitors such as MN58b may be a promising new strategy for treatment of brain tumors. We demonstrate the efficacy of MN58b in suppressing phosphocholine production in three brain tumor cell lines. In vivo MRS studies of rats with intra-cranial F98-derived brain tumors showed a significant decrease in tumor total choline concentration after treatment with MN58b. High resolution MRS of tissue extracts confirmed that this decrease was due to a significant reduction in phosphocholine. Concomitantly, a significant increase in poly-unsaturated lipid resonances was also observed in treated tumors, indicating apoptotic cell death. Magnetic resonance imaging (MRI) based volume measurements demonstrated a significant growth arrest in the MN58b-treated tumors in comparison to saline-treated controls. Histologically, MN58b-treated tumors showed decreased cell density, as well as increased apoptotic cells. These results suggest that inhibition of choline kinase can be used as an adjuvant to chemotherapy in the treatment of brain tumors and that decreases in total choline observed by MRS can be used as an effective phamacodynamic biomarker of treatment response. PMID:25657334

  6. Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia.

    PubMed

    Hulshoff Pol, Hilleke E; Brans, Rachel G H; van Haren, Neeltje E M; Schnack, Hugo G; Langen, Marieke; Baaré, Wim F C; van Oel, Clarine J; Kahn, René S

    2004-01-15

    Whole brain tissue volume decreases in schizophrenia have been related to both genetic risk factors and disease-related (possibly nongenetic) factors; however, whether genetic and environmental risk factors in the brains of patients with schizophrenia are differentially reflected in gray or white matter volume change is not known. Magnetic resonance imaging (1.5 T) brain scans of 11 monozygotic and 11 same-gender dizygotic twin pairs discordant for schizophrenia were acquired and compared with 11 monozygotic and 11 same-gender dizygotic healthy control twin pairs. Repeated-measures volume analysis of covariance revealed decreased whole brain volume in the patients with schizophrenia as compared with their co-twins and with healthy twin pairs. Decreased white matter volume was found in discordant twin pairs compared with healthy twin pairs, particularly in the monozygotic twin pairs. A decrease in gray matter was found in the patients compared with their co-twins and compared with the healthy twins. The results suggest that the decreases in white matter volume reflect the increased genetic risk to develop schizophrenia, whereas the decreases in gray matter volume are related to environmental risk factors. Study of genes involved in the (maintenance) of white matter structures may be particularly fruitful in schizophrenia.

  7. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.

    PubMed

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-03-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  8. Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.

    PubMed

    Ross, Jacob A; Pearson, Adam; Levy, Yotam; Cardel, Bettina; Handschin, Christoph; Ochala, Julien

    2017-06-01

    Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND size remains unclear. In the present study, we aimed to test the hypothesis that the level of expression of the transcriptional coactivator PGC-1α and subsequent activation of the mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when PGC-1α is lacking, no change occurs. In the diaphragm, no clear difference was noted. This indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND volumes that can support an increased mitochondrial density. J. Cell. Physiol. 232: 1270-1274, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Quantification of idiopathic pulmonary fibrosis using computed tomography and histology.

    PubMed

    Coxson, H O; Hogg, J C; Mayo, J R; Behzad, H; Whittall, K P; Schwartz, D A; Hartley, P G; Galvin, J R; Wilson, J S; Hunninghake, G W

    1997-05-01

    We used computed tomography (CT) and histologic analysis to quantify lung structure in idiopathic pulmonary fibrosis (IPF). CT scans were obtained from IPF and control patients and lung volumes were estimated from measurements of voxel size, and X-ray attenuation values of each voxel. Quantitative estimates of lung structure were obtained from biopsies obtained from diseased and normal CT regions using stereologic methods. CT density was used to calculate the proportion of tissue and air, and this value was used to correct the biopsy specimens to the level of inflation during the CT scan. The data show that IPF is associated with a reduction in airspace volume with no change in tissue volume or weight compared with control lungs. Lung surface area decreased two-thirds (p < 0.001) and mean parenchymal thickness increased tenfold (p < 0.001). An exudate of fluid and cells was present in the airspace of the diseased lung regions and the number of inflammatory cells, collagen, and proteoglycans was increased per 100 g of tissue in IPF. We conclude that IPF reorganized lung tissue content causing a loss of airspace and surface area without increasing the total lung tissue.

  10. Prostaglandin E2 stimulates a Ca2+-dependent K+ channel in human erythrocytes and alters cell volume and filterability.

    PubMed

    Li, Q; Jungmann, V; Kiyatkin, A; Low, P S

    1996-08-02

    To understand the mechanism by which human red blood cells (RBCs) contribute to hemostasis and thrombosis, we have examined the effects of metabolites released by activated platelets on intact RBCs. Prostaglandin E2 (PGE2), a signal molecule produced by activated platelets, was observed to lower the filterability of human erythrocytes by approximately 30% at 10(-10) M. PGE2 also caused a reduction in mean cell volume of approximately 10%. The shrinkage of red cells after PGE2 treatment was confirmed by documenting a decrease in osmotic fragility and an increase in cell density following exposure to the hormone. Careful analysis, however, revealed that only approximately 15% of the erythrocytes responded to stimulation with PGE2. Examination of the cause of cell shrinkage showed that induction of a PGE2-stimulated K+ efflux pathway leading to rapid loss of cellular K+ was responsible. The PGE2-stimulated K+ loss was also observed to be Ca2+-dependent, suggesting the possible involvement of the Gardos channel. Gardos channel participation was supported by the observation that two Gardos channel inhibitors, charybdotoxin and clotrimazole, independently blocked the PGE2-stimulated K+ efflux. Further evidence for Gardos channel activation came from experiments aimed at characterizing the efflux pathway followed by the obligatory counterion. Thus, K+ efflux was readily stimulated even when NO3- was substituted for Cl-, suggesting that neither KCl cotransport nor Na/K/2Cl cotransport plays a prominent role in the PGE2-induced cell shrinkage. Further, the anion transporter band 3 was implicated as the counterion efflux route, since DIDS inhibited the PGE2-stimulated cell volume change without blocking the change in membrane potential. Taken together, we propose that release of PGE2 by activated platelets constitutes part of a mechanism by which activated platelets may recruit adjacent erythrocytes to assist in clot formation.

  11. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma.

    PubMed

    Mansouri, Sheila; Singh, Sanjay; Alamsahebpour, Amir; Burrell, Kelly; Li, Mira; Karabork, Merve; Ekinci, Can; Koch, Elizabeth; Solaroglu, Ihsan; Chang, Jeffery T; Wouters, Bradly; Aldape, Kenneth; Zadeh, Gelareh

    2016-08-30

    The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.

  12. Pancreatic polypeptide cells of rat pancreas after chronic ethanol feeding.

    PubMed

    Koko, V; Todorović, V; Drndarević, N; Glisić, R; Nedeljković, M; Nikolić, A

    2001-05-01

    Male Wistar rats, (2 months old) were randomly divided into two groups according to the diet offered (C-control and E-ethanol treated rats). Final body weight was significantly increased but pancreatic weight as a percentage of body weight was decreased in ethanol treated rats. Volume density, number of pancreatic poly peptide (PP)-cells per islet and per micron 2 of islet were significantly increased. PP-cells were abundant and occupied the whole periphery of islets in the splenic part of the pancreas. Those cells showed strong immunopositivity. At the ultrastructural level PP granules had predominantly less electron density. The mean diameter of PP granules was significantly increased and the number of granules of larger diameter was greater in the E group of rats, than in the controls.

  13. Foam separation of Pseudomonas fluorescens and Bacillus subtilis var. niger.

    PubMed

    Grieves, R B; Wang, S L

    1967-01-01

    An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 mueq/ml of NaCl, KCl, Na(2)SO(4), K(2)SO(4), CaCl(2), CaSO(4), MgCl(2), or MgSO(4) produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 x 10(5) up to 1.6 x 10(6) to 2.8 x 10(7) cells per milliliter (initial suspensions contain from 3.3 x 10(7) to 4.8 x 10(7) cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 mueq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 x 10(4) to about 4.0 x 10(5) cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis.

  14. Bioactive natural constituents from lemongrass tea and erythropoiesis boosting effects: potential use in prevention and treatment of anemia.

    PubMed

    Ekpenyong, Christopher E; Daniel, Nyebuk E; Antai, Atim B

    2015-01-01

    This study assessed the effects of lemongrass (Cymbopogon citratus) tea on hematologic indices in human volunteers. One hundred five subjects (55 men and 50 women), aged 18 to 35 years, were randomly assigned to groups set to orally receive infusion prepared from 2, 4, or 8 g of C. citratus leaves once daily for 30 days. Assessment of hematologic indices (hemoglobin concentration [Hb], packed cell volume [PCV], red blood cell [RBC] count, mean cell Hb [MCH], mean cell volume [MCV], mean cell Hb concentration [MCHC], total white blood cell [WBC-total] and differentials, and platelets) were performed 1 day before (baseline), and at 10 (acute) and 30 days (subchronic phase) after the initiation of treatment. Results obtained on days 10 and 30 were compared with baseline values. Infusions prepared from C. citratus leaf powder, which tested positive for tannins, saponins, alkaloids, flavonoids, macro- and micronutrients, significantly increased PCV, Hb, and RBC (P<.05) in all subjects, particularly in the subchronic phase of the study. MCH, MCV, and MCHC were not significantly different from baseline values in both the sexes. WBCs and differentials significantly decreased (P<.05) with the exception of neutrophils and lymphocytes, which significantly increased in some or all groups (P<.05), respectively. C. citratus leaf infusion appears to exert an erythropoiesis boosting effect, likely due to some nutritional constituents and its antioxidant and pharmacologic properties.

  15. Ultrastructural aspects of autoschizis: a new cancer cell death induced by the synergistic action of ascorbate/menadione on human bladder carcinoma cells.

    PubMed

    Gilloteaux, J; Jamison, J M; Arnold, D; Taper, H S; Summers, J L

    2001-01-01

    Scanning and transmission electron microscopy were employed to further characterize the cytotoxic effects of a ascorbic acid/menadione (or vitamin C/vitamin K3) combination on a human bladder carcinoma T24 cell line. Following 1-h treatment T24 cells display membrane and mitochondrial defects as well as excision of cytoplasmic fragments that contain no organelles. These continuous self-excisions reduce the cell size. Concomitant, nuclear changes, chromatin disassembly, nucleolar condensation and fragmentation, and decreased nuclear volume lead to cell death via a process similar to karyorrhexis and karyolysis. Because this cell death is achieved through a progressive loss of cytoplasm due to self-morsellation, the authors named this mode of cell death autoschizis (from the Greek autos, self, and schizein, to split, as defined in Scanning. 1998; 20: 564-575). This morphological characterization of autoschizic cell death confirms and extends the authors previous reports and demonstrates that this cell death is distinct from apoptosis.

  16. Isovolemic hemodilution alters the ratio of whole-body to large-vessel hematocrit (F-cell ratio). A prospective, randomized study comparing the volume effects of hydroxyethyl starch 200,000/0.62 and albumin.

    PubMed

    Haller, M; Brechtelsbauer, H; Akbulut, C; Fett, W; Briegel, J; Finsterer, U

    1995-04-01

    To evaluate potential changes in the ratio of whole-body/large-vessel hematocrit (f-cell ratio) during isovolemic hemodilution and to compare the volume effects of 2 different plasma exchange solutions (hydroxyethyl starch 200,000/0.62 6% and human albumin 5%). Prospective, randomized, controlled trial. Operating theater in a university hospital. 24 gynecological patients scheduled for elective surgery. Isovolemic hemodilution was performed using 2 different plasma exchange solutions. Plasma volume was determined using dye dilution technique before and after hemodilution. The volume of withdrawn blood was measured from the change in weight of the blood bags taking into account the specific gravity of blood. The volume of administered plasma exchange solutions exceeded the amount of withdrawn blood by 80 +/- 47 ml (p < 0.001). Plasma volume was 3,067 +/- 327 ml before and 3,517 +/- 458 ml after hemodilution. Using red cell volumes calculated from measured plasma volumes and peripheral hematocrit, a deficit of 249 +/- 133 ml (p < 0.0001) in red cells after hemodilution appeared with the measured withdrawn red cell volumes taken into account. This finding can be explained by a change in the f-cell ratio during isovolemic hemodilution. The volume effect of the exchange solutions was 1.05 for hydroxyethyl starch and 0.95 for albumin. The results demonstrate that a change in the f-cell ratio occurs during isovolemic hemodilution. The estimation of red cell volume or plasma volume changes by using either the hematocrit or plasma or red cell volume determinations together with the hematocrit may lead to erroneous results.

  17. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence.

    PubMed

    Finkel, Kelsey A; Warner, Kristy A; Kerk, Samuel; Bradford, Carol R; McLean, Scott A; Prince, Mark E; Zhong, Haihong; Hurt, Elaine M; Hollingsworth, Robert E; Wicha, Max S; Tice, David A; Nör, Jacques E

    2016-05-01

    Head and neck squamous cell carcinomas (HNSCC) exhibit a small population of uniquely tumorigenic cancer stem cells (CSC) endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDH(high)CD44(high) cells). Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117) using three low-passage patient-derived xenograft (PDX) models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05). This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11). Low dose MEDI5117 (3 mg/kg) consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001), PDX-SCC-M1 (P < .001), PDX-SCC-M11 (P = .04). Interestingly, high dose MEDI5117 (30 mg/kg) decreased the CSC fraction in the PDX-SCC-M11 model (P = .002), but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDH(high)CD44(high) cells cultured in ultra-low attachment plates (P < .05), supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Morphometry of the midgut of Melipona quadrifasciata anthidioides (Lepeletier) (Hymenoptera: Apidae) during metamorphosis.

    PubMed

    Cruz, L C; Araújo, V A; Dolder, H; Araújo, A P A; Serrão, J E; Neves, C A

    2011-01-01

    In Hymenoptera, midgut changes begin in the last instar. At this stage, the larval epithelial digestive cells degenerate, leaving only the basal membrane and the regenerative cells which will develop into a new epithelium during the pupal stage and in the adult. Epithelium renewal is followed by changes in volume and shape of the midgut. Morphometric analysis of digestive cells and total midgut volume of Melipona quadrifasciata anthidioides (Lepeletier) were conducted to verify whether cell volume increase are sufficient to account for the total midgut volume increase that occurs during metamorphosis. An increase in midgut volume was verified in spite of the scarcity of cell proliferation found during metamorphosis. At the end of metamorphosis, the increase in cell volume was not sufficient to explain the increase in volume of the midgut, indicating that an increase in the number of digestive cells is apparently necessary. Nevertheless, the mechanism by which regenerative cells reconstitute the epithelium during metamorphosis remains unknown.

  19. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst

    PubMed Central

    Sheybani, Roya; Meng, Ellis

    2015-01-01

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561

  20. Neuroprotective activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) in vitro and in vivo in rodent models of brain ischemia.

    PubMed

    Martins, Antonio H; Hu, Jing; Xu, Zhenfeng; Mu, Chaofeng; Alvarez, Paloma; Ford, Byron D; El Sayed, Khalid; Eterovic, Vesna A; Ferchmin, Pedro A; Hao, Jiukuan

    2015-04-16

    (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) is a precursor to key flavor ingredients in leaves of Nicotiana species. The present study shows 4R decreased brain damage in rodent ischemic stroke models. The 4R-pretreated mice had lower infarct volumes (26.2±9.7 mm3) than those in control groups (untreated: 63.4±4.2 mm3, DMSO: 60.2±14.2 mm3). The 4R-posttreated rats also had less infarct volumes (120±65 mm3) than those in the rats of the DMSO group (291±95 mm3). The results from in vitro experiments indicate that 4R decreased neuro2a cell (neuroblastoma cells) apoptosis induced by oxygen-glucose deprivation (OGD), and improved the population spikes' (PSs) recovery in rat acute hippocampal slices under OGD; a phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin, abolished the effect of 4R on PSs recovery. Furthermore, 4R also inhibited monocyte adhesion to murine brain-derived endothelial (bEND5) cells and upregulation of intercellular adhesion molecule-1(ICAM-1) induced by OGD/reoxygenation (OGD/R), and restored the p-Akt level to pre-OGD/R values in bEND5 cells. In conclusion, the present study indicates that 4R has a protective effect in rodent ischemic stroke models. Inhibition of ICAM-1 expression and restoration of Akt phosphorylation are the possible mechanisms involved in cellular protection by 4R. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. In Situ NAPL Modification for Contaminant Source-Zone Passivation, Mass Flux Reduction, and Remediation

    NASA Astrophysics Data System (ADS)

    Mateas, D. J.; Tick, G.; Carroll, K. C.

    2016-12-01

    A remediation method was developed to reduce the aqueous solubility and mass-flux of target NAPL contaminants through the in-situ creation of a NAPL mixture source-zone. This method was tested in the laboratory using equilibrium batch tests and two-dimensional flow-cell experiments. The creation of two different NAPL mixture source zones were tested in which 1) volumes of relatively insoluble n-hexadecane (HEX) or vegetable oil (VO) were injected into a trichloroethene (TCE) contaminant source-zone; and 2) pre-determined HEX-TCE and VO-TCE mixture ratio source zones were emplaced into the flow cell prior to water flushing. NAPL-aqueous phase batch tests were conducted prior to the flow-cell experiments to evaluate the effects of various NAPL mixture ratios on equilibrium aqueous-phase concentrations of TCE and toluene (TOL) and to design optimal NAPL (HEX or VO) injection volumes for the flow-cell experiments. Uniform NAPL mixture source-zones were able to quickly decrease contaminant mass-flux, as demonstrated by the emplaced source-zone experiments. The success of the HEX and VO injections to also decrease mass flux was dependent on the ability of these injectants to homogeneously mix with TCE source-zone. Upon injection, both HEX and VO migrated away from the source-zone, to some extent. However, the lack of a steady-state dissolution phase and the inefficient mass-flux-reduction/mass-removal behavior produced after VO injection suggest that VO was more effective than HEX for mixing and partitioning within the source-zone region to form a more homogeneous NAPL mixture with TCE. VO appears to be a promising source-zone injectant-NAPL due to its negligible long-term toxicity and lower mobilization potential.

  2. Antitumor effect of Ferula assa foetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice.

    PubMed

    Bagheri, Seyyed Majid; Abdian-Asl, Amir; Moghadam, Mahin Taheri; Yadegari, Maryam; Mirjalili, Aghdas; Zare-Mohazabieh, Fatemeh; Momeni, Haniyeh

    Ferula assa foetida commonly consumed as a healthy beverage has been demonstrated to have various biological activities, including antioxidation, anti-obesity and anti-cancer. Our study aims to investigate the antitumor effect of asafoetida in vivo using mouse mammary carcinoma 4T1 cells. In the study, female BALB/c mice were divided into two groups (n = 6), which were control (untreated) and other group of mice with breast cancer treated with 100 mg/kg of asafoetida, respectively, by oral gavage. All mice were injected into the mammary fat pad with 4T1 cells (1 × 10 5 4T1 cells/0.1 ml of phosphate buffer solution). Asafoetida was administered on day 15 after the tumor had developed for 3 weeks. At end of experiment, tumor weight, tumor volume and tumor burden were measured and lung, liver, kidney and tumor were harvested and sections were prepared for histopathological analysis. Lipoxygenase inhibitory and antioxidant activity of asafoetida was also determined. Our results showed that treatment with asafoetida was effective in decreasing the tumor weight and tumor volume in treated mice. Body weight significantly increased in female BALB/c mice against control. Apart from the antitumor effect, asafoetida decreased lung, liver and kidney metastasis and also increased areas of necrosis in the tumor tissue respectively. The present study demonstrated that asafoetida has potent antitumor and antimetastasis effects on breast cancer and is a potential source of natural antitumor products. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  3. Impact of delayed umbilical cord clamping on public cord blood donations: can we help future patients and benefit infant donors?

    PubMed

    Ciubotariu, Rodica; Scaradavou, Andromachi; Ciubotariu, Ilinca; Tarnawski, Michal; Lloyd, Sara; Albano, Maria; Dobrila, Ludy; Rubinstein, Pablo; Grunebaum, Amos

    2018-03-25

    Cord blood (CB) is a widely accepted stem cell source and its clinical utilization depends, to a great extent, on its cell content. Birth-to-clamping (BTC) time of umbilical cord determines placental transfusion to the newborn, and the remaining blood that can be collected and banked. The 2017 Committee Opinion of the American College of Obstetrics and Gynecologists (ACOG) recommends a delay of "at least 30-60 seconds" before clamping the cord for all newborns to ensure adequate iron stores. The impact of delayed cord clamping (DCC) on public CB banking can be substantial. Cord blood units (CBUs) collected from 1210 mothers at one hospital were evaluated for total nucleated cells (TNCs) and weight/volume based on time to clamping. Bank staff recorded BTC time in seconds as reported by obstetricians; collections were performed ex utero. Immediate clamping was defined as BTC of less than 30 seconds, whereas DCC was defined as BTC of 30 seconds or more. Cord clamping was immediate in 903 (75%) and delayed in 307 (25%) deliveries. Successful recovery (% clinical CBUs) decreased 10-fold with DCC of more than 60 seconds (22% vs. 2.4%, p < 0.001). CBUs collected after DCC of more than 60 seconds had significantly lower TNC counts than those after DCC of less than 60 seconds (p < 0.0001). Furthermore, 38% to 46% of CBUs after DCC of more than 60 seconds had volume of less than 40 mL. Our study indicates that DCC of 30 to 60 seconds has a small negative impact on collection of high-TNC-count CBUs. However, increasing BTC to more than 60 seconds decreases significantly both TNC content and volume, reducing drastically the chances of obtaining clinically useful CBUs. © 2018 AABB.

  4. Can prostatic arterial embolisation (PAE) reduce the volume of the peripheral zone? MRI evaluation of zonal anatomy and infarction after PAE.

    PubMed

    Lin, Yen-Ting; Amouyal, Grégory; Correas, Jean-Michel; Pereira, Héléna; Pellerin, Olivier; Del Giudice, Costantino; Déan, Carole; Thiounn, Nicolas; Sapoval, Marc

    2016-10-01

    To assess the impact of prostatic arterial embolisation (PAE) on various prostate gland anatomical zones. We retrospectively reviewed paired MRI scans obtained before and after PAE for 25 patients and evaluated changes in volumes of the median lobe (ML), central gland (CG), peripheral zone (PZ) and whole prostate gland (WPV) following PAE. We used manual segmentation to calculate volume on axial view T2-weighted images for ML, CG and WPV. We calculated PZ volume by subtracting CG volume from WPV. Enhanced phase on dynamic contrasted-enhanced MRI was used to evaluate the infarction areas after PAE. Clinical results of International Prostate Symptom Score and International Index of Erectile Function questionnaires and the urodynamic study were evaluated before and after PAE. Significant reductions in volume were observed after PAE for ML (26.2 % decrease), CG (18.8 %), PZ (16.4 %) and WPV (19.1 %; p < 0.001 for all these volumes). Patients with clinical failure had smaller volume reductions for WPV, ML and CG (all p < 0.05). Patients with significant CG infarction after PAE displayed larger WPV, ML and CG volume reductions (all p < 0.01). PAE can significantly decrease WPV, ML, CG and PZ volumes, and poor clinical outcomes are associated with smaller volume reductions. • The MRI segmentation method provides detailed comparisons of prostate volume change. • Prostatic arterial embolisation (PAE) decreased central gland and peripheral zone volumes. • Prostates with infarction after PAE showed larger decreases in volume. • A larger decrease in prostate volume is associated with clinical success.

  5. Reproducibility of lung tumor position and reduction of lung mass within the planning target volume using active breathing control (ABC).

    PubMed

    Cheung, Patrick C F; Sixel, Katharina E; Tirona, Romeo; Ung, Yee C

    2003-12-01

    The active breathing control (ABC) device allows for temporary immobilization of respiratory motion by implementing a breath hold at a predefined relative lung volume and air flow direction. The purpose of this study was to quantitatively evaluate the ability of the ABC device to immobilize peripheral lung tumors at a reproducible position, increase total lung volume, and thereby reduce lung mass within the planning target volume (PTV). Ten patients with peripheral non-small-cell lung cancer tumors undergoing radiotherapy had CT scans of their thorax with and without ABC inspiration breath hold during the first 5 days of treatment. Total lung volumes were determined from the CT data sets. Each peripheral lung tumor was contoured by one physician on all CT scans to generate gross tumor volumes (GTVs). The lung density and mass contained within a 1.5-cm PTV margin around each peripheral tumor was calculated using CT numbers. Using the center of the GTV from the Day 1 ABC scan as the reference, the displacement of subsequent GTV centers on Days 2 to 5 for each patient with ABC applied was calculated in three dimensions. With the use of ABC inspiration breath hold, total lung volumes increased by an average of 42%. This resulted in an average decrease in lung mass of 18% within a standard 1.5-cm PTV margin around the GTV. The average (+/- standard deviation) displacement of GTV centers with ABC breath hold applied was 0.3 mm (+/- 1.8 mm), 1.2 mm (+/- 2.3 mm), and 1.1 mm (+/- 3.5 mm) in the lateral direction, anterior-posterior direction, and superior-inferior direction, respectively. Results from this study indicate that there remains some inter-breath hold variability in peripheral lung tumor position with the use of ABC inspiration breath hold, which prevents significant PTV margin reduction. However, lung volumes can significantly increase, thereby decreasing the mass of lung within a standard PTV.

  6. Asiatic acid induces endoplasmic reticulum stress and apoptotic death in glioblastoma multiforme cells both in vitro and in vivo

    PubMed Central

    Kavitha, Chandagirikoppal V.; Jain, Anil K.; Agarwal, Chapla; Pierce, Angela; Keating, Amy; Huber, Kendra M.; Serkova, Natalie J.; Wempe, Michael F.; Agarwal, Rajesh; Deep, Gagan

    2014-01-01

    Glioblastoma multiforme (GBM) is an untreatable malignancy. Existing therapeutic options are insufficient, and adversely affect functional and non-cancerous cells in the brain impairing different functions of the body. Therefore, there is an urgent need for additional preventive and therapeutic non-toxic drugs against GBM. Asiatic acid (AsA; 2,3,23-trihydroxy-12-ursen-28-oic acid, C30H48O5) is a natural small molecule widely used to treat various neurological disorders, and the present research investigates AsA’s efficacy against GBM both in vitro and in vivo. Results showed that AsA treatment (10–100 μM) decreased the human GBM cell (LN18, U87MG, and U118MG) viability, with better efficacy than temozolomide at equimolar doses. Orally administered AsA (30 mg/kg/day) strongly decreased tumor volume in mice when administered immediately after ectopic U87MG xenograft implantation (54% decrease, p≤0.05) or in mice with established xenografts (48% decrease, p≤0.05) without any apparent toxicity. Importantly, AsA feeding (30 mg/kg/twice a day) also decreased the orthotopic U87MG xenografts growth in nude mice as measured by magnetic resonance imaging. Using LC/MS-MS methods, AsA was detected in mice plasma and brain tissue, confirming that AsA crosses blood-brain barrier. Mechanistic studies showed that AsA induces apoptotic death by modulating the protein expression of several apoptosis regulators (caspases, Bcl2 family members, and survivin) in GBM cells. Furthermore, AsA induced ER stress (increased GRP78 and Calpain, and decreased Calnexin and IRE1α expression), enhanced free intra-cellular calcium, and damaged cellular organization in GBM cells. These experimental results demonstrate that AsA is effective against GBM, and advocate further pre-clinical and clinical evaluations of AsA against GBM. PMID:25252179

  7. Fundamental structural characteristics of planar granular assemblies: Self-organization and scaling away friction and initial state.

    PubMed

    Matsushima, Takashi; Blumenfeld, Raphael

    2017-03-01

    The microstructural organization of a granular system is the most important determinant of its macroscopic behavior. Here we identify the fundamental factors that determine the statistics of such microstructures, using numerical experiments to gain a general understanding. The experiments consist of preparing and compacting isotropically two-dimensional granular assemblies of polydisperse frictional disks and analyzing the emergent statistical properties of quadrons-the basic structural elements of granular solids. The focus on quadrons is because the statistics of their volumes have been found to display intriguing universal-like features [T. Matsushima and R. Blumenfeld, Phys. Rev. Lett. 112, 098003 (2014)PRLTAO0031-900710.1103/PhysRevLett.112.098003]. The dependence of the structures and of the packing fraction on the intergranular friction and the initial state is analyzed, and a number of significant results are found. (i) An analytical formula is derived for the mean quadron volume in terms of three macroscopic quantities: the mean coordination number, the packing fraction, and the rattlers fraction. (ii) We derive a unique, initial-state-independent relation between the mean coordination number and the rattler-free packing fraction. The relation is supported numerically for a range of different systems. (iii) We collapse the quadron volume distributions from all systems onto one curve, and we verify that they all have an exponential tail. (iv) The nature of the quadron volume distribution is investigated by decomposition into conditional distributions of volumes given the cell order, and we find that each of these also collapses onto a single curve. (v) We find that the mean quadron volume decreases with increasing intergranular friction coefficients, an effect that is prominent in high-order cells. We argue that this phenomenon is due to an increased probability of stable irregularly shaped cells, and we test this using a herewith developed free cell analytical model. We conclude that, in principle, the microstructural characteristics are governed mainly by the packing procedure, while the effects of intergranular friction and initial states are details that can be scaled away. However, mechanical stability constraints suppress slightly the occurrence of small quadron volumes in cells of order ≥6, and the magnitude of this effect does depend on friction. We quantify in detail this dependence and the deviation it causes from an exact collapse for these cells. (vi) We argue that our results support strongly the view that ensemble granular statistical mechanics does not satisfy the uniform measure assumption of conventional statistical mechanics. Results (i)-(iv) have been reported in the aforementioned reference, and they are reviewed and elaborated on here.

  8. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed

    Farinas, J; Verkman, A S

    1996-12-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.

  9. Correlation between pulmonary function and brain volume in healthy elderly subjects.

    PubMed

    Taki, Yasuyuki; Kinomura, Shigeo; Ebihara, Satoru; Thyreau, Benjamin; Sato, Kazunori; Goto, Ryoi; Kakizaki, Masako; Tsuji, Ichiro; Kawashima, Ryuta; Fukuda, Hiroshi

    2013-06-01

    Cigarette smoking decreases brain regional gray matter volume and is related to chronic obstructive lung disease (COPD). COPD leads to decreased pulmonary function, which is represented by forced expiratory volume in one second percentage (FEV1.0 %); however, it is unclear if decreased pulmonary function is directly related to brain gray matter volume decline. Because there is a link between COPD and cognitive decline, revealing a direct relationship between pulmonary function and brain structure is important to better understand how pulmonary function affects brain structure and cognitive function. Therefore, the purpose of this study was to analyze whether there were significant correlations between FEV1.0 % and brain regional gray and white matter volumes using brain magnetic resonance (MR) image data from 109 community-dwelling healthy elderly individuals. Brain MR images were processed with voxel-based morphometry using a custom template by applying diffeomorphic anatomical registration using the exponentiated lie algebra procedure. We found a significant positive correlation between the regional white matter volume of the cerebellum and FEV1.0 % after adjusting for age, sex, and intracranial volume. Our results suggest that elderly individuals who have a lower FEV1.0 % have decreased regional white matter volume in the cerebellum. Therefore, preventing decreased pulmonary function is important for cerebellar white matter volume in the healthy elderly population.

  10. Free-volume characteristics of epoxies

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Shultz, William J.; St.clair, Terry L.

    1992-01-01

    Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.

  11. A Supramolecular Gel Approach to Minimize the Neural Cell Damage during Cryopreservation Process.

    PubMed

    Zeng, Jie; Yin, Yixia; Zhang, Li; Hu, Wanghui; Zhang, Chaocan; Chen, Wanyu

    2016-03-01

    The storage method for living cells is one of the major challenges in cell-based applications. Here, a novel supramolecular gel cryopreservation system (BDTC gel system) is introduced, which can observably increase the neural cell viability during cryopreservation process because this system can (1) confine the ice crystal growth in the porous of BDTC gel system, (2) decrease the amount of ice crystallization and cryopreservation system's freezing point, and (3) reduce the change rates of cell volumes and osmotic shock. In addition, thermoreversible BDTC supramolecular gel is easy to be removed after thawing so it does not hinder the adherence, growth, and proliferation of cells. The results of functionality assessments indicate that BDTC gel system can minimize the neural cell damage during cryopreservation process. This method will be potentially applied in cryopreservation of other cell types, tissues, or organs and will benefit cell therapy, tissue engineering, and organs transplantation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Abnormal Pulmonary Function in Adults with Sickle Cell Anemia

    PubMed Central

    Klings, Elizabeth S.; Wyszynski, Diego F.; Nolan, Vikki G.; Steinberg, Martin H.

    2006-01-01

    Rationale: Pulmonary complications of sickle cell anemia (Hb-SS) commonly cause morbidity, yet few large studies of pulmonary function tests (PFTs) in this population have been reported. Objectives: PFTs (spirometry, lung volumes, and diffusion capacity for carbon monoxide [DLCO]) from 310 adults with Hb-SS were analyzed to determine the pattern of pulmonary dysfunction and their association with other systemic complications of sickle cell disease. Methods: Raw PFT data were compared with predicted values. Each subject was subclassified into one of five groups: obstructive physiology, restrictive physiology, mixed obstructive/restrictive physiology, isolated low DLCO, or normal. The association between laboratory data of patients with decreased DLCO or restrictive physiology and those of normal subjects was assessed by multivariate linear regression. Measurements and Main Results: Normal PFTs were present in only 31 of 310 (10%) patients. Overall, adults with Hb-SS were characterized by decreased total lung capacities (70.2 ± 14.7% predicted) and DlCO (64.5 ± 19.9%). The most common PFT patterns were restrictive physiology (74%) and isolated low DlCO (13%). Decreased DLCO was associated with thrombocytosis (p = 0.05), with hepatic dysfunction (elevated alanine aminotransferase; p = 0.07), and a trend toward renal dysfunction (elevated blood urea nitrogen and creatinine; p = 0.05 and 0.07, respectively). Conclusions: Pulmonary function is abnormal in 90% of adult patients with Hb-SS. Common abnormalities include restrictive physiology and decreased DLCO. Decreased DLCO may indicate more severe sickle vasculopathy characterized by impaired hepatic and renal function. PMID:16556694

  13. Sensorimotor cortex ablation induces time-dependent response of ACTH cells in adult rats: behavioral, immunohistomorphometric and hormonal study.

    PubMed

    Lavrnja, Irena; Trifunovic, Svetlana; Ajdzanovic, Vladimir; Pekovic, Sanja; Bjelobaba, Ivana; Stojiljkovic, Mirjana; Milosevic, Verica

    2014-02-10

    Traumatic brain injury (TBI) represents a serious event with far reaching complications, including pituitary dysfunction. Pars distalis corticotropes (ACTH cells), that represent the active module of hypothalamo-pituitary-adrenocortical axis, seem to be affected as well. Since pituitary failure after TBI has been associated with neurobehavioral impairments the aim of this study was to evaluate the effects of TBI on recovery of motor functions, morphology and secretory activity of ACTH cells in the pituitary of adult rats. Wistar male rats, initially exposed to sensorimotor cortex ablation (SCA), were sacrificed at the 2nd, 7th, 14th and 30th days post-surgery (dps). A beam walking test was used to evaluate the recovery of motor functions. Pituitary glands and blood were collected for morphological and hormonal analyses. During the first two weeks post-injury increased recovery of locomotor function was detected, reaching almost the control value at day 30. SCA induces significant increase of pituitary weights compared to their time-matched controls. The volume of ACTH-immunopositive cells was reduced at the 7th dps, while at the 14th dps their volume was enlarged, in comparison to corresponding sham controls. Volume density of ACTH cells was increased only at 14th dps, while at day 30 this increase was insignificant. The plasma level of ACTH transiently increased after the injury. The most pronounced changes were observed at the 7th and 14th dps, and were followed by decrease toward control levels at the 30th dps. Thus, temporal changes in the hypothalamic-pituitary-adrenal axis after traumatic brain injury appear to correlate with the recovery process. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Vascular Endothelial Growth Factor (VEGF) mRNA Isoforms are Altered in Bovine Granulosa Cells (GC) by Circulating Progestin Concentrations (P4) and May Indicate Follicle Status and Oocyte Competence

    USDA-ARS?s Scientific Manuscript database

    Previously, Melengestrol Acetate (MGA) fed for 14 d (0.5mg/cow/d; < 1 ng/ml P4) resulted in persistent follicles with increased size, decreased number of GC/follicular fluid (FF) volume, and less fertile oocytes. An experiment was conducted to determine effects of circulating P4 on amount of mRNA fo...

  16. Interactions Between IGFBP-3 and Nuclear Receptors in Prostate Cancer Apoptosis

    DTIC Science & Technology

    2010-01-01

    flavonoid found in grapes, green vegetables, and onions, induced apoptosis of PC-3 cells (240). This was accompanied with a decrease in IGF-1 and -2 and...stabilized integrin receptor complexes (27). In vivo. GROWTH INHIBITION. Mice bearing human prostate 22RV1 tumor xenografts were fed apigenin, a flavonoid ...the active component of flavonoid antioxidant silymarin (milk thistle extract) significantly inhib- ited tumor volume in DU145 tumor xenograft nude

  17. Cellular content and biosynthesis of polyamines during rooster spermatogenesis.

    PubMed Central

    Oliva, R; Vidal, S; Mezquita, C

    1982-01-01

    The natural polyamines spermine and spermidine, and the diamine putrescine, were extracted from rooster testis cells separated by sedimentation at unit gravity, and from vas-deferens spermatozoa. The ratios spermine/DNA and spermidine/DNA were kept relatively constant throughout spermatogenesis, whereas the ratio putrescine/DNA rose in elongated spermatids. The cellular content of spermine, spermidine and putrescine decreased markedly in mature spermatozoa. Two rate-limiting enzymes in the biosynthetic pathway of polyamines, ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase, showed their highest activities at the end of spermiogenesis and were not detectable in vas-deferens spermatozoa. A marked reduction in cell volume during spermiogenesis without a parallel decrease in the cellular content of polyamines suggests the possibility that the marked changes in chromatin composition and structure occurring in rooster late spermatids could take place in an ambience of high polyamine concentration. Images PLATE 1 PMID:7159401

  18. Response and adaptation of Beagle dogs to hypergravity

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1975-01-01

    Eight male Beagle dogs, five months old, were centrifuged continuously for three months at progressively increasing loads. Heart rate and deep body temperature were monitored continuously by implant biotelemetry. Initially, centrifuged dogs showed transient decreases in heart rate and body temperature along with changes in their diurnal rhythm patterns. Compared with normal gravity controls, exposed dogs showed a slower growth rate and a reduced amount of body fat. Blood protein, total lipids, cholesterol, calcium, packed cell volume, red blood cell count, and hemoglobin were also decreased significantly. Absolute weights of the leg bones of centrifuged dogs were significantly greater than controls. Photon absorptiometry revealed significant density increases in selective regions of the femur and humerus of centrifuged dogs. In spite of the various changes noted, results from this and other studies affirm the view that dogs can tolerate and adapt to sustained loads as high as 2.5 g without serious impairment of their body structure and function.

  19. Blood Volume: Its Adaptation to Endurance Training

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Expansion of blood volume (hypervolemia) has been well documented in both cross-sectional and longitudinal studies as a consequence of endurance exercise training. Plasma volume expansion can account for nearly all of the exercise-induced hypervolemia up to 2-4 wk; after this time expansion may be distributed equally between plasma and red cell volumes. The exercise stimulus for hypervolemia has both thermal and nonthermal components that increase total circulating plasma levels of electrolytes and proteins. Although protein and fluid shifts from the extravascular to intravascular space may provide a mechanism for rapid hypervolemia immediately after exercise, evidence supports the notion that chronic hypervolemia associated with exercise training represents a net expansion of total body water and solutes. This net increase of body fluids with exercise training is associated with increased water intake and decreased urine volume output. The mechanism of reduced urine output appears to be increased renal tubular reabsorption of sodium through a more sensitive aldosterone action in man. Exercise training-induced hypervolemia appears to be universal among most animal species, although the mechanisms may be quite different. The hypervolemia may provide advantages of greater body fluid for heat dissipation and thermoregulatory stability as well as larger vascular volume and filling pressure for greater cardiac stroke volume and lower heart rates during exercise.

  20. Improved laparoscopic nephron-sparing surgery for renal cell carcinoma based on the precise anatomy of the nephron.

    PubMed

    Guo, Gang; Cai, Wei; Zhang, Xu

    2016-11-01

    The aim of the present study was to investigate a method of laparoscopic nephron-sparing surgery (LNSS) for renal cell carcinoma (RCC) based on the precise anatomy of the nephron, and to decrease the incidence of hemorrhage and urinary leakage. Between January 2012 and December 2013, 31 patients who presented to the General Hospital of the People's Liberation Army (Beijing, China) were treated for RCC. The mean tumor size was 3.4±0.7 cm in diameter (range, 1.2-6.0 cm). During surgery, the renal artery was blocked, and subsequently, an incision in the renal capsule and renal cortex was performed, at 3-5 mm from the tumor edge. Subsequent to the incision of the renal parenchyma, scissors with blunt and sharp edge were used to separate the base of the tumor from the normal renal medulla, in the direction of the ray medullary in the renal pyramids. The basal blood vessels were incised following the hemostasis of the region using bipolar coagulation. The minor renal calyces were stripped carefully and the wound was closed with an absorbable sutures. The arterial occlusion time, duration of surgery, intraoperative bleeding volume, post-operative drainage volume, pathological results and complications were recorded. The surgery was successful for all patients. The estimated average intraoperative bleeding volume was 55.7 ml, the average surgical duration was 95.5 min, the average arterial occlusion time was 21.2 min, the average post-operative drainage volume was 92.3 ml and the average post-operative length of hospital stay was 6.1 days. No hemorrhage or urinary leakage was observed in the patients following the surgery. LNSS for RCC based on the precise anatomy of the nephron was concluded to be effective and feasible. The surgery is useful for the complete removal of tumors and guarantees a negative margin, which may also decrease the incidence of hemorrhage and urinary leakage following surgery.

  1. The changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men.

    PubMed

    Huang, Rui; Zhu, Wei-Jie; Li, Jing; Gu, Yi-Qun

    2014-12-01

    To evaluate the changes of stage distribution of seminiferous epithelium cycle and its correlations with Leydig cell stereological parameters in aging men. Point counting method was used to analyze the stereological parameters of Leydig cells. The stage number of seminiferous epithelium cycle was calculated in the same testicular tissue samples which were used for Leydig cell stereological analysis. The aging group had shown more severe pathological changes as well as higher pathologic scores than the young group. Compared with the control group, the volume density (VV) and surface density (NA) of Leydig cells in the aging group were increased significantly. The stage number of seminiferous epithelium cycle in the aging group was decreased coincidently compared to the young group. Leydig cell Vv in the young group has a positive relationship with stages I, II, III, V and VI of seminiferous epithelium cycle, and Leydig cell NA and numerical density (NV) were positively related to stage IV. However, only the correlation between NV and stage II was found in the aging group. The stage number of seminiferous epithelium cycle was decreased in aging testes. Changes in the stage distribution in aging testes were related to the Leydig cell stereological parameters which presented as a sign of morphological changes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Effects of DCK knockdown on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells.

    PubMed

    Shang, Q-Y; Wu, C-S; Gao, H-R

    2017-09-01

    The present study explored the effect that deoxycytidine kinase (DCK) knockdown had on proliferation, apoptosis and tumorigenicity in vivo of cervical cancer HeLa cells. Human cervical cancer HeLa cells that had received no prior treatment were selected from the HeLa group. The HeLa-negative control (NC) group consisted of cells that had undergone an empty vector treatment, and finally the HeLa-short hairpin RNA (shRNA) group included cells that were treated by means of shRNA-DCK expression. DCK expressions were evaluated by quantitative real-time polymerase chain reaction in addition to western blotting assays. Cell proliferation was estimated using the Cell Counting Kit-8 (CCK-8) assay and cell cycle progression. Cell apoptosis was determined by flow cytometry. BALB/c nude mice (n=24) were selected to establish transplanted tumor models, with gross tumor volume measured every 3 days. The results in vitro were as follows: compared with the HeLa group, the HeLa-shRNA group exhibited downregulation of DCK expression and inhibition of cell proliferation at 48, 72 and 96 h. Additionally, more cells in the HeLa-shRNA group were arrested in G0/G1 stage and less in S and G2/M stages, as well as in promotion of cell apoptosis. In vivo results are as follows: when comparing the HeLa and HeLa-NC groups, the gross tumor volume of the transplanted tumor in nude mice in the HeLa-shRNA group was found to have decreased in 13, 16, 19 and 22 days. Based on these findings, our study suggests that DCK knockdown facilitates apoptosis while inhibiting proliferation and tumorigenicity in vivo of cervical cancer HeLa cells.

  3. Cost-effectiveness of cell saver in short-segment lumbar laminectomy and fusion (≤3 levels).

    PubMed

    Kelly, Patrick D; Parker, Scott L; Mendenhall, Stephen K; Bible, Jesse E; Sivasubramaniam, Priya; Shau, David N; McGirt, Matthew J; Devin, Clinton J

    2015-09-01

    Mixed retrospective-prospective cohort study. To characterize practice patterns for the use of Cell Saver at our institution, investigate its cost-effectiveness, and propose a new tool for patient selection. Blood loss is an exceedingly common complication of spine surgery, and Cell Saver intraoperative cell salvage has been used to decrease reliance on allogeneic blood transfusions for blood volume replacement. The cost-effectiveness of Cell Saver has not been established for lumbar spinal surgery, and no universal guidelines exist for clinicians to decide when to utilize this tool. Other authors have proposed cutoffs for anticipated blood loss volumes which indicate that Cell Saver should be used. Five hundred and eight patients undergoing lumbar laminectomy in 3 or fewer levels were reviewed from our prospective spinal outcomes registry. Cost information for Cell Saver and allogeneic transfusions was collected from our institution's billing and collections department. Logistic regression was used to identify patient characteristics associated with use of Cell Saver. An incremental cost effectiveness ratio was calculated based on transfusion and cost data. A clinical prediction score was derived using logistic regression. Use of Cell Saver correlated with increased age, higher body mass index, diabetes, greater American Society of Anesthesiologists classification, and greater number of previous spine surgeries. Outcomes for patients who did and did not have Cell Saver set up intraoperatively were equivocal. Cell Saver was not cost effective based on current usage patterns, but may become cost effective if used for patients with high expected blood loss. A simple clinical prediction rule is proposed which may aid in selection of patients to have Cell Saver present intraoperatively. Cell Saver is not a cost-effective intervention but may become cost effective if a threshold of expected intraoperative blood loss is used to select patients more judiciously. 3.

  4. Possibility of deuterium free water using as antitumoral means with reference to conditions of Martian expedition

    NASA Astrophysics Data System (ADS)

    Sinyak, Y.; Turusov, V.; Grigroriev, A.; Yaridze, D.; Gaidadimov, V.; Antoshina, E.; Gorkova, T.; Truhanova, L.

    The interplanetary space flights, Martian program as an example, will take place under conditions of increasing radiation level on crew. The search of methods for a decrease of oncologic risk produced by irradiation of astronauts, is one of the major factors of a successful implementation of a flight program. One of such methods is a usage by crew of potable water with the reduced concentrations of a heavy stable isotope of hydrogen - deuterium, which can be obtained in the regenerative life support systems. The heavy water (D2O) has toxic properties, distorting biochemical reactions in the cell, inhibiting process of DNA replication. It can be presumed that the replacement of deuterium in the water for protium will result in normalization of cell metabolism, reparation will take place and this will lead to the inhibition of tumour development. In this study the water with a decreased by 65% of deuterium was used. Antitumour properties of D 2-free water were studied with transplantable Lewis lung carcinoma in BDF1 strain of mice. First results show that average time of appearance of the first nodules at the site of transplantation was 14 % longer in mice fed D 2-free water as compared to control. The tumour volume in the experimental group (decreased content of D2 ) was always lower than in the control. Statistically significant differences in the tumour volume were registered at the 13, 15, 23, 26 and 28 -th days after transplantation. Inhibition of tumour growth was equal to 100% and 51% at the 5 th and 15-th days after- transplantation respectively. Increase of life span in the experimental group was 10%. The results indicate that the use by astronauts of water with decreased content of deuterium may decrease the risk of oncological diseases under conditions of high radiation level in the flight to Mars.

  5. Cavitation enhances coagulated size during pulsed high-intensity focussed ultrasound ablation in an isolated liver perfusion system.

    PubMed

    Zhao, Lu-Yan; Liu, Shan; Chen, Zong-Gui; Zou, Jian-Zhong; Wu, Feng

    2016-11-24

    To investigate whether cavitation enhances the degree of coagulation during pulsed high-intensity focussed ultrasound (HIFU) in an isolated liver perfusion system. Isolated liver was treated by pulsed HIFU or continuous-wave HIFU with different portal vein flow rates. The cavitation emission during exposure was recorded, and real-time ultrasound images were used to observe changes in the grey scale. The coagulation size was measured and calculated. HIFU treatment led to complete coagulation necrosis and total cell destruction in the target regions. Compared to exposure at a duty cycle (DC) of 100%, the mean volumes of lesions induced by 6 s exposure at DCs of 50% and 10% were significantly larger (P < .01) but were smaller at a DC of 5%. The necrosis volume was negatively related to the perfusion rate in the pulsed HIFU at a DC of 50% for exposure durations of 4 and 6 s, while the perfusion flow rate did not affect the necrosis volume for exposure durations of 1, 2 and 3 s. For increased perfusion flow rates, there was no significant decrease in the cavitation activity for the pulsed-HIFU (P > .05). For continuous-wave HIFU exposure, there was a significant decrease in the necrosis volume and cavitation activity for exposure times of 1, 2, 3, 4, and 6 s with increasing portal perfusion rates. Perfusion flow rates negatively influence cavitation activity and coagulation volume. Ablation is significantly enhanced during pulsed HIFU exposure compared with continuous-wave HIFU.

  6. Effects of fluid shear stress on polyelectrolyte multilayers by neutron scattering studies

    DOE PAGES

    Singh, Saurabh; Junghans, Ann; Watkins, Erik; ...

    2015-02-17

    The structure of layer-by-layer (LbL) deposited nanofilm coatings consists of alternating polyethylenimine (PEI) and polystyrenesulfonate (PSS) films deposited on a single crystal quartz substrate. LbL-deposited nanofilms were investigated by neutron reflectomery (NR) in contact with water in the static and fluid shear stress conditions. The fluid shear stress was applied through a laminar flow of the liquid parallel to the quartz/polymer interface in a custom-built solid–liquid interface cell. The scattering length density profiles obtained from NR results of these polyelectrolyte multilayers (PEM), measured under different shear conditions, showed proportional decrease of volume fraction of water hydrating the polymers. For themore » highest shear rate applied (ca. 6800 s –1) the water volume fraction decreased by approximately 7%. The decrease of the volume fraction of water was homogeneous through the thickness of the film. Since there were not any significant changes in the total polymer thickness, it resulted in negative osmotic pressures in the film. The PEM films were compared with the behavior of thin films of thermoresponsive poly(N-isopropylacrylamide) (pNIPAM) deposited via spin-coating. The PEM and pNIPAM differ in their interactions with water molecules, and they showed opposite behaviors under the fluid shear stress. In both cases the polymer hydration was reversible upon the restoration of static conditions. Furthermore, a theoretical explanation is given to explain this difference in the effect of shear on hydration of polymeric thin films.« less

  7. Vitamin E can improve behavioral tests impairment, cell loss, and dendrite changes in rats' medial prefrontal cortex induced by acceptable daily dose of aspartame.

    PubMed

    Rafati, Ali; Noorafshan, Ali; Jahangir, Mahboubeh; Hosseini, Leila; Karbalay-Doust, Saied

    2018-01-01

    Aspartame is an artificial sweetener used in about 6000 sugar-free products. Aspartame consumption could be associated with various neurological disorders. This study aimed to evaluate the effect of aspartame onmedial Prefrontal Cortex (mPFC) as well as neuroprotective effects of vitamin E. The rats were divided into seven groups, including distilled water, corn oil, vitamin E (100mg/kg/day), and low (acceptable daily dose) and high doses of aspartame (40 and 200mg/kg/day) respectively, with or without vitamin E consumption, for 8 weeks. Behavioral tests were recorded and the brain was prepared for stereological assessments. Novel objects test and eight-arm radial maze showed impairmentoflong- and short-termmemoriesin aspartame groups. Besides, mPFC volume, infralimbic volume, neurons number, glial cells number, dendrites length per neuron,and number of spines per dendrite length were decreased by 7-61% in the rats treated with aspartame. However, neurons' number, glial cells number, and rats' performance in eight-arm radial mazes were improved by concomitant consumption of vitamin E and aspartame. Yet, the mPFC volume and infralimbic cortex were protected only in the rats receiving the low dose of aspartame+vitamin E. On the other hand, dendrites length, spines number,and novel object recognition were not protected by treatment with vitamin E+aspartame. The acceptable daily dose or higher doses of aspartame could induce memory impairments and cortical cells loss in mPFC. However, vitamin E could ameliorate some of these changes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Supplementation of Diabetic Rats with Leucine, Zinc, and Chromium: Effects on Function and Histological Structure of Testes.

    PubMed

    Kolahian, Saeed; Sadri, Hassan; Larijani, Amir; Hamidian, Gholamreza; Davasaz, Afshin

    2015-12-01

    The objective was to study whether leucine, zinc, and chromium supplementations influence function and histological structure of testes in a rat model of type 2 diabetes. Seventy seven adult male rats were categorized into 11 groups of 7 animals each: (1) nondiabetic (negative control); (2) non-treated (positive control); (3) treated with insulin; (4) treated with glibenclamide; (5) treated with leucine; (6) treated with zinc; (7) treated with chromium; (8) treated with leucine + zinc; (9) treated with leucine + chromium; (10) treated with zinc + chromium; (11) treated with leucine + zinc + chromium. In the non-treated group, hyperglycemia severely damaged testes morphology as well as the spermatogenic process. Diabetes induction decreased testicular length, height, width, volume, total number of epididymal sperm, and number of live sperm. Seminiferous tubules of diabetic rats showed a decrease in diameter of tubules and height of epithelium. Diabetes induction decreased the number of cells (spermatogonia, spermatocyte, spermatid, and Sertoli) in cross sections of seminiferous tubules. Administration of nutritional supplements to the diabetic rats improved testes morphology and reversed, although not completely, impairment of spermatogenesis. Treatment with nutritional supplements increased testicular length, height, width, and volume. All treatments increased the number of live sperm and the total number of epididymal sperm. Furthermore, nutritional supplements increased diameter of tubules, height of epithelium, and the number of cells in seminiferous tubules. These alleviating effects were more pronounced in animals treated with the leucine-zinc-chromium combination. The present results demonstrate beneficial effects of zinc, leucine, and chromium supplements to improve testes morphology and to restore spermatogenesis in type 2 diabetic rats.

  9. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer.

    PubMed

    Wu, Zhaomeng; Zhu, Qingyi; Yin, Yingying; Kang, Dan; Cao, Runyi; Tian, Qian; Zhang, Yu; Lu, Shan; Liu, Ping

    2018-04-01

    Traditional Chinese medicine (TCM) has a combined therapeutic result in cancer treatment by integrating holistic and local therapeutical effects, by which TCM can enhance the curative effect and reduce the side effect. In this study, we analyzed the effect of CFF-1 (alcohol extract from an anticancer compound Chinese medicine) on prostate cancer (PCa) cell lines and studied in detail the mechanism of cell death induced by CFF-1 in vitro and in vivo. From our data, we found for the first time that CFF-1 obviously arrested cell cycle in G1 phase, decreased cell viability and then increased nuclear rupture in a dose-dependent manner and finally resulted in apoptosis in prostate cancer cells. In molecular level, our data showed that CFF-1 induced inhibition of EGFR auto-phosphorylation and inactivation of EGFR. Disruption of EGFR activity in turn suppressed downstream PI3K/AKT and Raf/Erk signal pathways, resulted in the decrease of p-FOXO1 (Ser256) and regulated the expression of apoptosis-related and cycle-related genes. Moreover, CFF-1 markedly induced cell autophagy through inhibiting PI3K/AKT/mTOR pathway and then up-regulating Beclin-1 and LC-3II and down-regulating phosphorylation of p70S6K. In vivo, CFF-1-treated group exhibited a significant decrease in tumor volume compared with the negative control group in subcutaneous xenograft tumor in nude mice via inhibiting EGFR-related signal pathways. Thus, bio-functions of Chinese medicine CFF-1 in inducing PCa cell growth inhibition, autophagy, and apoptosis suggested that CFF-1 had the clinical potential to treat patients with prostate cancer. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  10. ID4 promotes AR expression and blocks tumorigenicity of PC3 prostate cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komaragiri, Shravan Kumar; Bostanthirige, Dhanushka H.; Morton, Derrick J.

    Deregulation of tumor suppressor genes is associated with tumorigenesis and the development of cancer. In prostate cancer, ID4 is epigenetically silenced and acts as a tumor suppressor. In normal prostate epithelial cells, ID4 collaborates with androgen receptor (AR) and p53 to exert its tumor suppressor activity. Previous studies have shown that ID4 promotes tumor suppressive function of AR whereas loss of ID4 results in tumor promoter activity of AR. Previous study from our lab showed that ectopic ID4 expression in DU145 attenuates proliferation and promotes AR expression suggesting that ID4 dependent AR activity is tumor suppressive. In this study, wemore » examined the effect of ectopic expression of ID4 on highly malignant prostate cancer cell, PC3. Here we show that stable overexpression of ID4 in PC3 cells leads to increased apoptosis and decreased cell proliferation and migration. In addition, in vivo studies showed a decrease in tumor size and volume of ID4 overexpressing PC3 cells, in nude mice. At the molecular level, these changes were associated with increased androgen receptor (AR), p21, and AR dependent FKBP51 expression. At the mechanistic level, ID4 may regulate the expression or function of AR through specific but yet unknown AR co-regulators that may determine the final outcome of AR function. - Highlights: • ID4 expression induces AR expression in PC3 cells, which generally lack AR. • ID4 expression increased apoptosis and decreased cell proliferation and invasion. • Overexpression of ID4 reduces tumor growth of subcutaneous xenografts in vivo. • ID4 induces p21 and FKBP51 expression- co-factors of AR tumor suppressor activity.« less

  11. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hongzhong; Huang, Jing; Yang, Bing

    Although mangiferin which is a naturally occurring glucosylxanthone has exhibited promising anticancer activities, the detailed molecular mechanism of mangiferin on cancers still remains enigmatic. In this study, the anticancer activity of mangiferin was evaluated in breast cancer cell line-based in vitro and in vivo models. We showed that mangiferin treatment resulted in decreased cell viability and suppression of metastatic potential in breast cancer cells. Further mechanistic investigation revealed that mangiferin induced decreased matrix metalloproteinase (MMP)-7 and -9, and reversal of epithelial–mesenchymal transition (EMT). Moreover, it was demonstrated that mangiferin significantly inhibited the activation of β-catenin pathway. Subsequent experiments showed thatmore » inhibiting β-catenin pathway might play a central role in mangiferin-induced anticancer activity through modulation of MMP-7 and -9, and EMT. Consistent with these findings in vitro, the antitumor potential was also verified in mangiferin-treated MDA-MB-231 xenograft mice where significantly decreased tumor volume, weight and proliferation, and increased apoptosis were obtained, with lower expression of MMP-7 and -9, vimentin and active β-catenin, and higher expression of E-cadherin. Taken together, our study suggests that mangiferin might be used as an effective chemopreventive agent against breast cancer. - Highlights: • Mangiferin inhibits growth and metastatic potential in breast cancer cells. • Mangiferin down-regulates MMP-7 and -9 in breast cancer cells. • Mangiferin induces the reversal of EMT in metastatic breast cancer cells. • Mangiferin inhibits the activation of β-catenin pathway in breast cancer cells. • Inhibiting β-catenin is responsible for the antitumor activity of mangiferin.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Verena; Sengupta, D; Ketteler, Robin

    The formation of signal-promoting dimeric or oligomeric receptor complexes at the cell surface is modulated by self-interaction of their transmembrane (TM) domains. To address the importance of TM domain packing density for receptor functionality, we examined a set of asparagine mutants in the TM domain of the erythropoietin receptor (EpoR). We identified EpoR-T242N as a receptor variant that is present at the cell surface similar to wild-type EpoR but lacks visible localization in vesicle-like structures and is impaired in efficient activation of specific signaling cascades. Analysis by a molecular modeling approach indicated an increased interhelical distance for the EpoR-T242N TMmore » dimer. By employing the model, we designed additional mutants with increased or decreased packing volume and confirmed a correlation between packing volume and biological responsiveness. These results propose that the packing density of the TM domain provides a novel layer for fine-tuned regulation of signal transduction and cellular decisions.« less

  13. Functional and molecular characterization of multiple K-Cl cotransporter isoforms in corneal epithelial cells

    PubMed Central

    Capó-Aponte, José E.; Wang, Zheng; Bildin, Victor N.; Iserovich, Pavel; Pan, Zan; Zhang, Fan; Pokorny, Kathryn S.; Reinach, Peter S.

    2009-01-01

    The dependence of regulatory volume decrease (RVD) activity on potassium–chloride cotransporter (KCC) isoform expression was characterized in corneal epithelial cells (CEC). During exposure to a 50% hypotonic challenge, the RVD response was larger in SV40-immortalized human CEC (HCEC) than in SV40-immortalized rabbit CEC (RCEC). A KCC inhibitor—[(dihydroindenyl)oxy] alkanoic acid (DIOA)—blocked RVD more in HCEC than RCEC. Under isotonic conditions, N-ethylmaleimide (NEM) produced KCC activation and transient cell shrinkage. Both of these changes were greater in HCEC than in RCEC. Immunoblot analysis of HCEC, RCEC, primary human CEC (pHCEC), and primary bovine CEC (BCEC) plasma membrane enriched fractions revealed KCC1, KCC3, and KCC4 isoform expression, whereas KCC2 was undetectable. During a hypotonic challenge, KCC1 membrane content increased more rapidly in HCEC than in RCEC. Such a challenge induced a larger increase and more transient p44/42MAPK activation in HCEC than RCEC. On the other hand, HCEC and RCEC p38MAPK phosphorylation reached peak activations at 2.5 and 15 min, respectively. Only in HCEC, pharmacological manipulation of KCC activity modified the hypotonicity-induced activation of p44/42MAPK, whereas p38MAPK phosphorylation was insensitive to such procedures in both cell lines. Larger increases in HCEC KCC1 membrane protein content correlate with their ability to undergo faster and more complete RVD. Furthermore, pharmacological activation of KCC increased p44/42MAPK phosphorylation in HCEC but not in RCEC, presumably a reflection of low KCC membrane expression in RCEC. These findings suggest that KCC1 plays a role in (i) maintaining isotonic steady-state cell volume homeostasis, (ii) recovery of isotonic cell volume after a hypotonic challenge through RVD, and (iii) regulating hypotonicity-induced activation of the p44/42MAPK signaling pathway required for cell proliferation. PMID:17418819

  14. Increased size of solid organs in patients with Chuvash polycythemia and in mice with altered expression of HIF-1α and HIF-2α

    PubMed Central

    Yoon, Donghoon; Okhotin, David V.; Kim, Bumjun; Okhotina, Yulia; Okhotin, Daniel J.; Miasnikova, Galina Y.; Sergueeva, Adelina I.; Polyakova, Lydia A.; Maslow, Alexei; Lee, Yonggu; Semenza, Gregg L.; Prchal, Josef T.

    2010-01-01

    Chuvash polycythemia, the first hereditary disease associated with dysregulated oxygen-sensing to be recognized, is characterized by a homozygous germ-line loss-of-function mutation of the VHL gene (VHLR200W) resulting in elevated hypoxia inducible factor (HIF)-1α and HIF-2α levels, increased red cell mass and propensity to thrombosis. Organ volume is determined by the size and number of cells, and the underlying molecular control mechanisms are not fully elucidated. Work from several groups has demonstrated that the proliferation of cells is regulated in opposite directions by HIF-1α and HIF-2α. HIF-1α inhibits cell proliferation by displacing MYC from the promoter of the gene encoding the cyclin-dependent kinase inhibitor, p21Cip1, thereby inducing its expression. In contrast, HIF-2α promotes MYC activity and cell proliferation. Here we report that the volumes of liver, spleen, and kidneys relative to body mass were larger in 30 individuals with Chuvash polycythemia than in 30 matched Chuvash controls. In Hif1a+/− mice, which are heterozygous for a null (knockout) allele at the locus encoding HIF-1α, hepatic HIF-2α mRNA was increased (2-fold) and the mass of the liver was increased, compared with wild-type littermates, without significant difference in cell volume. Hepatic p21Cip1 mRNA levels were 9.5-fold lower in Hif1a+/− mice compared with wild-type littermates. These data suggest that, in addition to increased red cell mass, the sizes of liver, spleen, and kidneys are increased in Chuvash polycythemia. At least in the liver, this phenotype may result from increased HIF-2α and decreased p21Cip1 levels leading to increased hepatocyte proliferation. PMID:20140661

  15. On the mechanism of injury to slowly frozen erythrocytes.

    PubMed Central

    Pegg, D E; Diaper, M P

    1988-01-01

    When cells are frozen slowly in aqueous suspensions, the solutes in the suspending solution concentrate as the amount of ice increases; the cells undergo osmotic dehydration and are sequestered in ever-narrowing liquid-filled channels. Cryoprotective solutes, such as glycerol, reduce the amount of ice that forms at any specified subzero temperature, thereby controlling the buildup in concentration of those other solutes present, as well as increasing the volume of the channels that remain to accommodate the cells. It has generally been thought that freezing injury is mediated by the increase in electrolyte concentration in the milieu surrounding the cells, rather than reduction of temperature or any direct action of ice. In this study we have frozen human erythrocytes in isotonic solutions of sodium chloride and glycerol and have demonstrated a correlation between the extent of damage at specific subzero temperatures, and that caused by the action at 0 degrees C of solutions having the same composition as those produced by freezing. The cell lysis observed increased directly with glycerol concentration, both in the freezing experiments and when the cells were exposed to corresponding solutions at 0 degrees C, showing that the concentration of sodium chloride alone is not sufficient to account quantitatively for the damage observed. We then studied the effect of freezing in anisotonic solutions to break the fixed relationship between solute concentration and the volume of the unfrozen fraction, as described by Mazur, P., W. F. Rall, and N. Rigopoulos (1981. Biophys. J. 653-675). We confirmed their experimental findings, but we explain them differently. We ascribe the apparently dominant effect of the unfrozen fraction to the fact that the cells were frozen in, and returned to, anisotonic solutions in which their volume was either less than, or greater than, their physiological volume. When similar cell suspensions were subjected to a similar cycle of increase and then decrease in solution strength, but in the absence of ice (at 20 degrees C), a similar pattern of hemolysis was observed. We conclude that freezing injury to human erythrocytes is due solely to changes that occur in the composition of their surrounding milieu, and is most probably mediated by a temporary leak in the plasma membrane that occurs during the thawing (reexpansion) phase. PMID:3207835

  16. Imaging skeletal muscle volume, density, and FDG uptake before and after induction therapy for non-small cell lung cancer.

    PubMed

    Goncalves, M D; Taylor, S; Halpenny, D F; Schwitzer, E; Gandelman, S; Jackson, J; Lukose, A; Plodkowski, A J; Tan, K S; Dunphy, M; Jones, L W; Downey, R J

    2018-05-01

    To assess whether changes in body composition could be assessed serially using conventional thoracic computed tomography (CT) and positron-emission tomography (PET)/CT imaging in patients receiving induction chemotherapy for non-small cell lung cancer (NSCLC). CT-based skeletal muscle volume and density were measured retrospectively from thoracic and lumbar segment CT images from 88 patients with newly diagnosed and untreated NSCLC before and after induction chemotherapy. Skeletal muscle 2-[ 18 F]-fluoro-2-deoxy-d-glucose (FDG) uptake was measured from PET/CT images from a subset of patients (n=42). Comparisons of each metric before and after induction chemotherapy were conducted using the non-parametric Wilcoxon signed-rank test for paired data. The association between clinical factors and percentage change in muscle volume was examined using univariate linear regression models, with adjustment for baseline muscle volume. Following induction chemotherapy, thoracic (-3.3%, p=0.0005) and lumbar (-2.6%, p=0.0101) skeletal muscle volume were reduced (adiposity remained unchanged). The proportion of skeletal muscle with a density <0 HU increased (7.9%, p<0.0001), reflecting a decrease in skeletal muscle density and skeletal muscle FDG uptake increased (10.4-31%, p<0.05). No imaging biomarkers were correlated with overall survival. Changes in body composition can be measured from routine thoracic imaging. During chemotherapy skeletal muscle volume and metabolism are altered; however, there was no impact on survival in this retrospective series, and further validation in prospective, well-controlled studies are required. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    PubMed

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  18. Modeling sickle cell vasoocclusion in the rat leg: quantification of trapped sickle cells and correlation with 31P metabolic and 1H magnetic resonance imaging changes.

    PubMed Central

    Fabry, M E; Rajanayagam, V; Fine, E; Holland, S; Gore, J C; Nagel, R L; Kaul, D K

    1989-01-01

    We have developed an animal model to elucidate the acute effects of perfusion abnormalities on muscle metabolism induced by different density-defined classes of erythrocytes isolated from sickle cell anemia patients. Technetium-99m (99mTc)-labeled, saline-washed normal (AA), homozygous sickle (SS), or high-density SS (SS4) erythrocytes were injected into the femoral artery of the rat and quantitative 99mTc imaging, 31P magnetic resonance spectroscopy by surface coil at 2 teslas, and 1H magnetic resonance imaging at 0.15 tesla were performed. Between 5 and 25 microliters of SS4 cells was trapped in the microcirculation of the thigh (or 1-6 x 10(7) cells per cubic centimeter of tissue). In contrast, fewer SS discocytes (SS2) or AA cells were trapped (an equivalent packed cell volume of less than 6.7 microliters and 0.3 microliters, respectively). After injection of SS4 cells an initial increase in inorganic phosphate was observed in the region of the thigh served by the femoral artery, intracellular pH decreased, and subsequently the proton relaxation time T1 reached a broad maximum at 18-28 hr. When T1 obtained at this time was plotted against the volume of cells trapped, an increase of T1 over the control value of 411 +/- 48 msec was found that was proportional to the number of cells trapped. We conclude that the densest SS cells are most effective at producing vasoocclusion. The extent of the change detected by 1H magnetic resonance imaging is dependent on the amount of cells trapped in the microcirculation and the magnitude of the initial increase of inorganic phosphate. Images PMID:2726752

  19. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis

    PubMed Central

    Su, Nan; Sun, Qidi; Li, Can; Lu, Xiumin; Qi, Huabing; Chen, Siyu; Yang, Jing; Du, Xiaolan; Zhao, Ling; He, Qifen; Jin, Min; Shen, Yue; Chen, Di; Chen, Lin

    2010-01-01

    Achondroplasia (ACH) is a short-limbed dwarfism resulting from gain-of-function mutations in fibroblast growth factor receptor 3 (FGFR3). Previous studies have shown that ACH patients have impaired chondrogenesis, but the effects of FGFR3 on bone formation and bone remodeling at adult stages of ACH have not been fully investigated. Using micro-computed tomography and histomorphometric analyses, we found that 2-month-old Fgfr3G369C/+ mice (mouse model mimicking human ACH) showed decreased bone mass due to reduced trabecular bone volume and bone mineral density, defect in bone mineralization and increased osteoclast numbers and activity. Compared with primary cultures of bone marrow stromal cells (BMSCs) from wild-type mice, Fgfr3G369C/+ cultures showed decreased cell proliferation, increased osteogenic differentiation including up-regulation of alkaline phosphatase activity and expressions of osteoblast marker genes, and reduced bone matrix mineralization. Furthermore, our studies also suggest that decreased cell proliferation and enhanced osteogenic differentiation observed in Fgfr3G369C/+ BMSCs are caused by up-regulation of p38 phosphorylation and that enhanced Erk1/2 activity is responsible for the impaired bone matrix mineralization. In addition, in vitro osteoclast formation and bone resorption assays demonstrated that osteoclast numbers and bone resorption area were increased in cultured bone marrow cells derived from Fgfr3G369C/+ mice. These findings demonstrate that gain-of-function mutation in FGFR3 leads to decreased bone mass by regulating both osteoblast and osteoclast activities. Our studies provide new insight into the mechanism underlying the development of ACH. PMID:20053668

  20. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin

    PubMed Central

    Dutra, Eliane H.; O’ Brien, Mara H.; Lima, Alexandro; Kalajzic, Zana; Tadinada, Aditya; Nanda, Ravindra; Yadav, Sumit

    2016-01-01

    Objectives To evaluate the cellular and matrix effects of botulinum toxin type A (Botox) on mandibular condylar cartilage (MCC) and subchondral bone. Materials and Methods Botox (0.3 unit) was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry) at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP), EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF. Results Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected) when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side. Conclusion Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the MCC and subchondral bone. PMID:27723812

  1. [Effect of ginsenoside Rb1 on cerebral infarction volume and IL-1 beta in the brain tissue and sera of focal cerebral ischemia/reperfusion injury model rats].

    PubMed

    Liu, Jun-Wei; Ren, Ye-Long; Liu, Xu-Ling; Xia, Hong-Lian; Zhang, Hui-Ling; Jin, Shen-Hui; Dai, Qin-Xue; Wang, Jun-Lu

    2013-12-01

    To investigate the effect of ginsenoside Rb1 on cerebral infarction volume as well as IL-1 beta in the brain tissue and sera of focal cerebral ischemia/reperfusion (I/R) injury model rats. The I/R rat model was established by using thread according to Zea-Longa. SD rats were randomly divided into five groups, i.e., the sham-operation group, the model group, the low dose ginsenoside Rb1 (20 mg/kg) group, the medium dose ginsenoside Rb1 group (40 mg/kg), and the high dose ginsenoside Rb1 group (80 mg/kg), 12 in each group. Rats in the sham-operation group only received middle cerebral artery occlusion (MCAO) but without thread insertion. The MCAO model was prepared in the rest 4 groups, followed by MCAO2 h later. Ginsenoside Rb1 at each dose was peritoneally administrated to rats in corresponding groups immediately after cerebral ischemia. Equal volume of normal saline was administered to rats in the sham-operation group. Rats' cerebral infarction volume, integrals of neurologic defect degree, expression of IL-1 beta content in the brain tissue and sera were observed 24 h after 2-h cerebral I/R. In the model group, integrals of neurologic defect degree were improved (P < 0.01), IL-1 beta positive cells in the brain tissue increased and serum IL-1 beta content elevated (P < 0.05), when compared with the sham-operation group. In comparison of the model group, integrals of neurologic defect degree were lowered in the medium dose and high dose ginsenoside Rb1 groups (P < 0.05, P < 0.01). The cerebral infarction volume was all shrunken in each ginsenoside Rb1 group, IL-1 beta positive cells in the brain tissue decreased, and IL-1 beta content in serum reduced (P < 0.01, P < 0.05). Compared with the low dose ginsenoside Rb1 group, integrals of neurologic defect degree decreased, the cerebral infarction volume shrunken, and IL-1 beta content in serum reduced in the high dose ginsenoside Rb1 group (P < 0.01, P < 0.05). Ginsenoside Rb1 (20, 40, 80 mg/kg) might effectively release local cerebral ischemia by down-regulating the IL-1 beta expression.

  2. Cellular volume regulation and substrate stiffness modulate the detachment dynamics of adherent cells

    NASA Astrophysics Data System (ADS)

    Yang, Yuehua; Jiang, Hongyuan

    2018-03-01

    Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.

  3. Electrochemical-mechanical coupled modeling and parameterization of swelling and ionic transport in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Sauerteig, Daniel; Hanselmann, Nina; Arzberger, Arno; Reinshagen, Holger; Ivanov, Svetlozar; Bund, Andreas

    2018-02-01

    The intercalation and aging induced volume changes of lithium-ion battery electrodes lead to significant mechanical pressure or volume changes on cell and module level. As the correlation between electrochemical and mechanical performance of lithium ion batteries at nano and macro scale requires a comprehensive and multidisciplinary approach, physical modeling accounting for chemical and mechanical phenomena during operation is very useful for the battery design. Since the introduced fully-coupled physical model requires proper parameterization, this work also focuses on identifying appropriate mathematical representation of compressibility as well as the ionic transport in the porous electrodes and the separator. The ionic transport is characterized by electrochemical impedance spectroscopy (EIS) using symmetric pouch cells comprising LiNi1/3Mn1/3Co1/3O2 (NMC) cathode, graphite anode and polyethylene separator. The EIS measurements are carried out at various mechanical loads. The observed decrease of the ionic conductivity reveals a significant transport limitation at high pressures. The experimentally obtained data are applied as input to the electrochemical-mechanical model of a prismatic 10 Ah cell. Our computational approach accounts intercalation induced electrode expansion, stress generation caused by mechanical boundaries, compression of the electrodes and the separator, outer expansion of the cell and finally the influence of the ionic transport within the electrolyte.

  4. [The C-cell system of the thyroid in rats following a flight on the Kosmos 1667 biosatellite].

    PubMed

    Plakhuta-Plakutina, G I; Dmitrieva, N P; Amirkhanian, E A

    1988-01-01

    Histological, electron-microscopic and morphometric investigations of the thyroid gland of Wistar SPF male rats (aged 3 months) flown for 7 days on Cosmos-1667 showed that its parenchyma was functionally active and changed but little as compared to the controls. However, at an acute stage of adaptation to microgravity C-cells showed morphological signs of their functional decline: the number of low activity cells and cells whose cytoplasm contained secretory granules increased, the volume of nuclei decreased significantly (by 16.2% as compared to the control), and dystrophic changes seen ultrastructurally appeared. These observations together with the results obtained in prolonged animal flights suggest that in microgravity the synthesis and excretion of the hormone calcitonin diminish. In combination with other factors, the functional decline of C-cells inhibits bone neoformation and enhances bone resorption.

  5. Immune Consequences of Decreasing Tumor Vasculature with Antiangiogenic Tyrosine Kinase Inhibitors in Combination with Therapeutic Vaccines

    PubMed Central

    Farsaci, Benedetto; Donahue, Renee N.; Coplin, Michael A.; Grenga, Italia; Lepone, Lauren M.; Molinolo, Alfredo A.; Hodge, James W.

    2014-01-01

    This study investigated the effects on the tumor microenvironment of combining antiangiogenic tyrosine kinase inhibitors (TKI) with therapeutic vaccines, and in particular, how vascular changes affect tumor-infiltrating immune cells. We conducted studies using a TKI (sunitinib or sorafenib) in combination with recombinant vaccines in 2 murine tumor models: colon carcinoma (MC38-CEA) and breast cancer (4T1). Tumor vasculature was measured by immunohistochemistry using 3 endothelial cell markers: CD31 (mature), CD105 (immature/proliferating), and CD11b (monocytic). We assessed oxygenation, tight junctions, compactness, and pressure within tumors, along with the frequency and phenotype of tumor-infiltrating T lymphocytes (TIL), myeloid-derived suppressor cells (MDSC), and tumor-associated macrophages (TAM) following treatment with antiangiogenic TKIs alone, vaccine alone, or the combination of a TKI with vaccine. The combined regimen decreased tumor vasculature, compactness, tight junctions, and pressure, leading to vascular normalization and increased tumor oxygenation. This combination therapy also increased TILs, including tumor antigen-specific CD8 T cells, and elevated the expression of activation markers FAS-L, CXCL-9, CD31, and CD105 in MDSCs and TAMs, leading to reduced tumor volumes and an increase in the number of tumor-free animals. The improved antitumor activity induced by combining antiangiogenic TKIs with vaccine may be the result of activated lymphoid and myeloid cells in the tumor microenvironment, resulting from vascular normalization, decreased tumor-cell density, and the consequent improvement in vascular perfusion and oxygenation. Therapies that alter tumor architecture can thus have a dramatic impact on the effectiveness of cancer immunotherapy. PMID:25092771

  6. CG200745, an HDAC inhibitor, induces anti-tumour effects in cholangiocarcinoma cell lines via miRNAs targeting the Hippo pathway.

    PubMed

    Jung, Dawoon E; Park, Soo Been; Kim, Kahee; Kim, Chanyang; Song, Si Young

    2017-09-07

    Cholangiocarcinoma is a devastating malignancy with fatal complications that exhibits low response and resistance to chemotherapy. Here, we evaluated the anticancer effects of CG200745, a novel histone deacetylase inhibitor, either alone or in combination with standard chemotherapy drugs in cholangiocarcinoma cells. CG200745 dose-dependently reduced the viability of cholangiocarcinoma cells in vitro and decreased tumour volume and weight in a xenograft model. Administering CG200745 along with other chemotherapeutic agents including gemcitabine, 5-fluorouracil (5-FU), cisplatin, oxaliplatin, or gemcitabine plus cisplatin further decreased cholangiocarcinoma cell viability, with a combination index < 1 that indicated synergistic action. CG200745 also enhanced the sensitivity of gemcitabine-resistant cells to gemcitabine and 5-FU, thereby decreasing cell viability and inducing apoptosis. This was accompanied by downregulation of YAP, TEAD4, TGF-β2, SMAD3, NOTCH3, HES5, Axl, and Gas6 and upregulation of the miRNAs miR-22-3p, miR-22-5p, miR-194-5p, miR-194-3p, miR-194-5p, miR-210-3p, and miR-509-3p. The Ingenuity Pathway Analysis revealed that CG200745 mainly targets the Hippo signalling pathway by inducing miR-509-3p expression. Thus, CG200745 inhibits cholangiocarcinoma growth in vitro and in vivo, and acts synergistically when administered in combination with standard chemotherapeutic agents, enabling dose reduction. CG200745 is therefore expected to improve the outcome of cholangiocarcinoma patients who exhibit resistance to conventional therapies.

  7. The effects of increasing levels of dietary garlic bulb on growth performance, systolic blood pressure, hematology, and ascites syndrome in broiler chickens.

    PubMed

    Varmaghany, Saifali; Karimi Torshizi, Mohammad Amir; Rahimi, Shaban; Lotfollahian, Houshang; Hassanzadeh, Mohammad

    2015-08-01

    The effects of dietary garlic bulb were studied separately on hematological parameters, ascites incidence, and growth performance of an ascites susceptible broiler hybrid under both standard temperature conditions ( STC: ) and cold temperature conditions ( CTC: ). A total of 336 one-day-old male broiler chickens were allocated to 4 experimental groups with 4 replicates of 21 birds each under STC. In addition, the same grouping with another 336 birds was used for CTC. Under CTC, the birds were exposed to cold temperatures for induction of ascites. Experimental groups were defined by the inclusion of 0 (control), 5, 10 or 15 g/kg garlic bulbs in the diets under both STC and CTC. Growth performance, systolic blood pressure (as a measure of systemic arterial blood pressure), physiological and biochemical parameters, as well as ascites indices (right ventricle [ RV: ], total ventricle [ TV: ] weights, and RV/TV: ) were evaluated. Systolic blood pressure was determined using an indirect method with a sphygmomanometer, a pediatric cuff, and a Doppler device. The final body weight decreased quadratically (P = 0.003), with increasing garlic bulb levels in the diets under STC. The feed conversion ratio showed no significant differences among all groups under both STC and CTC. No significant differences were observed in total mortality and ascites-related mortality in all groups under STC, although total mortality (L: P = 0.01; Q: P = 0.001) and ascites-related mortality (L: P = 0.007; Q: P = 0.001) were significantly different among the diets under CTC. Under STC, the systolic blood pressure, packed cell volume, hemoglobin, RV, TV, and RV/TV did not vary significantly among the diets. However, red blood cell count and erythrocyte osmotic fragility decreased linearly (P < 0.005) with increasing garlic bulb levels in the diets under STC. Under CTC, the systolic blood pressure, packed cell volume, red blood cell count, and erythrocyte osmotic fragility decreased (P < 0.05) with increasing garlic levels. It is concluded that the inclusion of 5 g/kg garlic bulb in susceptible broiler chicken diets has a systemic anti-hypertensive effect and could decrease ascites incidence without impairing broiler chicken performance. © 2015 Poultry Science Association Inc.

  8. Foot-strike haemolysis after a 60-km ultramarathon.

    PubMed

    Lippi, Giuseppe; Schena, Federico; Salvagno, Gian Luca; Aloe, Rosalia; Banfi, Giuseppe; Guidi, Gian Cesare

    2012-07-01

    The various contributors to sport-related anaemia include increased plasma volume, exercise-induced oxidative stress, increased body temperature, acidosis, gastrointestinal bleeding, acute and chronic inflammation as well as compression and damage of red blood cells (RBC) in the capillaries within the contracting muscles. The effective contribution of foot-strike haemolysis is unclear. We studied 18 Caucasian male athletes (mean age, 42 years; range, 34-52 years) before and immediately after a 60-km ultramarathon. Laboratory investigations included the haematological profile along with haptoglobin, potassium, aspartate aminotransferase (AST), creatine kinase (CK), lactate dehydrogenase (LDH) and albumin concentrations and a haemolysis index (HI). No significant variations were found in post-exercise values of haemoglobin, RBC count and haematocrit. Mean corpuscular volume and haptoglobin were significantly decreased, whereas RBC distribution width was increased. The concentration of haptoglobin was reduced by approximately 50%, whereas enzyme concentrations were all remarkably increased. The HI remained below 0.5 g/L. After adjusting for plasma volume change, the increases were 1.7% for potassium (P=0.17), 30% for AST (P<0.01), 49% for LDH (P<0.01) and 2.39-fold for CK (P<0.01). A statistically significant association was found between haemoconcentration-adjusted variations of CK and those of AST (r=0.803; P<0.01) and LDH (r=0.551; P=0.02). This is the first study demonstrating that long-distance running does not induce clinically significant changes in haemoglobin, haematocrit, RBC count or potassium concentration. The significant post-exercise decrease of haptoglobin reflects a certain degree of haemolysis, but the concentration of cell-free haemoglobin remaining below 0.5 g/L and the non-significant variation in RBC count both indicate that the foot-strike haemolysis is very modest or even clinically negligible.

  9. Effect of rapid cooling and acidic pH on cellular homeostasis of Pectinatus frisingensis, a strictly anaerobic beer-spoilage bacterium.

    PubMed

    Chihib, N E; Tholozan, J L

    1999-06-01

    Pectinatus frisingensis is a strictly anaerobic mesophilic bacterium involved in bottled beer spoilage. Cellular volume, adenylate energy charge, intracellular pH and intracellular potassium concentration measurements were performed in late exponential-phase cell suspensions placed in different physiological conditions, to evaluate the capability of this bacterium to maintain cellular homeostasis. The intracellular pH was calculated from the intracellular accumulation of a [carboxyl-14C]benzoic acid. Optimum physiological conditions were the presence of a carbon source and pH of 6.2, hostile conditions were a pH 4.5, absence of a carbon source, and rapid cooling treatment. The cell was able to maintain a higher intracellular pH than the external pH under all conditions. Intracellular volume was lower at pH 4.5 than at pH 6.2. A low net potassium efflux rate was routinely measured in starving cells, while glucose addition promoted immediate net potassium uptake from the medium. Cooling treatment resulted in sudden net potassium efflux from the cell, a decrease of the intracellular pH, and low modifications of the adenylate energy charge in metabolizing-glucose cell suspensions. Thus, cold treatment perturbs the P. frisingensis homeostasis but the bacteria were able to restore their homeostasis in the presence of a carbon source, and under warm conditions.

  10. Nephroprotective Effect of the Leaves of Aloe barbadensis (Aloe Vera) against Toxicity Induced by Diclofenac Sodium in Albino Rabbits

    PubMed Central

    Iftikhar, A; Hasan, IJ; Sarfraz, M; Jafri, L; Ashraf, MA

    2015-01-01

    ABSTRACT Background: The present study was designed to evaluate the nephroprotective effect of the leaves of Aloe barbadensis against toxicity induced by diclofenac sodium in albino rabbits. Subjects and Method: Thirty-six healthy albino rabbits were randomly divided into six groups each with six animals. Group 1 served as the untreated control, group 2 was treated only with diclofenac sodium, group 3 with the nephroprotective drug silymarin and groups 4, 5, and 6 were treated with different doses of Aloe barbadensis, ie 200 mg/kg, 400 mg/kg and 600 mg/kg, respectively after being treated with diclofenac sodium. Blood samples were collected after every five days up to fifteen days. Haematological and histopathological parameters were determined by using diagnostic kits. Results: Results of haematological studies showed that use of the powder of Aloe barbadensis normalized the level of different factors eg, white blood cells (WBCs), red blood cells (RBCs), platelet count, packed cell volume (PCV), mean cell volume (MCV) and haemoglobin (Hb) values. Histopathological studies showed that Aloe barbadensis ameliorated pyknotic nuclei in the renal epithelial cells and reduced oxidative stress by increasing the level of catalase and decreasing malondialdehyde (MDA) level. Conclusion: These results have shown that Aloe barbadensis can normalize oxidative stress and can be used as an effective nephroprotective agent against drug-induced nephrotoxicity. PMID:27398602

  11. Calbindin-D28k immunoreactivity is a marker for a subdivision of the sexually dimorphic nucleus of the preoptic area of the rat: developmental profile and gonadal steroid modulation.

    PubMed

    Sickel, M J; McCarthy, M M

    2000-05-01

    Calbindin-D28k (calbindin) is a 28 kilodalton calcium binding protein which potentially plays a role in neuroprotection. We report here the normal development and gonadal steroid modulation of a sexually dimorphic group of calbindin immunoreactive cells within the sexually dimorphic nucleus of the preoptic area (SDN) which we call the calbindin-immunoreactive SDN or CALB-SDN. Beginning on PN2, a faintly immunoreactive CALB-SDN is present, however, the volume is not sexually dimorphic. On PN4, the staining of the CALB-SDN appears more robust but the volume is still not sexually dimorphic. By PN8 and extending through PN12 and PN26, the latest age analysed, the volume of the CALB-SDN is larger in males by two- to fourfold. Cresyl violet counterstain reveals a similar developmental profile of the SDN as well as clusters of darkly staining calbindin immunonegative cells which lie around the CALB-SDN. Castration of males on PN0 decreases the volume of the CALB-SDN by PN12 and administration on the day of birth and PN1 of either testosterone propionate or oestradiol benzoate, but not dihydrotestosterone propionate to females increases the volume of the CALB-SDN by PN12. By demonstrating the sexual dimorphism and gonadal steroid modulation of the CALB-SDN, we hereby establish that calbindin is a specific marker of a subdivision of the SDN and can be used as such in future studies.

  12. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.

    PubMed

    Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua

    2013-08-01

    We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. National Trends in Prostate Biopsy and Radical Prostatectomy Volumes Following the US Preventive Services Task Force Guidelines Against Prostate-Specific Antigen Screening.

    PubMed

    Halpern, Joshua A; Shoag, Jonathan E; Artis, Amanda S; Ballman, Karla V; Sedrakyan, Art; Hershman, Dawn L; Wright, Jason D; Shih, Ya Chen Tina; Hu, Jim C

    2017-02-01

    Studies demonstrate that use of prostate-specific antigen screening decreased significantly following the US Preventive Services Task Force (USPSTF) recommendation against prostate-specific antigen screening in 2012. To determine downstream effects on practice patterns in prostate cancer diagnosis and treatment following the 2012 USPSTF recommendation. Procedural volumes of certifying and recertifying urologists from 2009 through 2016 were evaluated for variation in prostate biopsy and radical prostatectomy (RP) volume. Trends were confirmed using the New York Statewide Planning and Research Cooperative System and Nationwide Inpatient Sample. The study included a representative sample of urologists across practice settings and nationally representative sample of all RP discharges. We obtained operative case logs from the American Board of Urology and identified urologists performing at least 1 prostate biopsy (n = 5173) or RP (n = 3748), respectively. The 2012 USPSTF recommendation against routine population-wide prostate-specific antigen screening. Change in median biopsy and RP volume per urologist and national procedural volume. Following the USPSTF recommendation, median biopsy volume per urologist decreased from 29 to 21 (interquartile range [IQR}, 12-34; P < .001). After adjusting for physician and practice characteristics, biopsy volume decreased by 28.7% following 2012 (parameter estimate, -0.25; SE, 0.03; P < .001). Similarly, following the USPSTF recommendation, median RP volume per urologist decreased from 7 (IQR, 3-15) to 6 (IQR, 2-12) (P < .001), and in adjusted analyses, RP volume decreased 16.2% (parameter estimate, -0.15; SE, 0.05; P = .003). Following the 2012 USPSTF recommendation, prostate biopsy and RP volumes decreased significantly. A panoramic vantage point is needed to evaluate the long-term consequences of the 2012 USPSTF recommendation.

  14. Hindlimb unloading in rat decreases preosteoblast proliferation assessed in vivo with BrdU incorporation.

    PubMed

    Barou, O; Palle, S; Vico, L; Alexandre, C; Lafage-Proust, M H

    1998-01-01

    Immobilization affects bone formation. However, the mechanisms regulating the decrease in osteoblast recruitment remain unclear. The aim of our study was to determine in vivo osteoblastic proliferation after short-term immobilization among the different bone compartments. Twelve Wistar 5-wk-old rats were assigned to two groups: six tail-suspended animals for 6 days and their six age-related controls. Osmotic minipumps, each containing 40 mg of bromodeoxyuridine (BrdU), were implanted intraperitoneally at day 4 until euthanasia. Histomorphometric measurements found a significantly lower bone volume in primary (ISP, -22%) and secondary spongiosa (IISP, -37%) in unloaded rats compared with their age-related controls. BrdU immunohistochemistry showed that the proliferation capacity of osteogenic precursors in ISP (-29%) and preosteoblasts in IISP (-80%) and in periosteum as well as bone marrow cells (-40%) was lowered by unloading. We demonstrated in vivo for the first time that 6-day tail suspension induced a significant decrease in proliferation of periosteal and trabecular preosteoblasts in ISP and IISP as well as in bone marrow cells.

  15. Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart

    PubMed Central

    Burton, Rebecca A.B.; Lee, Peter; Casero, Ramón; Garny, Alan; Siedlecka, Urszula; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente

    2014-01-01

    Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing. PMID:25362175

  16. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared tomore » matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.« less

  17. Kinetics of Water Loss from Cells at Subzero Temperatures and the Likelihood of Intracellular Freezing

    PubMed Central

    Mazur, Peter

    1963-01-01

    The survival of various cells subjected to low temperature exposure is higher when they are cooled slowly. This increase is consistent with the view that slow cooling decreases the probability of intracellular freezing by permitting water to leave the cell rapidly enough to keep the protoplasm at its freezing point. The present study derives a quantitative relation between the amount of water in a cell and temperature. The relation is a differential equation involving cooling rate, surface-volume ratio, membrane permeability to water, and the temperature coefficient of the permeability constant. Numerical solutions to this equation give calculated water contents which permit predictions as to the likelihood of intracellular ice formation. Both the calculated water contents and the predictions on internal freezing are consistent with the experimental observations of several investigators. PMID:14085017

  18. Albendazole inhibits HIF-1α-dependent glycolysis and VEGF expression in non-small cell lung cancer cells.

    PubMed

    Zhou, Fang; Du, Jin; Wang, Jianjun

    2017-04-01

    Albendazole (ABZ) has an anti-tumor ability and inhibits HIF-1α activity. HIF-1α is associated with glycolysis and vascular endothelial cell growth factor (VEGF) expression, which plays an important role in cancer progression. These clues indicate that ABZ exerts an anti-cancer effect by regulating glycolysis and VEGF expression. The aim of this study is to clarify the effects of ABZ on non-small cell lung cancer (NSCLC) cells and explore the underlying molecular mechanisms. The expression levels of HIF-1α and VEGF were detected using western blot analysis, and the effect of ABZ on glycolysis was evaluated by measuring the relative activities of hexokinase (HK), pyruvate kinase (PK), and lactate dehydrogenase (LDH) and detecting the production of lactate in A549 and H1299 cells. The results showed that ABZ decreased the expression levels of HIF-1α and VEGF and suppressed glycolysis in under hypoxia, but not normoxic condition. Inhibiting HIF-1α also suppressed glycolysis and VEGF expression. Additionally, ABZ inhibited the volume and weight, decreased the relative activities of HK, PK, and LDH, and reduced the levels of HIF-1α and VEGF of A549 xenografts in mouse models. In conclusion, ABZ inhibited growth of NSCLC cells by suppressing HIF-1α-dependent glycolysis and VEGF expression.

  19. Bioprocess integration for human mesenchymal stem cells: From up to downstream processing scale-up to cell proteome characterization.

    PubMed

    Cunha, Bárbara; Aguiar, Tiago; Carvalho, Sofia B; Silva, Marta M; Gomes, Ricardo A; Carrondo, Manuel J T; Gomes-Alves, Patrícia; Peixoto, Cristina; Serra, Margarida; Alves, Paula M

    2017-04-20

    To deliver the required cell numbers and doses to therapy, scaling-up production and purification processes (at least to the liter-scale) while maintaining cells' characteristics is compulsory. Therefore, the aim of this work was to prove scalability of an integrated streamlined bioprocess compatible with current good manufacturing practices (cGMP) comprised by cell expansion, harvesting and volume reduction unit operations using human mesenchymal stem cells (hMSC) isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC). BM-MSC and AT-MSC expansion and harvesting steps were scaled-up from spinner flasks to 2L scale stirred tank single-use bioreactor using synthetic microcarriers and xeno-free medium, ensuring high cellular volumetric productivities (50×10 6 cellL -1 day -1 ), expansion factors (14-16 fold) and cell recovery yields (80%). For the concentration step, flat sheet cassettes (FSC) and hollow fiber cartridges (HF) were compared showing a fairly linear scale-up, with a need to slightly decrease the permeate flux (30-50 LMH, respectively) to maximize cell recovery yield. Nonetheless, FSC allowed to recover 18% more cells after a volume reduction factor of 50. Overall, at the end of the entire bioprocess more than 65% of viable (>95%) hMSC could be recovered without compromising cell's critical quality attributes (CQA) of viability, identity and differentiation potential. Alongside the standard quality assays, a proteomics workflow based on mass spectrometry tools was established to characterize the impact of processing on hMSC's CQA; These analytical tools constitute a powerful tool to be used in process design and development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Regulatory CD8+CD122+ T-cells predominate in CNS after treatment of experimental stroke in male mice with IL-10-secreting B-cells

    PubMed Central

    Lapato, Andrew; Vandenbark, Arthur A.; Murphy, Stephanie J.; Saugstad, Julie A.; Offner, Halina

    2014-01-01

    Clinical stroke induces inflammatory processes leading to cerebral and splenic injury and profound peripheral immunosuppression. IL-10 expression is elevated during major CNS diseases and limits inflammation in the brain. Recent evidence demonstrated that transfer of IL-10+ B-cells reduced infarct volume in male C57BL/6J (wild-type, WT) recipient mice when given 24 h prior to or 4 h after middle cerebral artery occlusion (MCAO). The purpose of this study was to determine if passively transferred IL-10+ B-cells can exert therapeutic and immunoregulatory effects when injected 24 hours after MCAO induction in B-cell-sufficient male WT mice. The results demonstrated that IL-10+ B-cell treated mice had significantly reduced infarct volumes in the ipsilateral cortex and hemisphere and improved neurological deficits vs. Vehicle-treated control mice after 60 min occlusion and 96 h of reperfusion. The MCAO-protected B-cell recipient mice had less splenic atrophy and reduced numbers of activated, inflammatory T-cells, decreased infiltration of T-cells and a less inflammatory milieu in the ischemic hemispheres compared with Vehicle-treated control mice. These immunoregulatory changes occurred in concert with the predominant appearance of IL-10-secreting CD8+CD122+ Treg cells in both the spleen and the MCAO-affected brain hemisphere. This study for the first time demonstrates a major neuroprotective role for IL-10+ B-cells in treating MCAO in male WT mice at a time point well beyond the ~4 h tPA treatment window, leading to the generation of a dominant IL-10+CD8+CD122+ Treg population associated with spleen preservation and reduced CNS inflammation. PMID:25537181

  1. Ultrastructural remodelling of slow skeletal muscle fibres in creatine kinase deficient mice: a quantitative study.

    PubMed

    Novotová, Marta; Tarabová, Bohumila; Tylková, Lucia; Ventura-Clapier, Renée; Zahradník, Ivan

    2016-10-01

    Creatine kinase content, isoform distribution, and participation in energy transfer are muscle type specific. We analysed ultrastructural changes in slow muscle fibres of soleus due to invalidation of creatine kinase (CK) to reveal a difference in the remodelling strategy in comparison with fast muscle fibres of gastrocnemius published previously. We have employed the stereological method of vertical sections and electron microscopy of soleus muscles of wild type (WT) and CK-/- mice. The mitochondrial volume density was 1.4× higher but that of sarcoplasmic reticulum (SR) was almost 5× lower in slow CK-/- muscles fibres than in WT fibres. The volume density of terminal cisterns and of t-tubules was also lower in CK-/- than in WT fibres. The analysis of organelle environment revealed increased neighbourhood of mitochondria and A-bands that resulted from the decreased volume density of SR, from relocation of mitochondria along myofibrils, and from intrusion of mitochondria to myofibrils. These processes direct ATP supply closer to the contractile machinery. The decreased interaction between mitochondria and SR suggests reduced dependence of calcium uptake on oxidative ATP production. In conclusion, the architecture of skeletal muscle cells is under control of a cellular program that optimizes energy utilization specifically for a given muscle type.

  2. Regeneration of axotomized olfactory neurons in young and adult locusts quantified by fasciclin I immunofluorescence.

    PubMed

    Wasser, Hannah; Biller, Alexandra; Antonopoulos, Georgios; Meyer, Heiko; Bicker, Gerd; Stern, Michael

    2017-04-01

    The olfactory pathway of the locust Locusta migratoria is characterized by a multiglomerular innervation of the antennal lobe (AL) by olfactory receptor neurons (ORNs). After crushing the antenna and thereby severing ORN axons, changes in the AL were monitored. First, volume changes were measured at different times post-crush with scanning laser optical tomography in 5th instar nymphs. AL volume decreased significantly to a minimum volume at 4 days post-crush, followed by an increase. Second, anterograde labeling was used to visualize details in the AL and antennal nerve (AN) during de- and regeneration. Within 24 h post-crush (hpc) the ORN fragments distal to the lesion degenerated. After 48 hpc, regenerating fibers grew through the crush site. In the AL, labeled ORN projections disappeared completely and reappeared after a few days. A weak topographic match between ORN origin on the antenna and the position of innervated glomeruli that was present in untreated controls did not reappear after regeneration. Third, the cell surface marker fasciclin I that is expressed in ORNs was used for quantifying purposes. Immunofluorescence was measured in the AL during de- and regeneration in adults and 5th instar nymphs: after a rapid but transient, decrease, it reappeared. Both processes happen faster in 5th instar nymphs than in adults.

  3. Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca.

    PubMed

    Morabito, Rossana; Marino, Angela; Lauf, Peter K; Adragna, Norma C; La Spada, Giuseppa

    2013-01-01

    Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP), regulatory volume decrease (RVD) and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) nematocytes, collected from the Strait of Messina (Italy), was assessed. Isolated nematocytes, suspended in artificial sea water (ASW) with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. At normal pH (7.65), nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment. © 2014 S. Karger AG, Basel.

  4. Mathematical modeling of postmenopausal osteoporosis and its treatment by the anti-catabolic drug denosumab

    PubMed Central

    Scheiner, S; Pivonka, P; Smith, D W; Dunstan, C R; Hellmich, C

    2014-01-01

    Denosumab, a fully human monoclonal antibody, has been approved for the treatment of postmenopausal osteoporosis. The therapeutic effect of denosumab rests on its ability to inhibit osteoclast differentiation. Here, we present a computational approach on the basis of coupling a pharmacokinetics model of denosumab with a pharmacodynamics model for quantifying the effect of denosumab on bone remodeling. The pharmacodynamics model comprises an integrated systems biology-continuum micromechanics approach, including a bone cell population model, considering the governing biochemical factors of bone remodeling (including the action of denosumab), and a multiscale micromechanics-based bone mechanics model, for implementing the mechanobiology of bone remodeling in our model. Numerical studies of postmenopausal osteoporosis show that denosumab suppresses osteoclast differentiation, thus strongly curtailing bone resorption. Simulation results also suggest that denosumab may trigger a short-term bone volume gain, which is, however, followed by constant or decreasing bone volume. This evolution is accompanied by a dramatic decrease of the bone turnover rate by more than one order of magnitude. The latter proposes dominant occurrence of secondary mineralization (which is not anymore impeded through cellular activity), leading to higher mineral concentration per bone volume. This explains the overall higher bone mineral density observed in denosumab-related clinical studies. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24039120

  5. Differential effects of lower body negative pressure and upright tilt on splanchnic blood volume

    PubMed Central

    Taneja, Indu; Moran, Christopher; Medow, Marvin S.; Glover, June L.; Montgomery, Leslie D.; Stewart, Julian M.

    2015-01-01

    Upright posture and lower body negative pressure (LBNP) both induce reductions in central blood volume. However, regional circulatory responses to postural changes and LBNP may differ. Therefore, we studied regional blood flow and blood volume changes in 10 healthy subjects undergoing graded lower-body negative pressure (−10 to −50 mmHg) and 8 subjects undergoing incremental head-up tilt (HUT; 20°, 40°, and 70°) on separate days. We continuously measured blood pressure (BP), heart rate, and regional blood volumes and blood flows in the thoracic, splanchnic, pelvic, and leg segments by impedance plethysmography and calculated regional arterial resistances. Neither LBNP nor HUT altered systolic BP, whereas pulse pressure decreased significantly. Blood flow decreased in all segments, whereas peripheral resistances uniformly and significantly increased with both HUT and LBNP. Thoracic volume decreased while pelvic and leg volumes increased with HUT and LBNP. However, splanchnic volume changes were directionally opposite with stepwise decreases in splanchnic volume with LBNP and stepwise increases in splanchnic volume during HUT. Splanchnic emptying in LBNP models regional vascular changes during hemorrhage. Splanchnic filling may limit the ability of the splanchnic bed to respond to thoracic hypovolemia during upright posture. PMID:17085534

  6. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed Central

    Farinas, J; Verkman, A S

    1996-01-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:8968620

  7. Droplet-based magnetically activated cell separation: analysis of separation efficiency based on the variation of flow-induced circulation in a pendent drop.

    PubMed

    Kim, Youngho; Lee, Sang Ho; Kim, Byungkyu

    2009-12-01

    Under the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF. By measuring the separation efficiencies for different initial volumes and by analyzing the separation efficiency in terms of the velocity of the CNF, we found that the separation efficiencies (in the case of a low rate of buffer injection; 5 and 15 microl x min(-1)) are mainly affected by the velocity of the CNF. Moreover, we confirmed that the phenomenological features of a pendent drop cause a fluctuation of its separation efficiencies over a range of specific volumes (initial volumes ranging from 40 to 80 microl), because of the "sweeping-off" phenomenon, that is, positive cells gathered into the positive fraction are forced to move away from the magnetic side by flow-induced circulation due to buffer injection. In addition, from the variation of the duration time, that is, the interval between the beginning of injection of the buffer solution and the time at which a pendent drop detaches, it could also be confirmed that a shorter duration time leads to decrease of the number of positive cells in negative fraction regardless of the rate of buffer injection (5, 15, and 50 microl x min(-1)). Therefore, if a DMACS system is operated with a 15 microl x min(-1) buffer injection flow rate and an initial volume of 80 microl or more, we would have the best efficiency of separation in the negative fraction.

  8. Antitumor Activities of Rauwolfia vomitoria Extract and Potentiation of Carboplatin Effects Against Ovarian Cancer☆

    PubMed Central

    Yu, Jun; Ma, Yan; Drisko, Jeanne; Chen, Qi

    2013-01-01

    Background Tumor resistance to platinum-based drugs has been an obstacle to the treatment of ovarian cancer. Extract of the plant Rauwolfia vomitoria has long been used by cancer patients. However, there have not been systematic studies of its anticancer activity. Objective In an effort to enhance the effectiveness of platinum-based drugs, we investigated the anticancer effect of a Rauwolfia vomitoria extract (Rau), both alone and in combination with carboplatin (Cp). Methods In vitro cytotoxicity and colony formation were evaluated in several ovarian cancer cell lines. In vivo effects were evaluated in an intraperitoneal ovarian cancer mouse model. The combination of Rau and Cp was assessed using Chou-Talalay’s constant ratio design and median effect analysis based on the isobologram principle to determine the combination index values. Results Rau decreased cell growth in all 3 tested ovarian cancer cell lines dose dependently and completely inhibited formation of colonies in soft agar. Apoptosis was induced in a time- and dose-dependent manner and was the predominant form of Rau-induced cell death. Synergy of Rau with Cp was detected, with combination index values <1 and dose reduction index values for Cp ranging from 1.7- to 7-fold. Tumor growth in mice was significantly suppressed by 36% or 66% with Rau treatment alone at a low (20 mg/kg) or a high dose (50 mg/kg), respectively, an effect comparable to that of Cp alone. The volume of ascitic fluid and the number of nonblood cells in ascites were also significantly decreased. Combining Rau with Cp remarkably enhanced the effect of Cp and reduced tumor burden by 87% to 90% and ascites volume by 89% to 97%. Conclusions Rau has potent antitumor activity and in combination significantly enhances the effect of Cp against ovarian cancer. PMID:24465036

  9. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C

    2008-03-01

    This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs.

  10. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.

    Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less

  11. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells

    DOE PAGES

    Farooq, Muhammad U.; Novosad, Valentyn; Rozhkova, Elena A.; ...

    2018-02-13

    Colloidal gold nanoparticles (AuNPs) are of interest as non-toxic carriers for drug delivery owing to their advanced properties, such as extensive surface-to-volume ratio and possibilities for tailoring their charge, hydrophilicity and functionality through surface chemistries. To date, various biocompatible polymers have been used for surface decoration of AuNPs to enhance their stability, payloads capacity and cellular uptake. This study describes a facile one-step method to synthesize stable AuNPs loaded with combination of two anticancer therapeutics, -bleomycin and doxorubicin. Anticancer activities, cytotoxicity, uptake and intracellular localization of the AuNPs were demonstrated in HeLa cells. We show that the therapeutic efficacy ofmore » the nanohybrid drug was strongly enhanced by the active targeting by the nanoscale delivery system to HeLa cells with a significant decrease of the half-maximal effective drug concentration, through blockage of HeLa cancer cell cycle. These results provide rationale for further progress of AuNPs-assisted combination chemotherapy using two drugs at optimized effective concentrations which act via different mechanisms thus decreasing possibilities of development of the cancer drug resistance, reduction of systemic drug toxicity and improvement of outcomes of chemotherapy.« less

  12. Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis.

    PubMed

    Szenk, Mariola; Dill, Ken A; de Graff, Adam M R

    2017-08-23

    Bacteria and other cells show a puzzling behavior. At high growth rates, E. coli switch from respiration (which is ATP-efficient) to using fermentation for additional ATP (which is inefficient). This overflow metabolism results in a several-fold decrease in ATP produced per glucose molecule provided as food. By integrating diverse types of experimental data into a simple biophysical model, we give evidence that this onset is the result of the membrane real estate hypothesis: Fast growth drives cells to be bigger, reducing their surface-to-volume ratios. This decreases the membrane area available for respiratory proteins despite growing demand, causing increased crowding. Only when respiratory proteins reach their crowding limit does the cell activate fermentation, since fermentation allows faster ATP production per unit membrane area. Surface limitation thus creates a Pareto trade-off between membrane efficiency and ATP yield that links metabolic choice to the size and shape of a bacterial cell. By exploring the predictions that emerge from this trade-off, we show how consideration of molecular structures, energetics, rates, and equilibria can provide important insight into cellular behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Nanoparticle Delivered VEGF-A siRNA Enhances Photodynamic Therapy for Head and Neck Cancer Treatment

    PubMed Central

    Lecaros, Rumwald Leo G; Huang, Leaf; Lee, Tsai-Chia; Hsu, Yih-Chih

    2016-01-01

    Photodynamic therapy (PDT) is believed to promote hypoxic conditions to tumor cells leading to overexpression of angiogenic markers such as vascular endothelial growth factor (VEGF). In this study, PDT was combined with lipid–calcium–phosphate nanoparticles (LCP NPs) to deliver VEGF-A small interfering RNA (siVEGF-A) to human head and neck squamous cell carcinoma (HNSCC) xenograft models. VEGF-A were significantly decreased for groups treated with siVEGF-A in human oral squamous cancer cell (HOSCC), SCC4 and SAS models. Cleaved caspase-3 and in situ TdT-mediated dUTP nick-end labeling assay showed more apoptotic cells and reduced Ki-67 expression for treated groups compared to phosphate buffered saline (PBS) group. Indeed, the combined therapy showed significant tumor volume decrease to ~70 and ~120% in SCC4 and SAS models as compared with untreated PBS group, respectively. In vivo toxicity study suggests no toxicity of such LCP NP delivered siVEGF-A. In summary, results suggest that PDT combined with targeted VEGF-A gene therapy could be a potential therapeutic modality to achieve enhanced therapeutic outcome for HNSCC. PMID:26373346

  14. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels.

    PubMed

    Lew, Virgilio L; Tiffert, Teresa

    2017-01-01

    In a healthy adult, the transport of O 2 and CO 2 between lungs and tissues is performed by about 2 · 10 13 red blood cells, of which around 1.7 · 10 11 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55-0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of P sickle in sickle cells, and the Ca 2+ -sensitive, K + -selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity.

  15. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels

    PubMed Central

    Lew, Virgilio L.; Tiffert, Teresa

    2017-01-01

    In a healthy adult, the transport of O2 and CO2 between lungs and tissues is performed by about 2 · 1013 red blood cells, of which around 1.7 · 1011 are renewed every day, a turnover resulting from an average circulatory lifespan of about 120 days. Cellular lifespan is the result of an evolutionary balance between the energy costs of maintaining cells in a fit functional state versus cell renewal. In this Review we examine how the set of passive and active membrane transporters of the mature red blood cells interact to maximize their circulatory longevity thus minimizing costs on expensive cell turnover. Red blood cell deformability is critical for optimal rheology and gas exchange functionality during capillary flow, best fulfilled when the volume of each human red blood cell is kept at a fraction of about 0.55–0.60 of the maximal spherical volume allowed by its membrane area, the optimal-volume-ratio range. The extent to which red blood cell volumes can be preserved within or near these narrow optimal-volume-ratio margins determines the potential for circulatory longevity. We show that the low cation permeability of red blood cells allows volume stability to be achieved with extraordinary cost-efficiency, favouring cell longevity over cell turnover. We suggest a mechanism by which the interplay of a declining sodium pump and two passive membrane transporters, the mechanosensitive PIEZO1 channel, a candidate mediator of Psickle in sickle cells, and the Ca2+-sensitive, K+-selective Gardos channel, can implement red blood cell volume stability around the optimal-volume-ratio range, as required for extended circulatory longevity. PMID:29311949

  16. Cell therapy versus simultaneous contralateral decompression in symptomatic corticosteroid osteonecrosis: a thirty year follow-up prospective randomized study of one hundred and twenty five adult patients.

    PubMed

    Hernigou, Philippe; Dubory, Arnaud; Homma, Yasuhiro; Guissou, Isaac; Flouzat Lachaniette, Charles Henri; Chevallier, Nathalie; Rouard, Hélène

    2018-05-09

    Symptomatic osteonecrosis related to corticosteroids has a high risk of progression to collapse in absence of treatment. The purposes of this study were to evaluate the results of autologous bone marrow grafting of the symptomatic hip in adult patients with osteonecrosis and to compare the results with core decompression alone in the contralateral symptomatic hip. A total of 125 consecutive patients (78 males and 47 females) with bilateral osteonecrosis (ON) and who had both hips symptomatic and at the same stage on each side (stage I or II) were included in this study from 1988 to 1998. The volume of osteonecrosis was measured with MRI in both hips; the smaller size ON was treated with core decompression, and the contralateral hip with the larger ON was treated with percutaneous mesenchymal cell (MSC) injection obtained from bone marrow concentration. The average total number of MSCs (counted as number of colony forming units-fibroblast) injected in each hip was 90,000 ± 25,000 cells (range 45,000 to 180,000 cells). At the most recent FU (average 25 years after the first surgery, range 20 to 30 years), among the 250 hips included in the study, 35 hips (28%) had collapsed at the most recent follow-up after bone marrow grafting, and 90 (72%) after core decompression (CD). Ninety-five hips (76%) in the CD group underwent total hip replacement and 30 hips (24%) in the bone marrow graft group (p < 0.0001). Hips undergoing only CD were approximately three times more likely to undergo a primary THA (odds ratio: 10.0278; 95% CI: 5.6117 to 17.9190; p < 0.0001) as compared with hips undergoing an initial bone marrow grafting. For the 90 hips treated with bone marrow injection and without collapse, the mean volume of repair evaluated by MRI at the most recent follow-up was 16.4 cm 3 (range 12 to 21 cm 3 ) corresponding to a decrease of the pre-operative average volume from 22.4 cm 3 (range 35-15 cm 3 ) to 6 cm 3 (range 12-0 cm 3 ); as percentage of the volume of the femoral head, the decrease moved from 44.8 to 12%. Core decompression with bone marrow injection improved the outcome of the disease as compared with core decompression alone in the same patient.

  17. Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors.

    PubMed

    Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro

    2016-01-01

    It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34(+)Lin(-)) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34(+)Lin(-) cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34(+)Lin(-) cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34(+)Lin(-) cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels.

  18. Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors

    PubMed Central

    Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F.; Shieh, Jae-Hung; Moore, Malcolm A.; van den Brink, Marcel R. M.; Kusunoki, Yoichiro

    2016-01-01

    It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34+Lin− ) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34+Lin− cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34+Lin− cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34+Lin− cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels. PMID:26720799

  19. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.

    PubMed

    Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J

    2002-04-01

    We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.

  20. Notch3 as a novel therapeutic target in metastatic medullary thyroid cancer.

    PubMed

    Lou, Irene; Odorico, Scott; Yu, Xiao-Min; Harrison, April; Jaskula-Sztul, Renata; Chen, Herbert

    2018-01-01

    Medullary thyroid cancer portends poor survival once liver metastasis occurs. We hypothesize that Notch3 overexpression in medullary thyroid cancer liver metastasis will decrease proliferation and growth of the tumor. TT cells were modified genetically to overexpress Notch3 in the presence of doxycycline, creating the TT-Notch3 cell line. Mice were injected intrasplenically with either TT-Notch3 or control vector TT-TRE cells. Each cell line had 3 treatment groups: control with 12 weeks of standard chow, early DOX with doxycycline chow at day 0 and for 70 days thereafter, and late DOX with doxycycline chow at 8 weeks. Each animal underwent micro-computed tomography to evaluate for tumor formation and tumor quantification was performed. Animals were killed at 12 weeks, and the harvested liver was stained with Ki-67, hematoxylin and eosin, and Notch3. Induction of Notch3 did not prevent formation of medullary thyroid cancer liver metastases as all mice in the early DOX group developed tumors. However, induction of Notch after medullary thyroid cancer liver tumor formation decreased tumor size, as seen on micro-computed tomography scans (late DOX group). This translated to a 37-fold decrease in tumor volume (P = .001). Notch3 overexpression also resulted in decreased Ki-67 index (P = .038). Moreover, Notch3 induction led to increased areas of neutrophil infiltration and necrosis on hematoxylin and eosin staining of the tumors CONCLUSION: Notch3 overexpression demonstrates an antiproliferative effect on established metastatic medullary thyroid cancer liver tumors and is a potential therapeutic target in treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway.

    PubMed

    Bokhari, Amber A; Baker, Tabari M; Dorjbal, Batsukh; Waheed, Sana; Zahn, Christopher M; Hamilton, Chad A; Maxwell, G Larry; Syed, Viqar

    2016-10-25

    Nestin, an intermediate filament protein and a stem cell marker is expressed in several tumors. Until recently, little was known about the expression levels and the role of Nestin in endometrial cancer. Compared to the immortalized endometrial epithelial cell line EM-E6/E7-TERT, endometrial cancer cell lines express high to moderate levels of Nestin. Furthermore, endometrial tumors and tumor cell lines have a cancer stem-like cell subpopulation expressing CD133. Among the cancer lines, AN3CA and KLE cells exhibited both a significantly higher number of CD133+ cells and expressed Nestin at higher levels than Ishikawa cells. Knockdown of Nestin in AN3CA and KLE increased cells in G0/G1 phase of the cell cycle, whereas overexpression in Ishikawa decreased cells in G0/G1 phase and increased cells in S-phase. Nestin knockdown cells showed increased p21, p27, and PNCA levels and decreased expression of cyclin-D1 and D3. In contrast, Nestin overexpression revealed an inverse expression pattern of cell cycle regulatory proteins. Nestin knockdown inhibited cancer cell growth and invasive potential by downregulating TGF-β signaling components, MMP-2, MMP-9, vimentin, SNAIL, SLUG, Twist, N-cadherin, and upregulating the epithelial cell marker E-cadherin whereas the opposite was observed with Nestin overexpressing Ishikawa cells. Nestin knockdown also inhibited, while overexpression promoted invadopodia formation and pFAK expression. Knockdown of Nestin significantly reduced tumor volume in vivo. Finally, progesterone inhibited Nestin expression in endometrial cancer cells. These results suggest that Nestin can be a therapeutic target for cancer treatment.

  2. Nestin suppression attenuates invasive potential of endometrial cancer cells by downregulating TGF-β signaling pathway

    PubMed Central

    Bokhari, Amber A.; Baker, Tabari M.; Dorjbal, Batsukh; Waheed, Sana; Zahn, Christopher M.; Hamilton, Chad A.; Maxwell, G. Larry; Syed, Viqar

    2016-01-01

    Nestin, an intermediate filament protein and a stem cell marker is expressed in several tumors. Until recently, little was known about the expression levels and the role of Nestin in endometrial cancer. Compared to the immortalized endometrial epithelial cell line EM-E6/E7-TERT, endometrial cancer cell lines express high to moderate levels of Nestin. Furthermore, endometrial tumors and tumor cell lines have a cancer stem-like cell subpopulation expressing CD133. Among the cancer lines, AN3CA and KLE cells exhibited both a significantly higher number of CD133+ cells and expressed Nestin at higher levels than Ishikawa cells. Knockdown of Nestin in AN3CA and KLE increased cells in G0/G1 phase of the cell cycle, whereas overexpression in Ishikawa decreased cells in G0/G1 phase and increased cells in S-phase. Nestin knockdown cells showed increased p21, p27, and PNCA levels and decreased expression of cyclin-D1 and D3. In contrast, Nestin overexpression revealed an inverse expression pattern of cell cycle regulatory proteins. Nestin knockdown inhibited cancer cell growth and invasive potential by downregulating TGF-β signaling components, MMP-2, MMP-9, vimentin, SNAIL, SLUG, Twist, N-cadherin, and upregulating the epithelial cell marker E-cadherin whereas the opposite was observed with Nestin overexpressing Ishikawa cells. Nestin knockdown also inhibited, while overexpression promoted invadopodia formation and pFAK expression. Knockdown of Nestin significantly reduced tumor volume in vivo. Finally, progesterone inhibited Nestin expression in endometrial cancer cells. These results suggest that Nestin can be a therapeutic target for cancer treatment. PMID:27626172

  3. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  4. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  5. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  6. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  7. 21 CFR 864.6400 - Hematocrit measuring device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., racks, and a sealer and a holder. The device is used to measure the packed red cell volume in blood to determine whether the patient's total red cell volume is normal or abnormal. Abnormal states include anemia...). The packed red cell volume is produced by centrifuging a given volume of blood. (b) Classification...

  8. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour cells rather than by the differences in blood supply per viable tumour cell. Biochemical properties of particular importance included rate of respiration, glycolytic capacity and tolerance to hypoxic stress. On the other hand, tumour bioenergetic status and tumour pH were correlated to blood supply per viable tumour cell within individual tumour lines. These observations suggest that 31P-NMR spectroscopy may be developed to be a clinically useful method for monitoring tumour blood supply and parameters related to tumour blood supply during and after physiological intervention and tumour treatment. However, clinically useful parameters for prediction of tumour treatment resistance caused by insufficient blood supply can probably not be derived from a single 31P-NMR spectrum since correlations across tumour lines were not detected; additional information is needed. PMID:8260356

  9. A Novel Strategy to Inhibit Hedgehog Signaling and Control Growth of Androgen-Independent Prostate Cancer Cells

    DTIC Science & Technology

    2013-12-01

    M TIME PPC1 Volume of Spheroid Ctrl (respective media) .2% DMSO 10 uM Free Curcumin 20 uM Free Curcumin 10 uM Tagged Curcumin 20 uM Tagged... Curcumin FIGURE 6 Ctrl media 10uM FC 20uM FC 20uM TC 10uM TC 2% DMSO PC3 t0 Div 8 FIGURE 7 Phospho-p65 NFκB subunit expression decreased In

  10. Decreased contralateral breast volume after mastectomy, adjuvant chemotherapy, and anti-estrogen therapy, in particular in breasts with high density.

    PubMed

    Ishii, Naohiro; Ando, Jiro; Harao, Michiko; Takemae, Masaru; Kishi, Kazuo

    2017-10-01

    Adjuvant chemotherapy and anti-estrogenic therapy can result in decreased volume of the contralateral breast, following mastectomy for the treatment of breast cancer. However, no data on the effect of adjuvant therapy on contralateral breast volume have previously been reported. We aimed to evaluate the extent to which adjuvant therapy and differences in breast density contribute to decreased breast volume. We conducted a prospective cohort study, selecting 40 nonconsecutive patients who underwent immediate breast reconstruction with mastectomy and expander insertion followed by expander replacement. We measured the contralateral breast volume before each procedure. The extent of the change was analyzed with respect to adjuvant therapy and breast density measured by preoperative mammography. The greatest decrease in breast volume was 135.1 cm 3 . The decrease in breast volume was significantly larger in the adjuvant therapy (+) group, particularly in patients with high breast density, than in the adjuvant therapy (-) group. Significant differences between the chemotherapy (+), tamoxifen (+) group and the chemotherapy (-), tamoxifen (+) group were not found. Breast density scores had a range of 2.0-3.3 (mean: 2.8). In breast reconstruction, particularly when performed in one stage, preoperative mammography findings are valuable to plastic surgeons, and possible decreases in the contralateral breast volume due to adjuvant therapy, particularly in patients with high breast density, should be considered carefully. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. The radical scavenger edaravone improves neurologic function and perihematomal glucose metabolism after acute intracerebral hemorrhage.

    PubMed

    Shang, Hanbing; Cui, Derong; Yang, Dehua; Liang, Sheng; Zhang, Weifeng; Zhao, Weiguo

    2015-01-01

    Oxidative injury caused by reactive oxygen species plays an important role in the progression of intracerebral hemorrhage (ICH)-induced secondary brain injury. Previous studies have demonstrated that the free radical scavenger edaravone may prevent neuronal injury and brain edema after ICH. However, the influence of edaravone on cerebral metabolism in the early stages after ICH and the underlying mechanism have not been fully investigated. In the present study, we investigated the effect of edaravone on perihematomal glucose metabolism using (18)F-fluorordeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). Additionally, the neurologic deficits, brain edemas, and cell death that followed ICH were quantitatively analyzed. After blood infusion, the rats treated with edaravone showed significant improvement in both forelimb placing and corner turn tests compared with those treated with vehicle. Moreover, the brain water content of the edaravone-treated group was significantly decreased compared with that of the vehicle group on day 3 after ICH. PET/CT images of ICH rats exhibited obvious decreases in FDG standardized uptake values in perihematomal region on day 3, and the lesion-to-normal ratio of the edaravone-treated ICH rats was significantly increased compared with that of the control rats. Calculation of the brain injury volumes from the PET/CT images revealed that the volumes of the blood-induced injuries were significantly smaller in the edaravone group compared with the vehicle group. Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick End Labeling assays performed 3 days after ICH revealed that the numbers of apoptotic cells in perihematomal region of edaravone-treated ICH rats were decreased relative to the vehicle group. Thus, the present study demonstrates that edaravone has scavenging properties that attenuate neurologic behavioral deficits and brain edema in the early period of ICH. Additionally, edaravone may improve cerebral metabolism around the hematoma by attenuating apoptotic cell death after ICH. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Functional Properties of Five Dictyostelium discoideum P2X Receptors*

    PubMed Central

    Baines, Abigail; Parkinson, Katie; Sim, Joan A.; Bragg, Laricia; Thompson, Christopher R. L.; North, R. Alan

    2013-01-01

    The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors. PMID:23740252

  13. Functional properties of five Dictyostelium discoideum P2X receptors.

    PubMed

    Baines, Abigail; Parkinson, Katie; Sim, Joan A; Bragg, Laricia; Thompson, Christopher R L; North, R Alan

    2013-07-19

    The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.

  14. Activation of the PI3K-Akt pathway promotes neuroprotection of the δ-opioid receptor agonist against cerebral ischemia-reperfusion injury in rat models.

    PubMed

    Lv, Mei-Rong; Li, Bin; Wang, Ming-Guang; Meng, Fan-Guo; Yu, Jian-Jun; Guo, Feng; Li, Ye

    2017-09-01

    The central objective was to identify the role of the PI3K-Akt activation pathway on the neuroprotection of δ-opioid receptor agonist (DADLE) against cerebral ischemia-reperfusion (I/R) injury in a rat model. Fifty-five male Sprague-Dawley (SD) rats were included to establish a middle cerebral artery occlusion (MCAO) model which were then divided into the sham, MCAO, LY294002 (MCAO+DADLE+LY294002 [inhibitor of PI3K-Akt pathway]), DADLE (MCAO+DADLE) and DMSO (MCAO+DADLE+DMSO [dimethyl sulphoxide]) groups. The cerebral infarction (CI) volume and nerve cell apoptosis was determined using TTC and TUNEL staining. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting and immunohistochemistry staining were applied for the expressions of Bad, Bax, Bcl-2 and cleaved caspase-3. The MCAO group showed higher CI volume, nerve cell apoptosis and cleaved caspase-3 expressions than the DADLE and DMSO groups, which were also higher in the LY294002 group than the DADLE group. Compared with the MCAO group, the mRNA and protein expressions of PI3K and Bcl-2, and the protein expressions of p-Akt and p-Bad were elevated, while the mRNA and protein expressions of Bax were decreased in the DADLE and DMSO groups. Decreased mRNA and protein expressions of PI3K and Bcl-2, reduced protein expressions of p-Akt and p-Bad and elevated mRNA and protein expressions of Bax exhibited in the LY294002 group than the DADLE group. These results indicate that activation of PI3K-Akt pathway promotes the neuroprotection of DADLE against cerebral I/R injury in a rat model by decreasing nerve cells apoptosis. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice.

    PubMed

    García-Martínez, J M; Wullschleger, S; Preston, G; Guichard, S; Fleming, S; Alessi, D R; Duce, S L

    2011-03-29

    The PI3K-mTOR (phosphoinositide 3-kinase-mammalian target of rapamycin kinase) pathway is activated in the majority of tumours, and there is interest in assessing whether inhibitors of PI3K or mTOR kinase have efficacy in treating cancer. Here, we define the effectiveness of specific mTOR (AZD8055) and PI3K (GDC-0941) inhibitors, currently in clinical trials, in treating spontaneous B-cell follicular lymphoma that develops in PTEN(+/-)LKB1(+/hypo) mice. The PTEN(+/-)LKB1(+/hypo) mice were administered AZD8055 or GDC-0941, and the volumes of B-cell follicular lymphoma were measured by MRI. Tumour samples were analysed by immunohistochemistry, immunoblot and flow cytometry. The AZD8055 or GDC-0941 induced ∼40% reduction in tumour volume within 2 weeks, accompanied by ablation of phosphorylation of AKT, S6K and SGK (serum and glucocorticoid protein kinase) protein kinases. The drugs reduced tumour cell proliferation, promoted apoptosis and suppressed centroblast population. The AZD8055 or GDC-0941 treatment beyond 3 weeks caused a moderate additional decrease in tumour volume, reaching ∼50% of the initial volume after 6 weeks of treatment. Tumours grew back at an increased rate and displayed similar high grade and diffuse morphology as the control untreated tumours upon cessation of drug treatment. These results define the effects that newly designed and specific mTOR and PI3K inhibitors have on a spontaneous tumour model, which may be more representative than xenograft models frequently employed to assess effectiveness of kinase inhibitors. Our data suggest that mTOR and PI3K inhibitors would benefit treatment of cancers in which the PI3K pathway is inappropriately activated; however, when administered alone, may not cause complete regression of such tumours.

  16. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice

    PubMed Central

    García-Martínez, J M; Wullschleger, S; Preston, G; Guichard, S; Fleming, S; Alessi, D R; Duce, S L

    2011-01-01

    Background: The PI3K–mTOR (phosphoinositide 3-kinase–mammalian target of rapamycin kinase) pathway is activated in the majority of tumours, and there is interest in assessing whether inhibitors of PI3K or mTOR kinase have efficacy in treating cancer. Here, we define the effectiveness of specific mTOR (AZD8055) and PI3K (GDC-0941) inhibitors, currently in clinical trials, in treating spontaneous B-cell follicular lymphoma that develops in PTEN+/−LKB1+/hypo mice. Methods: The PTEN+/−LKB1+/hypo mice were administered AZD8055 or GDC-0941, and the volumes of B-cell follicular lymphoma were measured by MRI. Tumour samples were analysed by immunohistochemistry, immunoblot and flow cytometry. Results: The AZD8055 or GDC-0941 induced ∼40% reduction in tumour volume within 2 weeks, accompanied by ablation of phosphorylation of AKT, S6K and SGK (serum and glucocorticoid protein kinase) protein kinases. The drugs reduced tumour cell proliferation, promoted apoptosis and suppressed centroblast population. The AZD8055 or GDC-0941 treatment beyond 3 weeks caused a moderate additional decrease in tumour volume, reaching ∼50% of the initial volume after 6 weeks of treatment. Tumours grew back at an increased rate and displayed similar high grade and diffuse morphology as the control untreated tumours upon cessation of drug treatment. Conclusion: These results define the effects that newly designed and specific mTOR and PI3K inhibitors have on a spontaneous tumour model, which may be more representative than xenograft models frequently employed to assess effectiveness of kinase inhibitors. Our data suggest that mTOR and PI3K inhibitors would benefit treatment of cancers in which the PI3K pathway is inappropriately activated; however, when administered alone, may not cause complete regression of such tumours. PMID:21407213

  17. Therapeutic effect of budesonide/formoterol, montelukast and N-acetylcysteine for bronchiolitis obliterans syndrome after hematopoietic stem cell transplantation.

    PubMed

    Kim, Sei Won; Rhee, Chin Kook; Kim, Yoo Jin; Lee, Seok; Kim, Hee Je; Lee, Jong Wook

    2016-05-26

    Bronchiolitis obliterans syndrome (BOS) after allogeneic hematopoietic stem cell transplantation (HSCT) is currently treated with systemic corticosteroids despite poor efficacy and side effects. This study investigated the therapeutic effect of budesonide/formoterol, montelukast and n-acetylcysteine, which are suggested as treatment options for BOS after HSCT. After diagnosis of BOS, 61 patients were treated with budesonide/formoterol, montelukast and n-acetylcysteine for 3 months. Pulmonary function test and COPD assessment test (CAT) were performed before and after the combination therapy. Therapeutic response was evaluated by changes in forced expiratory volume in 1 s (FEV1) or CAT score. After 3 months of combination treatment, mean FEV1 increased by 220 mL (p < 0.001) and residual volume decreased by 200 mL (p =0 .005). Median CAT score also significantly decreased from 15.5 to 11.0 (p = 0.001). The overall response rate to combination therapy was 82 %. Comparing the no-response group and the response group, the forced vital capacity (% predicted) decline between pre-HSCT and BOS diagnosis was significantly greater in the response group (p = 0.036). Combination treatment with budesonide/formoterol, montelukast and n-acetylcysteine significantly improved lung function and respiratory symptoms in patients with BOS after allogeneic HSCT without serious side effects.

  18. Mechanism and developmental changes in iron transport across the blood-brain barrier.

    PubMed

    Morgan, Evan H; Moos, Torben

    2002-01-01

    Transferrin and iron uptake by the brain were measured using [(59)Fe-(125)I]transferrin injected intravenously in rats aged from 15 days to 22 weeks. The values for both decreased with age. In rats aged 18 and 70 days the uptake was measured at short time intervals after the injection. When expressed as the volume of distribution (Vd), which represents the volume of plasma from which the transferrin and iron were derived, the results for iron were greater than those of transferrin as early as 7 min after injection and the difference increased rapidly with time, especially in the younger animals. A very similar time course was found for uptake by bone marrow (femurs) where iron uptake involves receptor-mediated endocytosis of Fe-transferrin, release of iron in the cell and recycling of apo-transferrin to the blood. It is concluded that, during transport of transferrin-bound plasma iron into the brain, a similar process occurs in brain capillary endothelial cells (BCECs) and that transcytosis of transferrin into the brain interstitium is only a minor pathway. Also, the high rate of iron transport into the brain in young animals, when iron requirements are high due to rapid growth of the brain, is a consequence of the level of expression and rate of recycling of transferrin receptors on BCECs. As the animal and brain mature both decrease. Copyright 2002 S. Karger AG, Basel

  19. Therapeutic efficacy and molecular mechanisms of snake (Walterinnesia aegyptia) venom-loaded silica nanoparticles in the treatment of breast cancer- and prostate cancer-bearing experimental mouse models.

    PubMed

    Badr, Gamal; Al-Sadoon, Mohamed K; Rabah, Danny M

    2013-12-01

    The treatment of drug-resistant cancer is a clinical challenge, and thus screening for novel anticancer drugs is critically important. We recently demonstrated a strong enhancement of the antitumor activity of snake (Walterinnesia aegyptia) venom (WEV) in vitro in breast carcinoma, prostate cancer, and multiple myeloma cell lines but not in normal cells when the venom was combined with silica nanoparticles (WEV+NP). In the present study, we investigated the in vivo therapeutic efficacy of WEV+NP in breast cancer- and prostate cancer-bearing experimental mouse models. Xenograft breast and prostate tumor mice models were randomized into 4 groups for each cancer model (10 mice per group) and were treated with vehicle (control), NP, WEV, or WEV+NP daily for 28 days post tumor inoculation. The tumor volumes were monitored throughout the experiment. On Day 28 post tumor inoculation, breast and prostate tumor cells were collected and either directly cultured for flow cytometry analysis or lysed for Western blot and ELISA analysis. Treatment with WEV+NP or WEV alone significantly reduced both breast and prostate tumor volumes compared to treatment with NP or vehicle alone. Compared to treatment with WEV alone, treatment of breast and prostate cancer cells with WEV+NP induced marked elevations in the levels of reactive oxygen species (ROS), hydroperoxides, and nitric oxide; robust reductions in the levels of the chemokines CXCL9, CXCL10, CXCL12, CXCL13, and CXCL16 and decreased surface expression of their cognate chemokine receptors CXCR3, CXCR4, CXCR5, and CXCR6; and subsequent reductions in the chemokine-dependent migration of both breast and prostate cancer cells. Furthermore, we found that WEV+NP strongly inhibited insulin-like growth factor 1 (IGF-1)- and epidermal growth factor (EGF)-mediated proliferation of breast and prostate cancer cells, respectively, and enhanced the induction of apoptosis by increasing the activity of caspase-3,-8, and -9 in both breast and prostate cancer cells. In addition, treatment of breast and prostate cancer cells with WEV+NP or WEV alone revealed that the combination of WEV with NP robustly decreased the phosphorylation of AKT, ERK, and IκBα; decreased the expression of cyclin D1, surviving, and the antiapoptotic Bcl-2 family members Bcl-2, Bcl-XL, and Mcl-1; markedly increased the expression of cyclin B1 and the proapoptotic Bcl-2 family members Bak, Bax, and Bim; altered the mitochondrial membrane potential; and subsequently sensitized tumor cells to growth arrest. Our data reveal the therapeutic potential of the nanoparticle-sustained delivery of snake venom against different cancer cell types. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  20. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes

    PubMed Central

    Hashem, Nadia; Calloe, Kirstine; Klaerke, Dan A.

    2017-01-01

    Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells. PMID:28222129

Top