Zhu, Xiaohong; Pattathil, Sivakumar; Mazumder, Koushik; Brehm, Amanda; Hahn, Michael G; Dinesh-Kumar, S P; Joshi, Chandrashekhar P
2010-09-01
Virus-induced gene silencing (VIGS) is a powerful genetic tool for rapid assessment of plant gene functions in the post-genomic era. Here, we successfully implemented a Tobacco Rattle Virus (TRV)-based VIGS system to study functions of genes involved in either primary or secondary cell wall formation in Nicotiana benthamiana plants. A 3-week post-VIGS time frame is sufficient to observe phenotypic alterations in the anatomical structure of stems and chemical composition of the primary and secondary cell walls. We used cell wall glycan-directed monoclonal antibodies to demonstrate that alteration of cell wall polymer synthesis during the secondary growth phase of VIGS plants has profound effects on the extractability of components from woody stem cell walls. Therefore, TRV-based VIGS together with cell wall component profiling methods provide a high-throughput gene discovery platform for studying plant cell wall formation from a bioenergy perspective.
Bowman, Shaun M; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J
2006-03-01
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal "cell-within-a-cell" phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa.
Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells.
Okubo-Kurihara, Emiko; Matsui, Minami
2018-01-01
The plant cell wall is an important and abundant biomass with great potential for use as a modern recyclable resource. For effective utilization of this cellulosic biomass, its ability to degrade efficiently is key point. With the aim of modifying the cell wall to allow easy decomposition, we used chemical biological technology to alter its structure. As a first step toward evaluating the chemicals in the cell wall we employed a phenotype-based approach using high-throughput screening. As the plant cell wall is essential in determining cell morphology, phenotype-based screening is particularly effective in identifying compounds that bring about alterations in the cell wall. For rapid and reproducible screening, tobacco BY-2 cell is an excellent system in which to observe cell morphology. In this chapter, we provide a detailed chemical biological methodology for studying cell morphology using tobacco BY-2 cells.
Elevated Cell Wall Serine in Pleiotropic Staphylococcal Mutants
Korman, Ruth Z.
1966-01-01
Korman, Ruth Z. (Cornell University, Ithaca, N.Y.). Elevated cell wall serine in pleiotropic staphylococcal mutants. J. Bacteriol. 92:762–768. 1966.—Physically purified cell walls were prepared from two staphylococcal strains and from pleiotropic variants derived from them. The quantitative amino acid and amino sugar content of these walls is reported. The pleiotypes, which are identified culturally by their failure to elaborate coagulase, their resistance to bacteriophage, and their sensitivity to mannitol, have altered molar ratios of amino acids and amino sugars in their cell walls. In comparison with lysine content, the serine content of the mutant wall is elevated and the glycine content is reduced. The glucosamine content is reduced also. It is postulated that the pleiotropic mutants possess an altered cell wall biosynthetic pathway. Images PMID:5922547
Hypoxia enhances innate immune activation to Aspergillus fumigates through cell wall modulation
Shepardson, Kelly M.; Ngo, Lisa Y.; Aimanianda, Vishukumar; Latge, Jean-Paul; Barker, Bridget M.; Blosser, Sara J.; Iwakura, Yoichiro; Hohl, Tobias M.; Cramer, Robert A.
2013-01-01
Infection by the human fungal pathogen Aspergillus fumigatus induces hypoxic microenvironments within the lung that can alter the course of fungal pathogenesis. How hypoxic microenvironments shape the composition and immune activating potential of the fungal cell wall remains undefined. Herein we demonstrate that hypoxic conditions increase the hyphal cell wall thickness and alter its composition particularly by augmenting total and surface-exposed β-glucan content. In addition, hypoxia-induced cell wall alterations increase macrophage and neutrophil responsiveness and antifungal activity as judged by inflammatory cytokine production and ability to induce hyphal damage. We observe that these effects are largely dependent on the mammalian β-glucan receptor dectin-1. In a corticosteroid model of invasive pulmonary aspergillosis, A. fumigatus β-glucan exposure correlates with the presence of hypoxia in situ. Our data suggest that hypoxia-induced fungal cell wall changes influence the activation of innate effector cells at sites of hyphal tissue invasion, which has potential implications for therapeutic outcomes of invasive pulmonary aspergillosis. PMID:23220005
Pidgeon, Sean E; Pires, Marcos M
2017-07-21
Drug-resistant bacterial infections threaten to overburden our healthcare system and disrupt modern medicine. A large class of potent antibiotics, including vancomycin, operate by interfering with bacterial cell wall biosynthesis. Vancomycin-resistant enterococci (VRE) evade the blockage of cell wall biosynthesis by altering cell wall precursors, rendering them drug insensitive. Herein, we reveal the phenotypic plasticity and cell wall remodeling of VRE in response to vancomycin in live bacterial cells via a metabolic probe. A synthetic cell wall analog was designed and constructed to monitor cell wall structural alterations. Our results demonstrate that the biosynthetic pathway for vancomycin-resistant precursors can be hijacked by synthetic analogs to track the kinetics of phenotype induction. In addition, we leveraged this probe to interrogate the response of VRE cells to vancomycin analogs and a series of cell wall-targeted antibiotics. Finally, we describe a proof-of-principle strategy to visually inspect drug resistance induction. Based on our findings, we anticipate that our metabolic probe will play an important role in further elucidating the interplay among the enzymes involved in the VRE biosynthetic rewiring.
Roycewicz, Peter S; Malamy, Jocelyn E
2014-05-01
Plants adapt to their unique soil environments by altering the number and placement of lateral roots post-embryonic. Mutants were identified in Arabidopsis thaliana that exhibit increased lateral root formation. Eight mutants were characterized in detail and were found to have increased lateral root formation due to at least three distinct mechanisms. The causal mutation in one of these mutants was found in the XEG113 gene, recently shown to be involved in plant cell wall biosynthesis. Lateral root primordia initiation is unaltered in this mutant. In contrast, synchronization of lateral root initiation demonstrated that mutation of XEG113 increases the rate at which lateral root primordia develop and emerge to form lateral roots. The effect of the XEG113 mutation was specific to the root system and had no apparent effect on shoot growth. Screening of 17 additional cell wall mutants, altering a myriad of cell wall components, revealed that many (but not all) types of cell wall defects promote lateral root formation. These results suggest that proper cell wall biosynthesis is necessary to constrain lateral root primordia emergence. While previous reports have shown that lateral root emergence is accompanied by active remodelling of cell walls overlying the primordia, this study is the first to demonstrate that alteration of the cell wall is sufficient to promote lateral root formation. Therefore, inherent cell wall properties may play a previously unappreciated role in regulation of root system architecture.
Bowman, Shaun M.; Piwowar, Amy; Al Dabbous, Mash'el; Vierula, John; Free, Stephen J.
2006-01-01
Using mutational and proteomic approaches, we have demonstrated the importance of the glycosylphosphatidylinositol (GPI) anchor pathway for cell wall synthesis and integrity and for the overall morphology of the filamentous fungus Neurospora crassa. Mutants affected in the gpig-1, gpip-1, gpip-2, gpip-3, and gpit-1 genes, which encode components of the N. crassa GPI anchor biosynthetic pathway, have been characterized. GPI anchor mutants exhibit colonial morphologies, significantly reduced rates of growth, altered hyphal growth patterns, considerable cellular lysis, and an abnormal “cell-within-a-cell” phenotype. The mutants are deficient in the production of GPI-anchored proteins, verifying the requirement of each altered gene for the process of GPI-anchoring. The mutant cell walls are abnormally weak, contain reduced amounts of protein, and have an altered carbohydrate composition. The mutant cell walls lack a number of GPI-anchored proteins, putatively involved in cell wall biogenesis and remodeling. From these studies, we conclude that the GPI anchor pathway is critical for proper cell wall structure and function in N. crassa. PMID:16524913
The Modification of Cell Wall Properties by Expression of Recombinant Resilin in Transgenic Plants.
Preis, Itan; Abramson, Miron; Shoseyov, Oded
2018-04-01
Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.
Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis
Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas
2016-01-01
The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377
Shedletzky, Esther; Shmuel, Miri; Trainin, Tali; Kalman, Sara; Delmer, Deborah
1992-01-01
Our previous work (E. Shedletzky, M. Shmuel, D.P. Delmer, D.T.A. Lamport [1990] Plant Physiol 94:980-987) showed that suspension-cultured tomato cells adapted to growth on the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a markedly altered cell wall composition, most notably a markedly reduced level of the cellulose-xyloglucan network. This study compares the adaptation to DCB of two cell lines from dicots (tomato [Lycopersicon esculentum] and tobacco [Nicotiana tabacum]) and a Graminaceous monocot (barley [Hordeum bulbosum] endosperm). The difference in wall structures between the dicots and the monocot is reflected in the very different types of wall modifications induced by growth on DCB. The dicots, having reduced levels of cellulose and xyloglucan, possess walls the major integrity of which is provided by Ca2+-bridged pectates because protoplasts can be prepared from these cells simply by treatment with divalent cation chelator and a purified endopolygalacturonase. The tensile strength of these walls is considerably less than walls from nonadapted cells, but wall porosity is not altered. In contrast, walls from adapted barley cells contain very little pectic material and normal to elevated levels of noncellulosic polysaccharides compared with walls from nonadapted cells. Surprisingly, they have tensile strengths higher than their nonadapted counterpart, although cellulose levels are reduced by 70%. Evidence is presented that these walls obtain their additional strength by an altered pattern of cross-linking of polymers involving phenolic components. Such cross-linking may also explain the observation that the porosity of these walls is also considerably reduced. Cells of adapted lines of both the dicots and barley are resistant to plasmolysis, suggesting that they possess very strong connections between the wall and the plasma membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16652933
Bartley, Laura E.; Peck, Matthew L.; Kim, Sung-Ryul; Ebert, Berit; Manisseri, Chithra; Chiniquy, Dawn M.; Sykes, Robert; Gao, Lingfang; Rautengarten, Carsten; Vega-Sánchez, Miguel E.; Benke, Peter I.; Canlas, Patrick E.; Cao, Peijian; Brewer, Susan; Lin, Fan; Smith, Whitney L.; Zhang, Xiaohan; Keasling, Jay D.; Jentoff, Rolf E.; Foster, Steven B.; Zhou, Jizhong; Ziebell, Angela; An, Gynheung; Scheller, Henrik V.; Ronald, Pamela C.
2013-01-01
Grass cell wall properties influence food, feed, and biofuel feedstock usage efficiency. The glucuronoarabinoxylan of grass cell walls is esterified with the phenylpropanoid-derived hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA). Feruloyl esters undergo oxidative coupling with neighboring phenylpropanoids on glucuronoarabinoxylan and lignin. Examination of rice (Oryza sativa) mutants in a grass-expanded and -diverged clade of BAHD acyl-coenzyme A-utilizing transferases identified four mutants with altered cell wall FA or p-CA contents. Here, we report on the effects of overexpressing one of these genes, OsAt10 (LOC_Os06g39390), in rice. An activation-tagged line, OsAT10-D1, shows a 60% reduction in matrix polysaccharide-bound FA and an approximately 300% increase in p-CA in young leaf tissue but no discernible phenotypic alterations in vegetative development, lignin content, or lignin composition. Two additional independent OsAt10 overexpression lines show similar changes in FA and p-CA content. Cell wall fractionation and liquid chromatography-mass spectrometry experiments isolate the cell wall alterations in the mutant to ester conjugates of a five-carbon sugar with p-CA and FA. These results suggest that OsAT10 is a p-coumaroyl coenzyme A transferase involved in glucuronoarabinoxylan modification. Biomass from OsAT10-D1 exhibits a 20% to 40% increase in saccharification yield depending on the assay. Thus, OsAt10 is an attractive target for improving grass cell wall quality for fuel and animal feed. PMID:23391577
Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen
2016-01-01
Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. PMID:26527657
Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; ...
2015-11-02
Here, xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis ( Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolatedmore » xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis.« less
Xiao, Chaowen; Zhang, Tian; Zheng, Yunzhen; Cosgrove, Daniel J; Anderson, Charles T
2016-01-01
Xyloglucan constitutes most of the hemicellulose in eudicot primary cell walls and functions in cell wall structure and mechanics. Although Arabidopsis (Arabidopsis thaliana) xxt1 xxt2 mutants lacking detectable xyloglucan are viable, they display growth defects that are suggestive of alterations in wall integrity. To probe the mechanisms underlying these defects, we analyzed cellulose arrangement, microtubule patterning and dynamics, microtubule- and wall-integrity-related gene expression, and cellulose biosynthesis in xxt1 xxt2 plants. We found that cellulose is highly aligned in xxt1 xxt2 cell walls, that its three-dimensional distribution is altered, and that microtubule patterning and stability are aberrant in etiolated xxt1 xxt2 hypocotyls. We also found that the expression levels of microtubule-associated genes, such as MAP70-5 and CLASP, and receptor genes, such as HERK1 and WAK1, were changed in xxt1 xxt2 plants and that cellulose synthase motility is reduced in xxt1 xxt2 cells, corresponding with a reduction in cellulose content. Our results indicate that loss of xyloglucan affects both the stability of the microtubule cytoskeleton and the production and patterning of cellulose in primary cell walls. These findings establish, to our knowledge, new links between wall integrity, cytoskeletal dynamics, and wall synthesis in the regulation of plant morphogenesis. © 2016 American Society of Plant Biologists. All Rights Reserved.
Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition.
Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena
2017-01-01
Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO 3 - ) and ammonium (NH 4 + ). However, the composition of the N source is important, because excess of NH 4 + promotes morphological disorders. Plants cultured on NH 4 + as the sole N source exhibit serious growth inhibition, commonly referred to as "ammonium toxicity syndrome." NH 4 + -mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH 4 + nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH 4 + as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH 4 + toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH 4 + -mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia , a receptor-like kinase involved in the control of cell wall extension.
Altered Cell Wall Plasticity Can Restrict Plant Growth under Ammonium Nutrition
Podgórska, Anna; Burian, Maria; Gieczewska, Katarzyna; Ostaszewska-Bugajska, Monika; Zebrowski, Jacek; Solecka, Danuta; Szal, Bożena
2017-01-01
Plants mainly utilize inorganic forms of nitrogen (N), such as nitrate (NO3–) and ammonium (NH4+). However, the composition of the N source is important, because excess of NH4+ promotes morphological disorders. Plants cultured on NH4+ as the sole N source exhibit serious growth inhibition, commonly referred to as “ammonium toxicity syndrome.” NH4+-mediated suppression of growth may be attributable to both repression of cell elongation and reduction of cell division. The precondition for cell enlargement is the expansion of the cell wall, which requires the loosening of the cell wall polymers. Therefore, to understand how NH4+ nutrition may trigger growth retardation in plants, properties of their cell walls were analyzed. We found that Arabidopsis thaliana using NH4+ as the sole N source has smaller cells with relatively thicker cell walls. Moreover, cellulose, which is the main load-bearing polysaccharide revealed a denser assembly of microfibrils. Consequently, the leaf blade tissue showed elevated tensile strength and indicated higher cell wall stiffness. These changes might be related to changes in polysaccharide and ion content of cell walls. Further, NH4+ toxicity was associated with altered activities of cell wall modifying proteins. The lower activity and/or expression of pectin hydrolyzing enzymes and expansins might limit cell wall expansion. Additionally, the higher activity of cell wall peroxidases can lead to higher cross-linking of cell wall polymers. Overall, the NH4+-mediated inhibition of growth is related to a more rigid cell wall structure, which limits expansion of cells. The changes in cell wall composition were also indicated by decreased expression of Feronia, a receptor-like kinase involved in the control of cell wall extension. PMID:28848567
Cell Wall Modifications in Arabidopsis Plants with Altered α-l-Arabinofuranosidase Activity[C][W
Chávez Montes, Ricardo A.; Ranocha, Philippe; Martinez, Yves; Minic, Zoran; Jouanin, Lise; Marquis, Mélanie; Saulnier, Luc; Fulton, Lynette M.; Cobbett, Christopher S.; Bitton, Frédérique; Renou, Jean-Pierre; Jauneau, Alain; Goffner, Deborah
2008-01-01
Although cell wall remodeling is an essential feature of plant growth and development, the underlying molecular mechanisms are poorly understood. This work describes the characterization of Arabidopsis (Arabidopsis thaliana) plants with altered expression of ARAF1, a bifunctional α-l-arabinofuranosidase/β-d-xylosidase (At3g10740) belonging to family 51 glycosyl-hydrolases. ARAF1 was localized in several cell types in the vascular system of roots and stems, including xylem vessels and parenchyma cells surrounding the vessels, the cambium, and the phloem. araf1 T-DNA insertional mutants showed no visible phenotype, whereas transgenic plants that overexpressed ARAF1 exhibited a delay in inflorescence emergence and altered stem architecture. Although global monosaccharide analysis indicated only slight differences in cell wall composition in both mutant and overexpressing lines, immunolocalization experiments using anti-arabinan (LM6) and anti-xylan (LM10) antibodies indicated cell type-specific alterations in cell wall structure. In araf1 mutants, an increase in LM6 signal intensity was observed in the phloem, cambium, and xylem parenchyma in stems and roots, largely coinciding with ARAF1 expression sites. The ectopic overexpression of ARAF1 resulted in an increase in LM10 labeling in the secondary walls of interfascicular fibers and xylem vessels. The combined ARAF1 gene expression and immunolocalization studies suggest that arabinan-containing pectins are potential in vivo substrates of ARAF1 in Arabidopsis. PMID:18344421
USDA-ARS?s Scientific Manuscript database
The phenylpropanoid biosynthesis pathway that generates lignin subunits represents a significant target to alter the abundance and composition of lignin. The major regulators of phenylpropanoid metabolism are myb transcription factors, which have been shown to modulate secondary cell wall compositi...
Pogorelko, Gennady V; Reem, Nathan T; Young, Zachary T; Chambers, Lauran; Zabotina, Olga A
2016-01-01
Cell walls are essential components of plant cells which perform a variety of important functions for the different cell types, tissues and organs of a plant. Besides mechanical function providing cell shape, cell walls participate in intercellular communication, defense during plant-microbe interactions, and plant growth. The plant cell wall consists predominantly of polysaccharides with the addition of structural glycoproteins, phenolic esters, minerals, lignin, and associated enzymes. Alterations in the cell wall composition created through either changes in biosynthesis of specific constituents or their post-synthetic modifications in the apoplast compromise cell wall integrity and frequently induce plant compensatory responses as a result of these alterations. Here we report that post-synthetic removal of fucose residues specifically from arabinogalactan proteins in the Arabidopsis plant cell wall induces differential expression of fucosyltransferases and leads to the root and hypocotyl elongation changes. These results demonstrate that the post-synthetic modification of cell wall components presents a valuable approach to investigate the potential signaling pathways induced during plant responses to such modifications that usually occur during plant development and stress responses.
Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.
Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda
2016-09-01
The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. © 2016 The Authors.
USDA-ARS?s Scientific Manuscript database
Nucleotide-activated sugars are essential substrates for plant cell wall carbohydrate-polymer biosynthetic glycosyltransferase enzymes. The most prevalent sugars in grass cell walls include glucose (Glc), xylose (Xyl), and arabinose (Ara). These sugars are biosynthetically related via the uridine di...
USDA-ARS?s Scientific Manuscript database
Plant cell-wall polysaccharide biosynthesis requires nucleotide-activated sugars. The prominent grass cell wall sugars, glucose (Glc), xylose (Xyl), and arabinose (Ara), are biosynthetically related via the UDP-sugar interconversion pathway. RNA-seq analysis of Brachypodium distachyon UDP-sugar inte...
Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B; Rieger, Leonie; Frenger, Marc S; Marschall, André; Franke, Rochus B; Pattathil, Sivakumar; Voll, Lars M
2017-01-01
Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance.
Braybrook, Siobhan A
2017-01-01
Atomic force microscopy, and related nano-indentation techniques, is a valuable tool for analyzing the elastic properties of plant cell walls as they relate to changes in cell wall chemistry, changes in development, and response to hormones. Within this chapter I will describe a method for analyzing the effect of the phytohormone auxin on the cell wall elasticity of tobacco BY-2 cells. This general method may be easily altered for different experimental systems and hormones of interest.
Cell wall integrity modulates RHO1 activity via the exchange factor ROM2.
Bickle, M; Delley, P A; Schmidt, A; Hall, M N
1998-01-01
The essential phosphatidylinositol kinase homologue TOR2 of Saccharomyces cerevisiae controls the actin cytoskeleton by activating a GTPase switch consisting of RHO1 (GTPase), ROM2 (GEF) and SAC7 (GAP). We have identified two mutations, rot1-1 and rot2-1, that suppress the loss of TOR2 and are synthetic-lethal. The wild-type ROT1 and ROT2 genes and a multicopy suppressor, BIG1, were isolated by their ability to rescue the rot1-1 rot2-1 double mutant. ROT2 encodes glucosidase II, and ROT1 and BIG1 encode novel proteins. We present evidence that cell wall defects activate RHO1. First, rot1, rot2, big1, cwh41, gas1 and fks1 mutations all confer cell wall defects and suppress tor2(ts). Second, destabilizing the cell wall by supplementing the growth medium with 0.005% SDS also suppresses a tor2(ts) mutation. Third, disturbing the cell wall with SDS or a rot1, rot2, big1, cwh41, gas1 or fks1 mutation increases GDP/GTP exchange activity toward RHO1. These results suggest that cell wall defects suppress a tor2 mutation by activating RHO1 independently of TOR2, thereby inducing TOR2-independent polarization of the actin cytoskeleton and cell wall synthesis. Activation of RHO1, a subunit of the cell wall synthesis enzyme glucan synthase, by a cell wall alteration would ensure that cell wall synthesis occurs only when and where needed. The mechanism of RHO1 activation by a cell wall alteration is via the exchange factor ROM2 and could be analogous to signalling by integrin receptors in mammalian cells. PMID:9545237
Faria-Blanc, Nuno; Mortimer, Jenny C.; Dupree, Paul
2018-01-01
Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants. PMID:29636762
Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul
2018-01-01
Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.
Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Niño, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sánchez, Miguel E.
2015-01-01
The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754
NASA Technical Reports Server (NTRS)
Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki
2003-01-01
The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.
Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; ...
2015-08-18
The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less
NASA Astrophysics Data System (ADS)
Crowe, Jacob Dillon
Biochemical conversion of lignocellulosic biomass to fuel ethanol is one of a few challenging, yet opportune technologies that can reduce the consumption of petroleum-derived transportation fuels, while providing parallel reductions in greenhouse gas emissions. Biomass recalcitrance, or resistance to deconstruction, is a major technical challenge that limits effective conversion of biomass to fermentable sugars, often requiring a costly thermochemical pretreatment step to improve biomass deconstruction. Biomass recalcitrance is imparted largely by the secondary cell wall, a complex polymeric matrix of cell wall polysaccharides and aromatic heteropolymers, that provides structural stability to cells and enables plant upright growth. Polymers within the cell wall can vary both compositionally and structurally depending upon plant species and anatomical fraction, and have varied responses to thermochemical pretreatments. Cell wall properties impacting recalcitrance are still not well understood, and as a result, the goal of this dissertation is to investigate structural features of the cell wall contributing to recalcitrance (1) in diverse anatomical fractions of a single species, (2) in response to diverse pretreatments, and (3) resulting from genetic modification. In the first study, feedstock cell wall heterogeneity was investigated in anatomical (stem, leaf sheaths, and leaf blades) and internode fractions of switchgrass at varying tissue maturities. Lignin content was observed as the key contributor to recalcitrance in maturing stem tissues only, with non-cellulosic substituted glucuronoarabinoxylans and pectic polysaccharides contributing to cell wall recalcitrance in leaf sheath and leaf blades. Hydroxycinnamate (i.e., saponifiable p-coumarate and ferulate) content along with xylan and pectin extractability decreased with tissue maturity, suggesting lignification is only one component imparting maturity specific cell wall recalcitrance. In the second study, alkaline hydrogen peroxide and liquid hot water pretreatments were shown to alter structural properties impacting nanoscale porosity in corn stover. Delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity, with subsequent cell wall swelling resulting in increased nanoscale porosity and improved enzymatic hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 A dextran probe within the cell wall was found to be positively correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields. In the third study, the effect of altered xylan content and structure was investigated in irregular xylem (irx) Arabidopsis thaliana mutants to understand the role xylan plays in secondary cell wall development and organization. Higher xylan extractability and lower cellulose crystallinity observed in irx9 and irx15 irx15-L mutants compared to wild type indicated altered xylan integration into the secondary cell wall. Nanoscale cell wall organization observed using multiple microscopy techniques was impacted to some extent in all irx mutants, with disorganized cellulose microfibril layers in sclerenchyma secondary cell walls likely resulting from irregular xylan structure and content. Irregular secondary cell wall microfibril layers showed heterogeneous nanomechanical properties compared to wild type, which translated to mechanical deficiencies observed in stem tensile tests. These results suggest nanoscale defects in cell wall strength can correspond to macroscale phenotypes.
Engelsdorf, Timo; Will, Cornelia; Hofmann, Jörg; Schmitt, Christine; Merritt, Brian B.; Rieger, Leonie; Frenger, Marc S.; Marschall, André; Franke, Rochus B.; Pattathil, Sivakumar
2017-01-01
Abstract Penetration resistance represents the first level of plant defense against phytopathogenic fungi. Here, we report that the starch-deficient Arabidopsis thaliana phosphoglucomutase (pgm) mutant has impaired penetration resistance against the hemibiotrophic fungus Colletotrichum higginsianum. We could not determine any changes in leaf cutin and epicuticular wax composition or indolic glucosinolate levels, but detected complex alterations in the cell wall monosaccharide composition of pgm. Notably, other mutants deficient in starch biosynthesis (adg1) or mobilization (sex1) had similarly affected cell wall composition and penetration resistance. Glycome profiling analysis showed that both overall cell wall polysaccharide extractability and relative extractability of specific pectin and xylan epitopes were affected in pgm, suggesting extensive structural changes in pgm cell walls. Screening of mutants with alterations in content or modification of specific cell wall monosaccharides indicated an important function of pectic polymers for penetration resistance and hyphal growth of C. higginsianum during the biotrophic interaction phase. While mutants with affected pectic rhamnogalacturonan-I (mur8) were hypersusceptible, penetration frequency and morphology of fungal hyphae were impaired on pmr5 pmr6 mutants with increased pectin levels. Our results reveal a strong impact of starch metabolism on cell wall composition and suggest a link between carbohydrate availability, cell wall pectin and penetration resistance. PMID:28204541
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega-Sánchez, Miguel E.; Loqué, Dominique; Lao, Jeemeng
Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing themore » rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.« less
Sotiriou, P; Giannoutsou, E; Panteris, E; Galatis, B; Apostolakos, P
2018-03-01
The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Dal Santo, Silvia; Fasoli, Marianna; Cavallini, Erika; Tornielli, Giovanni Battista; Pezzotti, Mario; Zenoni, Sara
2011-12-01
Expansins are wall-loosening proteins that induce wall stress relaxation and irreversible wall extension in a pH-dependent manner. Despite a substantial body of work has been performed on the characterization of many expansins genes in different plant species, the knowledge about their precise biological roles during plant development remains scarce. To yield insights into the expansion process in Petunia hybrida, PhEXPA1, an expansin gene preferentially expressed in petal limb, has been characterized. The constitutive overexpression of PhEXPA1 significantly increased expansin activity, cells size and organ dimensions. Moreover, 35S::PhEXPA1 transgenic plants exhibited an altered cell wall polymer composition and a precocious timing of axillary meristem development compared with wild-type plants. These findings supported a previous hypothesis that expansins are not merely structural proteins involved in plant cell wall metabolism but they also take part in many plant development processes. Here, to support this expansins dual role, we discuss about differential cell wall-related genes expressed in PhEXPA1 expression mutants and gradients of altered petunia branching pattern. © 2011 Landes Bioscience
Burk, David H.; Ye, Zheng-Hua
2002-01-01
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation. PMID:12215512
Burk, David H; Ye, Zheng-Hua
2002-09-01
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.
Crowe, Jacob D; Zarger, Rachael A; Hodge, David B
2017-10-04
Simultaneous chemical modification and physical reorganization of plant cell walls via alkaline hydrogen peroxide or liquid hot water pretreatment can alter cell wall structural properties impacting nanoscale porosity. Nanoscale porosity was characterized using solute exclusion to assess accessible pore volumes, water retention value as a proxy for accessible water-cell walls surface area, and solute-induced cell wall swelling to measure cell wall rigidity. Key findings concluded that delignification by alkaline hydrogen peroxide pretreatment decreased cell wall rigidity and that the subsequent cell wall swelling resulted increased nanoscale porosity and improved enzyme binding and hydrolysis compared to limited swelling and increased accessible surface areas observed in liquid hot water pretreated biomass. The volume accessible to a 90 Å dextran probe within the cell wall was found to be correlated to both enzyme binding and glucose hydrolysis yields, indicating cell wall porosity is a key contributor to effective hydrolysis yields.
Transcription factors for modification of lignin content in plants
Wang, Huanzhong; Chen, Fang; Dixon, Richard A.
2015-06-02
The invention provides methods for modifying lignin, cellulose, xylan, and hemicellulose content in plants, and for achieving ectopic lignification and, for instance, secondary cell wall synthesis in pith cells, by altered regulation of a WRKY transcription factor. Nucleic acid constructs for altered WRKY-TF expression are described. Transgenic plants are provided that comprise modified pith cell walls, and lignin, cellulose, and hemicellulose content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops.
Gravitropism of cucumber hypocotyls: biophysical mechanism of altered growth
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1990-01-01
The biophysical basis for the changes in cell elongation rate during gravitropism was examined in aetiolated cucumber (Cucumis sativus L.) hypocotyls. Bulk osmotic pressures on the two sides of the stem and in the epidermal cells were not altered during the early time course of gravitropism. By the pressure-probe technique, a small increase in turgor (0.3 bar, 30 kPa) was detected on the upper (inhibited) side, whereas there was a negligible decrease in turgor on the lower (stimulated) side. These small changes in turgor and water potential appeared to be indirect, passive consequences of the altered growth and the small resistance for water movement from the xylem, and indicated that the change in growth was principally due to changes in wall properties. The results indicate that the hydraulic conductance of the water-transport pathway was large (.25 h-1 bar-1) and the water potential difference supporting cell expansion was no greater than 0.3 bar (30 kPa). From pressure-block experiments, it appeared that upon gravitropic stimulation (1) the yield threshold of the lower half of the stem did not decrease and (2) the wall on the upper side of the stem was not made more rigid by a cross-linking process. Mechanical measurements of the stress/strain properties of the walls showed that the initial development of gravitropism did not involve an alteration of the mechanical behaviour of the isolated walls. Thus, gravitropism in cucumber hypocotyls occurs principally by an alteration of the wall relaxation process, without a necessary change in wall mechanical properties.
Plant cell wall signalling and receptor-like kinases.
Wolf, Sebastian
2017-02-15
Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Vega-Sánchez, Miguel E; Loqué, Dominique; Lao, Jeemeng; Catena, Michela; Verhertbruggen, Yves; Herter, Thomas; Yang, Fan; Harholt, Jesper; Ebert, Berit; Baidoo, Edward E K; Keasling, Jay D; Scheller, Henrik V; Heazlewood, Joshua L; Ronald, Pamela C
2015-09-01
Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; ...
2016-10-06
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils, our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins.more » We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.« less
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils, our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins.more » We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology.« less
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E
2016-11-07
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Enzymes and other agents that enhance cell wall extensibility
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1999-01-01
Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.
Wu, Xiuwen; Riaz, Muhammad; Yan, Lei; Du, Chenqing; Liu, Yalin; Jiang, Cuncang
2017-01-01
Boron (B) is a micronutrient indispensable for citrus and B deficiency causes a considerable loss of productivity and quality in China. However, studies on pectin composition and architecture of cell wall components in trifoliate orange roots under B deficiency condition are not sufficient. In this study, we investigated the alteration in pectin characteristics and the architecture of cell wall components in trifoliate orange [ Poncirus trifoliata (L.) Raf.] roots under B starvation. The results showed that B-deficient roots resulted in a significant enlargement of root tips and an obvious decrease in cell wall B and uronic acid content in Na 2 CO 3 -soluble pectin compared with B-adequate roots. Meanwhile, they showed a decrease of 2-keto-3-deoxyoctanoic acid in CDTA-soluble and Na 2 CO 3 -soluble pectin in cell walls, while the degree of methylation (DM) of CDTA-soluble pectin was significantly increased under B deficiency. Transmission electron microscope (TEM) micrographs of B deficient plants showed a distinct thickening of the cell walls, with the thickness 1.82 times greater than that of control plant roots. The results from Fourier-transform infrared spectroscopy (FTIR) showed that B deficiency changed the mode of hydrogen bonding between protein and carbohydrates (cellulose and hemicellulose). The FTIR spectra exhibited a destroyed protein structure and accumulation of wax and cellulose in the cell walls under B starvation. The 13 C nuclear magnetic resonance ( 13 C-NMR) spectra showed that B starvation changed the organic carbon structure of cell walls, and enhanced the contents of amino acid, cellulose, phenols, and lignin in the cell wall. The results reveal that the swelling and weakened structural integrity of cell walls, which induced by alteration on the network of pectin and cell wall components and structure in B-deficient roots, could be a major cause of occurrence of the rapid interruption of growth and significantly enlarged root tips in trifoliate orange roots under B-insufficient condition.
Gutsch, Annelie; Keunen, Els; Guerriero, Gea; Renaut, Jenny; Cuypers, Ann; Hausman, Jean-François; Sergeant, Kjell
2018-06-15
Cadmium (Cd) is a non-essential, toxic heavy metal that poses serious threats to both the ecosystem and the health of humans. Plants employ various cellular and molecular mechanisms to minimize the impact of Cd toxicity and the cell walls function as defensive barrier during Cd exposure. In this study, we adopted a quantitative gel-based proteomic approach (two-dimensional difference gel electrophoresis) to investigate changes in the abundance of cell wall- and soluble proteins in stems of Medicago sativa L. upon long-term exposure to Cd (at 10 mg Cd per kg soil as CdSO 4 ). Obtained protein data were complemented with targeted gene expression analyses. Plants were affected by Cd exposure at an early growth stage but seemed to recover at a more mature plant stage as no difference in biomass was observed. The accumulation of Cd was highest in the roots followed by stems and leaves. Quantitative proteomics revealed a changed abundance for 179 cell wall proteins and 30 proteins in the soluble fraction upon long-term Cd exposure. These proteins are involved in cell wall remodeling, defense response, carbohydrate metabolism and promotion of the lignification process. The data indicate that Cd exposure alters the cell wall proteome and underline the role of cell wall proteins in defense against Cd stress. The identified proteins are linked to alterations in the cell wall structure and lignification process in stems of M. sativa, underpinning the function of the cell wall as an effective barrier against Cd stress. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Laccase Down-Regulation Causes Alterations in Phenolic Metabolism and Cell Wall Structure in Poplar1
Ranocha, Philippe; Chabannes, Matthieu; Chamayou, Simon; Danoun, Saïda; Jauneau, Alain; Boudet, Alain-M.; Goffner, Deborah
2002-01-01
Laccases are encoded by multigene families in plants. Previously, we reported the cloning and characterization of five divergent laccase genes from poplar (Populus trichocarpa) xylem. To investigate the role of individual laccase genes in plant development, and more particularly in lignification, three independent populations of antisense poplar plants, lac3AS, lac90AS, and lac110AS with significantly reduced levels of laccase expression were generated. A repression of laccase gene expression had no effect on overall growth and development. Moreover, neither lignin content nor composition was significantly altered as a result of laccase suppression. However, one of the transgenic populations, lac3AS, exhibited a 2- to 3-fold increase in total soluble phenolic content. As indicated by toluidine blue staining, these phenolics preferentially accumulate in xylem ray parenchyma cells. In addition, light and electron microscopic observations of lac3AS stems indicated that lac3 gene suppression led to a dramatic alteration of xylem fiber cell walls. Individual fiber cells were severely deformed, exhibiting modifications in fluorescence emission at the primary wall/middle lamella region and frequent sites of cell wall detachment. Although a direct correlation between laccase gene expression and lignification could not be assigned, we show that the gene product of lac3 is essential for normal cell wall structure and integrity in xylem fibers. lac3AS plants provide a unique opportunity to explore laccase function in plants. PMID:12011346
Romaniuk, Joseph A H; Cegelski, Lynette
2018-06-11
Gram-positive bacteria surround themselves with a multilayered macromolecular cell wall that is essential to cell survival and serves as a major target for antibiotics. The cell wall of Staphylococcus aureus is composed of two major structural components, peptidoglycan (PG) and wall teichoic acid (WTA), together creating a heterogeneous and insoluble matrix that poses a challenge to quantitative compositional analysis. Here, we present 13 C cross polarization magic angle spinning solid-state nuclear magnetic resonance (NMR) spectra of intact cell walls, purified PG, and purified WTA. The spectra reveal the clear molecular differences in the two polymers and enable quantification of PG and WTA in isolated cell walls, an attractive alternative to estimating teichoic acid content from a phosphate analysis of completely pyrolyzed cell walls. Furthermore, we discovered that unique PG and WTA spectral signatures could be identified in whole-cell NMR spectra and used to compare PG and WTA levels among intact bacterial cell samples. The distinguishing whole-cell 13 C NMR contributions associated with PG include the GlcNAc-MurNAc sugar carbons and glycyl α-carbons. WTA contributes carbons from the phosphoribitol backbone. Distinguishing 15 N spectral signatures include glycyl amide nitrogens in PG and the esterified d-alanyl amine nitrogens in WTA. 13 C NMR analysis was performed with samples at natural abundance and included 10 whole-cell sample comparisons. Changes consistent with altered PG and WTA content were detected in whole-cell spectra of bacteria harvested at different growth times and in cells treated with tunicamycin. This use of whole-cell NMR provides quantitative parameters of composition in the context of whole-cell activity.
Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance
Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan; ...
2014-11-03
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less
Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalluri, Udaya C.; Yin, Hengfu; Yang, Xiaohan
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host thatmore » carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Finally, synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance.« less
Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses.
Bacete, Laura; Mélida, Hugo; Miedes, Eva; Molina, Antonio
2018-02-01
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Farrand, Allison J.; Haley, Kathryn P.; Lareau, Nichole M.; Heilbronner, Simon; McLean, John A.; Foster, Timothy
2015-01-01
Bacteria alter their cell surface in response to changing environments, including those encountered upon invasion of a host during infection. One alteration that occurs in several Gram-positive pathogens is the presentation of cell wall-anchored components of the iron-regulated surface determinant (Isd) system, which extracts heme from host hemoglobin to fulfill the bacterial requirement for iron. Staphylococcus lugdunensis, an opportunistic pathogen that causes infective endocarditis, encodes an Isd system. Unique among the known Isd systems, S. lugdunensis contains a gene encoding a putative autolysin located adjacent to the Isd operon. To elucidate the function of this putative autolysin, here named IsdP, we investigated its contribution to Isd protein localization and hemoglobin-dependent iron acquisition. S. lugdunensis IsdP was found to be iron regulated and cotranscribed with the Isd operon. IsdP is a specialized peptidoglycan hydrolase that cleaves the stem peptide and pentaglycine crossbridge of the cell wall and alters processing and anchoring of a major Isd system component, IsdC. Perturbation of IsdC localization due to isdP inactivation results in a hemoglobin utilization growth defect. These studies establish IsdP as an autolysin that functions in heme acquisition and describe a role for IsdP in cell wall reorganization to accommodate nutrient uptake systems during infection. PMID:26123800
Elicitors and defense gene induction in plants with altered lignin compositions.
Gallego-Giraldo, Lina; Posé, Sara; Pattathil, Sivakumar; Peralta, Angelo Gabriel; Hahn, Michael G; Ayre, Brian G; Sunuwar, Janak; Hernandez, Jonathan; Patel, Monika; Shah, Jyoti; Rao, Xiaolan; Knox, J Paul; Dixon, Richard A
2018-06-27
A reduction in the lignin content in transgenic plants induces the ectopic expression of defense genes, but the importance of altered lignin composition in such phenomena remains unclear. Two Arabidopsis lines with similar lignin contents, but strikingly different lignin compositions, exhibited different quantitative and qualitative transcriptional responses. Plants with lignin composed primarily of guaiacyl units overexpressed genes responsive to oomycete and bacterial pathogen attack, whereas plants with lignin composed primarily of syringyl units expressed a far greater number of defense genes, including some associated with cis-jasmone-mediated responses to aphids; these plants exhibited altered responsiveness to bacterial and aphid inoculation. Several of the defense genes were differentially induced by water-soluble extracts from cell walls of plants of the two lines. Glycome profiling, fractionation and enzymatic digestion studies indicated that the different lignin compositions led to differential extractability of a range of heterogeneous oligosaccharide epitopes, with elicitor activity originating from different cell wall polymers. Alteration of lignin composition affects interactions with plant cell wall matrix polysaccharides to alter the sequestration of multiple latent defense signal molecules with an impact on biotic stress responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Cell wall integrity signaling in plants: "To grow or not to grow that's the question".
Voxeur, Aline; Höfte, Herman
2016-09-01
Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee; ...
2016-04-15
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryan, Anthony C.; Jawdy, Sara; Gunter, Lee
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G06400, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl (S/G) ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent onmore » a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. Finally, we propose a model in which this particular laccase has a range of functions related to oxidation of phenolics that interact with lignin in the cell wall.« less
Fornalé, Silvia; Capellades, Montserrat; Encina, Antonio; Wang, Kan; Irar, Sami; Lapierre, Catherine; Ruel, Katia; Joseleau, Jean-Paul; Berenguer, Jordi; Puigdomènech, Pere; Rigau, Joan; Caparrós-Ruiz, David
2012-07-01
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and arabinoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.
Thammahong, Arsa; Caffrey-Card, Alayna K; Dhingra, Sourabh; Obar, Joshua J; Cramer, Robert A
2017-04-25
Trehalose biosynthesis is found in fungi but not humans. Proteins involved in trehalose biosynthesis are essential for fungal pathogen virulence in humans and plants through multiple mechanisms. Loss of canonical trehalose biosynthesis genes in the human pathogen Aspergillus fumigatus significantly alters cell wall structure and integrity, though the mechanistic link between these virulence-associated pathways remains enigmatic. Here we characterize genes, called tslA and tslB , which encode proteins that contain domains similar to those corresponding to trehalose-6-phosphate phosphatase but lack critical catalytic residues for phosphatase activity. Loss of tslA reduces trehalose content in both conidia and mycelia, impairs cell wall integrity, and significantly alters cell wall structure. To gain mechanistic insights into the role that TslA plays in cell wall homeostasis, immunoprecipitation assays coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to reveal a direct interaction between TslA and CsmA, a type V chitin synthase enzyme. TslA regulates not only chitin synthase activity but also CsmA sub-cellular localization. Loss of TslA impacts the immunopathogenesis of murine invasive pulmonary aspergillosis through altering cytokine production and immune cell recruitment. In conclusion, our data provide a novel model whereby proteins in the trehalose pathway play a direct role in fungal cell wall homeostasis and consequently impact fungus-host interactions. IMPORTANCE Human fungal infections are increasing globally due to HIV infections and increased use of immunosuppressive therapies for many diseases. Therefore, new antifungal drugs with reduced side effects and increased efficacy are needed to improve treatment outcomes. Trehalose biosynthesis exists in pathogenic fungi and is absent in humans. Components of the trehalose biosynthesis pathway are important for the virulence of human-pathogenic fungi, including Aspergillus fumigatus Consequently, it has been proposed that components of this pathway are potential targets for antifungal drug development. However, how trehalose biosynthesis influences the fungus-host interaction remains enigmatic. One phenotype associated with fungal trehalose biosynthesis mutants that remains enigmatic is cell wall perturbation. Here we discovered a novel moonlighting role for a regulatory-like subunit of the trehalose biosynthesis pathway in A. fumigatus that regulates cell wall homeostasis through modulation of chitin synthase localization and activity. As the cell wall is a current and promising therapeutic target for fungal infections, understanding the role of trehalose biosynthesis in cell wall homeostasis and virulence is expected to help define new therapeutic opportunities. Copyright © 2017 Thammahong et al.
Participation of blood vessel cells in human adaptive immune responses.
Pober, Jordan S; Tellides, George
2012-01-01
Circulating T cells contact blood vessels either when they extravasate across the walls of microvessels into inflamed tissues or when they enter into the walls of larger vessels in inflammatory diseases such as atherosclerosis. The blood vessel wall is largely composed of three cell types: endothelial cells lining the entire vascular tree; pericytes supporting the endothelium of microvessels; and smooth muscle cells forming the bulk of large vessel walls. Each of these cell types interacts with and alters the behavior of infiltrating T cells in different ways, making these cells active participants in the processes of immune-mediated inflammation. In this review, we compare and contrast what is known about the nature of these interactions in humans. Copyright © 2011 Elsevier Ltd. All rights reserved.
Brennan, Timothy C. R.; Nielsen, Lars K.
2013-01-01
Monoterpenes can, upon hydrogenation, be used as light-fraction components of sustainable aviation fuels. Fermentative production of monoterpenes in engineered microorganisms, such as Saccharomyces cerevisiae, has gained attention as a potential route to deliver these next-generation fuels from renewable biomass. However, end product toxicity presents a formidable problem for microbial synthesis. Due to their hydrophobicity, monoterpene inhibition has long been attributed to membrane interference, but the molecular mechanism remains largely unsolved. In order to gain a better understanding of the mode of action, we analyzed the composition and structural integrity of the cell envelope as well as the transcriptional response of yeast cells treated with an inhibitory amount of d-limonene (107 mg/liter). We found no alterations in membrane fluidity, structural membrane integrity, or fatty acid composition after the solvent challenge. A 4-fold increase in the mean fluorescence intensity per cell (using calcofluor white stain) and increased sensitivity to cell wall-degrading enzymes demonstrated that limonene disrupts cell wall properties. Global transcript measurements confirmed the membrane integrity observations by showing no upregulation of ergosterol or fatty acid biosynthesis pathways, which are commonly overexpressed in yeast to reinforce membrane rigidity during ethanol exposure. Limonene shock did cause a compensatory response to cell wall damage through overexpression of several genes (ROM1, RLM1, PIR3, CTT1, YGP1, MLP1, PST1, and CWP1) involved with the cell wall integrity signaling pathway. This is the first report demonstrating that cell wall, rather than plasma membrane, deterioration is the main source of monoterpene inhibition. We show that limonene can alter the structure and function of the cell wall, which has a clear effect on cytokinesis. PMID:23542628
Role of the nuclear migration protein Lis1 in cell morphogenesis in Ustilago maydis
Valinluck, Michael; Ahlgren, Sara; Sawada, Mizuho; Locken, Kristopher; Banuett, Flora
2010-01-01
Ustilago maydis is a basidiomycete fungus that exhibits a yeast-like and a filamentous form. Growth of the fungus in the host leads to additional morphological transitions. The different morphologies are characterized by distinct nuclear movements. Dynein and α-tubulin are required for nuclear movements and for cell morphogenesis of the yeast-like form. Lis1 is a microtubule plus-end tracking protein (+TIPs) conserved in eukaryotes and required for nuclear migration and spindle positioning. Defects in nuclear migration result in altered cell fate and aberrant development in metazoans, slow growth in fungi and disease in humans (e.g. lissencephaly). Here we investigate the role of the human LIS1 homolog in U. maydis and demonstrate that it is essential for cell viability, not previously seen in other fungi. With a conditional null mutation we show that lis1 is necessary for nuclear migration in the yeast-like cell and during the dimorphic transition. Studies of asynchronous exponentially growing cells and time-lapse microscopy uncovered novel functions of lis1: It is necessary for cell morphogenesis, positioning of the septum and cell wall integrity. lis1-depleted cells exhibit altered axes of growth and loss of cell polarity leading to grossly aberrant cells with clusters of nuclei and morphologically altered buds devoid of nuclei. Altered septum positioning and cell wall deposition contribute to the aberrant morphology. lis1-depleted cells lyse, indicative of altered cell wall properties or composition. We also demonstrate, with indirect immunofluorescence to visualize tubulin, that lis1 is necessary for the normal organization of the microtubule cytoskeleton: lis1-depleted cells contain more and longer microtubules that can form coils perpendicular to the long axis of the cell. We propose that lis1 controls microtubule dynamics and thus the regulated delivery of vesicles to growth sites and other cell domains that govern nuclear movements. PMID:20524583
Yu, Qin; Hlavacka, Andrej; Matoh, Toru; Volkmann, Dieter; Menzel, Diedrik; Goldbach, Heiner E.; Baluška, František
2002-01-01
By using immunofluorescence microscopy, we observed rapidly altered distribution patterns of cell wall pectins in meristematic cells of maize (Zea mays) and wheat (Triticum aestivum) root apices. This response was shown for homogalacturonan pectins characterized by a low level (up to 40%) of methylesterification and for rhamnogalacturonan II pectins cross-linked by a borate diol diester. Under boron deprivation, abundance of these pectins rapidly increased in cell walls, whereas their internalization was inhibited, as evidenced by a reduced and even blocked accumulation of these cell wall pectins within brefeldin A-induced compartments. In contrast, root cells of species sensitive to the boron deprivation, like zucchini (Cucurbita pepo) and alfalfa (Medicago sativa), do not internalize cell wall pectins into brefeldin A compartments and do not show accumulation of pectins in their cell walls under boron deprivation. For maize and wheat root apices, we favor an apoplastic target for the primary action of boron deprivation, which signals deeper into the cell via endocytosis-mediated pectin signaling along putative cell wall-plasma membrane-cytoskeleton continuum. PMID:12226520
Ching, Ada; Dhugga, Kanwarpal S; Appenzeller, Laura; Meeley, Robert; Bourett, Timothy M; Howard, Richard J; Rafalski, Antoni
2006-10-01
A spontaneous maize mutant, brittle stalk-2 (bk2-ref), exhibits dramatically reduced tissue mechanical strength. Reduction in mechanical strength in the stalk tissue was highly correlated with a reduction in the amount of cellulose and an uneven deposition of secondary cell wall material in the subepidermal and perivascular sclerenchyma fibers. Cell wall accounted for two-thirds of the observed reduction in dry matter content per unit length of the mutant stalk in comparison to the wildtype stalk. Although the cell wall composition was significantly altered in the mutant in comparison to the wildtype stalks, no compensation by lignin and cell wall matrix for reduced cellulose amount was observed. We demonstrate that Bk2 encodes a Cobra-like protein that is homologous to the rice Bc1 protein. In the bk2-ref gene, a 1 kb transposon-like element is inserted in the beginning of the second exon, disrupting the open reading frame. The Bk2 gene was expressed in the stalk, husk, root, and leaf tissues, but not in the embryo, endosperm, pollen, silk, or other tissues with comparatively few or no secondary cell wall containing cells. The highest expression was in the isolated vascular bundles. In agreement with its role in secondary wall formation, the expression pattern of the Bk2 gene was very similar to that of the ZmCesA10, ZmCesA11, and ZmCesA12 genes, which are known to be involved in secondary wall formation. We have isolated an independent Mutator-tagged allele of bk2, referred to as bk2-Mu7, the phenotype of which is similar to that of the spontaneous mutant. Our results demonstrate that mutations in the Bk2 gene affect stalk strength in maize by interfering with the deposition of cellulose in the secondary cell wall in fiber cells.
The Specific Nature of Plant Cell Wall Polysaccharides 1
Nevins, Donald J.; English, Patricia D.; Albersheim, Peter
1967-01-01
Polysaccharide compositions of cell walls were assessed by quantitative analyses of the component sugars. Cell walls were hydrolyzed in 2 n trifluoroacetic acid and the liberated sugars reduced to their respective alditols. The alditols were acetylated and the resulting alditol acetates separated by gas chromatography. Quantitative assay of the alditol acetates was accomplished by electronically integrating the detector output of the gas chromatograph. Myo-inositol, introduced into the sample prior to hydrolysis, served as an internal standard. The cell wall polysaccharide compositions of plant varieties within a given species are essentially identical. However, differences in the sugar composition were observed in cell walls prepared from different species of the same as well as of different genera. The fact that the wall compositions of different varieties of the same species are the same indicates that the biosynthesis of cell wall polysaccharides is genetically regulated. The cell walls of various morphological parts (roots, hypocotyls, first internodes and primary leaves) of bean plants were each found to have a characteristic sugar composition. It was found that the cell wall sugar composition of suspension-cultured sycamore cells could be altered by growing the cells on different carbon sources. This demonstrates that the biosynthesis of cell wall polysaccharides can be manipulated without fatal consequences. PMID:16656594
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Xiaoning; Tittmann, Bernhard; Kim, Seong H.
An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impactsmore » on the cell wall modulus, and not the cellulose microfibril packing.« less
Molecular regulation of plant cell wall extensibility
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1998-01-01
Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.
Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance.
Kalluri, Udaya C; Yin, Hengfu; Yang, Xiaohan; Davison, Brian H
2014-12-01
Fine-tuning plant cell wall properties to render plant biomass more amenable to biofuel conversion is a colossal challenge. A deep knowledge of the biosynthesis and regulation of plant cell wall and a high-precision genome engineering toolset are the two essential pillars of efforts to alter plant cell walls and reduce biomass recalcitrance. The past decade has seen a meteoric rise in use of transcriptomics and high-resolution imaging methods resulting in fresh insights into composition, structure, formation and deconstruction of plant cell walls. Subsequent gene manipulation approaches, however, commonly include ubiquitous mis-expression of a single candidate gene in a host that carries an intact copy of the native gene. The challenges posed by pleiotropic and unintended changes resulting from such an approach are moving the field towards synthetic biology approaches. Synthetic biology builds on a systems biology knowledge base and leverages high-precision tools for high-throughput assembly of multigene constructs and pathways, precision genome editing and site-specific gene stacking, silencing and/or removal. Here, we summarize the recent breakthroughs in biosynthesis and remodelling of major secondary cell wall components, assess the impediments in obtaining a systems-level understanding and explore the potential opportunities in leveraging synthetic biology approaches to reduce biomass recalcitrance. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Freshour, G.; Clay, R. P.; Fuller, M. S.; Albersheim, P.; Darvill, A. G.; Hahn, M. G.
1996-01-01
The plant cell wall is a dynamic structure that plays important roles in growth and development and in the interactions of plants with their environment and other organisms. We have used monoclonal antibodies that recognize different carbohydrate epitopes present in plant cell-wall polysaccharides to locate these epitopes in roots of developing Arabidopsis thaliana seedlings. An epitope in the pectic polysaccharide rhamnogalacturonan I is observed in the walls of epidermal and cortical cells in mature parts of the root. This epitope is inserted into the walls in a developmentally regulated manner. Initially, the epitope is observed in atrichoblasts and later appears in trichoblasts and simultaneously in cortical cells. A terminal [alpha]-fucosyl-containing epitope is present in almost all of the cell walls in the root. An arabinosylated (1->6)-[beta]-galactan epitope is also found in all of the cell walls of the root with the exception of lateral root-cap cell walls. It is striking that these three polysaccharide epitopes are not uniformly distributed (or accessible) within the walls of a given cell, nor are these epitopes distributed equally across the two walls laid down by adjacent cells. Our results further suggest that the biosynthesis and differentiation of primary cell walls in plants are precisely regulated in a temporal, spatial, and developmental manner. PMID:12226270
USDA-ARS?s Scientific Manuscript database
A study was designed to determine the effect of feeding yeast cell wall (YCW) products on the performance response and vaginal temperature of crossbred heifers following a subcutaneous endotoxin (lipopolysaccharide; LPS) challenge. Heifers (n=83; 225±9.4 kg) were obtained from commercial sale barns ...
Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel
2012-01-01
With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540
Cell wall-bound silicon optimizes ammonium uptake and metabolism in rice cells.
Sheng, Huachun; Ma, Jie; Pu, Junbao; Wang, Lijun
2018-05-16
Turgor-driven plant cell growth depends on cell wall structure and mechanics. Strengthening of cell walls on the basis of an association and interaction with silicon (Si) could lead to improved nutrient uptake and optimized growth and metabolism in rice (Oryza sativa). However, the structural basis and physiological mechanisms of nutrient uptake and metabolism optimization under Si assistance remain obscure. Single-cell level biophysical measurements, including in situ non-invasive micro-testing (NMT) of NH4+ ion fluxes, atomic force microscopy (AFM) of cell walls, and electrolyte leakage and membrane potential, as well as whole-cell proteomics using isobaric tags for relative and absolute quantification (iTRAQ), were performed. The altered cell wall structure increases the uptake rate of the main nutrient NH4+ in Si-accumulating cells, whereas the rate is only half in Si-deprived counterparts. Rigid cell walls enhanced by a wall-bound form of Si as the structural basis stabilize cell membranes. This, in turn, optimizes nutrient uptake of the cells in the same growth phase without any requirement for up-regulation of transmembrane ammonium transporters. Optimization of cellular nutrient acquisition strategies can substantially improve performance in terms of growth, metabolism and stress resistance.
Lima, Rogério Barbosa; dos Santos, Tiago Benedito; Vieira, Luiz Gonzaga Esteves; Ferrarese, Maria de Lourdes Lúcio; Ferrarese-Filho, Osvaldo; Donatti, Lucélia; Boeger, Maria Regina Torres; Petkowicz, Carmen Lúcia de Oliveira
2013-03-01
Coffee plants were subjected to heat stress (37 °C) and compared with control plants (24 °C). Cell wall polysaccharides were extracted using water (W), EDTA (E) and 4M NaOH (H30 and H70). In addition, monolignols were analyzed, and the leaves were observed by microscopy. Plants under heat stress accumulated higher contents of arabinose and galactose in fraction W. Xylose contents were observed to decrease in H30 fractions after the heat stress, whereas galactose and uronic acid increased. H70 fractions from plants exposed to heat stress showed increased xylose contents, whereas the contents of arabinose and glucose decreased. Differences in the molar-mass profiles of polysaccharides were also observed. The primary monolignol contents increased after the heat stress. Structural alterations in palisade cells and ultrastructural damage in chloroplasts were also observed. Our results demonstrate that the chemical profile of coffee cell-wall polymers and structural cell anatomy change under heat stress. Copyright © 2012 Elsevier Ltd. All rights reserved.
Andriukonis, Eivydas; Stirke, Arunas; Garbaras, Andrius; Mikoliunaite, Lina; Ramanaviciene, Almira; Remeikis, Vidmantas; Thornton, Barry; Ramanavicius, Arunas
2018-04-01
In this study, the metabolism of yeast cells (Saccharomyces cerevisiae) was utilized for the synthesis of the conducting polymer - polypyrrole (Ppy).Yeast cells were modified in situ by synthesized Ppy. The Ppy was formed in the cell wall by redox-cycling of [Fe(CN) 6 ] 3-/4- , performed by the yeast cells. Fluorescence microscopy, enzymatic digestions, atomic force microscopy and isotope ratio mass spectroscopy were applied to determine both the polymerization reaction itself and the polymer location in yeast cells. Ppy formation resulted in enhanced resistance to lytic enzymes, significant increase of elasticity and alteration of other mechanical cell wall properties evaluated by atomic force microscopy (AFM). The suggested method of polymer synthesis allows the introduction of polypyrrole structures within the cell wall, which is build up from polymers consisting of carbohydrates. This cell wall modification strategy could increase the usefulness of yeast as an alternative energy source in biofuel cells, and in cell based biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.
Assembly and enlargement of the primary cell wall in plants
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1997-01-01
Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.
Assembly and enlargement of the primary cell wall in plants.
Cosgrove, D J
1997-01-01
Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.
Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina
2017-03-01
Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Autolytic defective mutant of Streptococcus faecalis.
Cornett, J B; Redman, B E; Shockman, G D
1978-01-01
Properties of a variant of Streptococcus faecalis ATCC 9790 with defective cellular autolysis are described. The mutant strain was selected as a survivor from a mutagenized cell population simultaneously challenged with two antibiotics which inhibit cell wall biosynthesis, penicillin G and cycloserine. Compared to the parental strain, the mutant strain exhibited: (i) a thermosensitive pattern of cellular autolysis; (ii) an autolytic enzyme activity that had only a slightly increased thermolability when tested in solution in the absence of wall substrate; and (iii) an isolated autolysin that had hydrolytic activity on isolated S. faecalis wall substrate indistinguishable from that of the parental strain, but that was inactive when tested on walls of Micrococcus lysodeikticus as a substrate. These data indicate an alteration in the substrate specificity of the autolytic enzyme of the mutant which appears to result from the synthesis of an altered form of autolytic enzyme. PMID:415045
Mihalchik, Amy L; Ding, Weiqiang; Porter, Dale W; McLoughlin, Colleen; Schwegler-Berry, Diane; Sisler, Jennifer D; Stefaniak, Aleksandr B; Snyder-Talkington, Brandi N; Cruz-Silva, Rodolfo; Terrones, Mauricio; Tsuruoka, Shuji; Endo, Morinobu; Castranova, Vincent; Qian, Yong
2015-07-03
Nitrogen-doped multi-walled carbon nanotubes (ND-MWCNTs) are modified multi-walled carbon nanotubes (MWCNTs) with enhanced electrical properties that are used in a variety of applications, including fuel cells and sensors; however, the mode of toxic action of ND-MWCNT has yet to be fully elucidated. In the present study, we compared the interaction of ND-MWCNT or pristine MWCNT-7 with human small airway epithelial cells (SAEC) and evaluated their subsequent bioactive effects. Transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction suggested the presence of N-containing defects in the lattice of the nanotube. The ND-MWCNTs were determined to be 93.3% carbon, 3.8% oxygen, and 2.9% nitrogen. A dose-response cell proliferation assay showed that low doses of ND-MWCNT (1.2μg/ml) or MWCNT-7 (0.12μg/ml) increased cellular proliferation, while the highest dose of 120μg/ml of either material decreased proliferation. ND-MWCNT and MWCNT-7 appeared to interact with SAEC at 6h and were internalized by 24h. ROS were elevated at 6 and 24h in ND-MWCNT exposed cells, but only at 6h in MWCNT-7 exposed cells. Significant alterations to the cell cycle were observed in SAEC exposed to either 1.2μg/ml of ND-MWCNT or MWCNT-7 in a time and material-dependent manner, possibly suggesting potential damage or alterations to cell cycle machinery. Our results indicate that ND-MWCNT induce effects in SAEC over a time and dose-related manner which differ from MWCNT-7. Therefore, the physicochemical characteristics of the materials appear to alter their biological effects. Published by Elsevier Ireland Ltd.
Ghfir, B; Fonvieille, J L; Dargent, R
1997-07-01
The cell walls of the growing hyphae of Aspergillus fumigatus (Fresenius) cultured in the presence or absence of the essential oil of Hyssopus officinalis were isolated and their chemical composition analysed. The presence of the essential oil led to a reduction in levels of neutral sugars, uronic acid and proteins, whereas amino sugars, lipids and phosphorus levels were increased. HPLC analysis of the neutral sugars showed that they consisted mainly of glucose, mannose and galactose, while the amino sugars consisted of glucosamine and galactosamine. The presence of the essential oil in the culture medium induced marked changes in the content of galactose and galactosamine. Cell walls were fractionated by treatment with alkali and acid. The essential oil induced similar alterations in the various fractions with a more marked effect on the major constituents. The alterations were related to changes in the structure of the cells.
Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development.
Tucker, Matthew R; Lou, Haoyu; Aubert, Matthew K; Wilkinson, Laura G; Little, Alan; Houston, Kelly; Pinto, Sara C; Shirley, Neil J
2018-05-31
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Carbon Nanotubes and Human Cells?
ERIC Educational Resources Information Center
King, G. Angela
2005-01-01
Single-walled carbon nanotubes that were chemically altered to be water soluble are shown to enter fibroblasts, T cells, and HL60 cells. Nanoparticles adversely affect immortalized HaCaT human keratinocyte cultures, indicating that they may enter cells.
Vancomycin Reduces Cell Wall Stiffness and Slows Swim Speed of the Lyme Disease Bacterium.
Harman, Michael W; Hamby, Alex E; Boltyanskiy, Ross; Belperron, Alexia A; Bockenstedt, Linda K; Kress, Holger; Dufresne, Eric R; Wolgemuth, Charles W
2017-02-28
Borrelia burgdorferi, the spirochete that causes Lyme disease, is a tick-transmitted pathogen that requires motility to invade and colonize mammalian and tick hosts. These bacteria use a unique undulating flat-wave shape to penetrate and propel themselves through host tissues. Previous mathematical modeling has suggested that the morphology and motility of these spirochetes depends crucially on the flagellar/cell wall stiffness ratio. Here, we test this prediction using the antibiotic vancomycin to weaken the cell wall. We found that low to moderate doses of vancomycin (≤2.0 μg/mL for 24 h) produced small alterations in cell shape and that as the dose was increased, cell speed decreased. Vancomycin concentrations >1.0 μg/mL also inhibited cell growth and led to bleb formation on a fraction of the cells. To quantitatively assess how vancomycin affects cell stiffness, we used optical traps to bend unflagellated mutants of B. burgdorferi. We found that in the presence of vancomycin, cell wall stiffness gradually decreased over time, with a 40% reduction in the bending stiffness after 36 h. Under the same conditions, the swimming speed of wild-type B. burgdorferi slowed by ∼15%, with only marginal changes to cell morphology. Interestingly, our biophysical model for the swimming dynamics of B. burgdorferi suggested that cell speed should increase with decreasing cell stiffness. We show that this discrepancy can be resolved if the periplasmic volume decreases as the cell wall becomes softer. These results provide a testable hypothesis for how alterations of cell wall stiffness affect periplasmic volume regulation. Furthermore, since motility is crucial to the virulence of B. burgdorferi, the results suggest that sublethal doses of antibiotics could negatively impact spirochete survival by impeding their swim speed, thereby enabling their capture and elimination by phagocytes. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Largo-Gosens, Asier; Hernández-Altamirano, Mabel; García-Calvo, Laura; Alonso-Simón, Ana; Álvarez, Jesús; Acebes, José L.
2014-01-01
Fourier transform mid-infrared (FT-MIR) spectroscopy has been extensively used as a potent, fast and non-destructive procedure for analyzing cell wall architectures, with the capacity to provide abundant information about their polymers, functional groups, and in muro entanglement. In conjunction with multivariate analyses, this method has proved to be a valuable tool for tracking alterations in cell walls. The present review examines recent progress in the use of FT-MIR spectroscopy to monitor cell wall changes occurring in muro as a result of various factors, such as growth and development processes, genetic modifications, exposition or habituation to cellulose biosynthesis inhibitors and responses to other abiotic or biotic stresses, as well as its biotechnological applications. PMID:25071791
Vermerris, Wilfred; Abril, Alejandra
2015-04-01
Cellulose from plant biomass can serve as a sustainable feedstock for fuels, chemicals and polymers that are currently produced from petroleum. In order to enhance economic feasibility, the efficiency of cell wall deconstruction needs to be enhanced. With the use of genetic and biotechnological approaches cell wall composition can be modified in such a way that interactions between the major cell wall polymers—cellulose, hemicellulosic polysaccharides and lignin—are altered. Some of the resulting plants are compromised in their growth and development, but this may be caused in part by the plant's overcompensation for metabolic perturbances. In other cases novel structures have been introduced in the cell wall without negative effects. The first field studies with engineered bioenergy crops look promising, while detailed structural analyses of cellulose synthase offer new opportunities to modify cellulose itself. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nanoscale movements of cellulose microfibrils in primary cell walls.
Zhang, Tian; Vavylonis, Dimitrios; Durachko, Daniel M; Cosgrove, Daniel J
2017-04-28
The growing plant cell wall is commonly considered to be a fibre-reinforced structure whose strength, extensibility and anisotropy depend on the orientation of crystalline cellulose microfibrils, their bonding to the polysaccharide matrix and matrix viscoelasticity 1-4 . Structural reinforcement of the wall by stiff cellulose microfibrils is central to contemporary models of plant growth, mechanics and meristem dynamics 4-12 . Although passive microfibril reorientation during wall extension has been inferred from theory and from bulk measurements 13-15 , nanometre-scale movements of individual microfibrils have not been directly observed. Here we combined nanometre-scale imaging of wet cell walls by atomic force microscopy (AFM) with a stretching device and endoglucanase treatment that induces wall stress relaxation and creep, mimicking wall behaviours during cell growth. Microfibril movements during forced mechanical extensions differ from those during creep of the enzymatically loosened wall. In addition to passive angular reorientation, we observed a diverse repertoire of microfibril movements that reveal the spatial scale of molecular connections between microfibrils. Our results show that wall loosening alters microfibril connectivity, enabling microfibril dynamics not seen during mechanical stretch. These insights into microfibril movements and connectivities need to be incorporated into refined models of plant cell wall structure, growth and morphogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Markus; Hake, Sarah
2013-10-31
The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and ormore » biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.« less
Structure of the cell wall of mango after application of ionizing radiation
NASA Astrophysics Data System (ADS)
Silva, Josenilda M.; Villar, Heldio P.; Pimentel, Rejane M. M.
2012-11-01
Cells of the mesocarp of mango cultivar Tommy Atkins were analyzed by Transmission Electron Microscope—TEM to evaluate the effects of doses of 0.5 and 1.0 kGy applied immediately after the fruit and after storage for twenty days at a temperature of 12 °C followed by 5 days of simulated marketing at a temperature of 21 °C. No alteration was found in the structure of the cell wall, middle lamella, and plasma membrane of fruits when analyzed immediately after application of doses. The mesocarp cell structure of the cell wall, middle lamella, and the plasma membrane did however undergo changes after storage. Fruits that received a dose of 0.5 kGy displayed slight changes in cell wall structure and slight disintegration of the middle lamella. Fruits that received a dose of 1.0 kGy displayed more severe changes in the structure of the cell wall, greater middle lamella degradation, and displacement of the plasma membrane.
USDA-ARS?s Scientific Manuscript database
Grain sorghum (Sorghum bicolor L. Moench) crop yield is significantly compromised by high temperature stress-induced male sterility, and is attributed to reduced cell wall invertase (CWI)-mediated sucrose hydrolysis in microspores and anthers leading to altered carbohydrate metabolism and starch def...
USDA-ARS?s Scientific Manuscript database
A study was conducted to determine the effect of feeding yeast cell wall (YCW) products on the physiological and acute phase responses of crossbred newly-received heifers to an endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), ...
USDA-ARS?s Scientific Manuscript database
This study examined the effect of feeding yeast cell wall (YCW) products on the metabolic responses of newly-received heifers to endotoxin challenge. Heifers (n = 24; 219 ± 2.4 kg) were separated into treatment groups receiving a Control diet (n = 8), YCW-A (2.5 grams/heifer/d; n = 8) or YCW-C (2.5 ...
Mechanical Properties of Plant Cell Walls Probed by Relaxation Spectra1[W][OA
Hansen, Steen Laugesen; Ray, Peter Martin; Karlsson, Anders Ola; Jørgensen, Bodil; Borkhardt, Bernhard; Petersen, Bent Larsen; Ulvskov, Peter
2011-01-01
Transformants and mutants with altered cell wall composition are expected to display a biomechanical phenotype due to the structural role of the cell wall. It is often quite difficult, however, to distinguish the mechanical behavior of a mutant's or transformant's cell walls from that of the wild type. This may be due to the plant’s ability to compensate for the wall modification or because the biophysical method that is often employed, determination of simple elastic modulus and breakstrength, lacks the resolving power necessary for detecting subtle mechanical phenotypes. Here, we apply a method, determination of relaxation spectra, which probes, and can separate, the viscoelastic properties of different cell wall components (i.e. those properties that depend on the elastic behavior of load-bearing wall polymers combined with viscous interactions between them). A computer program, BayesRelax, that deduces relaxation spectra from appropriate rheological measurements is presented and made accessible through a Web interface. BayesRelax models the cell wall as a continuum of relaxing elements, and the ability of the method to resolve small differences in cell wall mechanical properties is demonstrated using tuber tissue from wild-type and transgenic potatoes (Solanum tuberosum) that differ in rhamnogalacturonan I side chain structure. PMID:21075961
Plant cell wall engineering: applications in biofuel production and improved human health.
Burton, Rachel A; Fincher, Geoffrey B
2014-04-01
Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production. Copyright © 2013. Published by Elsevier Ltd.
Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E
2014-01-01
Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. PMID:24654730
Marita, Jane M; Hatfield, Ronald D; Rancour, David M; Frost, Kenneth E
2014-06-01
Grasses, such as Zea mays L. (maize), contain relatively high levels of p-coumarates (pCA) within their cell walls. Incorporation of pCA into cell walls is believed to be due to a hydroxycinnamyl transferase that couples pCA to monolignols. To understand the role of pCA in maize development, the p-coumaroyl CoA:hydroxycinnamyl alcohol transferase (pCAT) was isolated and purified from maize stems. Purified pCAT was subjected to partial trypsin digestion, and peptides were sequenced by tandem mass spectrometry. TBLASTN analysis of the acquired peptide sequences identified a single full-length maize cDNA clone encoding all the peptide sequences obtained from the purified enzyme. The cDNA clone was obtained and used to generate an RNAi construct for suppressing pCAT expression in maize. Here we describe the effects of suppression of pCAT in maize. Primary screening of transgenic maize seedling leaves using a new rapid analytical platform was used to identify plants with decreased amounts of pCA. Using this screening method, mature leaves from fully developed plants were analyzed, confirming reduced pCA levels throughout plant development. Complete analysis of isolated cell walls from mature transgenic stems and leaves revealed that lignin levels did not change, but pCA levels decreased and the lignin composition was altered. Transgenic plants with the lowest levels of pCA had decreased levels of syringyl units in the lignin. Thus, altering the levels of pCAT expression in maize leads to altered lignin composition, but does not appear to alter the total amount of lignin present in the cell walls. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra; ...
2016-10-26
Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, Jonathan D.; Smith, James A.; Mazarei, Mitra
Switchgrass (Panicum virgatum L.) is a C 4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall's natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf. The expression ofmore » a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control. Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass.« less
Aloisi, Iris; Cai, Giampiero; Faleri, Claudia; Navazio, Lorella; Serafini-Fracassini, Donatella; Del Duca, Stefano
2017-01-01
Proper growth of the pollen tube depends on an elaborate mechanism that integrates several molecular and cytological sub-processes and ensures a cell shape adapted to the transport of gametes. This growth mechanism is controlled by several molecules among which cytoplasmic and apoplastic polyamines. Spermine (Spm) has been correlated with various physiological processes in pollen, including structuring of the cell wall and modulation of protein (mainly cytoskeletal) assembly. In this work, the effects of Spm on the growth of pear pollen tubes were analyzed. When exogenous Spm (100 μM) was supplied to germinating pollen, it temporarily blocked tube growth, followed by the induction of apical swelling. This reshaping of the pollen tube was maintained also after growth recovery, leading to a 30–40% increase of tube diameter. Apical swelling was also accompanied by a transient increase in cytosolic calcium concentration and alteration of pH values, which were the likely cause for major reorganization of actin filaments and cytoplasmic organelle movement. Morphological alterations of the apical and subapical region also involved changes in the deposition of pectin, cellulose, and callose in the cell wall. Thus, results point to the involvement of Spm in cell wall construction as well as cytoskeleton organization during pear pollen tube growth. PMID:29033970
Riaz, Muhammad; Yan, Lei; Wu, Xiuwen; Hussain, Saddam; Aziz, Omar; Imran, Muhammad; Rana, Muhammad Shoaib; Jiang, Cuncang
2018-05-30
Aluminum (Al) toxicity is a major restriction for crops production on acidic soils. The primary symptom of aluminum toxicity is visible in the roots of plants. Recently, several studies reported the alleviation of Al toxicity by the application of Boron (B), however, the information how B alleviates Al toxicity is not well understood. Thus, we investigated the ameliorative response of B on Al-induced growth inhibition, oxidative damages, and variations in the cell wall components in trifoliate orange roots. The results indicated that plants under Al stress experienced a substantial decrement in root length and overall plant growth. The supply of B improved the root elongation by eliminating oxidative stress, membrane peroxidation, membrane leakage, and cell death produced under Al toxicity. Moreover, accumulation of Al on the cell wall and alteration in the cell wall components might be one of the causes resulting in the quick inhibition of root elongation under B-starvation circumstances by providing susceptible negative charges on pectin matrix for binding of Al. The results provide a useful understanding of the insight into mechanisms of B-induced mitigation of Al toxicity especially in the trifoliate orange that might be helpful in the production of crops on acidic soils. Copyright © 2018 Elsevier Inc. All rights reserved.
Xu, Bin; Sathitsuksanoh, Noppadon; Tang, Yuhong; Udvardi, Michael K; Zhang, Ji-Yi; Shen, Zhengxing; Balota, Maria; Harich, Kim; Zhang, Percival Y-H; Zhao, Bingyu
2012-01-01
Switchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations. In this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering. To our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop.
Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre
2016-08-01
GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun
2015-10-01
The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.
Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J. W. A.; Geitmann, Anja
2013-01-01
Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions. PMID:23516452
Zhang, Wujun; Wu, Longmei; Ding, Yanfeng; Yao, Xiong; Wu, Xiaoran; Weng, Fei; Li, Ganghua; Liu, Zhenghui; Tang, She; Ding, Chengqiang; Wang, Shaohua
2017-09-01
Stem mechanical strength is an important agricultural quantitative trait that is closely related to lodging resistance in rice, which is known to be reduced by fertilizer with higher levels of nitrogen. To understand the mechanism that regulates stem mechanical strength in response to nitrogen, we analysed stem morphology, anatomy, mechanical properties, cell wall components, and expression of cell wall-related genes, in two varieties of japonica rice, namely, Wuyunjing23 (lodging-resistant variety) and W3668 (lodging-susceptible variety). The results showed that higher nitrogen fertilizer increased the lodging index in both varieties due to a reduction in breaking strength and bending stress, and these changes were larger in W3668. Cellulose content decreased slightly under higher nitrogen fertilizer, whereas lignin content reduced remarkably. Histochemical staining revealed that high nitrogen application decreased lignin deposition in the secondary cell wall of the sclerenchyma cells and vascular bundle cells compared with the low nitrogen treatments, while it did not alter the pattern of cellulose deposition in these cells in both Wuyunjing23 and W3668. In addition, the expression of the genes involved in lignin biosynthesis, OsPAL, OsCoMT, Os4CL3, OsCCR, OsCAD2, OsCAD7, OsCesA4, and OsCesA7, were also down-regulated under higher nitrogen conditions at the early stage of culm growth. These results suggest that the genes involved in lignin biosynthesis are down-regulated by higher nitrogen fertilizer, which causes lignin deficiency in the secondary cell walls and the weakening of mechanical tissue structure. Subsequently, this results in these internodes with reduced mechanical strength and poor lodging resistance.
Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicans
NASA Astrophysics Data System (ADS)
El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Alsteens, David; Jackson, Desmond N.; Lipke, Peter N.; Dufrêne, Yves F.
2013-01-01
The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-d-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents.The advent of fungal pathogens that are resistant to the classic repertoire of antifungal drugs has increased the need for new therapeutic agents. A prominent example of such a novel compound is caspofungin, known to alter cell wall biogenesis by inhibiting β-1,3-d-glucan synthesis. Although much progress has been made in understanding the mechanism of action of caspofungin, little is known about its influence on the biophysical properties of the fungal cells. Here, we use atomic force microscopy (AFM) to demonstrate that caspofungin induces major remodelling of the cell surface properties of Candida albicans. Caspofungin causes major morphological and structural alterations of the cells, which correlate with a decrease of the cell wall mechanical strength. Moreover, we find that the drug induces the massive exposure of the cell adhesion protein Als1 on the cell surface and leads to increased cell surface hydrophobicity, two features that trigger cell aggregation. This behaviour is not observed in yeast species lacking Als1, demonstrating the key role that the protein plays in determining the aggregation phenotype of C. albicans. The results show that AFM opens up new avenues for understanding the molecular bases of microbe-drug interactions and for developing new therapeutic agents. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33215a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unda, Faride; Kim, Hoon; Hefer, Charles
Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. For hybrid poplar (Populus alba 9 grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sectionsmore » of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. Additionally, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. Our results suggest that the over expression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.« less
Unda, Faride; Kim, Hoon; Hefer, Charles; ...
2017-03-04
Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. For hybrid poplar (Populus alba 9 grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sectionsmore » of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. Additionally, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. Our results suggest that the over expression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.« less
Alterations in the small intestinal wall and motor function after repeated cisplatin in rat.
Uranga, J A; García-Martínez, J M; García-Jiménez, C; Vera, G; Martín-Fontelles, M I; Abalo, R
2017-07-01
Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. Male Wistar rats received saline or cisplatin (2 mg kg -1 week -1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated. © 2017 John Wiley & Sons Ltd.
Roberts, A W; Frost, A O; Roberts, E M; Haigler, C H
2004-12-01
The roles of cellulose microfibrils and cortical microtubules in establishing and maintaining the pattern of secondary-cell-wall deposition in tracheary elements were investigated with direct dyes to inhibit cellulose microfibril assembly and amiprophosmethyl to inhibit microtubule polymerization. When direct dyes were added to xylogenic cultures of Zinnia elegans L. mesophyll cells just before the onset of differentiation, the secondary cell wall was initially secreted as bands composed of discrete masses of stained material, consistent with immobilized sites of cellulose synthesis. The masses coalesced, forming truncated, sinuous or smeared thickenings, as secondary cell wall deposition continued. The absence of ordered cellulose microfibrils was confirmed by polarization microscopy and a lack of fluorescence dichroism as determined by laser scanning microscopy. Indirect immunofluorescence showed that cortical microtubules initially subtended the masses of dye-altered secondary cell wall material but soon became disorganized and disappeared. Although most of the secondary cell wall was deposited in the absence of subtending cortical microtubules in dye-treated cells, secretion remained confined to discrete regions of the plasma membrane. Examination of non-dye-treated cultures following application of microtubule inhibitors during various stages of secondary-cell-wall deposition revealed that the pattern became fixed at an early stage such that deposition remained localized in the absence of cortical microtubules. These observations indicate that cortical microtubules are required to establish, but not to maintain, patterned secondary-cell-wall deposition. Furthermore, cellulose microfibrils play a role in maintaining microtubule arrays and the integrity of the secondary-cell-wall bands during deposition.
Park, Yong Bum; Lee, Christopher M.; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J.; Kim, Seong H.
2013-01-01
Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm−1 correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm−1 intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm−1, whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm−1. Starch (amylose) gave an SFG peak at 2,904 cm−1 (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques. PMID:23995148
Park, Yong Bum; Lee, Christopher M; Koo, Bon-Wook; Park, Sunkyu; Cosgrove, Daniel J; Kim, Seong H
2013-10-01
Sum frequency generation (SFG) vibration spectroscopy can selectively detect crystalline cellulose without spectral interference from cell wall matrix components. Here, we show that the cellulose SFG spectrum is sensitive to cellulose microfibril alignment and packing within the cell wall. SFG intensity at 2,944 cm(-1) correlated well with crystalline cellulose contents of various regions of the Arabidopsis (Arabidopsis thaliana) inflorescence, while changes in the 3,320/2,944 cm(-1) intensity ratio suggest subtle changes in cellulose ordering as tissues mature. SFG analysis of two cellulose synthase mutants (irx1/cesa8 and irx3/cesa7) indicates a reduction in cellulose content without evidence of altered cellulose structure. In primary cell walls of Arabidopsis, cellulose exhibited a characteristic SFG peak at 2,920 and 3,320 cm(-1), whereas in secondary cell walls, it had peaks at 2,944 and 3,320 cm(-1). Starch (amylose) gave an SFG peak at 2,904 cm(-1) (CH methine) whose intensity increased with light exposure prior to harvest. Selective removal of matrix polysaccharides from primary cell walls by acid hydrolysis resulted in an SFG spectrum resembling that of secondary wall cellulose. Our results show that SFG spectroscopy is sensitive to the ordering of cellulose microfibrils in plant cell walls at the meso scale (nm to μm) that is important for cell wall architecture but cannot be probed by other spectroscopic or diffraction techniques.
Renault, Hugues; El Amrani, Abdelhak; Berger, Adeline; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Bouchereau, Alain; Deleu, Carole
2013-05-01
Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress. © 2012 Blackwell Publishing Ltd.
Cell wall biogenesis in Oocystis: experimental alteration of microfibril assembly and orientation.
Montezinos, D; Brown, R M
1978-01-01
Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented.
Xylem development and cell wall changes of soybean seedlings grown in space.
de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia
2008-04-01
Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth.
Xylem Development and Cell Wall Changes of Soybean Seedlings Grown in Space
de Micco, Veronica; Aronne, Giovanna; Joseleau, Jean-Paul; Ruel, Katia
2008-01-01
Background and Aims Plants growing in altered gravity conditions encounter changes in vascular development and cell wall deposition. The aim of this study was to investigate xylem anatomy and arrangement of cellulose microfibrils in vessel walls of different organs of soybean seedlings grown in Space. Methods Seeds germinated and seedlings grew for 5 d in Space during the Foton-M2 mission. The environmental conditions, other than gravity, of the ground control repeated those experienced in orbit. The seedlings developed in space were compared with those of the control test on the basis of numerous anatomical and ultrastructural parameters such as number of veins, size and shape of vessel lumens, thickness of cell walls and deposition of cellulose microfibrils. Key Results Observations made with light, fluorescence and transmission electron microscopy, together with the quantification of the structural features through digital image analysis, showed that the alterations due to microgravity do not occur at the same level in the various organs of soybean seedlings. The modifications induced by microgravity or by the indirect effect of space-flight conditions, became conspicuous only in developing vessels at the ultrastructural level. The results suggested that the orientation of microfibrils and their assembly in developing vessels are perturbed by microgravity at the beginning of wall deposition, while they are still able to orient and arrange in thicker and ordered structures at later stages of secondary wall deposition. Conclusions The process of proper cell-wall building, although not prevented, is perturbed in Space at the early stage of development. This would explain the almost unaltered anatomy of mature structures, accompanied by a slower growth observed in seedlings grown in Space than on Earth. PMID:18252765
Ganeva, V; Galutzov, B; Teissié, J
1995-12-13
The mechanism of electric field mediated macromolecule transfer inside an intact yeast cell was investigated by observing, under a microscope, the fluorescence associated to cells after pulsation in a buffer containing two different hydrophilic fluorescent dyes. In the case of a small probe such as propidium iodide, a long lived permeabilized state was induced by the field as classically observed on wall free systems. Penetration of a 70 kDa FITC dextran was obtained only by using drastic conditions and only a very limited number of yeast cells which took up macromolecules remained viable. Most dextrans were trapped in the wall. A dramatic improvement in transfer of dextrans was observed when the cells were treated by dithiothreitol before pulsation. A cytoplasmic protein leakage was detected after the electric treatment suggesting that an irreversible damage took place in the walls of many pulsed cells. Electroloading of macromolecules in intact yeast cells appears to be controlled by a field induced short lived alteration of the envelope organization.
Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins.
Peaucelle, Alexis; Louvet, Romain; Johansen, Jorunn N; Höfte, Herman; Laufs, Patrick; Pelloux, Jérome; Mouille, Grégory
2008-12-23
Plant organs are produced from meristems in a characteristic pattern. This pattern, referred to as phyllotaxis, is thought to be generated by local gradients of an information molecule, auxin. Some studies propose a key role for the mechanical properties of the cell walls in the control of organ outgrowth. A major cell-wall component is the linear alpha-1-4-linked D-GalAp pectic polysaccharide homogalacturonan (HG), which plays a key role in cell-to-cell cohesion. HG is deposited in the cell wall in a highly (70%-80%) methyl-esterified form and is subsequently de-methyl-esterified by pectin methyl-esterases (PME, EC 3.1.1.11). PME activity is itself regulated by endogenous PME inhibitor (PMEI) proteins. PME action modulates cell-wall-matrix properties and plays a role in the control of cell growth. Here, we show that the formation of flower primordia in the Arabidopsis shoot apical meristem is accompanied by the de-methyl-esterification of pectic polysaccharides in the cell walls. In addition, experimental perturbation of the methyl-esterification status of pectins within the meristem dramatically alters the phyllotactic pattern. These results demonstrate that regulated de-methyl-esterification of pectins is a key event in the outgrowth of primordia and possibly also in phyllotactic patterning.
Reem, Nathan T; Chen, Han-Yi; Hur, Manhoi; Zhao, Xuefeng; Wurtele, Eve Syrkin; Li, Xu; Li, Ling; Zabotina, Olga
2018-03-01
This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.
Esher, Shannon K; Ost, Kyla S; Kohlbrenner, Maria A; Pianalto, Kaila M; Telzrow, Calla L; Campuzano, Althea; Nichols, Connie B; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew
2018-06-01
The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion. Through phenotypic studies of a loss-of-function strain, we have demonstrated that the mar1Δ mutant has an aberrant cell surface and a defect in polysaccharide capsule attachment, resulting in attenuated virulence. Furthermore, the mar1Δ mutant displays increased staining for exposed cell wall chitin and chitosan when the cells are grown in host-like tissue culture conditions. However, HPLC analysis of whole cell walls and RT-PCR analysis of cell wall synthase genes demonstrated that this increased chitin exposure is likely due to decreased levels of glucans and mannans in the outer cell wall layers. We observed that the Mar1 protein differentially localizes to cellular membranes in a condition dependent manner, and we have further shown that the mar1Δ mutant displays defects in intracellular trafficking, resulting in a mislocalization of the β-glucan synthase catalytic subunit, Fks1. These cell surface changes influence the host-pathogen interaction, resulting in increased macrophage activation to microbial challenge in vitro. We established that several host innate immune signaling proteins are required for the observed macrophage activation, including the Card9 and MyD88 adaptor proteins, as well as the Dectin-1 and TLR2 pattern recognition receptors. These studies explore novel mechanisms by which a microbial pathogen regulates its cell surface in response to the host, as well as how dysregulation of this adaptive response leads to defective immune avoidance.
A novel sample preparation method to avoid influence of embedding medium during nano-indentation
NASA Astrophysics Data System (ADS)
Meng, Yujie; Wang, Siqun; Cai, Zhiyong; Young, Timothy M.; Du, Guanben; Li, Yanjun
2013-02-01
The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of non-embedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic material during nano-indentation can modify cell-wall properties. This leads to structural and chemical changes in the cell-wall constituents, changes that may significantly alter the material properties. Further investigation was carried out to detect the influence of different vacuum times on the cell-wall mechanical properties during the embedding procedure. Interpretation of the statistical analysis revealed no linear relationships between vacuum time and the mechanical properties of cell walls. The quantitative measurements confirm that low-viscosity resin has a rapid penetration rate early in the curing process. Finally, a novel sample preparation method aimed at preventing resin diffusion into lignocellulosic cell walls was developed using a plastic film to wrap the sample before embedding. This method proved to be accessible and straightforward for many kinds of lignocellulosic material, but is especially suitable for small, soft samples.
NASA Technical Reports Server (NTRS)
Miedema, H.; Henriksen, G. H.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
1999-01-01
Application of patch clamp techniques to higher-plant cells has been subject to the limitation that the requisite contact of the patch electrode with the cell membrane necessitates prior enzymatic removal of the plant cell wall. Because the wall is an integral component of plant cells, and because cell-wall-degrading enzymes can disrupt membrane properties, such enzymatic treatments may alter ion channel behavior. We compared ion channel activity in enzymatically isolated protoplasts of Vicia faba guard cells with that found in membranes exposed by a laser microsurgical technique in which only a tiny portion of the cell wall is removed while the rest of the cell remains intact within its tissue environment. "Laser-assisted" patch clamping reveals a new category of high-conductance (130 to 361 pS) ion channels not previously reported in patch clamp studies on plant plasma membranes. These data indicate that ion channels are present in plant membranes that are not detected by conventional patch clamp techniques involving the production of individual plant protoplasts isolated from their tissue environment by enzymatic digestion of the cell wall. Given the large conductances of the channels revealed by laser-assisted patch clamping, we hypothesize that these channels play a significant role in the regulation of ion content and electrical signalling in guard cells.
Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity
NASA Technical Reports Server (NTRS)
Kwon, M.; Bedgar, D. L.; Piastuch, W.; Davin, L. B.; Lewis, N. G.
2001-01-01
In the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15. At the end of the total space mission period (17 days), the remaining healthy harnessed plants and their vertical (upright) controls were harvested and fixed on earth. All harnessed (at 45 degrees ) plant specimens, whether grown at 1 g or in microgravity, formed compression wood. Moreover, not only the cambial cells but also the developing tracheid cells underwent significant morphological changes. This indicated that the developing tracheids from the primary cell wall expansion stage to the fully lignified maturation stage are involved in the perception and transduction of the stimuli stipulating the need for alteration of cell wall architecture. It is thus apparent that, even in a microgravity environment, woody plants can make appropriate corrections to compensate for stress gradients introduced by mechanical bending, thereby enabling compression wood to be formed. The evolutionary implications of these findings are discussed in terms of "variability" in cell wall biosynthesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.
The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less
Grabber, John H; Hatfield, Ronald D; Lu, Fachuang; Ralph, John
2008-09-01
Incorporating ester interunit linkages into lignin could facilitate fiber delignification and utilization. In model studies with maize cell walls, we examined how partial substitution of coniferyl alcohol (a normal monolignol) with coniferyl ferulate (an ester conjugate from lignan biosynthesis) alters the formation and alkaline extractability of lignin and the enzymatic hydrolysis of structural polysaccharides. Coniferyl ferulate moderately reduced lignification and cell-wall ferulate copolymerization with monolignols. Incorporation of coniferyl ferulate increased lignin extractability by up to 2-fold in aqueous NaOH, providing an avenue for producing fiber with less noncellulosic and lignin contamination or of delignifying at lower temperatures. Cell walls lignified with coniferyl ferulate were more readily hydrolyzed with fibrolytic enzymes, both with and without alkaline pretreatment. Based on our results, bioengineering of plants to incorporate coniferyl ferulate into lignin should enhance lignocellulosic biomass saccharification and particularly pulping for paper production.
Bowman, Shaun M; Piwowar, Amy; Ciocca, Maria; Free, Stephen J
2005-01-01
Two Neurospora mutants with a phenotype that includes a tight colonial growth pattern, an inability to form conidia and an inability to form protoperithecia have been isolated and characterized. The relevant mutations were mapped to the same locus on the sequenced Neurospora genome. The mutations responsible for the mutant phenotype then were identified by examining likely candidate genes from the mutant genomes at the mapped locus with PCR amplification and a sequencing assay. The results demonstrate that a map and sequence strategy is a feasible way to identify mutant genes in Neurospora. The gene responsible for the phenotype is a putative alpha-1,2-mannosyltransferase gene. The mutant cell wall has an altered composition demonstrating that the gene functions in cell wall biosynthesis. The results demonstrate that the mnt-1 gene is required for normal cell wall biosynthesis, morphology and for the regulation of asexual development.
Ost, Kyla S; Esher, Shannon K; Leopold Wager, Chrissy M; Walker, Louise; Wagener, Jeanette; Munro, Carol; Wormley, Floyd L; Alspaugh, J Andrew
2017-01-31
Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan. Infectious microorganisms have developed many ways to avoid recognition by the host immune system. For example, pathogenic fungi alter their cell surfaces to mask immunogenic epitopes. We have created a fungal strain with a targeted mutation in a pH response pathway that is unable to properly organize its cell wall, resulting in a dramatic immune reaction during infection. This mutant cell wall is defective in hiding important cell wall components, such as the chito-oligomers chitin and chitosan. By creating a series of cell wall mutants, we demonstrated that the degree of chito-oligomer exposure correlates with the intensity of innate immune cell activation. This activation requires a combination of host receptors to recognize and respond to these infecting microorganisms. Therefore, these experiments explored host-pathogen interactions that determine the degree of the subsequent inflammatory response and the likely outcome of infection. Copyright © 2017 Ost et al.
Gilbert, Matthew K; Turley, Rickie B; Kim, Hee Jin; Li, Ping; Thyssen, Gregory; Tang, Yuhong; Delhom, Christopher D; Naoumkina, Marina; Fang, David D
2013-06-17
Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutant in Upland cotton (Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6 mm) at maturity. This presents an excellent model system for studying the underlying molecular and cellular processes involved with cotton fiber elongation. Previous reports have characterized Li1 at early cell wall elongation and during later secondary cell wall synthesis, however there has been very limited analysis of the transition period between these developmental time points. Physical and morphological measurements of the Li1 mutant fibers were conducted, including measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal and other pathways related to fiber development, especially pertaining to the transition stage from elongation to secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed. Linkage mapping using a population of 2,553 F2 individuals identified SSR markers associated with the Li1 genetic locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome sequences permitted additional analysis of the region containing the Li1 gene. The early termination of fiber elongation in the Li1 mutant is likely controlled by an early upstream regulatory factor resulting in the altered regulation of hundreds of downstream genes. Several elongation-related genes that exhibited altered expression profiles in the Li1 mutant were identified. Molecular markers closely associated with the Li1 locus were developed. Results presented here will lay the foundation for further investigation of the genetic and molecular mechanisms of fiber elongation.
Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; ...
2015-08-05
Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues duringmore » regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.« less
DEFECTIVE KERNEL1 (DEK1) Regulates Cell Walls in the Leaf Epidermis1
Amanda, Dhika; Ingram, Gwyneth C.
2016-01-01
The plant epidermis is crucial to survival, regulating interactions with the environment and controlling plant growth. The phytocalpain DEFECTIVE KERNEL1 (DEK1) is a master regulator of epidermal differentiation and maintenance, acting upstream of epidermis-specific transcription factors, and is required for correct cell adhesion. It is currently unclear how changes in DEK1 lead to cellular defects in the epidermis and the pathways through which DEK1 acts. We have combined growth kinematic studies, cell wall analysis, and transcriptional analysis of genes downstream of DEK1 to determine the cause of phenotypic changes observed in DEK1-modulated lines of Arabidopsis (Arabidopsis thaliana). We reveal a novel role for DEK1 in the regulation of leaf epidermal cell wall structure. Lines with altered DEK1 activity have epidermis-specific changes in the thickness and polysaccharide composition of cell walls that likely underlie the loss of adhesion between epidermal cells in plants with reduced levels of DEK1 and changes in leaf shape and size in plants constitutively overexpressing the active CALPAIN domain of DEK1. Calpain-overexpressing plants also have increased levels of cellulose and pectins in epidermal cell walls, and this is correlated with the expression of several cell wall-related genes, linking transcriptional regulation downstream of DEK1 with cellular effects. These findings significantly advance our understanding of the role of the epidermal cell walls in growth regulation and establish a new role for DEK1 in pathways regulating epidermal cell wall deposition and remodeling. PMID:27756823
Calcium signaling in plant cells in altered gravity
NASA Astrophysics Data System (ADS)
Kordyum, E. L.
2003-10-01
Changes in the intracellular Ca 2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca 2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80 th, a review highlighting the performed research and the possible significance of such Ca 2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension → alterations in the physicochemical properties of the membrane → changes in membrane permeability, ion transport, membrane-bound enzyme activity, etc. → metabolism rearrangements → physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca 2+ messenger system. Changes in Ca 2+ influx/efflux and possible pathways of Ca 2+ signaling in plant cell biochemical regulation in altered gravity are discussed.
Unda, Faride; Kim, Hoon; Hefer, Charles; Ralph, John; Mansfield, Shawn D
2017-07-01
Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. Hybrid poplar (Populus alba × grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sections of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. In addition, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. The results suggest that the overexpression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Escudero, Viviana; Jordá, Lucía; Sopeña-Torres, Sara; Mélida, Hugo; Miedes, Eva; Muñoz-Barrios, Antonio; Swami, Sanjay; Alexander, Danny; McKee, Lauren S; Sánchez-Vallet, Andrea; Bulone, Vincent; Jones, Alan M; Molina, Antonio
2017-11-01
Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gβ- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
The Study of Leukocyte Functions in a Rotating Wall Vessel
NASA Technical Reports Server (NTRS)
Trial, JoAnn
1998-01-01
The objective of this study was to investigate the behavior of leukocytes under free-fall conditions in a rotating wall vessel. In such a vessel, the tendency of a cell to fall in response to gravity is opposed by the rotation of the vessel and the culture medium within, keeping the cells in suspension without fluid shear. Previous reports indicated that such functions as lymphocyte migration through collagen matrix or monocyte cytokine secretion are altered under these conditions, and these changes correlate with similar functional defects of cultured cells seen during spaceflight.
Pereira, L A R; Schoor, S; Goubet, F; Dupree, P; Moffatt, B A
2006-11-01
Pectin methyl-esterification is catalysed by S-adenosyl-L: -methionine (SAM)-dependent methyltransferases. As deficiency in adenosine kinase (ADK; EC 2.7.1.20) activity impairs SAM recycling and utilization, we investigated the relationship between ADK-deficiency and the degree of pectin methyl-esterification in cell walls of Arabidopsis thaliana. The distribution patterns of epitopes associated with methyl-esterified homogalacturonan in leaves and hypocotyls of wild-type (WT) and ADK-deficient plants were examined using immunolocalization and biochemical techniques. JIM5 and LM7 epitopes, characteristic of low esterified pectins, were more irregularly distributed along the cell wall in ADK-deficient plants than in WT cell walls. In addition, epitopes recognized by JIM7, characteristic of pectins with a higher degree of methyl-esterification, were less abundant in ADK-deficient leaves and hypocotyls. Since de-esterified pectins have enhanced adhesion properties, we propose that the higher abundance and the altered distribution of low methyl-esterified pectin in ADK-deficient cell walls lead to the leaf shape abnormalities observed in these plants.
Zenoni, Sara; Reale, Lara; Tornielli, Giovanni Battista; Lanfaloni, Luisa; Porceddu, Andrea; Ferrarini, Alberto; Moretti, Chiaraluce; Zamboni, Anita; Speghini, Adolfo; Ferranti, Francesco; Pezzotti, Mario
2004-02-01
The expansins comprise a family of proteins that appear to be involved in the disruption of the noncovalent bonds between cellulose microfibrils and cross-linking glycans, thereby promoting wall creep. To understand better the expansion process in Petunia hybrida (petunia) flowers, we isolated a cDNA corresponding to the PhEXP1 alpha-expansin gene of P. hybrida. Evaluation of the tissue specificity and temporal expression pattern demonstrated that PhEXP1 is preferentially expressed in petal limbs during development. To determine the function of PhEXP1, we used a transgenic antisense approach, which was found to cause a decrease in petal limb size, a reduction in the epidermal cell area, and alterations in cell wall morphology and composition. The diminished cell wall thickness accompanied by a reduction in crystalline cellulose indicates that the activity of PhEXP1 is associated with cellulose metabolism. Our results suggest that expansins play a role in the assembly of the cell wall by affecting either cellulose synthesis or deposition.
Zenoni, Sara; Reale, Lara; Tornielli, Giovanni Battista; Lanfaloni, Luisa; Porceddu, Andrea; Ferrarini, Alberto; Moretti, Chiaraluce; Zamboni, Anita; Speghini, Adolfo; Ferranti, Francesco; Pezzotti, Mario
2004-01-01
The expansins comprise a family of proteins that appear to be involved in the disruption of the noncovalent bonds between cellulose microfibrils and cross-linking glycans, thereby promoting wall creep. To understand better the expansion process in Petunia hybrida (petunia) flowers, we isolated a cDNA corresponding to the PhEXP1 α-expansin gene of P. hybrida. Evaluation of the tissue specificity and temporal expression pattern demonstrated that PhEXP1 is preferentially expressed in petal limbs during development. To determine the function of PhEXP1, we used a transgenic antisense approach, which was found to cause a decrease in petal limb size, a reduction in the epidermal cell area, and alterations in cell wall morphology and composition. The diminished cell wall thickness accompanied by a reduction in crystalline cellulose indicates that the activity of PhEXP1 is associated with cellulose metabolism. Our results suggest that expansins play a role in the assembly of the cell wall by affecting either cellulose synthesis or deposition. PMID:14742876
Courtois, Audrey; Nusgens, Betty V; Hustinx, Roland; Namur, Gauthier; Gomez, Pierre; Somja, Joan; Defraigne, Jean-Olivier; Delvenne, Philippe; Michel, Jean-Baptiste; Colige, Alain C; Sakalihasan, Natzi
2013-10-01
Rupture of abdominal aortic aneurysms (AAAs) leads to a significant morbidity and mortality in aging populations, and its prediction would be most beneficial to public health. Spots positive for uptake of (18)F-FDG detected by PET are found in 12% of AAA patients (PET+), who are most often symptomatic and at high rupture risk. Comparing the (18)F-FDG-positive site with a negative site from the same aneurysm and with samples collected from AAA patients with no (18)F-FDG uptake should allow the discrimination of biologic alterations that would help in identifying markers predictive of rupture. Biopsies of the AAA wall were obtained from patients with no (18)F-FDG uptake (PET0, n = 10) and from PET+ patients (n = 8), both at the site positive for uptake and at a distant negative site of the aneurysmal wall. Samples were analyzed by immunohistochemistry, quantitative real-time polymerase chain reaction, and zymography. The sites of the aneurysmal wall with a positive (18)F-FDG uptake were characterized by a strikingly increased number of adventitial inflammatory cells, highly proliferative, and by a drastic reduction of smooth muscle cells (SMCs) in the media as compared with their negative counterpart and with the PET0 wall. The expression of a series of genes involved in the maintenance and remodeling of the wall was significantly modified in the negative sites of PET+, compared with the PET0 wall, suggesting a systemic alteration of the aneurysmal wall. Furthermore, a striking increase of several matrix metalloproteinases (MMPs), notably the MMP1 and MMP13 collagenases, was observed in the positive sites, mainly in the adventitia. Moreover, PET+ patients were characterized by a higher circulating C-reactive protein. Positive (18)F-FDG uptake in the aneurysmal wall is associated with an active inflammatory process characterized by a dense infiltrate of proliferating leukocytes in the adventitia and an increased circulating C-reactive protein. Moreover, a loss of SMC in the media and alterations of the expression of genes involved in the remodeling of adventitia and collagen degradation potentially participate in the weakening of the aneurysmal wall preceding rupture.
Cross-stream distribution of red blood cells in sickle-cell disease
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Lam, Wilbur; Graham, Michael
2017-11-01
Experiments revealed that in blood flow, red blood cells (RBCs) tend to migrate away from the vessel walls, leaving a cell-free layer near the walls, while leukocytes and platelets tend to marginate towards the vessel walls. This segregation behavior of different cellular components in blood flow can be driven by their differences in stiffness and shape. An alteration of this segregation behavior may explain endothelial dysfunction and pain crisis associated with sickle-cell disease (SCD). It is hypothesized that the sickle RBCs, which are considerably stiffer than the healthy RBCs, may marginate towards the vessel walls and exert repeated damage to the endothelial cells. Direct simulations are performed to study the flowing suspensions of deformable biconcave discoids and stiff sickles representing healthy and sickle cells, respectively. It is observed that the sickles exhibit a strong margination towards the walls. The biconcave discoids in flowing suspensions undergo a so-called tank-treading motion, while the sickles behave as rigid bodies and undergo a tumbling motion. The margination behavior and tumbling motion of the sickles may help substantiate the aforementioned hypothesis of the mechanism for the SCD complications and shed some light on the design of novel therapies.
Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A; Hahn, Michael G; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A
2013-08-13
There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure.
Zhao, Qiao; Tobimatsu, Yuki; Zhou, Rui; Pattathil, Sivakumar; Gallego-Giraldo, Lina; Fu, Chunxiang; Jackson, Lisa A.; Hahn, Michael G.; Kim, Hoon; Chen, Fang; Ralph, John; Dixon, Richard A.
2013-01-01
There is considerable debate over the capacity of the cell wall polymer lignin to incorporate unnatural monomer units. We have identified Tnt1 retrotransposon insertion mutants of barrel medic (Medicago truncatula) that show reduced lignin autofluorescence under UV microscopy and red coloration in interfascicular fibers. The phenotype is caused by insertion of retrotransposons into a gene annotated as encoding cinnamyl alcohol dehydrogenase, here designated M. truncatula CAD1. NMR analysis indicated that the lignin is derived almost exclusively from coniferaldehyde and sinapaldehyde and is therefore strikingly different from classical lignins, which are derived mainly from coniferyl and sinapyl alcohols. Despite such a major alteration in lignin structure, the plants appear normal under standard conditions in the greenhouse or growth chamber. However, the plants are dwarfed when grown at 30 °C. Glycome profiling revealed an increased extractability of some xylan and pectin epitopes from the cell walls of the cad1-1 mutant but decreased extractability of others, suggesting that aldehyde-dominant lignin significantly alters cell wall structure. PMID:23901113
Dhar, Supurna; Kumari, Hansi; Balasubramanian, Deepak; Mathee, Kalai
2018-01-01
The bacterial cell-wall that forms a protective layer over the inner membrane is called the murein sacculus - a tightly cross-linked peptidoglycan mesh unique to bacteria. Cell-wall synthesis and recycling are critical cellular processes essential for cell growth, elongation and division. Both de novo synthesis and recycling involve an array of enzymes across all cellular compartments, namely the outer membrane, periplasm, inner membrane and cytoplasm. Due to the exclusivity of peptidoglycan in the bacterial cell-wall, these players are the target of choice for many antibacterial agents. Our current understanding of cell-wall biochemistry and biogenesis in Gram-negative organisms stems mostly from studies of Escherichia coli. An incomplete knowledge on these processes exists for the opportunistic Gram-negative pathogen, Pseudomonas aeruginosa. In this review, cell-wall synthesis and recycling in the various cellular compartments are compared and contrasted between E. coli and P. aeruginosa. Despite the fact that there is a remarkable similarity of these processes between the two bacterial species, crucial differences alter their resistance to β-lactams, fluoroquinolones and aminoglycosides. One of the common mediators underlying resistance is the amp system whose mechanism of action is closely associated with the cell-wall recycling pathway. The activation of amp genes results in expression of AmpC β-lactamase through its cognate regulator AmpR which further regulates multi-drug resistance. In addition, other cell-wall recycling enzymes also contribute to antibiotic resistance. This comprehensive summary of the information should spawn new ideas on how to effectively target cell-wall processes to combat the growing resistance to existing antibiotics.
How reactive fluids alter fracture walls and affect shale-matrix accessibility
NASA Astrophysics Data System (ADS)
Fitts, J. P.; Deng, H.; Peters, C. A.
2014-12-01
Predictions of mass transfer across fracture boundaries and fluid flow in fracture networks provide fundamental inputs into risk and life cycle assessments of geologic energy technologies including oil and gas extraction, geothermal energy systems and geologic CO2 storage. However, major knowledge gaps exist due to the lack of experimental observations of how reactive fluids alter the pore structures and accessible surface area within fracture boundaries that control the mass transfer of organics, metals and salts, and influence fluid flow within the fracture. To investigate the fracture and rock matrix properties governing fracture boundary alteration, we developed a new flow-through cell that enables time-dependent 2D x-ray imaging of mineral dissolution and/or precipitation at a fracture surface. The parallel plate design provides an idealized fracture geometry to investigate the relationship between flow rate, reaction rate, and mineral spatial heterogeneity and variation. In the flow-cell, a carbonate-rich sample of Eagle Ford shale was reacted with acidified brine. The extent and rate of mineral dissolution were correlated with calcite abundance relative to less soluble silicate minerals. Three-dimensional x-ray tomography of the reacted fracture wall shows how calcite dissolution left behind a porous network of silicate minerals. And while this silicate network essentially preserved the location of the initial fracture wall, the pore network structures within the fracture boundary were dramatically altered, such that the accessible surface area of matrix components increased significantly. In a second set of experiments with a limestone specimen, however, the extent of dissolution and retreat of the fracture wall was not strictly correlated with the occurrence of calcite. Instead, the pattern and extent of dissolution suggested secondary causes such as calcite morphology, the presence of argillaceous minerals and other diagenetic features. Our experiments show that while calcite dissolution is the primary geochemical driver of fracture wall alterations, hydrodynamic properties and matrix accessibility within fracture boundaries evolve based on a complex relationship between mineral spatial heterogeneity and variation, fluid chemistry and flow rate.
Changes in root cap pH are required for the gravity response of the Arabidopsis root
NASA Technical Reports Server (NTRS)
Fasano, J. M.; Swanson, S. J.; Blancaflor, E. B.; Dowd, P. E.; Kao, T. H.; Gilroy, S.
2001-01-01
Although the columella cells of the root cap have been identified as the site of gravity perception, the cellular events that mediate gravity signaling remain poorly understood. To determine if cytoplasmic and/or wall pH mediates the initial stages of root gravitropism, we combined a novel cell wall pH sensor (a cellulose binding domain peptide-Oregon green conjugate) and a cytoplasmic pH sensor (plants expressing pH-sensitive green fluorescent protein) to monitor pH dynamics throughout the graviresponding Arabidopsis root. The root cap apoplast acidified from pH 5.5 to 4.5 within 2 min of gravistimulation. Concomitantly, cytoplasmic pH increased in columella cells from 7.2 to 7.6 but was unchanged elsewhere in the root. These changes in cap pH preceded detectable tropic growth or growth-related pH changes in the elongation zone cell wall by 10 min. Altering the gravity-related columella cytoplasmic pH shift with caged protons delayed the gravitropic response. Together, these results suggest that alterations in root cap pH likely are involved in the initial events that mediate root gravity perception or signal transduction.
Conn, Simon J; Gilliham, Matthew; Athman, Asmini; Schreiber, Andreas W; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A; Hirschi, Kendal D; Webb, Alex A R; Burton, Rachel; Kaiser, Brent N; Tyerman, Stephen D; Leigh, Roger A
2011-01-01
The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis <10 mM versus mesophyll >60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.
Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong
2017-01-01
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the “Gros Michel” banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. PMID:28468818
Qin, Shiwen; Ji, Chunyan; Li, Yunfeng; Wang, Zhenzhong
2017-07-05
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity. Copyright © 2017 Qin et al.
Fujikura, Ushio; Elsaesser, Lore; Breuninger, Holger; Sánchez-Rodríguez, Clara; Ivakov, Alexander; Laux, Thomas; Findlay, Kim; Persson, Staffan; Lenhard, Michael
2014-01-01
Growth of plant organs relies on cell proliferation and expansion. While an increasingly detailed picture about the control of cell proliferation is emerging, our knowledge about the control of cell expansion remains more limited. We demonstrate here that the internal-motor kinesin AtKINESIN-13A (AtKIN13A) limits cell expansion and cell size in Arabidopsis thaliana, with loss-of-function atkin13a mutants forming larger petals with larger cells. The homolog, AtKINESIN-13B, also affects cell expansion and double mutants display growth, gametophytic and early embryonic defects, indicating a redundant role of the two genes. AtKIN13A is known to depolymerize microtubules and influence Golgi motility and distribution. Consistent with this function, AtKIN13A interacts genetically with ANGUSTIFOLIA, encoding a regulator of Golgi dynamics. Reduced AtKIN13A activity alters cell wall structure as assessed by Fourier-transformed infrared-spectroscopy and triggers signalling via the THESEUS1-dependent cell-wall integrity pathway, which in turn promotes the excess cell expansion in the atkin13a mutant. Thus, our results indicate that the intracellular activity of AtKIN13A regulates cell expansion and wall architecture via THESEUS1, providing a compelling case of interplay between cell wall integrity sensing and expansion. PMID:25232944
Electron Microscopy of Staphylococcus aureus Cell Wall Lysis
Virgilio, R.; González, C.; Muñoz, Nubia; Mendoza, Silvia
1966-01-01
Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018–2024. 1966.—A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents. Images PMID:5939482
Electron microscopy of Staphylococcus aureus cell wall lysis.
Virgilio, R; González, C; Muñoz, N; Mendoza, S
1966-05-01
Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.
Parre, Elodie; Geitmann, Anja
2005-02-01
The cell wall is one of the structural key players regulating pollen tube growth, since plant cell expansion depends on an interplay between intracellular driving forces and the controlled yielding of the cell wall. Pectin is the main cell wall component at the growing pollen tube apex. We therefore assessed its role in pollen tube growth and cytomechanics using the enzymes pectinase and pectin methyl esterase (PME). Pectinase activity was able to stimulate pollen germination and tube growth at moderate concentrations whereas higher concentrations caused apical swelling or bursting in Solanum chacoense Bitt. pollen tubes. This is consistent with a modification of the physical properties of the cell wall affecting its extensibility and thus the growth rate, as well as its capacity to withstand turgor. To prove that the enzyme-induced effects were due to the altered cell wall mechanics, we subjected pollen tubes to micro-indentation experiments. We observed that cellular stiffness was reduced and visco-elasticity increased in the presence of pectinase. These are the first mechanical data that confirm the influence of the amount of pectins in the pollen tube cell wall on the physical parameters characterizing overall cellular architecture. Cytomechanical data were also obtained to analyze the role of the degree of pectin methyl-esterification, which is known to exhibit a gradient along the pollen tube axis. This feature has frequently been suggested to result in a gradient of the physical properties characterizing the cell wall and our data provide, for the first time, mechanical support for this concept. The gradient in cell wall composition from apical esterified to distal de-esterified pectins seems to be correlated with an increase in the degree of cell wall rigidity and a decrease of visco-elasticity. Our mechanical approach provides new insights concerning the mechanics of pollen tube growth and the architecture of living plant cells.
Excess plasma membrane and effects of ionic amphipaths on mechanics of outer hair cell lateral wall.
Morimoto, Noriko; Raphael, Robert M; Nygren, Anders; Brownell, William E
2002-05-01
The interaction between the outer hair cell (OHC) lateral wall plasma membrane and the underlying cortical lattice was examined by a morphometric analysis of cell images during cell deformation. Vesiculation of the plasma membrane was produced by micropipette aspiration in control cells and cells exposed to ionic amphipaths that alter membrane mechanics. An increase of total cell and vesicle surface area suggests that the plasma membrane possesses a membrane reservoir. Chlorpromazine (CPZ) decreased the pressure required for vesiculation, whereas salicylate (Sal) had no effect. The time required for vesiculation was decreased by CPZ, indicating that CPZ decreases the energy barrier required for vesiculation. An increase in total volume is observed during micropipette aspiration. A deformation-induced increase in hydraulic conductivity is also seen in response to micropipette-applied fluid jet deformation of the lateral wall. Application of CPZ and/or Sal decreased this strain-induced hydraulic conductivity. The impact of ionic amphipaths on OHC plasma membrane and lateral wall mechanics may contribute to their effects on OHC electromotility and hearing.
Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.
Cid, V J; Durán, A; del Rey, F; Snyder, M P; Nombela, C; Sánchez, M
1995-01-01
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle. PMID:7565410
Genetic resources for maize cell wall biology.
Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C
2009-12-01
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.
Phyo, Pyae; Wang, Tuo; Xiao, Chaowen; Anderson, Charles T; Hong, Mei
2017-09-11
Significant cellulose-pectin interactions in plant cell walls have been reported recently based on 2D 13 C solid-state NMR spectra of intact cell walls, but how these interactions affect cell growth has not been probed. Here, we characterize two Arabidopsis thaliana lines with altered expression of the POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1) gene, which encodes a polygalacturonase that cleaves homogalacturonan (HG). PGX1 AT plants overexpress PGX1, have HG with lower molecular weight, and grow larger, whereas pgx1-2 knockout plants have HG with higher molecular weight and grow smaller. Quantitative 13 C solid-state NMR spectra show that PGX1 AT cell walls have lower galacturonic acid and xylose contents and higher HG methyl esterification than controls, whereas high molecular weight pgx1-2 walls have similar galacturonic acid content and methyl esterification as controls. 1 H-transferred 13 C INEPT spectra indicate that the interfibrillar HG backbones are more aggregated whereas the RG-I side chains are more dispersed in PGX1 AT cell walls than in pgx1-2 walls. In contrast, the pectins that are close to cellulose become more mobile and have weaker cross peaks with cellulose in PGX1 AT walls than in pgx1-2 walls. Together, these results show that polygalacturonase-mediated plant growth is accompanied by increased esterification and decreased cross-linking of HG, increased aggregation of interfibrillar HG, and weaker HG-cellulose interactions. These structural and dynamical differences give molecular insights into how pectins influence wall dynamics during cell growth.
The Bbgas3 β-glucanosyltransferase contributes to fungal adaptation to extreme alkaline pH.
Luo, Zhibing; Zhang, Tongbing; Liu, Pengfei; Bai, Yuting; Chen, Qiyan; Zhang, Yongjun; Keyhani, Nemat O
2018-05-25
Fungal β-1,3-glucanosyltransferases are cell wall remodeling enzymes implicated in stress response, cell wall integrity, and virulence, with most fungal genomes containing multiple members. The insect pathogenic fungus Beauveria bassiana displays robust growth over a wide pH range (pH = 4-10). Random insertion mutant library screening for increased sensitivity to alkaline (pH 10) growth conditions resulted in the identification and mapping of a mutant to a β-1,3-glucanosyltransferase gene ( Bbgas3 ). Bbgas3 expression was pH dependent and regulated by the PacC transcription factor, that activates genes in response to neutral/alkaline growth conditions. Targeted gene-knockout of Bbgas3 resulted in reduced growth under alkaline conditions, with only minor effects of increased sensitivity to cell wall stress (Congo Red and calcofluor white), and no significant effects on fungal sensitivity to oxidative or osmotic stress. The cell walls of ΔBbgas3 aerial conidia were thinner than wild type and complemented strains in response to alkaline conditions, and β-1,3-glucan antibody and lectin staining revealed alterations in cell surface carbohydrate epitopes. The ΔBbgas3 mutant displayed alterations in cell wall chitin and carbohydrate content in response to alkaline pH. Insect bioassays revealed impaired virulence for the ΔBbgas3 mutant depending upon the pH of the media on which the conidia were grown and harvested. Unexpectedly, a decreased lethal time to kill (LT 50 , i.e. increased virulence) was seen for the mutant using intra-hemocoel injection assays using conidia grown at acidic pH (5.6). These data show that BbGas3 acts as a pH-responsive cell wall remodeling enzyme involved in resistance to extreme pH (>9). Importance Little is known about adaptations required for growth at high (>9) pH. Here, we show that a specific fungal membrane remodelling β-1,3-glucanosyltransferase ( Bbgas3 ), regulated by the pH-responsive PacC transcription factor forms a critical aspect of the ability of the insect pathogenic fungus, Beauveria bassiana to grow at extreme pH. Loss of Bbgas3 resulted in a unique decreased ability to grow at high pH, with little to no effects seen with respect to other stress conditions, i.e. cell wall integrity, osmotic, and oxidative stress. However, pH-dependent alternations in cell wall properties and virulence were noted for the ΔBbg as3 mutant. These data provide a mechanistic insight into the importance of specific cell wall structure required to stabilize the cell at high pH and link it to the PacC/Pal/Rim pH-sensor and regulatory system. Copyright © 2018 American Society for Microbiology.
From microgravity to osmotic conditions: mechanical integration of plant cells in response to stress
NASA Astrophysics Data System (ADS)
Wojtaszek, Przemyslaw; Kasprowicz, Anna; Michalak, Michal; Janczara, Renata; Volkmann, Dieter; Baluska, Frantisek
Chemical reactions and interactions between molecules are commonly thought of as being at the basis of Life. Research of recent years, however, is more and more evidently indicating that physical forces are profoundly affecting the functioning of life at all levels of its organiza-tion. To detect and to respond to such forces, plant cells need to be integrated mechanically. Cell walls are the outermost functional zone of plant cells. They surround the individual cells, and also form a part of the apoplast. In cell suspensions, cell walls are embedded in the cul-ture medium which can be considered as a superapoplast. Through physical and chemical interactions they provide a basis for the structural and functional cell wall-plasma membrane-cytoskeleton (WMC) continuum spanning the whole cell. Here, the working of WMC contin-uum, and the participation of signalling molecules, like NO, would be presented in the context of plant responses to stress. In addition, the effects of the changing composition of WMC continuum will be considered, with particular attention paid to the modifications of the WMC components. Plant cells are normally adapted to changing osmotic conditions, resulting from variable wa-ter availability. The appearance of the osmotic stress activates adaptory mechanisms. If the strength of osmotic stress grows relatively slowly over longer period of time, the cells are able to adapt to conditions that are lethal to non-adapted cells. During stepwise adaptation of tobacco BY-2 suspension cells to the presence of various osmotically active agents, cells diverged into independent, osmoticum type-specific lines. In response to ionic agents (NaCl, KCl), the adhe-sive properties were increased and randomly dividing cells formed clumps, while cells adapted to nonionic osmotica (mannitol, sorbitol, PEG) revealed ordered pattern of precisely positioned cell divisions, resulting in the formation of long cell files. Changes in the growth patterns were accompanied by the alterations in the composition of wall proteins and polysaccharides. With respect to the cytoskeleton, in cells exposed to short-term osmotic stress significant rearrange-ments were observed. Surprisingly, the analyses of microfilaments and microtubules in adapted and in non-adapted, normal BY-2 cells, revealed no significant changes. It seems that upon prolonged exposure to osmotic stress conditions selective and adaptive alterations in wall com-position were occurring. Walls of cells grown in the presence of ionic agents were homogenous, while longitudinal walls and cross-walls in cells adapted to nonionic agents were significantly different. This might affect the anchorage of the cytoskeleton in the walls and modify the func-tioning of the whole WMC continuum. In this way, cell's mechanical balance restoration will be ensured and, in consequence, cells will be able to resist osmotic pressure and divide under severe stress conditions. In plants, cross-walls within cell files of axial organs exhibit specific properties that allow them to act as domains of contact and intense intercellular communica-tion, and the sites of the anchorage of cytoskeleton. As a further consequence, also cell-to-cell interactions would be affected. MM and RJ are students of biotechnology at Adam Mickiewicz University. The data coming from the authors' lab come from research supported by the DAAD scholarship to AK, and Alexander von Humboldt Research Fellowship and Polish Ministry of Science and Higher Edu-cation grants PBZ-KBN-110/P04/2004, N N303 294434, N N301 164435, and N N303 360735 to PW.
Lemme-Dumit, J M; Polti, M A; Perdigón, G; Galdeano, C Maldonado
2018-01-29
The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.
Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto
2016-01-01
Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. PMID:27605715
Muthaiyan, A; Martin, E M; Natesan, S; Crandall, P G; Wilkinson, B J; Ricke, S C
2012-05-01
The objectives of this study were to evaluate the antistaphylococcal effect and elucidate the mechanism of action of orange essential oil against antibiotic-resistant Staphylococcus aureus strains. The inhibitory effect of commercial orange essential oil (EO) against six Staph. aureus strains was tested using disc diffusion and agar dilution methods. The mechanism of EO action on MRSA was analysed by transcriptional profiling. Morphological changes of EO-treated Staph. aureus were examined using transmission electron microscopy. Results showed that 0·1% of terpeneless cold-pressed Valencia orange oil (CPV) induced the cell wall stress stimulon consistent with the inhibition of cell wall synthesis. Transmission electron microscopic observation revealed cell lysis and suggested a cell wall lysis-related mechanism of CPV. CPV inhibits the growth of Staph. aureus, causes gene expression changes consistent with the inhibition of cell wall synthesis, and triggers cell lysis. Multiple antibiotics resistance is becoming a serious problem in the management of Staph. aureus infections. In this study, the altered expression of cell wall-associated genes and subsequent cell lysis in MRSA caused by CPV suggest that it may be a potential antimicrobial agent to control antibiotic-resistant Staph. aureus. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Ishii, Tadashi; Matsunaga, Toshiro; Hayashi, Noriko
2001-01-01
Boron (B) deficiency results in inhibition of pumpkin (Cucurbia moschata Duchesne) growth that is accompanied by swelling of the cell walls. Monomeric rhamnogalacturonan II (mRG-II) accounted for 80% to 90% of the total RG-II in B-deficient walls, whereas the borate ester cross-linked RG-II dimer (dRG-II-B) accounted for more than 80% of the RG-II in control plants. The results of glycosyl residue and glycosyl linkage composition analyses of the RG-II from control and B-deficient plants were similar. Thus, B deficiency does not alter the primary structure of RG-II. The addition of 10B-enriched boric acid to B-deficient plants resulted within 5 h in the conversion of mRG-II to dRG-II-10B. The wall thickness of the 10B-treated plants and control plants was similar. The formation and possible functions of a borate ester cross-linked RG-II in the cell walls are discussed. PMID:11500567
Circulatory shear flow alters the viability and proliferation of circulating colon cancer cells
NASA Astrophysics Data System (ADS)
Fan, Rong; Emery, Travis; Zhang, Yongguo; Xia, Yuxuan; Sun, Jun; Wan, Jiandi
2016-06-01
During cancer metastasis, circulating tumor cells constantly experience hemodynamic shear stress in the circulation. Cellular responses to shear stress including cell viability and proliferation thus play critical roles in cancer metastasis. Here, we developed a microfluidic approach to establish a circulatory microenvironment and studied circulating human colon cancer HCT116 cells in response to a variety of magnitude of shear stress and circulating time. Our results showed that cell viability decreased with the increase of circulating time, but increased with the magnitude of wall shear stress. Proliferation of cells survived from circulation could be maintained when physiologically relevant wall shear stresses were applied. High wall shear stress (60.5 dyne/cm2), however, led to decreased cell proliferation at long circulating time (1 h). We further showed that the expression levels of β-catenin and c-myc, proliferation regulators, were significantly enhanced by increasing wall shear stress. The presented study provides a new insight to the roles of circulatory shear stress in cellular responses of circulating tumor cells in a physiologically relevant model, and thus will be of interest for the study of cancer cell mechanosensing and cancer metastasis.
Members of Glycosyl-Hydrolase Family 17 of A. fumigatus Differentially Affect Morphogenesis
Millet, Nicolas; Latgé, Jean-Paul; Mouyna, Isabelle
2018-01-01
Cell wall biosynthesis and remodeling are essential for fungal growth and development. In the fungal pathogen Aspergillus fumigatus, the β(1,3)glucan is the major cell wall polysaccharide. This polymer is synthesized at the plasma membrane by a transmembrane complex, then released into the parietal space to be remodeled by enzymes, and finally incorporated into the pre-existing cell wall. In the Glycosyl-Hydrolases family 17 (GH17) of A. fumigatus, two β(1,3)glucanosyltransferases, Bgt1p and Bgt2p, have been previously characterized. Disruption of BGT1 and BGT2 did not result in a phenotype, but sequence comparison and hydrophobic cluster analysis showed that three other genes in A. fumigatus belong to the GH17 family, SCW4, SCW11, and BGT3. In constrast to Δbgt1bgt2 mutants, single and multiple deletion of SCW4, SCW11, and BGT3 showed a decrease in conidiation associated with a higher conidial mortality and an abnormal conidial shape. Moreover, mycelium was also affected with a slower growth, stronger sensitivity to cell wall disturbing agents, and altered cell wall composition. Finally, the synthetic interactions between Bgt1p, Bgt2p, and the three other members, which support a functional cooperation in cell-wall assembly, were analyzed. Our data suggest that Scw4p, Scw11p, and Bgt3p are essential for cell wall integrity and might have antagonistic and distinct functions to Bgt1p and Bgt2p. PMID:29385695
Participation of Candida albicans Transcription Factor RLM1 in Cell Wall Biogenesis and Virulence
Delgado-Silva, Yolanda; Vaz, Catarina; Carvalho-Pereira, Joana; Carneiro, Catarina; Nogueira, Eugénia; Correia, Alexandra; Carreto, Laura; Silva, Sónia; Faustino, Augusto; Pais, Célia; Oliveira, Rui; Sampaio, Paula
2014-01-01
Candida albicans cell wall is important for growth and interaction with the environment. RLM1 is one of the putative transcription factors involved in the cell wall integrity pathway, which plays an important role in the maintenance of the cell wall integrity. In this work we investigated the involvement of RLM1 in the cell wall biogenesis and in virulence. Newly constructed C. albicans Δ/Δrlm1 mutants showed typical cell wall weakening phenotypes, such as hypersensitivity to Congo Red, Calcofluor White, and caspofungin (phenotype reverted in the presence of sorbitol), confirming the involvement of RLM1 in the cell wall integrity. Additionally, the cell wall of C. albicans Δ/Δrlm1 showed a significant increase in chitin (213%) and reduction in mannans (60%), in comparison with the wild-type, results that are consistent with cell wall remodelling. Microarray analysis in the absence of any stress showed that deletion of RLM1 in C. albicans significantly down-regulated genes involved in carbohydrate catabolism such as DAK2, GLK4, NHT1 and TPS1, up-regulated genes involved in the utilization of alternative carbon sources, like AGP2, SOU1, SAP6, CIT1 or GAL4, and genes involved in cell adhesion like ECE1, ALS1, ALS3, HWP1 or RBT1. In agreement with the microarray results adhesion assays showed an increased amount of adhering cells and total biomass in the mutant strain, in comparison with the wild-type. C. albicans mutant Δ/Δrlm1 strain was also found to be less virulent than the wild-type and complemented strains in the murine model of disseminated candidiasis. Overall, we showed that in the absence of RLM1 the modifications in the cell wall composition alter yeast interaction with the environment, with consequences in adhesion ability and virulence. The gene expression findings suggest that this gene participates in the cell wall biogenesis, with the mutant rearranging its metabolic pathways to allow the use of alternative carbon sources. PMID:24466000
Pb-induced cellular defense system in the root meristematic cells of Allium sativum L.
Jiang, Wusheng; Liu, Donghua
2010-03-02
Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10(-5) to 10(-3) M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10(-3) to 10(-4) M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are ultimately one of main storage sites of Pb. Root meristematic cells of A. sativum exposed to lower Pb have a rapid and effective defense system, but with the increased level of Pb in the cytosol, cells were seriously injured.
Pb-induced cellular defense system in the root meristematic cells of Allium sativum L
2010-01-01
Background Electron microscopy (EM) techniques enable identification of the main accumulations of lead (Pb) in cells and cellular organelles and observations of changes in cell ultrastructure. Although there is extensive literature relating to studies on the influence of heavy metals on plants, Pb tolerance strategies of plants have not yet been fully explained. Allium sativum L. is a potential plant for absorption and accumulation of heavy metals. In previous investigations the effects of different concentrations (10-5 to 10-3 M) of Pb were investigated in A. sativum, indicating a significant inhibitory effect on shoot and root growth at 10-3 to 10-4 M Pb. In the present study, we used EM and cytochemistry to investigate ultrastructural alterations, identify the synthesis and distribution of cysteine-rich proteins induced by Pb and explain the possible mechanisms of the Pb-induced cellular defense system in A. sativum. Results After 1 h of Pb treatment, dictyosomes were accompanied by numerous vesicles within cytoplasm. The endoplasm reticulum (ER) with swollen cisternae was arranged along the cell wall after 2 h. Some flattened cisternae were broken up into small closed vesicles and the nuclear envelope was generally more dilated after 4 h. During 24-36 h, phenomena appeared such as high vacuolization of cytoplasm and electron-dense granules in cell walls, vacuoles, cytoplasm and mitochondrial membranes. Other changes included mitochondrial swelling and loss of cristae, and vacuolization of ER and dictyosomes during 48-72 h. In the Pb-treatment groups, silver grains were observed in cell walls and in cytoplasm, suggesting the Gomori-Swift reaction can indirectly evaluate the Pb effects on plant cells. Conclusions Cell walls can immobilize some Pb ions. Cysteine-rich proteins in cell walls were confirmed by the Gomori-Swift reaction. The morphological alterations in plasma membrane, dictyosomes and ER reflect the features of detoxification and tolerance under Pb stress. Vacuoles are ultimately one of main storage sites of Pb. Root meristematic cells of A. sativum exposed to lower Pb have a rapid and effective defense system, but with the increased level of Pb in the cytosol, cells were seriously injured. PMID:20196842
Rastogi, Shivangi; Singh, Amit Kumar; Chandra, Gyan; Kushwaha, Pragati; Pant, Garima; Singh, Kavita; Mitra, Kalyan; Sashidhara, Koneni V; Krishnan, Manju Y
2017-05-01
Triacylglycerol (TAG) is important to mycobacteria both as cell envelope component and energy reservoir. Mycobacterium tuberculosis (Mtb) genome encodes at least 15 putative TAG synthase (tgs)s. We report that one of these genes, Rv3371, specific to pathogenic mycobacteria, when expressed in M. smegmatis leads to modifications in colony morphotype, bacterial architecture, cell surface properties and elevated TAG levels. Rv3371 was found to largely localize in the cell membrane. The Rv3371 promoter is minimally active during exponential growth in vitro, however, is up-regulated under stationary phase, hypoxia, nutrient starvation, nitrosative stress, low iron, in IFN-γ activated macrophages and infected mice. The low iron-induced expression of Rv3371 is likely due to the de-repression by Rv1404, which is probably activated by ideR. An Rv3371 deletion mutant of Mtb showed impaired non-replicating persistence in vitro and altered sensitivity to anti-mycobacterial drugs. In low iron medium, the Rv3371 deletion mutant showed reduced formation of TAG containing extracellular vesicles. Therefore Rv3371 is likely involved in Mtb growth arrest and cell wall alterations during persistence. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.
2009-07-01
Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.
Optical coherence tomography assessment of vessel wall degradation in thoracic aortic aneurysms
NASA Astrophysics Data System (ADS)
Real, Eusebio; Eguizabal, Alma; Pontón, Alejandro; Díez, Marta Calvo; Fernando Val-Bernal, José; Mayorga, Marta; Revuelta, José M.; López-Higuera, José M.; Conde, Olga M.
2013-12-01
Optical coherence tomography images of human thoracic aorta from aneurysms reveal elastin disorders and smooth muscle cell alterations when visualizing the media layer of the aortic wall. These disorders can be employed as indicators for wall degradation and, therefore, become a hallmark for diagnosis of risk of aneurysm under intraoperative conditions. Two approaches are followed to evaluate this risk: the analysis of the reflectivity decay along the penetration depth and the textural analysis of a two-dimensional spatial distribution of the aortic wall backscattering. Both techniques require preprocessing stages for the identification of the air-sample interface and for the segmentation of the media layer. Results show that the alterations in the media layer of the aortic wall are better highlighted when the textural approach is considered and also agree with a semiquantitative histopathological grading that assesses the degree of wall degradation. The correlation of the co-occurrence matrix attains a sensitivity of 0.906 and specificity of 0.864 when aneurysm automatic diagnosis is evaluated with a receiver operating characteristic curve.
Haigler, C H; White, A R; Brown, R M; Cooper, K M
1982-07-01
In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presence of CMC, which often induces synthesis of separate, intertwining bundles of microfibrils. Freeze-etch preparations of the bacterial outer membrane suggest that particles that are thought to be associated with cellulose synthesis or extrusion may be specifically organized to mediate synthesis of microfibril bundles. These data support the previous hypothesis that the cellulose ribbon of A. xylinum is formed by a hierarchical, cell-directed, self-assembly process. The relationship of these results to the regulation of cellulose microfibril size and wall extensibility in plant cell walls is discussed.
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture.
Camacho, Emma; Chrissian, Christine; Cordero, Radames J B; Liporagi-Lopes, Livia; Stark, Ruth E; Casadevall, Arturo
2017-11-01
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15 N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother-daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies.
N-acetylglucosamine affects Cryptococcus neoformans cell-wall composition and melanin architecture
Camacho, Emma; Chrissian, Christine; Cordero, Radames J. B.; Liporagi-Lopes, Livia; Stark, Ruth E.; Casadevall, Arturo
2017-01-01
Cryptococcus neoformans is an environmental fungus that belongs to the phylum Basidiomycetes and is a major pathogen in immunocompromised patients. The ability of C. neoformans to produce melanin pigments represents its second most important virulence factor, after the presence of a polysaccharide capsule. Both the capsule and melanin are closely associated with the fungal cell wall, a complex structure that is essential for maintaining cell morphology and viability under conditions of stress. The amino sugar N-acetylglucosamine (GlcNAc) is a key constituent of the cell-wall chitin and is used for both N-linked glycosylation and GPI anchor synthesis. Recent studies have suggested additional roles for GlcNAc as an activator and mediator of cellular signalling in fungal and plant cells. Furthermore, chitin and chitosan polysaccharides interact with melanin pigments in the cell wall and have been found to be essential for melanization. Despite the importance of melanin, its molecular structure remains unresolved; however, we previously obtained critical insights using advanced nuclear magnetic resonance (NMR) and imaging techniques. In this study, we investigated the effect of GlcNAc supplementation on cryptococcal cell-wall composition and melanization. C. neoformans was able to metabolize GlcNAc as a sole source of carbon and nitrogen, indicating a capacity to use a component of a highly abundant polymer in the biospherenutritionally. C. neoformans cells grown with GlcNAc manifested changes in the chitosan cell-wall content, cell-wall thickness and capsule size. Supplementing cultures with isotopically 15N-labelled GlcNAc demonstrated that the exogenous monomer serves as a building block for chitin/chitosan and is incorporated into the cell wall. The altered chitin-to-chitosan ratio had no negative effects on the mother–daughter cell separation; growth with GlcNAc affected the fungal cell-wall scaffold, resulting in increased melanin deposition and assembly. In summary, GlcNAc supplementation had pleiotropic effects on cell-wall and melanin architectures, and thus established its capacity to perturb these structures, a property that could prove useful for metabolic tracking studies. PMID:29043954
Calcium signaling in plant cells in microgravity
NASA Astrophysics Data System (ADS)
Kordyum, E.
Changes in the intracellular Ca 2 + concentration in altered gravity (microgravity and clinostating) evidence that Ca2 + signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus - response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in eighties, a review highlighting the performed research and the possible significance of such Ca 2 + changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumably specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca 2 + ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca 2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravis ensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tensionalterations in the physicochemical properties of the membranechanges in membrane permeability, ion transport, membrane-bound enzyme activity, etc.metabolism rearrangementsphysiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect, in the first place, cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca 2 + messenger system. Changes in Ca 2 + influx/efflux and possible pathways of Ca 2 + signaling in plant cell biochemical regulation in altered gravity are discussed.
Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes.
Paës, Gabriel; Habrant, Anouck; Ossemond, Jordane; Chabbert, Brigitte
2017-01-01
The lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information. Poplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate-dextrans of 20 and 70 kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose-hemicellulose collapse. Evaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.
Kieser, Karen J.; Baer, Christina E.; Barczak, Amy K.; Meniche, Xavier; Chao, Michael C.; Rego, E. Hesper; Sassetti, Christopher M.; Fortune, Sarah M.; Rubin, Eric J.
2015-01-01
Cell growth and division are required for the progression of bacterial infections. Most rod-shaped bacteria grow by inserting new cell wall along their mid-section. However, mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce new cell wall material at their poles. How mycobacteria control this different mode of growth is incompletely understood. Here we find that PonA1, a penicillin binding protein (PBP) capable of transglycosylation and transpeptidation of cell wall peptidoglycan (PG), is a major governor of polar growth in mycobacteria. PonA1 is required for growth of Mycobacterium smegmatis and is critical for M. tuberculosis during infection. In both cases, PonA1’s catalytic activities are both required for normal cell length, though loss of transglycosylase activity has a more pronounced effect than transpeptidation. Mutations that alter the amount or the activity of PonA1 result in abnormal formation of cell poles and changes in cell length. Moreover, altered PonA1 activity results in dramatic differences in antibiotic susceptibility, suggesting that a balance between the two enzymatic activities of PonA1 is critical for survival. We also find that phosphorylation of a cytoplasmic region of PonA1 is required for normal activity. Mutations in a critical phosphorylated residue affect transglycosylase activity and result in abnormal rates of cell elongation. Together, our data indicate that PonA1 is a central determinant of polar growth in mycobacteria, and its governance of cell elongation is required for robust cell fitness during both host-induced and antibiotic stress. PMID:26114871
Genetic Resources for Maize Cell Wall Biology1[C][W][OA
Penning, Bryan W.; Hunter, Charles T.; Tayengwa, Reuben; Eveland, Andrea L.; Dugard, Christopher K.; Olek, Anna T.; Vermerris, Wilfred; Koch, Karen E.; McCarty, Donald R.; Davis, Mark F.; Thomas, Steven R.; McCann, Maureen C.; Carpita, Nicholas C.
2009-01-01
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. PMID:19926802
Use of yeast spores for microencapsulation of enzymes.
Shi, Libing; Li, Zijie; Tachikawa, Hiroyuki; Gao, Xiao-Dong; Nakanishi, Hideki
2014-08-01
Here, we report a novel method to produce microencapsulated enzymes using Saccharomyces cerevisiae spores. In sporulating cells, soluble secreted proteins are transported to the spore wall. Previous work has shown that the spore wall is capable of retaining soluble proteins because its outer layers work as a diffusion barrier. Accordingly, a red fluorescent protein (RFP) fusion of the α-galactosidase, Mel1, expressed in spores was observed in the spore wall even after spores were subjected to a high-salt wash in the presence of detergent. In vegetative cells, however, the cell wall cannot retain the RFP fusion. Although the spore wall prevents diffusion of proteins, it is likely that smaller molecules, such as sugars, pass through it. In fact, spores can contain much higher α-galactosidase activity to digest melibiose than vegetative cells. When present in the spore wall, the enzyme acquires resistance to environmental stresses including enzymatic digestion and high temperatures. The outer layers of the spore wall are required to retain enzymes but also decrease accessibility of the substrates. However, mutants with mild spore wall defects can retain and stabilize the enzyme while still permitting access to the substrate. In addition to Mel1, we also show that spores can retain the invertase. Interestingly the encapsulated invertase has significantly lower activity toward raffinose than toward sucrose.This suggests that substrate selectivity could be altered by the encapsulation.
Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima; ...
2016-10-04
Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima
Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less
The cell wall of Arabidopsis thaliana influences actin network dynamics.
Tolmie, Frances; Poulet, Axel; McKenna, Joseph; Sassmann, Stefan; Graumann, Katja; Deeks, Michael; Runions, John
2017-07-20
In plant cells, molecular connections link the cell wall-plasma membrane-actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)-fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP-Lifeact-labelled network that appeared much more sparse with thick bundles that underwent 'simple movement', in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, 'pairwise image subtraction', was applied to measurement of the more rapidly remodelling actin network labelled with GFP-FABD2, while the second, 'cumulative fluorescence intensity', was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP-Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall-plasma membrane-actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Ma, Liang; Salas, Omar; Bowler, Kyle; Oren-Young, Liat; Bar-Peled, Maor; Sharon, Amir
2017-02-01
Botrytis cinerea is a model plant-pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)-glucose, the major fungal wall nucleotide sugar precursor, to UDP-rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose-containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP-rhamnose pathway intermediate UDP-4-keto-6-deoxy-glucose (UDP-KDG) in hyphae of the Δbcer strain. UDP-KDG could not be detected in hyphae of the wild-type strain, indicating fast conversion to UDP-rhamnose by the BcEr enzyme. The correlation between high UDP-KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP-KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP-KDG may lead to the development of new antifungal drugs. © 2016 BSPP AND JOHN WILEY & SONS LTD.
Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto
2016-10-01
Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Hasim, Sahar; Allison, David P.; Retterer, Scott T.; Hopke, Alex; Wheeler, Robert T.; Doktycz, Mitchel J.
2016-01-01
ABSTRACT Candida albicans is among the most common human fungal pathogens, causing a broad range of infections, including life-threatening systemic infections. The cell wall of C. albicans is the interface between the fungus and the innate immune system. The cell wall is composed of an outer layer enriched in mannosylated glycoproteins (mannan) and an inner layer enriched in β-(1,3)-glucan and chitin. Detection of C. albicans by Dectin-1, a C-type signaling lectin specific for β-(1,3)-glucan, is important for the innate immune system to recognize systemic fungal infections. Increased exposure of β-(1,3)-glucan to the immune system occurs when the mannan layer is altered or removed in a process called unmasking. Nanoscale changes to the cell wall during unmasking were explored in live cells with atomic force microscopy (AFM). Two mutants, the cho1Δ/Δ and kre5Δ/Δ mutants, were selected as representatives that exhibit modest and strong unmasking, respectively. Comparisons of the cho1Δ/Δ and kre5Δ/Δ mutants to the wild type reveal morphological changes in their cell walls that correlate with decreases in cell wall elasticity. In addition, AFM tips functionalized with Dectin-1 revealed that the forces of binding of Dectin-1 to all of the strains were similar, but the frequency of binding was highest for the kre5Δ/Δ mutant, decreased for the cho1Δ/Δ mutant, and rare for the wild type. These data show that nanoscale changes in surface topology are correlated with increased Dectin-1 adhesion and decreased cell wall elasticity. AFM, using tips functionalized with immunologically relevant molecules, can map epitopes of the cell wall and increase our understanding of pathogen recognition by the immune system. PMID:27849179
Scordo, Julia M.; Arcos, Jesús; Kelley, Holden V.; Diangelo, Lauren; Sasindran, Smitha J.; Youngmin, Ellie; Wewers, Mark D.; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B.
2017-01-01
In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis (M.tb) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site. PMID:28373877
Scordo, Julia M; Arcos, Jesús; Kelley, Holden V; Diangelo, Lauren; Sasindran, Smitha J; Youngmin, Ellie; Wewers, Mark D; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B
2017-01-01
In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis ( M.tb ) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site.
Ene, Iuliana V; Adya, Ashok K; Wehmeier, Silvia; Brand, Alexandra C; MacCallum, Donna M; Gow, Neil A R; Brown, Alistair J P
2012-01-01
The survival of all microbes depends upon their ability to respond to environmental challenges. To establish infection, pathogens such as Candida albicans must mount effective stress responses to counter host defences while adapting to dynamic changes in nutrient status within host niches. Studies of C. albicans stress adaptation have generally been performed on glucose-grown cells, leaving the effects of alternative carbon sources upon stress resistance largely unexplored. We have shown that growth on alternative carbon sources, such as lactate, strongly influence the resistance of C. albicans to antifungal drugs, osmotic and cell wall stresses. Similar trends were observed in clinical isolates and other pathogenic Candida species. The increased stress resistance of C. albicans was not dependent on key stress (Hog1) and cell integrity (Mkc1) signalling pathways. Instead, increased stress resistance was promoted by major changes in the architecture and biophysical properties of the cell wall. Glucose- and lactate-grown cells displayed significant differences in cell wall mass, ultrastructure, elasticity and adhesion. Changes in carbon source also altered the virulence of C. albicans in models of systemic candidiasis and vaginitis, confirming the importance of alternative carbon sources within host niches during C. albicans infections. PMID:22587014
González-Pérez, Lien; Perrotta, Lara; Acosta, Alexis; Orellana, Esteban; Spadafora, Natasha; Bruno, Leonardo; Bitonti, Beatrice M; Albani, Diego; Cabrera, Juan Carlos; Francis, Dennis; Rogers, Hilary J
2014-10-01
Xyloglucan oligosaccharides (XGOs) are breakdown products of XGs, the most abundant hemicelluloses of the primary cell walls of non-Poalean species. Treatment of cell cultures or whole plants with XGOs results in accelerated cell elongation and cell division, changes in primary root growth, and a stimulation of defence responses. They may therefore act as signalling molecules regulating plant growth and development. Previous work suggests an interaction with auxins and effects on cell wall loosening, however their mode of action is not fully understood. The effect of an XGO extract from tamarind (Tamarindus indica) on global gene expression was therefore investigated in tobacco BY-2 cells using microarrays. Over 500 genes were differentially regulated with similar numbers and functional classes of genes up- and down-regulated, indicating a complex interaction with the cellular machinery. Up-regulation of a putative XG endotransglycosylase/hydrolase-related (XTH) gene supports the mechanism of XGO action through cell wall loosening. Differential expression of defence-related genes supports a role for XGOs as elicitors. Changes in the expression of genes related to mitotic control and differentiation also support previous work showing that XGOs are mitotic inducers. XGOs also affected expression of several receptor-like kinase genes and transcription factors. Hence, XGOs have significant effects on expression of genes related to cell wall metabolism, signalling, stress responses, cell division and transcriptional control.
NASA Astrophysics Data System (ADS)
Li, Junyi; Tian, Meiping; Cui, Li; Dwyer, John; Fullwood, Nigel J.; Shen, Heqing; Martin, Francis L.
2016-02-01
Nanotechnology has introduced many manufactured carbon-based nanoparticles (CNPs) into our environment, generating a debate into their risks and benefits. Numerous nanotoxicology investigations have been carried, and nanoparticle-induced toxic effects have been reported. However, there remain gaps in our knowledge, primarily regarding mechanism. Herein, we assessed the global alterations induced by CNPs in A549 lung cells using biospectroscopy techniques, including attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and surface-enhanced Raman spectroscopy (SERS). A549 cells were treated with fullerene (C60), long or short multi-walled carbon nanotubes, or single-walled carbon nanotubes at concentrations of 0.1 mg/L, 0.01 mg/L and 0.001 mg/L. Exposed cells were then analysed by ATR-FTIR spectroscopy and SERS. Spectra were pre-processed via computational analysis, and information on biochemical alterations in exposed cells were identified. Additionally, global DNA methylation levels in cells exposed to CNPs at 0.1 mg/L were determined using HPLC-MS and genetic regulators (for DNA methylation) were checked by quantitative real-time RT-PCR. It was found that CNPs exert marked effects in A549 cells and also contribute to increases in global DNA methylation. For the first time, this study highlights that real-world levels of nanoparticles can alter the methylome of exposed cells; this could have enormous implications for their regulatory assessment.
Endometrial stromal cell attachment and matrix homeostasis in abdominal wall endometriomas.
Itoh, Hiroko; Mogami, Haruta; Bou Nemer, Laurice; Word, Larry; Rogers, David; Miller, Rodney; Word, R Ann
2018-02-01
How does progesterone alter matrix remodeling in abdominal wall endometriomas compared with normal endometrium? Progesterone may prevent attachment of endometrial cells to the abdominal wall, but does not ameliorate abnormal stromal cell responses of abdominal wall endometriomas. Menstruation is a tightly orchestrated physiologic event in which steroid hormones and inflammatory cells cooperatively initiate shedding of the endometrium. Abdominal wall endometriomas represent a unique form of endometriosis in which endometrial cells inoculate fascia or dermis at the time of obstetrical or gynecologic surgery. Invasion of endometrium into ectopic sites requires matrix metalloproteinases (MMPs) for tissue remodeling but endometrium is not shed externally. Observational study in 14 cases and 19 controls. Tissues and stromal cells isolated from 14 abdominal wall endometriomas were compared with 19 normal cycling endometrium using immunohistochemistry, quantitative PCR, gelatin zymography and cell attachment assays. P values < 0.05 were considered significant and experiments were repeated in at least three different cell preps to provide scientific rigor to the conclusions. The results indicate that MMP2 and MMP9 are not increased by TGFβ1 in endometrioma stromal cells. Although progesterone prevents attachment of endometrioma cells to matrix components of the abdominal wall, it does not ameliorate these abnormal stromal cell responses to TGFβ1. N/A. Endometriomas were collected from women identified pre-operatively. Not all endometriomas were collected. Stromal cells from normal endometrium were from different patients, not women undergoing endometrioma resection. This work provides insight into the mechanisms by which progesterone may prevent abdominal wall endometriomas but, once established, are refractory to progesterone treatment. Tissue acquisition was supported by NIH P01HD087150. Authors have no competing interests. © The Author(s) 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Román, E; Correia, I; Salazin, A; Fradin, C; Jouault, T; Poulain, D; Liu, F-T; Pla, J
2016-07-03
The Cek1 MAP kinase (MAPK) mediates vegetative growth and cell wall biogenesis in the fungal pathogen Candida albicans. Alterations in the fungal cell wall caused by a defective Cek1‑mediated signaling pathway leads to increased β‑1,3‑glucan exposure influencing dectin‑1 fungal recognition by immune cells. We show here that cek1 cells also display an increased exposure of α‑1,2 and β‑1,2‑mannosides (α‑M and β‑M), a phenotype shared by strains defective in the activating MAPKK Hst7, suggesting a general defect in cell wall assembly. cek1 cells display walls with loosely bound material as revealed by transmission electron microscopy and are sensitive to tunicamycin, an inhibitor of N‑glycosylation. Transcriptomal analysis of tunicamycin treated cells revealed a differential pattern between cek1 and wild type cells which involved mainly cell wall and stress related genes. Mapping α‑M and β‑M epitopes in the mannoproteins of different cell wall fractions (CWMP) revealed an important shift in the molecular weight of the mannan derived from mutants defective in this MAPK pathway. We have also assessed the role of galectin‑3, a member of a β‑galactoside‑binding protein family shown to bind to and kill C. albicans through β‑M recognition, in the infection caused by cek1 mutants. Increased binding of cek1 to murine macrophages was shown to be partially blocked by lactose. Galectin-3(-/-) mice showed increased resistance to fungal infection, although galectin-3 did not account for the reduced virulence of cek1 mutants in a mouse model of systemic infection. All these data support a role for the Cek1‑mediated pathway in fungal cell wall maintenance, virulence and antifungal discovery.
Li, Rong-Yu; Wu, Xiao-Mao; Yin, Xian-Hui; Liang, Jing-Nan; Li, Ming
2014-07-15
In order to find a natural alternative to the synthetic fungicides currently used against the devastating rice blast fungus, Magnaporthe grisea, this study explored the antifungal potential of citral and its mechanism of action. It was found that citral not only inhibited hyphal growth of M. grisea, but also caused a series of marked hyphal morphological and structural alterations. Specifically, citral was tested for antifungal activity against M. grisea in vitro and was found to significantly inhibit colony development and mycelial growth with IC50 and IC90 values of 40.71 and 203.75 μg/mL, respectively. Furthermore, citral reduced spore germination and germ tube length in a concentration-dependent manner. Following exposure to citral, the hyphal cell surface became wrinkled with folds and cell breakage that were observed under scanning electron microscopy (SEM). There was damage to hyphal cell walls and membrane structures, loss of villous-like material outside of the cell wall, thinning of the cell wall, and discontinuities formed in the cell membrane following treatment based on transmission electron microscopy (TEM). This increase in chitinase activity both supports the morphological changes seen in the hyphae, and also suggests a mechanism of action. In conclusion, citral has strong antifungal properties, and treatment with this compound is capable of causing significant damage to the hyphal cell walls of M. grisea.
Biophysical mechanism of differential growth during gravitropism
NASA Technical Reports Server (NTRS)
Cosgrove, D.
1984-01-01
A research project is described the goal of which is to determine the mechanism of gravitropic curvature in plant stems at the biophysical and the cellular level. The reorientation of plant organs under the influence of gravity is due to differential growth of the upper and lower sides of the organ. The rate of plant cell enlargement is governed by four biophysical parameters: (1) the extensibility of the cell wall; (2) the minimum stress in the cell wall required for wall expansion (the "yield threshold'); (3) the osmotic pressure difference between the cell contents and the water source; and (4) the hydraulic conductivity of the pathway for water uptake. Gravitropic response must involve differential alteration of one or more of these four parameters on the two sides of the growing organ. Each of these factors will be examined to assess the role it plays in gravitropism.
Turapov, Obolbek; Loraine, Jessica; Jenkins, Christopher H; Barthe, Philippe; McFeely, Daniel; Forti, Francesca; Ghisotti, Daniela; Hesek, Dusan; Lee, Mijoon; Bottrill, Andrew R; Vollmer, Waldemar; Mobashery, Shahriar; Cohen-Gonsaud, Martin; Mukamolova, Galina V
2015-07-01
PknB is an essential serine/threonine protein kinase required for mycobacterial cell division and cell-wall biosynthesis. Here we demonstrate that overexpression of the external PknB_PASTA domain in mycobacteria results in delayed regrowth, accumulation of elongated bacteria and increased sensitivity to β-lactam antibiotics. These changes are accompanied by altered production of certain enzymes involved in cell-wall biosynthesis as revealed by proteomics studies. The growth inhibition caused by overexpression of the PknB_PASTA domain is completely abolished by enhanced concentration of magnesium ions, but not muropeptides. Finally, we show that the addition of recombinant PASTA domain could prevent regrowth of Mycobacterium tuberculosis, and therefore offers an alternative opportunity to control replication of this pathogen. These results suggest that the PknB_PASTA domain is involved in regulation of peptidoglycan biosynthesis and maintenance of cell-wall architecture.
Turapov, Obolbek; Loraine, Jessica; Jenkins, Christopher H.; Barthe, Philippe; McFeely, Daniel; Forti, Francesca; Ghisotti, Daniela; Hesek, Dusan; Lee, Mijoon; Bottrill, Andrew R.; Vollmer, Waldemar; Mobashery, Shahriar; Cohen-Gonsaud, Martin; Mukamolova, Galina V.
2015-01-01
PknB is an essential serine/threonine protein kinase required for mycobacterial cell division and cell-wall biosynthesis. Here we demonstrate that overexpression of the external PknB_PASTA domain in mycobacteria results in delayed regrowth, accumulation of elongated bacteria and increased sensitivity to β-lactam antibiotics. These changes are accompanied by altered production of certain enzymes involved in cell-wall biosynthesis as revealed by proteomics studies. The growth inhibition caused by overexpression of the PknB_PASTA domain is completely abolished by enhanced concentration of magnesium ions, but not muropeptides. Finally, we show that the addition of recombinant PASTA domain could prevent regrowth of Mycobacterium tuberculosis, and therefore offers an alternative opportunity to control replication of this pathogen. These results suggest that the PknB_PASTA domain is involved in regulation of peptidoglycan biosynthesis and maintenance of cell-wall architecture. PMID:26136255
Geng, Xiaoyu; Horst, Walter J; Golz, John F; Lee, Joanne E; Ding, Zhaojun; Yang, Zhong-Bao
2017-05-01
A major factor determining aluminium (Al) sensitivity in higher plants is the binding of Al to root cell walls. The Al binding capacity of cell walls is closely linked to the extent of pectin methylesterification, as the presence of methyl groups attached to the pectin backbone reduces the net negative charge of this polymer and hence limits Al binding. Despite recent progress in understanding the molecular basis of Al resistance in a wide range of plants, it is not well understood how the methylation status of pectin is mediated in response to Al stress. Here we show in Arabidopsis that mutants lacking the gene LEUNIG_HOMOLOG (LUH), a member of the Groucho-like family of transcriptional co-repressor, are less sensitive to Al-mediated repression of root growth. This phenotype is correlated with increased levels of methylated pectin in the cell walls of luh roots as well as altered expression of cell wall-related genes. Among the LUH-repressed genes, PECTIN METHYLESTERASE46 (PME46) was identified as reducing Al binding to cell walls and hence alleviating Al-induced root growth inhibition by decreasing PME enzyme activity. seuss-like2 (slk2) mutants responded to Al in a similar way as luh mutants suggesting that a LUH-SLK2 complex represses the expression of PME46. The data are integrated into a model in which it is proposed that PME46 is a major inhibitor of pectin methylesterase activity within root cell walls. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Ultrastructure of neurovascular changes in human diabetic retinopathy.
Fehér, János; Taurone, Samanta; Spoletini, Marialuisa; Biró, Zsolt; Varsányi, Balázs; Scuderi, Gianluca; Orlando, Maria Patrizia; Turchetta, Rosaria; Micera, Alessandra; Artico, Marco
2018-01-01
The previous concept regarding diabetic retinopathy assigned a primary role to hyperglycemia-induced microvascular alterations, while neuronal and glial abnormalities were considered to be secondary to either ischemia or exudation. The aim of this study was to reveal the potential role of neuronal and glial cells in initial and advanced alterations of the retinopathy in human type 2 diabetes. Electron microscopy and histochemical studies were performed on 38 surgically removed human eyes (28 obtained from diabetic patients and 10 from non-diabetic patients). Morphometric analysis of basement membrane material and lipids was performed. An accumulation of metabolic by-products was found in the capillary wall with aging: this aspect was significantly more pronounced in diabetics. Müller glial cells were found to contribute to alterations of the capillary wall and to occlusion, as well as to the development of proliferative retinopathy and cystoid degeneration of the retina. Our results showed morphological evidence regarding the role of neuronal and glial cells in the pathology of diabetic retinopathy, prior and in addition to microangiopathy. These morphological findings support a neurovascular pathogenesis at the origin of diabetic retinopathy, thus the current treatment approach should be completed by neuroprotective measures.
Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina
2016-08-01
The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.
Lactobacillus plantarum 299v surface-bound GAPDH: a new insight into enzyme cell walls location.
Saad, N; Urdaci, M; Vignoles, C; Chaignepain, S; Tallon, R; Schmitter, J M; Bressollier, P
2009-12-01
The aim of this study was to provide new insight into the mechanism whereby the housekeeping enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) locates to cell walls of Lactobacillus plantarum 299v. After purification, cytosolic and cell wall GAPDH (cw-GAPDH) forms were characterized and shown to be identical homotetrameric active enzymes. GAPDH concentration on cell walls was growth-time dependent. Free GAPDH was not observed on the culture supernatant at any time during growth, and provoked cell lysis was not concomitant with any reassociation of GAPDH onto the cell surface. Hence, with the possibility of cw-GAPDH resulting from autolysis being unlikely, entrapment of intracellular GAPDH on the cell wall after a passive efflux through altered plasma membrane was investigated. Flow cytometry was used to assess L. plantarum 299v membrane permeabilization after labeling with propidium iodide (PI). By combining PI uptake and cw-GAPDH activity measurements, we demonstrate here that the increase in cw-GAPDH concentration from the early exponential phase to the late stationary phase is closely related to an increase in plasma membrane permeability during growth. Moreover, we observed that increases in both plasma membrane permeability and cw-GAPDH activity were delayed when glucose was added during L. plantarum 299v growth. Using a double labeling of L. plantarum 299v cells with anti-GAPDH antibodies and propidium iodide, we established unambiguously that cells with impaired membrane manifest five times more cw-GAPDH than unaltered cells. Our results show that plasma membrane permeability appears to be closely related to the efflux of GAPDH on the bacterial cell surface, offering new insight into the understanding of the cell wall location of this enzyme.
Zhang, Hui-Ming; Imtiaz, Mohammad S; Laver, Derek R; McCurdy, David W; Offler, Christina E; van Helden, Dirk F; Patrick, John W
2015-03-01
Transfer cell morphology is characterized by a polarized ingrowth wall comprising a uniform wall upon which wall ingrowth papillae develop at right angles into the cytoplasm. The hypothesis that positional information directing construction of wall ingrowth papillae is mediated by Ca(2+) signals generated by spatiotemporal alterations in cytosolic Ca(2+) ([Ca(2+)]cyt) of cells trans-differentiating to a transfer cell morphology was tested. This hypothesis was examined using Vicia faba cotyledons. On transferring cotyledons to culture, their adaxial epidermal cells synchronously trans-differentiate to epidermal transfer cells. A polarized and persistent Ca(2+) signal, generated during epidermal cell trans-differentiation, was found to co-localize with the site of ingrowth wall formation. Dampening Ca(2+) signal intensity, by withdrawing extracellular Ca(2+) or blocking Ca(2+) channel activity, inhibited formation of wall ingrowth papillae. Maintenance of Ca(2+) signal polarity and persistence depended upon a rapid turnover (minutes) of cytosolic Ca(2+) by co-operative functioning of plasma membrane Ca(2+)-permeable channels and Ca(2+)-ATPases. Viewed paradermally, and proximal to the cytosol-plasma membrane interface, the Ca(2+) signal was organized into discrete patches that aligned spatially with clusters of Ca(2+)-permeable channels. Mathematical modelling demonstrated that these patches of cytosolic Ca(2+) were consistent with inward-directed plumes of elevated [Ca(2+)]cyt. Plume formation depended upon an alternating distribution of Ca(2+)-permeable channels and Ca(2+)-ATPase clusters. On further inward diffusion, the Ca(2+) plumes coalesced into a uniform Ca(2+) signal. Blocking or dispersing the Ca(2+) plumes inhibited deposition of wall ingrowth papillae, while uniform wall formation remained unaltered. A working model envisages that cytosolic Ca(2+) plumes define the loci at which wall ingrowth papillae are deposited. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
NASA Technical Reports Server (NTRS)
Xu, W.; Purugganan, M. M.; Polisensky, D. H.; Antosiewicz, D. M.; Fry, S. C.; Braam, J.
1995-01-01
Adaptation of plants to environmental conditions requires that sensing of external stimuli be linked to mechanisms of morphogenesis. The Arabidopsis TCH (for touch) genes are rapidly upregulated in expression in response to environmental stimuli, but a connection between this molecular response and developmental alterations has not been established. We identified TCH4 as a xyloglucan endotransglycosylase by sequence similarity and enzyme activity. Xyloglucan endotransglycosylases most likely modify cell walls, a fundamental determinant of plant form. We determined that TCH4 expression is regulated by auxin and brassinosteroids, by environmental stimuli, and during development, by a 1-kb region. Expression was restricted to expanding tissues and organs that undergo cell wall modification. Regulation of genes encoding cell wall-modifying enzymes, such as TCH4, may underlie plant morphogenetic responses to the environment.
Chowdhury, Jamil; Lück, Stefanie; Rajaraman, Jeyaraman; Douchkov, Dimitar; Shirley, Neil J; Schwerdt, Julian G; Schweizer, Patrick; Fincher, Geoffrey B; Burton, Rachel A; Little, Alan
2017-01-01
Heteroxylan has recently been identified as an important component of papillae, which are formed during powdery mildew infection of barley leaves. Deposition of heteroxylan near the sites of attempted fungal penetration in the epidermal cell wall is believed to enhance the physical resistance to the fungal penetration peg and hence to improve pre-invasion resistance. Several glycosyltransferase (GT) families are implicated in the assembly of heteroxylan in the plant cell wall, and are likely to work together in a multi-enzyme complex. Members of key GT families reported to be involved in heteroxylan biosynthesis are up-regulated in the epidermal layer of barley leaves during powdery mildew infection. Modulation of their expression leads to altered susceptibility levels, suggesting that these genes are important for penetration resistance. The highest level of resistance was achieved when a GT43 gene was co-expressed with a GT47 candidate gene, both of which have been predicted to be involved in xylan backbone biosynthesis. Altering the expression level of several candidate heteroxylan synthesis genes can significantly alter disease susceptibility. This is predicted to occur through changes in the amount and structure of heteroxylan in barley papillae.
USDA-ARS?s Scientific Manuscript database
Fungal plant pathogens exert much of their effect on plant cells through alterations in the host cell walls. However, biochemical proof for this change is difficult because of the relatively small number of cells that are affected by the pathogen in the bulk of host tissue. In this study, we examine...
Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.
Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico
2016-01-01
ABSTRACT The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe2+ ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis. PMID:26645909
Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.
Schulz, Margot; Filary, Barbara; Kühn, Sabine; Colby, Thomas; Harzen, Anne; Schmidt, Jürgen; Sicker, Dieter; Hennig, Lothar; Hofmann, Diana; Disko, Ulrich; Anders, Nico
2016-01-01
The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.
Cell wall carbohydrates content of pathogenic Candida albicans strain morphological forms.
Staniszewska, Monika; Bondaryk, Małgorzata; Rabczenko, Daniel; Smoleńska-Sym, Gabriela; Kurzatkowski, Wiesław
2013-01-01
The study evaluated the cell wall carbohydrates fraction in blastoconidia grown in YEPD medium at 30 degrees C and in the conglomerate of true hyphae grown in human serum at 37 degrees C. The clinical isolate obtained from a child with widespread C. albicans infection was used in the study. The cells were broken with glass beads, centrifuged to harvest the cell wall followed by subjection to TFA hydrolysis and in the result of that released monosaccharides were detected by HPAEC-PAD. Both, serum and temperature conditions (37 degrees C) affected germination process influencing the cell wall carbohydrates content when incubation in serum was prolonged from 1 to 18 h. The mannan content of blastoconidia was almost twofold higher compared to filamentous forms (149.25 +/- 299.24 vs 77.26 +/- 122.07). The glucan content was threefold lower in blastoconidia compared to hyphae (251.86 +/- 243.44 vs 755.81 +/- 1299.30). The chitin level was fourfold lower in blastoconidia compared to filaments (23.86 +/- 54.09 vs 106.29 +/- 170.12). The reason for the differences in the carbohydrates content may be related to type of morphology induced in different environmental conditions. Among tested carbohydrates, glucan appeared to be present in appreciably larger amounts in both tested morphological fractions. The ultrastructure of the blastoconidial cell wall revealed striking differences compared to the hyphae indicating the carbohydrates content alterations for wall assembly during hyphal growth at alkaline pH and temp. 37 degrees C. The study provided evidence for the relationship between morphogenesis, cell-cell adhesion induced by serum and changes in the level of carbohydrates content.
Gohil, Priyanshee; Patel, Vimal; Deshpande, Shrikalp; Chorawala, Mehul; Shah, Gaurang
2018-02-01
Alteration of microbiota is related with rheumatoid arthritis (RA) and administration of certain probiotics showed an improvement in RA. The present study was designed to find out the anti-arthritic activity of cell wall content of Lactobacillus plantarum in complete Freund's adjuvant (CFA)-induced arthritis in rats. Freund's adjuvant was injected into the left footpad in female rats on day 0 and dexamethasone (1 mg kg -1 , s.c.) & cell wall content of L. plantarum (10 5 , 10 7 , and 10 9 cfu/animal, s.c.) treatment were given from day 7 to 21. The change in body weight, paw volume and arthritic index, joint stiffness, gait test, mobility test, erythrocyte sedimentation rate (ESR), serum C-reactive protein (CRP) level, serum rheumatoid factor (RF), and serum TNF-α was measured on day 21. Cell wall content of L. plantarum treated animals showed improvement in all the parameters as compared to that in CFA-treated animals and exert anti-arthritic activity.
Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buyck, N.; Thomas, S.
Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) atmore » the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.« less
Bioinspired Layer-by-Layer Microcapsules Based on Cellulose Nanofibers with Switchable Permeability.
Paulraj, Thomas; Riazanova, Anastasia V; Yao, Kun; Andersson, Richard L; Müllertz, Anette; Svagan, Anna J
2017-04-10
Green, all-polysaccharide based microcapsules with mechanically robust capsule walls and fast, stimuli-triggered, and switchable permeability behavior show great promise in applications based on selective and timed permeability. Taking a cue from nature, the build-up and composition of plant primary cell walls inspired the capsule wall assembly, because the primary cell walls in plants exhibit high mechanical properties despite being in a highly hydrated state, primarily owing to cellulose microfibrils. The microcapsules (16 ± 4 μm in diameter) were fabricated using the layer-by-layer technique on sacrificial CaCO 3 templates, using plant polysaccharides (pectin, cellulose nanofibers, and xyloglucan) only. In water, the capsule wall was permeable to labeled dextrans with a hydrodynamic diameter of ∼6.6 nm. Upon exposure to NaCl, the porosity of the capsule wall quickly changed allowing larger molecules (∼12 nm) to permeate. However, the porosity could be restored to its original state by removal of NaCl, by which permeants became trapped inside the capsule's core. The high integrity of cell wall was due to the CNF and the ON/OFF alteration of the permeability properties, and subsequent loading/unloading of molecules, could be repeated several times with the same capsule demonstrating a robust microcontainer with controllable permeability properties.
Tamasloukht, Barek; Wong Quai Lam, Mary Sarah-Jane; Martinez, Yves; Tozo, Koffi; Barbier, Odile; Jourda, Cyril; Jauneau, Alain; Borderies, Gisèle; Balzergue, Sandrine; Renou, Jean-Pierre; Huguet, Stéphanie; Martinant, Jean Pierre; Tatout, Christophe; Lapierre, Catherine; Barrière, Yves; Goffner, Deborah; Pichon, Magalie
2011-01-01
Cinnamoyl-CoA reductase (CCR), which catalyses the first committed step of the lignin-specific branch of monolignol biosynthesis, has been extensively characterized in dicot species, but few data are available in monocots. By screening a Mu insertional mutant collection in maize, a mutant in the CCR1 gene was isolated named Zmccr1–. In this mutant, CCR1 gene expression is reduced to 31% of the residual wild-type level. Zmccr1– exhibited enhanced digestibility without compromising plant growth and development. Lignin analysis revealed a slight decrease in lignin content and significant changes in lignin structure. p-Hydroxyphenyl units were strongly decreased and the syringyl/guaiacyl ratio was slightly increased. At the cellular level, alterations in lignin deposition were mainly observed in the walls of the sclerenchymatic fibre cells surrounding the vascular bundles. These cell walls showed little to no staining with phloroglucinol. These histochemical changes were accompanied by an increase in sclerenchyma surface area and an alteration in cell shape. In keeping with this cell type-specific phenotype, transcriptomics performed at an early stage of plant development revealed the down-regulation of genes specifically associated with fibre wall formation. To the present authors’ knowledge, this is the first functional characterization of CCR1 in a grass species. PMID:21493812
Simulated microgravity does not alter epithelial cell adhesion to matrix and other molecules
NASA Technical Reports Server (NTRS)
Jessup, J. M.; Brown, K.; Ishii, S.; Ford, R.; Goodwin, T. J.; Spaulding, G.
1994-01-01
Microgravity has advantages for the cultivation of tissues with high fidelity; however, tissue formation requires cellular recognition and adhesion. We tested the hypothesis that simulated microgravity does not affect cell adhesion. Human colorectal carcinoma cells were cultured in the NASA Rotating Wall Vessel (RWV) under low shear stress with randomization of the gravity vector that simulates microgravity. After 6 - 7 days, cells were assayed for binding to various substrates and compared to cells grown in standard tissue culture flasks and static suspension cultures. The RWV cultures bound as well to basement membrane proteins and to Carcinoembryonic Antigen (CEA), an intercellular adhesion molecule, as control cultures did. Thus, microgravity does not alter epithelial cell adhesion and may be useful for tissue engineering.
Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A
2015-06-01
Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.
2010-01-01
Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation. Conclusion Overall, monolignol substitutes improved the inherent degradability of non-pretreated cell walls by restricting lignification or possibly by reducing lignin hydrophobicity or cross-linking to structural polysaccharides. Furthermore some monolignol substitutes, chiefly readily cleaved bi-phenolic conjugates like epigallocatechin gallate or diferuloyl polyol esters, are expected to greatly boost the enzymatic degradability of cell walls following chemical pretreatment. In ongoing work, we are characterizing the enzymatic saccharification of intact and chemically pretreated cell walls lignified by these and other monolignol substitutes to identify promising genetic engineering targets for improving plant fiber utilization. PMID:20565789
A Cytochemical Study of Extracellular Sheaths Associated with Rigidoporus lignosus during Wood Decay
Nicole, M.; Chamberland, H.; Rioux, D.; Lecours, N.; Rio, B.; Geiger, J. P.; Ouellette, G. B.
1993-01-01
An ultrastructural and cytochemical investigation of the development of Rigidoporus lignosus, a white-rot fungus inoculated into wood blocks, was carried out to gain better insight into the structure and role of the extracellular sheaths produced by this fungus during wood degradation. Fungal sheaths had a dense or loose fibrillar appearance and were differentiated from the fungal cell wall early after wood inoculation. Close association between extracellular fibrils and wood cell walls was observed at both early and advanced stages of wood alteration. Fungal sheaths were often seen deep in host cell walls, sometimes enclosing residual wood fragments. Specific gold probes were used to investigate the chemical nature of R. lignosus sheaths. While labeling of chitin, pectin, β-1,4- and β-1,3-glucans, β-glucosides, galactosamine, mannose, sialic acid, RNA, fucose, and fimbrial proteins over fungal sheaths did not succeed, galactose residues and laccase (a fungal phenoloxidase) were found to be present. The positive reaction of sheaths with the PATAg test indicates that polysaccharides such as β-1,6-glucans are important components. Our data suggest that extracellular sheaths produced by R. lignosus during host cell colonization play an important role in wood degradation. Transportation of lignin-degrading enzymes by extracellular fibrils indicates that alteration of plant polymers may occur within fungal sheaths. It is also proposed that R. lignosus sheaths may be involved in recognition mechanisms in fungal cell-wood surface interactions. Images PMID:16349017
2015-01-01
Periderms present in plant barks are essential protective barriers to water diffusion, mechanical breakdown, and pathogenic invasion. They consist of densely packed layers of dead cells with cell walls that are embedded with suberin. Understanding the interplay of molecular structure, dynamics, and biomechanics in these cell wall-associated insoluble amorphous polymeric assemblies presents substantial investigative challenges. We report solid-state NMR coordinated with FT-IR and tensile strength measurements for periderms from native and wound-healing potatoes and from potatoes with genetically modified suberins. The analyses include the intact suberin aromatic–aliphatic polymer and cell-wall polysaccharides, previously reported soluble depolymerized transmethylation products, and undegraded residues including suberan. Wound-healing suberized potato cell walls, which are 2 orders of magnitude more permeable to water than native periderms, display a strikingly enhanced hydrophilic–hydrophobic balance, a degradation-resistant aromatic domain, and flexibility suggestive of an altered supramolecular organization in the periderm. Suppression of ferulate ester formation in suberin and associated wax remodels the periderm with more flexible aliphatic chains and abundant aromatic constituents that can resist transesterification, attenuates cooperative hydroxyfatty acid motions, and produces a mechanically compromised and highly water-permeable periderm. PMID:24502663
Serra, Olga; Chatterjee, Subhasish; Figueras, Mercè; Molinas, Marisa; Stark, Ruth E
2014-03-10
Periderms present in plant barks are essential protective barriers to water diffusion, mechanical breakdown, and pathogenic invasion. They consist of densely packed layers of dead cells with cell walls that are embedded with suberin. Understanding the interplay of molecular structure, dynamics, and biomechanics in these cell wall-associated insoluble amorphous polymeric assemblies presents substantial investigative challenges. We report solid-state NMR coordinated with FT-IR and tensile strength measurements for periderms from native and wound-healing potatoes and from potatoes with genetically modified suberins. The analyses include the intact suberin aromatic-aliphatic polymer and cell-wall polysaccharides, previously reported soluble depolymerized transmethylation products, and undegraded residues including suberan. Wound-healing suberized potato cell walls, which are 2 orders of magnitude more permeable to water than native periderms, display a strikingly enhanced hydrophilic-hydrophobic balance, a degradation-resistant aromatic domain, and flexibility suggestive of an altered supramolecular organization in the periderm. Suppression of ferulate ester formation in suberin and associated wax remodels the periderm with more flexible aliphatic chains and abundant aromatic constituents that can resist transesterification, attenuates cooperative hydroxyfatty acid motions, and produces a mechanically compromised and highly water-permeable periderm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Fangwei; Bringmann, Martin; Combs, Jonathon
In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. In this study, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of thesemore » divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.« less
Genovesi, Valeria; Fornalé, Silvia; Fry, Stephen C; Ruel, Katia; Ferrer, Pau; Encina, Antonio; Sonbol, Fathi-Mohamed; Bosch, Josep; Puigdomènech, Pere; Rigau, Joan; Caparrós-Ruiz, David
2008-01-01
Xyloglucan endotransglucosylase/hydrolases (XTHs; EC 2.4.1.207 and/or EC 3.2.1.151) are enzymes involved in the modification of cell wall structure by cleaving and, often, also re-joining xyloglucan molecules in primary plant cell walls. Using a pool of antibodies raised against an enriched cell wall protein fraction, a new XTH cDNA in maize, ZmXTH1, has been isolated from a cDNA expression library obtained from the elongation zone of the maize root. The predicted protein has a putative N-terminal signal peptide and possesses the typical domains of this enzyme family, such as a catalytic domain that is homologous to that of Bacillus macerans beta-glucanase, a putative N-glycosylation motif, and four cysteine residues in the central and C terminal regions of the ZmXTH1 protein. Phylogenetic analysis of ZmXTH1 reveals that it belongs to subgroup 4, so far only reported from Poaceae monocot species. ZmXTH1 has been expressed in Pichia pastoris (a methylotrophic yeast) and the recombinant enzyme showed xyloglucan endotransglucosylase but not xyloglucan endohydrolase activity, representing the first enzyme belonging to subgroup 4 characterized in maize so far. Expression data indicate that ZmXTH1 is expressed in elongating tissues, modulated by culture conditions, and induced by gibberellins. Transient expression assays in onion cells reveal that ZmXTH1 is directed to the cell wall, although weakly bound. Finally, Arabidopsis thaliana plants expressing ZmXTH1 show slightly increased xyloglucan endohydrolase activity and alterations in the cell wall structure and composition.
Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity
NASA Technical Reports Server (NTRS)
Cosgrove, D.
1985-01-01
The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.
Expansin polynucleotides, related polypeptides and methods of use
Cosgrove, Daniel J.; Wu, Yajun
2006-02-21
The present invention relates to beta expansin polypeptides, nucleotide sequences encoding the same and regulatory elements and their use in altering cell wall structure in plants. Nucleic acid constructs comprising a beta expansin sequence operably linked to a promoter, or other regulatory sequence are disclosed as well as vectors, plant cells, plants, and transformed seeds containing such constructs are provided. Methods for the use of such constructs in repressing or inducing expression of a beta expansin sequences in a plant are also provided as well as methods for harvesting transgenic expansin proteins. In addition, methods are provided for inhibiting or improving cell wall structure in plants by repression or induction of expansin sequences in plants.
Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon; ...
2016-07-19
Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression ofmore » AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.« less
Pielach, Anna; Leroux, Olivier; Domozych, David S.; Knox, J. Paul; Popper, Zoë A.
2014-01-01
Background and Aims Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. Methods Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). Key Results Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. Conclusions The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria. PMID:25024256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudes, Aymerick; Zhao, Nanxia; Sathitsuksanoh, Noppadon
Plant biomass is a large source of fermentable sugars for the synthesis of bioproducts using engineered microbes. These sugars are stored as cell wall polymers, mainly cellulose and hemicellulose, and are embedded with lignin, which makes their enzymatic hydrolysis challenging. One of the strategies to reduce cell wall recalcitrance is the modification of lignin content and composition. Lignin is a phenolic polymer of methylated aromatic alcohols and its synthesis in tissues developing secondary cell walls is a significant sink for the consumption of the methyl donor S-adenosylmethionine (AdoMet). In this study, we demonstrate in Arabidopsis stems that targeted expression ofmore » AdoMet hydrolase (AdoMetase, E.C. 3.3.1.2) in secondary cell wall synthesizing tissues reduces the AdoMet pool and impacts lignin content and composition. In particular, both NMR analysis and pyrolysis gas chromatography mass spectrometry of lignin in engineered biomass showed relative enrichment of non-methylated p-hydroxycinnamyl (H) units and a reduction of dimethylated syringyl (S) units. This indicates a lower degree of methylation compared to that in wild-type lignin. Quantification of cell wall-bound hydroxycinnamates revealed a reduction of ferulate in AdoMetase transgenic lines. Biomass from transgenic lines, in contrast to that in control plants, exhibits an enrichment of glucose content and a reduction in the degree of hemicellulose glucuronoxylan methylation. We also show that these modifications resulted in a reduction of cell wall recalcitrance, because sugar yield generated by enzymatic biomass saccharification was greater than that of wild-type plants. Considering that transgenic plants show no important diminution of biomass yields, and that heterologous expression of AdoMetase protein can be spatiotemporally optimized, this novel approach provides a valuable option for the improvement of lignocellulosic biomass feedstock.« less
2011-01-01
Background NAC domain transcription factors initiate secondary cell wall biosynthesis in Arabidopsis fibres and vessels by activating numerous transcriptional regulators and biosynthetic genes. NAC family member SND2 is an indirect target of a principal regulator of fibre secondary cell wall formation, SND1. A previous study showed that overexpression of SND2 produced a fibre cell-specific increase in secondary cell wall thickness in Arabidopsis stems, and that the protein was able to transactivate the cellulose synthase8 (CesA8) promoter. However, the full repertoire of genes regulated by SND2 is unknown, and the effect of its overexpression on cell wall chemistry remains unexplored. Results We overexpressed SND2 in Arabidopsis and analyzed homozygous lines with regards to stem chemistry, biomass and fibre secondary cell wall thickness. A line showing upregulation of CesA8 was selected for transcriptome-wide gene expression profiling. We found evidence for upregulation of biosynthetic genes associated with cellulose, xylan, mannan and lignin polymerization in this line, in agreement with significant co-expression of these genes with native SND2 transcripts according to public microarray repositories. Only minor alterations in cell wall chemistry were detected. Transcription factor MYB103, in addition to SND1, was upregulated in SND2-overexpressing plants, and we detected upregulation of genes encoding components of a signal transduction machinery recently proposed to initiate secondary cell wall formation. Several homozygous T4 and hemizygous T1 transgenic lines with pronounced SND2 overexpression levels revealed a negative impact on fibre wall deposition, which may be indirectly attributable to excessive overexpression rather than co-suppression. Conversely, overexpression of SND2 in Eucalyptus stems led to increased fibre cross-sectional cell area. Conclusions This study supports a function for SND2 in the regulation of cellulose and hemicellulose biosynthetic genes in addition of those involved in lignin polymerization and signalling. SND2 seems to occupy a subordinate but central tier in the secondary cell wall transcriptional network. Our results reveal phenotypic differences in the effect of SND2 overexpression between woody and herbaceous stems and emphasize the importance of expression thresholds in transcription factor studies. PMID:22133261
Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis
Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan
2011-01-01
Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323
NASA Astrophysics Data System (ADS)
Rezaei, Behzad; Majidi, Najmeh; Noori, Shokoofe; Hassan, Zuhair M.
2011-12-01
Artemisinin regarded as one of the most promising anticancer drugs can bind to DNA with a binding constant of 1.04 × 104 M-1. The electrochemical experiments indicated that for longer incubation time periods, the reduction peak current of artemisinin on carbon nanotube modified electrode increases. Therefore, the uptake of drug molecules from a solution into CNTs will be achieved automatically by adsorption of 88.7% of artemisinin onto carbon nanotubes surface without alteration in drug properties. Hence, capability of carbon nanotubes to have synergistic effect on the bioavailability of artemisinin was investigated. Experimental tests on K562 cancer cell lines growth by MTT assay proved that multi-walled carbon nanotubes can enhance the cytotoxity of artemisinin to the targeted cancer cells with unprecedented accuracy and efficiency. The IC50 values were 65 and 35 μM for artemisinin and artemisinin loaded on multi-walled carbon nanotubes, respectively; demonstrating that artemisinin loaded on multi-walled carbon nanotubes is more effective in inhibition of cancer cell lines growth.
Hasunuma, Tomohisa; Fukusaki, Ei-ichiro; Kobayashi, Akio
2004-08-05
A transgenic tobacco plant (Nicotiana tabacum L.) expressing a fungal pectin methylesterase (PME; EC 3.1.1.11) gene derived from a black filamentous fungus, Aspergillus niger was created. Fungal PME should have a wider range of adaptability to substrate pectin compared with plant PME. As expected, the proportion of methyl esters in pectin was reduced in the transgenic tobacco. Consequently, the transgenic plant showed short internodes, small leaves and a dwarf phenotype. At a cellular level, the longitudinal lengths of stem epidermal cells were shorter than those of control plants. This is the first report that fungal PME promotes dwarfism in plants. It is worth noting that in the PME-expressing dwarf plant, the expression levels of cell wall metabolism related genes that included endo-1,4-beta-glucanase, cellulose synthase, endo-xyloglucan transferase and expansin gene were decreased. These results suggest that the expression of fungal PME in plants affects the cell wall metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cass, Cynthia L.; Peraldi, Antoine; Dowd, Patrick F.
The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE ( PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plantsmore » had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. Lastly, the data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops.« less
Cass, Cynthia L.; Peraldi, Antoine; Dowd, Patrick F.; ...
2015-06-19
The phenylpropanoid pathway in plants synthesizes a variety of structural and defence compounds, and is an important target in efforts to reduce cell wall lignin for improved biomass conversion to biofuels. Little is known concerning the trade-offs in grasses when perturbing the function of the first gene family in the pathway, PHENYLALANINE AMMONIA LYASE ( PAL). Therefore, PAL isoforms in the model grass Brachypodium distachyon were targeted, by RNA interference (RNAi), and large reductions (up to 85%) in stem tissue transcript abundance for two of the eight putative BdPAL genes were identified. The cell walls of stems of BdPAL-knockdown plantsmore » had reductions of 43% in lignin and 57% in cell wall-bound ferulate, and a nearly 2-fold increase in the amounts of polysaccharide-derived carbohydrates released by thermochemical and hydrolytic enzymic partial digestion. PAL-knockdown plants exhibited delayed development and reduced root growth, along with increased susceptibilities to the fungal pathogens Fusarium culmorum and Magnaporthe oryzae. Surprisingly, these plants generally had wild-type (WT) resistances to caterpillar herbivory, drought, and ultraviolet light. RNA sequencing analyses revealed that the expression of genes associated with stress responses including ethylene biosynthesis and signalling were significantly altered in PAL knocked-down plants under non-challenging conditions. These data reveal that, although an attenuation of the phenylpropanoid pathway increases carbohydrate availability for biofuel, it can adversely affect plant growth and disease resistance to fungal pathogens. Lastly, the data identify notable differences between the stress responses of these monocot pal mutants versus Arabidopsis (a dicot) pal mutants and provide insights into the challenges that may arise when deploying phenylpropanoid pathway-altered bioenergy crops.« less
Rocha, Marina Campos; de Godoy, Krissia Franco; de Castro, Patrícia Alves; Hori, Juliana Issa; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; da Cunha, Anderson Ferreira; Goldman, Gustavo Henrique; Malavazi, Iran
2015-01-01
Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcA G579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcA G579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcA G579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection. PMID:26295576
Wallace, Ian S.
2015-01-01
The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum
NASA Astrophysics Data System (ADS)
Fujiwara, Yoshihisa; Tomishige, Masahiko; Itoh, Yasuhiro; Fujiwara, Masao; Shibata, Naho; Kosaka, Toshikazu; Hosoya, Hiroshi; Tanimoto, Yoshifumi
2006-05-01
Effect of horizontal strong static magnetic field on swimming behaviour of Paramecium caudatum was studied by using a superconducting magnet. Around a centre of a round vessel, random swimming at 0 T and aligned swimming parallel to the magnetic field (MF) of 8 T were observed. Near a wall of the vessel, however, swimming round and round along the wall at 0 T and aligned swimming of turning at right angles upon collision with the wall, which was remarkable around 1-4 T, were detected. It was experimentally revealed that the former MF-induced parallel swimming at the vessel centre was caused physicochemically by the parallel magnetic orientation of the cell itself. From magnetic field dependence of the extent of the orientation, the magnetic susceptibility anisotropy (χ ∥-χ ⊥) was first obtained to be 3.4× 10-23 emu cell-1 at 298 K for Paramecium caudatum. The orientation of the cell was considered to result from the magnetic orientation of the cell membrane. On the other hand, although mechanisms of the latter swimming near the vessel wall regardless of the absence and presence of the magnetic field are unclear at present, these experimental results indicate that whether the cell exists near the wall alters the magnetic field effect on the swimming in the horizontal magnetic field.
Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility1[OPEN
Takeda, Yuri; Yamamura, Masaomi
2017-01-01
Lignin, a ubiquitous phenylpropanoid polymer in vascular plant cell walls, is derived primarily from oxidative couplings of monolignols (p-hydroxycinnamyl alcohols). It was discovered recently that a wide range of grasses, including cereals, utilize a member of the flavonoids, tricin (3′,5′-dimethoxyflavone), as a natural comonomer with monolignols for cell wall lignification. Previously, we established that cytochrome P450 93G1 is a flavone synthase II (OsFNSII) indispensable for the biosynthesis of soluble tricin-derived metabolites in rice (Oryza sativa). Here, our tricin-deficient fnsII mutant was analyzed further with an emphasis on its cell wall structure and properties. The mutant is similar in growth to wild-type control plants with normal vascular morphology. Chemical and nuclear magnetic resonance structural analyses demonstrated that the mutant lignin is completely devoid of tricin, indicating that FNSII activity is essential for the deposition of tricin-bound lignin in rice cell walls. The mutant also showed substantially reduced lignin content with decreased syringyl/guaiacyl lignin unit composition. Interestingly, the loss of tricin in the mutant lignin appears to be partially compensated by incorporating naringenin, which is a preferred substrate of OsFNSII. The fnsII mutant was further revealed to have enhanced enzymatic saccharification efficiency, suggesting that the cell wall recalcitrance of grass biomass may be reduced through the manipulation of the flavonoid monomer supply for lignification. PMID:28385728
Characterizing deformability and surface friction of cancer cells
Byun, Sangwon; Son, Sungmin; Amodei, Dario; Cermak, Nathan; Shaw, Josephine; Kang, Joon Ho; Hecht, Vivian C.; Winslow, Monte M.; Jacks, Tyler; Mallick, Parag; Manalis, Scott R.
2013-01-01
Metastasis requires the penetration of cancer cells through tight spaces, which is mediated by the physical properties of the cells as well as their interactions with the confined environment. Various microfluidic approaches have been devised to mimic traversal in vitro by measuring the time required for cells to pass through a constriction. Although a cell’s passage time is expected to depend on its deformability, measurements from existing approaches are confounded by a cell's size and its frictional properties with the channel wall. Here, we introduce a device that enables the precise measurement of (i) the size of a single cell, given by its buoyant mass, (ii) the velocity of the cell entering a constricted microchannel (entry velocity), and (iii) the velocity of the cell as it transits through the constriction (transit velocity). Changing the deformability of the cell by perturbing its cytoskeleton primarily alters the entry velocity, whereas changing the surface friction by immobilizing positive charges on the constriction's walls primarily alters the transit velocity, indicating that these parameters can give insight into the factors affecting the passage of each cell. When accounting for cell buoyant mass, we find that cells possessing higher metastatic potential exhibit faster entry velocities than cells with lower metastatic potential. We additionally find that some cell types with higher metastatic potential exhibit greater than expected changes in transit velocities, suggesting that not only the increased deformability but reduced friction may be a factor in enabling invasive cancer cells to efficiently squeeze through tight spaces. PMID:23610435
Dynamics of viscous drops confined in a rough medium
NASA Astrophysics Data System (ADS)
Keiser, Ludovic; Gas, Armelle; Jaafar, Khalil; Bico, Jose; Reyssat, Etienne
2017-11-01
We focus on the dynamics of viscous and non-wetting ``pancake'' droplets of oil conned in a vertical Hele-Shaw cell filled with a less viscous surfactant solution. These dense drops settle at constant velocity driven by gravity. The surfactant solution completely wets the walls, and a thin lubrication film separates the drops from the walls. With smooth walls, two main dynamical regimes are characterized as the gap between the walls is varied. Viscous dissipation is found to dominate either in the droplet or in the lubrication film, depending on the ratio of viscosities and length scales. A sharp transition between both regimes is observed and successfully captured by asymptotic models. With rough walls, that transition is dramatically altered. Drops are generally much slower in a rough Hele-Shaw cell, in comparison with a similar smooth cell. Building up on the seminal works of Seiwert et al. (J.F.M. 2011) on film deposition by dip coating on a rough surface, we shed light on the non-trivial friction processes resulting from the interplay of viscous dissipation at the front of the drop, in the lubrication film and in the bulk of the drop. We acknowledge funding from Total S.A.
Popowska, Magdalena; Osińska, Magdalena; Rzeczkowska, Magdalena
2012-04-01
The main aim of our study was to determine the physiological function of NagA enzyme in the Listeria monocytogenes cell. The primary structure of the murein of L. monocytogenes is very similar to that of Escherichia coli, the main differences being amidation of diaminopimelic acid and partial de-N-acetylation of glucosamine residues. NagA is needed for the deacetylation of N-acetyl-glucosamine-6 phosphate to glucosamine-6 phosphate and acetate. Analysis of the L. monocytogenes genome reveals the presence of two proteins with NagA domain, Lmo0956 and Lmo2108, which are cytoplasmic putative proteins. We introduced independent mutations into the structural genes for the two proteins. In-depth characterization of one of these mutants, MN1, deficient in protein Lmo0956 revealed strikingly altered cell morphology, strongly reduced cell wall murein content and decreased sensitivity to cell wall hydrolase, mutanolysin and peptide antibiotic, colistin. The gene products of operon 150, consisting of three genes: lmo0956, lmo0957, and lmo0958, are necessary for the cytosolic steps of the amino-sugar-recycling pathway. The cytoplasmic de-N-acetylase Lmo0956 of L. monocytogenes is required for cell wall peptidoglycan and teichoic acid biosynthesis and is also essential for bacterial cell growth, cell division, and sensitivity to cell wall hydrolases and peptide antibiotics.
Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine
2009-07-01
Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.
Durand, Caroline; Vicré-Gibouin, Maïté; Follet-Gueye, Marie Laure; Duponchel, Ludovic; Moreau, Myriam; Lerouge, Patrice; Driouich, Azeddine
2009-01-01
Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip. PMID:19448034
The Arabidopsis CSLD 5 functions in cell plate formation in a cell cycle-dependent manner
Gu, Fangwei; Bringmann, Martin; Combs, Jonathon; ...
2016-06-27
In plants, the presence of a load-bearing cell wall presents unique challenges during cell division. Unlike other eukaryotes, which undergo contractile cytokinesis upon completion of mitosis, plants instead synthesize and assemble a new dividing cell wall to separate newly formed daughter cells. In this study, we mine transcriptome data from individual cell types in the Arabidopsis thaliana stomatal lineage and identify CSLD5, a member of the Cellulose Synthase Like-D family, as a cell wall biosynthesis enzyme uniquely enriched in rapidly dividing cell populations. We further show that CSLD5 is a direct target of SPEECHLESS, the master transcriptional regulator of thesemore » divisions during stomatal development. Using a combination of genetic analysis and in vivo localization of fluorescently tagged fusion proteins, we show that CSLD5 preferentially accumulates in dividing plant cells where it participates in the construction of newly forming cell plates. We show that CSLD5 is an unstable protein that is rapidly degraded upon completion of cell division and that the protein turnover characteristics of CSLD5 are altered in ccs52a2 mutants, indicating that CSLD5 turnover may be regulated by a cell cycle-associated E3-ubiquitin ligase, the anaphase-promoting complex.« less
Fan, Ling; Linker, Raphael; Gepstein, Shimon; Tanimoto, Eiichi; Yamamoto, Ryoichi; Neumann, Peter M.
2006-01-01
Water deficit caused by addition of polyethylene glycol 6000 at −0.5 MPa water potential to well-aerated nutrient solution for 48 h inhibited the elongation of maize (Zea mays) seedling primary roots. Segmental growth rates in the root elongation zone were maintained 0 to 3 mm behind the tip, but in comparison with well-watered control roots, progressive growth inhibition was initiated by water deficit as expanding cells crossed the region 3 to 9 mm behind the tip. The mechanical extensibility of the cell walls was also progressively inhibited. We investigated the possible involvement in root growth inhibition by water deficit of alterations in metabolism and accumulation of wall-linked phenolic substances. Water deficit increased expression in the root elongation zone of transcripts of two genes involved in lignin biosynthesis, cinnamoyl-CoA reductase 1 and 2, after only 1 h, i.e. before decreases in wall extensibility. Further increases in transcript expression and increased lignin staining were detected after 48 h. Progressive stress-induced increases in wall-linked phenolics at 3 to 6 and 6 to 9 mm behind the root tip were detected by comparing Fourier transform infrared spectra and UV-fluorescence images of isolated cell walls from water deficit and control roots. Increased UV fluorescence and lignin staining colocated to vascular tissues in the stele. Longitudinal bisection of the elongation zone resulted in inward curvature, suggesting that inner, stelar tissues were also rate limiting for root growth. We suggest that spatially localized changes in wall-phenolic metabolism are involved in the progressive inhibition of wall extensibility and root growth and may facilitate root acclimation to drying environments. PMID:16384904
Taylor, Iain E. P.; Wallace, Julia C.; MacKay, Alex L.; Volke, Frank
1990-01-01
Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure. PMID:16667683
Temple, Henry; Saez-Aguayo, Susana; Reyes, Francisca C; Orellana, Ariel
2016-09-01
The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-01-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6–yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. PMID:25428999
He, Zhangjiang; Luo, Linli; Keyhani, Nemat O; Yu, Xiaodong; Ying, Shenghua; Zhang, Yongjun
2017-02-01
Protein O-mannosyltransferases (Pmts) belong to a highly conserved protein family responsible for the initiation of O-glycosylation of many proteins. Pmts contain one dolichyl-phosphate-mannose-protein mannosyltransferases (PMT) domain and three MIR motifs (mannosyltransferase, inositol triphosphate, and ryanodine receptor) that are essential for activity in yeast. We report that in the insect fungal pathogen, Beauveria bassiana, deletion of the C-terminal Pmt1 MIR-containing region (Pmt1∆ 311-902 ) does not alter O-mannosyltransferase activity, but does increase total cell wall protein O-mannosylation levels and results in phenotypic changes in fungal development and cell wall stability. B. bassiana mutants harboring the Pmt1 ∆ 311-902 mutation displayed a significant increase in conidiation with up-regulation of conidiation-associated genes and an increase in biomass accumulation as compared to the wild-type parent. However, decreased vegetative growth and blastospore production was noted, and Pmt1 ∆ 311-902 mutants were altered in cell wall composition and cell surface features. Insect bioassays revealed little effect on virulence for the Pmt1 ∆ 311-902 strain via cuticle infection or intrahemocoel injection assays, although differences in hyphal body differentiation in the host hemolymph and up-regulation of virulence-associated genes were noted. These data suggest novel roles for Pmt1 in negatively regulating conidiation and demonstrate that the C-terminal Pmt1 MIR-containing region is dispensable for enzymatic activity and organismal virulence.
Jin, Ye; Ni, Di-An; Ruan, Yong-Ling
2009-07-01
Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in tomato (Solanum lycopersicum). Expression of a INVINH1:green fluorescent protein fusion revealed its apoplasmic localization. Ectopic overexpression of INVINH1 in Arabidopsis thaliana specifically reduced cell wall invertase activity. By contrast, silencing its expression in tomato significantly increased the activity of cell wall invertase without altering activities of cytoplasmic and vacuolar invertases. Elevation of cell wall invertase activity in RNA interference transgenic tomato led to (1) a prolonged leaf life span involving in a blockage of abscisic acid-induced senescence and (2) an increase in seed weight and fruit hexose level, which is likely achieved through enhanced sucrose hydrolysis in the apoplasm of the fruit vasculature. This assertion is based on (1) coexpression of INVINH1 and a fruit-specific cell wall invertase Lin5 in phloem parenchyma cells of young fruit, including the placenta regions connecting developing seeds; (2) a physical interaction between INVINH1 and Lin5 in vivo; and (3) a symplasmic discontinuity at the interface between placenta and seeds. Together, the results demonstrate that INVINH1 encodes a protein that specifically inhibits the activity of cell wall invertase and regulates leaf senescence and seed and fruit development in tomato by limiting the invertase activity in planta.
Zhao, Qiao; Zeng, Yining; Yin, Yanbin; ...
2014-08-05
In this paper, pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutantmore » of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Finally, together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.« less
Rancour, David M.; Hatfield, Ronald D.; Marita, Jane M.; Rohr, Nicholas A.; Schmitz, Robert J.
2015-01-01
Nucleotide-activated sugars are essential substrates for plant cell-wall carbohydrate-polymer biosynthesis. The most prevalent grass cell wall (CW) sugars are glucose (Glc), xylose (Xyl), and arabinose (Ara). These sugars are biosynthetically related via the UDP–sugar interconversion pathway. We sought to target and generate UDP–sugar interconversion pathway transgenic Brachypodium distachyon lines resulting in CW carbohydrate composition changes with improved digestibility and normal plant stature. Both RNAi-mediated gene-suppression and constitutive gene-expression approaches were performed. CWs from 336 T0 transgenic plants with normal appearance were screened for complete carbohydrate composition. RNAi mutants of BdRGP1, a UDP-arabinopyranose mutase, resulted in large alterations in CW carbohydrate composition with significant decreases in CW Ara content but with minimal change in plant stature. Five independent RNAi-RGP1 T1 plant lines were used for in-depth analysis of plant CWs. Real-time PCR analysis indicated that gene expression levels for BdRGP1, BdRGP2, and BdRGP3 were reduced in RNAi-RGP1 plants to 15–20% of controls. CW Ara content was reduced by 23–51% of control levels. No alterations in CW Xyl and Glc content were observed. Corresponding decreases in CW ferulic acid (FA) and ferulic acid-dimers (FA-dimers) were observed. Additionally, CW p-coumarates (pCA) were decreased. We demonstrate the CW pCA decrease corresponds to Ara-coupled pCA. Xylanase-mediated digestibility of RNAi-RGP1 Brachypodium CWs resulted in a near twofold increase of released total carbohydrate. However, cellulolytic hydrolysis of CW material was inhibited in leaves of RNAi-RGP1 mutants. Our results indicate that targeted manipulation of UDP–sugar biosynthesis can result in biomass with substantially altered compositions and highlights the complex effect CW composition has on digestibility. PMID:26136761
Vetchinkina, Elena; Kupryashina, Maria; Gorshkov, Vladimir; Ageeva, Marina; Gogolev, Yuri; Nikitina, Valentina
2017-04-01
The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.
Molecular mechanisms of maternal vascular dysfunction in preeclampsia.
Goulopoulou, Styliani; Davidge, Sandra T
2015-02-01
In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, J.D.; Todd, P. W.; Staehelin, L. A.; Holton, Emily (Technical Monitor)
1997-01-01
Under normal (l-g) conditions the statocytes of root caps have a characteristic polarity with the nucleus in tight association with the proximal cell wall; but, in altered gravity environments including microgravity (mu-g) and the clinostat (c-g) movement of the nucleus away from the proximal cell wall is not uncommon. To further understand the cause of gravity-dependent nuclear displacement in statocytes, three-dimensional cell reconstruction techniques were used to precisely measure the volumes, shapes, and positions of nuclei in white clover (Trifolium repens) flown in space and rotated on a clinostat. Seeds were germinated and grown for 72 hours aboard the Space Shuttle (STS-63) in the Fluid Processing Apparatus (BioServe Space Technologies, Univ. of Colorado, Boulder). Clinorotation experiments were performed on a two-axis clinostat (BioServe). Computer reconstruction of selected groups of statocytes were made from serial sections (0.5 microns thick) using the ROSS (Reconstruction Of Serial Sections) software package (Biocomputation Center, NASA Ames Research Center). Nuclei were significantly displaced from the tops of cells in mu-g (4.2 +/- 1.0 microns) and c-g (4.9 +/- 1.4 microns) when compared to l-g controls (3.4 +/- 0.8 gm); but, nuclear volume (113 +/- 36 cu microns, 127 +/- 32 cu microns and 125 +/- 28 cu microns for l-g, mu-g and c-g respectively) and the ratio of nuclear volume to cell volume (4.310.7%, 4.211.0% and 4.911.4% respectively) were not significantly dependent on gravity treatment (ANOVA; alpha = 0.05). Three-dimensional analysis of nuclear shape and proximity to the cell wall, however, showed that nuclei from l-g controls appeared ellipsoidal while those from space and the clinostat were more spherically shaped. This change in nuclear shape may be responsible for its displacement under altered gravity conditions. Since the cytoskeleton is known to affect nuclear polarity in root cap statocytes, those same cytoskeletal elements could also control nuclear shape. This alteration in nuclear shape and position in mu-g and c-g when compared to l-g may lead to functional differences in the gravity signaling systems of plants subjected to altered gravity environments.
Altering F-Actin Structure of C17.2 Cells using Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Magers, Jay; Gillette, Nathan L. D.; Rotkin, Slava V.; Jedlicka, Sabrina; Pirbhai, Massooma; Lehigh Univesity Collaboration; Susquehanna University Collaboration
Advancements in nanotechnology have become fundamental to the delivery of drugs to treat various diseases. One such advancement is that of carbon nanotubes and their possible implications on drug delivery. Single-walled carbon nanotubes (SWCNTs) have great potential in the biomedical field as a means to deliver materials such as drugs and genes into the human body due to their size and chemistry. However, the effects of the nanotubes on cells they interact with are still unknown. Previous studies have shown that a low dosage of SWCNTs can affect differentiation of C17.2 neural stem cells. In this experiment, we investigate how the tubes affect the structure of the cells. Specifically, we determined the impact on the cell by examining the actin filament length, protrusions along the edge of the cells, and actin distribution. Presenter/Author 1.
The effects of high-power microwaves on the ultrastructure of Bacillus subtilis.
Kim, S-Y; Jo, E-K; Kim, H-J; Bai, K; Park, J-K
2008-07-01
To investigate the microbicidal mechanisms of high-power microwave (2.0 kW) irradiation on Bacillus subtilis and to determine the effect of this procedure on the ultrastructure of the cell wall. We performed viability test, examined cells using transmission electron microscopy (TEM), and measured the release of intracellular proteins and nucleic acids. The inactivation rate of B. subtilis by 2.0-kW microwave irradiation was higher than that of a domestic microwave (0.5 kW). Few proteins were released from either microwaved or boiled cells. However, the leakage of nucleic acids from 2.0-kW-microwaved cells was significantly higher than that of 0.5-kW-microwaved or boiled cells. Therefore, we examined ultrastructural alterations of microwaved or boiled cells to analyse the pattern of release of cytoplasmic contents. Although boiled cells did not show any ultrastructural changes on TEM, 2.0-kW-microwaved cells showed disruption of the cell wall. The microbicidal mechanisms of 2.0-kW microwave irradiation include damage to the microbial cell wall, breakage of the genomic DNA, and thermal coagulation of cytoplasmic proteins. TEM images showed that the cytoplasmic protein aggregation and cell envelope damage by microwave irradiation were different from the ultrastructural changes observed after boiling.
Zhang, Mingliang; Wei, Feng; Guo, Kai; Hu, Zhen; Li, Yuyang; Xie, Guosheng; Wang, Yanting; Cai, Xiwen; Peng, Liangcai; Wang, Lingqiang
2016-01-01
We report isolation and characterization of a fragile culm mutant fc116 that displays reduced mechanical strength caused by decreased cellulose content and altered cell wall structure in rice. Map-based cloning revealed that fc116 was a base substitution mutant (G to A) in a putative beta-1,6-N-acetylglucosaminyltransferase (C2GnT) gene (LOC_Os05g07790, allelic to BC10). This mutation resulted in one amino acid missing within a newly-identified protein motif “R, RXG, RA.” The FC116/BC10 gene was lowly but ubiquitously expressed in the all tissues examined across the whole life cycle of rice, and slightly down-regulated during secondary growth. This mutant also exhibited a significant increase in the content of hemicelluloses and lignins, as well as the content of pentoses (xylose and arabinose). But the content of hexoses (glucose, mannose, and galactose) was decreased in both cellulosic and non-cellulosic (pectins and hemicelluloses) fractions of the mutant. Transcriptomic analysis indicated that the typical genes in the fc116 mutant were up-regulated corresponding to xylan biosynthesis, as well as lignin biosynthesis including p-hydroxyphenyl (H), syringyl (S), and guaiacyl (G). Our results indicate that FC116 has universal function in regulation of the cell wall polymers in rice. PMID:27708650
Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants
Marriott, Poppy E.; Sibout, Richard; Lapierre, Catherine; Fangel, Jonatan U.; Willats, William G. T.; Hofte, Herman; Gómez, Leonardo D.; McQueen-Mason, Simon J.
2014-01-01
Lignocellulosic plant biomass is an attractive feedstock for the production of sustainable biofuels, but the commercialization of such products is hampered by the high costs of processing this material into fermentable sugars (saccharification). One approach to lowering these costs is to produce crops with cell walls that are more susceptible to hydrolysis to reduce preprocessing and enzyme inputs. To deepen our understanding of the molecular genetic basis of lignocellulose recalcitrance, we have screened a mutagenized population of the model grass Brachypodium distachyon for improved saccharification with an industrial polysaccharide-degrading enzyme mixture. From an initial screen of 2,400 M2 plants, we selected 12 lines that showed heritable improvements in saccharification, mostly with no significant reduction in plant size or stem strength. Characterization of these putative mutants revealed a variety of alterations in cell-wall components. We have mapped the underlying genetic lesions responsible for increased saccharification using a deep sequencing approach, and here we report the mapping of one of the causal mutations to a narrow region in chromosome 2. The most likely candidate gene in this region encodes a GT61 glycosyltransferase, which has been implicated in arabinoxylan substitution. Our work shows that forward genetic screening provides a powerful route to identify factors that impact on lignocellulose digestibility, with implications for improving feedstock for cellulosic biofuel production. PMID:25246540
Xiao, Chaowen; Somerville, Chris; Anderson, Charles T
2014-03-01
Pectins are acidic carbohydrates that comprise a significant fraction of the primary walls of eudicotyledonous plant cells. They influence wall porosity and extensibility, thus controlling cell and organ growth during plant development. The regulated degradation of pectins is required for many cell separation events in plants, but the role of pectin degradation in cell expansion is poorly defined. Using an activation tag screen designed to isolate genes involved in wall expansion, we identified a gene encoding a putative polygalacturonase that, when overexpressed, resulted in enhanced hypocotyl elongation in etiolated Arabidopsis thaliana seedlings. We named this gene POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1). Plants lacking PGX1 display reduced hypocotyl elongation that is complemented by transgenic PGX1 expression. PGX1 is expressed in expanding tissues throughout development, including seedlings, roots, leaves, and flowers. PGX1-GFP (green fluorescent protein) localizes to the apoplast, and heterologously expressed PGX1 displays in vitro polygalacturonase activity, supporting a function for this protein in apoplastic pectin degradation. Plants either overexpressing or lacking PGX1 display alterations in total polygalacturonase activity, pectin molecular mass, and wall composition and also display higher proportions of flowers with extra petals, suggesting PGX1's involvement in floral organ patterning. These results reveal new roles for polygalacturonases in plant development.
Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong
2015-01-01
Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the wildtype plants. This systematic analysis demonstrated that PsnSuSy2 plays an important role in cleaving sucrose coupled with cellulose biosynthesis in wood tissue.
Wei, Zhigang; Qu, Zanshuang; Zhang, Lijie; Zhao, Shuanjing; Bi, Zhihong; Ji, Xiaohui; Wang, Xiaowen; Wei, Hairong
2015-01-01
Sucrose synthase (SuSy) is considered the first key enzyme for secondary growth because it is a highly regulated cytosolic enzyme that catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose. Although SuSy enzymes preferentially functions in the direction of sucrose cleavage at most cellular condition, they also catalyze the synthetic reaction. We isolated a gene that encodes a SuSy from Populus simonii×Populus nigra and named it PsnSuSy2 because it shares high similarity to SuSy2 in Populus trichocarpa. RT-PCR revealed that PsnSuSy2 was highly expressed in xylem, but lowly expressed in young leaves. To characterize its functions in secondary growth, multiple tobacco overexpression transgenic lines of PnsSuSy2 were generated via Agrobacterium-mediated transformation. The PsnSuSy2 expression levels and altered wood properties in stem segments from the different transgenic lines were carefully characterized. The results demonstrated that the levels of PsnSuSy2 enzyme activity, chlorophyll content, total soluble sugars, fructose and glucose increased significantly, while the sucrose level decreased significantly. Consequently, the cellulose content and fiber length increased, whereas the lignin content decreased, suggesting that PsnSuSy2 plays a significant role in cleaving sucrose into UDP-glucose and fructose to facilitate cellulose biosynthesis and that promotion of cellulose biosynthesis suppresses lignin biosynthesis. Additionally, the noticeable increase in the lodging resistance in transgenic tobacco stem suggested that the cell wall characteristics were altered by PsnSuSy2 overexpression. Scanning electron microscopy was performed to study the cell wall morphology of stem, and surprisingly, we found that the secondary cell wall was significantly thicker in transgenic tobacco. However, the thickened secondary cell wall did not negatively affect the height of the plants because the PsnSuSy2- overexpressing lines grew taller than the wildtype plants. This systematic analysis demonstrated that PsnSuSy2 plays an important role in cleaving sucrose coupled with cellulose biosynthesis in wood tissue. PMID:25807295
Function and Dynamics of Auxin and Carbohydrates during Earlywood/Latewood Transition in Scots Pine1
Uggla, Claes; Magel, Elisabeth; Moritz, Thomas; Sundberg, Björn
2001-01-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development. PMID:11299382
Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in scots pine.
Uggla, C; Magel, E; Moritz, T; Sundberg, B
2001-04-01
In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.
Graña, E; Sotelo, T; Díaz-Tielas, C; Araniti, F; Krasuska, U; Bogatek, R; Reigosa, M J; Sánchez-Moreiras, A M
2013-02-01
Citral is a linear monoterpene which is present, as a volatile component, in the essential oil of several different aromatic plants. Previous studies have demonstrated the ability of citral to alter the mitotic microtubules of plant cells, especially at low concentrations. The changes to the microtubules may be due to the compound acting directly on the treated root and coleoptile cells or to indirect action through certain phytohormones. This study, performed in Arabidopsis thaliana, analysed the short-term effects of citral on the auxin content and mitotic cells, and the long-term effects of these alterations on root development and ethylene levels. The results of this study show that citral alters auxin content and cell division and has a strong long-term disorganising effect on cell ultra-structure in A. thaliana seedlings. Its effects on cell division, the thickening of the cell wall, the reduction in intercellular communication, and the absence of root hairs confirm that citral is a strong phytotoxic compound, which has persistent effects on root development.
Auer, George K; Weibel, Douglas B
2017-07-25
Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.
Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.; ...
2015-09-15
Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.
Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. In addition, these enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structuremore » consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation.Peptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qingping; Mengin-Lecreulx, Dominique; Liu, Xueqian W.
ABSTRACT Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A 2pm (A 2pm is diaminopimelic acid) cysteine amidase (ordl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminall-Ala. Their crystal structures revealed a highly conserved structure consistingmore » of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. IMPORTANCEPeptidoglycan is a meshlike polymer that envelops the bacterial plasma membrane and bestows structural integrity. Cell wall lysins and recycling enzymes are part of a set of lytic enzymes that target covalent bonds connecting the amino acid and amino sugar building blocks of the PG network. These hydrolases are involved in processes such as cell growth and division, autolysis, invasion, and PG turnover and recycling. To avoid cleavage of unintended substrates, these enzymes have very selective substrate specificities. Our biochemical and structural analysis of three modular NlpC/P60 hydrolases, one lysin, and two recycling enzymes, show that they may have evolved from a common molecular architecture, where the substrate preference is modulated by local changes. These results also suggest that new pathways for recycling PG turnover products, such as tracheal cytotoxin, may have evolved in bacteria in the human gut microbiome that involve NlpC/P60 cell wall hydrolases.« less
USDA-ARS?s Scientific Manuscript database
Phytoplasmas are unculturable, cell wall-less bacteria that parasitize plants and insects. This transkingdom life cycle requires rapid responses to vastly different environments including transitions from plant phloem sieve elements to various insect tissues and alterations of diverse plant hosts. ...
Galway, Moira E; Eng, Ryan C; Schiefelbein, John W; Wasteneys, Geoffrey O
2011-05-01
The glycosyl transferase encoded by the cellulose synthase-like gene CSLD3/KJK/RHD7 (At3g03050) is required for cell wall integrity during root hair formation in Arabidopsis thaliana but it remains unclear whether it contributes to the synthesis of cellulose or hemicellulose. We identified two new alleles, root hair-defective (rhd) 7-1 and rhd7-4, which affect the C-terminal end of the encoded protein. Like root hairs in the previously characterized kjk-2 putative null mutant, rhd7-1 and rhd7-4 hairs rupture before tip growth but, depending on the growth medium and temperature, hairs are able to survive rupture and initiate tip growth, indicating that these alleles retain some function. At 21°C, the rhd7 tip-growing root hairs continued to rupture but at 5ºC, rupture was inhibited, resulting in long, wild type-like root hairs. At both temperatures, the expression of another root hair-specific CSLD gene, CSLD2, was increased in the rhd7-4 mutant but reduced in the kjk-2 mutant, suggesting that CSLD2 expression is CSLD3-dependent, and that CSLD2 could partially compensate for CSLD3 defects to prevent rupture at 5°C. Using a fluorescent brightener (FB 28) to detect cell wall (1 → 4)-β-glucans (primarily cellulose) and CCRC-M1 antibody to detect fucosylated xyloglucans revealed a patchy distribution of both in the mutant root hair cell walls. Cell wall thickness varied, and immunogold electron microscopy indicated that xyloglucan distribution was altered throughout the root hair cell walls. These cell wall defects indicate that CSLD3 is required for the normal organization of both cellulose and xyloglucan in root hair cell walls.
Lewis, Daniel R.; Olex, Amy L.; Lundy, Stacey R.; Turkett, William H.; Fetrow, Jacquelyn S.; Muday, Gloria K.
2013-01-01
To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in CELLULASE3/GLYCOSYLHYDROLASE9B3 and LEUCINE RICH EXTENSIN2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development. PMID:24045021
Cellular mechanisms underlying growth asymmetry during stem gravitropism
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.
1997-01-01
Plant stems respond to gravitropic stimulation with a rapid, local and reversible change in cell growth rate (elongation), generally on both the upper and lower sides of the stem. The cellular and biochemical mechanisms for this differential growth are reviewed. Considerable evidence implicates an asymmetry in wall pH in the growth response. The strengths and weaknesses of the wall "loosening enzyme" concept are reviewed and the possibility of expansin involvement in the bending response of stems is considered. Also discussed is the possibility that wall stiffening processes, e.g. phenolic coupling driven by oxidative bursts or altered orientation of newly deposited cellulose, might mediate the growth responses during gravitropism.
Wright, Catherine C.; Hsu, Fong Fu; Arnett, Eusondia; Dunaj, Jennifer L.; Davidson, Patrick M.; Pacheco, Sophia A.; Harriff, Melanie J.; Lewinsohn, David M.; Schlesinger, Larry S.
2017-01-01
ABSTRACT The mycobacterial cell wall is crucial to the host-pathogen interface, because it provides a barrier against antibiotics and the host immune response. In addition, cell wall lipids are mycobacterial virulence factors. The mycobacterial membrane protein large (MmpL) proteins are cell wall lipid transporters that are important for basic mycobacterial physiology and Mycobacterium tuberculosis pathogenesis. MmpL3 and MmpL11 are conserved across pathogenic and nonpathogenic mycobacteria, a feature consistent with an important role in the basic physiology of the bacterium. MmpL3 is essential and transports trehalose monomycolate to the mycobacterial surface. In this report, we characterize the role of MmpL11 in M. tuberculosis. M. tuberculosis mmpL11 mutants have altered biofilms associated with lower levels of mycolic acid wax ester and long-chain triacylglycerols than those for wild-type bacteria. While the growth rate of the mmpL11 mutant is similar to that of wild-type M. tuberculosis in macrophages, the mutant exhibits impaired survival in an in vitro granuloma model. Finally, we show that the survival or recovery of the mmpL11 mutant is impaired when it is incubated under conditions of nutrient and oxygen starvation. Our results suggest that MmpL11 and its cell wall lipid substrates are important for survival in the context of adaptive immune pressure and for nonreplicating persistence, both of which are critically important aspects of M. tuberculosis pathogenicity. PMID:28507063
HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.
Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W
2015-03-01
Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Saar Dover, Ron; Bitler, Arkady; Shimoni, Eyal; Trieu-Cuot, Patrick; Shai, Yechiel
2015-05-01
Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria.
Chatterjee, Subhasish; Matas, Antonio J; Isaacson, Tal; Kehlet, Cindie; Rose, Jocelyn K C; Stark, Ruth E
2016-01-11
Plant cuticles on outer fruit and leaf surfaces are natural macromolecular composites of waxes and polyesters that ensure mechanical integrity and mitigate environmental challenges. They also provide renewable raw materials for cosmetics, packaging, and coatings. To delineate the structural framework and flexibility underlying the versatile functions of cutin biopolymers associated with polysaccharide-rich cell-wall matrices, solid-state NMR spectra and spin relaxation times were measured in a tomato fruit model system, including different developmental stages and surface phenotypes. The hydrophilic-hydrophobic balance of the cutin ensures compatibility with the underlying polysaccharide cell walls; the hydroxy fatty acid structures of outer epidermal cutin also support deposition of hydrophobic waxes and aromatic moieties while promoting the formation of cell-wall cross-links that rigidify and strengthen the cuticle composite during fruit development. Fruit cutin-deficient tomato mutants with compromised microbial resistance exhibit less efficient local and collective biopolymer motions, stiffening their cuticular surfaces and increasing their susceptibility to fracture.
PAD4, LSD1 and EDS1 regulate drought tolerance, plant biomass production, and cell wall properties.
Szechyńska-Hebda, Magdalena; Czarnocka, Weronika; Hebda, Marek; Bernacki, Maciej J; Karpiński, Stanisław
2016-03-01
Arabidopsis and poplar with modified PAD4, LSD1 and EDS1 genes exhibit successful growth under drought stress. The acclimatory strategies depend on cell division/cell death control and altered cell wall composition. The increase of plant tolerance towards environmental stresses would open much opportunity for successful plant cultivation in these areas that were previously considered as ineligible, e.g. in areas with poor irrigation. In this study, we performed functional analysis of proteins encoded by PHYTOALEXIN DEFICIENT 4 (PAD4), LESION SIMULATING DISEASE 1 (LSD1) and ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) genes to explain their role in drought tolerance and biomass production in two different species: Arabidopsis thaliana and Populus tremula × tremuloides. Arabidopsis mutants pad4-5, lsd1-1, eds1-1 and transgenic poplar lines PAD4-RNAi, LSD1-RNAi and ESD1-RNAi were examined in terms of different morphological and physiological parameters. Our experiments proved that Arabidopsis PAD4, LSD1 and EDS1 play an important role in survival under drought stress and regulate plant vegetative and generative growth. Biomass production and acclimatory strategies in poplar were also orchestrated via a genetic system of PAD4 and LSD1 which balanced the cell division and cell death processes. Furthermore, improved rate of cell division/cell differentiation and altered physical properties of poplar wood were the outcome of PAD4- and LSD1-dependent changes in cell wall structure and composition. Our results demonstrate that PAD4, LSD1 and EDS1 constitute a molecular hub, which integrates plant responses to water stress, vegetative biomass production and generative development. The applicable goal of our research was to generate transgenic plants with regulatory mechanism that perceives stress signals to optimize plant growth and biomass production in semi-stress field conditions.
Daku, Rhys M.; Rabbi, Fazle; Buttigieg, Josef; Coulson, Ian M.; Horne, Derrick; Martens, Garnet; Ashton, Neil W.; Suh, Dae-Yeon
2016-01-01
Sporopollenin is the main constituent of the exine layer of spore and pollen walls. The anther-specific chalcone synthase-like (ASCL) enzyme of Physcomitrella patens, PpASCL, has previously been implicated in the biosynthesis of sporopollenin, the main constituent of exine and perine, the two outermost layers of the moss spore cell wall. We made targeted knockouts of the corresponding gene, PpASCL, and phenotypically characterized ascl sporophytes and spores at different developmental stages. Ascl plants developed normally until late in sporophytic development, when the spores produced were structurally aberrant and inviable. The development of the ascl spore cell wall appeared to be arrested early in microspore development, resulting in small, collapsed spores with altered surface morphology. The typical stratification of the spore cell wall was absent with only an abnormal perine recognisable above an amorphous layer possibly representing remnants of compromised intine and/or exine. Equivalent resistance of the spore walls of ascl mutants and the control strain to acetolysis suggests the presence of chemically inert, defective sporopollenin in the mutants. Anatomical abnormalities of late-stage ascl sporophytes include a persistent large columella and an air space incompletely filled with spores. Our results indicate that the evolutionarily conserved PpASCL gene is needed for proper construction of the spore wall and for normal maturation and viability of moss spores. PMID:26752629
USDA-ARS?s Scientific Manuscript database
Breeding grasses for increased digestibility increases their value and profitability in ruminant livestock production systems. Digestibility can be improved in grasses by either increasing the concentration of soluble and readily fermentable carbohydrates or by altering the plant cell wall to create...
Pogorelko, Gennady V; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A; Rodermel, Steven R
2016-01-01
The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions.
Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.; Ortega, J. K.; Shropshire, W. Jr
1987-01-01
The physical characteristics which govern the water relations of the giant-celled sporangiophore of Phycomyces blakesleeanus were measured with the pressure probe technique and with nanoliter osmometry. These properties are important because they govern water uptake associated with cell growth and because they may influence expansion of the sporangiophore wall. Turgor pressure ranged from 1.1 to 6.6 bars (mean = 4.1 bars), and was the same for stage I and stage IV sporangiophores. Sporangiophore osmotic pressure averaged 11.5 bars. From the difference between cell osmotic pressure and turgor pressure, the average water potential of the sporangiophore was calculated to be about -7.4 bars. When sporangiophores were submerged under water, turgor remained nearly constant. We propose that the low cell turgor pressure is due to solutes in the cell wall solution, i.e., between the cuticle and the plasma membrane. Membrane hydraulic conductivity averaged 4.6 x 10(-6) cm s-1 bar-1, and was significantly greater in stage I sporangiophores than in stage IV sporangiophores. Contrary to previous reports, the sporangiophore is separated from the supporting mycelium by septa which prevent bulk volume flow between the two regions. The presence of a wall compartment between the cuticle and the plasma membrane results in anomalous osmosis during pressure clamp measurements. This behavior arises because of changes in solute concentration as water moves into or out of the wall compartment surrounding the sporangiophore. Theoretical analysis shows how the equations governing transient water flow are altered by the characteristics of the cell wall compartment.
Chan, Jordi; Crowell, Elizabeth; Eder, Magdalena; Calder, Grant; Bunnewell, Susan; Findlay, Kim; Vernhettes, Samantha; Höfte, Herman; Lloyd, Clive
2010-10-15
Plant shoots have thick, polylamellate outer epidermal walls based on crossed layers of cellulose microfibrils, but the involvement of microtubules in such wall lamellation is unclear. Recently, using a long-term movie system in which Arabidopsis seedlings were grown in a biochamber, the tracks along which cortical microtubules move were shown to undergo slow rotary movements over the outer surface of hypocotyl epidermal cells. Because microtubules are known to guide cellulose synthases over the short term, we hypothesised that this previously unsuspected microtubule rotation could, over the longer term, help explain the cross-ply structure of the outer epidermal wall. Here, we test that hypothesis using Arabidopsis plants expressing the cellulose synthase GFP-CESA3 and show that cellulose synthase trajectories do rotate over several hours. Neither microtubule-stabilising taxol nor microtubule-depolymerising oryzalin affected the linear rate of GFP-CESA3 movement, but both stopped the rotation of cellulose synthase tracks. Transmission electron microscopy revealed that drug-induced suppression of rotation alters the lamellation pattern, resulting in a thick monotonous wall layer. We conclude that microtubule rotation, rather than any hypothetical mechanism for wall self-assembly, has an essential role in developing cross-ply wall texture.
Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields
NASA Technical Reports Server (NTRS)
Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra
1997-01-01
Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.
Designer lignins: harnessing the plasticity of lignification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mottiar, Yaseen; Vanholme, Ruben; Boerjan, Wout
Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased degradability by incorporating monomers that lead to a lower degree of polymerisation, reduced hydrophobicity, fewer bonds to other cell wall constituents, or novel chemically labile linkages in the polymer backbone. In addition, the incorporation of value-added structures could help valorise lignin. Designer lignins may satisfy the biologicalmore » requirement for lignification in plants while improving the overall efficiency of biomass utilisation.« less
Designer lignins: harnessing the plasticity of lignification
Mottiar, Yaseen; Vanholme, Ruben; Boerjan, Wout; ...
2016-01-15
Lignin is a complex polyphenolic constituent of plant secondary cell walls. Inspired largely by the recalcitrance of lignin to biomass processing, plant engineering efforts have routinely sought to alter lignin quantity, composition, and structure by exploiting the inherent plasticity of lignin biosynthesis. More recently, researchers are attempting to strategically design plants for increased degradability by incorporating monomers that lead to a lower degree of polymerisation, reduced hydrophobicity, fewer bonds to other cell wall constituents, or novel chemically labile linkages in the polymer backbone. In addition, the incorporation of value-added structures could help valorise lignin. Designer lignins may satisfy the biologicalmore » requirement for lignification in plants while improving the overall efficiency of biomass utilisation.« less
Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia
2015-03-01
Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Aktuganov, G; Melentjev, A; Galimzianova, N; Khalikova, E; Korpela, T; Susi, P
2008-07-01
Previously, we isolated a strain of Bacillus that had antifungal activity and produced lytic enzymes with fungicidal potential. In the present study, we identified the bacterium as Paenibacillus ehimensis and further explored its antifungal properties. In liquid co-cultivation assays, P. ehimensis IB-X-b decreased biomass production of several pathogenic fungi by 45%-75%. The inhibition was accompanied by degradation of fungal cell walls and alterations in hyphal morphology. Residual medium from cultures of P. ehimensis IB-X-b inhibited fungal growth, indicating the inhibitors were secreted into the medium. Of the 2 major lytic enzymes, chitinases were only induced by chitin-containing substrates, whereas beta-1,3-glucanase showed steady levels in all carbon sources. Both purified chitinase and beta-1,3-glucanase degraded cell walls of macerated fungal mycelia, whereas only the latter also degraded cell walls of intact mycelia. The results indicate synergism between the antifungal action mechanisms of these enzymes in which beta-1,3-glucanase is the initiator of the cell wall hydrolysis, whereas the degradation process is reinforced by chitinases. Paenibacillus ehimensis IB-X-b has pronounced antifungal activity with a wide range of fungi and has potential as a biological control agent against plant pathogenic fungi.
Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J.; Chatterjee, Aditi; Prasad, T. S. Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva
2015-01-01
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division. PMID:25874956
Reddy, Panga Jaipal; Sinha, Sneha; Ray, Sandipan; Sathe, Gajanan J; Chatterjee, Aditi; Prasad, T S Keshava; Dhali, Snigdha; Srikanth, Rapole; Panda, Dulal; Srivastava, Sanjeeva
2015-01-01
Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates) to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Mewalal, Ritesh; Mizrachi, Eshchar; Coetzee, Berdine; ...
2016-03-01
DUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1). Since related gene family members may contribute to functional redundancy, we also characterized At4g19370 ( MWL-2), the most closely related gene to MWL-1 in themore » protein family. Subcellular localization revealed that both Arabidopsis proteins are targeted to the cell periphery. The single T-DNA knockout lines, mwl-1 and mwl-2, and independent overexpression lines showed no significant differences in plant growth or changes in total lignin content relative to wild-type (WT) control plants. However, the double homozygous mutant, mwl-1/ mwl-2, had smaller rosettes with a significant decrease in rosette fresh weight and stem height relative to the WT control at four weeks and six weeks, respectively. Moreover, mwl-1/ mwl-2 showed a significant reduction in total lignin content (by ca. 11% relative to WT) and an increase in syringyl/guaiacyl (S/G) monomer ratio relative to the control plants. Lastly, our study has identified two additional members of the DUF1218 family in Arabidopsis as novel contributors to secondary cell wall biology, specifically lignin biosynthesis, and these proteins appear to function redundantly.« less
Encina, Antonio; Fry, Stephen C
2005-12-01
Feruloyl-polysaccharides can be oxidatively coupled in isolated cell walls by peroxidase plus exogenous H(2)O(2) in vitro, but the extent to which similar reactions may occur in the apoplast in vivo was unclear. Numerous cellular factors potentially control feruloyl coupling in vivo, and their net controlling influence is not readily studied in vitro. Therefore, we have monitored apoplastic feruloyl coupling in cultured maize cells in vivo using a radiolabelled model substrate, 5-O-feruloyl-alpha-L: -arabinofuranosyl-(1-->3)-beta-D: -xylopyranosyl-(1-->4)-D: -xylose (FAXX). FAXX was expected to permeate the wall and to undergo reactions analogous to those normally exhibited by apoplastic feruloyl-polysaccharides in vivo. Little difference was found between the fates of [feruloyl-(14)C]FAXX and [pentosyl-(3)H]FAXX, indicating negligible apoplastic hydrolase or transferase activities. Very little radioactivity entered the protoplasm. Maize cells that had recently been washed in fresh medium were able to bind most of the FAXX (90%) in their cell walls, regardless of the age of the culture. During wall-binding, the [(14)C]feruloyl groups were converted to [(14)C]dehydrodiferulates and larger coupling products, as revealed by TLC after alkaline hydrolysis. As expected for an oxidative reaction, wall-binding was delayed by added anti-oxidants (ascorbate, ferulate, sinapate, chlorogenate or rutin). It was also completely inhibited by iodide, an H(2)O(2)-scavenger, indicating a role for peroxidase rather than oxidase. The observations indicate that oxidative coupling of feruloyl groups occurred within the cell wall, dependent on endogenous apoplastic H(2)O(2) and wall-localised peroxidase, in vivo. Cells that had not recently been washed in fresh medium were much less able to bind FAXX, indicating the presence in the apoplast of an endogenous inhibitor of oxidative coupling. This inhibitor was of low M(r), was destroyed by heating, and remained in the aqueous phase (pH approximately 3.5) when shaken with ethyl acetate. Its effectiveness was not altered by ascorbate oxidase. It is thus a small, heat-labile, hydrophilic inhibitor (not ascorbate) which we suggest plays a natural role in the control of wall cross-linking, and thus potentially in the control of cell growth.
Jin, E; Ghazizadeh, M; Fujiwara, M; Nagashima, M; Shimizu, H; Ohaki, Y; Arai, S; Gomibuchi, M; Takemura, T; Kawanami, O
2001-09-01
Normal alveolar capillary endothelium is quiescent in nature and displays anticoagulant thrombomodulin (TM) on its surface. The cytoplasms of these endothelial cells are ultrastructurally non-fenestrated type, and they barely express von Willebrand factor (vWf). Alveolar fibrosis is accompanied by a capillary endothelium reactive for vWf, and a loss of TM expression. In primary lung adenocarcinoma, neovascularization occurs in association with alveolar fibrosis. In order to study basic factors related to angiogenesis and phenotypic changes of the capillaries located in tumor-bearing alveolar walls, we examined 37 primary lung adenocarcinomas with electron microscopy and confocal laser scanning microscopy with antibodies for TM, vWf, vascular endothelial growth factor (VEGF), and its receptors (KDR and Flt-1), and proliferating markers (Ki-67/proliferating cell nuclear antigen). Tissues microdissected specifically from alveolar walls were used for reverse transcription-polymerase chain reaction (RT-PCR) to assess expressions of mRNA isoforms of VEGF and its receptors. New capillary branching was found by ultrastructural study in the alveolar walls in 12% of the patients. Nuclei of the capillary endothelial cells were reactive for proliferating cell markers. Endothelial fenestrae were developed in 65% of the patients, TM reactivity was lost in the alveolar capillaries, and their cell cytoplasms obtained a reactivity for vWf through a transitional mosaic-like distribution pattern of both antigens. Besides cytoplasmic VEGF expression in neoplastic cells, tumor-bearing alveolar walls showed significant expression of mRNA of VEGF165 and KDR. These findings imply that angiogenesis and phenotypic changes of the alveolar capillaries are closely related to a higher expression of tumor-associated VEGF165 and of KDR in the alveolar walls in primary lung adenocarcinoma.
López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.
2013-01-01
With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. Δgnt2 mutants had αalterations in cell wall properties related to terminal αor β-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. Δgnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097
Hypergravity Effects on Dendritic Cells and Vascular Wall Interactions
NASA Astrophysics Data System (ADS)
Bellik, L.; Parenti, A.; Ledda, F.; Basile, V.; Romano, G.; Fusi, F.; Monici, M.
2009-01-01
Dendritic cells (DCs), the most potent antigen-presenting cells inducing specific immune responses, are involved in the pathogenesis of atherosclerosis. In this inflammatory disease, DCs increase in number, being particularly abundant in the shoulder regions of plaques. Since the exposure to altered gravitational conditions results in a significant impairment of the immune function, the aim of this study was to investigate the effects of hypergravity on both the function of DCs and their interactions with the vascular wall cells. Monocytes from peripheral blood mononuclear cells of healthy volunteers were sorted by CD14+ magnetic beads selection, cultured for 6 days in medium supplemented with GM-CSF and IL-4, followed by a further maturation stimulus. DC phenotype, assessed by flow cytometry, showed a high expression of the specific DC markers CD80, CD86, HLA-DR and CD83. The DCs obtained were then exposed to hypergravitational stimuli and their phenotype, cytoskeleton, ability to activate lymphocytes and interaction with vascular wall cells were investigated. The findings showed that the exposure to hypergravity conditions resulted in a significant impairment of DC cytoskeletal organization, without affecting the expression of DC markers. Moreover, an increase in DC adhesion to human vascular smooth muscle cells and in their ability to activate lymphocytes was observed.
Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.
Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida
2016-10-01
The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P
2010-12-02
Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.
Bruneau, J M; Magnin, T; Tagat, E; Legrand, R; Bernard, M; Diaquin, M; Fudali, C; Latgé, J P
2001-08-01
Previous studies in Aspergillus fumigatus (Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P, J. Biol. Chem. 2000, 275, 14882-14889) have shown that a glucanosyltransferase playing an important role in fungal cell wall biosynthesis is glycosylphosphatidylinositol (GPI) anchored to the membrane. To identify other GPI-anchored proteins putatively involved in cell wall biogenesis, a proteomic analysis has been undertaken in A. fumigatus and the protein data were matched with the yeast genomic data. GPI-anchored proteins of A. fumigatus were released from membrane preparation by an endogenous GPI-phospholipase C, purified by liquid chromatography and separated by two-dimensional electrophoresis. They were characterized by their peptide mass fingerprint through matrix-assisted laser desorption/ionization-time of flight-(MALDI-TOF)-mass spectrometry and by internal amino acid sequencing. Nine GPI-anchored proteins were identified in A. fumigatus. Five of them were homologs of putatively GPI-anchored yeast proteins (Csa1p, Crh1p, Crh2p, Ecm33p, Gas1p) of unknown function but shown by gene disruption analysis to play a role in cell wall morphogenesis. In addition, a comparative study performed with chitin synthase and glucanosyl transferase mutants of A. fumigatus showed that a modification of the growth phenotype seen in these mutants was associated to an alteration of the pattern of GPI-anchored proteins. These results suggest that GPI-anchored proteins identified in this study are involved in A. fumigatus cell wall organization.
Cutillas-Iturralde, A.; Lorences, E. P.
1997-01-01
The growth-promoting effect of xyloglucan-derived oligosaccharides was investigated using a bioassay with entire pea (Pisum sativum L., var Alaska) shoots. After a 24-h incubation period at 25[deg]C, xyloglucan oligosaccharide (XGO) solutions with concentrations of 10-6 M notably increased the growth rate of pea shoots, whereas the same oligosaccharides at 10-7 M were less effective. To investigate the possible correlation between growth rate changes in the XGO-treated shoots and changes in the wall mechanical properties of their growing regions (third internodes), we used a short-term creep assay. The promotion of elongation by XGOs was reflected in an enhancement of the viscoelasticity of the growing regions of the shoots. To show whether this effect on wall viscoelastic properties was the cause or a consequence of their growth promotion, we tested the effect of XGOs on the long-term extension of isolated cell walls. We characterized an acid-induced extension in isolated cell walls from pea shoots that was not inhibited by preincubation in neutral buffers. Exogenously added XGOs did not alter the pattern of pea segment extension at any pH tested, indicating that XGOs have no direct effect on cell wall viscoelasticity. Finally, preincubation of pea segments in neutral buffers with XGOs enhanced their capacity to extend under acidic conditions. This finding suggests that XGOs at a neutral pH can act via transglycosylation, weakening the wall matrix and making the wall more responsive to other mechanisms of acid-induced extension as an expansin-mediated extension. PMID:12223593
Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; ...
2016-04-06
The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less
Hao, Zhangying; Avci, Utku; Tan, Li; Zhu, Xiang; Glushka, John; Pattathil, Sivakumar; Eberhard, Stefan; Sholes, Tipton; Rothstein, Grace E.; Lukowitz, Wolfgang; Orlando, Ron; Hahn, Michael G.; Mohnen, Debra
2014-01-01
GAlactUronosylTransferase12 (GAUT12)/IRregular Xylem8 (IRX8) is a putative glycosyltransferase involved in Arabidopsis secondary cell wall biosynthesis. Previous work showed that Arabidopsis irregular xylem8 (irx8) mutants have collapsed xylem due to a reduction in xylan and a lesser reduction in a subfraction of homogalacturonan (HG). We now show that male sterility in the irx8 mutant is due to indehiscent anthers caused by reduced deposition of xylan and lignin in the endothecium cell layer. The reduced lignin content was demonstrated by histochemical lignin staining and pyrolysis Molecular Beam Mass Spectrometry (pyMBMS) and is associated with reduced lignin biosynthesis in irx8 stems. Examination of sequential chemical extracts of stem walls using 2D 13C-1H Heteronuclear Single-Quantum Correlation (HSQC) NMR spectroscopy and antibody-based glycome profiling revealed a reduction in G lignin in the 1 M KOH extract and a concomitant loss of xylan, arabinogalactan and pectin epitopes in the ammonium oxalate, sodium carbonate, and 1 M KOH extracts from the irx8 walls compared with wild-type walls. Immunolabeling of stem sections using the monoclonal antibody CCRC-M138 reactive against an unsubstituted xylopentaose epitope revealed a bi-lamellate pattern in wild-type fiber cells and a collapsed bi-layer in irx8 cells, suggesting that at least in fiber cells, GAUT12 participates in the synthesis of a specific layer or type of xylan or helps to provide an architecture framework required for the native xylan deposition pattern. The results support the hypothesis that GAUT12 functions in the synthesis of a structure required for xylan and lignin deposition during secondary cell wall formation. PMID:25120548
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor
The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplificationmore » of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-tonucleus) signaling, perhaps mediated by ROS. Lastly, we conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and hostpathogen interactions.« less
Berendt, Susanne; Lehner, Josef; Zhang, Yao Vincent; Rasse, Tobias M; Forchhammer, Karl; Maldener, Iris
2012-10-01
Filamentous cyanobacteria of the order Nostocales display typical properties of multicellular organisms. In response to nitrogen starvation, some vegetative cells differentiate into heterocysts, where fixation of N(2) takes place. Heterocysts provide a micro-oxic compartment to protect nitrogenase from the oxygen produced by the vegetative cells. Differentiation involves fundamental remodeling of the gram-negative cell wall by deposition of a thick envelope and by formation of a neck-like structure at the contact site to the vegetative cells. Cell wall-hydrolyzing enzymes, like cell wall amidases, are involved in peptidoglycan maturation and turnover in unicellular bacteria. Recently, we showed that mutation of the amidase homologue amiC2 gene in Nostoc punctiforme ATCC 29133 distorts filament morphology and function. Here, we present the functional characterization of two amiC paralogues from Anabaena sp. strain PCC 7120. The amiC1 (alr0092) mutant was not able to differentiate heterocysts or to grow diazotrophically, whereas the amiC2 (alr0093) mutant did not show an altered phenotype under standard growth conditions. In agreement, fluorescence recovery after photobleaching (FRAP) studies showed a lack of cell-cell communication only in the AmiC1 mutant. Green fluorescent protein (GFP)-tagged AmiC1 was able to complement the mutant phenotype to wild-type properties. The protein localized in the septal regions of newly dividing cells and at the neck region of differentiating heterocysts. Upon nitrogen step-down, no mature heterocysts were developed in spite of ongoing heterocyst-specific gene expression. These results show the dependence of heterocyst development on amidase function and highlight a pivotal but so far underestimated cellular process, the remodeling of peptidoglycan, for the biology of filamentous cyanobacteria.
Borba-Santos, Luana Pereira; Ishida, Kelly; Calogeropoulou, Theodora; Souza, Wanderley de; Rozental, Sonia
2016-08-01
Sporotrichosis is the most frequent subcutaneous mycosis in the world and its increasing incidence has led to the search for new therapeutic options for its treatment. In this study, we demonstrated that three structural analogues of miltefosine (TCAN26, TC19, and TC70) showed inhibitory activity against Sporothrix schenckii sensu stricto and that TCAN26 was more active in vitro than miltefosine against several isolates. Scanning electron microscopy showed that S. schenckii exposure to TCAN26 resulted in cells that were slightly more elongated than untreated cells. Transmission electron microscopy showed that TCAN26 treatment induced loss of the regular cytoplasmic electron-density and altered the cell envelope (disruption of the cell membrane and cell wall, and increased cell wall thickness). Additionally, TCAN26 concentrations required to kill S. schenckii cells were lower than concentrations that were cytotoxic in mammalian cells, and TCAN26 was more selective than miltefosine. Thus, the adamantylidene-substituted alkylphosphocholine TCAN26 is a promising molecule for the development of novel antifungal compounds, although further investigations are required to elucidate the mode of action of TCAN26 in S. schenckii cells.
NASA Astrophysics Data System (ADS)
Ouellette, G. B.; Baayen, R. P.; Chamberland, H.; Simard, M.; Rioux, D.; Charest, P. M.
2004-08-01
Antibodies to detect pectin in present investigations attached to distinct fibrils in vessel lumina. In carnation infected with an isolate of Fusarium oxysporum f.sp., labeling of pathogen cells also occurred; in a resistant cultivar (cv.), it was coincident with proximate pectin fibrils and linked to altered fungal walls, which was the opposite in the susceptible cv., indicating that hindrance of pathogen ability to degrade pectin may be related to resistance. Labeling of the fungus in culture was nil, except in media containing pectin, showing that pectin is not native to the pathogen. Labeling of fungal walls for cellulose in elm (inoculated with Ophiostoma novo-ulmi) and carnation also occurred, linked to adsorbed host wall components. The chitin probe often attached to dispersed matter, in vessel lumina, traceable to irregularly labeled fungal cells and host wall degradation products. With an anti-horseradish peroxidase probe, host and fungal walls were equally labeled, and with a glucosidase, differences of labeling between these walls were observed, depending on pH of the test solution. Fungal extracellular matter and filamentous structures, present in fungal walls, predominantly in another elm isolate (Phaeotheca dimorphospora), did not label with any of the probes used. However, in cultures of this fungus, extracellular material labeled, even at a distance from the colony margin, with an anti-fimbriae probe.
Nanoindentation size effects in wood
Joseph E. Jakes; Donald S. Stone; Charles R. Frihart
2007-01-01
The purpose of this work was to test some of the assumptions underlying methods currently employed to investigate nanoindentation properties of wood. We examined whether hardness and modulus depend on load. We employed a surface preparation technique that minimizes alterations of cell wall properties. Areas were determined using both (a) Oliver-Pharr method and (b) a...
USDA-ARS?s Scientific Manuscript database
Phenylalanine Ammonia Lyase (PAL) catalyzes the first step in the phenylpropanoid pathway in plants, controlling biosynthesis of a variety of structural and defense compounds including monolignols that polymerize into lignin. Gaps remain in our understanding of how genetic alterations to this pathwa...
Huang, Jie-Hong; Kortstee, Anne; Dees, Dianka C T; Trindade, Luisa M; Schols, Henk A; Gruppen, Harry
2016-08-01
Uridine diphosphate (UDP)-glucose 4-epimerase (UGE) catalyzes the conversion of UDP-glucose to UDP-galactose. Cell wall materials from the cv. Kardal (wild-type, background) and two UGE transgenic lines (UGE 45-1 and UGE 51-16) were isolated and fractionated. The galactose (Gal) content (mg/100g tuber) from UGE 45-1 transgenic line was 38% higher than that of wild-type, and resulted in longer pectin side chains. The Gal content present in UGE 51-16 was 17% lower than that of wild-type, although most pectin populations maintained the same level of Gal. Both UGE transgenic lines showed unexpectedly a decrease in acetylation and an increase in methyl-esterification of pectin. Both UGE transgenic lines showed similar proportions of homogalacturonan and rhamnogalacturonan I within pectin backbone as the wild-type, except for the calcium-bound pectin fraction exhibiting relatively less rhamnogalacturonan I. Next to pectin modification, xyloglucan populations from both transgenic lines were altered resulting in different XSGG and XXGG proportion in comparison to wild-type. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zheng, H. Q.; Wang, H.
Gravity has a profound influence on plant growth and development Removed the influence of gravitational acceleration by spaceflight caused a wide range of cellular changes in plant Whole seedling that germinated and grown on clinostats showed the absent of gravitropism At the cellular level clinostat treatment has specific effects on plant cells such as induce alterations in cell wall composition increase production of heat-soluble proteins impact on the cellular energy metabolism facilitate a uniform distribution of plastids amyloplasts and increase number and volume of nucleoli A number of recent studies have shown that the exposure of Arabidopsis seedlings and callus cells to gravity stimulation hyper g-forces or clinostat rotation induces alterations in gene expression In our previous study the proteome of the Arabidopsis thaliana callus cells were separated by high resolution two-dimensional electrophoresis 2-DE Image analysis revealed that 80 protein spots showed quantitative and qualitative variations after exposure to clinostat rotation treatment We report here a systematic proteomic approach to investigate the altered gravity responsive proteins in root tip of Arabidopsis thaliana cv Landsberg erecta Three-day-old seedlings were exposed for 12h to a horizontal clinostat rotation H simulated weightlessness altered g-forces by centrifugation 7g hypergravity a vertical clinostat rotation V clinostat control or a stationary control grown conditions Total proteins of roots were extracted
Dumont, Marie; Lehner, Arnaud; Bardor, Muriel; Burel, Carole; Vauzeilles, Boris; Lerouxel, Olivier; Anderson, Charles T; Mollet, Jean-Claude; Lerouge, Patrice
2015-12-01
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Kim, Hyojin; Lee, Saet Buyl; Kim, Hae Jin; Min, Myung Ki; Hwang, Inhwan; Suh, Mi Chung
2012-08-01
Cuticular waxes are synthesized by the extensive export of intracellular lipids from epidermal cells. However, it is still not known how hydrophobic cuticular lipids are exported to the plant surface through the hydrophilic cell wall. The LTPG2 gene was isolated based on Arabidopsis microarray analysis; this gene is predominantly expressed in stem epidermal peels as compared with in stems. The expression of LTPG2 transcripts was observed in various organs, including stem epidermis and silique walls. The composition of the cuticular wax was significantly altered in the stems and siliques of the ltpg2 mutant and ltpg1 ltpg2 double mutant. In particular, the reduced level of the C29 alkane, which is the major component of cuticular waxes in ltpg1 ltpg2 stems and siliques, was similar to the sum of reduced values of either parent. The total cuticular wax load was reduced by approximately 13% and 20% in both ltpg2 and ltpg1 ltpg2 siliques, respectively, and by approximately 14% in ltpg1 ltpg2 stems when compared with the wild-type. Similarly, severe alterations in the cuticular layer structure of epidermal cells of ltpg2 and ltpg1 ltpg2 stems and silique walls were observed. In tobacco epidermal cells, intracellular trafficking of the fluorescent LTPG/LTPG1 and LTPG2 to the plasma membrane was prevented by a dominant-negative mutant form of ADP-ribosylation factor 1, ARF1(T31N). Taken together, these results indicate that LTPG2 is functionally overlapped with LTPG/LTPG1 during cuticular wax export or accumulation and LTPG/LTPG1 and LTPG2 are targeted to the plasma membrane via the vesicular trafficking system.
A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence1[OPEN
Leng, Yujia; Yang, Yaolong; Ren, Deyong; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Zhu, Li; Hu, Jiang; Gao, Zhenyu; Guo, Longbiao; Lin, Yongjun
2017-01-01
To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 (del1). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. PMID:28455404
A Rice PECTATE LYASE-LIKE Gene Is Required for Plant Growth and Leaf Senescence.
Leng, Yujia; Yang, Yaolong; Ren, Deyong; Huang, Lichao; Dai, Liping; Wang, Yuqiong; Chen, Long; Tu, Zhengjun; Gao, Yihong; Li, Xueyong; Zhu, Li; Hu, Jiang; Zhang, Guangheng; Gao, Zhenyu; Guo, Longbiao; Kong, Zhaosheng; Lin, Yongjun; Qian, Qian; Zeng, Dali
2017-06-01
To better understand the molecular mechanisms behind plant growth and leaf senescence in monocot plants, we identified a mutant exhibiting dwarfism and an early-senescence leaf phenotype, termed dwarf and early-senescence leaf1 ( del1 ). Histological analysis showed that the abnormal growth was caused by a reduction in cell number. Further investigation revealed that the decline in cell number in del1 was affected by the cell cycle. Physiological analysis, transmission electron microscopy, and TUNEL assays showed that leaf senescence was triggered by the accumulation of reactive oxygen species. The DEL1 gene was cloned using a map-based approach. It was shown to encode a pectate lyase (PEL) precursor that contains a PelC domain. DEL1 contains all the conserved residues of PEL and has strong similarity with plant PelC. DEL1 is expressed in all tissues but predominantly in elongating tissues. Functional analysis revealed that mutation of DEL1 decreased the total PEL enzymatic activity, increased the degree of methylesterified homogalacturonan, and altered the cell wall composition and structure. In addition, transcriptome assay revealed that a set of cell wall function- and senescence-related gene expression was altered in del1 plants. Our research indicates that DEL1 is involved in both the maintenance of normal cell division and the induction of leaf senescence. These findings reveal a new molecular mechanism for plant growth and leaf senescence mediated by PECTATE LYASE-LIKE genes. © 2017 American Society of Plant Biologists. All Rights Reserved.
Schäfer, Judith; Wagner, Steffen; Trierweiler, Bernhard; Bunzel, Mirko
2016-01-20
Changes in cell wall composition during storage of plant foods potentially alter the physiological effects of dietary fiber components. To investigate postharvest cell wall modifications of asparagus and their consequences in terms of insoluble dietary fiber structures, asparagus was stored at 20 and 1 °C for different periods of time. Structural analyses demonstrated postharvest changes in the polysaccharide profile, dominated by decreased portions of galactans. Increasing lignin contents correlated with compositional changes (monolignol ratios and linkage types) of the lignin polymer as demonstrated by chemical and two-dimensional nuclear magnetic resonance (2D-NMR) methods. Depending on the storage time and temperature, syringyl units were preferentially incorporated into the lignin polymer. Furthermore, a drastic increase in the level of ester-linked phenolic monomers (i.e., p-coumaric acid and ferulic acid) and polymer cross-links (di- and triferulic acids) was detected. The attachment of p-coumaric acid to lignin was demonstrated by 2D-NMR experiments. Potential consequences of postharvest modifications on physiological effects of asparagus dietary fiber are discussed.
Benová-Kákosová, Anna; Digonnet, Catherine; Goubet, Florence; Ranocha, Philippe; Jauneau, Alain; Pesquet, Edouard; Barbier, Odile; Zhang, Zhinong; Capek, Peter; Dupree, Paul; Lisková, Desana; Goffner, Deborah
2006-10-01
Xylogenic cultures of zinnia (Zinnia elegans) provide a unique opportunity to study signaling pathways of tracheary element (TE) differentiation. In vitro TEs differentiate into either protoxylem (PX)-like TEs characterized by annular/helical secondary wall thickening or metaxylem (MX)-like TEs with reticulate/scalariform/pitted thickening. The factors that determine these different cell fates are largely unknown. We show here that supplementing zinnia cultures with exogenous galactoglucomannan oligosaccharides (GGMOs) derived from spruce (Picea abies) xylem had two major effects: an increase in cell population density and a decrease in the ratio of PX to MX TEs. In an attempt to link these two effects, the consequence of the plane of cell division on PX-MX differentiation was assessed. Although GGMOs did not affect the plane of cell division per se, they significantly increased the proportion of longitudinally divided cells differentiating into MX. To test the biological significance of these findings, we have determined the presence of mannan-containing oligosaccharides in zinnia cultures in vitro. Immunoblot assays indicated that beta-1,4-mannosyl epitopes accumulate specifically in TE-inductive media. These epitopes were homogeneously distributed within the thickened secondary walls of TEs when the primary cell wall was weakly labeled. Using polysaccharide analysis carbohydrate gel electrophoresis, glucomannans were specifically detected in cell walls of differentiating zinnia cultures. Finally, zinnia macroarrays probed with cDNAs from cells cultured in the presence or absence of GGMOs indicated that significantly more genes were down-regulated rather than up-regulated by GGMOs. This study constitutes a major step in the elucidation of signaling mechanisms of PX- and MX-specific genetic programs in zinnia.
Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells
NASA Astrophysics Data System (ADS)
Xu, Haifei; Bai, Juan; Meng, Jie; Hao, Wei; Xu, Haiyan; Cao, Ji-Min
2009-07-01
The advancement in nanotechnology has produced technological and conceptual breakthroughs but the effects nanomaterials have on organisms at the cellular level are poorly understood. Here we report that carboxyl-terminated multi-walled carbon nanotubes (MWCNTs) act as antagonists of three types of potassium channels as assessed by whole-cell patch clamp electrophysiology on undifferentiated pheochromocytoma (PC12) cells. Our results showed that carboxyl-terminated MWCNTs suppress the current densities of Ito, IK and IK1 in a time-dependent and irreversible manner. The suppressions were most distinct 24 h after incubation with MWCNTs. However, MWCNTs did not significantly change the expression levels of reactive oxygen species (ROS) or intracellular free calcium and also did not alter the mitochondrial membrane potential (ΔΨm) in PC12 cells. These results suggest that oxidative stress was not involved in the MWCNTs suppression of Ito, IK and IK1 current densities. Nonetheless, the suppression of potassium currents by MWCNTs will impact on electrical signaling of excitable cells such as neurons and muscles.
Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.
Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid
2016-01-01
Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Freeman, Spencer A; McLeod, Sarah J; Dukowski, Janet; Austin, Pamela; Lee, Crystal C Y; Millen-Martin, Brandie; Kubes, Paul; McCafferty, Donna-Marie; Gold, Michael R; Roskelley, Calvin D
2010-06-01
The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM. Copyright 2010 AACR.
Zhang, Feng; Jin, Xuanxiang; Wang, Like; Li, Shufen; Wu, Shuang; Cheng, Chaoze; Zhang, Tianzhen
2016-01-01
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca2+ conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca2+-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca2+ is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development. PMID:27255486
Gremillion, S K; Harris, S D; Jackson-Hayes, L; Kaminskyj, S G W; Loprete, D M; Gauthier, A C; Mercer, S; Ravita, A J; Hill, T W
2014-12-01
We have described two Aspergillus nidulans gene mutations, designated podB1 (polarity defective) and swoP1 (swollen cell), which cause temperature-sensitive defects during polarization. Mutant strains also displayed unevenness and abnormal thickness of cell walls. Un-polarized or poorly-polarized mutant cells were capable of establishing normal polarity after a shift to a permissive temperature, and mutant hyphae shifted from permissive to restrictive temperature show wall and polarity abnormalities in subsequent growth. The mutated genes (podB=AN8226.3; swoP=AN7462.3) were identified as homologues of COG2 and COG4, respectively, each predicted to encode a subunit of the multi-protein COG (Conserved Oligomeric Golgi) Complex involved in retrograde vesicle trafficking in the Golgi apparatus. Down-regulation of COG2 or COG4 resulted in abnormal polarization and cell wall staining. The GFP-tagged COG2 and COG4 homologues displayed punctate, Golgi-like localization. Lectin-blotting indicated that protein glycosylation was altered in the mutant strains compared to the wild type. A multicopy expression experiment showed evidence for functional interactions between the homologues COG2 and COG4 as well as between COG2 and COG3. To date, this work is the first regarding a functional role of the COG proteins in the development of a filamentous fungus. Copyright © 2014 Elsevier Inc. All rights reserved.
Sox10 Expressing Cells in the Lateral Wall of the Aged Mouse and Human Cochlea
Hao, Xinping; Xing, Yazhi; Moore, Michael W.; Zhang, Jianning; Han, Demin; Schulte, Bradley A.; Dubno, Judy R.; Lang, Hainan
2014-01-01
Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear. PMID:24887110
Latha, Lachimanan Yoga; Darah, Ibrahim; Kassim, Mohd Jain Noordin Mohd; Sasidharan, Sreenivasan
2010-08-01
The antibacterial activity of Vernonia cinerea (L.) extract was investigated using the broth dilution method. The extract showed a favorable antimicrobial activity against Pseudomonas aeruginosa with a minimum inhibition concentration (MIC) value of 3.13 mg/mL. V. cinerea extract at (1/2), 1, or 2 times the MIC significantly inhibited bacterial growth with a noticeable drop in optical density (OD) of the bacterial culture, thus confirming the antibacterial activity of the extract on P. aeruginosa. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated P. aeruginosa. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the bacterial cells. The main reason for this destruction was the severe alterations of the cell wall with the formation of holes, invaginations, and morphological disorganization caused by the extract. The authors conclude that the extract may be used as a candidate for the development of antimicrobial agents.
Superresolution Imaging of Dynamic MreB Filaments in B. subtilis—A Multiple-Motor-Driven Transport?
Olshausen, Philipp v.; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L.; Rohrbach, Alexander
2013-01-01
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments’ traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. PMID:24010660
Superresolution imaging of dynamic MreB filaments in B. subtilis--a multiple-motor-driven transport?
Olshausen, Philipp V; Defeu Soufo, Hervé Joël; Wicker, Kai; Heintzmann, Rainer; Graumann, Peter L; Rohrbach, Alexander
2013-09-03
The cytoskeletal protein MreB is an essential component of the bacterial cell-shape generation system. Using a superresolution variant of total internal reflection microscopy with structured illumination, as well as three-dimensional stacks of deconvolved epifluorescence microscopy, we found that inside living Bacillus subtilis cells, MreB forms filamentous structures of variable lengths, typically not longer than 1 μm. These filaments move along their orientation and mainly perpendicular to the long bacterial axis, revealing a maximal velocity at an intermediate length and a decreasing velocity with increasing filament length. Filaments move along straight trajectories but can reverse or alter their direction of propagation. Based on our measurements, we provide a mechanistic model that is consistent with all observations. In this model, MreB filaments mechanically couple several motors that putatively synthesize the cell wall, whereas the filaments' traces mirror the trajectories of the motors. On the basis of our mechanistic model, we developed a mathematical model that can explain the nonlinear velocity length dependence. We deduce that the coupling of cell wall synthesis motors determines the MreB filament transport velocity, and the filament mechanically controls a concerted synthesis of parallel peptidoglycan strands to improve cell wall stability. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I
2003-12-16
Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.
A mechanical design principle for tissue structure and function in the airway tree.
LaPrad, Adam S; Lutchen, Kenneth R; Suki, Béla
2013-01-01
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma.
Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis
Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam
2014-01-01
To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure. PMID:25080235
Lignin down-regulation of Zea mays via dsRNAi and klason lignin analysis.
Park, Sang-Hyuck; Ong, Rebecca Garlock; Mei, Chuansheng; Sticklen, Mariam
2014-07-23
To facilitate the use of lignocellulosic biomass as an alternative bioenergy resource, during biological conversion processes, a pretreatment step is needed to open up the structure of the plant cell wall, increasing the accessibility of the cell wall carbohydrates. Lignin, a polyphenolic material present in many cell wall types, is known to be a significant hindrance to enzyme access. Reduction in lignin content to a level that does not interfere with the structural integrity and defense system of the plant might be a valuable step to reduce the costs of bioethanol production. In this study, we have genetically down-regulated one of the lignin biosynthesis-related genes, cinnamoyl-CoA reductase (ZmCCR1) via a double stranded RNA interference technique. The ZmCCR1_RNAi construct was integrated into the maize genome using the particle bombardment method. Transgenic maize plants grew normally as compared to the wild-type control plants without interfering with biomass growth or defense mechanisms, with the exception of displaying of brown-coloration in transgenic plants leaf mid-ribs, husks, and stems. The microscopic analyses, in conjunction with the histological assay, revealed that the leaf sclerenchyma fibers were thinned but the structure and size of other major vascular system components was not altered. The lignin content in the transgenic maize was reduced by 7-8.7%, the crystalline cellulose content was increased in response to lignin reduction, and hemicelluloses remained unchanged. The analyses may indicate that carbon flow might have been shifted from lignin biosynthesis to cellulose biosynthesis. This article delineates the procedures used to down-regulate the lignin content in maize via RNAi technology, and the cell wall compositional analyses used to verify the effect of the modifications on the cell wall structure.
Peng, L; Zhang, L; Cheng, X; Fan, L-S; Hao, H-Q
2013-03-01
Cellulose is the major component of plant cell walls and is an important source of industrial raw material. Although cellulose biosynthesis is one of the most important biochemical processes in plant biology, the regulatory mechanisms of cellulose synthesis are still unclear. Here, we report that 2,6-dichlorobenzonitrile (DCB), an inhibitor of cellulose synthesis, inhibits Arabidopsis root development in a dose- and time-dependent manner. When treated with DCB, the plant cell wall showed altered cellulose distribution and intensity, as shown by calcofluor white and S4B staining. Moreover, pectin deposition was reduced in the presence of DCB when immunostained with the monoclonal antibody JIM5, which was raised against pectin epitopes. This result was confirmed using Fourier transform infrared (FTIR) analysis. Confocal microscopy revealed that the organisation of the microtubule cytoskeleton was significantly disrupted in the presence of low concentrations of DCB, whereas the actin cytoskeleton only showed changes with the application of high DCB concentrations. In addition, the subcellular dynamics of Golgi bodies labelled with N-ST-YFP and TGN labelled with VHA-a1-GFP were both partially blocked by DCB. Transmission electron microscopy indicated that the cell wall structure was affected by DCB, as were the Golgi bodies. Scanning electron microscopy showed changes in the organisation of cellulose microfibrils. These results suggest that the inhibition of cellulose synthesis by DCB not only induced changes in the chemical composition of the root cell wall and cytoskeleton structure, but also changed the distribution of cellulose microfibrils, implying that cellulose plays an important role in root development in Arabidopsis. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
A Mechanical Design Principle for Tissue Structure and Function in the Airway Tree
LaPrad, Adam S.; Lutchen, Kenneth R.; Suki, Béla
2013-01-01
With every breath, the dynamically changing mechanical pressures must work in unison with the cells and soft tissue structures of the lung to permit air to efficiently traverse the airway tree and undergo gas exchange in the alveoli. The influence of mechanics on cell and tissue function is becoming apparent, raising the question: how does the airway tree co-exist within its mechanical environment to maintain normal cell function throughout its branching structure of diminishing dimensions? We introduce a new mechanical design principle for the conducting airway tree in which mechanotransduction at the level of cells is driven to orchestrate airway wall structural changes that can best maintain a preferred mechanical microenvironment. To support this principle, we report in vitro radius-transmural pressure relations for a range of airway radii obtained from healthy bovine lungs and model the data using a strain energy function together with a thick-walled cylinder description. From this framework, we estimate circumferential stresses and incremental Young's moduli throughout the airway tree. Our results indicate that the conducting airways consistently operate within a preferred mechanical homeostatic state, termed mechanical homeostasis, that is characterized by a narrow range of circumferential stresses and Young's moduli. This mechanical homeostatic state is maintained for all airways throughout the tree via airway wall dimensional and mechanical relationships. As a consequence, cells within the airway walls throughout the airway tree experience similar oscillatory strains during breathing that are much smaller than previously thought. Finally, we discuss the potential implications of how the maintenance of mechanical homeostasis, while facilitating healthy tissue-level alterations necessary for maturation, may lead to airway wall structural changes capable of chronic asthma. PMID:23737742
Morisaki, Keiko; Sawada, Yuji; Sano, Ryosuke; Yamamoto, Atsushi; Kurata, Tetsuya; Suzuki, Shiro; Matsuda, Mami; Hasunuma, Tomohisa; Hirai, Masami Yokota
2016-01-01
Xylem vessels, the water-conducting cells in vascular plants, undergo characteristic secondary wall deposition and programmed cell death. These processes are regulated by the VASCULAR-RELATED NAC-DOMAIN (VND) transcription factors. Here, to identify changes in metabolism that occur during protoxylem vessel element differentiation, we subjected tobacco (Nicotiana tabacum) BY-2 suspension culture cells carrying an inducible VND7 system to liquid chromatography-mass spectrometry-based wide-target metabolome analysis and transcriptome analysis. Time-course data for 128 metabolites showed dynamic changes in metabolites related to amino acid biosynthesis. The concentration of glyceraldehyde 3-phosphate, an important intermediate of the glycolysis pathway, immediately decreased in the initial stages of cell differentiation. As cell differentiation progressed, specific amino acids accumulated, including the shikimate-related amino acids and the translocatable nitrogen-rich amino acid arginine. Transcriptome data indicated that cell differentiation involved the active up-regulation of genes encoding the enzymes catalyzing fructose 6-phosphate biosynthesis from glyceraldehyde 3-phosphate, phosphoenolpyruvate biosynthesis from oxaloacetate, and phenylalanine biosynthesis, which includes shikimate pathway enzymes. Concomitantly, active changes in the amount of fructose 6-phosphate and phosphoenolpyruvate were detected during cell differentiation. Taken together, our results show that protoxylem vessel element differentiation is associated with changes in primary metabolism, which could facilitate the production of polysaccharides and lignin monomers and, thus, promote the formation of the secondary cell wall. Also, these metabolic shifts correlate with the active transcriptional regulation of specific enzyme genes. Therefore, our observations indicate that primary metabolism is actively regulated during protoxylem vessel element differentiation to alter the cell’s metabolic activity for the biosynthesis of secondary wall polymers. PMID:27600813
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Not all protein-mediated single-wall carbon nanotube dispersions are equally bioactive
NASA Astrophysics Data System (ADS)
Holt, Brian D.; McCorry, Mary C.; Boyer, Patrick D.; Dahl, Kris Noel; Islam, Mohammad F.
2012-11-01
Single-wall carbon nanotubes (SWCNTs) have been dispersed with proteins to increase biocompatibility and specificity, but examinations of dispersion parameters on functional cellular uptake are required for utilization of SWCNTs in biological applications. Here we correlate conditions of SWCNT dispersion with various proteins to uptake these SWCNTs in NIH-3T3 fibroblasts and J774A.1 macrophage-like cells. We varied protein types (bovine serum albumin - BSA, lysozyme - LSZ, and γ-globulins - γG), protein : SWCNT ratio and sonication time. Each protein created stable, high yield (~25%) dispersions in water while preserving intrinsic SWCNT fluorescence, but SWCNT-LSZ flocculated in media and SWCNT-γG formed clusters in both water and media, drastically altering cellular internalization. Dispersion quality and yield improved with increased protein : SWCNT - without substantial effects from depletion attraction, even at 100 : 1 protein : SWCNT - and slightly increased internalized SWCNTs for both NIH-3T3 and J774A.1 cells. Longer sonication time (12 versus 2 h) improved the dispersion yield and quality but caused minor damage to SWCNTs and altered protein structure. Cell association of SWCNT-BSA was homogenous and unaltered by sonication time. Bulk assay showed that cell association of SWCNT-LSZ and SWCNT-γG was altered with 12 versus 2 h sonication, but imaging of individual cells showed that these differences are likely from precipitation of clusters of SWCNT-LSZ and SWCNT-γG in media onto cells. Hence, the quality of SWCNT-protein dispersions in water does not necessarily correlate with bulk cellular uptake, and quantification at the level of individual cells is required to determine delivery efficacy.Single-wall carbon nanotubes (SWCNTs) have been dispersed with proteins to increase biocompatibility and specificity, but examinations of dispersion parameters on functional cellular uptake are required for utilization of SWCNTs in biological applications. Here we correlate conditions of SWCNT dispersion with various proteins to uptake these SWCNTs in NIH-3T3 fibroblasts and J774A.1 macrophage-like cells. We varied protein types (bovine serum albumin - BSA, lysozyme - LSZ, and γ-globulins - γG), protein : SWCNT ratio and sonication time. Each protein created stable, high yield (~25%) dispersions in water while preserving intrinsic SWCNT fluorescence, but SWCNT-LSZ flocculated in media and SWCNT-γG formed clusters in both water and media, drastically altering cellular internalization. Dispersion quality and yield improved with increased protein : SWCNT - without substantial effects from depletion attraction, even at 100 : 1 protein : SWCNT - and slightly increased internalized SWCNTs for both NIH-3T3 and J774A.1 cells. Longer sonication time (12 versus 2 h) improved the dispersion yield and quality but caused minor damage to SWCNTs and altered protein structure. Cell association of SWCNT-BSA was homogenous and unaltered by sonication time. Bulk assay showed that cell association of SWCNT-LSZ and SWCNT-γG was altered with 12 versus 2 h sonication, but imaging of individual cells showed that these differences are likely from precipitation of clusters of SWCNT-LSZ and SWCNT-γG in media onto cells. Hence, the quality of SWCNT-protein dispersions in water does not necessarily correlate with bulk cellular uptake, and quantification at the level of individual cells is required to determine delivery efficacy. Electronic supplementary information (ESI) available: Images of protein dispersions, comparison of absorbance and NIR fluorescence peak shifts, gross quantification of cellular uptake of SWCNTs, and summary of protein secondary structure as a function of sonication time in the presence of SWCNTs. See DOI: 10.1039/c2nr31928d
Guba, S C; Fink, L M; Fonseca, V
1996-12-01
Homocysteine is an important contributing factor to thrombosis, vascular injury, and vascular disease. Mechanisms for homocysteine-induced vascular disease include alterations in coagulation as well as endothelial cell and vessel wall injury. Hyperhomocysteinemia (HH[e]) can occur when homocysteine metabolism is altered by mutations in enzymes responsible for homocysteine metabolism. Characterization of these mutations identifies patient groups at risk for vascular disease. Treatment of HH(e) consists of vitamins and raises the possibility that some forms of vascular disease may be easily, safely, and inexpensively treated.
USDA-ARS?s Scientific Manuscript database
Brown midrib (bmr) mutants in sorghum (Sorghum bicolor (L.) Moench) and several other C4 grasses are associated with reduced lignin concentration, altered lignin composition and improved cell wall digestibility, which are desirable properties in biomass development for the emerging lignocellulosic b...
Slavchev, Georgi; Michailova, Lilia; Markova, Nadya
2016-12-01
Cell wall-deficient bacterial forms (L-forms) may occur along with resistance to factors that trigger their appearance. It is of interest to study the relationship between the L-form transformation of Mycobacterium tuberculosis and the exhibition of drug tolerance to ethambutol (EMB), an inhibitor of cell wall synthesis. L-form variant was produced from a sensitive EMB strain of M. tuberculosis through a cryogenic stress treatment protocol and was subsequently cultivated in Middlebrook 7H9 semisolid medium, containing EMB in a minimal inhibitory concentration of 2mg/L. Susceptibility to EMB of the parental strain and its L-form variant was evaluated phenotypically and using polymerase chain reaction-restriction fragment length polymorphism assay targeting a mutation in the embB306 gene fragment. In contrast to the sensitivity to EMB of the parental strain, its L-form variant showed phenotypic resistance to high concentrations of EMB (16mg/L), but the mutation in embB306 was not found. Electron microscopy observation of the L-form variant showed a heterogenic population of bacteria, with different degrees of cell wall deficiency, as well as cells of protoplastic type without cell walls. Of special interest were the observed capsule-like structures around the L-form cells and the biofilm-like matrix produced by the L-form population. We suggest that the expression of phenotypic resistance to EMB in M. tuberculosis can be associated with alterations or loss of cell walls in L-form bacteria, respectively, which results in a lack of a specific target for EMB action. In addition, production of capsule-like structures and biofilm matrix by L-forms could contribute to their resistance and survival in the presence of antibacterial agents. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.
Gilloteaux, Jacques; Tomasello, Lisa M; Elgison, Deborah A
2003-01-01
Among the inflammatory changes seen in cholecystitis, the ultrastructural alterations of the human gallbladder epithelium include lipid and lipofuscin deposits, fusions of lipid deposits and mucus-containing vesicles forming complex substructural formations called lipo-mucosomes, and microvillar changes of sparse microvilli and basal bodies. Small, lipid-laden structures, such as VLDL-like vesicles, also are fused with the mucus vesicles. Epithelial cell sloughing could liberate and add lipo-mucosomes to the biliary sludge and participate in gallstone formation. With chronic cholelithiasis, fatty degeneration of scattered epithelial cells appears to alter the epithelial lining and favors metaplastic change that could lead to other pathologic changes, including carcinoma in situ-like lesions. In addition to lipid deposition in macrophages, lipid is also incorporated in other cells and tissues of the gallbladder wall (endothelium of capillaries, smooth muscles and fibrocytes).
Peters, J L; Castillo, F J; Heath, R L
1989-01-01
Diamine oxidase and peroxidase, associated with the wall in pinto bean (Phaseolus vulgaris L. var Pinto) leaves, can be washed out by vacuum infiltration and assayed without grinding the leaf. The diamine oxidase activity is inhibited in vivo by exposure of the plants to ozone (dose of 0.6 microliters per liter x hour), whereas the peroxidase activity associated with the wall space is stimulated. This dose does not cause obvious necrosis or chlorosis of the leaf. These alterations are greater when the dose of ozone exposure is given as a triangular pulse (a slow rise to a peak of 0.24 microliters per liter followed by a slow fall) compared to that given as a constant square wave pulse of 0.15 microliters per liter for the same 4 hour period. Exposure of the plants to sulfur dioxide (at a concentration of 0.4 microliters per liter for 4 hours) does not result in any change in the diamine oxidase or peroxidase activities, yet the total sulfhydryl content of the leaf is increased, demonstrating the entry of sulfur dioxide. These two pollutants, with different chemical reactivities, affect the activities of the extracellular enzymes in different manners. In the case of ozone exposure, the inhibition of extracellular diamine oxidase could profoundly alter the movements of polyamines from cell to cell.
Elsztein, Carolina; de Lima, Rita de Cássia Pereira; de Barros Pita, Will; de Morais, Marcos Antonio
2016-09-01
In the present work, we provide biological evidences supporting the participation of NCW2 gene in the mechanism responsible for cell tolerance to polyhexamethylene biguanide (PHMB), an antifungal agent. The growth rate of yeast cells exposed to this agent was significantly reduced in ∆ncw2 strain and the mRNA levels of NCW2 gene in the presence of PHMB showed a 7-fold up-regulation. Moreover, lack of NCW2 gene turns yeast cell more resistant to zymolyase treatment, indicating that alterations in the β-glucan network do occur when Ncw2p is absent. Computational analysis of the translated protein indicated neither catalytic nor transmembrane sites and reinforced the hypothesis of secretion and anchoring to cell surface. Altogether, these results indicated that NCW2 gene codes for a protein which participates in the cell wall biogenesis in yeasts and that Ncw2p might play a role in the organisation of the β-glucan assembly.
Impact of single-walled carbon nanotubes on the embryo: a brief review
Al Moustafa, Ala-Eddin; Mfoumou, Etienne; Roman, Dacian E; Nerguizian, Vahe; Alazzam, Anas; Stiharu, Ion; Yasmeen, Amber
2016-01-01
Carbon nanotubes (CNTs) are considered one of the most interesting materials in the 21st century due to their unique physiochemical characteristics and applicability to various industrial products and medical applications. However, in the last few years, questions have been raised regarding the potential toxicity of CNTs to humans and the environment; it is believed that the physiochemical characteristics of these materials are key determinants of CNT interaction with living cells and hence determine their toxicity in humans and other organisms as well as their embryos. Thus, several recent studies, including ours, pointed out that CNTs have cytotoxic effects on human and animal cells, which occur via the alteration of key regulator genes of cell proliferation, apoptosis, survival, cell–cell adhesion, and angiogenesis. Meanwhile, few investigations revealed that CNTs could also be harmful to the normal development of the embryo. In this review, we will discuss the toxic role of single-walled CNTs in the embryo, which was recently explored by several groups including ours. PMID:26855573
MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis
Szwedziak, Piotr; Wong, Felix; Schaefer, Kaitlin; Izoré, Thierry; Renner, Lars D; Holmes, Matthew J; Sun, Yingjie; Bisson-Filho, Alexandre W; Walker, Suzanne; Amir, Ariel; Löwe, Jan
2018-01-01
MreB is essential for rod shape in many bacteria. Membrane-associated MreB filaments move around the rod circumference, helping to insert cell wall in the radial direction to reinforce rod shape. To understand how oriented MreB motion arises, we altered the shape of Bacillus subtilis. MreB motion is isotropic in round cells, and orientation is restored when rod shape is externally imposed. Stationary filaments orient within protoplasts, and purified MreB tubulates liposomes in vitro, orienting within tubes. Together, this demonstrates MreB orients along the greatest principal membrane curvature, a conclusion supported with biophysical modeling. We observed that spherical cells regenerate into rods in a local, self-reinforcing manner: rapidly propagating rods emerge from small bulges, exhibiting oriented MreB motion. We propose that the coupling of MreB filament alignment to shape-reinforcing peptidoglycan synthesis creates a locally-acting, self-organizing mechanism allowing the rapid establishment and stable maintenance of emergent rod shape. PMID:29469806
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumont, Marie; Lehner, Arnaud; Bardor, Muriel
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2-fluoro 2-l-fucose (2F-Fuc) reduces root growth at micromolar concentrations. The inability of 2F-Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F-Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N-linked glycans is fully inhibited by 10 μm 2F-Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibitionmore » of root development by 2F-Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan-II (RG-II). At low concentrations, 2F-Fuc induced a decrease in RG-II dimerization. Both RG-II dimerization and root growth were partially restored in 2F-Fuc-treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F-Fuc was due to a deficiency of RG-II dimerization. Closer investigation of the 2F-Fuc-induced growth phenotype demonstrated that cell division is not affected by 2F-Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG-II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG-II cross-linking, but that it might also be a signal molecule in the cell wall integrity-sensing mechanism.« less
Ishida, Kelly; Fernandes Rodrigues, Juliany Cola; Cammerer, Simon; Urbina, Julio A; Gilbert, Ian; de Souza, Wanderley; Rozental, Sonia
2011-01-21
Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51), but other enzymes of this pathway, such as squalene synthase (SQS) which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy)-phenyl}]-quinuclidine-2-ene) (WSP1267) had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a) loss of cell wall integrity, (b) detachment of the plasma membrane from the fungal cell wall, (c) accumulation of small vesicles in the periplasmic region, (d) presence of large electron-dense vacuoles and (e) significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new antifungal drugs.
Goodell, Barry; Zhu, Yuan; Kim, Seong; Kafle, Kabindra; Eastwood, Daniel; Daniel, Geoffrey; Jellison, Jody; Yoshida, Makoto; Groom, Leslie; Pingali, Sai Venkatesh; O'Neill, Hugh
2017-01-01
Wood decayed by brown rot fungi and wood treated with the chelator-mediated Fenton (CMF) reaction, either alone or together with a cellulose enzyme cocktail, was analyzed by small angle neutron scattering (SANS), sum frequency generation (SFG) spectroscopy, Fourier transform infrared (FTIR) analysis, X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM). Results showed that the CMF mechanism mimicked brown rot fungal attack for both holocellulose and lignin components of the wood. Crystalline cellulose and lignin were both depolymerized by the CMF reaction. Porosity of the softwood cell wall did not increase during CMF treatment, enzymes secreted by the fungi did not penetrate the decayed wood. The enzymes in the cellulose cocktail also did not appear to alter the effects of the CMF-treated wood relative to enhancing cell wall deconstruction. This suggests a rethinking of current brown rot decay models and supports a model where monomeric sugars and oligosaccharides diffuse from the softwood cell walls during non-enzymatic action. In this regard, the CMF mechanism should not be thought of as a "pretreatment" used to permit enzymatic penetration into softwood cell walls, but instead it enhances polysaccharide components diffusing to fungal enzymes located in wood cell lumen environments during decay. SANS and other data are consistent with a model for repolymerization and aggregation of at least some portion of the lignin within the cell wall, and this is supported by AFM and TEM data. The data suggest that new approaches for conversion of wood substrates to platform chemicals in biorefineries could be achieved using the CMF mechanism with >75% solubilization of lignocellulose, but that a more selective suite of enzymes and other downstream treatments may be required to work when using CMF deconstruction technology. Strategies to enhance polysaccharide release from lignocellulose substrates for enhanced enzymatic action and fermentation of the released fraction would also aid in the efficient recovery of the more uniform modified lignin fraction that the CMF reaction generates to enhance biorefinery profitability.
Borba-Santos, Luana Pereira; Ishida, Kelly; Calogeropoulou, Theodora; de Souza, Wanderley; Rozental, Sonia
2016-01-01
Sporotrichosis is the most frequent subcutaneous mycosis in the world and its increasing incidence has led to the search for new therapeutic options for its treatment. In this study, we demonstrated that three structural analogues of miltefosine (TCAN26, TC19, and TC70) showed inhibitory activity against Sporothrix schenckii sensu stricto and that TCAN26 was more active in vitro than miltefosine against several isolates. Scanning electron microscopy showed that S. schenckii exposure to TCAN26 resulted in cells that were slightly more elongated than untreated cells. Transmission electron microscopy showed that TCAN26 treatment induced loss of the regular cytoplasmic electron-density and altered the cell envelope (disruption of the cell membrane and cell wall, and increased cell wall thickness). Additionally, TCAN26 concentrations required to kill S. schenckii cells were lower than concentrations that were cytotoxic in mammalian cells, and TCAN26 was more selective than miltefosine. Thus, the adamantylidene-substituted alkylphosphocholine TCAN26 is a promising molecule for the development of novel antifungal compounds, although further investigations are required to elucidate the mode of action of TCAN26 in S. schenckii cells. PMID:27581121
Scheler, Claudia; Weitbrecht, Karin; Pearce, Simon P.; Hampstead, Anthony; Büttner-Mainik, Annette; Lee, Kieran J.D.; Voegele, Antje; Oracz, Krystyna; Dekkers, Bas J.W.; Wang, Xiaofeng; Wood, Andrew T.A.; Bentsink, Leónie; King, John R.; Knox, J. Paul; Holdsworth, Michael J.; Müller, Kerstin; Leubner-Metzger, Gerhard
2015-01-01
Pectin methylesterase (PME) controls the methylesterification status of pectins and thereby determines the biophysical properties of plant cell walls, which are important for tissue growth and weakening processes. We demonstrate here that tissue-specific and spatiotemporal alterations in cell wall pectin methylesterification occur during the germination of garden cress (Lepidium sativum). These cell wall changes are associated with characteristic expression patterns of PME genes and resultant enzyme activities in the key seed compartments CAP (micropylar endosperm) and RAD (radicle plus lower hypocotyl). Transcriptome and quantitative real-time reverse transcription-polymerase chain reaction analysis as well as PME enzyme activity measurements of separated seed compartments, including CAP and RAD, revealed distinct phases during germination. These were associated with hormonal and compartment-specific regulation of PME group 1, PME group 2, and PME inhibitor transcript expression and total PME activity. The regulatory patterns indicated a role for PME activity in testa rupture (TR). Consistent with a role for cell wall pectin methylesterification in TR, treatment of seeds with PME resulted in enhanced testa permeability and promoted TR. Mathematical modeling of transcript expression changes in germinating garden cress and Arabidopsis (Arabidopsis thaliana) seeds suggested that group 2 PMEs make a major contribution to the overall PME activity rather than acting as PME inhibitors. It is concluded that regulated changes in the degree of pectin methylesterification through CAP- and RAD-specific PME and PME inhibitor expression play a crucial role during Brassicaceae seed germination. PMID:25429110
Galkina, Elena; Harry, Brian L; Ludwig, Andreas; Liehn, Elisa A; Sanders, John M; Bruce, Anthony; Weber, Christian; Ley, Klaus
2007-10-16
T lymphocytes are thought to be important in atherosclerosis, but very little is known about the mechanisms of lymphocyte recruitment into atherosclerosis-prone aortas. In this study we tested the hypothesis that CXCR6, a chemokine receptor that is expressed on a subset of CD4+ T helper 1 cells and natural killer T cells, is involved in lymphocyte homing into the aortic wall and modulates the development and progression of atherosclerosis. To investigate the role of CXCR6 in the development and progression of atherosclerosis, we bred CXCR6-deficient (CXCR6(GFP/GFP)) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. We found that CXCR6(GFP/GFP)/ApoE(-/-) mice fed a Western diet for 17 weeks or a chow diet for 56 weeks had decreased atherosclerosis compared with ApoE(-/-) controls. Flow cytometry analysis of the aortas from CXCR6(GFP/GFP)/ApoE(-/-) mice showed that the reduction of atherosclerosis was accompanied by a decreased percentage of CXCR6+ T cells within the aortas. Short-term homing experiments demonstrated that CXCR6 is involved in the recruitment of CXCR6+ leukocytes into the atherosclerosis-prone aortic wall. The reduced percentage of CXCR6+ T cells within the aortas resulted in significantly diminished production of interferon-gamma and reduction of CD11b+/CD68+ macrophages in the aorta. These data provide evidence for a proatherosclerotic role of CXCR6. Absence of CXCR6 alters the recruitment of CXCR6+ leukocytes and modulates the local immune response within the aortic wall.
Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.
Blevins, D G; Lukaszewski, K M
1994-01-01
Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877
USDA-ARS?s Scientific Manuscript database
Citrus by-products contain essential oils that possess antimicrobial activities that can exert damage to the cell wall of gram-negative bacteria. This alteration to gram-negative microbes has resulted in CBP being investigated as a potential pre-harvest pathogen intervention strategy to reduce Shig...
Chiaki Hori; Jill Gaskell; Kiyohiko Igarashi; Phil Kersten; Michael Mozuch; Masahiro Samejima; Dan Cullen
2014-01-01
The white-rot basidiomycetes efficiently degrade all wood cell wall polymers. Generally, these fungi simultaneously degrade cellulose and lignin, but certain organisms, such as Ceriporiopsis subvermispora, selectively remove lignin in advance of cellulose degradation. However, relatively little is known about themechanismof selective ligninolysis. To...
Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss
2010-01-01
Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara
Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less
Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; ...
2014-10-07
Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less
Impact of cadmium stress on two maize hybrids.
Vatehová, Zuzana; Malovíková, Anna; Kollárová, Karin; Kučerová, Danica; Lišková, Desana
2016-11-01
Some physiological parameters and composition of the root cell walls of two maize hybrids (monocots), the sensitive Novania and the tolerant Almansa were studied after treatment with cadmium cations. After 10 days of Cd 2+ treatment (1 × 10 -5 M and 5 × 10 -5 M), plant growth inhibition, in the sensitive hybrid in particular, as well as a certain alteration in root structure and pigment content were observed. The Cd 2+ accumulation was ten times higher in the roots than in the shoots. Chemical analyses and atomic absorption spectroscopy proved that Cd 2+ modified the composition of the root cell walls by a significant increase in the content of alkali-soluble polysaccharide fractions, particularly in the tolerant hybrid. An increase in the content of phenolic compounds, mainly in the tolerant hybrid, and a decrease in protein content were observed in the presence of Cd 2+ in the alkali fractions. The results indicate that the changes in the cell wall polysaccharide fractions and their proportion to lignin and cellulose are obviously involved in the tolerance and/or defence against Cd 2+ of the maize hybrids studied. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edgar, Rebecca J.; Chen, Jing; Kant, Sashi
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less
Edgar, Rebecca J; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S; Forsberg, Lennart S; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V; Zhu, Haining; Korotkov, Konstantin V; Pancholi, Vijay; Korotkova, Natalia
2016-01-01
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.
Edgar, Rebecca J.; Chen, Jing; Kant, Sashi; ...
2016-10-13
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C 3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams ofmore » the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Furthermore, our data suggest the possibility that SpyB activity is regulated by heme.« less
Atkinson, Ross G; Sutherland, Paul W; Johnston, Sarah L; Gunaseelan, Kularajathevan; Hallett, Ian C; Mitra, Deepali; Brummell, David A; Schröder, Roswitha; Johnston, Jason W; Schaffer, Robert J
2012-08-02
While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.
Characterization of a highly hop-resistant Lactobacillus brevis strain lacking hop transport.
Behr, Jürgen; Gänzle, Michael G; Vogel, Rudi F
2006-10-01
Resistance to hops is a prerequisite for lactic acid bacteria to spoil beer. In this study we analyzed mechanisms of hop resistance of Lactobacillus brevis at the metabolism, membrane physiology, and cell wall composition levels. The beer-spoiling organism L. brevis TMW 1.465 was adapted to high concentrations of hop compounds and compared to a nonadapted strain. Upon adaptation to hops the metabolism changed to minimize ethanol stress. Fructose was used predominantly as a carbon source by the nonadapted strain but served as an electron acceptor upon adaptation to hops, with concomitant formation of acetate instead of ethanol. Furthermore, hop adaptation resulted in higher levels of lipoteichoic acids (LTA) incorporated into the cell wall and altered composition and fluidity of the cytoplasmic membrane. The putative transport protein HitA and enzymes of the arginine deiminase pathway were overexpressed upon hop adaptation. HorA was not expressed, and the transport of hop compounds from the membrane to the extracellular space did not account for increased resistance to hops upon adaptation. Accordingly, hop resistance is a multifactorial dynamic property, which can develop during adaptation. During hop adaptation, arginine catabolism contributes to energy and generation of the proton motive force until a small fraction of the population has established structural improvements. This acquired hop resistance is energy independent and involves an altered cell wall composition. LTA shields the organism from accompanying stresses and provides a reservoir of divalent cations, which are otherwise scarce as a result of their complexation by hop acids. Some of the mechanisms involved in hop resistance overlap with mechanisms of pH resistance and ethanol tolerance and as a result enable beer spoilage by L. brevis.
Edwards, Mary E.; Choo, Tze-Siang; Dickson, Cathryn A.; Scott, Catherine; Gidley, Michael J.; Reid, J.S. Grant
2004-01-01
Galactomannan biosynthesis in legume seed endosperms involves two Golgi membrane-bound glycosyltransferases, mannan synthase and galactomannan galactosyltransferase (GMGT). GMGT specificity is an important factor regulating the distribution and amount of (1→6)-α-galactose (Gal) substitution of the (1→4)-β-linked mannan backbone. The model legume Lotus japonicus is shown now to have endospermic seeds with endosperm cell walls that contain a high-Gal galactomannan (mannose [Man]/Gal = 1.2-1.3). Galactomannan biosynthesis in developing L. japonicus endosperms has been mapped, and a cDNA encoding a functional GMGT has been obtained from L. japonicus endosperms during galactomannan deposition. L. japonicus has been transformed with sense, antisense, and sense/antisense (“hairpin loop”) constructs of the GMGT cDNA. Some of the sense, antisense, and sense/antisense transgenic lines exhibited galactomannans with altered (higher) Man/Gal values in their (T1 generation) seeds, at frequencies that were consistent with posttranscriptional silencing of GMGT. For T1 generation individuals, transgene inheritance was correlated with galactomannan composition and amount in the endosperm. All the azygous individuals had unchanged galactomannans, whereas those that had inherited a GMGT transgene exhibited a range of Man/Gal values, up to about 6 in some lines. For Man/Gal values up to 4, the results were consistent with lowered Gal substitution of a constant amount of mannan backbone. Further lowering of Gal substitution was accompanied by a slight decrease in the amount of mannan backbone. Microsomal membranes prepared from the developing T2 generation endosperms of transgenic lines showed reduced GMGT activity relative to mannan synthase. The results demonstrate structural modification of a plant cell wall polysaccharide by designed regulation of a Golgi-bound glycosyltransferase. PMID:14988472
Leplé, Jean-Charles; Dauwe, Rebecca; Morreel, Kris; Storme, Véronique; Lapierre, Catherine; Pollet, Brigitte; Naumann, Annette; Kang, Kyu-Young; Kim, Hoon; Ruel, Katia; Lefèbvre, Andrée; Joseleau, Jean-Paul; Grima-Pettenati, Jacqueline; De Rycke, Riet; Andersson-Gunnerås, Sara; Erban, Alexander; Fehrle, Ines; Petit-Conil, Michel; Kopka, Joachim; Polle, Andrea; Messens, Eric; Sundberg, Björn; Mansfield, Shawn D.; Ralph, John; Pilate, Gilles; Boerjan, Wout
2007-01-01
Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula × Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested. PMID:18024569
Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth
Boron, Agnieszka Karolina; Van Loock, Bram; Suslov, Dmitry; Markakis, Marios Nektarios; Verbelen, Jean-Pierre; Vissenberg, Kris
2015-01-01
Background and Aims Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth. Methods Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (β-glucuronidase) stainings were performed. Key Results AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. Conclusions It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization. PMID:25492062
Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F.; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A.; Kaveri, Srini V.; Kwon-Chung, Kyung J.
2014-01-01
In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. PMID:24818666
Ishida, Kelly; Rodrigues, Juliany Cola Fernandes; Ribeiro, Marcos Dornelas; Vila, Taíssa Vieira Machado; de Souza, Wanderley; Urbina, Julio A; Nakamura, Celso Vataru; Rozental, Sonia
2009-04-20
Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment.The purpose of this study was to evaluate the antifungal activity of inhibitors of Delta24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5alpha-pregnan-3beta-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 microg.ml-1 for AZA and 2 microg.ml-1 for EIL, and the MIC90 was 2 microg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole-resistant strains.
2009-01-01
Background Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment. The purpose of this study was to evaluate the antifungal activity of inhibitors of Δ24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5α-pregnan-3β-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. Results AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 μg.ml-1 for AZA and 2 μg.ml-1 for EIL, and the MIC90 was 2 μg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Conclusion Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole-resistant strains. PMID:19379501
The role of NDR1 in pathogen perception and plant defense signaling.
Knepper, Caleb; Savory, Elizabeth A; Day, Brad
2011-08-01
The biochemical and cellular function of NDR1 in plant immunity and defense signaling has long remained elusive. Herein, we describe a novel role for NDR1 in both pathogen perception and plant defense signaling, elucidated by exploring a broader, physiological role for NDR1 in general stress responses and cell wall adhesion. Based on our predictive homology modeling, coupled with a structure-function approach, we found that NDR1 shares a striking similarity to mammalian integrins, well-characterized for their role in mediating the interaction between the extracellular matrix and stress signaling. ndr1-1 mutant plants exhibit higher electrolyte leakage following pathogen infection, compared to wild type Col-0. In addition, we observed an altered plasmolysis phenotype, supporting a role for NDR1 in maintaining cell wall-plasma membrane adhesions through mediating fluid loss under stress.
Lionetti, Vincenzo; Cervone, Felice; Bellincampi, Daniela
2012-11-01
The cell wall is a complex structure mainly composed by a cellulose-hemicellulose network embedded in a cohesive pectin matrix. Pectin is synthesized in a highly methyl esterified form and is de-esterified in muro by pectin methyl esterases (PMEs). The degree and pattern of methyl esterification affect the cell wall structure and properties with consequences on both the physiological processes of the plants and their resistance to pathogens. PME activity displays a crucial role in the outcome of the plant-pathogen interactions by making pectin more susceptible to the action of the enzymes produced by the pathogens. This review focuses on the impact of pectin methyl esterification in plant-pathogen interactions and on the dynamic role of its alteration during pathogenesis. Copyright © 2012 Elsevier GmbH. All rights reserved.
Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A.; Dague, Etienne
2016-01-01
ABSTRACT A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae. However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. IMPORTANCE Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties. PMID:27235439
Schiavone, Marion; Formosa-Dague, Cécile; Elsztein, Carolina; Teste, Marie-Ange; Martin-Yken, Helene; De Morais, Marcos A; Dague, Etienne; François, Jean M
2016-08-01
A wealth of biochemical and molecular data have been reported regarding ethanol toxicity in the yeast Saccharomyces cerevisiae However, direct physical data on the effects of ethanol stress on yeast cells are almost nonexistent. This lack of information can now be addressed by using atomic force microscopy (AFM) technology. In this report, we show that the stiffness of glucose-grown yeast cells challenged with 9% (vol/vol) ethanol for 5 h was dramatically reduced, as shown by a 5-fold drop of Young's modulus. Quite unexpectedly, a mutant deficient in the Msn2/Msn4 transcription factor, which is known to mediate the ethanol stress response, exhibited a low level of stiffness similar to that of ethanol-treated wild-type cells. Reciprocally, the stiffness of yeast cells overexpressing MSN2 was about 35% higher than that of the wild type but was nevertheless reduced 3- to 4-fold upon exposure to ethanol. Based on these and other data presented herein, we postulated that the effect of ethanol on cell stiffness may not be mediated through Msn2/Msn4, even though this transcription factor appears to be a determinant in the nanomechanical properties of the cell wall. On the other hand, we found that as with ethanol, the treatment of yeast with the antifungal amphotericin B caused a significant reduction of cell wall stiffness. Since both this drug and ethanol are known to alter, albeit by different means, the fluidity and structure of the plasma membrane, these data led to the proposition that the cell membrane contributes to the biophysical properties of yeast cells. Ethanol is the main product of yeast fermentation but is also a toxic compound for this process. Understanding the mechanism of this toxicity is of great importance for industrial applications. While most research has focused on genomic studies of ethanol tolerance, we investigated the effects of ethanol at the biophysical level and found that ethanol causes a strong reduction of the cell wall rigidity (or stiffness). We ascribed this effect to the action of ethanol perturbing the cell membrane integrity and hence proposed that the cell membrane contributes to the cell wall nanomechanical properties. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mi; Cao, Shilin; Meng, Xianzhi
Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.
Li, Mi; Cao, Shilin; Meng, Xianzhi; ...
2017-11-30
Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood.
The cell biology of lignification in higher plants
Barros, Jaime; Serk, Henrik; Granlund, Irene; Pesquet, Edouard
2015-01-01
Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying. Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level. Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility. PMID:25878140
NASA Astrophysics Data System (ADS)
Manzano, Ana I.; Herranz, Raúl; van Loon, Jack J. W. A.; Medina, F. Javier
2012-12-01
Seeds of Arabidopsis thaliana were exposed to hypergravity environments (2 g and 6 g) and germinated during centrifugation. Seedlings grew for 2 and 4 days before fixation. In all cases, comparisons were performed against an internal (subjected to rotational vibrations and other factors of the machine) and an external control at 1 g. On seedlings grown in hypergravity the total length and the root length were measured. The cortical root meristematic cells were analyzed to investigate the alterations in cell proliferation, which were quantified by counting the number of cells per millimeter in the specific cell files, and cell growth, which were appraised through the rate of ribosome biogenesis, assessed by morphological and morphometrical parameters of the nucleolus. The expression of cyclin B1, a key regulator of entry in mitosis, was assessed by the use of a CYCB1:GUS genetic construction. The results showed significant differences in some of these parameters when comparing the 1 g internal rotational control with the 1 g external control, indicating that the machine by itself was a source of alterations. When the effect of hypergravity was isolated from other environmental factors, by comparing the experimental conditions with the rotational control, cell proliferation appeared depleted, cell growth was increased and there was an enhanced expression of cyclin B1. The functional meaning of these effects is that cell proliferation and cell growth, which are strictly associated functions under normal 1 g ground conditions, are uncoupled under hypergravity. This uncoupling was also described by us in previous experiments as an effect of microgravity, but in an opposite way. Furthermore, root meristems appear thicker in hypergravity-treated than in control samples, which can be related to changes in the cell wall induced by altered gravity.
Characterization of slow-cycling cells in the mouse cochlear lateral wall
Ogawa, Kaoru
2017-01-01
Cochlear spiral ligament fibrocytes (SLFs) play essential roles in the physiology of hearing including ion recycling and the generation of endocochlear potential. In adult animals, SLFs can repopulate after damages, yet little is known about the characteristics of proliferating cells that support SLFs’ self-renewal. Here we report in detail about the characteristics of cycling cells in the spiral ligament (SL). Fifteen P6 mice and six noise-exposed P28 mice were injected with 5-bromo-2′-deoxyuridine (BrdU) for 7 days and we chased BrdU retaining cells for as long as 60 days. Immunohistochemistry revealed that the BrdU positive IB4 (an endotherial marker) negative cells expressed an early SLF marker Pou3f4 but negative for cleaved-Caspase 3. Marker studies revealed that type 3 SLFs displayed significantly higher percentage of BrdU+ cells compared to other subtypes. Notably, the cells retained BrdU until P72, demonstrating they were dividing slowly. In the noise-damaged mice, in contrast to the loss of the other types, the number of type 3 SLFs did not altered and the BrdU incorporating- phosphorylated Histone H3 positive type 3 cells were increased from day 1 to 14 after noise exposure. Furthermore, the cells repopulating type 1 area, where the cells diminished profoundly after damage, were positive for the type 3 SLF markers. Collectively, in the latral wall of the cochlea, type 3 SLFs have the stem cell capacity and may contribute to the endogenous regeneration of lateral wall spiral ligament. Manipulating type 3 cells may be employed for potential regenerative therapies. PMID:28632772
Dimech, Gustavo Santiago; Soares, Luiz Alberto Lira; Ferreira, Magda Assunção; de Oliveira, Anne Gabrielle Vasconcelos; Carvalho, Maria da Conceição; Ximenes, Eulália Azevedo
2013-01-01
The aim of this study was to investigate the antimicrobial activity of different extracts and fractions obtained from Hymenaea stigonocarpa stem barks. The cyclohexanic, ethyl acetate, ethanol, aqueous, and hydroalcoholic extracts were obtained by maceration. The hydroalcoholic extract was partitioned, which resulted in the ethyl acetate and aqueous fractions. All extracts and fractions were subjected to phytochemical screening and evaluation of total phenol and tannin contents. An HPLC-DAD and ultrastructural alterations analysis were performed. Terpenes and coumarins were detected in the cyclohexanic extract. Flavonoids and condensed tannins were present in the other extracts and fractions. The extracts with the highest contents of tannins, ethanol (EE), hydroalcoholic (HE), and aqueous fraction (AF) showed also the highest antimicrobial activity. The MIC values ranged from 64 to 526 µg/mL. The chromatographic fingerprints suggest the presence of astilbin and other flavonoids in EE and HE. Presence of the thick cell wall, undulating outer layer, abnormal septa, and leakage of the cytoplasmic contents and absence of cell wall and cell lyses were the main alterations observed on Staphylococcus aureus ATCC 33591 after treatment with the Hymenaea stigonocarpa hydroalcoholic extract. The presence of phenolic compounds like flavonoids and tannins is possibly the reason for the antimicrobial activity. PMID:24396311
Desmarais, Samantha M.; Tropini, Carolina; Miguel, Amanda; Cava, Felipe; Monds, Russell D.; de Pedro, Miguel A.; Huang, Kerwyn Casey
2015-01-01
The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination. PMID:26468288
Gerik, Kimberly J; Bhimireddy, Sujit R; Ryerse, Jan S; Specht, Charles A; Lodge, Jennifer K
2008-10-01
Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a "top-down" approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Delta strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism.
Gerik, Kimberly J.; Bhimireddy, Sujit R.; Ryerse, Jan S.; Specht, Charles A.; Lodge, Jennifer K.
2008-01-01
Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a “top-down” approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Δ strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism. PMID:18689526
Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation
NASA Technical Reports Server (NTRS)
Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim
2003-01-01
A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain circulation under auto-regulation.
Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y
Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.
2015-12-08
This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.
Roselli, Marianna; Finamore, Alberto; Hynönen, Ulla; Palva, Airi; Mengheri, Elena
2016-09-29
The role of Lactobacillus cell wall components in the protection against pathogen infection in the gut is still largely unexplored. We have previously shown that L. amylovorus DSM 16698 T is able to reduce the enterotoxigenic F4 + Escherichia coli (ETEC) adhesion and prevent the pathogen-induced membrane barrier disruption through the regulation of IL-10 and IL-8 expression in intestinal cells. We have also demonstrated that L. amylovorus DSM 16698 T protects host cells through the inhibition of NF-kB signaling. In the present study, we investigated the role of L. amylovorus DSM 16698 T cell wall components in the protection against F4 + ETEC infection using the intestinal Caco-2 cell line. Purified cell wall fragments (CWF) from L. amylovorus DSM 16698 T were used either as such (uncoated, U-CWF) or coated with S-layer proteins (S-CWF). Differentiated Caco-2/TC7 cells on Transwell filters were infected with F4 + ETEC, treated with S-CWF or U-CWF, co-treated with S-CWF or U-CWF and F4 + ETEC for 2.5 h, or pre-treated with S-CWF or U-CWF for 1 h before F4 + ETEC addition. Tight junction (TJ) and adherens junction (AJ) proteins were analyzed by immunofluorescence and Western blot. Membrane permeability was determined by phenol red passage. Phosphorylated p65-NF-kB was measured by Western blot. We showed that both the pre-treatment with S-CWF and the co- treatment of S-CWF with the pathogen protected the cells from F4 + ETEC induced TJ and AJ injury, increased membrane permeability and activation of NF-kB expression. Moreover, the U-CWF pre-treatment, but not the co-treatment with F4 + ETEC, inhibited membrane damage and prevented NF-kB activation. The results indicate that the various components of L. amylovorus DSM 16698 T cell wall may counteract the damage caused by F4 + ETEC through different mechanisms. S-layer proteins are essential for maintaining membrane barrier function and for mounting an anti-inflammatory response against F4 + ETEC infection. U-CWF are not able to defend the cells when they are infected with F4 + ETEC but may activate protective mechanisms before pathogen infection.
Seifert, G
1996-12-01
Concerning the hypothesis that distinct types of salivary gland cysts may be the starting point of a salivary gland tumour, a histological examination of 1,661 salivary gland cysts was performed in order to analyse the cell types and their proliferative activity. Epithelial alterations were found especially in salivary duct cysts of parotid gland and in mucous retention cysts of minor salivary glands. Characteristic cellular changes were epithelial metaplasias (goblet cells, clear cells, squamous cells) and focal epithelial proliferations with plump or papillary plaques projecting into the cyst lumen. Only in one case had a mucoepidermoid carcinoma developed in the wall of a parotid duct cyst. The epithelial metaplasia and focal proliferative activity in salivary duct cysts is comparable to similar alterations in odontogenic cysts as possible early manifestation of a tumour, especially of an ameloblastoma or mucoepidermoid carcinoma. The differential diagnosis of salivary duct cysts must take primarily cystadenomas and cystic mucoepidermoid carcinomas of well-differentiated type into account.
Masias, Emilse; Dupuy, Fernando G; da Silva Sanches, Paulo Ricardo; Farizano, Juan Vicente; Cilli, Eduardo; Bellomio, Augusto; Saavedra, Lucila; Minahk, Carlos
2017-07-01
Enterocin CRL35 is a class IIa bacteriocin with anti-Listeria activity. Resistance to these peptides has been associated with either the downregulation of the receptor expression or changes in the membrane and cell walls. The scope of the present work was to characterize enterocin CRL35 resistant Listeria strains with MICs more than 10,000 times higher than the MIC of the WT sensitive strain. Listeria monocytogenes INS7 resistant isolates R2 and R3 were characterized by 16S RNA gene sequencing and rep-PCR. Bacterial growth kinetic was studied in different culture media. Plasma membranes of sensitive and resistant bacteria were characterized by FTIR and Langmuir monolayer techniques. The growth kinetic of the resistant isolates was slower as compared to the parental strain in TSB medium. Moreover, the resistant isolates barely grew in a glucose-based synthetic medium, suggesting that these cells had a major alteration in glucose transport. Resistant bacteria also had alterations in their cell wall and, most importantly, membrane lipids. In fact, even though enterocin CRL35 was able to bind to the membrane-water interface of both resistant and parental sensitive strains, this peptide was only able to get inserted into the latter membranes. These results indicate that bacteriocin receptor is altered in combination with membrane structural modifications in enterocin CRL35-resistant L. monocytogenes strains. Highly enterocin CRL35-resistant isolates derived from Listeria monocytogenes INS7 have not only an impaired glucose transport but also display structural changes in the hydrophobic core of their plasma membranes. Copyright © 2017. Published by Elsevier B.V.
Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes.
García-García, Amanda; Vergaz, Ricardo; Algorri, José Francisco; Quintana, Xabier; Otón, José Manuel
2015-01-01
The inclusion of nanoparticles modifies a number of fundamental properties of many materials. Doping of nanoparticles in self-organized materials such as liquid crystals may be of interest for the reciprocal interaction between the matrix and the nanoparticles. Elongated nanoparticles and nanotubes can be aligned and reoriented by the liquid crystal, inducing noticeable changes in their optical and electrical properties. In this work, cells of liquid crystal doped with high aspect ratio multi-walled carbon nanotubes have been prepared, and their characteristic impedance has been studied at different frequencies and excitation voltages. The results demonstrate alterations in the anisotropic conductivity of the samples with the applied electric field, which can be followed by monitoring the impedance evolution with the excitation voltage. Results are consistent with a possible electric contact between the coated substrates of the LC cell caused by the reorientation of the nanotubes. The reversibility of the doped system upon removal of the electric field is quite low.
Capodicasa, Cristina; Vairo, Donatella; Zabotina, Olga; McCartney, Lesley; Caprari, Claudio; Mattei, Benedetta; Manfredini, Cinzia; Aracri, Benedetto; Benen, Jacques; Knox, J Paul; De Lorenzo, Giulia; Cervone, Felice
2004-07-01
Pectins are a highly complex family of cell wall polysaccharides comprised of homogalacturonan (HGA), rhamnogalacturonan I and rhamnogalacturonan II. We have specifically modified HGA in both tobacco (Nicotiana tabacum) and Arabidopsis by expressing the endopolygalacturonase II of Aspergillus niger (AnPGII). Cell walls of transgenic tobacco plants showed a 25% reduction in GalUA content as compared with the wild type and a reduced content of deesterified HGA as detected by antibody labeling. Neutral sugars remained unchanged apart from a slight increase of Rha, Ara, and Gal. Both transgenic tobacco and Arabidopsis were dwarfed, indicating that unesterified HGA is a critical factor for plant cell growth. The dwarf phenotypes were associated with AnPGII activity as demonstrated by the observation that the mutant phenotype of tobacco was completely reverted by crossing the dwarfed plants with plants expressing PGIP2, a strong inhibitor of AnPGII. The mutant phenotype in Arabidopsis did not appear when transformation was performed with a gene encoding AnPGII inactivated by site directed mutagenesis.
Crişan, Melania Ioana; Damian, Aurel; Gal, Adrian; Miclăuş, Viorel; Cernea, Cristina L; Denoix, Jean-Marie
2013-08-01
The purpose of this study was to provide a detailed description of the vascular changes in the distal part of deep digital flexor tendon (DDFT). Eight isolated forelimbs were collected from 8 horses with DDF tendinopathy diagnosed post-mortem by ultrasound and gross anatomopathological examination. The samples were fixed in 10% neutral buffered formalin, softened in 4% phenol and dehydrated with ethylic alcohol. Goldner's Trichrome staining method was used. The histopathological examination revealed vascular proliferation associated with structural disorders of blood vessels. Angiogenesis, fibroplasia and consecutive hypertrophy of the vascular wall with or without vascular occlusion were the most common findings. Other histopathological findings were: endothelial cell edema, progressive metaplasia from squamous to cubic cells, vascular wall hyalinization, endothelial cells apoptosis/necrosis and endothelial desquamation. These results demonstrated damage of the distal deep digital flexor tendon vasculature which may progressively alter the structural integrity of the tendon and contribute to degenerative lesions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth1[OPEN
Kim, Sang-Jin; Renna, Luciana; Brandizzi, Federica
2016-01-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. PMID:27208234
Pectin Methylesterification Impacts the Relationship between Photosynthesis and Plant Growth.
M Weraduwage, Sarathi; Kim, Sang-Jin; Renna, Luciana; C Anozie, Fransisca; D Sharkey, Thomas; Brandizzi, Federica
2016-06-01
Photosynthesis occurs in mesophyll cells of specialized organs such as leaves. The rigid cell wall encapsulating photosynthetic cells controls the expansion and distribution of cells within photosynthetic tissues. The relationship between photosynthesis and plant growth is affected by leaf area. However, the underlying genetic mechanisms affecting carbon partitioning to different aspects of leaf growth are not known. To fill this gap, we analyzed Arabidopsis plants with altered levels of pectin methylesterification, which is known to modulate cell wall plasticity and plant growth. Pectin methylesterification levels were varied through manipulation of cotton Golgi-related (CGR) 2 or 3 genes encoding two functionally redundant pectin methyltransferases. Increased levels of methylesterification in a line over-expressing CGR2 (CGR2OX) resulted in highly expanded leaves with enhanced intercellular air spaces; reduced methylesterification in a mutant lacking both CGR-genes 2 and 3 (cgr2/3) resulted in thin but dense leaf mesophyll that limited CO2 diffusion to chloroplasts. Leaf, root, and plant dry weight were enhanced in CGR2OX but decreased in cgr2/3. Differences in growth between wild type and the CGR-mutants can be explained by carbon partitioning but not by variations in area-based photosynthesis. Therefore, photosynthesis drives growth through alterations in carbon partitioning to new leaf area growth and leaf mass per unit leaf area; however, CGR-mediated pectin methylesterification acts as a primary factor in this relationship through modulation of the expansion and positioning of the cells in leaves, which in turn drive carbon partitioning by generating dynamic carbon demands in leaf area growth and leaf mass per unit leaf area. © 2016 American Society of Plant Biologists. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle
2015-12-08
Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5more » in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure–function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA.« less
Opto-nanomechanical spectroscopic material characterization
Tetard, Laurene; Passian, Ali; Farahi, R. H.; ...
2015-08-10
Cellulosic ethanol is a biofuel of considerable potential in the search for sustainable and renewable bioenergy [1,2]. However, while rich in carbohydrates [3], the plant cell walls exhibit a natural resistance to complex phenotype treatments such as enzymatic microbial deconstruction, heat and acid treatments that can remove the lignin polymers from cellulose before hydrolysis [5]. Noninvasive physical and chemical characterization of the cell walls and the effect of such treatments on biomass are challenging but necessary to understand and overcome such resistance [6]. Although lacking chemical recognition in their traditional forms, the various emerging modalities of nano-mechanical [7] and opto-nano-mechanicalmore » [8] force microscopies [9,10] provide a superb window into the needed nanoscale material characterization [6]. Infrared absorption spectroscopy is a powerful, non- destructive and ultra-sensitive technique that can provide the needed molecular fingerprinting but the photothermal channel is delocalized and thus lacks spatial resolution. Utilizing the emerging dynamic concepts of mode synthesizing atomic force microscopy (MSAFM) [11] and virtual resonance [12], we introduce a hybrid photonic and nanomechanical force microscopy (hp-MSAFM) with molecular recognition and characterize the extraction, holopulping and acid treatment of biomass. We present spatially and spectrally resolved cell wall images that reveal both the morphological and the compositional alterations of the cell walls. The measured biomolecular traits are in agreement with chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. The presented findings should prove highly relevant in fields such as cancer research [13], nanotoxicity [14], energy storage and production [15], where morphological, chemical and subsurface studies of nanocomposites [16], nanoparticle uptake by cells [14], and nanoscale quality control [17] are in demand.« less
Age Effects on Hypocotyl Mechanics.
Saxe, Friederike; Weichold, Susann; Reinecke, Antje; Lisec, Jan; Döring, Anett; Neumetzler, Lutz; Burgert, Ingo; Eder, Michaela
2016-01-01
Numerous studies deal with composition and molecular processes involved in primary cell wall formation and alteration in Arabidopsis. However, it still remains difficult to assess the relation between physiological properties and mechanical function at the cell wall level. The thin and fragile structure of primary cell walls and their large biological variability, partly related to structural changes during growth, make mechanical experiments challenging. Since, to the best of our knowledge, there is no reliable data in the literature about how the properties of the fully elongated zone of hypocotyls change with age. We studied in a series of experiments on two different seed batches the tensile properties the region below the growth zone of 4 to 7 day old etiolated Arabidopsis hypocotyls. Additionally, we analysed geometrical parameters, hypocotyl density and cellulose content as individual traits and their relation to tissue mechanics. No significant differences of the mechanical parameters of the non-growing region between 5-7 day old plants could be found whereas in 4 day old plants both tensile stiffness and ultimate tensile stress were significantly lower than in the older plants. Furthermore hypocotyl diameters and densities remain almost the same for 5, 6 and 7 day old seedlings. Naturally, hypocotyl lengths increase with age. The evaluation whether the choice-age or length-influences the mechanical properties showed that both are equally applicable sampling parameters. Additionally, our detailed study allows for the estimation of biological variability, connections between mechanics and hypocotyl age could be established and complement the knowledge on biochemistry and genetics affecting primary plant cell wall growth. The application of two different micromechanical devices for testing living Arabidopsis hypocotyls allows for emphasizing and discussing experimental limitations and for presenting a wide range of possibilities to address current and future questions related to plant cell wall mechanics, synthesis and growth in combination with molecular biology methodologies.
Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea
2012-01-01
Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647
Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.
2010-01-01
The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028
Gong, Xiaohui; Xu, Xiaojuan; Lin, Sisi; Cheng, Yu; Tong, Jianhua; Li, Yongyu
2017-08-01
The aim of the current study was to investigate the effects of early-stage dextran sodium sulfate (DSS)-induced mouse colitis on the biomechanical properties and microstructure of colon walls. In the present study, colitis was induced in 8-week-old mice by the oral administration of DSS, and then 10 control and 10 experimental colitis samples were harvested. Uniaxial tensile tests were performed to measure the ultimate tensile strength and ultimate stretches of colon tissues. In addition, histological investigations were performed to characterize changes in the microstructure of the colon wall following treatment. The results revealed that the ultimate tensile stresses were 232±33 and 183±25 kPa for the control and DSS groups, respectively (P=0.001). Ultimate stretches at rupture for the control and DSS groups were 1.43±0.04 and 1.51±0.06, respectively (P=0.006). However, there was no statistically significant difference in tissue stiffness between the two groups. Histological analysis demonstrated high numbers of inflammatory cells infiltrated into the stroma in the DSS group, leading to significant submucosa edema. Hyperplasia was also identified in the DSS-treated submucosa, causing a disorganized microstructure within the colon wall. Furthermore, a large number of collagen fibers in the DSS-treated muscular layer were disrupted, and fiber bundles were thinner when compared with the control group. In conclusion, early-stage experimental colitis alters the mechanical properties and microstructural characteristics of the colon walls, further contributing to tissue remodeling in the pathological process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Zhaohua PEng; Ronald, Palmela; Wang, Guo-Liang
This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for eachmore » gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall synthesis pathway genes are induced by removal of cell wall, some cell wall synthesis apparatus must be shared in both cases. The cell wall re-synthesis mechanism may have broad application because our preliminary assay indicates that the cell wall characteristics are highly different from those produced during cytokinesis. A thorough understanding on the regulation of cell wall re-synthesis may lead to improvement of cell wall characteristics. b) Removal of cell wall results in chromatin decondensation Another interesting observation was that removal of cell wall was associated with substantial chromatin change. Our DNA DAPI stain, chromatin MNase digestion, histone modification proteomics, protein differential expression analysis, and DNA oligo array studies all supported that substantial chromatin change was associated with removal of cell wall treatment. It is still under investigation if the chromatin change is associated with activation of cell wall synthesis genes, in which chromatin remodeling is required. Another possibility is that the cell wall is required for stabilizing the chromatin structure in plant cells. Given that spindle fiber is directly connected with both chromatin structure and cell wall synthesis, it is possible that there is an intrinsic connection between cell wall and chromatin.« less
Reza, Md. Hashim; Shah, Hiral; Manjrekar, Johannes; Chattoo, Bharat B.
2016-01-01
Magnaporthe oryzae, the causative organism of rice blast, infects cereal crops and grasses at various stages of plant development. A comprehensive understanding of its metabolism and the implications on pathogenesis is necessary for countering this devastating crop disease. We present the role of the CorA magnesium transporters, MoAlr2 and MoMnr2, in development and pathogenicity of M. oryzae. The MoALR2 and MoMNR2 genes individually complement the Mg2+ uptake defects of a S. cerevisiae CorA transporter double mutant. MoALR2 and MoMNR2 respond to extracellular Mg2+ and Ca2+ levels and their expression is elevated under Mg2+ scarce conditions. RNA silencing mediated knockdown of MoALR2 (WT+siALR2, Δmnr2+siALR2 and ALR2+MNR2 simultaneous silencing) drastically alters intracellular cation concentrations and sensitivity to metal ions. MoALR2 silencing is detrimental to vegetative growth and surface hydrophobicity of mycelia, and the transformants display loss of cell wall integrity. MoALR2 is required for conidiogenesis and appressorium development, and is essential for infection. Investigation of knockdown transformants reveal low cAMP levels and altered expression of genes encoding proteins involved in MoMps1 cell wall integrity and cAMP MoPmk1 driven MAP Kinase signaling pathways. In contrast to MoALR2 knockdowns, the MoMNR2 deletion (Δmnr2) shows increased sensitivity to CorA inhibitors as well as altered cation sensitivity, but has limited effect on surface hydrophobicity and severity of plant infection. Interestingly, MoALR2 expression is elevated in Δmnr2. Impairment of development and infectivity of knockdown transformants and altered intracellular cation composition suggest that CorA transporters are essential for Mg2+ homeostasis within the cell, and are crucial to maintaining normal gene expression associated with cell structure, signal transduction and surface hydrophobicity in M. oryzae. We suggest that CorA transporters, and especially MoALR2, constitute an attractive target for the development of antifungal agents against this pathogen. PMID:27416318
2012-01-01
Background While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in ‘Royal Gala’ apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. Results PG1-suppressed ‘Royal Gala’ apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. Conclusions These findings confirm PG1’s role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss. PMID:22856470
A new methodology to obtain wine yeast strains overproducing mannoproteins.
Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon
2010-04-30
Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.
Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis
NASA Technical Reports Server (NTRS)
Nozawa, Y.; Kitajima, Y.
1984-01-01
A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.
Yokoyama, Ryusuke; Kuki, Hiroaki; Kuroha, Takeshi; Nishitani, Kazuhiko
2016-01-01
The development of a range of sub-proteomic approaches to the plant cell wall has identified many of the cell wall proteins. However, it remains difficult to elucidate the precise biological role of each protein and the cell wall dynamics driven by their actions. The plant protoplast provides an excellent means not only for characterizing cell wall proteins, but also for visualizing the dynamics of cell wall regeneration, during which cell wall proteins are secreted. It therefore offers a unique opportunity to investigate the de novo construction process of the cell wall. This review deals with sub-proteomic approaches to the plant cell wall through the use of protoplasts, a methodology that will provide the basis for further exploration of cell wall proteins and cell wall dynamics. PMID:28248244
Zielińska, Paulina; Staniszewska, Monika; Bondaryk, Małgorzata; Koronkiewicz, Mirosława; Urbańczyk-Lipkowska, Zofia
2015-11-13
Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Computational fluid dynamics evaluation of incomplete stent apposition in a tapered artery
NASA Astrophysics Data System (ADS)
Poon, Eric; Thondapu, Vikas; Ooi, Andrew; Hayat, Umair; Barlis, Peter; Moore, Stephen
2015-11-01
Coronary stents are deployed to prop open blocked arteries and restore normal blood flow, however in-stent restenosis (ISR) and stent thrombosis (ST) remain possibly catastrophic complications. Computational fluid dynamics (CFD) analyses can elucidate the pathological impact of alterations in coronary hemodynamics and correlate wall shear stress (WSS) with atherosclerotic processes. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA) where stent struts are not in contact with the vessel wall. By employing state-of-the-art computer-aided design (CAD) software, generic open-cell and closed-cell coronary stent designs were virtually deployed in an idealised tapered coronary artery. Pulsatile blood flow (80 mL/min at 75 beats/min) was carried out numerically on these CAD models using a finite volume solver. CFD results reveal significant fluctuations in proximal WSS and large recirculation regions in the setting of proximal ISA, resulting in regions of high wall shear stress gradient (WSSG) that have been previously linked to poor endothelial cell coverage and vascular injury. The clinical significance of these proximal high WSSG regions will be correlated with findings from high-resolution in-vivo imaging. Supported by the Australian Research Council (LP120100233) and Victorian Life Sciences Computation Initiative (VR0210).
Wang, Weidong; Sheng, Xianyong; Shu, Zaifa; Li, Dongqin; Pan, Junting; Ye, Xiaoli; Chang, Pinpin; Li, Xinghui; Wang, Yuhua
2016-01-01
Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca2+ gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca2+, ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca2+, ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension. PMID:27148289
Teh, Huey Fang; Neoh, Bee Keat; Wong, Yick Ching; Kwong, Qi Bin; Ooi, Tony Eng Keong; Ng, Theresa Lee Mei; Tiong, Soon Huat; Low, Jaime Yoke Sum; Danial, Asma Dazni; Ersad, Mohd Amiron; Kulaveerasingam, Harikrishna; Appleton, David R
2014-08-13
Oil palm is one of the most productive oil-producing crops and can store up to 90% oil in its fruit mesocarp. Oil palm fruit is a sessile drupe consisting of a fleshy mesocarp from which palm oil is extracted. Biochemical changes in the mesocarp cell walls, polyamines, and hormones at different ripening stages of oil palm fruits were studied, and the relationship between the structural and the biochemical metabolism of oil palm fruits during ripening is discussed. Time-course analysis of the changes in expression of polyamines, hormones, and cell-wall-related genes and metabolites provided insights into the complex processes and interactions involved in fruit development. Overall, a strong reduction in auxin-responsive gene expression was observed from 18 to 22 weeks after pollination. High polyamine concentrations coincided with fruit enlargement during lipid accumulation and latter stages of maturation. The trend of abscisic acid (ABA) concentration was concordant with GA₄ but opposite to the GA₃ profile such that as ABA levels increase the resulting elevated ABA/GA₃ ratio clearly coincides with maturation. Polygalacturonase, expansin, and actin gene expressions were also observed to increase during fruit maturation. The identification of the master regulators of these coordinated processes may allow screening for oil palm variants with altered ripening profiles.
Rasool, Brwa; Marcus, Sue E.
2017-01-01
The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-β-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation. PMID:28743764
Investigating the time-dependent zeta potential of wood surfaces.
Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin
2018-05-15
This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhu, Xiao Fang; Lei, Gui Jie; Wang, Zhi Wei; Shi, Yuan Zhi; Braam, Janet; Li, Gui Xin; Zheng, Shao Jian
2013-01-01
Whether aluminum toxicity is an apoplastic or symplastic phenomenon is still a matter of debate. Here, we found that three auxin overproducing mutants, yucca, the recessive mutant superroot2, and superroot1 had increased aluminum sensitivity, while a transfer DNA insertion mutant, xyloglucan endotransglucosylase/hydrolases15 (xth15), showed enhanced aluminum resistance, accompanied by low endogenous indole-3-acetic acid levels, implying that auxin may be involved in plant responses to aluminum stress. We used yucca and xth15 mutants for further study. The two mutants accumulated similar total aluminum in roots and had significantly reduced cell wall aluminum and increased symplastic aluminum content relative to the wild-type ecotype Columbia, indicating that altered aluminum levels in the symplast or cell wall cannot fully explain the differential aluminum resistance of these two mutants. The expression of Al sensitive1 (ALS1), a gene that functions in aluminum redistribution between the cytoplasm and vacuole and contributes to symplastic aluminum detoxification, was less abundant in yucca and more abundant in xth15 than the wild type, consistent with possible ALS1 function conferring altered aluminum sensitivity in the two mutants. Consistent with the idea that xth15 can tolerate more symplastic aluminum because of possible ALS1 targeting to the vacuole, morin staining of yucca root tip sections showed more aluminum accumulation in the cytosol than in the wild type, and xth15 showed reduced morin staining of cytosolic aluminum, even though yucca and xth15 had similar overall symplastic aluminum content. Exogenous application of an active auxin analog, naphthylacetic acid, to the wild type mimicked the aluminum sensitivity and distribution phenotypes of yucca, verifying that auxin may regulate aluminum distribution in cells. Together, these data demonstrate that auxin negatively regulates aluminum tolerance through altering ALS1 expression and aluminum distribution within plant cells, and plants must coordinate exclusion and internal detoxification to reduce aluminum toxicity effectively. PMID:23776189
USDA-ARS?s Scientific Manuscript database
The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such suga...
Lignin structural alterations in thermochemical pretreatments with limited delignification
Pu, Yunqiao; Hu, Fan; Huang, Fang; ...
2015-08-02
Lignocellulosic biomass has a complex and rigid cell wall structure that makes biomass recalcitrant to biological and chemical degradation. Among the three major structural biopolymers (i.e., cellulose, hemicellulose and lignin) in plant cell walls, lignin is considered the most recalcitrant component and generally plays a negative role in the biochemical conversion of biomass to biofuels. The conversion of biomass to biofuels through a biochemical platform usually requires a pretreatment stage to reduce the recalcitrance. Pretreatment renders compositional and structural changes of biomass with these changes ultimately govern the efficiency of the subsequent enzymatic hydrolysis. Dilute acid, hot water, steam explosion,more » and ammonia fiber expansion pretreatments are among the leading thermochemical pretreatments with a limited delignification that can reduce biomass recalcitrance. Practical applications of these pretreatment are rapidly developing as illustrated by recent commercial scale cellulosic ethanol plants. While these thermochemical pretreatments generally lead to only a limited delignification and no significant change of lignin content in the pretreated biomass, the lignin transformations that occur during these pretreatments and the roles they play in recalcitrance reduction is an important research aspect. This review highlights recent advances in our understanding of lignin alterations during these limited delignification thermochemical pretreatments, with emphasis on lignin chemical structures, molecular weights, and redistributions in the pretreated biomass.« less
Phytotoxic effects of Sicyos deppei (Cucurbitaceae) in germinating tomato seeds.
Lara-Núñez, Aurora; Sánchez-Nieto, Sobeida; Luisa Anaya, Ana; Cruz-Ortega, Rocio
2009-06-01
The phytotoxic effect of allelochemicals is referred to as allelochemical stress and it is considered a biotic stress. Sicyos deppei G. Don (Cucurbitaceae) is an allelopathic weed that causes phytotoxicity in Lycopersicon esculentum, delaying seed germination and severely inhibiting radicle growth. This paper reports in in vitro conditions, the effects of the aqueous leachate of S. deppei-throughout tomato germination times-on (1) the dynamics of starch and sugars metabolism, (2) activity and expression of the cell wall enzymes involved in endosperm weakening that allows the protrusion of the radicle, and (3) whether abscisic acid (ABA) is involved in this altered metabolic processes. Results showed that S. deppei leachate on tomato seed germination mainly caused: (1) delay in starch degradation as well as in sucrose hydrolysis; (2) lower activity of sucrose phosphate synthase, cell wall invertase, and alpha-amylase; being sucrose phosphate synthase (SPS) gene expression down-regulated, and the last two up regulated; (3) also, lower activity of endo beta-mannanase, beta-1,3 glucanase, alpha-galactosidase, and exo-polygalacturonase with altered gene expression; and (4) higher content of ABA during all times of germination. The phytotoxic effect of S. deppei aqueous leachate is because of the sum of many metabolic processes affected during tomato seed germination that finally is evidenced by a strong inhibition of radicle growth.
NASA Technical Reports Server (NTRS)
Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.
1997-01-01
A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.
Ultrastructural response of rat lung to 90 days' exposure to oxygen at 450 mm Hg
NASA Technical Reports Server (NTRS)
Harrison, G. A.
1974-01-01
Young Sprague-Dawley rats were exposed to 100% oxygen at 450 mm Hg in constant environment capsules for 90 days. Lung tissue examined by electron microscopy revealed a number of changes, many similar to those observed after exposure to oxygen at 760 mm Hg for shorter periods of time. Alterations in vesicle size and number and in mitochondrial matrix and cristae appear in both the endothelial and epithelial cells. Blebbing and rarefication of cytoplasm occur in both cell layers of the alveolo-capillary wall. Also seen are fluid in the basement membrane, platelets in the capillaries, and alveolar fluid and debris. All of these alterations occur at 1 atm exposure. However, after exposure to 450 mm Hg the changes are not as widespread nor as destructive as they are at the higher pressure.
Characterization of the Sclerotinia sclerotiorum cell wall proteome.
Liu, Longzhou; Free, Stephen J
2016-08-01
We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. © 2015 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd.
Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne
2014-08-01
In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Wallace-Salinas, Valeria; Brink, Daniel P; Ahrén, Dag; Gorwa-Grauslund, Marie F
2015-07-09
Laboratory evolution is an important tool for developing robust yeast strains for bioethanol production since the biological basis behind combined tolerance requires complex alterations whose proper regulation is difficult to achieve by rational metabolic engineering. Previously, we reported on the evolved industrial Saccharomyces cerevisiae strain ISO12 that had acquired improved tolerance to grow and ferment in the presence of lignocellulose-derived inhibitors at high temperature (39 °C). In the current study, we used comparative genomics to uncover the extent of the genomic alterations that occurred during the evolution process and investigated possible associations between the mutations and the phenotypic traits in ISO12. Through whole-genome sequencing and variant calling we identified a high number of strain-unique SNPs and INDELs in both ISO12 and the parental strain Ethanol Red. The variants were predicted to have 760 non-synonymous effects in both strains combined and were significantly enriched in Gene Ontology terms related to cell periphery, membranes and cell wall. Eleven genes, including MTL1, FLO9/FLO11, and CYC3 were found to be under positive selection in ISO12. Additionally, the FLO genes exhibited changes in copy number, and the alterations to this gene family were correlated with experimental results of multicellularity and invasive growth in the adapted strain. An independent lipidomic analysis revealed further differences between the strains in the content of nine lipid species. Finally, ISO12 displayed improved viability in undiluted spruce hydrolysate that was unrelated to reduction of inhibitors and changes in cell wall integrity, as shown by HPLC and lyticase assays. Together, the results of the sequence comparison and the physiological characterisations indicate that cell-periphery proteins (e.g. extracellular sensors such as MTL1) and peripheral lipids/membranes are important evolutionary targets in the process of adaptation to the combined stresses. The capacity of ISO12 to develop complex colony formation also revealed multicellularity as a possible evolutionary strategy to improve competitiveness and tolerance to environmental stresses (also reflected by the FLO genes). Although a panel of altered genes with high relevance to the novel phenotype was detected, this study also demonstrates that the observed long-term molecular effects of thermal and inhibitor stress have polygenetic basis.
Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M
2006-10-01
Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape, cell surface, cell wall and bud formation, as well as in the organization of intracellular organelles. Copyright © 2006 Elsevier Ireland Ltd. All rights reserved.
The Role of Auxin in Cell Wall Expansion
2018-01-01
Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition. PMID:29565829
The Role of Auxin in Cell Wall Expansion.
Majda, Mateusz; Robert, Stéphanie
2018-03-22
Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.
Wang, Pan; He, Jie; Sun, Yufei; Reynolds, Matthew; Zhang, Li; Han, Shuangyan; Liang, Shuli; Sui, Haixin; Lin, Ying
2016-01-01
To modify the Pichia pastoris cell surface, two classes of hydrophobins, SC3 from Schizophyllum commune and HFBI from Trichoderma reesei, were separately displayed on the cell wall. There was an observable increase in the hydrophobicity of recombinant strains. Candida antarctica lipase B (CALB) was then co-displayed on the modified cells, generating strains GS115/SC3-61/CALB-51 and GS115/HFBI-61/CALB-51. Interestingly, the hydrolytic and synthetic activities of strain GS115/HFBI-61/CALB-51 increased by 37% and 109%, respectively, but decreased by 26% and 43%, respectively, in strain GS115/SC3-61/CALB-51 compared with the hydrophobin-minus recombinant strain GS115/CALB-GCW51. The amount of glycerol by-product from the transesterification reaction adsorbed on the cell surface was significantly decreased following hydrophobin modification, removing the glycerol barrier and allowing substrates to access the active sites of lipases. Electron micrographs indicated that the cell wall structures of both recombinant strains appeared altered, including changes to the inner glucan layer and outer mannan layer. These results suggest that the display of hydrophobins can change the surface structure and hydrophobic properties of P. pastoris, and affect the catalytic activities of CALB displayed on the surface of P. pastoris cells. PMID:26969039
Phytoplasmal infection derails genetically preprogrammed meristem fate and alters plant architecture
Wei, Wei; Davis, Robert Edward; Nuss, Donald L.; Zhao, Yan
2013-01-01
In the life cycle of higher plants, it is the fate of meristem cells that determines the pattern of growth and development, and therefore plant morphotype and fertility. Floral transition, the turning point from vegetative growth to reproductive development, is achieved via genetically programmed sequential changes in meristem fate from vegetative to inflorescence, and to floral, leading to flower formation and eventual seed production. The transition is rarely reversible once initiated. In this communication, we report that a bacterial infection can derail the genetically programmed fate of meristem cells, thereby drastically altering the growth pattern of the host plant. We identified four characteristic symptoms in tomato plants infected with a cell wall-less bacterium, phytoplasma. The symptoms are a manifestation of the pathogen-induced alterations of growth pattern, whereas each symptom corresponds to a distinct phase in the derailment of shoot apical meristem fate. The phases include premature floral meristem termination, suppressed floral meristem initiation, delayed conversion of vegetative meristem to inflorescence meristem, and repetitive initiation and outgrowth of lateral vegetative meristems. We further found that the pathogen-induced alterations of growth pattern were correlated with transcriptional reprogramming of key meristem switching genes. Our findings open an avenue toward understanding pathological alterations in patterns of plant growth and development, thus aiding identification of molecular targets for disease control and symptom alleviation. The findings also provide insights for understanding stem cell pluripotency and raise a tantalizing possibility for using phytoplasma as a tool to dissect the course of normal plant development and to modify plant morphogenesis by manipulating meristem fate. PMID:24191032
Morphology, Growth, and Size Limit of Bacterial Cells
NASA Astrophysics Data System (ADS)
Jiang, Hongyuan; Sun, Sean X.
2010-07-01
Bacterial cells utilize a living peptidoglycan network (PG) to separate the cell interior from the surroundings. The shape of the cell is controlled by PG synthesis and cytoskeletal proteins that form bundles and filaments underneath the cell wall. The PG layer also resists turgor pressure and protects the cell from osmotic shock. We argue that mechanical influences alter the chemical equilibrium of the reversible PG assembly and determine the cell shape and cell size. Using a mechanochemical approach, we show that the cell shape can be regarded as a steady state of a growing network under the influence of turgor pressure and mechanical stress. Using simple elastic models, we predict the size of common spherical and rodlike bacteria. The influence of cytoskeletal bundles such as crescentin and MreB are discussed within the context of our model.
Nanjo, Yohei; Nakamura, Takuji; Komatsu, Setsuko
2013-11-01
Flooding injury is one of the abiotic constraints on soybean growth. An experimental system established for evaluating flooding injury in soybean seedlings indicated that the degree of injury is dependent on seedling density in floodwater. Dissolved oxygen levels in the floodwater were decreased by the seedlings and correlated with the degree of injury. To understand the molecular mechanism responsible for the injury, proteomic alterations in soybean seedlings that correlated with severity of stress were analyzed using label-free quantitative proteomics. The analysis showed that the abundance of proteins involved in cell wall modification, such as polygalacturonase inhibitor-like and expansin-like B1-like proteins, which may be associated with the defense system, increased dependence on stress at both the protein and mRNA levels in all organs during flooding. The manner of alteration in abundance of these proteins was distinct from those of other responsive proteins. Furthermore, proteins also showing specific changes in abundance in the root tip included protein phosphatase 2A subunit-like proteins, which are possibly involved in flooding-induced root tip cell death. Additionally, decreases in abundance of cell wall synthesis-related proteins, such as cinnamyl-alcohol dehydrogenase and cellulose synthase-interactive protein-like proteins, were identified in hypocotyls of seedlings grown for 3 days after flooding, and these proteins may be associated with suppression of growth after flooding. These flooding injury-associated proteins can be defined as indicator proteins for severity of flooding stress in soybean.
Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.
2015-01-01
Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance
Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.
2015-01-01
ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968
The impact of alterations in lignin deposition on cellulose organization of the plant cell wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiliang; Kim, Jeong Im; Cusumano, Joanne C.
Background: Coordination of synthesis and assembly of the polymeric components of cell walls is essential for plant growth and development. Given the degree of co-mingling and cross-linking among cell wall components, cellulose organization must be dependent on the organization of other polymers such as lignin. Here we seek to identify aspects of that codependency by studying the structural organization of cellulose fibrils in stems from Arabidopsis plants harboring mutations in genes encoding enzymes involved in lignin biosynthesis. Plants containing high levels of G-lignin, S-lignin, H-lignin, aldehyde-rich lignin, and ferulic acid-containing lignin, along with plants with very low lignin content weremore » grown and harvested and longitudinal sections of stem were prepared and dried. Scanning X-ray microdiffraction was carried out using a 5-micron beam that moved across the sections in 5-micron steps and complete diffraction patterns were collected at each raster point. Approximately, 16,000 diffraction patterns were analyzed to determine cellulose fibril orientation and order within the tissues making up the stems. Results: Several mutations-most notably those exhibiting (1) down-regulation of cinnamoyl CoA reductase which leads to cell walls deficient in lignin and (2) defect of cinnamic acid 4-hydroxylase which greatly reduces lignin content-exhibited significant decrease in the proportion of oriented cellulose fibrils in the cell wall. Distinctions between tissues were maintained in all variants and even in plants exhibiting dramatic changes in cellulosic order the trends between tissues (where apparent) were generally maintained. The resilience of cellulose to degradative processes was investigated by carrying out the same analysis on samples stored in water for 30 days prior to data collection. This treatment led to significant loss of cellulosic order in plants rich in aldehyde or H-lignin, less change in wild type, and essentially no change in samples with high levels of G-or S-lignin. Conclusions: These studies demonstrate that changes in lignin biosynthesis lead to significant disruption in the orientation and order of cellulose fibrils in all tissues of the stem. These dramatic phenotypic changes, in mutants with lignin rich in aldehyde or H-units, correlate with the impact the mutations have on the enzymatic degradation of the plant cell wall.« less
Yang, Dongmei; Pan, Shaoan; Ding, Yiting; Tyree, Melvin T
2017-03-01
This paper provides a mini-review of evidence for negative turgor pressure in leaf cells starting with experimental evidence in the late 1950s and ending with biomechanical models published in 2014. In the present study, biomechanical models were used to predict how negative turgor pressure might be manifested in dead tissue, and experiments were conducted to test the predictions. The main findings were as follows: (i) Tissues killed by heating to 60 or 80 °C or by freezing in liquid nitrogen all became equally leaky to cell sap solutes and all seemed to pass freely through the cell walls. (ii) Once cell sap solutes could freely pass the cell walls, the shape of pressure-volume curves was dramatically altered between living and dead cells. (iii) Pressure-volume curves of dead tissue seem to measure negative turgor defined as negative when inside minus outside pressure is negative. (iv) Robinia pseudoacacia leaves with small palisade cells had more negative turgor than Metasequoia glyptostroboides with large cells. (v) The absolute difference in negative turgor between R. pseudoacacia and M. glyptostroboides approached as much as 1.0 MPa in some cases. The differences in the manifestation of negative turgor in living versus dead tissue are discussed. © 2016 John Wiley & Sons Ltd.
ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight
NASA Astrophysics Data System (ADS)
Zupanska, Agata K.; Schultz, Eric R.; Yao, JiQiang; Sng, Natasha J.; Zhou, Mingqi; Callaham, Jordan B.; Ferl, Robert J.; Paul, Anna-Lisa
2017-11-01
Scientific access to spaceflight and especially the International Space Station has revealed that physiological adaptation to spaceflight is accompanied or enabled by changes in gene expression that significantly alter the transcriptome of cells in spaceflight. A wide range of experiments have shown that plant physiological adaptation to spaceflight involves gene expression changes that alter cell wall and other metabolisms. However, while transcriptome profiling aptly illuminates changes in gene expression that accompany spaceflight adaptation, mutation analysis is required to illuminate key elements required for that adaptation. Here we report how transcriptome profiling was used to gain insight into the spaceflight adaptation role of Altered response to gravity 1 (Arg1), a gene known to affect gravity responses in plants on Earth. The study compared expression profiles of cultured lines of Arabidopsis thaliana derived from wild-type (WT) cultivar Col-0 to profiles from a knock-out line deficient in the gene encoding ARG1 (ARG1 KO), both on the ground and in space. The cell lines were launched on SpaceX CRS-2 as part of the Cellular Expression Logic (CEL) experiment of the BRIC-17 spaceflight mission. The cultured cell lines were grown within 60 mm Petri plates in Petri Dish Fixation Units (PDFUs) that were housed within the Biological Research In Canisters (BRIC) hardware. Spaceflight samples were fixed on orbit. Differentially expressed genes were identified between the two environments (spaceflight and comparable ground controls) and the two genotypes (WT and ARG1 KO). Each genotype engaged unique genes during physiological adaptation to the spaceflight environment, with little overlap. Most of the genes altered in expression in spaceflight in WT cells were found to be Arg1-dependent, suggesting a major role for that gene in the physiological adaptation of undifferentiated cells to spaceflight.
Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance.
Ene, Iuliana V; Walker, Louise A; Schiavone, Marion; Lee, Keunsook K; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A R; Munro, Carol A; Brown, Alistair J P
2015-07-28
The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock. Copyright © 2015 Ene et al.
De, Arpan; Liao, Sumei; Bitoun, Jacob P; Roth, Randy; Beatty, Wandy L; Wu, Hui; Wen, Zezhang T
2017-09-01
Streptococcus mutans is known to possess rhamnose-glucose polysaccharide (RGP), a major cell wall antigen. S. mutans strains deficient in rgpG , encoding the first enzyme of the RGP biosynthesis pathway, were constructed by allelic exchange. The rgpG deficiency had no effect on growth rate but caused major defects in cell division and altered cell morphology. Unlike the coccoid wild type, the rgpG mutant existed primarily in chains of swollen, "squarish" dividing cells. Deficiency of rgpG also causes significant reduction in biofilm formation ( P < 0.01). Double and triple mutants with deficiency in brpA and/or psr , genes coding for the LytR-CpsA-Psr family proteins BrpA and Psr, which were previously shown to play important roles in cell envelope biogenesis, were constructed using the rgpG mutant. There were no major differences in growth rates between the wild-type strain and the rgpG brpA and rgpG psr double mutants, but the growth rate of the rgpG brpA psr triple mutant was reduced drastically ( P < 0.001). Under transmission electron microscopy, both double mutants resembled the rgpG mutant, while the triple mutant existed as giant cells with multiple asymmetric septa. When analyzed by immunoblotting, the rgpG mutant displayed major reductions in cell wall antigens compared to the wild type, while little or no signal was detected with the double and triple mutants and the brpA and psr single mutants. These results suggest that RgpG in S. mutans plays a critical role in cell division and biofilm formation and that BrpA and Psr may be responsible for attachment of cell wall antigens to the cell envelope. IMPORTANCE Streptococcus mutans , a major etiological agent of human dental caries, produces rhamnose-glucose polysaccharide (RGP) as the major cell wall antigen. This study provides direct evidence that deficiency of RgpG, the first enzyme of the RGP biosynthesis pathway, caused major defects in cell division and morphology and reduced biofilm formation by S. mutans , indicative of a significant role of RGP in cell division and biofilm formation in S. mutans These results are novel not only in S. mutans , but also other streptococci that produce RGP. This study also shows that the LytR-CpsA-Psr family proteins BrpA and Psr in S. mutans are involved in attachment of RGP and probably other cell wall glycopolymers to the peptidoglycan. In addition, the results also suggest that BrpA and Psr may play a direct role in cell division and biofilm formation in S. mutans This study reveals new potential targets to develop anticaries therapeutics. Copyright © 2017 American Society for Microbiology.
Auxin increases the hydraulic conductivity of auxin-sensitive hypocotyl tissue.
Boyer, J S; Wu, G
1978-01-01
The ability of water to enter the cells of growing hypocotyl tissue was determined in etiolated soybean (Glycine max (L.) Merr.) seedlings. Water uptake was restricted to that for cell enlargement, and the seedlings were kept intact insofar as possible. Tissue water potentials (ψ w) were measured at thermodynamic equilibrium with an isopiestic thermocouple psychrometer. ψ wwas below the water potential of the environment by as much as 3.1 bars when the tissue was enlarging rapidly. However, ψ w was similar to the water potential of the environment when cell enlargement was not occurring. The low ψ w in enlarging tissue indicates that there was a low conductivity for water entering the cells.The ability of water to enter the enlarging cells was defined as the apparent hydraulic conductivity of the tissue (L'p). Despite the low L'p of growing cells, L'p decreased further as cell enlargement decreased when intact hypocotyl tissue was deprived of endogenous auxin (indole-3-acetic acid) by removal of the hypocotyl hook. Cell enlargement resumed and L'p increased when auxin was resupplied exogenously. The auxin-induced increase in L'p was correlated with the magnitude of the growth enhancement caused by auxin, and it was observed during the earliest phase of the growth response to auxin. The increase in L'p appeared to be caused by an increase in the hydraulic conductivity of the cell protoplasm, since other factors contributing to L'p remained constant. The rapidity of the response is consistent with a cellular site of action at the plasmalemma, although other sites are not precluded.Because the experiments involved only short times, auxin-induced changes in cell enlargement could not be attributed to changes in cell osmotic potentials. Neither could they be attributed to changes in turgor, which increased when the rate of enlargement decreased. Rather, auxin appeared to act by altering the extensibility of the cell walls and by simultaneously altering the ability of water to enter the growing cells under a given water potential gradient. The hydraulic conductivity and extensibility of the cell walls appeared to contribute about equally to the control of the growth rate of the hypocotyls.
Gravity as a biochemical determinant
NASA Technical Reports Server (NTRS)
Siegel, S. M.
1979-01-01
The existence of obvious morphological and physiological changes in living systems exposed to altered gravity immediately informs us that prior changes have taken place in the chemistry of exposed cells, tissues and organs. These changes include transients that return more or less promptly to the norm when the system is restored to the terrestrial g-field. For example, altered serum hormone and electrolyte levels in man, which appear to reflect successful adaptation to the conditions of orbital weightlessness, disappear shortly after return to Earth. Other changes--in mineral and protein constituents of the skeletal system in man, and cell wall composition in plants--are more persistent or even permanent. Hypogravitational departures from the norm include not only "weightlessness" as achieved in orbit, but also experimental modes of compensation, on the clinostat or by flotation. These techniques are useful in the study of hypogravity but cannot replace fully the weightless environment. Plant ethylene and peroxidase both increase under orbital, clinostat and/or flotation conditions whereas 3-phosphoglyceraldehyde-dehydrogenase increases under orbital but not clinostat conditions; cytochrome reductase and malic dehydrogenase levels are affected by the clinostat, but not by actual weightless conditions. How do the altered organismal biochemistries induced by the centrifuge and the clinostat relate to one another? Does gravity operate on living systems as a continuous variable from 0 to superterrestrial values, or do deviations from g(earth) generate non-uniform, discontinuous stress responses, irrespective of sign? In plants, measurements of wall lignin content and peroxidase activity yield opposite answers. Given the limited data so far available we will consider the meaning of these contradictions.
Primary events regulating stem growth at low water potentials.
Nonami, H; Boyer, J S
1990-08-01
Cell enlargement is inhibited by inadequate water. As a first step toward understanding the mechanism, all the physical parameters affecting enlargement were monitored to identify those that changed first, particularly in coincidence with the inhibition. The osmotic potential, turgor, yield threshold turgor, growth-induced water potential, wall extensibility, and conductance to water were measured in the elongating region, and the water potential was measured in the xylem of stems of dark-grown soybean (Glycine max [L.] Merr.) seedlings. A stepdown in water potential was achieved around the roots by transplanting the seedlings to vermiculite of low water content, and each of the parameters was measured simultaneously in the same plants while intact or within a few minutes of being intact using a newly developed guillotine psychrometer. The gradient of decreasing water potential from the xylem to the enlarging cells (growth-induced water potential) was the first of the parameters to decrease to a growth-limiting level. The kinetics were the same as for the inhibition of growth. The decreased gradient was caused mostly by a decreased water potential of the xylem. This was followed after 5 to 10 hours by a similar decrease in cell wall extensibility and tissue conductance for water. Later, the growth-induced water potential recovered as a result of osmotic adjustment and a rise in the water potential of the xylem. Still later, moderate growth resumed at a rate apparently determined by the low wall extensibility and tissue conductance for water. The turgor did not change significantly during the experiment. These results indicate that the primary event during the growth inhibition was the change in the growth-induced water potential. Because the growth limitation subsequently shifted to the low wall extensibility and tissue conductance for water, the initial change in potential may have set in motion subsequent metabolic changes that altered the characteristics of the wall and cell membranes.
Primary Events Regulating Stem Growth at Low Water Potentials 1
Nonami, Hiroshi; Boyer, John S.
1990-01-01
Cell enlargement is inhibited by inadequate water. As a first step toward understanding the mechanism, all the physical parameters affecting enlargement were monitored to identify those that changed first, particularly in coincidence with the inhibition. The osmotic potential, turgor, yield threshold turgor, growth-induced water potential, wall extensibility, and conductance to water were measured in the elongating region, and the water potential was measured in the xylem of stems of dark-grown soybean (Glycine max [L.] Merr.) seedlings. A stepdown in water potential was achieved around the roots by transplanting the seedlings to vermiculite of low water content, and each of the parameters was measured simultaneously in the same plants while intact or within a few minutes of being intact using a newly developed guillotine psychrometer. The gradient of decreasing water potential from the xylem to the enlarging cells (growth-induced water potential) was the first of the parameters to decrease to a growth-limiting level. The kinetics were the same as for the inhibition of growth. The decreased gradient was caused mostly by a decreased water potential of the xylem. This was followed after 5 to 10 hours by a similar decrease in cell wall extensibility and tissue conductance for water. Later, the growth-induced water potential recovered as a result of osmotic adjustment and a rise in the water potential of the xylem. Still later, moderate growth resumed at a rate apparently determined by the low wall extensibility and tissue conductance for water. The turgor did not change significantly during the experiment. These results indicate that the primary event during the growth inhibition was the change in the growth-induced water potential. Because the growth limitation subsequently shifted to the low wall extensibility and tissue conductance for water, the initial change in potential may have set in motion subsequent metabolic changes that altered the characteristics of the wall and cell membranes. PMID:16667663
Rheological alteration of erythrocytes exposed to carbon nanotubes.
Heo, Yujin; Li, Cheng-Ai; Kim, Duckjong; Shin, Sehyun
2017-01-01
Single-walled carbon nanotubes (SWNTs) have been increasingly used in a variety of biomedical applications, such as in vivo delivery of drugs and tumor imaging. Potential exposure of SWNTs to human red blood cells (RBCs) may cause serious toxicity including alteration of mechanical properties of cells. The present study investigated the cellular response to exposure of SWNTs with measuring rheological characteristics of RBCs, including hemolysis, deformability, aggregation, and morphological changes. RBCs were exposed to two different dispersion-state samples (i.e. individual SWNTs and bundled SWNTs) in chitosan hydroxyphenyl acetamide (CHPA) solutions. The concentrations of SWNTs were carefully chosen to avoid any hemorheological alterations due to hemolysis. Rheological characteristics were measured using microfluidic-laser diffractometry and aggregometry. Our results show that the bundled SWNTs had higher hemolytic activity than did the individual SWNTs. RBC aggregation apparently decreased as the concentration of SWNTs or incubation time increased. Additionally, bundled SWNTs caused significant alterations in the shape and fusion of RBCs. In conclusion, bundled SWNTs were found to be more toxic than individual SWNTs. These results provide important insights into the interactions between RBCs and SWNTs and will facilitate assessment of the risk of nanomaterial toxicity of blood.
Orfila, Caroline; Seymour, Graham B.; Willats, William G.T.; Huxham, I. Max; Jarvis, Michael C.; Dover, Colin J.; Thompson, Andrew J.; Knox, J. Paul
2001-01-01
Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383–390). Whereas the genetic basis of the Cnr mutation is being identified by molecular analyses, here we report the identification of cell biological factors underlying the Cnr texture phenotype. In comparison with wild type, ripe-stage Cnr fruits have stronger, non-swollen cell walls (CW) throughout the pericarp and extensive intercellular space in the inner pericarp. Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion. We also demonstrate that the deposition of (1→5)-α-l-arabinan is disrupted in Cnr pericarp CW and that this disruption occurs prior to fruit ripening. The relationship between the disruption of (1→5)-α-l-arabinan deposition in pericarp CW and the Cnr phenotype is discussed. PMID:11351084
Tan, Feng; Zhang, Kangling; Mujahid, Hana; Verma, Desh Pal S; Peng, Zhaohua
2011-02-04
The cell wall is a critical extracellular structure that provides protection and structural support in plant cells. To study the biological function of the cell wall and the regulation of cell wall resynthesis, we examined cellular responses to enzymatic removal of the cell wall in rice (Oryza sativa) suspension cells using proteomic approaches. We find that removal of cell wall stimulates cell wall synthesis from multiple sites in protoplasts instead of from a single site as in cytokinesis. Nucleus DAPI stain and MNase digestion further show that removal of the cell wall is concomitant with substantial chromatin reorganization. Histone post-translational modification studies using both Western blots and isotope labeling assisted quantitative mass spectrometry analyses reveal that substantial histone modification changes, particularly H3K18(AC) and H3K23(AC), are associated with the removal and regeneration of the cell wall. Label-free quantitative proteome analyses further reveal that chromatin associated proteins undergo dramatic changes upon removal of the cell wall, along with cytoskeleton, cell wall metabolism, and stress-response proteins. This study demonstrates that cell wall removal is associated with substantial chromatin change and may lead to stimulation of cell wall synthesis using a novel mechanism.
2013-01-01
Background The compound oenothein B (OenB), which is isolated from the leaves of Eugenia uniflora, a Brazilian Cerrado plant, interferes with Paracoccidioides yeast cell morphology and inhibits 1,3-β-D-glucan synthase (PbFKS1) transcript accumulation, which is involved in cell wall synthesis. In this work we examined the gene expression changes in Paracoccidioides yeast cells following OenB treatment in order to investigate the adaptive cellular responses to drug stress. Results We constructed differential gene expression libraries using Representational Difference Analysis (RDA) of Paracoccidioides yeast cells treated with OenB for 90 and 180 min. Treatment for 90 min resulted in the identification of 463 up-regulated expressed sequences tags (ESTs) and 104 down-regulated ESTs. For the 180 min treatment 301 up-regulated ESTs and 143 down-regulated were identified. Genes involved in the cell wall biosynthesis, such as GLN1, KRE6 and FKS1, were found to be regulated by OenB. Infection experiments in macrophages corroborated the in vitro results. Fluorescence microscopy showed increased levels of chitin in cells treated with OenB. The carbohydrate polymer content of the cell wall of the fungus was also evaluated, and the results corroborated with the transcriptional data. Several other genes, such as those involved in a variety of important cellular processes (i.e., membrane maintenance, stress and virulence) were found to be up-regulated in response to OenB treatment. Conclusions The exposure of Paracoccidioides to OenB resulted in a complex altered gene expression profile. Some of the changes may represent specific adaptive responses to this compound in this important pathogenic fungus. PMID:24119145
2010-01-01
Background Corynebacterium diphtheriae, the causative agent of diphtheria, is well-investigated in respect to toxin production, while little is known about C. diphtheriae factors crucial for colonization of the host. In this study, we investigated the function of surface-associated protein DIP1281, previously annotated as hypothetical invasion-associated protein. Results Microscopic inspection of DIP1281 mutant strains revealed an increased size of the single cells in combination with an altered less club-like shape and formation of chains of cells rather than the typical V-like division forms or palisades of growing C. diphtheriae cells. Cell viability was not impaired. Immuno-fluorescence microscopy, SDS-PAGE and 2-D PAGE of surface proteins revealed clear differences of wild-type and mutant protein patterns, which were verified by atomic force microscopy. DIP1281 mutant cells were not only altered in shape and surface structure but completely lack the ability to adhere to host cells and consequently invade these. Conclusions Our data indicate that DIP1281 is predominantly involved in the organization of the outer surface protein layer rather than in the separation of the peptidoglycan cell wall of dividing bacteria. The adhesion- and invasion-negative phenotype of corresponding mutant strains is an effect of rearrangements of the outer surface. PMID:20051108
Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.
Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying
2018-02-05
The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.
Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana.
Ruel, Katia; Berrio-Sierra, Jimmy; Derikvand, Mohammad Mir; Pollet, Brigitte; Thévenin, Johanne; Lapierre, Catherine; Jouanin, Lise; Joseleau, Jean-Paul
2009-01-01
A cinnamoyl-CoA reductase 1 knockout mutant in Arabidopsis thaliana was investigated for the consequences of lignin synthesis perturbation on the assembly of the cell walls. The mutant displayed a dwarf phenotype and a strong collapse of its xylem vessels corresponding to lower lignin content and a loss of lignin units of the noncondensed type. Transmission electron microscopy revealed that the transformation considerably impaired the capacity of interfascicular fibers and vascular bundles to complete the assembly of cellulose microfibrils in the S(2) layer, the S(1) layer remaining unaltered. Such disorder in cellulose was correlated with X-ray diffraction showing altered organization. Semi-quantitative immunolabeling of lignins showed that the patterns of distribution were differentially affected in interfascicular fibers and vascular bundles, pointing to the importance of noncondensed lignin structures for the assembly of a coherent secondary wall. The use of laser capture microdissection combined with the microanalysis of lignins and polysaccharides allowed these polymers to be characterized into specific cell types. Wild-type A. thaliana displayed a two-fold higher syringyl to guaiacyl ratio in interfascicular fibers compared with vascular bundles, whereas this difference was less marked in the cinnamoyl-CoA reductase 1 knockout mutant.
Quantitative parameters of seminiferous epithelium in secretory and excretory oligoazoospermia.
Francavilla, S; Martini, M; Properzi, G; Cordeschi, G
1990-01-01
Testicular biopsy specimens from infertile men (sperm count, less than 10(6)/ml) were evaluated on 1-micron thick sections, and counts of stem cells and differentiated spermatogonia, primary spermatocytes, early and late spermatids, and Sertoli cells were compared to counts in six fertile men. Biopsy specimens were also compared for the appearance of seminiferous tubule wall, blood vessels, and interstitium. Infertile men were grouped according to the following diagnoses: hypospermatogenesis (n = 5), spermatocyte arrest of spermatogenesis (n = 5), and obstruction of the genital tract (n = 7). A low productivity of spermatogenesis in cases of hypospermatogenesis appeared to be due to an exaggerated degeneration of primary spermatocytes and to a yield of abnormal spermatids. A block of meiosis in spermatocyte arrest was associated with a degeneration of primary spermatocytes and with a reduced number of staminal spermatogonia. Abnormal spermiogenesis was observed in cases of obstruction of the genital tract and was associated with an increase in stem cell spermatogonia. A thickening of seminiferous tubule and blood vessel walls could be responsible for the limited functional capacity of Sertoli cells, causing altered spermiogenesis in cases of excretory azoospermia. A severe primitive failure of Sertoli cells in secretory oligoazoospermia could account for a deranged maturation and degeneration of premeiotic and postmeiotic germ cells.
Plant cell wall proteomics: the leadership of Arabidopsis thaliana
Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth
2013-01-01
Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247
Dunker, Susanne; Wilhelm, Christian
2018-01-01
Coccoid green algae can be divided in two groups based on their cell wall structure. One group has a highly chemical resistant cell wall (HR-cell wall) containing algaenan. The other group is more susceptible to chemicals (LR-cell wall - Low resistant cell wall). Algaenan is considered as important molecule to explain cell wall resistance. Interestingly, cell wall types (LR- and HR-cell wall) are not in accordance with the taxonomic classes Chlorophyceae and Trebouxiophyceae, which makes it even more interesting to consider the ecological function. It was already shown that algaenan helps to protect against virus, bacterial and fungal attack, but in this study we show for the first time that green algae with different cell wall properties show different sensitivity against interference competition with the cyanobacterium Microcystis aeruginosa . Based on previous work with co-cultures of M. aeruginosa and two green algae ( Acutodesmus obliquus and Oocystis marssonii ) differing in their cell wall structure, it was shown that M. aeruginosa could impair only the growth of the green algae if they belong to the LR-cell wall type. In this study it was shown that the sensitivity to biotic interference mechanism shows a more general pattern within coccoid green algae species depending on cell wall structure.
Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells.
Yao, Meng-Zhu; Hu, Yu-Lan; Sheng, Xiao-Xia; Lin, Jun; Ling, Daishun; Gao, Jian-Qing
2016-04-25
Carbon nanotubes (CNTs) have poor colloid stability in biological media and exert cytotoxic effects on mesenchymal stem cells (MSCs). Modification with polymeric surfactant is a widely used strategy to enhance water dispersibility of CNTs. This study investigated the toxic effects of various Pluronic F-68 (PF68)-coated multi-walled CNTs (MWCNTs) on rat bone marrow-derived MSCs.PF68-coated MWCNTs showed favorable biocompatibility to MSCs that the cell viability, apoptosis, and reactive oxygen species (ROS) were not altered after 24 h of co-incubation. Nevertheless, significant apoptosis induction and massive ROS release were found following extended exposure (48 and 72 h), and the toxic impact was dependent on the initial surface properties of the encapsulated MWCNTs. All the types of PF68-coated MWCNTs did not affect the cell-surface markers and in vivo biodistribution of MSCs. Our results suggest that proper polymer coating can reduce the acute toxicity of MWCNTs to MSCs but without altering their biological fate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Ao, Jie; Chinnici, Jennifer L.; Maddi, Abhiram
2015-01-01
A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix. PMID:26048011
Levin, David E.
2011-01-01
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182
Zhou, Junhui; Li, Xiaojuan
2015-01-01
Histone deacetylase (HDAC) is a crucial component in the regulation of gene expression in various cellular processes in animal and plant cells. HDAC has been reported to play a role in embryogenesis. However, the effect of HDAC on androgamete development remains unclear, especially in gymnosperms. In this study, we used the HDAC inhibitors trichostatin A (TSA) and sodium butyrate (NaB) to examine the role of HDAC in Picea wilsonii pollen germination and pollen tube elongation. Measurements of the tip-focused Ca2+ gradient revealed that TSA and NaB influenced this gradient. Immunofluorescence showed that actin filaments were disrupted into disorganized fragments. As a result, the vesicle trafficking was disturbed, as determined by FM4-64 labeling. Moreover, the distribution of pectins and callose in cell walls was significantly altered in response to TSA and NaB. Our results suggest that HDAC affects pollen germination and polarized pollen tube growth in Picea wilsonii by affecting the intracellular Ca2+ concentration gradient, actin organization patterns, vesicle trafficking, as well as the deposition and configuration of cell wall components. PMID:26710276
Capodicasa, Cristina; Vairo, Donatella; Zabotina, Olga; McCartney, Lesley; Caprari, Claudio; Mattei, Benedetta; Manfredini, Cinzia; Aracri, Benedetto; Benen, Jacques; Knox, J. Paul; De Lorenzo, Giulia; Cervone, Felice
2004-01-01
Pectins are a highly complex family of cell wall polysaccharides comprised of homogalacturonan (HGA), rhamnogalacturonan I and rhamnogalacturonan II. We have specifically modified HGA in both tobacco (Nicotiana tabacum) and Arabidopsis by expressing the endopolygalacturonase II of Aspergillus niger (AnPGII). Cell walls of transgenic tobacco plants showed a 25% reduction in GalUA content as compared with the wild type and a reduced content of deesterified HGA as detected by antibody labeling. Neutral sugars remained unchanged apart from a slight increase of Rha, Ara, and Gal. Both transgenic tobacco and Arabidopsis were dwarfed, indicating that unesterified HGA is a critical factor for plant cell growth. The dwarf phenotypes were associated with AnPGII activity as demonstrated by the observation that the mutant phenotype of tobacco was completely reverted by crossing the dwarfed plants with plants expressing PGIP2, a strong inhibitor of AnPGII. The mutant phenotype in Arabidopsis did not appear when transformation was performed with a gene encoding AnPGII inactivated by site directed mutagenesis. PMID:15247378
Basile, Adriana; Sorbo, Sergio; Conte, Barbara; Cardi, Manuela; Esposito, Sergio
2013-11-01
Changes in ultrastructure and induction of Heat Shock Proteins 70 have been studied in Conocephalum conicum (Marchantiales) collected in different urban and country sites in Italy. These results were compared to the effects in vitro of exposition to different heavy metals for several days. At urban sites, cellular ultrastructure was modified, and heavy metals could be observed accumulating in cell walls. Simultaneously, a strong increment in Hsp70 was detected, compared with results observed on control specimens. When C. conicum was exposed to heavy metals in vitro, comparable effects as in polluted sites were observed: Cd and Pb accumulated mostly within parenchyma and, within cells, were absorbed to cell walls or concentrated in vacuoles. Moreover, severe alterations were observed in organelles. Concomitantly, a progressive accumulation of Hsp70 was detected following heavy metals exposition. These effects are discussed in order to describe the dose and time-dependent response to heavy metal stress in C. conicum. Copyright © 2013 Elsevier Ltd. All rights reserved.
Kulikov, Sergey N; Lisovskaya, Svetlana A; Zelenikhin, Pavel V; Bezrodnykh, Evgeniya A; Shakirova, Diana R; Blagodatskikh, Inesa V; Tikhonov, Vladimir E
2014-03-03
A series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well. For the first time it was shown that even sub-MIC oligochitosan concentration suppressed the formation of C. albicans hyphal structures, cause severe cell wall alterations, and altered internal cell structure. These results indicate that oligochitosan should be considered as a possible alternative/additive to known anti-yeast agents in pharmaceutical compositions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Liu, Z Lewis; Wang, Xu; Weber, Scott A
2018-06-20
Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We examined gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challenges of furfural and HMF through comparative quantitative gene expression analysis using pathway-based qRT-PCR array assays. All tested genes from Y-50049, except for MLP2, demonstrated more resistant and significantly increased gene expression than that from a laboratory strain BY4741. While all five sensor encoding genes WSC1, WSC2, WSC3, MID2 and MTL1 from both strains were activated in response to the furfural-HMF treatment, WSC3 from Y-50049 demonstrated the most increased expression over time compared with any other sensor genes. These results suggested the industrial yeast poses more robust cell wall integrity pathway, and gene WSC3 could have the special capability for signal transmission against furfural and HMF. Among five single nucleotide variations discovered in WSC3 from Y-50049, three were found to be non-synonymous mutations resulting in amino acid alterations of Ser 158 → Tyr 158 , Val 186 → Ile 186 , and Glu 430 → Asp 430 . Our results suggest the industrial yeast as a more desirable delivery vehicle for the next-generation biocatalyst development. Published by Elsevier B.V.
Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; ...
2017-01-01
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat ofmore » uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix.« less
Saez-Aguayo, Susana; Rautengarten, Carsten; Temple, Henry; Sanhueza, Dayan; Ejsmentewicz, Troy; Sandoval-Ibañez, Omar; Parra-Rojas, Juan Pablo; Ebert, Berit; Reyes, Francisca C.
2017-01-01
UDP-glucuronic acid (UDP-GlcA) is the precursor of many plant cell wall polysaccharides and is required for production of seed mucilage. Following synthesis in the cytosol, it is transported into the lumen of the Golgi apparatus, where it is converted to UDP-galacturonic acid (UDP-GalA), UDP-arabinose, and UDP-xylose. To identify the Golgi-localized UDP-GlcA transporter, we screened Arabidopsis thaliana mutants in genes coding for putative nucleotide sugar transporters for altered seed mucilage, a structure rich in the GalA-containing polysaccharide rhamnogalacturonan I. As a result, we identified UUAT1, which encodes a Golgi-localized protein that transports UDP-GlcA and UDP-GalA in vitro. The seed coat of uuat1 mutants had less GalA, rhamnose, and xylose in the soluble mucilage, and the distal cell walls had decreased arabinan content. Cell walls of other organs and cells had lower arabinose levels in roots and pollen tubes, but no differences were observed in GalA or xylose contents. Furthermore, the GlcA content of glucuronoxylan in the stem was not affected in the mutant. Interestingly, the degree of homogalacturonan methylation increased in uuat1. These results suggest that this UDP-GlcA transporter plays a key role defining the seed mucilage sugar composition and that its absence produces pleiotropic effects in this component of the plant extracellular matrix. PMID:28062750
Fang, Kefeng; Gao, Sai; Zhang, Weiwei; Xing, Yu; Cao, Qingqin; Qin, Ling
2016-01-01
A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II) through borate diester linkages. Phenylboronic acid (PBA) can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica) pollen tube growth and the underlying regulatory mechanism. We observed that PBA caused an inhibition of pollen germination, tube growth and led to pollen tube morphological abnormalities. Fluorescent labeling, coupled with a scanning ion-selective electrode technique, revealed that PBA induced an increase in extracellular Ca2+ influx, thereby elevating the cytosolic Ca2+ concentration [Ca2+]c and disrupting the [Ca2+]c gradient, which is critical for pollen tube growth. Moreover the organization of actin filaments was severely perturbed by the PBA treatment. Immunolocalization studies and fluorescent labeling, together with Fourier-transform infrared analysis (FTIR) suggested that PBA caused an increase in the abundance of callose, de-esterified pectins and arabinogalactan proteins (AGPs) at the tip. However, it had no effect on the deposition of the wall polymers cellulose. These effects are similar to those of boron deficiency in roots and other organs, indicating that PBA can induce boron deficiency symptoms. The results provide new insights into the roles of boron in pollen tube development, which likely include regulating [Ca2+]c and the formation of the actin cytoskeleton, in addition to the synthesis and assembly of cell wall components.
Mechanism of gibberellin-dependent stem elongation in peas
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.; Sovonick-Dunford, S. A.
1989-01-01
Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the growth retardation was reversed by exogenous gibberellin. Using the pressure probe and vapor pressure osmometry, we found little effect of uniconozol and gibberellin on cell turgor pressure or osmotic pressure. In contrast, these treatments had major effects on in vivo stress relaxation, measured by turgor relaxation and pressure-block techniques. Uniconozol-treated plants exhibited reduced wall relaxation (both initial rate and total amount). The results show that growth retardation is effected via a reduction in the wall yield coefficient and an increase in the yield threshold. These effects were largely reversed by exogenous gibberellin. When we measured the mechanical characteristics of the wall by stress/strain (Instron) analysis, we found only minor effects of uniconozol and gibberellin on the plastic compliance. This observation indicates that these agents did not alter wall expansion through effects on the mechanical (viscoelastic) properties of the wall. Our results suggest that wall expansion in peas is better viewed as a chemorheological, rather than a viscoelastic, process.
Grienenberger, Etienne; Douglas, Carl J.
2014-01-01
Despite a strict conservation of the vascular tissues in vascular plants (tracheophytes), our understanding of the genetic basis underlying the differentiation of secondary cell wall-containing cells in the xylem of tracheophytes is still far from complete. Using coexpression analysis and phylogenetic conservation across sequenced tracheophyte genomes, we identified a number of Arabidopsis (Arabidopsis thaliana) genes of unknown function whose expression is correlated with secondary cell wall deposition. Among these, the Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 (VUP1) gene encodes a predicted protein of 24 kD with no annotated functional domains but containing domains that are highly conserved in tracheophytes. Here, we show that the VUP1 expression pattern, determined by promoter-β-glucuronidase reporter gene expression, is associated with vascular tissues, while vup1 loss-of-function mutants exhibit collapsed morphology of xylem vessel cells. Constitutive overexpression of VUP1 caused dramatic and pleiotropic developmental defects, including severe dwarfism, dark green leaves, reduced apical dominance, and altered photomorphogenesis, resembling brassinosteroid-deficient mutants. Constitutive overexpression of VUP homologs from multiple tracheophyte species induced similar defects. Whole-genome transcriptome analysis revealed that overexpression of VUP1 represses the expression of many brassinosteroid- and auxin-responsive genes. Additionally, deletion constructs and site-directed mutagenesis were used to identify critical domains and amino acids required for VUP1 function. Altogether, our data suggest a conserved role for VUP1 in regulating secondary wall formation during vascular development by tissue- or cell-specific modulation of hormone signaling pathways. PMID:24567189
Zhou, Lulu; Forman, Henry Jay; Ge, Yi; Lunec, Joseph
2017-08-01
Chemical functionalization broadens carbon nanotube (CNT) applications, conferring new functions, but at the same time potentially altering toxicity. Although considerable experimental data related to CNT toxicity, at the molecular and cellular levels, have been reported, there is very limited information available for the corresponding mechanism involved (e.g. cell apoptosis and genotoxicity). The threshold dose for safe medical application in relation to both pristine and functionalized carbon nanotubes remains ambiguous. In this study, we evaluated the in vitro cytotoxicity of pristine and functionalized (OH, COOH) multi-walled carbon nanotubes (MWCNTs) for cell viability, oxidant detection, apoptosis and DNA mutations, to determine the non-toxic dose and influence of functional group in a human lung-cancer cell line exposed to 1-1000μg/ml MWCNTs for 24, 48 and 72h. The findings suggest that pristine MWCNTs induced more cell death than functionalized MWCNTs while functionalized MWCNTs are more genotoxic compared to their pristine form. The level of both dose and dispersion in the matrix used should be taken into consideration before applying further clinical applications of MWCNTs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huberman, Lori B; Murray, Andrew W
2014-01-01
Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.
Huberman, Lori B.; Murray, Andrew W.
2014-01-01
Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559
Eslick, Enid M; Beilby, Mary J; Moon, Anthony R
2014-04-01
A substantial proportion of the architecture of the plant cell wall remains unknown with a few cell wall models being proposed. Moreover, even less is known about the green algal cell wall. Techniques that allow direct visualization of the cell wall in as near to its native state are of importance in unravelling the spatial arrangement of cell wall structures and hence in the development of cell wall models. Atomic force microscopy (AFM) was used to image the native cell wall of living cells of Ventricaria ventricosa (V. ventricosa) at high resolution under physiological conditions. The cell wall polymers were identified mainly qualitatively via their structural appearance. The cellulose microfibrils (CMFs) were easily recognizable and the imaging results indicate that the V. ventricosa cell wall has a cross-fibrillar structure throughout. We found the native wall to be abundant in matrix polysaccharides existing in different curing states. The soft phase matrix polysaccharides susceptible by the AFM scanning tip existed as a glutinous fibrillar meshwork, possibly incorporating both the pectic- and hemicellulosic-type substances. The hard phase matrix producing clearer images, revealed coiled fibrillar structures associated with CMFs, sometimes being resolved as globular structures by the AFM tip. The coiling fibrillar structures were also seen in the images of isolated cell wall fragments. The mucilaginous component of the wall was discernible from the gelatinous cell wall matrix as it formed microstructural domains over the surface. AFM has been successful in imaging the native cell wall and revealing novel findings such as the 'coiling fibrillar structures' and cell wall components which have previously not been seen, that is, the gelatinous matrix phase.
NASA Astrophysics Data System (ADS)
Maiti, Soumyabrata; Chaudhury, Kaustav; DasGupta, Debabrata; Chakraborty, Suman
2013-01-01
Spatial distributions of particles carried by blood exhibit complex filamentary pattern under the combined effects of geometrical irregularities of the blood vessels and pulsating pumping by the heart. This signifies the existence of so called chaotic advection. In the present article, we argue that the understanding of such pathologically triggered chaotic advection is incomplete without giving due consideration to a major constituent of blood: abundant presence of red blood cells quantified by the hematocrit (HCT) concentration. We show that the hematocrit concentration in blood cells can alter the filamentary structures of the spatial distribution of advected particles in an intriguing manner. Our results reveal that there primarily are two major impacts of HCT concentrations towards dictating the chaotic dynamics of blood flow: changing the zone of influence of chaotic mixing and determining the enhancement of residence time of the advected particles away from the wall. This, in turn, may alter the extent of activation of platelets or other reactive biological entities, bearing immense consequence towards dictating the biophysical mechanisms behind possible life-threatening diseases originating in the circulatory system.
Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity
NASA Technical Reports Server (NTRS)
Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan
2003-01-01
A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.
Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species.
Janz, Dennis; Lautner, Silke; Wildhagen, Henning; Behnke, Katja; Schnitzler, Jörg-Peter; Rennenberg, Heinz; Fromm, Jörg; Polle, Andrea
2012-04-01
• Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Eloy, Nubia B; Voorend, Wannes; Lan, Wu; Saleme, Marina de Lyra Soriano; Cesarino, Igor; Vanholme, Ruben; Smith, Rebecca A; Goeminne, Geert; Pallidis, Andreas; Morreel, Kris; Nicomedes, José; Ralph, John; Boerjan, Wout
2017-02-01
Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production. © 2017 American Society of Plant Biologists. All Rights Reserved.
Anderson, Nickolas A.; Tobimatsu, Yuki; Ciesielski, Peter N.; Ximenes, Eduardo; Ralph, John; Donohoe, Bryon S.; Ladisch, Michael; Chapple, Clint
2015-01-01
Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content. PMID:26265762
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eloy, Nubia B.; Voorend, Wannes; Lan, Wu
Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant producesmore » highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.« less
2017-01-01
Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant produces highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production. PMID:27940492
Øbro, Jens; Sørensen, Iben; Derkx, Patrick; Madsen, Christian T; Drews, Martin; Willer, Martin; Mikkelsen, Jørn D; Willats, William G T
2009-04-01
Pectin methylesterases (PMEs) catalyse the removal of methyl esters from the homogalacturonan (HG) backbone domain of pectin, a ubiquitous polysaccharide in plant cell walls. The degree of methyl esterification (DE) impacts upon the functional properties of HG within cell walls and plants produce numerous PMEs that act upon HG in muro. Many microbial plant pathogens also produce PMEs, the activity of which renders HG more susceptible to cleavage by pectin lyase and polygalacturonase enzymes and hence aids cell wall degradation. We have developed a novel microarray-based approach to investigate the activity of a series of variant enzymes based on the PME from the important pathogen Erwinia chrysanthemi. A library of 99 E. chrysanthemi PME mutants was created in which seven amino acids were altered by various different substitutions. Each mutant PME was incubated with a highly methyl esterified lime pectin substrate and, after digestion the enzyme/substrate mixtures were printed as microarrays. The loss of activity that resulted from certain mutations was detected by probing arrays with a mAb (JIM7) that preferentially binds to HG with a relatively high DE. Active PMEs therefore resulted in diminished JIM7 binding to the lime pectin substrate, whereas inactive PMEs did not. Our findings demonstrate the feasibility of our approach for rapidly testing the effects on PME activity of substituting a wide variety of amino acids at different positions.
Eloy, Nubia B.; Voorend, Wannes; Lan, Wu; ...
2016-12-09
Lignin is a phenolic heteropolymer that is deposited in secondary-thickened cell walls, where it provides mechanical strength. A recent structural characterization of cell walls from monocot species showed that the flavone tricin is part of the native lignin polymer, where it is hypothesized to initiate lignin chains. In this study, we investigated the consequences of altered tricin levels on lignin structure and cell wall recalcitrance by phenolic profiling, nuclear magnetic resonance, and saccharification assays of the naturally silenced maize (Zea mays) C2-Idf (inhibitor diffuse) mutant, defective in the CHALCONE SYNTHASE Colorless2 (C2) gene. We show that the C2-Idf mutant producesmore » highly reduced levels of apigenin- and tricin-related flavonoids, resulting in a strongly reduced incorporation of tricin into the lignin polymer. Moreover, the lignin was enriched in β-β and β-5 units, lending support to the contention that tricin acts to initiate lignin chains and that, in the absence of tricin, more monolignol dimerization reactions occur. In addition, the C2-Idf mutation resulted in strikingly higher Klason lignin levels in the leaves. As a consequence, the leaves of C2-Idf mutants had significantly reduced saccharification efficiencies compared with those of control plants. These findings are instructive for lignin engineering strategies to improve biomass processing and biochemical production.« less
Pandey, Dhananjay K; Chaudhary, Bhupendra
2016-05-13
Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes, indicating for its role upstream in the apical-to-floral meristem signalling cascade.
Co-Inactivation of GlnR and CodY Regulators Impacts Pneumococcal Cell Wall Physiology.
Johnston, Calum; Bootsma, Hester J; Aldridge, Christine; Manuse, Sylvie; Gisch, Nicolas; Schwudke, Dominik; Hermans, Peter W M; Grangeasse, Christophe; Polard, Patrice; Vollmer, Waldemar; Claverys, Jean-Pierre
2015-01-01
CodY, a nutritional regulator highly conserved in low G+C Gram-positive bacteria, is essential in Streptococcus pneumoniae (the pneumococcus). A published codY mutant possessed suppressing mutations inactivating the fatC and amiC genes, respectively belonging to iron (Fat/Fec) and oligopeptide (Ami) ABC permease operons, which are directly repressed by CodY. Here we analyzed two additional published codY mutants to further explore the essentiality of CodY. We show that one, in which the regulator of glutamine/glutamate metabolism glnR had been inactivated by design, had only a suppressor in fecE (a gene in the fat/fec operon), while the other possessed both fecE and amiC mutations. Independent isolation of three different fat/fec suppressors thus establishes that reduction of iron import is crucial for survival without CodY. We refer to these as primary suppressors, while inactivation of ami, which is not essential for survival of codY mutants and acquired after initial fat/fec inactivation, can be regarded as a secondary suppressor. The availability of codY- ami+ cells allowed us to establish that CodY activates competence for genetic transformation indirectly, presumably by repressing ami which is known to antagonize competence. The glnR codY fecE mutant was then found to be only partially viable on solid medium and hypersensitive to peptidoglycan (PG) targeting agents such as the antibiotic cefotaxime and the muramidase lysozyme. While analysis of PG and teichoic acid composition uncovered no alteration in the glnR codY fecE mutant compared to wildtype, electron microscopy revealed altered ultrastructure of the cell wall in the mutant, establishing that co-inactivation of GlnR and CodY regulators impacts pneumococcal cell wall physiology. In light of rising levels of resistance to PG-targeting antibiotics of natural pneumococcal isolates, GlnR and CodY constitute potential alternative therapeutic targets to combat this debilitating pathogen, as co-inactivation of these regulators renders pneumococci sensitive to iron and PG-targeting agents.
Investigating Aspergillus nidulans secretome during colonisation of cork cell walls.
Martins, Isabel; Garcia, Helga; Varela, Adélia; Núñez, Oscar; Planchon, Sébastien; Galceran, Maria Teresa; Renaut, Jenny; Rebelo, Luís P N; Silva Pereira, Cristina
2014-02-26
Cork, the outer bark of Quercus suber, shows a unique compositional structure, a set of remarkable properties, including high recalcitrance. Cork colonisation by Ascomycota remains largely overlooked. Herein, Aspergillus nidulans secretome on cork was analysed (2DE). Proteomic data were further complemented by microscopic (SEM) and spectroscopic (ATR-FTIR) evaluation of the colonised substrate and by targeted analysis of lignin degradation compounds (UPLC-HRMS). Data showed that the fungus formed an intricate network of hyphae around the cork cell walls, which enabled polysaccharides and lignin superficial degradation, but probably not of suberin. The degradation of polysaccharides was suggested by the identification of few polysaccharide degrading enzymes (β-glucosidases and endo-1,5-α-l-arabinosidase). Lignin degradation, which likely evolved throughout a Fenton-like mechanism relying on the activity of alcohol oxidases, was supported by the identification of small aromatic compounds (e.g. cinnamic acid and veratrylaldehyde) and of several putative high molecular weight lignin degradation products. In addition, cork recalcitrance was corroborated by the identification of several protein species which are associated with autolysis. Finally, stringent comparative proteomics revealed that A. nidulans colonisation of cork and wood share a common set of enzymatic mechanisms. However the higher polysaccharide accessibility in cork might explain the increase of β-glucosidase in cork secretome. Cork degradation by fungi remains largely overlook. Herein we aimed at understanding how A. nidulans colonise cork cell walls and how this relates to wood colonisation. To address this, the protein species consistently present in the secretome were analysed, as well as major alterations occurring in the substrate, including lignin degradation compounds being released. The obtained data demonstrate that this fungus has superficially attacked the cork cell walls apparently by using both enzymatic and Fenton-like reactions. Only a few polysaccharide degrading enzymes could be detected in the secretome which was dominated by protein species associated with autolysis. Lignin degradation was corroborated by the identification of some degradation products, but the suberin barrier in the cell wall remained virtually intact. Comparative proteomics revealed that cork and wood colonisation share a common set of enzymatic mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.
QUANTITATIVE STUDY OF ENDOLYSIN SYNTHESIS DURING REPRODUCTION OF LAMBDA PHAGES
Groman, Neal B.; Suzuki, Grace
1963-01-01
Groman, Neal B. (University of Washington, Seattle) and Grace Suzuki. Quantitative study of endolysin synthesis during reproduction of lambda phages. J. Bacteriol. 86:187–194. 1963.—Endolysin is presumed to be a phage-induced enzyme participating in lysis through its destructive action on the host cell wall. A method for assaying endolysin is described, which was utilized in studying endolysin synthesis at 37 and 44 C by induced strains of K-12 (λ), K-12 (λtem), and K-12 (λ112). In all cases, endolysin was detected prior to the appearance of mature, intracellular phage and was detected earlier at 44 C than at 37 C. It was synthesized at a linear rate, as was phage, and both syntheses terminated at the same time. Surprisingly, endolysin also accumulated under conditions in which induced K-12 (λ112) exhibited lysis inhibition. Under these conditions, endolysin concentration per induced cell was 2 to 2.5 times that produced by normally lysing K-12 (λ). Since alterations introduced into the lytic process by temperature, mutation, or both correlate well with the timing and rate of endolysin synthesis, the data tend to support the concept that endolysin determines the kinetics of the process. However, the accumulation of endolysin during lysis inhibition suggests the need for alternative hypotheses. One hypothesis is that although endolysin action is the key to lysis some preliminary steps are required to release the enzyme so that it may contact its substrate in the cell wall. A second hypothesis is that basically the lytic process involves an alteration in the permeability barrier of the cell and that lytic enzymes such as endolysin have evolved as an auxillary but dispensable mechanism to this process. PMID:14058940
Latgé, Jean-Paul; Beauvais, Anne; Chamilos, Georgios
2017-09-08
More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.
Cell Wall Composition and Candidate Biosynthesis Gene Expression During Rice Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fan; Manisseri, Chithra; Fagerström, Alexandra
Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18more » cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.« less
The Impact of Microfibril Orientations on the Biomechanics of Plant Cell Walls and Tissues.
Ptashnyk, Mariya; Seguin, Brian
2016-11-01
The microscopic structure and anisotropy of plant cell walls greatly influence the mechanical properties, morphogenesis, and growth of plant cells and tissues. The microscopic structure and properties of cell walls are determined by the orientation and mechanical properties of the cellulose microfibrils and the mechanical properties of the cell wall matrix. Viewing the shape of a plant cell as a square prism with the axis aligning with the primary direction of expansion and growth, the orientation of the microfibrils within the side walls, i.e. the parts of the cell walls on the sides of the cells, is known. However, not much is known about their orientation at the upper and lower ends of the cell. Here we investigate the impact of the orientation of cellulose microfibrils within the upper and lower parts of the plant cell walls by solving the equations of linear elasticity numerically. Three different scenarios for the orientation of the microfibrils are considered. We also distinguish between the microstructure in the side walls given by microfibrils perpendicular to the main direction of the expansion and the situation where the microfibrils are rotated through the wall thickness. The macroscopic elastic properties of the cell wall are obtained using homogenization theory from the microscopic description of the elastic properties of the cell wall microfibrils and wall matrix. It is found that the orientation of the microfibrils in the upper and lower parts of the cell walls affects the expansion of the cell in the lateral directions and is particularly important in the case of forces acting on plant cell walls and tissues.
Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang
2018-05-30
Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.
Hao, Yuqing; Li, Li; Li, Wei; Zhou, Xuedong; Lu, Junjun
2010-01-01
Bacterial virulence could be altered by the antimicrobial agents of the host. Our aim was to identify the damage and survival of Streptococcus sanguinis induced by lysozymes in vitro and to analyse the potential of oral microorganisms to shirk host defences, which cause infective endocarditis. S. sanguinis ATCC 10556 received lysozyme at concentrations of 12.5, 25, 50 and 100 microg/ml. Cells were examined by electron microscopy. The survival was assessed by colony counting and construction of a growth curve. Challenged by lysozymes, cells mainly exhibited cell wall damage, which seemed to increase with increasing lysozyme concentration and longer incubation period in the presence of ions. Cells with little as well as apparent lesion were observed under the same treatment set, and anomalous stick and huge rotund bodies were occasionally observed. After the removal of the lysozyme, some damaged cells could be reverted to its original form with brain heart infusion (BHI), and their growth curve was similar to the control cells. After further incubation in BHI containing lysozyme, S. sanguinis cell damage stopped progressing, and their growth curve was also similar to the control cells. The results suggested that the S. sanguinis lesions caused by the lysozyme in the oral cavity may be nonhomogeneous and that some damaged cells could self-repair and survive. It also indicated that S. sanguinis with damaged cell walls may survive and be transmitted in the bloodstream.
NASA Astrophysics Data System (ADS)
Wiedenhoeft, Alex C.; Arévalo, Rafael; Ledbetter, Craig; Jakes, Joseph E.
2016-09-01
Nearly 400 million years of evolution and field-testing by the natural world has given humans thousands of wood types, each with unique structure-property relationships to study, exploit, and ideally, to manipulate, but the slow growth of trees makes them a recalcitrant experimental system. Variations in wood features of two genotypes of peach ( Prunus persica L.) trees, wild-type and crinkle-leaf, were examined to elucidate the nature of weak wood in crinkle-leaf trees. Crinkle-leaf is a naturally-occurring mutation in which wood strength is altered in conjunction with an easily observed `crinkling' of the leaves' surface. Trees from three vigor classes (low growth rate, average growth rate, and high growth rate) of each genotype were sampled. No meaningful tendency of dissimilarities among the different vigor classes was found, nor any pattern in features in a genotype-by-vigor analysis. Wild-type trees exhibited longer vessels and fibers, wider rays, and slightly higher specific gravity. Neither cell wall mechanical properties measured with nanoindentation nor cell wall histochemical properties were statistically or observably different between crinkle-leaf and wild-type wood. The crinkle-leaf mutant has the potential to be a useful model system for wood properties investigation and manipulation if it can serve as a field-observable vegetative marker for altered wood properties.
Antibiotic Algae by Chemical Surface Engineering.
Kerschgens, Isabel P; Gademann, Karl
2018-03-02
Chemical cell-surface engineering is a tool for modifying and altering cellular functions. Herein, we report the introduction of an antibiotic phenotype to the green alga Chlamydomonas reinhardtii by chemically modifying its cell surface. Flow cytometry and confocal microscopy studies demonstrated that a hybrid of the antibiotic vancomycin and a 4-hydroxyproline oligomer binds reversibly to the cell wall without affecting the viability or motility of the cells. The modified cells were used to inhibit bacterial growth of Gram-positive Bacillus subtilis cultures. Delivery of the antibiotic from the microalgae to the bacterial cells was verified by microscopy. Our studies provide compelling evidence that 1) chemical surface engineering constitutes a useful tool for the introduction of new, previously unknown functionality, and 2) living microalgae can serve as new platforms for drug delivery. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yu, Qilin; Zhang, Bing; Li, Jianrong; Zhang, Biao; Wang, Honggang; Li, Mingchun
2016-10-01
The cell wall is an important cell structure in both fungi and bacteria, and hence becomes a common antimicrobial target. The cell wall-perturbing agents disrupt synthesis and function of cell wall components, leading to cell wall stress and consequent cell death. However, little is known about the detailed mechanisms by which cell wall stress renders fungal cell death. In this study, we found that ROS scavengers drastically attenuated the antifungal effect of cell wall-perturbing agents to the model fungal pathogen Candida albicans, and these agents caused remarkable ROS accumulation and activation of oxidative stress response (OSR) in this fungus. Interestingly, cell wall stress did not cause mitochondrial dysfunction and elevation of mitochondrial superoxide levels. Furthermore, the iron chelator 2,2'-bipyridyl (BIP) and the hydroxyl radical scavengers could not attenuate cell wall stress-caused growth inhibition and ROS accumulation. However, cell wall stress up-regulated expression of unfold protein response (UPR) genes, enhanced protein secretion and promoted protein folding-related oxidation of Ero1, an important source of ROS production. These results indicated that oxidation of Ero1 in the endoplasmic reticulum (ER), rather than mitochondrial electron transport and Fenton reaction, contributed to cell wall stress-related ROS accumulation and consequent growth inhibition. Our findings uncover a novel link between cell wall integrity (CWI), ER function and ROS production in fungal cells, and shed novel light on development of strategies promoting the antifungal efficacy of cell wall-perturbing agents against fungal infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Regulation of cell wall biosynthesis.
Zhong, Ruiqin; Ye, Zheng-Hua
2007-12-01
Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.
Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Trygg, Johan; Vivier, Melané A
2015-03-18
Cell wall profiling technologies were used to follow compositional changes that occurred in the skins of grape berries (from two different ripeness levels) during fermentation and enzyme maceration. Multivariate data analysis showed that the fermentation process yielded cell walls enriched in hemicellulose components because pectin was solubilized (and removed) with a reduction as well as exposure of cell wall proteins usually embedded within the cell wall structure. The addition of enzymes caused even more depectination, and the enzymes unravelled the cell walls enabling better access to, and extraction of, all cell wall polymers. Overripe grapes had cell walls that were extensively hydrolyzed and depolymerized, probably by natural grape-tissue-ripening enzymes, and this enhanced the impact that the maceration enzymes had on the cell wall monosaccharide profile. The combination of the techniques that were used is an effective direct measurement of the hydrolysis actions of maceration enzymes on the cell walls of grape berry skin.
Slabaugh, Erin; Scavuzzo-Duggan, Tess; Chaves, Arielle; Wilson, Liza; Wilson, Carmen; Davis, Jonathan K; Cosgrove, Daniel J; Anderson, Charles T; Roberts, Alison W; Haigler, Candace H
2016-05-01
Cellulose synthases (CESAs) synthesize the β-1,4-glucan chains that coalesce to form cellulose microfibrils in plant cell walls. In addition to a large cytosolic (catalytic) domain, CESAs have eight predicted transmembrane helices (TMHs). However, analogous to the structure of BcsA, a bacterial CESA, predicted TMH5 in CESA may instead be an interfacial helix. This would place the conserved FxVTxK motif in the plant cell cytosol where it could function as a substrate-gating loop as occurs in BcsA. To define the functional importance of the CESA region containing FxVTxK, we tested five parallel mutations in Arabidopsis thaliana CESA1 and Physcomitrella patens CESA5 in complementation assays of the relevant cesa mutants. In both organisms, the substitution of the valine or lysine residues in FxVTxK severely affected CESA function. In Arabidopsis roots, both changes were correlated with lower cellulose anisotropy, as revealed by Pontamine Fast Scarlet. Analysis of hypocotyl inner cell wall layers by atomic force microscopy showed that two altered versions of Atcesa1 could rescue cell wall phenotypes observed in the mutant background line. Overall, the data show that the FxVTxK motif is functionally important in two phylogenetically distant plant CESAs. The results show that Physcomitrella provides an efficient model for assessing the effects of engineered CESA mutations affecting primary cell wall synthesis and that diverse testing systems can lead to nuanced insights into CESA structure-function relationships. Although CESA membrane topology needs to be experimentally determined, the results support the possibility that the FxVTxK region functions similarly in CESA and BcsA. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Direct observation of organic contaminant uptake, storage, and metabolism within plant roots.
Wild, Edward; Dent, John; Thomas, Gareth O; Jones, Kevin C
2005-05-15
Two-photon excitation microscopy (TPEM) is used to visualize and track the uptake and movement of anthracene and phenanthrene from a contaminated growth medium into living unmodified roots of maize and wheat over a 56-day period. The degradation of anthracene was also directly observed within the cortex cells of both species. The power of this technique is that neither the plant nor the compound require altering (staining or sectioning) to visualize them, meaning they are in their natural form throughout the experiment. Initially both compounds bound to the epidermis along the zone of elongation, passing through the epidermal cells to reach the cortex within the root hair, and branching zones of the root. The PAHs entered the epidermis radially; however, once within the cortex cells this movement was dominated by slow lateral movement of both compounds toward the shoot. Highly focused "streams" of compound were observed to form over time; zones where phenanthrene concentrated extended up to 1500 microm in length over a 56-day period, for example, passing through several adjoining cells, and were detectable in cell walls and cell vacuoles. Radial movement was not observed to extend beyond the cortex cells to reach the vascular tissues of the plant. The longitudinal movement of both compounds was not observed to extend beyond the root base into the stem or vegetative parts of the plant. The lateral movement of both compounds within the cortex cells was dominated by movement within the cell walls, suggesting apoplastic flow through multiple cell walls, but with a low level of symplastic movement to transport compound into the cellular vacuoles. Degradation of anthracene to the partial breakdown products anthrone, anthraquinone, and hydroxyanthraquinone was observed directly in the zones of root elongation and branching. The technique and observations have important applications to the fields of agrochemistry and phytoremediation.
Functional lignocellulosic materials prepared by ATRP from a wood scaffold.
Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo
2016-08-10
Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood.
Exceptionally well-preserved Cretaceous microfossils reveal new biomineralization styles.
Wendler, Jens E; Bown, Paul
2013-01-01
Calcareous microplankton shells form the dominant components of ancient and modern pelagic sea-floor carbonates and are widely used in palaeoenvironmental reconstructions. The efficacy of these applications, however, is dependent upon minimal geochemical alteration during diagenesis, but these modifying processes are poorly understood. Here we report on new biomineralization architectures of previously unsuspected complexity in calcareous cell-wall coverings of extinct dinoflagellates (pithonellids) from a Tanzanian microfossil-lagerstätte. These Cretaceous 'calcispheres' have previously been considered biomineralogically unremarkable but our new observations show that the true nature of these tests has been masked by recrystallization. The pristine Tanzanian fossils are formed from fibre-like crystallites and show archeopyles and exquisitely constructed opercula, demonstrating the dinoflagellate affinity of pithonellids, which has long been uncertain. The interwoven fibre-like structures provide strength and flexibility enhancing the protective function of these tests. The low-density wall fabrics may represent specific adaptation for oceanic encystment life cycles, preventing the cells from rapid sinking.
Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; Hou, Guichuan; Zhang, Xuebin; Yang, Huijun; Feng, Huan; Miller, Lisa; Ralph, John; Liu, Chang-Jun
2016-01-01
Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens' lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in the yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Moreover, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications. PMID:27349324
Mortimer, Jenny C.; Yu, Xiaolan; Albrecht, Sandra; Sicilia, Francesca; Huichalaf, Mariela; Ampuero, Diego; Michaelson, Louise V.; Murphy, Alex M.; Matsunaga, Toshiro; Kurz, Samantha; Stephens, Elaine; Baldwin, Timothy C.; Ishii, Tadashi; Napier, Johnathan A.; Weber, Andreas P.M.; Handford, Michael G.; Dupree, Paul
2013-01-01
The Arabidopsis thaliana protein GOLGI-LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST1) has been previously identified as a GDP-d-mannose transporter. It has been hypothesized that GONST1 provides precursors for the synthesis of cell wall polysaccharides, such as glucomannan. Here, we show that in vitro GONST1 can transport all four plant GDP-sugars. However, gonst1 mutants have no reduction in glucomannan quantity and show no detectable alterations in other cell wall polysaccharides. By contrast, we show that a class of glycosylated sphingolipids (glycosylinositol phosphoceramides [GIPCs]) contains Man and that this mannosylation is affected in gonst1. GONST1 therefore is a Golgi GDP-sugar transporter that specifically supplies GDP-Man to the Golgi lumen for GIPC synthesis. gonst1 plants have a dwarfed phenotype and a constitutive hypersensitive response with elevated salicylic acid levels. This suggests an unexpected role for GIPC sugar decorations in sphingolipid function and plant defense signaling. Additionally, we discuss these data in the context of substrate channeling within the Golgi. PMID:23695979
Functional lignocellulosic materials prepared by ATRP from a wood scaffold
Cabane, Etienne; Keplinger, Tobias; Künniger, Tina; Merk, Vivian; Burgert, Ingo
2016-01-01
Wood, a natural and abundant source of organic polymers, has been used as a scaffold to develop novel wood-polymer hybrid materials. Through a two-step surface-initiated Atom Transfer Radical Polymerization (ATRP), the porous wood structure can be effectively modified with polymer chains of various nature. In the present study, polystyrene and poly(N-isopropylacrylamide) were used. As shown with various characterization techniques including confocal Raman microscopy, FTIR, and SEM/EDX, the native wood ultrastructure and features are retained and the polymer chains can be introduced deep within the wood, i.e. inside the wood cell walls. The physical properties of the new materials have been studied, and results indicate that the insertion of polymer chains inside the wood cell wall alters the intrinsic properties of wood to yield a hybrid composite material with new functionalities. This approach to the functionalization of wood could lead to the fabrication of a new class of interesting functional materials and promote innovative utilizations of the renewable resource wood. PMID:27506369
Cai, Yuanheng; Zhang, Kewei; Kim, Hoon; ...
2016-06-28
Producing cellulosic biofuels and bio-based chemicals from woody biomass is impeded by the presence of lignin polymer in the plant cell wall. Manipulating the monolignol biosynthetic pathway offers a promising approach to improved processability, but often impairs plant growth and development. Here, we show that expressing an engineered 4-O-methyltransferase that chemically modifies the phenolic moiety of lignin monomeric precursors, thus preventing their incorporation into the lignin polymer, substantially alters hybrid aspens’ lignin content and structure. Woody biomass derived from the transgenic aspens shows a 62% increase in the release of simple sugars and up to a 49% increase in themore » yield of ethanol when the woody biomass is subjected to enzymatic digestion and yeast-mediated fermentation. Furthermore, the cell wall structural changes do not affect growth and biomass production of the trees. Our study provides a useful strategy for tailoring woody biomass for bio-based applications.« less
Araújo, Danielle Silva; de Sousa Lima, Patrícia; Baeza, Lilian Cristiane; Parente, Ana Flávia Alves; Melo Bailão, Alexandre; Borges, Clayton Luiz; de Almeida Soares, Célia Maria
2017-11-01
Paracoccidioidomycosis is an important systemic mycosis caused by thermodimorphic fungi of the Paracoccidioides genus. During the infective process, the cell wall acts at the interface between the fungus and the host. In this way, the cell wall has a key role in growth, environment sensing and interaction, as well as morphogenesis of the fungus. Since the cell wall is absent in mammals, it may present molecules that are described as target sites for new antifungal drugs. Despite its importance, up to now few studies have been conducted employing proteomics in for the identification of cell wall proteins in Paracoccidioides spp. Here, a detailed proteomic approach, including cell wall-fractionation coupled to NanoUPLC-MS E , was used to study and compare the cell wall fractions from Paracoccidioides lutzii mycelia and yeast cells. The analyzed samples consisted of cell wall proteins extracted by hot SDS followed by extraction by mild alkali. In summary, 512 proteins constituting different cell wall fractions were identified, including 7 predicted GPI-dependent cell wall proteins that are potentially involved in cell wall metabolism. Adhesins previously described in Paracoccidioides spp. such as enolase, glyceraldehyde-3-phosphate dehydrogenase were identified. Comparing the proteins in mycelium and yeast cells, we detected some that are common to both fungal phases, such as Ecm33, and some specific proteins, as glucanase Crf1. All of those proteins were described in the metabolism of cell wall. Our study provides an important elucidation of cell wall composition of fractions in Paracoccidioides, opening a way to understand the fungus cell wall architecture. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel Metrics to Characterize Embryonic Elongation of the Nematode Caenorhabditis elegans.
Martin, Emmanuel; Rocheleau-Leclair, Olivier; Jenna, Sarah
2016-03-28
Dissecting the signaling pathways that control the alteration of morphogenic processes during embryonic development requires robust and sensitive metrics. Embryonic elongation of the nematode Caenorhabditis elegans is a late developmental stage consisting of the elongation of the embryo along its longitudinal axis. This developmental stage is controlled by intercellular communication between hypodermal cells and underlying body-wall muscles. These signaling mechanisms control the morphology of hypodermal cells by remodeling the cytoskeleton and the cell-cell junctions. Measurement of embryonic lethality and developmental arrest at larval stages as well as alteration of cytoskeleton and cell-cell adhesion structures in hypodermal and muscle cells are classical phenotypes that have been used for more than 25 years to dissect these signaling pathways. Recent studies required the development of novel metrics specifically targeting either early or late elongation and characterizing morphogenic defects along the antero-posterior axis of the embryo. Here, we provide detailed protocols enabling the accurate measurement of the length and the width of the elongating embryos as well as the length of synchronized larvae. These methods constitute useful tools to identify genes controlling elongation, to assess whether these genes control both early and late phases of this stage and are required evenly along the antero-posterior axis of the embryo.
Moliva, J I; Hossfeld, A P; Canan, C H; Dwivedi, V; Wewers, M D; Beamer, G; Turner, J; Torrelles, J B
2018-05-01
Current tuberculosis (TB) treatments include chemotherapy and preventative vaccination with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In humans, however, BCG vaccination fails to fully protect against pulmonary TB. Few studies have considered the impact of the human lung mucosa (alveolar lining fluid (ALF)), which modifies the Mycobacterium tuberculosis (M.tb) cell wall, revealing alternate antigenic epitopes on the bacterium surface that alter its pathogenicity. We hypothesized that ALF-induced modification of BCG would induce better protection against aerosol infection with M.tb. Here we vaccinated mice with ALF-exposed BCG, mimicking the mycobacterial cell surface properties that would be present in the lung during M.tb infection. ALF-exposed BCG-vaccinated mice were more effective at reducing M.tb bacterial burden in the lung and spleen, and had reduced lung inflammation at late stages of M.tb infection. Improved BCG efficacy was associated with increased numbers of memory CD8 + T cells, and CD8 + T cells with the potential to produce interferon-γ in the lung in response to M.tb challenge. Depletion studies confirmed an essential role for CD8 + T cells in controlling M.tb bacterial burden. We conclude that ALF modifications to the M.tb cell wall in vivo are relevant in the context of vaccine design.
Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.
Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang
2018-01-01
The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.
Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie
2014-03-03
The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.
Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls.
Marcus, Susan E; Verhertbruggen, Yves; Hervé, Cécile; Ordaz-Ortiz, José J; Farkas, Vladimir; Pedersen, Henriette L; Willats, William G T; Knox, J Paul
2008-05-22
Molecular probes are required to detect cell wall polymers in-situ to aid understanding of their cell biology and several studies have shown that cell wall epitopes have restricted occurrences across sections of plant organs indicating that cell wall structure is highly developmentally regulated. Xyloglucan is the major hemicellulose or cross-linking glycan of the primary cell walls of dicotyledons although little is known of its occurrence or functions in relation to cell development and cell wall microstructure. Using a neoglycoprotein approach, in which a XXXG heptasaccharide of tamarind seed xyloglucan was coupled to BSA to produce an immunogen, we have generated a rat monoclonal antibody (designated LM15) to the XXXG structural motif of xyloglucans. The specificity of LM15 has been confirmed by the analysis of LM15 binding using glycan microarrays and oligosaccharide hapten inhibition of binding studies. The use of LM15 for the analysis of xyloglucan in the cell walls of tamarind and nasturtium seeds, in which xyloglucan occurs as a storage polysaccharide, indicated that the LM15 xyloglucan epitope occurs throughout the thickened cell walls of the tamarind seed and in the outer regions, adjacent to middle lamellae, of the thickened cell walls of the nasturtium seed. Immunofluorescence analysis of LM15 binding to sections of tobacco and pea stem internodes indicated that the xyloglucan epitope was restricted to a few cell types in these organs. Enzymatic removal of pectic homogalacturonan from equivalent sections resulted in the abundant detection of distinct patterns of the LM15 xyloglucan epitope across these organs and a diversity of occurrences in relation to the cell wall microstructure of a range of cell types. These observations support ideas that xyloglucan is associated with pectin in plant cell walls. They also indicate that documented patterns of cell wall epitopes in relation to cell development and cell differentiation may need to be re-considered in relation to the potential masking of cell wall epitopes by other cell wall components.
Hydrodynamic shear stress and mass transport modulation of endothelial cell metabolism.
Nollert, M U; Diamond, S L; McIntire, L V
1991-09-01
Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.
The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus
Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel; Foster, Simon J.; Hobbs, Jamie K.
2014-01-01
The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division. PMID:25468333
Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki
2016-01-01
The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283
Domozych, David; Lietz, Anna; Patten, Molly; Singer, Emily; Tinaz, Berke; Raimundo, Sandra C
2017-01-01
The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.
Walker, Louise A.; Niño-Vega, Gustavo; Mora-Montes, Héctor M.; Neves, Gabriela W. P.; Villalobos-Duno, Hector; Barreto, Laura; Garcia, Karina; Franco, Bernardo; Martínez-Álvarez, José A.; Munro, Carol A.; Gow, Neil A. R.
2018-01-01
Sporotrichosis is a subcutaneous mycosis caused by pathogenic species of the Sporothrix genus. A new emerging species, Sporothrix brasiliensis, is related to cat-transmitted sporotrichosis and has severe clinical manifestations. The cell wall of pathogenic fungi is a unique structure and impacts directly on the host immune response. We reveal and compare the cell wall structures of Sporothrix schenckii and S. brasiliensis using high-pressure freezing electron microscopy to study the cell wall organization of both species. To analyze the components of the cell wall, we also used infrared and 13C and 1H NMR spectroscopy and the sugar composition was determined by quantitative high-performance anion-exchange chromatography. Our ultrastructural data revealed a bi-layered cell wall structure for both species, including an external microfibrillar layer and an inner electron-dense layer. The inner and outer layers of the S. brasiliensis cell wall were thicker than those of S. schenckii, correlating with an increase in the chitin and rhamnose contents. Moreover, the outer microfibrillar layer of the S. brasiliensis cell wall had longer microfibrils interconnecting yeast cells. Distinct from those of other dimorphic fungi, the cell wall of Sporothrix spp. lacked α-glucan component. Interestingly, glycogen α-particles were identified in the cytoplasm close to the cell wall and the plasma membrane. The cell wall structure as well as the presence of glycogen α-particles varied over time during cell culture. The structural differences observed in the cell wall of these Sporothrix species seemed to impact its uptake by monocyte-derived human macrophages. The data presented here show a unique cell wall structure of S. brasiliensis and S. schenckii during the yeast parasitic phase. A new cell wall model for Sporothrix spp. is therefore proposed that suggests that these fungi molt sheets of intact cell wall layers. This observation may have significant effects on localized and disseminated immunopathology. PMID:29522522